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ARTICLE

Platform modelling and scheduling game with multiple
intelligent cloud-computing pools for big data
Wanyang Dai

Department of Mathematics and State Key Laboratory of Novel Software Technology, Nanjing University,
Nanjing, China

ABSTRACT
We develop a generic game platform that can be used to model
various real-world systems with multiple intelligent cloud-comput-
ing pools and parallel-queues for resources-competing users.
Inside the platform, the software structure is modelled as
Blockchain. All the users are associated with Big Data arrival
streams whose random dynamics is modelled by triply stochastic
renewal reward processes (TSRRPs). Each user may be served
simultaneously by multiple pools while each pool with parallel-
servers may also serve multi-users at the same time via smart
policies in the Blockchain, e.g. a Nash equilibrium point myopically
at each fixed time to a game-theoretic scheduling problem. To
illustrate the effectiveness of our game platform, we model the
performance measures of its internal data flow dynamics (queue
length and workload processes) as reflecting diffusion with
regime-switchings (RDRSs) under our scheduling policies. By
RDRS models, we can prove our myopic game-theoretic policy to
be an asymptotic Pareto minimal-dual-cost Nash equilibrium one
globally over the whole time horizon to a randomly evolving
dynamic game problem. Iterative schemes for simulating our
multi-dimensional RDRS models are also developed with the sup-
port of numerical comparisons.
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1. Introduction

In facing with the fourth industrial revolution (Industrial Revolution 4.0, see, e.g. [1]),
we develop techniques to model the random dynamics of the popular Big Data (see, e.g.
[2], [3]). More importantly, we will focus on developing a generic queueing game
platform driven by the Big Data and it can be used to model various real-world systems
including cloud-computing or quantum-cloud-computing with multi-supercomputer
centres, multi-input multi-output (MIMO) wireless channels, and Internet of Energy
(IoE). Inside the platform, the software structure is modelled as Blockchain. To
illustrate the effectiveness of our platform, we establish RDRS models for the perfor-
mance measures of its internal data flow dynamics (i.e. queue length and workload
processes) under our designed scheduling policies in order to offer services to different
users in an optimal and fair way. In the meanwhile, we also develop iterative schemes
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for simulating our multi-dimensional reflecting diffusion with regime-switching
(RDRS) models with the support of numerical comparisons.

Industrial Revolution 4.0 is a term to describe a world where machines interact and
respond intelligently to the physical environment, such as, The Internet of Things (see,
e.g. [4]). In this revolution, how to effectively and intelligently deal with the so-called
Big Data will be the major task. Therefore, we model the game platform with multiple
service pools (centres) and parallel-queues for rate resources-competing users (game
players). The game platform is supposed to live in a random environment that switches
with a finite state continuous time Markov chain (FS-CTMC) (see, e.g. [5], [6], [7]). All
the users’ data are packetized and each packet consists of control information and a
particular user’s data payload. According to their nature of service requirements, these
data are classified into two types: real big data and virtue big data. For a real big data
service, typically in a communication system or in a network storage system with
distributed database such as Blockchain (see, e.g. [8], [9] and [10]), the user’s data
are in the form of real data packets (or batches of packets) to be transmitted over
wireless channels or wireline links. However, in a virtue big data service, the user’s data
packets themselves are short data messages to indicate their service requests to cloud-
computing-based service centres with expensive costs and high complexities. These
requests include the services to query Blockchain and run intelligent engines in
FinTech, supply chains, and health-cares (see, e.g. [11], [12]).

Big Data is concerned with data sets that are so large or complex that their sizes are
beyond the ability of commonly used software tools to capture, curate, manage, and
process data within a tolerable elapsed time (see, e.g. [2], [3]), and the size of Big Data is
a constantly moving target (see, e.g. [13]). More recently, Big Data is conceptually
characterized by its three-dimensional features in De Mauro [14]: high-volume
(amount of data), high-velocity (speed of data in and out), and/or high-variety (range
of data types and sources). Therefore, we model the random dynamics of packet batch
arrivals (flow of Big Data) from each user as a triply stochastic renewal reward process
(TSRRP) with arrival rate and mean reward driven by the FS-CTMC. In other words,
both packet batch’s inter-arrival and service times are generally distributed with ran-
dom rates while each arrival batch may contain generally distributed random number
of real or virtue data packets.

Note that, the newly defined TSRRP is different from the one in Dai [5] by allowing
the batch size to be random other than the unity. Due to this relaxation, the TSRRP is
suitable to model Big Data. For examples, the reward (packet batch) can be used to
model the high-volume amount of instantaneous real-time data, the packet inter-arrival
and service times can be used to describe the high-velocity of data in and out, the
different random arrival and service rates can be used to classify high-variety range of
data types and sources. Furthermore, the TSRRP is a generally modulated process and
covers many practical processes such as Markov modulated compound Poisson pro-
cesses (MMCPPs, see, e.g. [15], [16]) used in traffic modelling of communication
systems as special cases. Furthermore, it also covers the renewal process assumed by
Ye and Yao [17] and Bhardwaj et al. [18], the doubly stochastic renewal process used by
Dai [5], and the renewal reward processes by Whitt [19], Dai and Jiang [12] as special
cases. In addition, the TSRRP is different from the correlated process for bursty arrivals
assumed in some existing studies (see, e.g. Chapter 5.5 of [20]) since the inter-arrival
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times of our TSRRP may not be identically and independently distributed (i.i.d.) even in
a fixed state of the FS-CTMC.

The parallel-queues are used to buffer data packets from their corresponding users.
Each queue may be served simultaneously by multiple intelligent cloud-computing or
quantum-cloud-computing service pools while each pool may also serve multiple
queues at the same time via running smart policies in the Blockchain (see, e.g.
Figure 1 for such an example).

However, to reflect the dynamic evolving nature of real-world systems and to realize
the decentralized operation in a Blockchain, the number of pools to serve a particular
queue is random and the number of queues to be served by a particular pool is also
random. The service pools can be generally defined, e.g. the cloud-processors-sharing
centres/resources-sharing links (see, e.g. [17]) or the MIMO channels in the undergoing
wireless systems (see, e.g. [5]) and the future quantum communications (see, e.g. [21]
and [22]). Especially, our study with respect to multiple pools is new to the one by Dai
[5], where a single pool case is concerned.

Our dynamical rate capacity available for resource-competing users at each service
pool is modelled as a randomly evolving capacity region, i.e. a high-dimensional set-
valued stochastic process driven by the FS-CTMC. It is a generalized capacity region of
the ones in existing studies (see, e.g. [23], [24], [5], [20]) and can capture the exact
capacity variation at each time instant for time-varying channels. Based on the capacity
region and if the queued data packets are considered as bids for certain pre-negotiated
or pre-designed utility functions, our rate scheduling policies can be designed

Figure 1. A game platform with parallel-queues and multiple cloud-computing service pools.
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myopically at each time instant, e.g. a dynamical service rate allocation policy by a
Pareto maximal-utility Nash equilibrium point myopically at each fixed time to a static
game problem is designed in this paper.

Under these policies, our main objective is to model the performance measures of its
internal data flow dynamics (i.e. queue length and workload processes) for the platform
as RDRSs. Then, based on these RDRS models and under a so-called heavy traffic
condition, if all the utility functions are strictly increasing and concave, our game-based
scheduling policy is proven to be an asymptotic Pareto minimal-dual-cost Nash equili-
brium one under diffusive scaling over the whole time horizon. These studies are new
to the existing discussions by Nash [25], Rosen [26], Dai [5], Ye and Yao [17], Bhardwaj
et al. [18], Harrison [27], etc. In supporting our main objective, we also conduct
performance comparisons by developing iterative schemes to simulating multi-dimen-
sional RDRSs. It is worth to point out that numerical methods for simulating single-
dimensional RBMs are available by Asmussen et al. [28], Mousavi and Glynn [29].
Nevertheless, the schemes developed in this paper can be used to simulate multi-
dimensional RDRSs or RBMs, which is new to the one by Dai [5] and even new in
this area.

Finally, from the perspective of system configuration, our platform differs from the
stochastic processing networks with concurrent resource occupancy (see, e.g. [27]) by
adding two highlighted features. On the one hand, our whole platform is under an
additional random environment driven by an FS-CTMC. On the other hand, our
resource-sharing allocations are in terms of both pools and servers at the same time,
where the service capacities for both pools and servers are randomly evolving and can
be flexibly divided. Hence, they bring new complexity to our system modelling and
scheduling policy design. Furthermore, from the perspective of network controls, we
are aimed to unify the existing studies into this platform, which include the utility-
maximization and Markovian decision based scheduling techniques by Dai [5], Ye and
Yao [17], and Bhardwaj [18]. This type of schemes are myopic ones with the purpose to
avoid directly solving high-dimensional Hamilton-Jacobi-Bellman (HJB) equations to
reduce the computational complexity in online systems (see, e.g. [30]). More precisely,
we make new contributions to the discussions by Dai [5] and Bhardwaj et al. [18] by
developing suitable techniques for multiple service pools to replace currently available
single pool based schemes. Our multi-pool-based discussions reflect the trend of cloud-
computing-based services.

The remainder of the paper is organized as follows. In Section 1, we study our
generic game platform model formulation with Big Data input flow pattern and
Blockchain software structure, which is supported by real-world modelling applications
in cloud-computing with multi-supercomputer centres, MIMO wireless channels, and
Internet of Energy. In Section 2, we study the performance modelling of its internal
data flow dynamics for the game platform via the RDRS models under our designed
scheduling policies with the support of a simulation case study. In Section 3, we present
our modelling justification, where our main results are formally proved. In Section 4,
we present our conclusion of the paper. Finally, at the end of this paper, we provide an
Appendix where a functional central limit theorem for TSRRPs is proved.
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2. Platform model formulation

In this section, we first formulate our game platform model with Big Data input flow
pattern and Blockchain software structure. Then, we provide real-world examples of
our platform model in cloud-computing with multi-supercomputer centres, MIMO
wireless channels, and Internet of Energy.

2.1. The platform with big data input flow pattern

The platform has V service pools (indexed by a set of positive integers V ; 1; :::;Vf g)
and J queues in parallel (indexed by j 2 J ; 1; :::; Jf g and corresponding to J users) as
shown in Figure 1. Each pool (or called centre) is equipped with Jv number of flexible
parallel-servers, where v is an integer in V. Associated with the queues, there is an
J-dimensional packet arrival process A ¼ AðtÞ ¼ ðA1ðtÞ; :::;AJðtÞÞ0; t � 0

� �
, where

AjðtÞ with j 2 J and t � 0 is the number of packets that arrive at the jth queue during
ð0; t�. Note that, here and elsewhere in the paper, the prime denotes the transpose of a
vector or a matrix. The whole platform is assumed to be driven by a stationary FS-
CTMC α ¼ αðtÞ; t 2 ½0;1Þf g with a finite state space K; 1; :::;Kf g. The generator
matrix of αð�Þ is denoted by G ¼ ðgilÞ with i; l 2 K, and

gil ¼
�γðiÞ if i ¼ l;
γðiÞqil if i � l;

�
(2:1)

where γðiÞ is the holding rate for the chain staying in a state i 2 K and Q ¼ ðqilÞ is the
transition matrix of its embedded discrete-time Markov chain (see, e.g. [31]).
Furthermore, let τn for each nonnegative integer n 2 0; 1; :::f g be defined by

τ0 ; 0; τn ; infft > τn�1: αðtÞ � αðt�Þg (2:2)

In other words, τn is a random jump time of the Markovian process αð�Þ.
The real-world aim of establishing the platform is to effectively offer Big Data

services to different users. Therefore, how to mathematically model the Big Data arrival
streams accurately according to their three-dimensional statistical feature will be the
key. For this purpose, we will use TSRRPs to model the random dynamics of Big Data
arrival streams. More precisely, this new traffic model can be defined by unifying the
concepts of doubly stochastic renewal process (see, e.g. [5]) and renewal reward process
(see, e.g. [19], [12])

Definition 2.1. A process Ajð�Þ with j 2 J ; 1; :::; Jf g is called an TSRRP if Ajðτn þ �Þ
for each n 2 0; 1; :::f g is the counting process corresponding to a (conditional) delayed
renewal reward process with arrival rate λjðαðτnÞÞ and mean reward mjðαðτnÞÞ asso-

ciated with finite squared coefficients of variations α2j ðαðτnÞÞ and ζ2j ðαðτnÞÞ during time

interval ½τn; τnþ1Þ.

