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Abstract
This paper proposes and analyzes arbitrarily high-order discontinuous Galerkin (DG)
and finite volume methods which provably preserve the positivity of density and pres-
sure for the idealmagnetohydrodynamics (MHD) on generalmeshes.Unified auxiliary
theories are built for rigorously analyzing the positivity-preserving (PP) property of
numerical MHD schemes with a Harten–Lax–van Leer (HLL) type flux on polytopal
meshes in any space dimension. Themain challenges overcome here include establish-
ing certain relation between the PP property and a discrete divergence ofmagnetic field
on general meshes, and estimating proper wave speeds in the HLL flux to ensure the
PP property. In the 1D case, we prove that the standard DG and finite volume methods
with the proposed HLL flux are PP, under a condition accessible by a PP limiter. For
the multidimensional conservative MHD system, the standard DG methods with a PP
limiter are not PP in general, due to the effect of unavoidable divergence error in the
magnetic field. We construct provably PP high-order DG and finite volume schemes
by proper discretization of the symmetrizable MHD system, with two divergence-
controlling techniques: the locally divergence-free elements and suitably discretized
Godunov–Powell source term. The former technique leads to zero divergence within
each cell, while the latter controls the divergence error across cell interfaces. Our
analysis reveals in theory that a coupling of these two techniques is very important for
positivity preservation, as they exactly contribute the discrete divergence terms which
are absent in standard multidimensional DG schemes but crucial for ensuring the PP
property. Several numerical tests further confirm the PP property and the effectiveness
of the proposed PP schemes. Unlike the conservative MHD system, the exact smooth
solutions of the symmetrizable MHD system are proved to retain the positivity even
if the divergence-free condition is not satisfied. Our analysis and findings further the
understanding, at both discrete and continuous levels, of the relation between the PP
property and the divergence-free constraint.
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1 Introduction

This paper is concerned with highly accurate and robust numerical methods for the
ideal compressible magnetohydrodynamics (MHD), which play an important role in
many fields including astrophysics, plasma physics and space physics. When viscous,
resistive and relativistic effects can be neglected, the governing equations of ideal
MHD, which combine the equations of gas dynamics with the Maxwell equations,
have been widely used to model the dynamics of electrically conducting fluids in the
presence of magnetic field. The ideal MHD system can be written as

Ut + ∇ · F(U) = 0, (1)

with an additional divergence-free constraint on the magnetic field

∇ · B = 0. (2)

The conservative vector U = (ρ, ρv,B, E)�; in the d-dimensional case, the diver-
gence operator ∇· =∑d

i=1
∂

∂xi
, and the flux F = (F1, . . . ,Fd) with

Fi (U) =
(
ρvi , ρviv − BiB + ptotei , viB − Biv, vi (E + ptot) − Bi (v · B)

)�
.

Here ρ is the density, v = (v1, v2, v3) is the fluid velocity, B = (B1, B2, B3) denotes

the magnetic field, ptot = p + |B|2
2 is the total pressure consisting of the gas pressure

p and the magnetic pressure, the vector ei denotes the i th row of the unit matrix of
size 3, E = ρe + 1

2

(
ρ|v|2 + |B|2) is the total energy consisting of thermal, kinetic

and magnetic energies, and e denotes the specific internal energy. The system (1) is
closed with an equation of state (EOS). Although the ideal EOS, p = (γ −1)ρe, with
a constant adiabatic index γ , is the most widely used choice, there are situations where
it is more suitable to use other EOSs. A general EOS can be expressed as p = p(ρ, e),
which is assumed to satisfy the following condition (cf. [67]):

if ρ > 0, then e > 0 ⇔ p(ρ, e) > 0. (3)

This condition is reasonable and holds for the ideal EOS with γ > 1.
Although the satisfaction of the divergence-free condition (2) is not explicitly

included in the system (1), the exact solution of (1) always preserves zero divergence
in future time if the initial divergence is zero. However, most of the numerical MHD
schemes ford ≥ 2 lead to a nonzero divergence of numericalmagnetic field due to trun-
cation errors, even if the initial data satisfy (2). As it is widely known, large divergence
error can lead to numerical instabilities or nonphysical features in the computed solu-
tions, cf. [7,11,26,36,48]. In the past several decades, many numerical techniques were
proposed to control the divergence error or enforce the divergence-free condition in the
discrete sense, including but not limited to: the projection method [11], the hyperbolic
divergence cleaningmethod [20], the locally divergence-freemethods [36,63], the con-
strained transportmethod [26] and its variants (e.g., [1,3,7,14,27,29,37,45,47,61]), and
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Provably positive high-order schemes for ideal… 997

the eight-wave methods (e.g., [12,40,42,43]). The eight-wave method was first pro-
posed by Powell [42,43], based on proper discretization of the Godunov form [30] of
ideal MHD equations

Ut + ∇ · F(U) = −(∇ · B) S(U), (4)

where S(U) = (0, B, v, v·B)�. In the literature, (4) is sometimes also called Powell’s
system. The right-hand side term of (4), termed as the Godunov–Powell source term in
the following, is proportional to∇·B. Thismeans, at the continuous level, theGodunov
form (4) and conservative form (1) are equivalent under the condition (2). However, the
Godunov–Powell source term modifies the character of the MHD equations, making
the system (4)Galilean invariant (cf. [21]), symmetrizable [30] anduseful for designing
entropy stable schemes (see, e.g., [12,22,40]). These good properties do not hold
anymore if the source term is dropped. As first demonstrated by Powell [43], the
inclusion of the source term also helps advect the divergence away with the flow. This
renders the eight-wave method stable to control the divergence error, although some
drawbacks [48] may be caused due to the loss of conservativeness.

In physics, the density, pressure and internal energy are positive. An equivalent
mathematical description is that, the conservative vector U should stay in the set of
physically admissible states defined by

G =
{

U = (ρ,m,B, E)� : ρ > 0, E(U) := E − 1

2

( |m|2
ρ

+ |B|2
)

> 0

}

, (5)

where the condition (3) has been used, and E(U) = ρe denotes the internal energy.
We are interested in positivity-preserving (PP) numerical schemes whose solutions
always stay in G. The motivation comes from that, once the negative density or neg-
ative pressure (internal energy) is obtained in the numerical simulations, the discrete
problem becomes ill-posed due to the loss of hyperbolicity, causing the breakdown
of the simulation codes. However, most of the existing MHD schemes are gener-
ally not PP, and thus may suffer from a large risk of failure when simulating MHD
problems with low density, low internal energy, low plasma-beta and/or strong dis-
continuity. A few efforts were made to reduce such risk. Balsara and Spicer [6] tried
to maintain positive pressure by switching the Riemann solvers for different wave
situations. Janhunen [34] noticed the challenge of developing PP schemes for the con-
servative system (1), so he proposed a modified MHD system, which is similar to
the Godunov form (4) but includes only the source term in the induction equation.
Based on his modified system, Janhunen [34] presented a new 1D Riemann solver
and numerically demonstrated the PP property. Bouchut et al. [9,10] derived several
approximate multiwave Riemann solvers for the 1D ideal MHD, with sufficient con-
ditions for the solvers to satisfy the PP property and discrete entropy inequalities.
Waagan [50] noticed the importance of proper discretization on Janhunen’s modified
system, and developed a positive second-order scheme by the approximate Riemann
solvers of [9,10] and a new linear reconstruction. The robustness of that scheme was
further demonstrated in [51] by extensive tests and comparisons. Recent years have
witnessed significant advances in developing bound-preserving high-order schemes
for hyperbolic systems; see the pioneer works by Zhang and Shu [65,66,68], and more
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recent works, e.g., [15,33,39,52,55,59,60,64]. Balsara [5] proposed a self-adjusting
PP limiter to enforce the positivity of the reconstructed solutions in a finite volume
method for (1). Cheng et al. [13] extended the PP limiter of [66,67] to enforce the
positivity of DG solutions for (1). The PP limiters in [5,13] are based on a presumed
proposition that the cell-averaged solutions computed by those schemes always belong
toG. Such a proposition has not yet been rigorously proved for thosemethods in [5,13],
although it could be deduced for the 1D schemes in [13] under some assumptions.
Using the presumed PP property of the Lax–Friedrichs (LF) scheme, Christlieb et
al. [16,17] developed PP high-order finite difference methods for the ideal MHD by
extending the parametrized flux limiters [46,58,59]. It was numerically demonstrated
that all the above PP techniques could enhance the robustness of MHD codes, but
few theoretical evidences were provided, especially in the multidimensional cases, to
completely prove the PP property of fully discretized schemes. In fact, finite numerical
tests could be insufficient to genuinely demonstrate that a scheme is always PP under
all circumstances. It is highly significant to develop provably PP schemes and rigorous
PP analysis for the ideal MHD.

Seeking provably PP schemes for the ideal MHD is quite difficult, largely due to
the intrinsic complexity of the MHD equations as well as the lack of sufficient knowl-
edge about the underlying relation between the PP property and the divergence-free
condition (2). One can see from (5) that the difficulties mainly lie in maintaining the
positivity of internal energy, whose computation nonlinearly involves all the conserva-
tive variables. In most numerical methods, the conservative quantities are themselves
evolved according to their own conservation laws, which are seemingly unrelated to
and numerically do not necessarily guarantee the positivity of the computed internal
energy. In theory, it is indeed a challenge to make an a priori judgment on whether a
scheme is always PP under all circumstances or not.

Recently, two progresses [53,54] were made to rigorously analyze, understand and
design provably PP methods for the ideal MHD. The first rigorous PP analysis was
carried out in [53] for conservative finite volume and DG schemes for (1). The anal-
ysis unveiled in theory that a discrete divergence-free (DDF) condition is crucial for
designing the PP conservative schemes for (1). This finding is consistent with the rela-
tivisticMHD case [56]. It was also proved in [53] that if the proposedDDF condition is
slightly violated, even the first-order multidimensional LF scheme for (1) is generally
not PP, and using very small CFL number or many times larger numerical viscosity
does not help to prevent this effect. The DDF condition relies on a combination of
the information on adjacent cells, and thus is not ensured by a locally divergence-
free approach. As a result, in the multidimensional cases, a usual PP limiter does
not genuinely guarantee the PP property of the standard DG schemes for (1), even if
the locally divergence-free DG element [36] is employed. Interestingly, on the other
hand, at the PDE level the positivity preservation and the divergence-free condition
(1) are also inextricably linked for the ideal MHD system. For the conservative system
(1), Janhunen [34] pointed out that the exact solutions to 1D Riemann problems can
have negative pressure if the initial data has a jump in the normal magnetic field (a
nonzero divergence). Recently in [54], we first observed that the exact smooth solu-
tion of (1) may also fail to be PP if the divergence-free condition (2) is (slightly)
violated. Fortunately, in the present paper we find that the smooth solutions of the
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modified system (4) always retain the desired positivity even if the magnetic field is
not divergence-free. All these findings motivate us to seek the multidimensional PP
schemes via proper discretization of the modified system (4) rather than the conserva-
tive system (1). Although Janhunen’s modified MHD system [34] may also preserve
the positivity, some other physical considerations suggest that Godunov’s form (4) is
better than Janhunen’s as demonstrated in [23]. Using the analysis techniques pro-
posed in [53], we first successfully developed in [54] the multidimensional provably
PP high-order DG methods for (4). Note that the study in [53,54] was restricted to
the schemes with the global LF flux on uniform Cartesian meshes. It is desirable to
construct provably PP high-order schemes with lower dissipative numerical fluxes and
on more general/unstructured meshes.

The aim of this paper is to present the rigorous analysis and a general framework
for constructing provably PP high-order DG and finite volumemethods with the HLL-
type flux for the ideal MHD on general meshes. As a nontrivial extension of [53,54] in
which the PP analysis techniques only work for Cartesian meshes and global LF flux,
this work improves the analysis techniques of [53] and gives deeper understanding of
positivity preservation at both continuous and discrete levels. The new contributions
and significant innovations of this work are outlined as follows:

1. We present unified auxiliary theories for PP analysis of schemes with the HLL-
type flux on general meshes for the ideal MHD in any space dimension. These
provide a novel way to analytically extract the underlying relation between the PP
property and the discrete divergence of magnetic field on an arbitrary polytopal
mesh. Explicit estimates of the wave speeds in theHLL flux are technically derived
to guarantee the provably PP property.

2. For the 1DMHDsystem (1), we prove the PP property of the standard finite volume
and DG methods with the proposed HLL flux, under a condition accessible by a
simple PP limiter.

3. In the multidimensional cases, we construct provably PP high-order DG methods
based on the proposedHLLflux, a PP limiter [13], and a proper discretization of the
modifiedMHD system (4) with two divergence-controlling techniques: the locally
divergence-free elements and a novel discretization of theGodunov–Powell source
term in an upwindmanner according to the associated localwave speeds in theHLL
flux.The former technique leads to zero divergencewithin each cell,while the latter
controls the divergence error across cell interfaces. Our analysis clearly reveals
in theory that a coupling of these two techniques is very important for positivity
preservation, as they exactly contribute the discrete divergence terms which are
absent in standard multidimensional DG schemes but crucial for ensuring the PP
property. We also generalize the DDF condition of [53] to general meshes and
derive sufficient conditions for achieving PP conservative schemes in the multiple
dimensions.

4. We prove that the strong solution to the initial-value problem of themodifiedMHD
system (4) preserves the positivity of density and pressure even if the divergence-
free condition (2) is not satisfied. This feature, not enjoyed by the conservative
system (1) (see [54]), can serve as a justification for designing provably PP mul-
tidimensional schemes based on the modified system (4).
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The efforts mentioned above are novel and highly nontrivial. A key difficulty is to
analytically quantify the relation of the PP property to the discrete divergence on
general meshes. Especially, in the analysis of the positivity of E(U), the discrete equa-
tions for the conservative variables are nonlinearly coupled, and the limiting values
of the numerical solution at the interfaces of each cell are intrinsically connected by
the discrete divergence. These make the PP analysis in the MHD case very compli-
cated especially in the multidimensional cases, and some standard analysis techniques
(cf. [66]) are inapplicable as demonstrated in [53]. We will skillfully address these
challenges by a novel equivalent form of the set G and highly technical estimates.
Note that a LF flux can be considered as a special HLL flux. Therefore, all the anal-
yses in the this paper directly apply to the local and global LF fluxes. It is also worth
mentioning that many multi-state or multi-wave HLL-type fluxes were developed or
applied to the ideal MHD in the literature (e.g., [4,8,9,28,32,34,38,41]), but only a few
of them (cf. [9,32,41]) were shown to be PP for some 1D schemes. Moreover, their
PP property for higher order schemes, in the multidimensional cases, and its relation
to the divergence-free condition in the discrete sense have not yet been rigorously
proved.

The paper is organized as follows. After establishing the auxiliary theories for our
PP analysis on general meshes in Sect. 2, we present the 1D and multidimensional
provably PP methods in Sects. 3 and 4, respectively. We conduct numerical tests in
Sect. 5 to verify the PP property and the effectiveness of the proposed PP techniques,
before concluding the paper inSect. 6. The positivity of strong solutions of themodified
MHD system (4) is shown in “Appendix A”.

