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Construction of Manifolds via Compatible Sparse
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Manifold is an important technique to model geometric objects with arbitrary
topology. In this article, we propose a novel approach for constructing
manifolds from discrete meshes based on sparse optimization. The local
geometry for each chart is sparsely represented by a set of redundant atom
functions, which have the flexibility to represent various geometries with
varying smoothness. A global optimization is then proposed to guarantee
compatible sparse representations in the overlapping regions of different
charts. Our method can construct manifolds of varying smoothness including
sharp features (creases, darts, or cusps). As an application, we can easily
construct a skinning manifold surface from a given curve network. Examples
show that our approach has much flexibility to generate manifold surfaces
with good quality.
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1. INTRODUCTION

The construction of surfaces with arbitrary topology has attracted
a great deal of attention in the geometric modeling community.
Nonuniform rational B-splines (NURBS) are a standard surface
representation in computer-aided design, which is based on the
rigorous mathematics of spline theory and the paradigm of stitching
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patches together. It is cumbersome for NURBS to construct smooth
geometric objects with arbitrary topology due to the difficulty of
meeting geometric continuity constraints between adjacent surface
patches. Subdivision surfaces, defined as the limits of recursive
refinement algorithms, have advantages for modeling arbitrarily
complicated geometry and topology. Yet they generally do not
possess analytic representations, and special need is required to
take care of extraordinary points whose geometric properties differ
significantly from other regular regions.

Manifolds are another attractive representations for modeling
geometric objects with arbitrary topology [Grimm and Hughes
1995; Ying and Zorin 2004; Gu et al. 2006]. Manifold is defined
as a collection of surface patches with overlapping regions, and
each patch corresponds to a chart by a one-to-one map. At the
overlapping region of two charts, a transition function is needed
to map one chart to another. The manifold representation can be
considered as an extension of B-splines with arbitrary topology,
which guarantees continuity of certain order by the definition of
transition functions from chart to chart on the domain manifold.
All transition functions are generally smooth analytical functions.
The local geometry on each chart is a linear combination of some
set of basis functions, such as polynomials [Ying and Zorin 2004],
splines [Gu et al. 2006], and rational splines [Della Vecchia et al.
2008]. However, previous manifold-based approaches can hardly
represent geometric objects with specified varying continuity
across patches and usually handle the situation by taking special
care and adopting a complicated design.

To model geometric objects with adaptive continuity and various
geometric features such as creases, darts, and cusps, we propose
a novel approach for manifold construction. The basic idea is as
follows. We use a redundant set of atom functions (also called dic-
tionary) with various features to represent local geometry. With
given observation data on the geometry, we employ sparsity regu-
larization instead of least-squares fitting to approximate the given
data to avoid degeneracy due to the redundancy of atom functions.
A global optimization is then proposed to guarantee a compatible
sparse representation in the overlapping regions of different patches.

The fitting problem with the redundant dictionary is actually a
sparse representation [Elad 2010] that accounts for most or all in-
formation of a geometry signal by a linear combination of a small
number of elementary signals. The key reasons we employ the spar-
sity regularization in geometric processing are twofold. First, cer-
tain groups of atom functions usually cannot satisfy all properties;
for example, some edges are sharp features and others are smooth,
and thus a redundant dictionary repository is needed. Second, if a
redundant set of atom functions is selected all at once, the over-
fitting phenomenon always occurs by least-squares approximation.
Sparse representation can balance these two problems by choosing
a different set of atom functions in different situations.

Sparse representation is a recently developed powerful tool
for image and signal processing. Sparsity is extensively used in
famous transforms, such as discrete Fourier transform (DFT),
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Fig. 1. The definition of a manifold.

wavelet transform, and singular value decomposition, to reveal
elegant structures and achieve compact representations of signals
of interest. However, the global compatibility of signals, i.e., the
relationship between different signal patches, is ignored in tradi-
tional sparse representation due to the simplicity and regularity of
images. But geometric objects usually have complicated overlap-
ping regions between two charts, and they do not have regular pa-
rameterization as images do. Compatible sparse manifold represen-
tation becomes an ideal tool to solve such difficulties. Furthermore,
it is a rather compact representation and has explicit formulation,
and it can adaptively approximate geometries with various features.