Note that, the inter-arrival times for an TSRRP can be correlated via another
stochastic process: the external random environment αð�Þ. Since the inter-arrival pro-
cess during each time interval ½τn; τnþ1Þ is a (conditional) delayed renewal reward

510 W. DAI



process, the inter-arrival times may not be i.i.d. even if αð�Þ takes a fixed state i 2 K
during the time interval. Thus, the TSRRP here defined in Definition 2.1 is different
from the correlated process for bursty arrivals assumed in some existing studies (see,
e.g. Chapter 5.5 of [20]), where the inter-arrival sequence is supposed to be i.i.d. if αð�Þ
takes a fixed state i 2 K during a time interval ½τn; τnþ1Þ. Furthermore, in our newly
introduced definition of TSRRP, some other new feature is also added, i.e. at each
arrival time during ½τn; τnþ1Þ, there is an associated reward. In our application, it is
interpreted as a batch with massive random number of arrival data packets and hence it
can be used to model the Big Data cluster movement in a network environment.
Therefore, the arrival process Ajð�Þ for each j 2 J is supposed to be an TSRRP. In

addition, we let ujðkÞ; k ¼ 1; 2; :::
� �

be the sequence of times between the arrivals of the
ðk� 1Þth and the kth reward batches of packets at the jth queue. The corresponding
batch reward is denoted by wjðkÞ and all the packets arrived with it are indexed in
certain successive order. Then, we can define the renewal counting process associated
with the inter-arrival time sequence ujðkÞ; k ¼ 1; 2; :::

� �
for each j 2 J by

NjðtÞ ¼ sup n � 0:
Xn
k¼1

ujðkÞ � t

( )
(2:3)

Hence, we can present the TSRRP Ajð�Þ via

AjðtÞ ¼
XNjðtÞ

k¼1

wjðkÞ (2:4)

Every packet (or called job) will get service in the game platform and then leave the
system. Concerning a real big data service (e.g. in a communication system or in a
cloud-computing-based video-on-demand service), the packet is a real data package to
be transmitted over wireless channels or wireline links. However, in a virtue big data
service, the packet is a short data message to request big data job services with
expensive costs and high complexities (e.g. to efficiently query big databases or to run
intelligent strategic planning engines). In the former case, the packet length should be
measured in bits, and in the latter case, it may be measured in time. Therefore, with this
classification of the packet length measurements, we let vjðkÞ; k ¼ 1; 2; :::

� �
be the

sequence of successive arrived packet lengths at queue j, which is supposed to be a
sequence of strictly positive i.i.d. random variables with average packet length 1=μj 2
ð0;1Þ and squared coefficient of variation β2j 2 ð0;1Þ. In addition, we assume that all

inter-arrival and service time processes are mutually (conditionally) independent when
the environmental state is fixed. For each j 2 J and each nonnegative constant h, we
use Sjð�Þ to represent the renewal counting process associated with

vjðkÞ; k ¼ 1; 2; :::
� �

, i.e.

SjðhÞ ¼ sup n � 0 :
Xn
k¼1

vjðkÞ � h

( )
(2:5)
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Let QjðtÞ be the jth queue length with j 2 J at each time t 2 ½0;1Þ and DjðtÞ be the
number of packet departures from the jth queue in ð0; t�. Then, the queueing dynamics
governing the evolving of data in and data out in the platform can be modelled by

QjðtÞ ¼ Qjð0Þ þ AjðtÞ � DjðtÞ (2:6)

where each queue is supposed to have an infinite storage capacity to buffer real or virtue
data packets (jobs) arrived for a given user. Furthermore, let TjðtÞ denote the cumula-
tive amount of service given to the jth queue up to time t, i.e.

TjðtÞ ¼
ðt
0
ΛjðQðsÞ; αðsÞÞds; (2:7)

where Λj for each s 2 ½0;1� and j 2 J is the summation of all service rates allocated to
the jth user at time s from all possible pools and servers. Note that, Λj is given in a
feedback control form and depends on both the current queue length QðsÞ and the
system state αðsÞ at a time s. Thus, if we use SjðtÞ to denote the total number of jobs
(packets) that finishes service in the system by time t, we know that DjðtÞ ¼ SjðTjðtÞÞ.
Finally, we let WðtÞ and WjðtÞ denote the (expected) total workload in the system at
time t and the one corresponding to user j at time t, i.e.

WðtÞ ¼
XJ
j¼1

WjðtÞ; WjðtÞ ¼
QjðtÞ
μj

(2:8)

In the sequel, we will use WðtÞ and QðtÞ as performance measures and design a rate
scheduling policy Λ ¼ ðΛ; :::ΛJÞ for different service pools and servers to all the users in
order that the total workload WðtÞ and its associated total cost are minimized while the
queue lengths of different users are fairly balanced.

Note that, in this platform, the available resources here are generally transformed
into service rates although they can be interpreted as other forms, e.g. power in an
MIMO wireless channel. Furthermore, as in a cloud-computing system or as in an
MIMO Channel, we suppose that the available resources from different pools and
servers can be flexibly allocated and shared between the system and users, i.e. the
platform operates under a concurrent resource occupancy service regime. However,
comparing with the existing studies, our allocation regime is in a more generalized
cooperative manner, i.e. both jobs-to-(pools, servers) and (pools, servers)-to-jobs can be
flexibly assigned, which brings new complexity to our scheduling policy design and
analysis.

2.2. Modelling software structure as Blockchain

Blockchain (see, e.g. [8]) is a distributed database system and its software architecture
can be presented in Figure 2.

With the emergence of IBM 50-qubit and Google 72-qubit quantum computers, it is
recently evolving to the so-called Quantum-Blockchain by replacing the standard
cryptographic Hash functions to quantum cryptographic Hash functions by Rajan
and Visser [32]. Blockchain is widely used in Bitcoin and Ethereum applications (see,
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e.g. [9] and [10]) supported with the functionalities of blockchain management, trans-
action generation, node communication, and block mining. Highly secured signature
procedure and unchangeable data history make each transaction more safe than ever.
Flexible node communications over the blockchains and smart contracts in conducting
block mining make it possible for the blockchain management to be decentralized.
Block mining and smart contracts can be realized by implementing policies via running
various algorithms or optimization engines that are possibly aided with artificial
intelligence. Therefore, owing to the consideration of system security, we are aimed
to enrich the applications of blockchain to more areas, e.g. the area in cloud-computing,
the area in communication networks, and the area in power and energy systems, in a
unified way. In doing so, the key is about how to design efficient engines and imple-
ment them within the blockchains in realizing intelligent policies for user’s admission
control, resource scheduling, smart contracts, etc. as shown in Figure 2. In this paper,
we will focus on designing scheduling algorithms in conducting resource allocations,
e.g. bit or qubit rate allocation in a communication or quantum communication system,
bitcoin mining in a blockchain, and power allocation in Internet of Energy. Note that
the efficiency or optimization concerning an algorithm or a policy is in terms of the
system delay, revenue, profit, cost, etc. We will model them through certain utility
functions with respect to the performance measures of their internal data flow dynamics
such as queue length processes and workload processes.

Figure 2. A Blockchain or Quantum-Blockchain architecture.
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2.3. Real-world applications

In this subsection, we exactly map our game platform model into real-world systems
including those of cloud-computing with multi-supercomputer centres, MIMO wireless
channels, and Internet of Energy. The issues embedded in their corresponding
Blockchains concerning resource allocations and performance modelling for our
designed scheduling policies are also raised.

2.3.1. Cloud-computing with multi-supercomputer centres
Our game platform can be directly used to model the cloud-computing or quantum-
cloud-computing service network with multi-supercomputer centres as shown in
Figures 3–4 (where, the photos of supercomputers are enhanced from the one in
Wikipedia [33]).

In this case, each service pool in our platform can be interpreted as a supercomputer
or a service centre with multi-supercomputers. In this system, different users raise
various service rate requirements in bits per second. However, the service capacity of
each supercomputer is finite (e.g. a three user-shared capacity region is a convex set as
shown in Figure 3). Furthermore, each user’s data packet arrival process Aið�Þ is
random and the associated service requirements (e.g. the packet sizes) are also stochas-
tically distributed. Therefore, how to use myopic game-theoretic scheduling policies to
effectively and dynamically allocate service rates to different users according to some
utility functions (e.g. the well-known proportionally fair and minimal potential ones) is

Figure 3. A game platform with parallel-queues and quantum-cloud-computing service pools.

514 W. DAI



crucial, which will be discussed in the next section. More importantly, how to model the
performance of this system’s internal data flow dynamics under different rate schedul-
ing polices will also be addressed.

2.3.2. MIMO wireless channels
MIMO technology takes a major role in the undergoing wireless systems (see, e.g. [5])
and the future quantum communications (see, e.g. [21] and [22]). In an MIMO wireless
system, V transmission channels classified by different spectrums can be considered as
V service pools in our game platform (see, e.g. Figures 5–6 for such an example).

To be clear, we use the cellular system as an illustrative example. In this system, base
stations can cooperate among noise-free infinite-capacity links in the sense that the base
stations can perform joint beamforming and/or power control, but there is a constraint
on the total power that the base stations can share. Note that, we here do not make any
distinction between a single-cell cellular system having multiple base-station antennas
and the traditional cellular system with cooperating single-antenna base stations.
Therefore, our wireless system can be considered as a base station having M antennas
and J users (mobiles), each of which has N antennas. More precisely, the uplink channel
can be modelled as an J-user MIMO multiple access channel (MAC) and the downlink
channel can be modelled as an J-user MIMO broadcast channel (BC). Since the J-users
can share the channel simultaneously, the channel can be considered as having J
parallel-servers classified by different frequencies as displayed in Figure 5. Due to the

Figure 4. A quantum-cloud-computing service pool.
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Figure 5. A MIMO channel with parallel-queues and Blockchain.

Figure 6. A MIMO wireless or quantum wireless channel.
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Doppler’s effect, the channel fading can be supposed to obey the stationary FS-CTMC
αð�Þ as defined previously. At the transmit end, arriving packets for each user are
buffered before transmission and the rate of arrivals is a random process that switches
with the FS-CTMC channel fading through admission control. Therefore, the proces-
sor-sharing queueing process Qð�Þ in Equation (2.6) and its associated workload process
Wð�Þ in Equation (2.8) can be used to model the channel dynamics of its internal data
flows for both J-user MIMO MAC and J-user MIMO BC as shown in Figure 5. Owing
to the total transmission power constraint, the channel capacity region can be calculated
as a randomly evolving convex set process. How to use the myopic game-theoretic
scheduling policy to effectively and dynamically allocate transmission rates (or equiva-
lently transmission powers) to different users while establishing related performance
models of their internal data flow dynamics under different scheduling policies will be
our major concern. These will be detailed in the next section.

2.3.3. Internet of energy
Due to the fast development of today’s technologies and the influence of other factors,
the entire energy sector is to be restructured and turned into an intelligent and efficient
supply system, i.e. the Internet of Energy (see, e.g. [34]). More precisely, it has an
integrated dynamic network infrastructure and is based on standard and inter-operable
communication protocols that interconnect the energy network with the Internet. It
allows units of energy locally generated, stored, and forwarded to be dispatched when
and where it is needed. The related information/data follows the energy flows thus
implementing the necessary information exchange together with the energy transfer. In
the work by Dai [35], the author presented a design about the Internet of Energy
partially as shown in Figure 7.

In this integrated system, the energy usage demand (arrival) process for each user i
can be described by AiðtÞ as defined previously. However, in this case, each arrival
packet is a virtue data packet to the cloud-computing service centres. It is a service
request to indicate the user’s resource consuming requirements and initiate to run
which smart engines within the designed blockchain, e.g. the energy scheduling or
oilcoin mining algorithm. After running the smart engines, the physical energy network
will provide real service to the user. Note that, the communications among the users,
the power grid, and the cloud-computing service centres can be realized through the
fifth generation (5G) or the future MIMO wireless channels. Therefore, our system
designed in Figure 7 can also be considered as an example of Generalized Internet of
Things. Furthermore, the newly added information concerning the latest oilcoin service
release in the country of Venezuela is adapted from Paraskova [36]. This oilcoin is the
first lawful one in the world. Here, there are three folds for us to introduce this oilcoin
blockchain into our Internet of Energy. First, this oilcoin can be directly mined and
traded through our game platform; second, the associated blockchain can be considered
as an illustration concerning the mechanism design of dynamic decision-making,
pricing, and online payments; third, it can encourage the invention and lawful endorse-
ment of other digital coin for new energy system, e.g. new energy car system. The
related resource scheduling algorithms and their corresponding performance of this
system’s internal data flow dynamics will be detailed in the next section.
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3. Performance modelling via RDRS models for scheduling policies

Although TSRRPs can accurately model Big Data arrival streams, it is difficult to directly
analyse the corresponding physical queueing model in Equation (2.6) or the physical
workload model in Equation (2.8) due to the non-Markovian nature of TSRRPs.
Therefore, we turn to find the approximating models for QðtÞ and WðtÞ in Equation
(2.6) and Equation (2.8), respectively. More precisely, we model the performance measures
of random dynamics under different scheduling policies by RDRS models with four folds.
First, we state our main claim of performance modelling by considering our queueing
system under the asymptotic regime where it is heavily loaded, i.e. under the so-called
heavy traffic condition (or called load balance condition) that will be detailed in the
processes of model justifications. Second, we identify and design two scheduling policies
such that their performance can be modelled by the RDRS models: a myopic game-
theoretical scheduling policy and an alternative scheduling policy. Third, we conduct
model justifications via diffusion approximations. Fourth, we present a simulation case
study to illustrate the effectiveness of RDRS modelling technique (see, e.g. the simulation
results displayed in Figures 8–10 and their interpretations presented in Subsection 3.4).

3.1. Main claim and RDRS models

For each t � 0 and j 2 J , we define two sequences of diffusion-scaled processes Q̂rð�Þ
and Ŵrð�Þ by

Figure 7. Virtue data packet service interactions between game platform and real energy system.
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Q̂r
j ðtÞ ;

Qr
j ðr2tÞ
r

; ŴrðtÞ ; Wrðr2tÞ
r

(3:1)

where r; r 2 Rf g is supposed to be a strictly increasing sequence of positive real
numbers and tends to infinity. Then, we can state our main claim as follows.

Claim 3.1 Under the so-called heavy traffic condition (or called load balance condition)
that is given in Section 4, the sequence of 2-tuple scaled processes in Equation (3.1)
associated with the myopic game-theoretical scheduling policy and the alternative sche-
duling policy, which are designed in the next subsection, converges jointly in distribution,
i.e.

ðQ̂rð�Þ; Ŵrð�ÞÞ ) ðQ̂ð�Þ; Ŵð�ÞÞ along r 2 R; (3:2:)

where, either Ŵð�ÞÞ or Q̂ð�Þ is an RDRS model. Furthermore, for the myopic game-

theoretical scheduling policy at each time t, the limit queue length Q̂ð�Þ is an asymptotic
Pareto minimal-dual-cost Nash equilibrium process globally over ½0;1Þ.