2 Auxiliary theories

In this section, we present the auxiliary results for our PP analysis on general meshes.

2.1 Properties of admissible state set

The function E(U) in (5) is nonlinear with respect to U, complicating the analysis of
the PP property of a given scheme. The following equivalent form of G was proposed
in [53].

Lemma 1 The admissible state set G is equivalent to

G∗ =
{

U = (ρ,m,B, E)� : ρ > 0, U · n∗ + |B∗|2
2

> 0, ∀v∗,B∗ ∈ R
3
}

, (6)

where

n∗ =
( |v∗|2

2
, − v∗, − B∗, 1

)�
.

The proof of Lemma 1 can be found in [53]. As we can see, the equivalent set G∗
is defined with two constraints linear with respect to U, which give it advantages over
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the natural definition (5) in showing the PP property of numerical schemes. This novel
equivalent form is a cornerstone of our PP analysis.

The convexity of admissible state set is useful in bound-preserving analysis, as it
helps reduce the complexity of the analysis if the scheme can be rewritten into certain
convex combinations; see e.g., [52,57,66,68]. The convexity holds for G∗, cf. [53].

Lemma 2 The set G∗ is convex. Moreover, λU1 + (1 − λ)U0 ∈ G∗ for any U1 ∈
G∗,U0 ∈ G∗ and λ ∈ (0, 1], where G∗ is the closure of G∗.

2.2 Technical estimates relative to flux

2.2.1 Main estimates

We summarize our main estimate result in this subsection with the proof of it given
later.

For the sake of convenience, we introduce the following notations, which will be
frequently used in this paper. For any vector ξ = (ξ1, · · · , ξd) ∈ R

d , we define the
inner products

〈ξ , v〉 :=
d∑

k=1

ξkvk, 〈ξ ,B〉 :=
d∑

k=1

ξk Bk, 〈ξ ,F〉 :=
d∑

k=1

ξkFk .

For any unit vector ξ ∈ R
d , define

C (U; ξ) := 1√
2

⎡

⎣C 2
s + |B|2

ρ
+
√
(

C 2
s + |B|2

ρ

)2

− 4
C 2
s 〈ξ ,B〉2

ρ

⎤

⎦

1
2

,

where Cs := p
ρ
√
2e
. Note that, for the ideal EOS, Cs =

√
(γ−1)p

2ρ .

Recall that a technical inequality constructed in [53,Lemma2.6] has played apivotal
role in the PP analysis on Cartesian meshes in [53,54]. That inequality involves two
states,which correspond to the numerical solutions at a couple of symmetric quadrature
points on cell interfaces. The cells of a general mesh are generally non-symmetric, so
that the results in [53] are inapplicable to the present analysis. To carry out PP analysis
on a general mesh, we need to construct a (general) “multi-state” inequality, which is
derived in the following theorem.

Theorem 1 For 1 ≤ j ≤ N, let s j > 0 and the unit vector ξ ( j) ∈ R
d satisfy

N∑

j=1

s jξ
( j) = 0. (7)
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Given N admissible states U( j), 1 ≤ j ≤ N, we define

α̂ j := max

{
〈
ξ ( j), v( j)〉,

1
∑N

i=1 si

N∑

i=1

si

〈

ξ ( j) − ξ (i),

√
ρ( j)v( j) +√ρ(i)v(i)

√
ρ( j) +√ρ(i)

〉}

+ C (U( j); ξ ( j)) + 2
∑N

i=1 si

N∑

i=1

si
|B( j) − B(i)|
√

ρ( j) +√ρ(i)
.

(8)
Then for any α j ≥ α̂ j , the state

U := 1
∑N

j=1 s jα j

N∑

j=1

s j

(

α jU( j) −
〈
ξ ( j),F(U( j))

〉)

, (9)

belongs to Gρ := {U = (ρ,m,B, E)� : ρ > 0}, and satisfies

U · n∗ + |B∗|2
2

≥ − v∗ · B∗
∑N

j=1 s jα j

N∑

j=1

s j
〈
ξ ( j),B( j)〉, ∀v∗,B∗ ∈ R

3. (10)

Furthermore, U ∈ G∗ if
N∑

j=1

s j
〈
ξ ( j),B( j)〉 = 0. (11)

The proof of Theorem 1 and the construction of the inequality (10) are highly
nontrivial and technical. For better legibility, we put the proof in Sect. 2.2.2. Here, we
would like to briefly explain the result in Theorem1,whosemeaningwill becomemore
clear in the PP analysis in Sects. 3 and 4. Let us consider a cell of the computational
mesh, and assume it is a non-self-intersecting d-polytope with N edges (d = 2) or
faces (d = 3). The index j on the variables in Theorem 1 represents the j th edge or
face of the polytope, and s j and ξ ( j) respectively correspond to the (d−1)-dimensional
Hausdorff measure and the unit outward normal vector of the j th edge or face. One can
verify that the condition (7) holds naturally. In addition,U( j) stands for the approximate
values of U on the j th edge or face. The condition (11) is actually a DDF condition
over the polytope.

Remark 1 In Theorem 1,
∑N

j=1 s jα j is always positive, because

N∑

j=1

s j α̂ j >
1

∑N
i=1 si

N∑

j=1

s j

N∑

i=1

si

〈

ξ ( j) − ξ (i),

√
ρ( j)v( j) +√ρ(i)v(i)

√
ρ( j) +√ρ(i)

〉

= 0.

Remark 2 Theorem 1, particularly the inequality (10), clearly establishes a connec-
tion between the PP property and the discrete divergence of magnetic field, i.e.,∑N

j=1 s j 〈ξ ( j),B( j)〉. This will be a key point of our PP analysis. The right-hand side
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term of (10) is very important. The construction of this term is highly technical. If it is
dropped, the inequality (10) would become invalid. As we will see, this term provides
a way to take into account the discrete divergence in the PP analysis.

The following results are immediate corollaries of Theorem 1, which are useful for
deriving PP numerical fluxes.

For any unit vector ξ ∈ R
d , and any pair of admissible states U and Ũ, we define

αr (U, Ũ; ξ) := max

{

〈ξ , v〉,
√

ρ〈ξ , v〉 +√ρ̃〈ξ , ṽ〉
√

ρ +√ρ̃

}

+ C (U; ξ) + |B − B̃|
√

ρ +√ρ̃
,

(12)

αl(U, Ũ; ξ) := min

{

〈ξ , v〉,
√

ρ〈ξ , v〉 +√ρ̃〈ξ , ṽ〉
√

ρ +√ρ̃

}

− C (U; ξ) − |B − B̃|
√

ρ +√ρ̃
,

(13)

and

α�(U, Ũ; ξ) := max

{

|〈ξ , v〉|,
∣
∣
∣
∣
∣

√
ρ〈ξ , v〉 +√ρ̃〈ξ , ṽ〉

√
ρ +√ρ̃

∣
∣
∣
∣
∣

}

+ C (U; ξ) + |B − B̃|
√

ρ +√ρ̃
.

(14)

Corollary 1 For any U, Ũ ∈ G, any unit vector ξ ∈ R
d , and

∀α ≥ αr (U, Ũ; ξ), ∀α̃ ≤ αl(Ũ,U; ξ),

the state

U := 1

α − α̃

(
αU − 〈ξ ,F(U)〉 − α̃Ũ + 〈ξ ,F(Ũ)〉

)
,

belongs to Gρ and satisfies

U · n∗ + |B∗|2
2

+ v∗ · B∗

α − α̃

(
〈ξ ,B〉 − 〈ξ , B̃〉

)
≥ 0, ∀v∗,B∗ ∈ R

3. (15)

Furthermore, if 〈ξ ,B〉 − 〈ξ , B̃〉 = 0, then U ∈ G∗.

Proof This directly follows from Theorem 1 with N = 2, by taking

s1 = s2 = 1, ξ (1) = − ξ (2) = ξ , U(1) = U, U(2) = Ũ, α1 = α, α2 = − α̃.


�
Corollary 2 Let U, Ũ ∈ G, unit vector ξ ∈ R

d . For ∀α ≥ α�(U, Ũ; ξ), ∀α̃ ≥
α�(Ũ,U; ξ ), the state

U := 1

α + α̃

(
αU − 〈ξ ,F(U)〉 + α̃Ũ + 〈ξ ,F(Ũ)〉

)
,
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belongs to Gρ and satisfies

U · n∗ + |B∗|2
2

+ v∗ · B∗

α + α̃

(
〈ξ ,B〉 − 〈ξ , B̃〉

)
≥ 0, ∀v∗,B∗ ∈ R

3. (16)

Furthermore, if 〈ξ ,B〉 − 〈ξ , B̃〉 = 0, then U ∈ G∗.

Proof This is a direct consequence of Corollary 1. 
�
Remark 3 The inequalities (10), (15) and (16) extend the inequality constructed in
[53, Lemma 2.6]. Corollaries 1 and 2 are useful for estimating the wave speeds to
ensure the PP property of the HLL flux and local Lax–Friedrichs flux, respectively;
see Theorem 2.

2.2.2 Proof of Theorem 1

We first establish several technical lemmas as the stepping stones on the path to prove
Theorem 1.

For any U ∈ G and v∗,B∗ ∈ R
3, we define the nonzero vector θ ∈ R

7 by

θ(U, v∗,B∗) := 1√
2

(
B − B∗, √

ρ(v − v∗),
√
2ρe
)�

.

As a novel point, introducing such a vector will bring much convenience in the fol-
lowing estimates and analyses. It is easy to verify that

U · n∗ + |B∗|2
2

= |θ |2. (17)

Lemma 3 The set
Gρ := {U = (ρ,m,B, E)� : ρ > 0

}
,

is a convex set. And for any U ∈ Gρ , ξ ∈ R
d and α > 〈ξ , v〉, it holds

αU − 〈ξ ,F(U)〉 ∈ Gρ.

Proof The result can be easily verified. 
�
Lemma 4 For any U ∈ G, any v∗,B∗ ∈ R

3 and all i ∈ {1, 2, 3}, we have

Fi (U) · n∗ − Bi (v∗ · B∗) ≤ vi

7∑

k=4

θ2k + v∗
i

(
1

2
|B|2 − B · B∗

)

+ Ci |θ |2, (18)

where Ci := C (U; ei ), and the vector ei is the i-th row of the unit matrix of size 3.
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Proof For any i ∈ {1, 2, 3}, we observe that

Fi (U) · n∗ − Bi (v∗ · B∗) = vi

7∑

k=4

θ2k + v∗
i

(
1

2
|B|2 − B · B∗

)

+ Φi , (19)

where

Φi (U, v∗,B∗) := p(vi − v∗
i ) +

∑

1≤k≤3
k �=i

(
Bk(vi − v∗

i ) − Bi (vk − v∗
k )
)
(Bk − B∗

k ).

Let us show that Φi is bounded by Ci |θ |2 from above. We further observe that Φi

is a quadratic form in the variables θk , 1 ≤ k ≤ 7, and moreover, the coefficients of
the quadratic form do not depend on v∗ and B∗. Specifically, for the fixed i , we have

p(vi − v∗
i ) = 2Cs

√
ρ√
2

(vi − v∗
i )

√
ρe = 2Csθ3+iθ7,

(
Bk(vi − v∗

i ) − Bi (vk − v∗
k )
)
(Bk − B∗

k ) = 2
Bk√
ρ

θ3+iθk − 2
Bi√
ρ

θ3+kθk, ∀k �= i .

Define i1 := i mod 3 + 1 and i2 := (i + 1) mod 3 + 1, and

θ̃ := (θ3+i , θ3+i1, θ3+i2 , θi1 , θi2 , θ7
)�

,

then

Φi = 2Csθ3+iθ7 + 2
∑

k∈{i1,i2}

(
Bk√
ρ

θ3+iθk − Bi√
ρ

θ3+kθk

)

= θ̃
�
Aθ̃ ,

where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 Bi1ρ
− 1

2 Bi2ρ
− 1

2 Cs

0 0 0 −Biρ− 1
2 0 0

0 0 0 0 −Biρ− 1
2 0

Bi1ρ
− 1

2 −Biρ− 1
2 0 0 0 0

Bi2ρ
− 1

2 0 −Biρ− 1
2 0 0 0

Cs 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The spectral radius of A is Ci . Therefore,

|Φi | ≤ |θ̃�
Aθ̃ | ≤ Ci |θ̃ |2 = Ci (|θ |2 − θ2i ) ≤ Ci |θ |2,

which along with the identity (19) imply (18). 
�
For any unit vector ξ ∈ R

d , we introduce a matrix Tξ := diag
{
1, T̂ξ , T̂ξ , 1

}
, with

the rotational matrix T̂ξ defined as follows:
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1006 K. Wu, C.-W. Shu

(i) In d = 1, ξ = ξ is a scalar of value 1 or −1, and T̂ξ is defined as diag{ξ, 1, 1}.
(ii) In d = 2, let (cosϕ, sin ϕ) be the polar coordinate representation of ξ , and

T̂ξ :=
⎛

⎝
cosϕ sin ϕ 0

− sin ϕ cosϕ 0
0 0 1

⎞

⎠ .

(iii) In d = 3, let (sin φ cosϕ, sin φ sin ϕ, cosφ) be the spherical coordinate represen-
tation of ξ , and

T̂ξ :=
⎛

⎝
sin φ cosϕ sin φ sin ϕ cosφ

− sin ϕ cosϕ 0
− cosφ cosϕ − cosφ sin ϕ sin φ

⎞

⎠ .

The rotational invariance property of the d-dimensional MHD system (1) implies

〈ξ ,F(U)〉 = T−1
ξ

F1(TξU). (20)

This helps us extend Lemma 4 to the following general case.

Lemma 5 For any U ∈ G, any v∗,B∗ ∈ R
3 and any unit vector ξ ∈ R

d , it holds

〈ξ ,F(U)〉·n∗−〈ξ ,B〉(v∗·B∗) ≤ 〈ξ , v〉
7∑

k=4

θ2k +〈ξ , v∗〉
(1

2
|B|2−B·B∗)+C (U; ξ)|θ |2.

Proof Let Û := TξU, v̂∗ := T̂ξv∗, B̂ := T̂ξB∗, θ̂ := θ(Û, v̂∗, B̂∗), and

n̂∗ :=
( |v̂∗|2

2
, − v̂∗, − B̂∗, 1

)�
= Tξn

∗.

By the definition (5), one can easily verify Û ∈ G, which, together with the orthogo-
nality of T−1

ξ
and T̂−1

ξ
, imply

〈ξ ,F(U)〉 · n∗ − 〈ξ ,B〉(v∗ · B∗)
(20)= (

T−1
ξ

F1(Û)
) · (T−1

ξ
n̂∗)− B̂1(T̂

−1
ξ

v̂∗) · (T̂−1
ξ

B̂∗)

= F1(Û) · n̂∗ − B̂1(v̂∗ · B̂∗)

(18)≤ v̂1

7∑

k=4

θ̂2k + v̂∗
1

(
1

2
|B̂|2 − B̂ · B̂∗

)

+ C1(Û)|θ̂ |2

= 〈ξ , v〉
7∑

k=4

θ2k + 〈ξ , v∗〉
(1

2
|B|2 − B · B∗)+ C (U; ξ)|θ |2.