Note that, under different scheduling policies, the exact presentations of the corre-
sponding RDRS models can be different and we will identify them explicitly in the

Figure 8. In this simulation, the number of simulation iterative times is N ¼ 6000, the simulation
time interval is ½0; T� with T ¼ 800 or 40, which is further divided into n ¼ 5000 subintervals as
explained in Subsection 3.4. Other values of simulation parameters introduced in Definition 3.1 and
Subsubsection 3.2.1 are as follows: λ1 ¼ 10=3, λ2 ¼ 5, m1 ¼ 3, m2 ¼ 1, μ1 ¼ 1=10, μ2 ¼ 1=20,
α1 ¼ 10, α2 ¼ 20, β1 ¼ 10, β2 ¼ 20, ζ1 ¼ 1, ζ2 ¼ 2, ρ1 ¼ ρ2 ¼ 1000, c21 ¼ c12 ¼ 1500, θ1 ¼ �1,
θ2 ¼ �1:2.
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subsequent subsection of RDRS model identifications. Here, we first state the general
definition of an RDRS model as follows.

Definition 3.1. A u-dimensional stochastic process Ẑð�Þ with u 2 J is called an RDRS
with oblique reflection if it can be uniquely represented as

ẐðtÞ ¼ X̂ðtÞ þ
ðt
0
RðαðsÞÞdŶðsÞ � 0 (3:3)

where

dX̂ðtÞ ¼ bðαðtÞÞdt þ σEdHEðtÞ þ σSdHSðtÞ (3:4)

Furthermore, bðαðtÞÞ ¼ ðb1ðαðtÞÞ; :::; buðαðtÞÞ0 is a u-dimensional vector, σE and σS are

u� J matrices, and RðαðtÞÞ for each t 2 Rþ is a u� u matrix. In addition, ðẐð�Þ; Ŷð�ÞÞ is
continuous a.s. and is a solution of Equation (3.3) with the properties for each
j 2 1; :::; uf g,

Figure 9. In this simulation, the number of simulation iterative times is N ¼ 6000, the simulation
time interval is ½0; T� with T ¼ 800 or 40, which is further divided into n ¼ 5000 subintervals as
explained in Subsection 3.4. Other values of simulation parameters introduced in Definition 3.1 and
Subsubsection 3.2.1 are as follows: λ1 ¼ 10=3, λ2 ¼ 5, m1 ¼ 3, m2 ¼ 1, μ1 ¼ 1=10, μ2 ¼ 1=20,
α1 ¼ 10, α2 ¼ 20, β1 ¼ 10, β2 ¼ 20, ζ1 ¼ 1, ζ2 ¼ 2, ρ1 ¼ ρ2 ¼ 1000, c21 ¼ c12 ¼ 1500, θ1 ¼ �1,
θ2 ¼ �1:2.
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(1) Ŷjð0Þ ¼ 0;
(2) Each component Ŷjð�Þ of Ŷð�Þ ¼ ðŶ1ð�Þ; :::; Ŷuð�ÞÞ0 is non-decreasing;
(3) Each component Ŷjð�Þ can increase only at a time t 2 ½0;1Þ that ẐjðtÞ ¼ 0, i.e.

ð1
0
ẐjðtÞdŶjðtÞ ¼ 0:

In addition, a solution to the RDRS in Equations (3.3)–(3.4) is called a strong solution if
it is in the pathwise sense and is called a weak solution if it is in the sense of distribution.

Note that, in Definition 3.1, the processes BEð�Þ and BSð�Þ are, respectively, two J-dimen-
sional standard Brownianmotions, which are independent each other. For each state i 2 K,
the nominal arrival rate vector λðiÞ, the mean reward vectormðiÞ, the nominal throughput
vector ρðiÞ, and a constant parameter vector θðiÞ are defined as follows:

λðiÞ ¼ ðλ1ðiÞ; :::; λJðiÞÞ0; (3:5)

Figure 10. In this simulation, the number of simulation iterative times is N ¼ 6000, the simulation
time interval is ½0; T� with T ¼ 800 or 40, which is further divided into n ¼ 5000 subintervals as
explained in Subsection 3.4. Other values of simulation parameters introduced in Definition 3.1 and
Subsubsection 3.2.1 are as follows: λ1 ¼ 10=3, λ2 ¼ 5, m1 ¼ 3, m2 ¼ 1, μ1 ¼ 1=10, μ2 ¼ 1=20,
α1 ¼ 10, α2 ¼ 20, β1 ¼ 10, β2 ¼ 20, ζ1 ¼ 1, ζ2 ¼ 2, ρ1 ¼ ρ2 ¼ 1000, c21 ¼ c12 ¼ 1500, θ1 ¼ �1,
θ2 ¼ �1:2.
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mðiÞ ¼ ðm1ðiÞ; :::;mJðiÞÞ0; (3:6)

ρðiÞ ¼ ρ1ðiÞ; :::; ρJðiÞ
� �

; (3:7)

θðiÞ ¼ ðθ1ðiÞ; :::; θJðiÞÞ0: (3:8)

Furthermore, the covariance matrices are defined as

ΓEðiÞ ¼ ΓEklðiÞ
� �

J�J

; diag λ1ðiÞm2
1ðiÞζ

2
1ðiÞ þ λ1ðiÞm1ðiÞα21;

�
:::; λJðiÞm2

J ðiÞζ
2
J ðiÞ þ λJðiÞmJðiÞα2J

�
;

(3:9)

ΓSðiÞ ¼ ΓSklðiÞ
� �

J�J

; diag λ1ðiÞm1ðiÞβ21; :::; λJðiÞmJðiÞβ2J
� �

:
(3:10)

In addition, the Itô‘s integrals in terms of the Brownian motions are defined as

HeðtÞ ¼ He
1ðtÞ

0; :::;He
J ðtÞ

� �
with e 2 fE; Sg; (3:11)

He
j ðtÞ ¼

ðt
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓejjðαðsÞÞ

q
dBe

j ðsÞ: (3:12)

Remark 3.1. In comparing with the RBMs widely used and studied in queueing and
financial literature, our RDRS model introduced in Definition 3.1 exhibits some new
feature, i.e. it is a Markovian-modulated reflecting diffusion process. In the case of a
constant environment (e.g. a quasi-static channel in a wireless system), it reduces to
an RBM.

3.2. Scheduling policies

In this subsection, we identify and design a myopic game-theoretical scheduling policy
and an alternative scheduling policy for the purpose as mentioned in the previous
subsection. To be simple, we begin with an illustrative example.

3.2.1. An illustrative scheduling policy example
In this subsubsection, we consider a single-pool system with two-users and hence will
omit all the related pool index v for simplicity. More precisely, in Figure 11, we take
V ¼ 1 and J ¼ 2. Furthermore, we assume that the state space of the FS-CTMC αðtÞ
defined in Subsection 2.1 consists only of a single state 1, i.e. αðtÞ ; 1 for all t 2 ½0;1Þ.
In an MIMO wireless environment, such a case is corresponding to the so-called
pseudo static channels (see, e.g. [5] and [18]).

The capacity region denoted by R is assumed to be a non-degenerate convex one
confined by five boundary lines including the two ones on x-axis and y-axis as shown in
Figure 11. The capacity upper bound of the region satisfies c1 þ c2 ¼ 2000. This region
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is corresponding to a degenerate fixed MIMO wireless channel of the generally rando-
mized one by Dai [5]. For each rate vector c ¼ ðc1; c2Þ 2 R, we take the utility functions
for user 1 and user 2, respectively, by

U1ðq; cÞ ¼ U1ðq1; c1Þ ¼ q1 lnðc1Þ; U2ðq; cÞ ¼ U2ðq2; c2Þ ¼ � q22
c22
; (3:13)

where lnð�Þ is the logarithm function with the base e. Furthermore, the vector
q ¼ ðq1; q2Þ 2 ½0;1Þ� ½0;1Þ is a given queue length of 2 users and it corresponds
to the queue length process QðtÞ defined in Equation (2.6) at a particular time point.
The utility functions U1 and U2 are called proportionally fair and minimal potential
delay allocations, respectively, which are widely used in the design of communication
protocols (see, e.g. [17]). In addition, what kind of utility functions should be used in
real-world systems can frequently be negotiated and contracted among different users
and the owner of our game platform. Here, the purpose for us to choose the specific
forms of U1 and U2 is just for an illustration. Based on these utility functions, we can
design our rate-scheduling policy at each time point t 2 ½0;1Þ by a Pareto maximal-
utility Nash equilibrium point to the non-zero-sum game problem

max
c2R

Ujðq; cÞ for each j 2 f0; 1; 2g and a fixed q 2 R2
þ; (3:14)

where U0ðq; cÞ ¼ U1ðq; cÞ þ U2ðq; cÞ and R2
þ ¼ ½0;1Þ� ½0;1Þ. In other words, if

c� ¼ ðc�1; c�2Þ is a solution to the game problem in Equation (3.14), we can conclude that

U0ðq; c�Þ � U0ðq; cÞ; (3:15)

U1ðq; c�Þ � U1ðq; c��1Þ with c���1 ¼ ðc1; c�2Þ; (3:16)

Figure 11. A 2-user capacity region.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 523



U2ðq; c�Þ � U2ðq; c��2Þ with c���2 ¼ ðc�1; c2Þ: (3:17)

Furthermore, it follows from the inequalities in Equations (3.15)–(3.17) that, if a game
player’s (i.e. a user’s) rate service policy is unilaterally changed, his utility cannot be
improved.

3.2.2. General capacity region
In our platform, the jobs in the jth queue for each j 2 J can be served simultaneously
by a random but at most Vj ( � V) number of service pools at a given time point. It can
be realized by processors-sharing techniques or through multiple users’ and antennas’
cooperation in MIMO wireless channels, i.e. base stations can perform joint beamform-
ing and/or power control at a particular time period. Under this simultaneous service
mechanism, the total service rate for the jth queue at the time point is the summation of
the rates from all the pools possibly to serve the jth queue. For convenience, we index
such pools by a subset VðjÞ of the set V, i.e.

VðjÞ ; v1j; :::; vVjj

n o
	 V; (3:18)

where vlj for each l 2 1; :::;Vj
� �

indexes the vljth pool in VðjÞ.
In the same way, a pool indexed by v 2 V can possibly serve at most Jv number of job

classes indexed by a subset J ðvÞ of the set J , i.e.

J ðvÞ ; jv1; :::; jvJvf g 	 J ; (3:19)

where jvl for each l 2 1; :::; Jvf g indexes the jvlth job class in J ðvÞ. The pool v is
equipped with Jv number of flexible parallel-servers with rate allocation vector

cv�ðtÞ ¼ ðcjv1ðtÞ; :::; cjvJv ðtÞÞ
0; (3:20)

where cjvlðtÞ for each l 2 1; :::; Jvf g is the assigned service rate to the jvlth user at pool v
and time t. In the sequel, we will also denote the rate cjvlðtÞ by cvjðtÞ for an index j 2
J ðvÞ that corresponds to the l 2 1; :::; Jvf g. The vector in Equation (3.20) takes values
in a capacity region RvðαðtÞÞ driven by the FS-CTMC α ¼ αðtÞ; t 2 ½0;1Þf g.

For each i 2 K and v 2 V, the set RvðiÞ is a convex region consisting of the origin
and owns Lv ð> JvÞ boundary pieces (see, e.g. the left graph of Figure 12 is an example
by Dai [5], the right graph of Figure 12 is an example of Ye and Yao [17], and the
detailed explanations for these two graphs are presented at the end of this subsubsec-
tion). In the region, each point is defined according to the corresponding users, i.e.
x ¼ ðxjv1 ; :::; xjvJv Þ. On the boundary of RvðiÞ for each i 2 K, Jv of them are
ðJv � 1Þ-dimensional linear facets along the coordinate axes. The other ones are located

in the interior of RJv
þ and form the so-called capacity surface represented by OvðiÞ, which

has Bv ¼ Lv � Jv ð> 0Þ linear or smooth curved facets hvkðcv�; iÞ on RJv
þ for

k 2 Uv; 1; 2; :::;Bvf g, i.e.

RvðiÞ ; cv� 2 RJv
þ: hvkðcv�; iÞ � 0; k 2 Uv

� �
: (3:21)

If let CUvðiÞ denote the sum capacity upper bound for RvðiÞ, the facet in the centre of
OvðiÞ is linear and is assumed to be a non-degenerate ðJv � 1Þ-dimensional region.
More precisely, it can be expressed by
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hvkUv ðcv�; iÞ ¼
X
j2J ðvÞ

cj � CUvðiÞ; (3:22)

where kUv 2 Uv is the index corresponding to CUvðiÞ. Furthermore, we assume that any
one of the Jv linear facets along the coordinate axes forms an ðJv � 1Þ-user capacity
region associated with a particular group of Jv � 1 users when the queue corresponding
to the other user is empty. By the same way, we can interpret the ðJv � lÞ-user capacity
region for each l 2 2; :::; Jv � 1f g.

In the allocation of the service resources over the capacity regions to different users,
we adopt the so-called head of line service discipline. In other words, the service goes to
the packet at the head of the line for a serving queue where packets are stored in the
order of their arrivals. The service rates are determined through a function of the
environmental state and the number of packets in each of the queues. For each state
i 2 K and a given queue length vector q ¼ ðq1; :::; qJÞ0, let Λ�jðq; iÞ for each j 2 J denote
the rate vector (in bps) of serving the jth queue at all its possible service pools, i.e.

Λ�jðq; iÞ ¼ cQðqÞ
�j ðiÞ ¼ ðcQðqÞ

v1j ðiÞ; :::; cQðqÞ
vVjj

ðiÞÞ; (3:23)

where

QðqÞ ; j 2 J ; qj ¼ 0
� �

: (3:24)

In the meanwhile, let Λv�ðq; iÞ for each v 2 V denote the rate vector for all the users
possibly served at service pool v, i.e.