The proof is completed. 
�
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Provably positive high-order schemes for ideal… 1007

Lemma 6 Assume that U = (ρ, ρv,B, E)� ∈ G, Ũ = (ρ̃, ρ̃ṽ, B̃, Ẽ)� ∈ G. For
∀v∗,B∗ ∈ R

3, ∀ξ ∈ R
d and ∀δ ∈ R, it holds

〈ξ , v∗〉
[(∣∣B

∣
∣2

2
− B · B∗

)

−
(∣∣B̃

∣
∣2

2
− B̃ · B∗

)]

≤ 〈ξ , δv + (1 − δ)ṽ〉
3∑

k=1

(
θ2k − θ̃2k

)+ |ξ | f (U, Ũ; δ)
(|θ |2 + |θ̃ |2),

(21)

where θ := θ(U, v∗,B∗) and θ̃ := θ(Ũ, v∗,B∗), and f (U, Ũ; δ) is defined by

f (U, Ũ; δ) := |B̃ − B|√
2

√
δ2

ρ
+ (1 − δ)2

ρ̃
. (22)

Proof With the aid of the Cauchy–Schwarz inequality, we have

〈ξ , v∗〉
[(∣∣B

∣
∣2

2
− B · B∗

)

−
(∣∣B̃

∣
∣2

2
− B̃ · B∗

)]

− 〈ξ , δv + (1 − δ)ṽ〉
3∑

k=1

(
θ2k − θ̃2k

)

=
(

δ

2
〈ξ , v − v∗〉 + 1 − δ

2
〈ξ , ṽ − v∗〉

)

(B̃ − B) · (B + B̃ − 2B∗)

≤ |ξ |
2

(
|δ|√
ρ

√
ρ|v − v∗| + |1 − δ|

√
ρ̃

√
ρ̃|ṽ − v∗|

)

|B̃ − B|(|B − B∗| + |B̃ − B∗|)

≤ |ξ |
2

√
δ2

ρ
+ (1 − δ)2

ρ̃

√

ρ|v − v∗|2 + ρ̃|ṽ − v∗|2|B̃ − B|
√

2(|B − B∗|2 + |B̃ − B∗|2)

= 2|ξ | f (U, Ũ; δ)

√
√
√
√

6∑

k=4

(
θ2k + θ̃2k

)

√
√
√
√

3∑

k=1

(
θ2k + θ̃2k

)

≤ |ξ | f (U, Ũ; δ)

6∑

k=1

(
θ2k + θ̃2k

) ≤ |ξ | f (U, Ũ; δ)
(|θ |2 + |θ̃ |2).

The proof is completed. 
�
We are now ready to prove Theorem 1.

Proof Note that α j ≥ α̂ j > 〈ξ ( j), v( j)〉. It follows from Lemma 3 that α jU( j) −
〈ξ ( j),F(U( j))〉 ∈ Gρ , and furthermore U ∈ Gρ , by noting that

∑N
j=1 s jα j > 0 (see

Remark 1).
We then focus on proving the inequality (10), or equivalently,

N∑

j=1

s jΠ
( j) ≤

N∑

j=1

α j |θ ( j)|2, (23)
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1008 K. Wu, C.-W. Shu

where θ ( j) := θ(U( j), v∗,B∗), and

Π( j) := 〈ξ ( j),F(U( j))〉 · n∗ − 〈ξ ( j),B( j)〉(v∗ · B∗).

Using Lemma 5 gives

N∑

j=1

s jΠ
( j) ≤

⎧
⎨

⎩

N∑

j=1

s j 〈ξ ( j), v( j)〉
7∑

k=4

∣
∣θ

( j)
k

∣
∣2

⎫
⎬

⎭
+
⎧
⎨

⎩

N∑

j=1

s jC (U( j); ξ)|θ ( j)|2
⎫
⎬

⎭

+
⎧
⎨

⎩

N∑

j=1

s j 〈ξ ( j), v∗〉
(1

2
|B( j)|2 − B( j) · B∗)

⎫
⎬

⎭

=: Π1 + Π2 + Π3. (24)

Noting that, for any 1 ≤ i ≤ N , the hypothesis (7) implies

N∑

j=1

s j 〈ξ ( j), v∗〉 =
〈

N∑

j=1

s jξ
( j), v∗

〉

= 0.

Thus we can reformulate Π3 as

Π3 =
N∑

j=1

s j 〈ξ ( j), v∗〉
(1

2
|B( j)|2 − B( j) · B∗)−

N∑

j=1

s j 〈ξ ( j), v∗〉
(1

2
|B(i)|2 − B(i) · B∗)

=
N∑

j=1

s j 〈ξ ( j), v∗〉
[(1

2
|B( j)|2 − B( j) · B∗)−

(1

2
|B(i)|2 − B(i) · B∗)

]

=:
N∑

j=1

s jΠ
( j i)
3 ,

for any 1 ≤ i ≤ N . For any δ ∈ R, it follows from Lemma 6 that

Π
( j i)
3 ≤ 〈ξ ( j), δv( j) + (1 − δ)v(i)〉

3∑

k=1

(
|θ( j)
k |2 − |θ(i)

k |2
)

+ f (U( j),U(i); δ)
(|θ ( j)|2 + |θ (i)|2). (25)

In particular, we take the free variable δ as
√

ρ( j)/
(√

ρ( j) +√ρ(i)
)
, which gives the

Roe-type weighted average. Let

v̄( j i) :=
√

ρ( j)v( j) +√ρ(i)v(i)

√
ρ( j) +√ρ(i)

,

then the inequality (25) becomes

Π
( j i)
3 ≤

〈
ξ ( j), v̄( j i)

〉 3∑

k=1

(
|θ( j)
k |2 − |θ(i)

k |2
)
+ |B( j) − B(i)|
√

ρ( j) +√ρ(i)

(|θ ( j)|2+|θ (i)|2). (26)
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Provably positive high-order schemes for ideal… 1009

It follows that

(
N∑

i=1

si

)

Π3 =
N∑

i=1

N∑

j=1

si s jΠ
( j i)
3

≤
N∑

i=1

N∑

j=1

si s j
〈
ξ ( j), v̄( j i)

〉 3∑

k=1

(
|θ( j)
k |2 − |θ(i)

k |2
)

+
N∑

i=1

N∑

j=1

si s j
|B( j) − B(i)|
√

ρ( j) +√ρ(i)

(|θ ( j)|2 + |θ (i)|2). (27)

By v̄( j i) = v̄(i j) and the technique of exchanging indexes i and j , we obtain

N∑

i=1

N∑

j=1

si s j
〈
ξ ( j), v̄( j i)

〉 3∑

k=1

|θ(i)
k |2 =

N∑

i=1

N∑

j=1

si s j
〈
ξ (i), v̄( j i)

〉 3∑

k=1

|θ( j)
k |2,

N∑

i=1

N∑

j=1

si s j
|B( j) − B(i)|
√

ρ( j) +√ρ(i)
|θ (i)|2 =

N∑

i=1

N∑

j=1

si s j
|B( j) − B(i)|
√

ρ( j) +√ρ(i)
|θ ( j)|2.

Therefore, the inequality (27) can be rewritten as

(
N∑

i=1

si

)

Π3 ≤
N∑

i=1

N∑

j=1

si s j
〈
ξ ( j) − ξ (i), v̄( j i)

〉 3∑

k=1

|θ( j)
k |2

+ 2
N∑

i=1

N∑

j=1

si s j
|B( j) − B(i)|
√

ρ( j) +√ρ(i)
|θ ( j)|2,

which further yields

Π3 ≤
N∑

j=1

s j

(
1

∑N
i=1 si

N∑

i=1

si
〈
ξ ( j) − ξ (i), v̄( j i)

〉
)

3∑

k=1

|θ( j)
k |2

+
N∑

j=1

s j

(
2

∑N
i=1 si

N∑

i=1

si
|B( j) − B(i)|
√

ρ( j) +√ρ(i)

)

|θ ( j)|2. (28)

Note that

Π1 +
N∑

j=1

s j

(
1

∑N
i=1 si

N∑

i=1

si
〈
ξ ( j) − ξ (i), v̄( j i)

〉
)

3∑

k=1

|θ( j)
k |2

≤
N∑

j=1

s j max

{
〈
ξ ( j), v( j)〉,

1
∑N

i=1 si

N∑

i=1

si
〈
ξ ( j) − ξ (i), v̄( j i)

〉
}

7∑

k=1

|θ( j)
k |2,
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1010 K. Wu, C.-W. Shu

which along with (24) and (28) imply

N∑

j=1

s jΠ
( j) ≤

N∑

j=1

α̂ j |θ ( j)|2 ≤
N∑

j=1

α j |θ ( j)|2.

Hence the inequality (23) holds.

Under the condition (11), the inequality (10) becomesU ·n∗+ |B∗|2
2 ≥ 0, ∀v∗,B∗ ∈

R
3, which together with U ∈ Gρ imply U ∈ G∗. The proof is completed. 
�

2.3 Estimates relative to source term

We also need the following lemma, which was proposed in [54].

Lemma 7 For any U ∈ G and any v∗,B∗ ∈ R
3, we have

S(U) · n∗ = (v − v∗) · (B − B∗) − v∗ · B∗, (29)

|√ρ(v − v∗) · (B − B∗)| < U · n∗ + |B∗|2
2

. (30)

Furthermore, for any b ∈ R, it holds

− b(S(U) · n∗) ≥ b(v∗ · B∗) − |b|√
ρ

(

U · n∗ + |B∗|2
2

)

. (31)

2.4 Properties of the HLL flux

The Harten–Lax–van Leer (HLL) flux is derived from an approximate Riemann solver
in the direction normal to each cell interface. Let ξ ∈ R

d be the unit normal vector of
the interface. Then the HLL flux at the interface is given by

F̂(U−,U+; ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

〈ξ ,F(U−)〉, 0 ≤ σl < σr ,

σr 〈ξ ,F(U−)〉 − σl〈ξ ,F(U+)〉 + σlσr (U+ − U−)

σr − σl
, σl < 0 < σr ,

〈ξ ,F(U+)〉, σl < σr ≤ 0.
(32)

Here σl(U−,U+; ξ) and σr (U−,U+; ξ) are functions of U−, U+ and ξ , denoting the
estimates of the leftmost and rightmost wave speeds in the (rotated) Riemann problem
in the direction of ξ , whereU− andU+ are the left and right initial states respectively.
We require σr > σl , and

σr (U−,U+; ξ) = −σl(U+,U−;−ξ), (33)

which ensures that the numerical flux (32) is conservative, that is,

F̂(U−,U+; ξ) + F̂(U+,U−;−ξ) = 0.
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Let

σ+ = max{σr , 0}, σ− = min{σl , 0},

then the flux (32) can be reformulated as

F̂(U−,U+; ξ) = σ+〈ξ ,F(U−)〉 − σ−〈ξ ,F(U+)〉 + σ−σ+(U+ − U−)

σ+ − σ− . (34)

Note that the LF flux can be considered as a special HLL flux with σr = −σl = σ ,
where σ is the maximum wave speed. Therefore, all the analysis in the present paper
also applies to the local LF flux and global LF flux.

The following property is derived for the HLL flux (32) in the ideal MHD case.

Theorem 2 AssumeU−,U+ ∈ G. If the parameters (approximate wave speeds) in the
HLL flux (32) satisfy

σr ≥ αr (U+,U−; ξ), σl ≤ αl(U−,U+; ξ), (35)

then

F̂(U−,U+; ξ) = σ−H(U−,U+; ξ) + 〈ξ ,F(U−)〉 − σ−U−, (36)

F̂(U−,U+; ξ) = σ+H(U−,U+; ξ) + 〈ξ ,F(U+)〉 − σ+U+, (37)

and the intermediate state

H(U−,U+; ξ) := 1

σ+ − σ−
(
σ+U+ − 〈ξ ,F(U+)〉 − σ−U− + 〈ξ ,F(U−)〉

)
(38)

belongs to Gρ and satisfies

H · n∗ + |B∗|2
2

+ v∗ · B∗

σ+ − σ−
(〈ξ ,B+〉 − 〈ξ ,B−〉) ≥ 0, ∀v∗,B∗ ∈ R

3. (39)

Furthermore, if 〈ξ ,B+〉 = 〈ξ ,B−〉, then H ∈ G∗.

Proof The identities (36)–(37) can be verified by using (34). Under the condition (35),
we have

σ+ ≥ σr ≥ αr (U+,U−; ξ), σ− ≤ σl ≤ αl(U−,U+; ξ).

It follows from Corollary 1 that H(U−,U+; ξ) ∈ Gρ and satisfies (39). 
�
Remark 4 It is observed from (39) that the admissibility of the intermediate stateH is
closely related to the jump in the normal magnetic field across the cell interface. If the
jump is zero, then H ∈ G∗; otherwise, H does not always belong to G∗ even if many
times larger wave speeds are employed. However, in the multidimensional cases, a
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1012 K. Wu, C.-W. Shu

standard finite volume or DG method cannot avoid jumps in normal magnetic field
at cell interfaces although such jumps do not exist in the exact solution. This causes
some challenges essentially different from 1D case. We will demonstrate that this
issue can be overcome by coupling two divergence-controlling techniques: the locally
divergence-free element and properly discretized Godunov–Powell source term. The
former technique leads to zero divergence within each cell, while the latter controls
the divergence error across cell interfaces.

Remark 5 The proposed condition (35) for the wave speeds σl and σr is crucial for the
provably PP property of our schemes presented later. The condition (35) is acceptable,
because αl and αr are respectively close to the minimum and maximum signal speeds
of the system (4) in the direction of ξ . Let σ std

l and σ std
r denote a standard choice of

wave speeds in the HLL flux, for example, Davis [19] gave those speeds as

σ std
l = min{λ1(U−; ξ), λ1(U+; ξ)}, σ std

r = max{λ8(U−; ξ), λ8(U+; ξ)}, (40)

or Einfeldt et al. [25] suggested to use

σ std
l = min{λ1(U−; ξ), λ1(URoe; ξ)}, σ std

r = max{λ8(U+; ξ), λ8(URoe; ξ)},

where λ1(U; ξ) amd λ8(U; ξ) are the minimum and maximum eigenvalues of the
Jacobi matrix of the system (4) in the direction of ξ , and λi (URoe; ξ) is the estimate of
eigenvalues based on the Roematrix (cf. [43]). These choices may not necessarily give
a PP flux in the MHD case and probably not satisfy (35). In practice, by considering
the stability and the PP property, we suggest to use

σl = min{αl(U−,U+; ξ), σ std
l }, σr = max{αr (U+,U−; ξ), σ std

r } (41)

in the HLL flux, and use

σr = −σl = max
{
α�(U−,U+; ξ), α�(U+,U−; ξ), σ std},

in the local LF flux, where σ std denotes a standard numerical viscosity parameter for
the local LF flux.

3 Positivity-preserving schemes in one dimension

In this section, we propose provably PP finite volume and DG schemes with the
proposed HLL flux for 1D MHD equations (1). Let x denote the spatial variable. The
condition (2) and the fifth equation of (1) imply B1(x, t) ≡ constant (denoted by
Bconst) for all x and t ≥ 0.

Let I j = [x j− 1
2
, x j+ 1

2
], I = ∪ j I j be a partition of the spatial domain. Denote

Δx j = x j+ 1
2

− x j− 1
2
. Let {t0 = 0, tn+1 = tn + Δtn, n ≥ 0} be a partition of the time

interval [0, T ], where the time step-size Δtn is determined by some CFL condition.
Let Ūn

j denote the numerical approximation to the cell average of the exact solution
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Provably positive high-order schemes for ideal… 1013

U(x, t) over I j at t = tn . We would like to seek PP schemes with Ūn
j always preserved

in the admissible state set G.

3.1 First-order scheme

We consider the 1D first-order scheme

Ūn+1
j = Ūn

j − Δtn
Δx j

(
F̂1(Ūn

j , Ū
n
j+1) − F̂1(Ūn

j−1, Ū
n
j )
)
, (42)

where F̂1(Ūn
j , Ū

n
j+1) := F̂(Ūn

j , Ū
n
j+1; 1) is taken as the HLL flux in (34). It is worth

noting that in the 1D case, since B1(x, t) ≡ constant, the Godunov–Powell source
term does not exist.

Theorem 3 Assume that Ū0
j ∈ G and B̄0

1, j = Bconst for all j , and the wave speeds in

the HLL flux satisfy (35). Then the state Ūn
j , computed by the scheme (42) under the

CFL condition (

σ
n,+
j− 1

2
− σ

n,−
j+ 1

2

)
Δtn
Δx j

< 1, ∀ j, (43)

belongs to G and satisfies B̄n
1, j = Bconst for all j and n ∈ N, where

σ
n,+
j− 1

2
:= σ+(Ūn

j−1, Ū
n
j ; 1), σ

n,−
j+ 1

2
:= σ−(Ūn

j , Ū
n
j+1; 1).

Proof Here the induction argument is used for the time level number n. It is obvious
that the conclusion holds for n = 0 under the hypothesis on the initial data. We
now assume that Ūn

j ∈ G with B̄n
1, j = Bconst for all j , and we check whether the

conclusion holds for n+1. Letλ := Δtn/Δx j , andHn
j+ 1

2
:= H(Ūn

j , Ū
n
j+1; 1); see (38)

for the definition of H. Under the induction hypothesis, we have that Hn
j+ 1

2
∈ G∗,∀ j

according to Theorem 2, and the fifth component of Hn
j+ 1

2
is Bconst for all j by

noting that the fifth component of F1 is zero. Using the identities (36) and (37), one
can rewrite the scheme (42) as

Ūn+1
j = Ūn

j − λ
[(

σ
n,−
j+ 1

2
Hn

j+ 1
2

+ F1(Ūn
j ) − σ

n,−
j+ 1

2
Ūn

j

)

−
(

σ
n,+
j− 1

2
Hn

j− 1
2

+ F1(Ūn
j ) − σ

n,+
j− 1

2
Ūn

j

)]

=
(
1 + λ

(
σ
n,−
j+ 1

2
− σ

n,+
j− 1

2

))
Ūn

j +
(

− λσ
n,−
j+ 1

2

)
Hn

j+ 1
2

+ λσ
n,+
j− 1

2
Hn

j− 1
2
.

(44)
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1014 K. Wu, C.-W. Shu

Under the condition (43), Ūn+1
j is a convex combination of Ūn

j , H
n
j+ 1

2
and Hn

j− 1
2
.

Hence we have Ūn+1
j ∈ G by Lemma 2. The fifth equation of (44) also implies

B̄n+1
1, j =

(
1+λ

(
σ
n,−
j+ 1

2
−σ

n,+
j− 1

2

))
Bconst −λσ

n,−
j+ 1

2
Bconst +λσ

n,+
j− 1

2
Bconst = Bconst.

Therefore, the conclusion holds for n + 1. The proof is completed. 
�

3.2 High-order schemes

For convenience, we first focus on the forward Euler method for time discretization
and will discuss the high-order time discretization later. We consider the high-order
finite volume schemes as well as the scheme satisfied by the cell averages of a standard
DG method for (1), which have the following form

Ūn+1
j = Ūn

j − Δtn
Δx j

(
F̂1

(
U−

j+ 1
2
,U+

j+ 1
2

)
− F̂1

(
U−

j− 1
2
,U+

j− 1
2

))
, (45)

where F̂1(U
−
j+ 1

2
,U+

j+ 1
2
) := F̂(U−

j+ 1
2
,U+

j+ 1
2
; 1) is taken as the HLL flux in (34). The

quantities U−
j+ 1

2
and U+

j+ 1
2
are the high-order approximations of the point values

U(x j+ 1
2
, tn) within the cells I j and I j+1, respectively, computed by

U−
j+ 1

2
= Un

j

(
x j+ 1

2
− 0
)
, U+

j+ 1
2

= Un
j+1

(
x j+ 1

2
+ 0
)
. (46)

Here the function Un
j (x) is a polynomial vector of degree k with the cell-averaged

value of Ūn
j . It approximates U(x, tn) within the cell I j , and is either reconstructed

in the finite volume methods from {Ūn
j } or directly evolved in the DG methods. The

evolution equations for the high-order “moments” of Un
j (x) in the DG methods are

omitted because here we are only concerned with the PP property of the schemes.
If the polynomial degree k = 0, i.e., Un

j (x) = Ūn
j , ∀x ∈ I j , then the scheme (45)

reduces to the first-order scheme (42), which has been proved to be PP under the CFL
condition (43).

When the polynomial degree k ≥ 1, the solution Ūn+1
j of the high-order scheme

(45) does not always belong to G even if Ūn
j ∈ G for all j . In the following theorem,

we give a satisfiable condition for achieving the provably PP property of the scheme
(45) when k ≥ 1.

Let {̂x (μ)
j }Lμ=1 be the L-point Gauss–Lobatto quadrature nodes in the interval I j ,

and the associated weights denoted by {ω̂μ}Lμ=1 with
∑L

μ=1 ω̂μ = 1. We require
2L − 3 ≥ k such that the algebraic precision of corresponding quadrature is at least
k, for example, one can particularly take L = � k+3

2 �.

123



Provably positive high-order schemes for ideal… 1015

Theorem 4 Let the wave speeds in the HLL flux satisfy (35). If the polynomial vectors
{Un

j (x)} satisfy

B±
1, j+ 1

2
= Bconst, ∀ j, (47)

Un
j (̂x

(μ)
j ) ∈ G, ∀μ ∈ {1, 2, . . . ,L}, ∀ j, (48)

then the high-order scheme (45) is PP under the CFL condition

Δtn
Δx j

max

{

α�
j + σ

n,+
j− 1

2
, α�

j − σ
n,−
j+ 1

2

}

≤ ω̂1, ∀ j, (49)

where σ
n,±
j+ 1

2
:= σ±(U−

j+ 1
2
,U+

j+ 1
2
; 1), and

α�
j := max

{

α�

(

U+
j− 1

2
,U−

j+ 1
2
; 1
)

, α�

(

U−
j+ 1

2
,U+

j− 1
2
; 1
)}

.

Proof Using (36)–(37), we can reformulate the numerical fluxes in (45) as

F̂1

(

U−
j+ 1

2
,U+

j+ 1
2

)

= σ
n,−
j+ 1

2
H j+ 1

2
+ F1

(

U−
j+ 1

2

)

− σ
n,−
j+ 1

2
U−

j+ 1
2
, (50)

F̂1

(

U−
j− 1

2
,U+

j− 1
2

)

= σ
n,+
j− 1

2
H j− 1

2
+ F1

(

U+
j− 1

2

)

− σ
n,+
j− 1

2
U+

j− 1
2
, (51)

whereH j+ 1
2

= H(U−
j+ 1

2
,U+

j+ 1
2
; 1). Under the conditions (47)–(48), we haveH j+ 1

2
∈

G∗ for all j by using Theorem 2. The exactness of the L-point Gauss–Lobatto quadra-
ture rule for the polynomials of degree k implies

Ūn
j = 1

Δx j

∫

I j
Un

j (x)dx =
L∑

μ=1

ω̂μUn
j

(
x̂ (μ)
j

)
.

Noting ω̂1 = ω̂L and x̂1,Lj = x j∓ 1
2
and using (50)–(51), we can rewrite the scheme

(45) into the following convex combination form

Ūn+1
j =

L−1∑

μ=2

ω̂μUn
j

(
x̂ (μ)
j

)
+
(

2ω̂1 + λσ
n,−
j+ 1

2
− λσ

n,+
j− 1

2

)

�

+
(

−λσ
n,−
j+ 1

2

)

H j+ 1
2

+ λσ
n,+
j− 1

2
H j− 1

2
, (52)
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where λ := Δtn/Δx j , and

� :=

(

λ−1ω̂1 + σ
n,−
j+ 1

2

)

U−
j+ 1

2
− F1

(
U−

j+ 1
2

)+
(

λ−1ω̂1 − σ
n,+
j− 1

2

)

U+
j− 1

2
+ F1

(
U+

j− 1
2

)

λ−1ω̂1 + σ
n,−
j+ 1

2
+ λ−1ω̂1 − σ

n,+
j− 1

2

.

The condition (49) implies

λ−1ω̂1 + σ
n,−
j+ 1

2
≥ α�

j ≥ α�

(

U−
j+ 1

2
,U+

j− 1
2
; 1
)

λ−1ω̂1 − σ
n,+
j− 1

2
≥ α�

j ≥ α�

(

U+
j− 1

2
,U−

j+ 1
2
; 1
)

,

which together with the condition (47) yield � ∈ G∗ by Corollary 2. We therefore
conclude Ūn+1

j ∈ G from (52) according to the convexity of G∗ and Lemma 1. 
�
Remark 6 In practice, it is easy to ensure the condition (47), since the exact solution
B1(x, t) ≡ Bconst and the flux for B1 in the x-direction is zero. The condition (48)
can be enforced by a simple scaling limiter, which was designed in [13] by extending
the techniques in [65–67]. For readers’ convenience, the PP limiter is briefly reviewed
in “Appendix B”.

The above PP analysis is focused on first-order time discretization. In fact, it is also
valid for the high-order explicit time discretization using strong stability-preserving
(SSP) methods (cf. [31]), because G is convex and an SSP method is a convex combi-
nation of the forward Euler method.

4 Positivity-preserving schemes inmultiple dimensions

In this section, we develop provably PPmethods for the multidimensional ideal MHD.
We remark that the design ofmultidimensional PP schemes have challenges essentially
different from the 1D case, due to the divergence-free condition (2). For the sake of
clarity, we shall restrict ourselves to the 2D case (d = 2), keeping in mind that our PP
methods and analyses are extendable to the 3D case. We will use x ∈ R

d to denote
the spatial coordinate vector.

Assume that the 2D spatial domain is partitioned into a mesh Th , which can be
unstructured and consists of polygonal cells. An illustration of two special meshes
is given in Fig. 1. Let K ∈ Th be a polygonal cell with edges E j

K , j = 1, . . . , NK ,

and K j be the adjacent cell which shares the edge E j
K with K . We denote by ξ

( j)
K =

(
ξ

( j)
1,K , . . . , ξ

( j)
d,K

)
the unit normal vector of E j

K pointing from K to K j . The notations

|K | and |E j
K | are used to denote the area of K and the length of E j

K , respectively. The
time interval is also divided into the mesh {t0 = 0, tn+1 = tn + Δtn, n ≥ 0} with the
time step-size Δtn determined by some CFL condition. Throughout this section, the
lower-case letter k will be used to denote the DG polynomial degree, while the capital
letter K always represents a cell.
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K1

K

K3

K4 K2 K

K1

K2

K3

Fig. 1 Illustration of a rectangular mesh (left) and a triangular mesh (right)

4.1 First-order schemes

We consider the following first-order scheme for the Godunov form (4) of the ideal
MHD equations

Ūn+1
K = Ūn

K − Δtn
|K |

NK∑

j=1

∣
∣
∣E

j
K

∣
∣
∣ F̂
(
Ūn

K , Ūn
K j

; ξ
( j)
K

)− Δtn
(
divK B̄n)S(Ūn

K ), (53)

where Ūn
K is the numerical approximation to the cell average of U(x, tn) over the cell

K , and the numerical flux F̂ is taken as the HLL flux in (34). The last term at the
right-hand side of (53) is suitably discretized from the Godunov–Powell source, with
divK B̄n defined by

divK B̄n := 1

|K |
NK∑

j=1

∣
∣E

j
K

∣
∣

〈

ξ
( j)
K ,

σ
n,+
K , j B̄

n
K − σ

n,−
K , j B̄

n
K j

σ
n,+
K , j − σ

n,−
K , j

〉

, (54)

where σ
n,±
K , j := σ±(Ūn

K , Ūn
K j

; ξ
( j)
K ). The quantity divK B̄n can be considered as a

discrete divergence ofmagnetic field, because it is a first-order accurate approximation
to the left-hand side of

1

|K |
NK∑

j=1

∫

E j
K

〈
ξ

( j)
K ,B(x, tn)

〉
ds = 1

|K |
∫

K
∇ · Bdx = 0.

In the special case of using the LF type fluxes, σ
n,+
K , j = −σ

n,−
K , j , then the discrete

divergence becomes

divK B̄n = 1

|K |
NK∑

j=1

∣
∣E

j
K

∣
∣

〈

ξ
( j)
K ,

B̄n
K + B̄n

K j

2

〉

,
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1018 K. Wu, C.-W. Shu

which is consistent with the one introduced in [53,54] on the Cartesian meshes.
The PP property of the scheme (53) is shown as follows.