Λv�ðq; iÞ ¼ cQðqÞ
v� ðiÞ ¼ ðcQðqÞ

jv1 ðiÞ; :::; cQðqÞ
jvJv

ðiÞÞ: (3:25)

Obviously, if the pool index vlj 2 VðjÞ for an integer l 2 1; :::;Vj
� �

with j 2 J , we have

that cQðqÞ
vlj ðiÞ ¼ cQðqÞ

j ðiÞ: Thus, for each j 2 J , the total rate used in Equation (2.7) can be

expressed as

Figure 12. A 3-user capacity set in R3þ for a cooperative MIMO wireless channel in the left graph; a
degenerate 3-user capacity set in R3þ for a cloud-processors-sharing system in the right graph.
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ΛjðQðsÞ; αðsÞÞ ¼
X
v2VðjÞ

cQðQðsÞÞ
vj ðαðsÞÞ: (3:26)

Finally, we impose the convention that an empty queue should not be served. Thus,
for each v 2 V and Q 	 J (e.g. a set as given by Equation (3.24)), we can define

cQjvlðiÞ ;
¼ 0 if jvl 2 Q with l 2 f1; :::; Jvg;
> 0 if jvl‚Q with l 2 f1; :::; Jvg;

�
(3:27)

cQvj ðiÞ ; cQjvlðiÞ for some j 2 J ðvÞ corresponding to each l 2 f1; :::; Jvg; (3:28)

Fv
QðiÞ ; fx 2 RvðiÞ: xjvl ¼ 0 for all jvl 2 Q with l 2 f1; :::; Jvgg: (3:29)

Hence, for all Q such that ; 	 Q 	 J ðvÞ corresponding to each v 2 V, if cQv� ðiÞ is on
the boundaries of the capacity region RvðiÞ, we have the following observation thatX

j2J ðvÞ
c;vjðiÞ �

X
j2J ðvÞ

cQvj ðiÞ; (3:30)

X
j2J ðvÞnQ

c;vjðiÞ �
X

j2J ðvÞnQ
cQvj ðiÞ; (3:31)

where c;v�ðiÞ 2 OvðiÞ and ; denote the empty set.
Typical examples of our capacity region include those for J-user MIMO multiple

access uplink and broadcast downlink wireless channels, two-way or future quantum
communication channels, and J-user cloud-processors-sharing centres or links (see, e.g.
[24], [37], [5], [21], [22], [17]). In a cooperative wireless channel, the inequalities in
Equations (30)–(31) are both strict, which lead to a capacity region (e.g. with three
users) as displayed in the left graph of Figure 12. Note that, in this three-user case, there
are 3 linear facets along the coordinate axes and 13 linear or smooth curved facets on
the capacity surface. Furthermore, for such an MIMO channel, the capacity region
reflects the cooperation property that the maximum of the sum of the rates is achieved
only when all of the queues are non-empty. However, in a general cloud-processors-
sharing service system, the equalities in Equations (3.30)–(3.31) may be both true,
which leads to a degenerate capacity region as shown in the right graph of Figure 12.

3.2.3. A myopic game-theoretical scheduling policy
To dynamically realize the optimal and fair resource allocation, we design a strategy by
a static Pareto maximal-utility Nash equilibrium policy myopically at each time point t
to a non-zero-sum game problem for each state i 2 K and a given queue length vector
q ¼ ðq1; :::; qJÞ0. The Pareto optimality represents the full utilization of resources in the
whole game system and the Nash equilibrium represents the fairness to all the users.
More precisely, in this game, there are J users (players) corresponding to the J queues
and each of them has his own utility function Uvjðqj; cvjÞ with j 2 J ðvÞ and v 2 VðjÞ.
The utility functions may also depend on some additional parameters such as prices.
Nevertheless, in the current paper, we assume that they are pre-negotiated and are
given. Every user chooses a policy to maximize his own utility function at each service
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pool v while the summation of all the utility functions is also maximized. In other
words, we can formulate the following generalized scheduling game problem by extend-
ing the one in Example 3.4,

max
cv�2FvQðiÞ; j2J ðvÞnQðqÞ

Uvjðq; cÞ ¼ Uvjðq; c�ðiÞÞ; (3:32)

where the rate vector c is given by

c ¼ ððcj11 ; . . . ; cj1J1 Þ; . . . ; ðcjV1 ; . . . ; cjVJV ÞÞ

and the objective functions are defined by

U00ðq; cÞ ¼
X
v2VðjÞ

X
j2J ðvÞnQðqÞ

Uvjðqj; cvjÞ;

U0jðq; cÞ ¼
X
v2VðjÞ

Uvjðqj; cvjÞ for each j 2 J ðvÞnQðqÞ;

Uvjðq; cÞ ¼ Uvjðqj; cvjÞ for each j 2 J ðvÞnQðqÞ and v 2 VðjÞ:

Note that, the total utility function U00ðq; cÞ does not have to be a constant (e.g. zero).
In other words, the game is not necessarily a zero-sum one. Thus, by unifying the
concepts of Nash equilibrium and Pareto optimality in [25] and [26], we have the
definition concerning a static Pareto maximal-utility Nash equilibrium policy myopi-
cally at a particular time point for the dynamic scheduling game as follows.

Definition 3.2. For each state i 2 K and a queue length vector q 2 RJ
þ, the rate vector

c�ðiÞ 2 FQðqÞðiÞ ; F1QðqÞðiÞ � . . .� FV
QðqÞðiÞ

is called a static Pareto maximal-utility Nash equilibrium policy to the non-zero-sum
game problem in Equation (3.32) if it is also a maximal one to the sum of all the user’s
utility functions corresponding to the index in J ðvÞnQðqÞ for each v 2 V and no user will
profit by unilaterally changing his own policy when all the other user’s policy keep the
same. Mathematically, for each j 2 J ðvÞnQðqÞ and any given cðiÞ 2 FQðqÞðiÞ, we have
that

U00ðq; c�ðiÞÞ � U00ðq; cðiÞÞ (3:33)

Uvjðq; c�ðiÞÞ � Uvjðq; c���jðiÞÞ for j 2 J ðvÞnQðqÞ; v 2 f0g [ VðjÞ (3:34)

c���jðiÞ ; ðc��1ðiÞ; :::; c��j�1ðiÞ; c�jðiÞ; c��jþ1ðiÞ; :::; c��JðiÞÞ (3:35)

3.2.4. An alternative scheduling policy
In this subsubsection, we design an alternative scheduling policy for the purpose of
performance comparisons. More precisely, we consider the case that the utility function
is linear in terms of q and/or c, e.g.
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Uvjðqj; cvjÞ ¼ cQðqÞ
vj ðiÞ for j 2 J ðvÞ; v 2 VðjÞ; i 2 K: (3:36)

Therefore, the corresponding utility-maximal game in Equation (3.32) and/or its dual-
cost-minimal game problem in Equation (3.41) are also linear ones. In this case, the
Pareto optimal Nash equilibrium policies to these game problems may be not unique.
To overcome the difficulty for this degenerate problem, we turn to select one of the
Nash equilibrium points as our scheduling policy to reach certain reasonable system
performance, and in the meanwhile, a multi-dimensional RDRS is established as its
performance model for the corresponding limit queue length process. Note that, this
simple scheduling policy will be cited as Algorithm II and the corresponding queue
length process will be denoted by QIIð�Þ.

In communication networks and cloud-computing service practices, the prediction
of customer’s demands plays an important role (see, e.g. [18]). Once the demands are
predicted, the relative traffic rate for each user j 2 J is determined by a constant kj, i.e.

kj ¼
bjðiÞ
b1ðiÞ

for all i 2 K (3:37)

where bjðiÞ is the average bit arrival rate for j 2 J when the channel is in state
i 2 K, i.e.

bjðiÞ ¼
λjðiÞmjðiÞ

μj
(3:38)

Then, for each v 2 VðjÞ and j 2 J , the rate vector of serving the J queues is designed by

Λv�ðq; iÞ ¼ ΛII
v�ðq; iÞ ¼ cQðqÞ

v� ðiÞ (3:39)

such that, for each j; l 2 J ðvÞnQðqÞ \J ðvÞ and q 2 RJ
þ,

cQðqÞ
vj ðiÞ
kj

¼ cQðqÞ
vl ðiÞ
kl

(3:40)

Note that, for the given linear-utility functions in Equation (3.36), this designed policy
cQv� for each v 2 V and i 2 K is located on the capacity surface OvðiÞ. Furthermore, it is
the unique Nash equilibrium policy to the utility-maximal game-based scheduling
problem in Equation (3.32) subject to the constraint in Equation (3.40) for all v 2 V
and i 2 K. However, it may not be a Pareto optimal Nash equilibrium policy.

3.3. Identifications of RDRS models for different scheduling policies

In this subsection, we identify the exact expressions of RDRS models for the previously
designed myopic game-theoretical scheduling policy and the alternative scheduling
policy. Related simulation iterative procedures for these RDRS models are also
proposed.

3.3.1. RDRS model under the game-theoretical scheduling policy
To begin with and to state our main theorem, we need to introduce another concept of
the so-called static Pareto minimal-dual-cost Nash equilibrium policy myopically at a

528 W. DAI



particular time point. In doing so, we formulate a minimal-dual-cost game problem
corresponding to the maximal-utility game problem in Equation (3.32). More precisely,
for each given i 2 K, a rate vector c 2 RðiÞ ; R1ðiÞ � :::�RVðiÞ, and a parameter
w � 0, the problem can be stated as follows:

min
qj2Rþ; j2CðcÞ \ J ðvÞ

Cvjðq; cÞ (3:41)

subject to X
j2CðcÞ

qj
μj

� w;

where the cost function Cvjðq; cÞ for each j 2 J ðvÞ and v 2 VðjÞ is defined by

C00ðq; cÞ ¼
X
v2VðjÞ

X
j2CðcÞ \ J ðvÞ

Cjðqj; cvjÞ;

C0jðq; cÞ ¼
X
v2VðjÞ

Cvjðqj; cvjÞ;

Cvjðq; cÞ ¼ Cvjðqj; cvjÞ ¼
1
μj

ðqj
0

@Uvjðu; cvjÞ
@cvj

du for j 2 CðcÞ \ VðvÞ and v 2 VðjÞ;

and CðcÞ is an index set corresponding to the non-zero rates and non-empty queues, i.e.

CðcÞ ; fj: c�j � 0 componentwise with j 2 J g:

In other words, when the environment is in state i 2 K, we try to identify a queue state
q corresponding to a given c 2 RðiÞ and a given parameter w � 0 such that the
individual user’s dual-costs and the total dual-cost over the system are all minimized
at the same time while the (average) workload meets or exceeds w. In addition, the total
dual-cost function U00ðq; cÞ does not have to be a constant. Then, we have the following
definition.

Definition 3.3. For each state i 2 K and a rate vector cðiÞ 2 RðiÞ, the queue length
vector q� 2 RJ

þ with q�j ¼ 0 if j 2 J nCðcÞ is called a static Pareto minimal-dual-cost

Nash equilibrium policy to the non-zero-sum game problem in Equation (3.41) if it is also
a minimal one to the sum of all the user’s dual cost functions corresponding to the indices
in CðcÞ and no user will profit by unilaterally changing his own policy when all the other
user’s policies keep the same. Mathematically, for each j 2 CðcÞ, v 2 0f g[V, and any

given q 2 RJ
þ with qj ¼ 0 if j 2 J nCðcÞ, we have that

C00ðq�; cðiÞÞ � C00ðq; cðiÞÞ; (3:42)

Cvjðq�; cðiÞÞ � Cvjðq��j; cðiÞÞ; (3:43)

q��j ; ðq�1; :::; q�j�1; qj; q
�
jþ1; :::; q

�
J Þ: (3:44)
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Based on Definition 3.3 and the concept concerning the asymptotic optimality widely
used in heavy traffic analysis (see, e.g. [17], [5]), we can develop some new concept
about the asymptotic Pareto minimal-dual-cost Nash equilibrium policy as follows.

Definition 3.4. Let Q̂G;rð�Þ and ŴG;rð�Þ denote the diffusion-scaled queue length and
workload processes respectively under an arbitrarily feasible rate scheduling policy G. A

process Q̂ð�Þ is called an asymptotic Pareto minimal-dual-cost Nash equilibrium policy
globally over the whole time horizon if

lim inf
r!1

C00ðQ̂r;GðtÞ; ρjðαðtÞÞÞ � C00ðQ̂ðtÞ; ρjðαðtÞÞÞ; (3:45)

lim inf
r!1

CvjðQ̂r;G
�j ðtÞ; ρjðαðtÞÞÞ � CvjðQ̂ðtÞ; ρjðαðtÞÞÞ (3:46)

for any t � 0, j 2 J ðvÞ, v 2 0f g[VðjÞ, and

Q̂r;G
�j ðtÞ ¼ ðQ̂1ðtÞ; :::; Q̂r;G

j ðtÞ; :::; Q̂JðtÞÞ (3:47)

Now, let q�ðw; ρðiÞÞ be the Pareto minimal-dual-cost Nash equilibrium policy to the
game problem in Equation (3.41) with respect to each given w and i 2 K at time t.
Then, we can present our main theorem as follows.

Theorem 3.1. For the game scheduling policy determined by Equation (3.32) with
Qrð0Þ ¼ 0 and conditions Equations (4.7)–(4.12) (that will be detailed in Section 4), the
sequence of 2-tuple processes converges jointly in distribution, i.e.