Theorem 5 Let the wave speeds in the HLL flux satisfy (35). If Ūn
K ∈ G, ∀K ∈ Th, then

the solution Ūn+1
K of (53) belongs to G for all K ∈ Th under the CFL-type condition

Δtn

⎛

⎝ 1

|K |
NK∑

j=1

∣
∣E

j
K

∣
∣
(
−σ

n,−
K , j

)
+
∣
∣divK B̄n

∣
∣

√
ρ̄n
K

⎞

⎠ < 1, ∀K ∈ Th . (55)

Proof Let Hn
K , j := H(Ūn

K , Ūn
K j

; ξ
( j)
K ). Then the identity (36) implies

F̂
(
Ūn

K , Ūn
K j

; ξ
( j)
K

) = σ
n,−
K , jH

n
K , j +

〈
ξ

( j)
K ,F(Ūn

K )
〉
− σ

n,−
K , j Ū

n
K . (56)

Using (56) and the identity
Nk∑

j=1

∣
∣E

j
K

∣
∣ξ

( j)
K = 0, (57)

one can rewrite the scheme (53) as

Ūn+1
K = Δtn

|K |
NK∑

j=1

∣
∣E

j
K

∣
∣
(
−σ

n,−
K , j

)
Hn

K , j + (1− λK )Ūn
K − Δtn

(
divK B̄n)S(Ūn

K ), (58)

where λK := Δtn|K |
∑NK

j=1

∣
∣E

j
K

∣
∣
( − σ

n,−
K , j

) ∈ [0, 1). Thanks to Theorem 2, we have

Hn
K , j ∈ Gρ and for any v∗,B∗ ∈ R

3,

Hn
K , j · n∗ + |B∗|2

2
≥ − v∗ · B∗

σ
n,+
K , j − σ

n,−
K , j

〈
ξ

( j)
K , B̄n

K j
− B̄n

K

〉
. (59)

Since Hn
K , j ∈ Gρ and the first component of S(Ūn

K ) is zero, we have ρ̄n+1
K ≥

(1 − λK )ρ̄n
K > 0. For any v∗,B∗ ∈ R

3, using (29) we derive from (58) that

Ūn+1
K · n∗ + |B∗|2

2
= Π1 + Π2,

where

Π1 := Δtn
|K |

NK∑

j=1

∣
∣E

j
K

∣
∣
(
−σ

n,−
K , j

)(

Hn
K , j · n∗ + |B∗|2

2

)

+ Δtn
(
divK B̄n)(v∗ · B∗),

Π2 := (1 − λK )

(

Ūn
K · n∗ + |B∗|2

2

)

− Δtn
(
divK B̄n)(v̄nK − v∗) · (B̄n

K − B∗).
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Let us estimate the lower bounds ofΠ1 andΠ2 respectively. Using (59) and (57) gives

Π1
(59)≥ Δtn

|K |
NK∑

j=1

∣
∣E

j
K

∣
∣σ n,−

K , j

〈
ξ
( j)
K , B̄n

K j
− B̄n

K

〉

σ
n,+
K , j − σ

n,−
K , j

(
v∗ · B∗)+ Δtn

(
divK B̄n)(v∗ · B∗)

(54)= Δtn
|K |

NK∑

j=1

∣
∣E

j
K

∣
∣

⎛

⎝σ
n,−
K , j

〈
ξ
( j)
K , B̄n

K j
− B̄n

K

〉

σ
n,+
K , j − σ

n,−
K , j

+
〈

ξ
( j)
K ,

σ
n,+
K , j B̄

n
K − σ

n,−
K , j B̄

n
K j

σ
n,+
K , j − σ

n,−
K , j

〉⎞

⎠
(
v∗ · B∗)

= Δtn
|K |

NK∑

j=1

∣
∣E

j
K

∣
∣
〈
ξ
( j)
K , B̄n

K

〉 (
v∗ · B∗) (57)= 0.

It follows from (30) that

Π2 ≥ (1 − λK )

(

Ūn
K · n∗ + |B∗|2

2

)

− Δtn

∣
∣divK B̄n

∣
∣

√
ρ̄n
K

∣
∣
∣
√

ρ̄n
K (v̄nK − v∗) · (B̄n

K − B∗)
∣
∣
∣

(30)≥
(

1 − λK − Δtn

∣
∣divK B̄n

∣
∣

√
ρ̄n
K

)(

Ūn
K · n∗ + |B∗|2

2

)

> 0.

Therefore, Ūn+1
K · n∗ + |B∗|2

2 > 0, ∀v∗,B∗ ∈ R
3.

Hence Ūn+1
K ∈ G by Lemma 1. 
�

It is worth emphasizing that the suitably discretized Godunov–Powell source term
is crucial for guaranteeing the PP property of the scheme (53). While the scheme (53)
without this term reduces to the 2D HLL scheme for the conservative MHD system
(1), specifically,

Ūn+1
K = Ūn

K − Δtn
|K |

NK∑

j=1

∣
∣E

j
K

∣
∣F̂
(
Ūn

K , Ūn
K j

; ξ
( j)
K

)
. (60)

For the LF flux, the analysis in [53] on Cartesian meshes showed that the scheme (60)
is generally not PP, unless a discrete divergence-free (DDF) condition is satisfied. We
find that, on a general mesh Th , the corresponding DDF condition is

divK B̄n = 0, ∀K ∈ Th . (61)

As a direct consequence of Theorem 5, we immediately have the following corollary.

Corollary 3 Let the wave speeds in the HLL flux satisfy (35). If Ūn
K ∈ G, ∀K ∈ Th,

and satisfy the DDF condition (61), then under the CFL condition

Δtn
|K |

NK∑

j=1

∣
∣E

j
K

∣
∣
(
−σ

n,−
K , j

)
< 1, ∀K ∈ Th,

the solution Ūn+1
K of (60) belongs to G for all K ∈ Th.
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1020 K. Wu, C.-W. Shu

If Th is a Cartesianmesh and the numerical flux F̂ is taken as the global LF flux, then
the scheme (60) preserves the DDF condition (61) provided that the DDF condition is
satisfied by the initial data [53]. It was also shown in [53] that even slightly violating
the DDF condition can cause the failure of the scheme (60) to preserve the positivity
of pressure. Unfortunately, on general meshes the scheme (60) does not necessarily
preserve the DDF condition (61), and it is generally not PP.

4.2 High-order schemes

We are now in the position to discuss provably PP high-order schemes for the multidi-
mensional idealMHD.Wemainly focus on the PP high-order DGmethods, keeping in
mind that the analysis and framework also apply to high-order finite volume schemes.

4.2.1 Locally divergence-free schemes

Wefirst propose locally divergence free schemes for themodified idealMHDequations
(4), as they are the base schemes of our PP high-order schemes presented later. To
achieve high-order spatial accuracy, we approximate the exact solution U(x, tn) with
a discontinuous piecewise polynomial function Un

h(x), which is sought in the locally
divergence-free space [36]

V
k
h =

{

u = (u1, . . . , u8)
�
∣
∣
∣ u�

∣
∣
K ∈ P

k(K ),∀�,

d∑

i=1

∂u4+i

∂xi

∣
∣
∣
∣
K

= 0, ∀K ∈ Th

}

,

where Pk(K ) denotes the space of polynomials in K of degree at most k.
We consider thePk-based locally divergence-freeDGmethod for theGodunov form

(4) of the ideal MHD equations. Specifically, the DG solution Un
h ∈ V

k
h is evolved

forward by

∫

K
u · U

n+1
h − Un

h

Δtn
dxdy =

∫

K
∇u · F(Un

h)dx

−
NK∑

j=1

∫

E j
K

uint(K ) ·
{

F̂
(
Un,int(K )
h ,Un,ext(K )

h ; ξ
( j)
K

)

−
[
ηK (x)

〈
ξ

( j)
K ,Bn,ext(K )

h − Bn,int(K )
h

〉
S
(
Un,int(K )
h

)]
}

ds, ∀u ∈ V
k
h, (62)

where the numerical flux F̂ is taken as the HLL flux in (34), and the factor

ηK (x) := σ−(Un,int(K )
h ,Un,ext(K )

h ; ξ
( j)
K

)

σ+(Un,int(K )
h ,Un,ext(K )

h ; ξ
( j)
K

)− σ−(Un,int(K )
h ,Un,ext(K )

h ; ξ
( j)
K

) , ∀x ∈ E
j
K .

Here the superscripts “int(K )” and “ext(K )” indicate that the associated limits at the
interface E

j
K are taken from the interior and exterior of K , respectively. The term
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inside the square bracket in (62) is suitably discretized from the Godunov–Powell
source term. The factor ηK is carefully devised in an upwind manner according to the
local wave speeds in the HLL flux. This is very important, and is motivated from our
following theoretical analysis for achieving the provably PP property, aswewill see the
proof of Theorem 6. If the LF flux is employed, i.e., σ− = − σ+, then ηK (x) ≡ − 1

2 ,
and the discretized Godunov–Powell source term reduces to the one used in [54].

In the practical computations, the boundary and element integrals at the right-hand
side of (62) are discretized by certain quadratures of sufficiently high order accuracy
(specifically, the algebraic degree of accuracy should be at least 2k). For example, we
can employ the Gauss quadrature with Q = k + 1 points for the boundary integral:

∫

E j
K

uint(K ) ·
[

F̂
(
Un,int(K )
h ,Un,ext(K )

h ; ξ
( j)
K

)

− ηK (x)
〈
ξ

( j)
K ,Bn,ext(K )

h − Bn,int(K )
h

〉
S
(
Un,int(K )
h

)
]

ds

≈ |E j
K |

Q∑

q=1

ωquint(K )
(
x( jq)
K

)
·
[

F̂
(
Un,int(K )
h

(
x( jq)
K

)
,Un,ext(K )

h

(
x( jq)
K

)
; ξ

( j)
K

)

− ηK

(
x( jq)
K

) 〈
ξ

( j)
K ,Bn,ext(K )

h

(
x( jq)
K

)
− Bn,int(K )

h

(
x( jq)
K

)〉
S
(
Un,int(K )
h

(
x( jq)
K

)) ]

,

where {x( jq)
K }1≤q≤Q are the quadrature points on the interface E j

K , and {ωq}1≤q≤Q are
the associated weights.

Let
Un
h

∣
∣
K =: Un

K (x),

and its cell average over K be Ūn
K . Then we can derive from (62) the evolution

equations for the cell averages {Ūn
K } as follows

Ūn+1
K = Ūn

K + ΔtnLK (Un
h), (63)

where

LK (Un
h) := − 1

|K |
NK∑

j=1

Q∑

q=1

|E j
K |ωq

[

F̂
(
Un,int(K )
h

(
x( jq)
K

)
,Un,ext(K )

h

(
x( jq)
K

)
; ξ

( j)
K

)

− ηK (x( jq)
K )

〈
ξ

( j)
K ,Bn,ext(K )

h

(
x( jq)
K

)
− Bn,int(K )

h

(
x( jq)
K

)〉
S
(
Un,int(K )
h

(
x( jq)
K

)) ]

.

The discrete equations (63) can also be derived from a finite volumemethod for (4),
if the approximate function Un

h in (63) is reconstructed from the cell averages {Ūn
K }

by a locally divergence-free approach (cf. [62,69]) such that Un
h ∈ V

k
h .

When k = 0, the above DG and finite volume schemes reduce to the first-order
scheme (53), whose PP property has been proved in Theorem 5. When k ≥ 1, the
above high-order DG and finite volume schemes are not PP in general. However, we
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1022 K. Wu, C.-W. Shu

find that these locally divergence-free schemes can be rendered provably PP by a
simple limiting procedure, as demonstrated in the following.

4.2.2 Positivity-preserving schemes

Wefirst assume that there exists a special 2Dquadrature on each cell K ∈ Th satisfying:
– The quadrature rule is with positive weights and exact for integrals of polynomials
of degree up to k on the cell K .

– The set of the quadrature points, denoted by SK , must include all theGauss quadra-
ture points x( jq)

K , j = 1, . . . , NK , q = 1, . . . , Q, on the cell interface.

In other words, we would like to have a special quadrature such that

1

|K |
∫

K
u(x)dx =

NK∑

j=1

Q∑

q=1

� jqu
(
x( jq)
K

)
+

Q̃∑

q=1

�̃qu
(
x̃(q)
K

)
, ∀u ∈ P

k(K ), (64)

where {̃x(q)
K } are the other (possible) quadrature nodes in K , and the quadratureweights

� jq , �̃q are positive and satisfy
∑NK

j=1

∑Q
q=1 � jq +∑Q̃

q=1 �̃q = 1. For rectangu-
lar cells, such a quadrature was constructed in [65,66] by tensor products of Gauss
quadrature and Gauss–Lobatto quadrature. For triangular cells, it can be constructed
by a Dubinar transform from rectangles to triangles [68]. For more general polygonal
cells, one can always decompose the polygons into non-overlapping triangles, and
then build the above quadrature rule by gathering those on the small triangles; see, for
example, [24,49]. An illustration of the special quadrature on rectangle and triangle
for k = 2 is shown in Fig. 2, where the (red) solid points are {x( jq)

K } and the (blue)

hollow circles denote {̃x(q)
K }. We remark that such a special quadrature is not employed

for computing any integral, but only used in the PP limiter and theoretical analysis as
it decomposes the cell average into a convex combination of the desired point values.

Based on the high-order locally divergence-free schemes in Sect. 4.2.1 and the
above special quadrature, we construct the provably PP high-order DG and finite
volume schemes as follows. The rigorous proof of the PP property is very technical
and will be given later.

Step 0 Initialization. Set t = 0 and n = 0. Using the initial data computes {Ū0
K } and

{U0
K (x)}. Ū0

K ∈ G can be ensured by the convexity of G, and U0
h ∈ V

k
h is guaranteed

if a local L2-projection of the initial data onto V
k
h is used.

Step 1 Given admissible cell averages
{
Ūn

K

}
and Un

h ∈ V
k
h , perform the PP limiting

procedure. Use the PP limiter in [13] to modify the polynomials
{
Un

K (x)
}
, such that

the modified polynomials
{
Ũn

K (x)
}
satisfy

Ũn
K (x) ∈ G, ∀x ∈ SK :=

{
x̃(q)
K

}

1≤q≤Q̃

⋃{
x( jq)
K

}

1≤ j≤NK ,1≤q≤Q
. (65)

For readers’ convenience, the PP limiter is briefly reviewed in “Appendix B”. Let
Ũn
h(x) denote the discontinuous piecewise polynomial function defined by Ũn

K (x). We
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x(11)
K x(12)

K x(13)
K

x(21)
K

x(22)
K

x(23)
Kx(31)

K

x(32)
K

x(33)
K

x(11)
K x(12)

K x(13)
K

x(23)
K

x(22)
K

x(21)
K

x(41)
K

x(42)
K

x(43)
K

x(33)
K x(32)

K x(31)
K

Fig. 2 Illustration of the quadrature (64) on a rectangular cell (left) and a triangular cell (right) for k = 2.

The (red) solid points are {x( jq)
K } and the (blue) hollow circles denote {̃x(q)

K }; all of them constitute the point
set SK (color figure online)

have Ũn
h ∈ V

k
h , because the PP limiter only involves element and component wise

convex combination of Un
K (x) and its cell average.

Step 2 Update the cell averages by the scheme

Ūn+1
K = Ūn

K + ΔtnLK (Ũn
h), (66)

As will be shown in Theorem 6, the PP limiting procedure in Step 1 can ensure the
computed Ūn+1

K ∈ G, which meets the condition of performing PP limiting procedure
in the next time-forward step.

Step 3Build the discontinuous piecewise polynomial functionUn+1
h . For our Pk-based

DG method (k ≥ 1), evolve the high-order “moments” of the polynomials {Un+1
K (x)}

by (62) with Un
h replaced by Ũn

h . For a high-order finite volume scheme, reconstruct
the approximate solution polynomials {Un+1

K (x)} from the cell averages
{
Ūn+1

K

}
by a

locally divergence-free approach such that Un+1
h ∈ V

k
h . The details are omitted here,

as these does not affect the PP property of the proposed schemes.

Step 4 Set tn+1 = tn + Δtn . If tn+1 < T , assign n ← n + 1 and go to Step 1, where
Ūn+1

K ∈ G has been ensured in Step 2; otherwise, output numerical results.
We now prove the PP property of the above schemes, i.e., show that the cell average

Ūn+1
K computed by (66) always belongs to G under the condition (65). It is worth

emphasizing that the locally divergence-free spatial discretization and the suitably
discretized Godunov–Powell source term in (62) are crucial for achieving the provably
PP scheme, as will be seen from the proof of Theorem 6.