ðQ̂rð�Þ; Ŵrð�ÞÞ ) ðQ̂ð�Þ; Ŵð�ÞÞ along r 2 R (3:48)

Furthermore, the limit queue length Q̂ð�Þ and total workload Ŵð�Þ are related each other
through

Q̂ðtÞ ¼ q�ðŴðtÞ; ρðαðtÞÞÞ (3:49)

where Ŵð�Þ is a 1-dimensional RDRS in strong sense with

bðiÞ ¼ θ1ðiÞ=μ1 þ � � � þ θJðiÞ=μJ (3:50)

σE ¼ σS ¼ 1=μ1; :::; 1=μJ

� �
; (3:51)

RðiÞ ¼ 1 (3:52)

In addition, there is a common supporting probability space, under which and with
probability one, the limit queue length Q̂ð�Þ is an asymptotic Pareto minimal-dual-cost
Nash equilibrium policy globally over time interval ½0;1Þ. Finally, the limit workload

Ŵð�Þ is also asymptotic minimal in the sense that

lim inf
r!1

Ŵr;GðtÞ � ŴðtÞ (3:53)
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The proof of Theorem 3.1 will be provided in Subsection 4.2. Instead, we here design
a simulation procedure for the RDRS in the theorem. More precisely, for a constant
T 2 ½0;1Þ, we divide the interval ½0;T� equally into n subintervals ½ti; tiþ1�;f
i 2 0; 1; :::; n� 1f gg with t0 ¼ 0, tn ¼ T, and Δti ¼ tiþ1 � ti ¼ T

n . Furthermore, let

ΔFðtiÞ ; FðtiÞ � Fðti�1Þ (3:54)

for each process Fð�Þ 2 BEð�Þ;BSð�Þ; Ŵð�Þ; Ŷð�Þ
� �

. Then, we can present our iterative
simulation procedure as follows.

Simulation Procedure 3.1 First of all, we endorse initial values to the related processes,

Ŵð0Þ ¼ Ŷð0Þ ¼ Q̂ð0Þ ¼ 0: (3:55)

Then, for each i 2 1; :::; nf g, the remaining procedure consists of the following 6 steps:

Step 1. Calculating the netput value V̂ðtiÞ at time ti after obtaining the value Ŷðti�1Þ of
the regulating process ŶðtÞ at time ti�1, i.e.

V̂ðtiÞ ¼ Ŵðti�1Þ þ Ŷðti�1Þ þ b̂ðαðtiÞÞΔti þ σ̂EðαðtiÞÞΓEðαðtiÞÞΔBEðtiÞ
þσ̂SðαðtiÞÞΓSðαðtiÞÞΔBSðtiÞ:

(3:56)

Step 2. Determining the incremental value ΔŶðtiÞ of the regulating process ŶðtÞ over time
interval ½ti�1; ti� according to the sign of V̂ðtiÞ, i.e.

ΔŶðtiÞ ¼ 0 if V̂ðtiÞ> 0;
�V̂ðtiÞ if V̂ðtiÞ � 0:

�
(3:57)

Step 3. Computing the value ŴðtiÞ of the workload process ŴðtÞ at time ti, i.e.

ŴðtiÞ ¼ V̂ðtiÞ þ ΔŶðtiÞ: (3:58)

Step 4. Obtaining the value Q̂ðtiÞ of the queue length process Q̂ðtÞ at time ti through
Pareto minimal-dual-cost Nash equilibrium point, i.e.

Q̂ðtiÞ ¼ q�ðŴðtiÞ; ρðαðtiÞÞ: (3:59)

Step 5. Calculating the cost values corresponding to different users at time ti, i.e.

ĈkðtiÞ ¼ CkðQ̂kðtiÞ; ρkðαðtiÞÞÞ; k 2 1; :::;Kf g: (3:60)

Step 6. Letting i = i + 1 and repeating the procedure in Step 1 to Step 5.

3.3.2. RDRS model under the alternative scheduling policy
As a related study of the one presented in the previous subsubsection, we have the
following corollary for the alternative scheduling policy.

Corollary 3.2 The weak convergence holds for Algorithm II under the conditions in
Equations (4.7)–(4.8) and (4.12) (that will be detailed in Section 4) if the inequalities in
Equations (3.30)–(3.31) are both strict and QII;rð0Þ ¼ 0, i.e.
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Q̂II;rð�Þ ) Q̂IIð�Þ along r 2 R; (3:61)

where Q̂IIð�Þ is an J-dimensional RDRS in strong sense with

bðiÞ ¼ ðθ1ðiÞ; :::; θJðiÞÞ0 for each i 2 K; (3:62)

σE ¼ σS ¼ IJ�J ðan J � J unit matrixÞ; (3:63)

RðiÞ ¼

1 R12ðiÞ ::: R1JðiÞ
R21ðiÞ 1 ::: R2JðiÞ

: : ::: :
: : ::: :
: : ::: :

RJ1ðiÞ RJ2ðiÞ ::: 1

0
BBBBBB@

1
CCCCCCA
; (3:64)

RjkðiÞ ¼
c�j ðiÞ � cfkgj ðiÞ

ckðiÞ
for k�j and each i 2 k; ð3:65Þ (3:65)

cfkgj ðiÞ ¼
X
v2VðjÞ

cfkgvj ðiÞ and cfkgvj ðiÞ is defined in ð3:28Þ : (3:66)

Note that, the proof of Corollary 3.2 can be conducted by combining Theorem 3.1
and its proof and the techniques used by Bhardwaj et al. [18]. However, due to the
length limitation of this paper, we omit its detail here. Instead, for the purpose of
numerical comparisons to the simulation case study in Subsection 3.4, we here present
a simulation procedure corresponding to the two-dimensional RDRS model in the
corollary as follows.

Simulation Procedure 3.2 First of all, we endorse initial values to the related processes,

Q̂IIð0Þ ¼ ŶIIð0Þ ¼ 0: (3:67)

Then, for each i 2 1; :::; nf g, the remaining procedure consists of the following 6 steps:

Step 1. Calculating the netput vector value V̂IIðtiÞ at time ti after obtaining the vector

value ŶIIðti�1Þ of the regulating vector process ŶIIðtÞ at time ti�1, i.e.

V̂
IIðtiÞ ¼ Q̂IIðti�1Þ þ RðαðtiÞÞŶ

IIðti�1Þ þ bðαðtiÞÞΔti
þσEðαðtiÞÞΓEðαðtiÞÞΔBEðtiÞ þ σSðαðtiÞÞΓSðαðtiÞÞΔBSðtiÞ:

(3:68)

Step 2. Determining the incremental vector value ΔŶIIðtiÞ of the regulating process ŶIIðtÞ
over time interval ½ti�1; ti� according to the sign of each component in the vector

V̂IIðtiÞ, i.e.
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ΔŶIIðtiÞ ¼
0 if V̂

IIðtiÞ > 0;
�R�1ðαðtiÞÞV̂

IIðtiÞ if V̂
IIðtiÞ � 0;

ð0;�V̂II
2 ðtiÞ=R22ðαðtiÞÞÞ0 if V̂II

1 ðtiÞ > 0; V̂II
2 ðtiÞ � 0;

ð�V̂II
1 ðtiÞ=R11ðαðtiÞÞ; 0Þ0 if V̂II

1 ðtiÞ � 0; V̂II
2 ðtiÞ> 0:

8>>><
>>>:

(3:69)

Step 3. Obtaining the vector value Q̂IIðtiÞ of queue length process Q̂IIðtÞ at time ti, i.e.

Q̂IIðtiÞ ¼ V̂IIðtiÞ þ RðαðtiÞÞΔŶIIðtiÞ: (3:70)

Step 4. Getting the value ŴIIðtiÞ of the workload process ŴIIðtÞ at time ti, i.e.

ŴIIðtiÞ ¼
1
μ1

Q̂II
1 ðtiÞ þ

1
μ2

Q2ðtiÞ: (3:71)

Step 5. Calculating the cost values corresponding to different users at time ti, i.e.

CkðtiÞ ¼ CkðQII
k ðtiÞ; ckðαðtiÞÞÞ; k 2 1; 2f g: (3:72)

Step 6. Letting i = i + 1 and repeating the procedure in Step 1 to Step 5.

3.4. A simulation case study via RDRS models

In this subsection, we consider a single-pool system with two-users as presented in
subsubsection 3.2.1 and hence will omit all the related pool index v for simplicity. Note
that, in a corresponding real-world system, the parameter vector q in Equation (3.14) is
the randomly evolving queue length process QðtÞ in Equation (2.6). How to use the
RDRS performance model in Definition 3.1 to evaluate the effectiveness of the myopic
service policy designed in Equation (3.14) globally over the whole time horizon ½0;1Þ
is our concern. To reach this goal, we first identify the associated dual-cost functions
Cjðq; cÞ as defined in Equation (3.41) with j 2 1; 2f g for corresponding Ujðq; cÞ given in
Equation (3.13). More precisely,

C1ðq1; c1Þ ¼
1
μ1

ðq1
0

@U1ðu; c1Þ
@c1

du ¼ q21
2μ1c1

; (3:73)

C2ðq2; c2Þ ¼
1
μ2

ðq2
0

@U2ðu; c2Þ
@c2

du ¼ 2q32
3μ2c

3
2
; (3:74)

where 1
μj

with j 2 1; 2f g are average packet lengths corresponding the two users as
explained just after the equation in Equation (2.4). Then, we can formulate the
corresponding minimal dual-cost non-zero-sum game problem as

min
q2R2

þ

Cjðq; cÞ subject to
q1
μ1

þ q2
μ2

� w (3:75)

for a fixed constant w > 0, a fixed c 2 R, and all j 2 0; 1; 2f g with
C0ðq; cÞ ¼ C1ðq; cÞ þ C2ðq; cÞ. Note that, both Cjðqj; cjÞ for j 2 1; 2f g are strictly
increasing in terms of qj. Thus, a Pareto minimal dual-cost Nash equilibrium point
must be located on the line where the equality of the constraint inequality in Equation
(3.75) holds (i.e. q1=μ1 þ q2=μ2 ¼ w). Then, we have that
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qj ¼ μj w�
q2�jþ1

μ2�jþ1

 !
with j 2 f1; 2g: (3:76)

Therefore, it follows from Equation (3.76) that

f ðq1Þ;
X2
j¼1

Cjðqj; cjÞ ¼
q21

2μ1c1
þ 2μ22

3c32
w� q1

μ1


 �3

: (3:77)

Furthermore, we can get the minimal value of the function f ðq1Þ at a point such that
@f ðq1Þ
@q1

¼ 0, i.e. the unique Pareto minimal Nash equilibrium point q�ðwÞ ¼ ðq�1; q�2ÞðwÞ
to the problem in Equation (3.75) can be explicitly solved as

q�1ðwÞ ¼ 1
2

2w
μ1
þ c32

2c1μ22

� �
μ21 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

2w
μ1
þ c32

2c1μ22

� �2
μ41 � μ21w2

r
;

q�2ðwÞ ¼ μ2 w� q�1
μ1

� �
;

8><
>: (3:78)

which is the intersection point of the red and blue curves in the right graph of
Figure 13.

In other words, we have

C0ðq�; cÞ � C0ðq; cÞ; (3:79)

C1ðq�; cÞ � C1ðq��1; cÞ with q��1 ¼ ðq1; q�2Þ; (3:80)

C2ðq�; cÞ � C2ðq��2; cÞ with q��2 ¼ ðq�1; q2Þ: (3:81)

From the inequalities in Equations (3.79)–(3.81), one can see that, if a dual-cost game
player j with j 2 1; 2f g unilaterally changes his bid’s policy qj, his cost cannot be

Figure 13. A Pareto optimal Nash equilibrium policy.
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reduced. Furthermore, these properties can help us to prove the effectiveness of the
designed policy by the Nash-equilibrium point to the game problem in Equation (3.14)
through the corresponding one to the dual-cost game problem in Equation (3.75). More
precisely, in the following Model Justification Part II (Subsection 3.2.3), we have the
claim that the physical workload WðtÞ in Equation (2.8) for this single pool case can
indeed be modelled by an RDRS in Definition 3.1 when the nominal load rate (certain
average rate of the random rate Λ in Equation (2.7)) closes to the Nash-equilibrium
point c� (the service capacity limit). Furthermore, as stated in Claim 3.1 and justified in
Theorem 3.1, WðtÞ is asymptotically minimal at any time t 2 ½0;1Þ almost surely along
any sample path under some supporting probability space. In the meanwhile, the queue
length process QðtÞ in Equation (2.6) is also fairly minimized in the sense that it is the
asymptotically minimal dual-cost Nash equilibrium point process given by
QðtÞ ¼ q�ðWðtÞÞ, where q�ðwÞ is given in Equation (3.78).

Note that, for this example, it follows from Theorem 3.1 that the coefficients of the
one-dimensional RDRS under our game-based scheduling policy for the physical work-
load process Ŵ can be denoted by

b̂ ¼ θ1
μ1

þ θ2
μ2

; σ̂E ¼ σ̂S ¼ 1
μ1

;
1
μ2


 �
; R̂ ¼ 1: (3:82)

Furthermore, by extending the discussion in page 15 of the work by Harrison [38] and
considering each w; t 2 ½0;1Þ, we can derive the distribution for ŴðtÞ as follows:

Fðt;wÞ ¼ P ŴðtÞ � w
� �

¼ Φ
w� b̂t
σ̂t1=2

( )
� exp

2b̂w

σ̂2

 !
Φ

�w� b̂t
σ̂t1=2

( )
; (3:83)

where Φ is the standard normal distribution, and

σ̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
j¼1

σ̂Ej

ffiffiffiffiffi
ΓEjj

q !2

þ
X2
j¼1

σ̂Sj

ffiffiffiffiffi
ΓSjj

q !2
vuut : (3:84)

Then, by the one-dimensional RDRS corresponding to Equation (3.82) and the Pareto
minimal Nash equilibrium policy q� in Equation (3.78), we can derive the iterative
formula (called Simulation Algorithm 3.1 in Subsection 3.2.3) for our workload-based
simulation. Note that, all the processes related to the workload processes will be covered
with a ‘hat’. Similarly, in this example, the coefficients of the corresponding two-
dimensional RDRS under a static proportional allocation strategy designed in the
following Model Justification Part II (Subsection 4.2) for the limit queue length process

Q̂II can be denoted by

b ¼ ðθ1; θ2Þ0; σS ¼ σE ¼ I2�2; R ¼ 1 R12

R21 1


 �
; (3:85)

Rjk ¼
ρj � cfkgj

ρk
for k � j and k; j 2 f1; 2g: (3:86)
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Then, by the two-dimensional RDRS corresponding to Equations (3.85)–(3.86) and an
alternative scheduling policy designed in Subsection 3.2.4, we can derive the iterative
formula (called Simulation Algorithm 3.2 in Subsection 3.2.4) for our queue-length-
based simulation.

Now, based on the derived formulas, simulation algorithms, and given parameters
shown in Figures 8–10, we have the corresponding simulation results for our case study
as summarized in the graphs of the figures. In this example, the number N of simula-
tion iterative times is 6000. The simulation time interval is ½0;T� with T ¼ 800 for all
the graphs in Figures 8–10 except the first one in the right column of Figure 8, where
T ¼ 40. Both the intervals ½0; 800� and ½0; 40� are divided into n = 5000 subintervals.
Furthermore, all the ‘simulated means’ used in the graphs except the first one in the
right column of Figure 8 are in the average sense, e.g. the simulated mean workload is
given by

E ŴðtiÞ
� 


¼ 1
N

XN
j¼1

Ŵðωj; tiÞ; (3:87)

where ωj denotes the used jth sample paths of Ŵð�Þ. Nevertheless, the simulated mean
workload in the first graph of the right column of Figure 8 is corresponding to the
distribution in Equation (3.83) for some positive number �N, i.e.

E ŴðtiÞ
� 


¼ 1
�N

X�N
j¼1

Ŵðωj; tiÞdFðti; Ŵðωj; tiÞÞ: (3:88)

Note that, in Figure 8, we give the performance evaluation and comparisons with
respect to the workload process Ŵð�Þ. The red curve displayed in the first graph of the
left column is the simulated mean workload function with respect to time point ti. The
result presented in the second graph of this column shows the difference between the
simulated mean workload and the corresponding one obtained through the Nash
equilibrium policy in Equation (3.78), i.e.

E½ŴðtiÞ� � E½Ŵ�ðtiÞ�: (3:89)

From the graph, we can see that these two workload processes are quite consistent. The
blue curve displayed in the first graph of the right column is the comparison result
between the simulated mean workload over the sampling interval ½0; 40� in its state
space by the formula in Equation (3.88) and the corresponding exact one obtained
through the distribution given in Equations (3.83)–(3.84). The purpose of this compar-
ison is to illustrate the effectiveness of our generated random numbers from the
designed iterative procedures for RDRSs and RBMs. From the graph, we can see that
the simulated workload is quite consistent with its exact distribution given in Equations
(3.83)–(3.84) even in the simulation ‘warming-up’ non-stationary period. The green
curve displayed in the second graph of the right column is the difference between the
simulated mean workload and the corresponding one obtained through the linear-
utility-scheduling policy, which illustrates that our game-based scheduling policy out-
performs this linear one.
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Furthermore, in Figure 9, we deliver the performance evaluation and comparisons in
terms of the dual-cost processes obtained through the functions given in Equations
(3.73)–(3.74). The red, blue, and green curves displayed in the first and second graphs
of the left column and in the first graph of the right column are the corresponding
mean total, user 1, and user 2 dual-cost functions. The associated curves displayed in
the second graph of the right column are the comparison results between the dual-costs
obtained through our game-based scheduling policy and those corresponding to the
alternative one designed in Model Justification Part II (Subsection 4.2). These compar-
ison results indicate that our game-based scheduling policy outperforms the one
designed in Model Justification Part II (Subsection 4.2) for the given target utility
functions.

Finally, in Figure 10, we present the performance of the mean total queue length and
those for two different users under our game-based scheduling policy and their com-
parisons with the one designed in Model Justification Part II (Subsection 4.2).

4. RDRS modelling justification

In this section, we provide the mathematical proof concerning the RDRS modelling
justification presented in Theorem 3.1. To begin with, we first impose some required
conditions and assumptions.

4.1. The required conditions

The utility functions can be either simply taken as the well-known proportionally fair
and minimal potential delay allocations as used in Equation (3.13) for Example 3.4 or
generally taken such that the existence of a Pareto maximal-utility Nash equilibrium
policy to the game problem in Equation (3.32) is guaranteed. More precisely, we can
suppose that Uvjðqj; cvjÞ for each j 2 J ðvÞ and v 2 VðjÞ is defined on RJ

þ. It is second-
order differentiable and satisfies

Uvjð0; cvjÞ ¼ 0; (4:1)

Uvjðqj; cvjÞ ¼ ΦvjðqjÞΨvðcvjÞ is strictly increasing and concave in cvj for qj > 0;

(4:2)

ΨvðνjcvjÞ ¼ ΨvðνjÞΨvðcvjÞ or ΨvðνjcvjÞ ¼ ΨvðνjÞ þ ΨvðcvjÞ for constant νj � 0;

(4:3)

@Uvjðqj; cvjÞ
@cvj

is strictly increasing in qj � 0; (4:4)

@Uvjð0; cvjÞ
@cvj

¼ 0 and lim
qj!1

@Uvjðqj; cvjÞ
@cvj

¼ þ1 for each cvj > 0: (4:5)
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Furthermore, we assume that Uvjðqj; cvjÞ; j 2 J ðvÞ; v 2 VðjÞ
� �

satisfies the so-called
radial homogeneity condition, i.e. for any scalar a> 0, each q > 0, i 2 K, and v 2 V, its
Pareto maximal utility Nash equilibrium point for the game has the radial homogeneity,

cvjðaq; iÞ ¼ cvjðq; iÞ: (4:6)

In addition, we introduce a sequence of independent Markov processes indexed by
r 2 R, i.e. αrð�Þ; r 2 Rf g. These systems all have the same basic structure as described
in the last section except the arrival rates λrj ðiÞ and the holding time rates γrðiÞ for all
i 2 K, which may vary with r 2 R. Here, we assume that they satisfy the heavy traffic
condition

r λrj ðiÞ � λjðiÞ
� �

mjðiÞ ! θjðiÞ as r ! 1; γrðiÞ ¼ γðiÞ
r2

(4:7)

for each j 2 J . Note that, θjðiÞ 2 R is some constant for each i 2 K and j 2 J , which
can be chosen optimally in certain environment (see, e.g. [12]). In addition, we suppose
that the nominal arrival rate λjðiÞ is given by

λjðiÞmjðiÞ ; μjρjðiÞ: (4:8)

In practice, this nominal arrival rate is corresponding to the number of links allowed in
a data service system, which can be realized by the technique of admission control (see,
e.g. [39] and therein). Furthermore, ρjðiÞ for each j 2 J in Equation (4.8) is the
nominal throughput determined by

ρjðiÞ ¼
X
v2VðjÞ

ρvjðiÞ and ρvjðiÞ ¼ νvj�ρvjðiÞ (4:9)

with ρv�ðiÞ 2 OvðiÞ. In addition, νv� and �ρv�ðiÞ are an Jv-dimensional constant vector and
a reference service rate vector, respectively, at service pool v, satisfyingX

j2J ðvÞ
νj ¼ Jv; νj � 0 are constants for all j 2 J ðvÞ; (4:10)

X
j2J ðvÞ

�ρvjðiÞ ¼ CUvðiÞ and �ρv1ðiÞ ¼ �ρvjðiÞ for all j 2 J ðvÞ: (4:11)

Remark 4.1 By Equation (3.22), �ρv�ðiÞ for each i 2 K and v 2 VðjÞ can indeed be
selected, which satisfy the second condition in Equation (4.11). Thus, the nominal
throughput ρðiÞ in Equation (4.8) can be determined. One simple example that satisfies
these conditions is to take νvj ¼ 1 for all j 2 J ðvÞ and v 2 VðjÞ. Then, the conditions in
Equations (4.8)–(4.11) mean that the system manager hopes to maximally and fairly
allocate capacity to all users. Furthermore, the system design parameters λjðiÞ for all j 2
J and each i 2 K can be determined by Equation (4.8).

Now, we suppose that the inter-arrival time corresponding to the kth arriving job
batch to the system indexed by r 2 R is given by
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urj ðk; iÞ ¼
ûjðkÞ
λrj ðiÞ

for each j 2 J ; k 2 f1; 2; :::g; i 2 K; (4:12)

where the ûjðkÞ does not depend on r and i. Furthermore, it has mean one and finite
squared coefficient of variation α2j . In addition, the number of packets, wjðkÞ, and the

packet length vjðkÞ are assumed not to change with r.
From the heavy traffic condition in Equation (4.7) for the rth environmental state

process αrð�Þ with r 2 R, we know that αrðr2�Þ and αð�Þ are equal each other in
distribution since they own the same generator matrix (see, e.g. the definition in
pages 384–388 of Resnick [31]). Therefore, in the sense of distribution, all of the
systems indexed by r 2 R in Equation (3.1) share the same random environment
over any time interval ½0; t�.

4.2. Proof of theorem 3.1

First, from the second condition in Equation (4.7), we know that the processes αrðr2�Þ
for each r 2 R and αð�Þ are equal in distribution. Thus, without loss of generality, we
can suppose that

αrðr2tÞ ¼ αðtÞ for each r 2 R and t 2 ½0;1Þ: (4:13)

Then, for each j 2 J , r 2 R and by the radial homogeneity of Λðq; iÞ of the policy in
Equation (4.6), we can define the fluid and diffusion scaled processes as follows:

Er
j ð�Þ ; Ar

j ðr2�Þ; (4:14)

�Tr
j ð�Þ;

ð�
0
Λj

�QrðsÞ; αðsÞ
� �

ds ¼ 1
r2
Tr
j ðr2�Þ; (4:15)

�Qr
j ðtÞ ;

1
r2
Qr

j ðr2tÞ; (4:16)

�Er
j ðtÞ ;

1
r2
Erj ðtÞ; (4:17)

�Srj ðtÞ ;
1
r2
Srj ðr2tÞ: (4:18)

Thus, by Equation (2.6), Equation (4.13), and the assumptions among arrival and
service processes, we know that

Q̂r
j ð�Þ ¼

1
r
Er
j ð�Þ �

1
r
Srj ð�Tr

j ð�ÞÞ: (4:19)

Furthermore, let

Êrð�Þ ¼ ðÊr
1ð�Þ; :::; Êr

Jð�ÞÞ
0 with Êrj ð�Þ ¼

1
r

Ar
j ðr2�Þ � r2�λrj ð�Þ

� �
; (4:20)
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Ŝrð�Þ ¼ ðŜr1ð�Þ; :::; ŜrJð�ÞÞ
0 with Ŝrj ð�Þ ¼

1
r

Sjðr2�Þ � μjr
2�

� �
(4:21)

for each j 2 J with

�λrj ð�Þ ;
ð�
0
mjðαðsÞÞλrj ðαðsÞÞds

¼
ð�
0
mjðαrðr2sÞÞλrj ðαrðr2sÞÞds

¼ 1
r2

ðr2�
0
mjðαrðsÞÞλrj ðαrðsÞÞds;

(4:22)

and define

�λrð�Þ ¼ �λr1ð�Þ; :::; �λ
r
Jð�Þ

� �
: (4:23)

In addition, we use �Qrð�Þ, �Erð�Þ, �Srð�Þ, and �Trð�Þ to denote the corresponding vector
processes. Finally, as a fundamental tool in our subsequent justification, we prove the
following generalized functional central limit theorem for TSRRPs, which also has the
potential to be applied in more fields.