To shorten the notations, we define

Uint(K )
jq := Ũn,int(K )

h (x( jq)
K ), Uext(K )

jq := Ũn,ext(K )
h (x( jq)

K ),
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where the dependence on n is omitted. Let

σ
K ,±
jq := σ±(Uint(K )

jq ,Uext(K )
jq ; ξ

( j)
K

)
.

For ∀K ∈ Th , we define

α̂
int(K )
jq := C (Uint(K )

jq ; ξ
( j)
K ) + 2

|∂K |
NK∑

i=1

|E i
K |

|Bint(K )
jq − Bint(K )

iq |
√

ρ
int(K )
jq +

√
ρ
int(K )
iq

+ max

⎧
⎨

⎩

〈
ξ
( j)
K , vint(K )

jq

〉
,

1

|∂K |
NK∑

i=1

|E i
K |
〈

ξ
( j)
K − ξ

(i)
K ,

√
ρ
int(K )
jq vint(K )

jq +
√

ρ
int(K )
iq vint(K )

iq
√

ρ
int(K )
jq +

√
ρ
int(K )
iq

〉⎫
⎬

⎭
,

with |∂K | :=∑NK
i=1 |E i

K | denoting the circumference of the cell K .

Theorem 6 Let the wave speeds in the HLL flux satisfy (35). If the polynomial vectors
{Ũn

K (x)} are locally divergence-free and satisfy the condition (65), then the scheme
(66) preserves Ūn+1

K ∈ G under the CFL-type condition

Δtn
|E j

K |
|K | αK

jq <
� jq

ωq
, ∀K ∈ Th, 1 ≤ j ≤ NK , 1 ≤ q ≤ Q, (67)

with

αK
jq := α̂

int(K )
jq − σ

K ,−
jq − ηK

(
x( jq)
K

)(
ρ
int(K )
jq

)− 1
2
∣
∣
∣
〈
ξ

( j)
K ,Bint(K )

jq − Bext(K )
jq

〉∣∣
∣ . (68)

Note that σ
K ,−
jq ≤ 0 and −1 ≤ ηK

(
x( jq)
K

) ≤ 0. The last term in (68) is relatively
small compared to themaximum signal speed, and thus does not cause strict restriction
on the time step-size; see the detailed justification and numerical evidence in [54].

We now present the proof of Theorem 6.

Proof Recalling the identity (36) and Theorem 2, one has

F̂
(
Uint(K )

jq ,Uext(K )
jq ; ξ

( j)
K

) = σ
K ,−
jq HK

jq +
〈
ξ

( j)
K ,F

(
Uint(K )

jq

)〉
− σ

K ,−
jq Uint(K )

jq

= (α̂int(K )
jq − σ

K ,−
jq

)
Uint(K )

jq −
(
α̂
int(K )
jq Uint(K )

jq − 〈ξ ( j)
K ,F

(
Uint(K )

jq

)〉)+ σ
K ,−
jq HK

jq ,

where HK
jq := H(Uint(K )

jq ,Uext(K )
jq ; ξ

( j)
K ) ∈ Gρ and for ∀v∗,B∗ ∈ R

3,

HK
jq · n∗ + |B∗|2

2
≥ − v∗ · B∗

σ
K ,+
jq − σ

K ,−
jq

〈
ξ

( j)
K ,Bext(K )

jq − Bint(K )
jq

〉
. (69)

Plugging the above formula of F̂ into (66), we can rewrite the scheme (66) as

Ūn+1
K = Ūn

K + �1 + �2 + �3 + �4, (70)
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with

�1 := Δtn
|K |

NK∑

j=1

Q∑

q=1

|E j
K |ωq

(
σ
K ,−
jq − α̂

int(K )
jq

)
Uint(K )

jq

�2 := Δtn
|K |

NK∑

j=1

Q∑

q=1

|E j
K |ωq

(
α̂
int(K )
jq Uint(K )

jq − 〈ξ ( j)
K ,F

(
Uint(K )

jq

)〉)
,

�3 := Δtn
|K |

NK∑

j=1

Q∑

q=1

|E j
K |ωq

(
−σ

K ,−
jq

)
HK

jq ,

�4 := Δtn
|K |

NK∑

j=1

Q∑

q=1

∣
∣E

j
K

∣
∣ωqηK

(
x( jq)
K

) 〈
ξ

( j)
K ,Bext(K )

jq − Bint(K )
jq

〉
S
(
Uint(K )

jq

)
.

For 1 ≤ q ≤ Q, let

U
int(K )

q := 1
∑NK

j=1

∣
∣E

j
K

∣
∣̂α

int(K )
jq

NK∑

j=1

|E j
K |
(
α̂
int(K )
jq Uint(K )

jq − 〈ξ ( j)
K ,F

(
Uint(K )

jq

)〉)
,

then �2 can be reformulated as

�2 = Δtn
|K |

Q∑

q=1

ωq

⎛

⎝
NK∑

j=1

|E j
K |̂αint(K )

jq

⎞

⎠U
int(K )

q . (71)

Thanks to Theorem 1 and Eq. (57), we have, for all 1 ≤ q ≤ Q, U
int(K )

q ∈ Gρ and

U
int(K )

q · n∗ + |B∗|2
2

≥ − v∗ · B∗
∑NK

j=1 |E j
K |̂αint(K )

jq

NK∑

j=1

|E j
K |〈ξ ( j)

K ,Bint(K )
jq

〉
, ∀v∗,B∗ ∈ R

3.

Note
∑NK

j=1 |E j
K |̂αint(K )

jq > 0 as indicated in Remark 1. Therefore, �2 ∈ Gρ , and

Π2 := Δtn
|K |

Q∑

q=1

ωq

⎛

⎝
NK∑

j=1

|E j
K |̂αint(K )

jq

⎞

⎠
(

U
int(K )

q · n∗ + |B∗|2
2

)

≥ −Δtn
|K |

(
v∗ · B∗)

Q∑

q=1

ωq

NK∑

j=1

|E j
K |〈ξ ( j)

K ,Bint(K )
jq

〉
. (72)
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It follows that

Π2 ≥ −Δtn
|K |

(
v∗ · B∗)

NK∑

j=1

∫

E j
K

〈
ξ

( j)
K , B̃n

K

〉
ds

= −Δtn
|K |

(
v∗ · B∗)

∫

K

(∇ · B̃n
K

)
dx = 0, (73)

where we have sequentially used the exactness of the Q-point quadrature rule on
each interface for polynomials of degree up to k, Green’s theorem and the locally
divergence-free property of the polynomial vector B̃n

K (x).
Now, we first show ρ̄n+1

K > 0. Recalling that the first component of S(U) is zero,
we know that the first component of �4 is zero. Since �2 ∈ Gρ and HK

jq ∈ Gρ ,
1 ≤ j ≤ NK , 1 ≤ q ≤ Q, we deduce from (70) that

ρ̄n+1
K > ρ̄n

K + Δtn
|K |

NK∑

j=1

Q∑

q=1

|E j
K |ωq

(
σ
K ,−
jq − α̂

int(K )
jq

)
ρ
int(K )
jq

=
Q̃∑

q=1

�̃q ρ̃
n
K

(
x̃(q)
K

)
+

NK∑

j=1

Q∑

q=1

� jqρ
int(K )
jq

+ Δtn
|K |

NK∑

j=1

Q∑

q=1

|E j
K |ωq

(
σ
K ,−
jq − α̂

int(K )
jq

)
ρ
int(K )
jq

≥
NK∑

j=1

Q∑

q=1

ωqρ
int(K )
jq

(
� jq

ωq
− Δtn

|K |
∣
∣E

j
K

∣
∣
(
α̂
int(K )
jq − σ

K ,−
jq

))

≥ 0,

where we have used in the above equality the exactness of the quadrature rule (64) for
polynomials of degree up to k, and in the last inequality the condition (67).

We then prove for any v∗,B∗ ∈ R
3 that Ūn+1

K ·n∗ + |B∗|2
2 > 0. It follows from (70)

that

Ūn+1
K · n∗ + |B∗|2

2
= Π0 + Π1 + Π2 + Π3 + Π4, (74)

where Π2 ≥ 0 is defined in (72), Π4 := �4 · n∗, and

Π0 := Ūn
K · n∗ + |B∗|2

2
, (75)

Π1 := Δtn
|K |

NK∑

j=1

Q∑

q=1

|E j
K |ωq

(
σ
K ,−
jq − α̂

int(K )
jq

)(

Uint(K )
jq · n∗ + |B∗|2

2

)

, (76)

Π3 := Δtn
|K |

NK∑

j=1

Q∑

q=1

|E j
K |ωq

(
−σ

K ,−
jq

)(

HK
jq · n∗ + |B∗|2

2

)

. (77)
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We now estimate the lower bounds ofΠ0,Π3 andΠ4 respectively. Based on the exact-
ness of the quadrature rule (64) for polynomials of degree up to k, we can decompose
the cell average as

Ūn
K = 1

|K |
∫

K
Ũn
h(x)dx =

Q̃∑

q=1

�̃qŨn
h

(
x̃(q)
K

)
+

NK∑

j=1

Q∑

q=1

� jqU
int(K )
jq .

It follows that

Π0 =
Q̃∑

q=1

�̃q

(

Ũn
h

(
x̃(q)
K

)
· n∗ + |B∗|2

2

)

+
NK∑

j=1

Q∑

q=1

� jq

(

Uint(K )
jq · n∗ + |B∗|2

2

)

≥
NK∑

j=1

Q∑

q=1

� jq

(

Uint(K )
jq · n∗ + |B∗|2

2

)

, (78)

where the inequality follows from Lemma 1 and Ũn
h (̃x

(q)
K ) ∈ G according to (65).

Noting σ
K ,−
jq ≤ 0 and using (69) give a lower bound of Π3 as

Π3 ≥ Δtn
|K | (v

∗ · B∗)
NK∑

j=1

Q∑

q=1

|E j
K |ωq

σ
K ,−
jq

σ
K ,+
jq − σ

K ,−
jq

〈
ξ

( j)
K ,Bext(K )

jq − Bint(K )
jq

〉

= Δtn
|K | (v

∗ · B∗)
NK∑

j=1

Q∑

q=1

|E j
K |ωqηK

(
x( jq)
K

) 〈
ξ

( j)
K ,Bext(K )

jq − Bint(K )
jq

〉
. (79)

A lower bound of Π4 can be derived by using the inequality (31) as

Π4 ≥ Δtn
|K |

NK∑

j=1

Q∑

q=1

∣
∣E

j
K

∣
∣ωq

[

ηK
(
x( jq)
K

) 〈
ξ

( j)
K ,Bint(K )

jq − Bext(K )
jq

〉
(v∗ · B∗)

−
(
ρ
int(K )
jq

)− 1
2
∣
∣
∣ηK
(
x( jq)
K

)〈
ξ

( j)
K ,Bint(K )

jq − Bext(K )
jq

〉∣∣
∣

(

Uint(K )
jq · n∗ + |B∗|2

2

)]

,

which, along with (79) and ηK (x( jq)
K ) ≤ 0, further imply

Π3 + Π4 ≥ Δtn
|K |

NK∑

j=1

Q∑

q=1

[
∣
∣E

j
K

∣
∣ωqηK

(
x( jq)
K

) (
ρ
int(K )
jq

)− 1
2

×
∣
∣
∣
〈
ξ

( j)
K ,Bint(K )

jq − Bext(K )
jq

〉∣∣
∣

(

Uint(K )
jq · n∗ + |B∗|2

2

)]

. (80)

Combining the lower bounds in (73), (78), (80), with (74), we obtain
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Ūn+1
K · n∗ + |B∗|2

2
≥

NK∑

j=1

Q∑

q=1

� jq

(

Uint(K )
jq · n∗ + |B∗|2

2

)

+ Δtn
|K |

NK∑

j=1

Q∑

q=1

|E j
K |ωq

[ (
σ
K ,−
jq − α̂

int(K )
jq

)
+ ηK

(
x( jq)
K

)

×
∣
∣
∣
〈
ξ

( j)
K ,Bint(K )

jq − Bext(K )
jq

〉∣∣
∣

√
ρ
int(K )
jq

(

Uint(K )
jq · n∗ + |B∗|2

2

)]

=
NK∑

j=1

Q∑

q=1

(

� jq − Δtn
|K |

∣
∣E

j
K

∣
∣ωqα

K
jq

)(

Uint(K )
jq · n∗ + |B∗|2

2

)

>0,

where the CFL condition (67) and Uint(K )
jq ∈ G = G∗ have been used in the last

inequality. Therefore, we have

Ūn+1
K · n∗ + |B∗|2

2
> 0, ∀v∗,B∗ ∈ R

3,

which, along with ρ̄n+1
K > 0, imply Ūn+1

K ∈ G by Lemma 1.
The proof is completed. 
�

Let us further understand the above PP DG schemes and the result in Theorem 6
on two special meshes.

Example 1 Assume that themesh is rectangularwith cells {[xi− 1
2
, xi+ 1

2
]×[y�− 1

2
, y�+ 1

2
]}

and spatial step-sizes Δxi := xi+ 1
2

− xi− 1
2
and Δy� := y�+ 1

2
− y�− 1

2
in x- and

y-directions respectively, where (x, y) denotes the 2D spatial coordinate variables.
Let S

x
i = {x (q)

i }Qq=1 and S
y
� = {y(q)

� }Qq=1 denote the Q-point Gauss quadra-
ture points in the intervals [xi− 1

2
, xi+ 1

2
] and [y�− 1

2
, y�+ 1

2
] respectively. For the cell

K = [xi− 1
2
, xi+ 1

2
] × [y�− 1

2
, y�+ 1

2
], the point set SK in (65) is given by (cf. [65,66])

SK = (Ŝxi ⊗ S
y
�

) ∪ (Sxi ⊗ Ŝ
y
�

)
, (81)

where Ŝxi = {̂x (μ)
i }Lμ=1 and Ŝ

y
� = {ŷ(μ)

� }Lμ=1 denote theL-pointGauss–Lobatto quadra-

ture points in the intervals [xi− 1
2
, xi+ 1

2
] and [y�− 1

2
, y�+ 1

2
] respectively, whereL ≥ k+3

2
such that the associated quadrature has algebraic accuracy of at least degree k. See
Fig. 2 for an illustration of SK for k = 2. With SK in (81), a special quadrature
(cf. [65,66]) satisfying (64) can be constructed:
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1

|K |
∫

K
u(x)dx = Δxi ω̂1

Δxi + Δy�

Q∑

q=1

ωq

(
u
(
x (q)
i , y�− 1

2

)+ u
(
x (q)
i , y�+ 1

2

))

+ Δy�ω̂1

Δxi + Δy�

Q∑

q=1

ωq

(
u
(
xi− 1

2
, y(q)

�

)+ u
(
xi+ 1

2
, y(q)

�

))

+ Δxi
Δxi + Δy�

L−1∑

μ=2

Q∑

q=1

ω̂μωqu
(
x (q)
i , ŷ(μ)

�

)

+ Δy�
Δxi + Δy�

L−1∑

μ=2

Q∑

q=1

ω̂μωqu
(
x̂ (μ)
i , y(q)

�

)
, ∀u ∈ P

k(K ),

(82)

where {ŵμ}Lμ=1 are the weights of the L-point Gauss–Lobatto quadrature. If labeling
the bottom, right, top and left adjacent cells of K as K1, K2, K3 and K4, respectively,
as illustrated in Fig. 1, then (82) implies

� jq = Δxi ω̂1ωq

Δxi + Δy�
, j = 1, 3; � jq = Δy�ω̂1ωq

Δxi + Δy�
, j = 2, 4.