Lemma 4.1. For the diffusion-scaled process in Equation (4.20), the following conver-
gence in distribution holds, i.e. as r ! 1,

Êrð�Þ ) HEð�Þ: (4:24)

PROOF. If the jump size related to each reward is bounded, the proof of the current
lemma is a direct generalization of the one for Lemma 6 by Dai [5]. However, if the
jump size is a unbounded random variable, the generalization needs some additional
work. Nevertheless, due to the length of this proof, it will be provided in the Appendix
of this paper. □

Next, corresponding to the processes in Equations (4.14)–(4.19), we define the
following fluid limit related processes,

�QjðtÞ ¼ �Qjð0Þ þ �λjðt; ζ tð�ÞÞ � μj
�TjðtÞ for each j 2 J (4:25)

�λðtÞ ¼ �λ1ðtÞ; :::; �λJðtÞ
� �

; �λjðtÞ ;
ðt
0
λjðαðsÞÞds; (4:26)

�TjðtÞ ¼
ðt
0

�Λjð �QðsÞ; αðsÞÞds; (4:27)

�Λjðq; iÞ ¼
Λjðq; iÞ if qj > 0;
ρjðiÞ if qj ¼ 0;

�
for each i 2 K: (4:28)

Then, we have the associated lemma concerning the weak convergence to a random
fluid limit process under our scheduling game policy.
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Lemma 4.2. If �Qrð0Þ ) �Qð0Þ along r 2 R, the joint convergence in distribution along a
subsequence of R holds under the conditions required by Theorem 3.1,

�Erð�Þ; �Srð�Þ; �Trð�Þ; �Qrð�Þ
� �

) �Eð�Þ; �Sð�Þ; �Tð�Þ; �Qð�Þ
� �

: (4:29)

Furthermore, if �Qð0Þ ¼ ð0Þ, the convergence is true along the whole R and the limit
satisfies

�Eð�Þ ¼ �λð�Þ; �Sð�Þ ¼ μð�Þ; �Tð�Þ ¼ �cð�Þ; �Qð�Þ ¼ 0; (4:30)

where �λð�Þ is defined in Equation (4.26), μð�Þ ; ðμ1; :::; μJÞ
0 � , and �cð�Þ is defined by

�cðtÞ ¼ �c1ðtÞ; :::;�cJðtÞð Þ and �cjðtÞ ;
ðt
0
ρjðαðsÞÞds for each j 2 J : (4:31)

PROOF. It follows from the proof of Lemma 7 by Dai [5] that we only need to prove the
claim �Qð�Þ ¼ 0 in Equation (4.30) to be true for our current purpose. In fact, for each
i 2 K, we define

ψðq; iÞ ;
X
v2V

ψvðq; iÞ ¼
X
v2V

X
j2J ðvÞ

Cvjðqj; ρvjðiÞÞ: (4:32)

By the proof by Dai [5], we know that all the limits in Equation (4.30) are absolutely
continuous and differentiable at almost all t 2 ð0;1Þ; in other words, almost every t 2
ð0;1Þ is a regular point of these limits. Thus, for each regular time t � 0 of �QðtÞ over
time interval ðτn�1; τnÞ with a given n 2 1; 2; :::f g, we have

dψð�QðtÞ; αðtÞÞ
dt

¼
X
v2V

X
j2J ðvÞ

d�QjðtÞ
dt

@Cvjð�QjðtÞ; ρvjðαðtÞÞ
@ �QjðtÞ

þ
dρvjðαðtÞÞ

dt

@Cvjð�QjðtÞ; ρvjðαðtÞÞ
@ρvjðαðtÞÞ

 !

¼
X
v2V

X
j2J ðvÞ

ρvjðαðtÞÞ � Λvjð�QðtÞ; αðtÞÞ
� � @Uvjð�QjðtÞ; ρvjðαðtÞÞÞ

@ρvjðαðtÞÞ
If�QI

j ðtÞ> 0g � 0;

(4:33)

where the second equality follows from the concavity of the utility functions and the
fact that Λvjð�QðtÞ; αðtÞÞ is the Pareto maximal Nash equilibrium policy to the utility-
maximal game problem in Equation (3.32). Therefore, for any given n 2 0; 1; 2; :::f g
and each t 2 ½τn; τnþ1Þ,
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0 � ψð�QðtÞ; αðtÞ
� ψð�QðτnÞ; αðτnÞÞ

¼
X
v2V

X
j2J ðvÞ

1
μj

ð �QjðτnÞ

0

@Uvjðu; ρvjðαðτnÞÞÞ
@Cvj

du

¼
X
v2V

dψvð�ρv1ðαðτnÞÞÞ
dcv1


 �
dψvð�ρv1ðαðτn�1ÞÞÞ

dcv1


 ��1

ψvð�QðτnÞ; αðτn�1ÞÞ . . .

�
X
v2V

dψvð�ρv1ðαðτnÞÞÞ
dcv1


 �
dψvð�ρv1ðαðτ0ÞÞÞ

dcv1


 ��1

ψvð�Qð0Þ; αð0ÞÞ

� κψð�Qð0Þ; αð0ÞÞ;

(4:34)

where κ is a positive constant given by

κ ¼ max
v2V

max
i;j2K

dψvð�ρv1ðiÞÞ
dcv1


 �
dψvð�ρv1ðjÞÞ

dcv1


 ��1

:

Then, it follows from the fact in Equation (4.34) that �QIðtÞ ¼ 0 for all t � 0. Hence, we
complete the proof of the lemma. □

Next, we have the following three lemmas concerning the relationship between the
utility-maximal and its dual cost-minimal games.

Lemma 4.3. Under the conditions in Equations (4.1)–(4.6), if Λðq; iÞ 2 FQðiÞ for each
i 2 K is a given Pareto optimal Nash equilibrium policy to the utility-maximal game
problem in Equation (3.32) and ql; l 2 R

� �
is a sequence of queue states, which satisfies

ql ! q 2 RJ
þ as l ! 1, then, for each j 2 J nQðqÞ and v 2 VðjÞ, we have,

Λvjðql; iÞ ! Λvjðq; iÞ as l ! 1: (4:35)

PROOF. Note that, our Pareto maximal Nash equilibrium policy to the utility-maximal
game problem in Equation (3.32) is also an optimal solution to the corresponding
utility-maximization problem as by Dai [5]. Thus, our claim can be proved by applying
the radial homogeneity assumption in Equation (6) and the similar way as used in
proving Lemma 3 of Dai [5]. □

Lemma 4.4. For each environmental state i 2 K, the following two claims are true.

Claim 1. For a given queue state q 2 RJ
þ and a scheduling policy

Λðq; iÞ ¼ c�ðiÞ 2 FQðqÞðiÞ, if c�ðiÞ ¼ ρðiÞ is the Pareto maximal Nash equilibrium policy
to the utility-maximal non-zero-sum game problem in Equation (3.32), then q� ¼ q must
be the Pareto minimal Nash equilibrium policy to the dual cost-minimal non-zero-sum
game problem in Equation (3.41) with cðiÞ ¼ c�ðiÞ as parameters of the cost functions
and with w ¼

P
j2Cðc�ðiÞÞ q

�
j =μj in the constraints, i.e. q�ðw; ρðiÞÞ ¼ q�.

Claim 2. Suppose that q� is the Pareto minimal Nash equilibrium policy to the dual
cost-minimal non-zero-sum problem in Equation (3.41) with w > 0 and Λðq�; iÞ ¼ ρðiÞ as
parameters of the cost functions, i.e. q�ðw; ρðiÞÞ ¼ q�. Then, the claim that q� > 0 is true.
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Furthermore, Λ�ðq�; iÞ ¼ Λðq�; iÞ must be the Pareto maximal Nash equilibrium policy to
the utility-maximal non-zero-sum game problem in Equation (3.32) with q ¼ q� as a
parameter of the utility functions.
PROOF. First, we prove the result in Claim 1 to be true. Without loss of generality, we
suppose that q > 0. Then, for each v 2 V, it follows from the KKT optimality conditions
(see, e.g. [40]) that the Pareto optimal Nash equilibrium policy to the utility-maximal
game problem in Equation (3.32) can be determined by the solution to the system of
equations

cvj
@Uvjðqj;cvjÞ

@cvj
þ
PBv

k¼1 ηvk
@hvkðcv�;iÞ

@cvj

� �
¼ 0 for each j 2 J ðvÞ;

ηvkhvkðcv�; iÞ ¼ 0 for each k 2 Uv;

(
(4:36)

where Bv and Uv are defined in Equation (3.21), ηvk � 0 for all k 2 Uv are the
Lagrangian multipliers, and hvkðcv�; iÞ for each k 2 Uv and i 2 K is defined in
Equation (3.21). By the same way, the Pareto optimal Nash equilibrium policy to the
dual cost-minimal non-zero-sum game problem (Equation (3.41)) can be obtained by
the solution to the system of equations

qj
@Cvjðqj;cvjÞ

@qj
þ θv

μj

� �
¼ 0 for each j 2 J ðvÞ;

θv w�
P

j2J ðvÞ
qj
μj

� �
¼ 0;

8<
: (4:37)

where θv � 0 is the Lagrangian multiplier. Furthermore, it follows from the definition
of the cost function in Equation (3.41) that

@Cvjðqj; cvjÞ
@qj

¼ 1
μj

@Uvjðqj; cvjÞ
@cvj

: (4:38)

In addition, by the condition in Equation (4.2), we know that Uvjðq; cvÞ for all j 2
0f g[J ðvÞ are strictly concave in cv for each q > 0. Thus, fc�v�ðiÞ ¼ ρv�ðiÞ for all v 2

Vg is the unique Pareto optimal Nash equilibrium to the utility-maximal game problem
in Equation (3.32) for the given q > 0 as a parameter of the utility functions, which
satisfies Equation (4.36). Hence, if we take

θv ¼ �
XB
k¼1

ηvk
@hvkðρv�ðiÞ; iÞ

@cvj
;

it follows from Equation (4.36) and Equation (4.38) that Equation (4.37) holds. From
the condition in Equation (4.5), we know that Cvjðq; cv�Þ for all j 2 0; 1; :::; Jf g and v 2
VðjÞ are strictly convex in q for each cv� > 0. Therefore, the dual cost-minimal game
problem in Equation (3.41) has the unique Pareto optimal Nash equilibrium policy
q� ¼ q when cv� ¼ c�v�ðiÞ ¼ ρv�ðiÞ for each v 2 V is as a parameter of the cost functions

and w ¼
PJ

j¼1 q
�
j =μj is in the constraints.

Second, we prove the result in Claim 2 to be true. It follows from the conditions in
Equations (4.4)–(4.5) and the relationship between the utility and cost functions in
Equation (3.41), we know that Cvjðq; ρv�ðiÞÞ for all j 2 0; 1; :::; Jf g and v 2 VðjÞ are
strictly convex in q. Thus, q� is the unique Pareto optimal Nash equilibrium policy to
the dual cost-minimal game problem (Equation (3.41)) with w > 0 and
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Λv�ðq�; iÞ ¼ ρv�ðiÞ. Then, we can prove that q� > 0 by showing a contradiction. In fact,
without loss of generality, we assume that there exists some index m 2 J with m< Jv
such that

Qðq�Þ \ J ðvÞ ¼ fk1; :::; kmg with k1�jv1 and km ¼ jvJv : (4:39)

Thus, we can construct a 2-dimensional line for some constant � � w,

P1 :
qjv1
μjv1

þ
qjJv
μjJv

þ
X

j�jv1;jvJv ; j2J ðvÞ

q�j
μj

¼ � � w (4:40)

such that it passes through the point q�, where we have used the corresponding index
method as in J ðvÞ for q and μ. Now, it follows from the relationship between the utility
and cost functions given in Equation (3.41) that the function fvðqjv1 ; ρv�ðiÞÞ
( ¼ Cv0ðq; ρv�ðiÞÞ) for a given v 2 V with the constraint P1 for all q ¼
ðqv1; q�v2; :::; q�vðJv�1Þ; qvJvÞ

0 2 RJv
þ is of the following derivative function in qv1 2 Rþ

1 :

@fvðqv1; ρv�ðiÞÞ
@qv1

¼ 1
μv1

@Uv1ðqv1; ρv1ðiÞÞ
@cv1

� 1
μv1

@UvJvðð��
qv1
μv1

�
P

j�jv1;jvJv ; j2J ðvÞ
q�vj
μvj
ÞμvjJv ; ρvJvðiÞÞ

@cvJv
:

(4:41)

Furthermore, it is strictly increasing in qv1 2 Rþ
1 from Equation (4.4). Thus, it follows

from Equations (4.41) and (4.5) that

@fvð0; ρv�ðiÞÞ
@qv1

¼ � 1
μv1

@UvJvðð��
P

j�jv1;jjJv ; j2J ðvÞ
q�j
μj
ÞμvJv ; ρvJvðiÞÞ

@cvJv
< 0; (4:42)

@fvðq�v1; ρv�ðiÞÞ
@qv1

¼ 1
μv1

@Uv1ðq�v1; ρv1ðiÞÞ
@cv1

> 0: (4:43)

Then, by Equations (4.42) and (4.43), we know that there is a ~qv1 2 ð0; q�v1Þ such that

@fvð~qv1; ρv�ðiÞÞ
@qv1

¼ 0; (4:44)

which implies that on the curve f ðq; ρðiÞÞ with q ¼ ðq1; q�2; :::; q�J�1; qJÞ
0 2 RJ

þ, there
exists a minimal point ~q 2 RJ

þ with ~q ¼ ð~q1; q�2; :::; q�J�1; ~qJÞ
0 such that

Cv0ð~q; ρv�ðiÞÞ<Cv0ðq�; ρv�ðiÞÞ

~qJ ¼ �� ~qv1
μv1

�
X

j�jv1;jvJv ; j2J ðvÞ

q�j
μj

0
@

1
AμvJv :

This contradicts the assumption that q� is the Pareto optimal Nash equilibrium policy
to the dual cost-minimal game problem in Equation (3.41). Thus, we can conclude
that q� > 0.
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Hence, if q� is the Pareto optimal Nash equilibrium policy to the dual cost-minimal
game problem in Equation (3.41) with c ¼ Λðq�; iÞ ¼ ρðiÞ for each v 2 V as a parameter
of the cost functions, we see that the equalities in Equation (4.37) hold with q ¼ q� and
cv� ¼ Λv�ðq�; iÞ ¼ ρv�ðiÞ. Thus, we can take ηvkUv ¼ θv and ηvk ¼ 0 when k � kUv in

Equation (4.36) since q� > 0 and ρv�ðiÞ is on the curve hvkUv ðcv�; iÞ ¼ 0. Therefore,
Λ�
v�ðq�; iÞ ¼ Λvðq�; iÞ ¼ ρv�ðiÞ for each i 2 K and v 2 V is the Pareto optimal Nash

equilibrium policy to the utility-maximal game problem in Equation (3.26) with q ¼
q� as a parameter of the utility functions. □

Now, let k � k denote the norm of a vector q 2 RJ
þ in the sense that

k q k¼
PJ

j¼1 qj
�� ��. Then, we have the following lemma.

Lemma 4.5. For the dual cost-minimal non-zero-sum game problem in Equation (3.41)
associated with each state i 2 K, the following two claims are true.

Claim 1. It has a unique Pareto optimal Nash equilibrium policy q�ðw; ρðiÞÞ when cv ¼
ρvðiÞ for each i 2 K and v 2 V is as a parameter of the cost functions. Furthermore,
q�ðw; ρðiÞÞ is continuous in terms of w.

Claim 2. If, for any given constant �> 0, there exists another constant σ > 0 that
depends only on �, such that for any q 2 Vð�; σ; iÞ with

Vð�; σ; iÞ; q 2 RJ
þ: q� q�ðw; ρðiÞÞk k � σ and w ¼

XJ
j¼1

1
μj
qj � �

( )
; (4:45)

then we have

XJ
j¼1

Λjðq; iÞ ¼
XJ
j¼1

ρjðiÞ: (4:46)

PROOF. Proof of Lemma 4.5. Note that it follows from the condition in Equation (4.5)
that Cvjðq; cÞ for j 2 0; 1; :::; Jf g and v 2 VðjÞ is strictly convex in q for each cv > 0. Thus,
the dual cost-minimal game problem in Equation (3.41) has a unique Pareto optimal
Nash equilibrium policy q� ¼ q when cv ¼ ρvðiÞ for each v 2 V is as a parameter of the
cost functions. Furthermore, the rest of the proof for this lemma follows from the one
for Lemma 5 by Dai [5]. □

Finally, by applying Lemmas 4.1–4.5 in the current paper to the proof for Theorem 1
in [5], we can complete the proof for Theorem 3.1 in the current paper. □

5. Conclusion

In this paper, we have developed a generic game platform with multiple intelligent
cloud-computing pools and parallel-queues for resources-competing users. It can be
used to model various real-world systems including cloud-computing with multi-super-
computer centres, MIMO wireless channels, and Internet of Energy. Inside the plat-
form, the software structure is modelled as Blockchain. All the users are associated with
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Big Data arrival streams whose random dynamics is modelled by TSRRPs. Each user
may be served simultaneously by multiple pools while each pool with parallel-servers
may also serve multi-users at the same time via running smart policies in the
Blockchain, e.g. solving a Nash equilibrium point myopically at each fixed time to a
game-theoretic scheduling problem. To illustrate the effectiveness of our game plat-
form, we model the performance measures of its internal data flow dynamics (i.e. queue
length and workload processes) as RDRSs under our designed scheduling policies. By
these RDRS models, we can prove our myopic game-theoretic policy to be an asymp-
totic Pareto minimal-dual-cost Nash equilibrium one globally over the whole time
horizon to a randomly evolving dynamic game problem. In the meanwhile, we also
develop iterative schemes for simulating our multi-dimensional RDRS models with the
support of numerical comparisons to illustrate the effectiveness of the RDRS models
and our game-theoretic policy. More applications and smart engines will be introduced
and invented into our game platform.

Appendix: Proof of Lemma 4.1
First of all, we remark that the proof for the current lemma is a generalization from

the one for Lemma 6 by Dai [5]. The major difference between these two proofs is that
the jump size at each time τn with n 2 1; 2; :::f g for the renewal reward process in the
current proof may be a unbounded random variable while the corresponding jump size
at time τn for the discussion based on a renewal process is a bounded one by Dai [5].

More precisely, it follows from the heavy traffic condition (Equation (4.7)), the
functional central limit theorem for renewal reward process (see, e.g. Theorem 7.4.1
in page 239 of Whitt [19]), the random change of time lemma (see, e.g. page 151 of
Billingsley [41]), the Lemma 8.4 in Dai and Dai [42] that

Ê
rðτn þ tÞ � Ê

rðτnÞ
� �

If0 � t < σng

¼ 1
r

Arðr2ðτn þ tÞÞ � Arðr2τnÞ
� �

If0 � t < σng � r �λ
rðτn þ tÞ � �λ

rðτnÞ
� �

If0 � t < σng

¼ 1
r
~A
rðr2ðt � ϕn=r

2ÞIf0 � t < σngÞ þ
1
r
wðτn; αðτnÞÞ � r �λ

rðτn þ tÞ � �λ
rðτnÞ

� �
If0 � t < σng

) ΓEðαðτnÞÞ
� �1

2If0 � t < σngB
EðtÞ

¼d HEðτn þ tÞ � HEðτnÞ
� �

If0 � t < σng

(5:1)

for each n 2 0; 1; :::f g as r ! 1, where σn ¼ τnþ1 � τn is an exponentially distributed
random variable independent of all other random events concerned since αð�Þ is an FS-
CTMC, and

wðτn; αðτnÞÞ ¼ ðw1ðτn; αðτnÞÞ; . . . ;wJðτn; αðτnÞÞÞ0

is the random reward vector at time τn. Furthermore, ~Arð�Þ is a renewal reward process
with

~Arðr2ð� � ϕn=r
2ÞÞ ¼ ð~Ar

1ðr2ð� � ϕ1
n=r

2ÞÞ; . . . ; ~Ar
Jðr2ð� � ϕJ

n=r
2ÞÞÞ0;

where ϕn ¼ ðϕ1
n; :::;ϕ

J
nÞ

0 is an J-dimensional random vector whose jth component ϕj
n

for each j 2 1; :::; Jf g denotes the remaining arrival time beginning at τn for a packet
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batch to the jth queue with rate λrj ðαðτnÞÞ switched from λrj ðαðτn�1ÞÞ at time τn. For

convenience, we now rewrite Equation (1) in the following way over each ½τn; τnþ1Þ
as r ! 1:

~E
r;nð�Þ; Ê

rðτn þ �Þ � Ê
rðτnÞ

) HEðτn þ �Þ � HEðτnÞ

; ~H
E;nð�Þ:

(5:2)

Next, to prove the claim in the lemma, we establish the relative compactness for Êrð�Þ
with r 2 R. In doing so, we define the modulus of continuity in terms of a function
xð�Þ: ½0;1Þ ! Rd with some integer d > 0 for each given T > 0 and δ > 0 as follows:

$ðx; δ;TÞ; inf
tl
max

l
Osc x; ½tl�1; tlÞð Þ; (5:3)

where the infimum takes over the finite sets tlf g of points satisfying 0 ¼
t0 < t1 < :::< tm ¼ T and tl � tl�1 > δ for l ¼ 1; :::;m, and

Osc ðx; ½tl�1; tl�Þ ¼ sup
t1�s�t�t2

k xðtÞ � xðsÞk2 (5:4)

with k �k2 denoting the Euclidean norm in Rd. Thus, it follows from Corollary 7.4 in
page 129 of Ethier and Kurtz [43] that the justification of the relative compactness is
equivalent to proving the following two conditions: First, for each η> 0 and rational
t � 0, there exists a constant cðη; tÞ such that

lim inf
r!1

P Ê
rðtÞ

��� ���
2
� cðη; tÞ

n o
� 1� η; (5:5)

Second, for each η > 0 and T > 0, there exists a δ > 0 such that

lim sup
r!1

P $ðÊr; δ;TÞ � η
n o

� η: (5:6)

To show the condition in Equation (5.5) to be true, we define NðtÞ;max n; τn � tf g
for each t 2 ð0;1Þ. Thus, for each rational t > 0, take a T > 0 such that t 2 ð0;T� and
introduce a sequence of events:

Sl ; fω: NðT;ωÞ � lg for each l 2 f1; 2; :::; g: (5:7)

Since αð�Þ has at most finitely many jumps a.s. over ½0;T�, we know that the sequence of
probabilities P Slf g increases monotonously to the unity as l ! 1. Therefore, for the
given η> 0, there exists some large enough L> 0 such that

P SLf g � 1� η

2
: (5:8)

Furthermore, by Equation (5.2) and Remark 7.3 in page 129 of Ethier and Kurtz [43],
we know that ~Erð�Þ satisfies the following compact containment condition, i.e. for each
η > 0 and T > 0, there is a constant Kn > 0 for each n 2 0; 1; :::;f g such that

inf
r

P T r;nf g � 1� η

2ðLþ 2Þ ; (5:9)
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where

T r;n;fω: k ~ErðtÞk2 � Kn; t 2 ½0;T� \ ½0; σnÞg:

Now, for each n 2 1; 2; :::;f g and t 2 ½τNðtÞ; τNðtÞþ1Þ, we have the following
observations

ÊrðtÞ ¼ ÊrðτNðtÞÞ þ ~Er;NðtÞðt � τNðtÞÞ; (5:10)

ÊrðτnÞ � Êrðτ�n Þ ¼
wðτn; αðτnÞÞ

r
: (5:11)

Then, for any t1; t2 2 ½0;T� and along each sample path, it follows from Equations
(5.10)–(5.11) that

Osc Ê
r
; ½t1; t2�

� �
�
XNðt2Þ

n¼0

Osc ~E
r;n
; ½t1 � τn; t2 � τn� \ ½0; σnÞ

� �
þ ΞrðTÞðNðt2Þ � Nðt1ÞÞ;

(5:12)

where Ξr is defined by

ΞrðTÞ ; 1
r

max
1�j�Njiðr2TÞ; i2K; j2J

wðk; j; iÞ

 �

; (5:13)

and wðk; j; iÞ in Equation (5.13) is the kth batch size corresponding to the jth user when
the environment mode is in state i 2 K. Furthermore, for each t 2 ½0;T�,

NjiðtÞ ¼ sup n � 0:
Xn
k¼1

wðk; j; iÞ � t

( )
:

Note that, by the claim proved in Lemma 8.4 of [42], we know that

ΞrðTÞ ! 0 a:s: as r ! 1; (5:14)

which implies that there is a constant KLþ1 > 0 such that

inf
r

P T r;Lþ1� �
� 1� η

2ðLþ 2Þ ; (5:15)

where

T r;Lþ1 ; ω: k ΞrðTÞk2 � KLþ1f g:

Thus, it follows from Equation (5.12) that, along each sample path in SL \T r;n \T r;Lþ1

for r 2 1; 2; :::f g and n 2 0; 1; :::; Lþ 1f g,

Ê
rðtÞ

��� ���
2
� Ê

rð0Þ
��� ���

2
þ Osc Ê

r
; ½0; t�

� �

� 2
XLþ1

n¼0

sup
t2½0;T�\½0;σnÞ

~E
r;nðtÞ

�� ��
2;

(5:16)
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where

~Er;Lþ1ðtÞ ; ΞrðTÞ for all t 2 ½0;T�:

Hence, for the above arbitrarily given η > 0, each rational t 2 ½0;T�, and sufficiently
large r 2 R, we know that

P Ê
rðtÞ

��� ���
2
� 2Lþ1

XLþ1

n¼0

Kn

( )

� P Ê
rðtÞ

��� ���
2
� 2Lþ1

XLþ1

n¼0

Kn

( )\
SL

( )

� P SLf g �
XLþ1

n¼0

P ~E
r;nðtÞ

�� ��
2 >Kn

n o\
SL for some t 2 ½0;T� \ ½0; σnÞ

n o
> 1� η;

(5:17)

where, ½0;T� \ ½0; σLþ1Þ is defined to be ½0;T�. Furthermore, the second inequality in
Equation (5.17) follows from Equation (5.16) and the last inequality in Equation (5.17)
follows from Equations (5.8) and (5.9). Thus, we have shown that the condition in
Equation (5.5) holds.

Next, we prove the condition in Equation (5.6) to be true. It follows from Equations
(5.2) and (5.14) that, for each η > 0 and T > 0, there exists a δn > 0 for each
n 2 0; 1; :::; Lþ 1f g such that

lim sup
r!1

P $ð~Er;n
; δn; ½0;T� \ ½0; σnÞÞ �

η

Lþ 2

� �
� η

Lþ 2
: (5:18)

Furthermore, if we take δ ¼ min δ0; :::; δLþ1f g > 0, it follows from Equations (5.3) and
(5.12) and 1.9 in page 326 of Jacod and Shiryaev [44] that

$ðÊr
; δ;TÞ �

XLþ1

n¼0

$ð~Er;n; δ; ½0;T� \ ½0; σnÞÞ

�
XLþ1

n¼0

$ð~Er;n; δn; ½0;T� \ ½0; σnÞÞ
(5:19)

along each sample path in SL for each r 2 1; 2; :::;f g. Thus, for each sufficiently large
r 2 R, it follows from Equations (5.18)–(5.19) that

P $ðÊr; δ;TÞ � 2Lþ1 η

Lþ 2

� �
�
XLþ1

n¼0

P $ð~Er;n; δn; ½0;T� \ ½0; σnÞÞ �
η

Lþ 2

� �
� η;

or in other words, the condition in Equation (5.6) holds.
Hence, by the proved claims in Equations (5.5) and (5.6), we know that Êrð�Þ is

relatively compact for r 2 R. Furthermore, we consider any subsequence R1 	 R such
that
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Êrð�Þ ) Êð�Þ ða process to be identifiedÞ along r 2 R1: (5:20)

Then, by the Skorohod representation theorem (see, e.g. Theorem 3.1.8 in page 102 of
Ethier and Kurtz [43]) and the random change of time lemma (see, e.g. page 151 of
Billingsley [41]), we can conclude that

Ê
rð�ÞI ��τnþ1f g; Ê

rð�ÞI ��τnf g

� �
) Êð�ÞI ��τnþ1f g; Êð�ÞI ��τnf g
� �

:

for each n 2 0; 1; :::;f g along r 2 R1. Thus, by the method of induction in terms of
n 2 0; 1; :::;f g, Equation (5.2), and the continuous-mapping theorem (see, e.g. Theorem
3.4.1 in page 85 of Whitt [19]), we know that the limit in Equation (5.20) along r 2 R1

is HEð�Þ. In addition, we can conclude that Êr ) HEð�Þ along r 2 R since R1 is
arbitrarily chosen. Finally, by the independence assumptions, we know that the claim
in Lemma 4.1 holds.
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