Then according to Theorem 6, the CFL condition (67) for our PP DG schemes on
rectangular meshes is

Δtn

(
1

Δxi
+ 1

Δy�

)

αK
jq < ω̂1 = 1

L(L − 1)
, ∀K ∈ Th, 1 ≤ j ≤ 4, 1 ≤ q ≤ Q.

Example 2 Assume that the mesh is triangular. A special quadrature satisfying (64)
was introduced in [68], with the point set SK , denoted by local barycentric coordinates,
as

{(
1

2
+ ζq ,

(
1

2
+ ζ̂μ

)(
1

2
− ζq

)

,

(
1

2
− ζ̂μ

)(
1

2
− ζq

))

,

((
1

2
− ζ̂μ

)(
1

2
− ζq

)

,
1

2
+ ζq ,

(
1

2
+ ζ̂μ

)(
1

2
− ζq

))

,

((
1

2
+ ζ̂μ

)(
1

2
− ζq

)

,

(
1

2
− ζ̂μ

)(
1

2
− ζq

)

,
1

2
+ ζq

)

, 1 ≤ q ≤ Q, 1 ≤ μ ≤ L

}

,

where {ζq}Qq=1 and {̂ζμ}Lμ=1 are the Gauss quadrature points and the Gauss–Lobatto

quadrature points on
[ − 1

2 ,
1
2

]
respectively, and L ≥ k+3

2 . For this quadrature, (64)
becomes (cf. [68])

1

|K |
∫

K
u(x)dx = 2

3
ω̂1

3∑

j=1

Q∑

q=1

ωqu(x( jq)
K ) +

Q̃∑

q=1

�̃qu(̃x(q)
K ), ∀u ∈ P

k(K ), (83)
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where Q̃ = 3(L − 2)Q. The specific expressions of the weights �̃q at quadrature
points in the interior of K are omitted here. Eq. (83) implies

� jq = 2

3
ω̂1ωq , 1 ≤ j ≤ 3.

Then, according to Theorem 6, the CFL condition (67) for our PP DG schemes on
triangular meshes is

Δtn
|E j

K |
|K | αK

jq <
2

3
ω̂1 = 2

3L(L − 1)
, ∀K ∈ Th, 1 ≤ j ≤ 3, 1 ≤ q ≤ Q.

4.3 Why do we need the Godunov–Powell source term?

There are two features in our PP schemes: the locally divergence-free spatial discretiza-
tion and the properly discretized Godunov–Powell source term. The former leads to
zero divergence within each cell, while the latter controls the divergence error across
the cell interfaces. The proof of Theorem 6 shows that, thanks to these two features,
the PP property is obtained without requiring the DDF condition, which is needed for
the PP property of the conservative schemes without the discretized Godunov–Powell
source, see the following theorem.

The scheme (66) without the discretized Godunov–Powell source term becomes

Ūn+1
K = Ūn

K − Δtn
|K |

NK∑

j=1

Q∑

q=1

|E j
K |ωq F̂

(
Uint(K )

jq ,Uext(K )
jq ; ξ

( j)
K

)
, (84)

which is a conservative finite volume scheme or the scheme satisfied by the cell
averages of a DGmethod for the conservative MHD system (1). As mentioned before,
even the first-order version (k = 0) of the scheme (84) is generally not PP unless a
DDF condition is satisfied by the numerical magnetic field. The DDF condition can
also be generalized to high-order schemes (k ≥ 1), as shown in Theorem 7.

Theorem 7 Let the wave speeds in the HLL flux satisfy (35). If the polynomial vectors
{Ũn

K (x)} satisfy the condition (65), then under the CFL-type condition

Δtn
|E j

K |
|K |

(
α̂
int(K )
jq − σ

K ,−
jq

)
<

� jq

ωq
, ∀K ∈ Th, 1 ≤ j ≤ NK , 1 ≤ q ≤ Q, (85)

the solution Ūn+1
K of the scheme (84) satisfies that ρ̄n+1

K > 0 and

E(Ūn+1
K ) > −Δtn

(
ρ̄n+1
K

)−1
(m̄n+1

K · B̄n+1
K )

(
divK B̃n

h

)
, (86)
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where divK B̃n
h is the discrete divergence defined by

divK B̃n
h := 1

|K |
NK∑

j=1

Q∑

q=1

∣
∣E

j
K

∣
∣ωq

〈

ξ
( j)
K ,

σ
K ,+
jq Bint(K )

jq − σ
K ,−
jq Bext(K )

jq

σ
K ,+
jq − σ

K ,−
jq

〉

. (87)

Furthermore, if the magnetic field B̃n
h(x) satisfies the DDF condition

divK B̃n
h = 0, (88)

then Ūn+1
K ∈ G.

Proof Since the first component of S(U) is zero, the discrete equations for ρ in the
two schemes (66) and (84) are the same. Hence ρ̄n+1

K > 0 directly follows from the
proof of Theorem 7.

Similar to the proof of Theorem 7, it can be derived for any v∗,B∗ ∈ R
3 that

Ūn+1
K · n∗ + |B∗|2

2
= Π0 + Π1 + Π2 + Π3, (89)

where Π2 is defined (72), and Π0, Π1 and Π3 are defined in (75)–(77), respectively.
Combining the estimates (72), (78) and (79), gives

Ūn+1
K · n∗ + |B∗|2

2
≥ −Δtn(v∗ · B∗)

(
divK B̃n

h

)

+
NK∑

j=1

Q∑

q=1

(

� jq − Δtn
|K |

∣
∣E

j
K

∣
∣ωq

(
α̂
int(K )
jq − σ

K ,−
jq

))(

Uint(K )
jq · n∗ + |B∗|2

2

)

> −Δtn(v∗ · B∗)
(
divK B̃n

h

)
.

Taking v∗ = m̄n+1
K /ρ̄n+1

K and B∗ = B̄n+1
K gives (86).

Under the DDF condition (88), the estimate (86) becomes E(Ūn+1
K ) > 0, which

along with ρ̄n+1
K > 0 imply Ūn+1

K ∈ G. 
�
In practice, it is not easy to meet the DDF condition (88), because it depends

on the limiting values of the magnetic field calculated from the adjacent cells of
K . The locally divergence-free property cannot ensure the DDF condition (88). If
Bn
h(x) is globally divergence-free, i.e., locally divergence-free in each cell with normal

magnetic component continuous across the cell interfaces, then by Green’s theorem,
the DDF condition divKBn

h = 0 is naturally satisfied and the Godunov–Powell source
vanishes. There exist a few numerical techniques to maintain globally divergence-
free property in the literature (e.g., [27,37,61]). However, unfortunately, the usual PP
limiting technique (cf. [13,66]) with local scalingmay destroy the globally divergence-
free property of Bn

h(x). It is nontrivial and still open to design a limiting procedure
which can enforce the conditions (65) and (88) at the same time.
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Let us split the discrete divergence into two parts:

divK B̃n
h = 1

|K |
NK∑

j=1

Q∑

q=1

∣
∣E

j
K

∣
∣ωq

〈
ξ

( j)
K ,Bint(K )

jq

〉

+ 1

|K |
NK∑

j=1

Q∑

q=1

∣
∣E

j
K

∣
∣ωqηK (x( jq)

K )
〈
ξ

( j)
K ,Bint(K )

jq − Bext(K )
jq

〉
.

The first part becomes zero if the locally divergence-free discretization is used, while
the second part, which involves the divergence error across the cell interfaces, can
be handled by including our properly discretized Godunov–Powell source term. As
we have seen in the above analysis, a coupling of these two divergence-controlling
techniques is very important in our PP DG methods, because they exactly contribute
the discrete divergence terms which are absent in a standard multidimensional DG
scheme (84) but crucial for ensuring the PP property. In other words, the suitably
discretized Godunov–Powell source term helps eliminate the effect of divergence
error on the positivity preservation. This is similar to the continuous case that the
inclusion of Godunov–Powell source makes the modified MHD system (4) able to
preserve the positivity even if the magnetic field is not divergence-free. It is also worth
mentioning that, once the discretized Godunov–Powell source term is dropped, even
the P0-based DG scheme (which is locally divergence-free) is not PP in general, and
using arbitrary times larger wave speeds and/or any given small CFL number does
not help to guarantee the PP property [53], unless the DDF condition is rigorously
satisfied.

Remark 7 It is worth noting that in the 1D case, the divergence-free condition (2)
and the fifth equation of (1) imply B1(x, t) ≡ constant for all x and t ≥ 0. The
proposed 1D schemes exactly preserve the 1D globally divergence-free property, and
the Godunov–Powell source term does not exist in the proposed 1D PP schemes.

Remark 8 In the above discussions, we restrict ourselves to the first-order forward
Euler time discretization. One can also use SSP high-order time discretizations
(cf. [31]) to solve the ODE system d

dtUh = L(Uh). For instance, the explicit third-
order SSP Runge–Kutta method reads

U∗
h = Ũn

h + ΔtnL(Ũn
h),

U∗∗
h = 3

4
Ũn
h + 1

4

(
Ũ∗
h + ΔtnL(Ũ∗

h)
)
,

Un+1
h = 1

3
Ũn
h + 2

3

(
Ũ∗∗
h + ΔtnL(Ũ∗∗

h )
)
,

(90)

where the numerical solutions with “∼” at above denote the PP limited solutions.
Since an SSP method is a convex combination of the forward Euler method, our PP
analysis of the proposed schemes remains valid according to the convexity of G.

123



Provably positive high-order schemes for ideal… 1033

5 Numerical tests

In this section, we present some numerical results of the proposed PP DG schemes for
several extreme MHD problems involving low density, low pressure, low plasma-beta
β := 2p/|B|2, and/or strong discontinuity, to verify the provenly PP property and to
demonstrate the effectiveness of our HLL flux and the proposed discretization of the
Godunov–Powell source term. The tests below are conducted on uniform1Dmeshes or
2D rectangular meshes, while the implementation of our PP schemes on unstructured
triangular meshes is ongoing and will be reported in a separate paper. Without loss
of generality, we focus on the proposed PP third-order (P2) DG methods with the
SSP Runge–Kutta time discretization (90). Although our analysis has suggested a
CFL condition for guaranteeing the provably PP property, we observe that our PP DG
methods still work robustly and maintain the desired positivity with suitably larger
time step-size in the tested cases. Unless otherwise stated, the following computations
are restricted to the ideal EOS p = (γ − 1)ρe with γ = 1.4, and the CFL number is
set as 0.15. The HLL flux is always used with the local wave speeds given by (41).

5.1 Smooth problems

A 1D and a 2D smooth problems are respectively solved on the uniformmeshes of Md

cells to test the accuracy of the PP third-order DGmethods. The 1D problem is similar
to the one simulated in [66] for testing the PP DG scheme for the Euler equations, and
has the exact solution

(ρ, v, p,B)(x, t) = (1 + 0.99 sin(x − t), 1, , 0, , 0, 1, 0.1, 0, 0), x ∈ [0, 2π ], t ≥ 0,

which describes a sine wave propagating with low density. The 2D problem is the
vortex problem with the same setup as in [16] and has a extremely low pressure (about
5.3×10−12) in the vortex center; the adiabatic index γ = 5

3 ; the computational domain
is [− 10, 10]2 with periodic boundary condition. Figure 3 displays the numerical errors
obtained by the third-order DGmethodwith the PP limiter at different grid resolutions.
The results show that the expected convergence order is achieved.

Next, we simulate several MHD problems involving discontinuities. Before using
the PP limiter, the WENO limiter [44] is also implemented with the aid of the local
characteristic decomposition, to enhance the numerical stability of high-order DG
schemes in resolving the strong discontinuities and their interactions. The 2DWENO
limiter is combined with the locally divergence-free reconstruction approach in [69].
The WENO limiter is only employed in the “trouble” cells adaptively detected by the
indicator of [35].

5.2 Riemann problems

Two 1D Riemann problems are solved. The first is a 1D vacuum shock tube problem
(cf. [16]) with the initial data
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Fig. 3 Numerical errors obtained by the PP third-order DG method at different grid resolutions with Md

cells. Left: the 1D smooth problem at t = 0.1; right: the 2D smooth problem at t = 0.05. The horizontal
axis denotes the value of M
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Fig. 4 The density (left) and pressure (right) obtained by the PP third-order DG method on the meshes of
200 cells (symbols “◦”) and 5000 cells (solid lines), respectively.

(ρ, v, p,B)(x, 0) =
{

(10−12, 0, 0, 0, 10−12, 0, 0, 0), x < 0,

(1, 0, 0, 0, 0.5, 0, 1, 0), x > 0.

It is used to demonstrate that our 1D PP DG scheme can handle extremely low density
and pressure. The adiabatic index γ = 5

3 , and the computational domain is set as
[− 0.5, 0.5]. Figure 4 shows the density and pressure of the numerical solution on the
mesh of 200 cells as well as those of a highly resolved solution with 5000 cells at
time t = 0.1. One can observe that the solutions of low resolution and high resolution
are in good agreement. We confirm that the low pressure and the low density are
both correctly captured by comparing with the results in [16]. The PP third-order DG
method works very robustly during the simulation. It is noticed that, if the PP limiter
is not used to enforce the condition (48), the method breaks down within a few time
steps due to unphysical solution.
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Fig. 5 Numerical results at t = 0.00003 obtained by the PP third-orderDGmethodwith 2000 cells (symbols
“◦”) and 10,000 cells (solid lines). Left: log plot of density; right: magnetic pressure

The second Riemann problem is a variant of the Leblanc problem (cf. [66]) of gas
dynamics by adding a strong magnetic field. The initial condition is

(ρ, v, p,B)(x, 0) =
{

(2, 0, 0, 0, 109, 0, 5000, 5000), x < 0,

(0.001, 0, 0, 0, 1, 0, 5000, 5000), x > 0.

The initial pressure has a very large jump, and the plasma-beta at the right state is
extremely low (β = 4 × 10−8), making the successful simulation of this problem a
challenge. The computational domain is taken as [− 10, 10]. To fully resolve the wave
structure, a fine mesh is required for this test [66]. Figure 5 displays the numerical
results at t = 0.00003 obtained by the PP third-order DGmethod using 2000 cells and
10,000 cells, respectively.We observe that the strong discontinuities are well captured,
and the low resolution and high resolution are in good agreement. Figure 6 gives a
comparison of the numerical solutions resolved by using the proposed HLL flux and
the global LF flux of [53], respectively. As expected, the PP DGmethod with the HLL
flux exhibits better resolution. In this extreme test, it is also necessary to enforce the
condition (48) by the PP limiting procedure, otherwise negative pressure will appear
in the cell averages of the DG solution.

5.3 Blast problem

This test was first introduced by Balsara and Spicer [7], and has become a benchmark
for testing 2DMHDcodes. If the lowgas pressure, strongmagnetic field or lowplasma-
beta is involved, then simulating such MHD blast problems can be very challenging.
Therefore, it is often used to check the robustness of MHD schemes; see e.g., [13,16].

The simulation is implemented in [− 0.5, 0.5]2 with outflow boundary conditions.
Our setup is the same as in [7,13]. Initially, the domain is filled with plasma at rest with
unit density. The explosion zone (r < 0.1) has a pressure of 1000, while the ambient
medium (r > 0.1) has a pressure of 0.1, where r = √x2 + y2. The magnetic field is
initialized in the x-direction as 100/

√
4π . For this setup, the ambient medium has a
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Fig. 6 Same as Fig. 5 except for the velocity v1 obtained by using the proposed HLL flux (left) and the
global LF flux (right)

-0.5 -0.3 -0.1 0.1 0.3 0.5
-0.5

-0.3

-0.1

0.1

0.3

0.5

-0.5 -0.3 -0.1 0.1 0.3 0.5
-0.5

-0.3

-0.1

0.1

0.3

0.5

-0.5 -0.3 -0.1 0.1 0.3 0.5
-0.5

-0.3

-0.1

0.1

0.3

0.5

-0.5 -0.3 -0.1 0.1 0.3 0.5
-0.5

-0.3

-0.1

0.1

0.3

0.5

Fig. 7 The contour plots of density (top left), pressure (top right), velocity |v| (bottom left) and magnetic
pressure (bottom right) at time t = 0.01 for the blast problem
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Fig. 8 The schlieren images of density (left) and pressure (right) at time t = 0.06 for the shock cloud
interaction problem

small plasma-beta (about 2.51 × 10−4). Our numerical results at t = 0.01, obtained
by the PP third-order DG method with 320 × 320 cells, are displayed in Fig. 7. Our
results agree well with those in [7,16,37], and the density profile is well captured with
much less oscillations than those shown in [7,16]. The velocity profile clearly shows
higher resolution than that in [54] obtained by the sameDGmethod but with the global
LF flux. We also notice that, if the PP limiter is turned off, the condition (65) will be
violated since t ≈ 2.24 × 10−4, and the method will fail due to negative numerical
pressure.

5.4 Shock cloud interaction

This problem [18] describes the disruption of a high density cloud by a strong shock
wave, and has been widely simulated in the literature (e.g., [2,48]). We employ the
same setup as in [2,48]. The simulation is implemented in the domain Ω = [0, 1]2
with the right boundary specified as supersonic inflow condition and the others as
outflow conditions. The adiabatic index γ = 5

3 , and the initial conditions are given by
the two states

(ρ, v, p,B) =
{

(3.86859, 0, 0, 0, 167.345, 0, 2.1826182,−2.1826182), x < 0.6,

(1,−11.2536, 0, 0, 1, 0, 0.56418958, 0.56418958), x > 0.6,

separated by a discontinuity parallel to the y-axis at x = 0.6. To the right of the
discontinuity there is a circular cloud of radius 0.15, centered at x = 0.8 and y = 0.5.
The cloud has the same states as the surrounding fluid except for a higher density of
10.

We simulate this problem by using our PP third-order DG method with 400× 400
cells. The numerical results at time t = 0.06 are shown in Fig. 8. It is seen that
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the complex flow structures and interactions are captured with high resolution, and
the results agree well with those in the literature, e.g., [2,48]. In this test, it is also
necessary to employ the PP limiter to enforce the condition (65). We also observe that,
if the discretized Godunov–Powell source term is dropped from our PP DG method,
negative pressurewill appear in the cell average of theDGsolutions and the code breaks
down at t ≈ 0.014, because the resulting scheme (namely the locally divergence-free
DG method with the proposed HLL flux and the PP and WENO limiters) is not PP
in general. This further confirms the importance of the discretized Godunov–Powell
source term.

5.5 Astrophysical jets

The last test is to simulate jet flow, which is relevant in astrophysics. In a high Mach
number jet with strong magnetic field, the internal energy is very small compared
to the huge kinetic and magnetic energy, thus negative pressure is very likely to be
produced in the numerical simulations. Moreover, there may exist strong shock wave,
shear flow and interface instabilities in high-speed jet flows. Successfully simulating
such jet flows is indeed a challenge, cf. [5,55,57,66].

We consider the Mach 800 MHD jets proposed in [53,54] and extended from the
gas dynamical jet of Balsara [5] by adding a magnetic field. Initially, the domain
[− 0.5, 0.5] × [0, 1.5] is full of the static ambient medium with (ρ, p) = (0.1γ, 1).
The adiabatic index γ = 1.4. A Mach 800 dense jet is injected in the y-direction
through the inlet part (|x | < 0.05) on the bottom boundary (y = 0). The fixed
inflow condition with (ρ, p, v1, v2, v3) = (γ, 1, 0, 800, 0) is specified on the nozzle
{y = 0, |x | < 0.05}, while the other boundary conditions are outflow.Amagnetic field
(0, Ba, 0) is initialized along the y-direction.As Ba is set larger, this test becomesmore
challenging. We set computational domain as [0, 0.5] × [0, 1.5] with the reflecting
boundary condition specified at x = 0, and divided it into 200 × 600 cells. We here
show our numerical results in two stronglymagnetized cases: (i) Ba = √

2000, and the
corresponding plasma-beta βa = 10−3; (ii) Ba = √

20,000, and the corresponding
plasma-beta βa = 10−4. The schlieren images of the numerical solutions for these two
cases are respectively displayed in Figs. 9 and 10 within the domain [− 0.5, 0.5] ×
[0, 1.5]. Those plots clearly show the time evolution of the jets. It is seen that the
flow structures in different magnetized cases are very different. The present method
well captures the Mach shock wave at the jet head and other discontinuities with high
resolution. The results agree with those in [54] computed by the PP DGmethod with a
global LF flux. In these extreme tests, our PPmethod exhibits good robustness without
using any artificial treatment. We also perform the tests with varied Mach numbers,
and the method also works very robustly. For example, the numerical result for a
Mach 2000 jet with Ba = √

20,000 is displayed in Fig. 11. Interestingly, the flow
structures are similar to those in Fig. 9 of the Mach 800 jet with a weaker magnetic
field Ba = √

2000. This is probably due to the huge kinetic energy, which becomes
dominant andweakens the effect of magnetic field. The dynamics of theMach 2000 jet
evolve much faster than the Mach 800 jet, as expected. A higher Mach (Mach 10,000)
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Fig. 9 The schlieren images of density logarithm (top) and gas pressure logarithm (bottom) for the Mach
800 jet problem with Ba = √

2000. From left to right: t = 0.001, 0.0015 and 0.002

jet with Ba = √
20,000 is further simulated and shown in Fig. 12. We see that this jet

shape is thinner.
In the above simulations, it is necessary to employ the PP limiting procedure tomeet

the condition (65), which is not satisfied automatically. To confirm the importance of
the suitably discretized Godunov–Powell source term in our PP schemes, we have also
performed the above tests bydropping this termandkeeping thePPandWENOlimiters
turned on. The resulting scheme is actually the locally divergence-free, conservative,
third-order DG method with PP and WENO limiters. We find that this scheme with
either the proposed HLL flux or the global LF flux, which is generally not PP in
theory, cannot run the above jet tests. The failure results from negative numerical
pressure produced in the cell averages of the DG solution. We observe that, without
the discretizedGodunov–Powell source term, the code also fails on a refinedmesh, and
also for more strongly magnetized cases. This, again, demonstrates that the suitably
discretized Godunov–Powell source term is really crucial for guaranteeing the PP
property.
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Fig. 10 The schlieren images of density logarithm (top) and magnetic pressure (bottom) for the Mach 800
jet problem with Ba = √

20,000. From left to right: t = 0.001, 0.0015 and 0.002

Fig. 11 The schlieren images of density logarithm for the Mach 2000 jet problem with Ba = √
20,000.

From left to right: t = 0.00025, 0.0005 and 0.00075
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Fig. 12 The schlieren images of density logarithm for the Mach 10,000 jet problem with Ba = √
20,000.

From left to right: t = 0.00005, 0.0001 and 0.00015

6 Conclusions

In this paper, we proposed and analyzed provably PP high-order DG and finite volume
schemes for the ideal MHD on general meshes. The unified auxiliary theories were
built for rigorous PP analysis of numerical schemeswith HLL-type flux on an arbitrary
polytopal mesh. A close relation was established between the PP property and the
discrete divergence of magnetic field on general meshes. We also derived explicit
estimates of the wave speeds in the HLL flux to ensure the provably PP property.
In the 1D case, we proved that the standard finite volume and DG methods with
the proposed HLL flux are PP, under a condition accessible by a PP limiter. In the
multidimensional cases, we constructed provably PP high-order DG schemes based
on suitable discretization of the modified MHD system (4). In addition to the proper
wave speeds in the numerical flux and a standard PP limiter, we demonstrated that
a coupling of two divergence-controlling techniques is also crucial for achieving the
provably PP property. The two techniques are the locally divergence-free DG element
and a properly discretized Godunov–Powell source term, which control the divergence
error within each cell and across the cell interfaces, respectively. Our analysis clearly
revealed that these two techniques exactly contribute the discrete divergence terms
which are absent in a standard multidimensional DG schemes but very important
for ensuring the PP property. We also proved in “Appendix A” the positivity of the
strong solution of the modified MHD system (1). Such a feature, not enjoyed by the
conservative system (1) (see [54]), can serve as a justification for designing provably
PP multidimensional schemes based on the modified system (4). The analysis and
findings in this paper provide a clear understanding, at both discrete and continuous
levels, of the relation between the PP property and the divergence-free constraint. The
proposed framework and analysis techniques as well as the provenly PP schemes can
also be useful for investigating or designing other PP schemes for the ideal MHD.

Several numerical tests were conducted on 1D mesh and 2D rectangular mesh, to
confirm the provenly PP property and to demonstrate the effectiveness of the proposed
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PP techniques. The implementation of our PP DG schemes on unstructured triangular
meshes is ongoing and will be reported separately in the future.

A Positivity of strong solutions of themodifiedMHD system

In [54],we analytically demonstrated that the exact smooth solution of the conservative
MHD system (1) may fail to be PP if the divergence-free condition (2) is violated.
Here we would like to show that the strong solutions of the modified MHD system
(4) always retain the positivity of density and pressure even if the divergence-free
condition (2) is not satisfied. It is reasonable to hope that such a claim may also hold
for the weak entropy solutions of (4).

Consider the initial-value problem of the system (4), for x ∈ R
d and t > 0, with

initial data
(ρ, v, p,B)(x, 0) = (ρ0, v0, p0,B0)(x), (91)

and the ideal EOS p = (γ − 1)ρe, where γ > 1. Using the method of characteristics,
one can show the following result.

Proposition 1 Assume that the initial data (91) are in C1(Rd) with ρ0(x) > 0 and
p0(x) > 0, ∀x ∈ R

d . If the initial-value problem of (4) with (91) has a C1 solution
(ρ, v, p,B)(x, t) for x ∈ R

d and 0 ≤ t < T , then the solution satisfies ρ(x, t) > 0
and p(x, t) > 0 for all x ∈ R

d and 0 ≤ t < T .

Proof Let D
Dt := ∂t + v(x, t)∇· be the directional derivative along the direction

dx
dt

= v(x, t). (92)

For any
(
x̄, t̄
) ∈ R

d × R+, let x = x(t; x̄, t̄) be the integral curve of (92) through the
point

(
x̄, t̄
)
. Denote x0(x̄, t̄) := x(0; x̄, t̄), then, at t = 0, the curve passes through the

point
(
x0(x̄, t̄), 0

)
. Recall that, for smooth solutions, the first equation of the system

(4) can be reformulated as
Dρ

Dt
= −ρ∇ · v. (93)

Integrating Eq. (93) along the curve x = x(t; x̄, t̄) gives

ρ(x̄, t̄) = ρ0(x0(x̄, t̄)) exp

(

−
∫ t̄

0
∇ · v(x(t; x̄, t̄), t)dt

)

> 0.

For smooth solutions, we derive from the modified system (4) the pressure equation

Dp

Dt
= −γ p∇ · v, (94)

which implies p(x̄, t̄) = p0(x0(x̄, t̄)) exp
(
−γ

∫ t̄
0 ∇ · v(x(t; x̄, t̄), t)dt

)
> 0. 
�
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Remark 9 By similar arguments one can show that the above proposition also holds for
the modifiedMHD equations introduced by Janhunen [34], because the corresponding
equations for density and pressure are exactly also (93) and (94), respectively. Thismay
explain why it is also possible to develop PP schemes based on proper discretization
of Janhunen’s MHD system, cf. [10,34,50,51].

Recall that the pressure equation associated with the conservative system (1) is

Dp

Dt
= −γ p∇ · v − (γ − 1)(v · B)∇ · B,

which, in comparison with (94), has an additional term proportional to∇ ·B. As shown
in [54], due to this term, negative pressure can appear in the exact smooth solution of
the conservative MHD system (1) if ∇ · B �= 0.

B Review of the positivity-preserving limiter

We employ a simple PP limiter to enforce the condition (48) or (65) for our 1D or 2D
PP schemes. The limiter was originally proposed by Zhang and Shu [65–67] for scalar
conservation laws and the compressible Euler equations. It was extended to the ideal
MHD case in [13]. For readers’ convenience, we here briefly review this limiter. It is
worth noting that the PP limiter works only when the cell averages of the numerical
solutions always stay in G. This is rigorously proved for our PP high-order schemes,
but does not always hold for the standard multidimensional DG schemes without the
suitably discretized Godunov–Powell source term.

We perform the PP limiter separately for each cell. Let K denote a cell, and SK

be the quadrature points involved in the condition (48) or (65) in K . Let Un
K (x) be

the approximate polynomial solution within K , and Ūn
K be the cell average which is

always preserved in G by our PP schemes. If Un
K (x) /∈ G for some x ∈ SK , then we

seek the modified polynomial Ũn
K (x) with the same cell average such that Ũn

K (x) ∈ G
for all x ∈ SK . To avoid the effect of the rounding error, we introduce two sufficiently
small positive numbers, ε1 and ε2, as the desired lower bounds for density and internal
energy, respectively, such that Ūn

K ∈ Gε = {U : ρ ≥ ε1, E(U) ≥ ε2}; e.g., take
ε1 = min{10−13, ρ̄n

K } and ε2 = min{10−13, E(Ūn
K )}.

The PP limiting procedure consists of two steps. First, modify the density to enforce
the positivity by

ρ̂K (x) = θ1(ρ
n
K (x) − ρ̄n

K ) + ρ̄n
K , θ1 = min

{

1,
ρ̄n
K − ε1

ρ̄n
K − minx∈SK ρn

K (x)

}

.

Then modify ÛK (x) := (ρ̂K (x),mn
K (x),Bn

K (x), En
K (x))� to enforce the positivity of

internal energy by

Ũn
K (x) = θ2(ÛK (x) − Ūn

K ) + Ūn
K , θ2 = min

{

1,
E(Ūn

K ) − ε2

E(Ūn
K ) − minx∈SK E

(
ÛK (x)

)

}

.
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It is easy to verify that Ũn
K (x) belongs to Gε for all x ∈ SK and has the cell average

Ūn
K . Such a limiter can also maintain the approximation accuracy; see [64–66].
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