The contribution of our work can be summarized as follows:

—We introduce a new approach to construct manifolds for geomet-
ric objects, which can adapt to various features of the objects.

—A global sparse optimization model is proposed to obtain a com-
patible sparse representation for the manifold surface.

—Our approach provides an easy way to construct a manifold sur-
face from a 3D curve network.

2. RELATED WORK

Construction of manifold surfaces. Manifold is a technique to con-
struct surfaces from domain manifolds. A manifold surface consists
of a collection of charts with overlapping regions where transi-
tion functions are defined between them [Grimm and Zorin 2006]
(Figure 1). Based on a manifold representation, it is simple to de-
fine auxiliary linear spaces of scalar or vector-valued fields on the
surface, as the construction can be done in embedding space with
any dimension. Grimm et.al. first introduced manifolds for surface
modeling in computer graphics, where a manifold surface is built
from a polygonal mesh using one chart per mesh element (vertices,
edges, and faces) [Grimm and Hughes 1995]. Since then, several
approaches have been proposed for constructing manifold surfaces
over arbitrary mesh models over the past two decades [Navau and
Garcia 2000; Ying and Zorin 2004; Gu et al. 2006; He et al. 2006;
Wang et al. 2008; Della Vecchia et al. 2008; Della Vecchia and
Jüttler 2009; Gallier et al. 2012]. A few of them are mentioned
here. Navau and Garcia [2000] present a method for generating Cm

manifold surfaces, which requires a preprocess of repeated Catmull-
Clark subdivision steps to isolate the irregularities of the mesh.
Ying and Zorin [2004] propose a manifold surface construction
with C∞ smoothness, whereas Tosun and Zorin [2011] propose a
similar construction with Ck smoothness using spline functions.
Based on spline theory, manifold splines and their variants, e.g.,
manifold T-splines and polycube splines, were introduced in Gu
et al. [2006], He et al. [2006], and Wang et al. [2008], respectively.
Grimm et al. [2009] adaptively fit the representation of meshes

of varying resolutions and sampling quality but not the geometry.
Constructions of smooth and piecewise rational free-form surfaces
were given in Della Vecchia et al. [2008] and Della Vecchia and
Juttler [2009], where a manifold surface is described as a collection
of rational tensor-product and triangular surface patches. Li et al.
[2006] automatically convert a mesh of arbitrary topology into a
T-spline surface.

Differing from the existing methods on manifold construction,
we represent the local function as a sparse representation of a set of
redundant atom functions, called a dictionary. Furthermore, a com-
patible sparse representation is proposed for global compatibility.
Various geometric features can be represented by atom functions
based on sparse optimization, which is generally difficult to handle
using existing approaches.

Modeling from curve networks. Constructing surfaces from 3D
curve networks has long been studied in the geometric modeling
and computer-aided design (CAD) community [Abbasinejad et al.
2011; Bessmeltsev et al. 2012; Zhuang et al. 2013]. Designers often
start by specifying a network of 3D curves, which serves as a visual
proxy of the desired model, and then construct a surface model
interpolating the curve network. There are a variety of techniques
for interpolating or approximating curve networks with smooth
surfaces, such as Coons patches [Coons 1967], N-sided patches
[Malraison 2000; Nasri et al. 2009], mesh surfaces [Schaefer et al.
2004; Nealen et al. 2007; Abbasinejad et al. 2011; Bessmeltsev
et al. 2012], and subdivision surfaces [Schaefer et al. 2004; Nasri
et al. 2009]. Pan et al. [2015] present a new method constructing
curve network using flow-line curves. As it is highly ambiguous
in defining surfaces on arbitrary 3D curve cycles, most of existing
methods need to presegment the curve cycles into subcurve cycles
and then construct surfaces over them.

As an application of sparse manifold representation, we can
easily construct a manifold surface that approximates a given 3D
curve network. Due to the sparsity of geometry, our approach can
generate a reasonable surface over the whole curve network with
global smoothness.

Sparse representation. Sparse representation has drawn a lot of
attention over the past decade, as it can reveal certain structures
of signals via the assumption of sparsity. It provides high-quality
performance for image applications such as noise reduction, super-
resolution, compression, and face recognition [Donoho 1995; Elad
and Aharon 2006; Wright et al. 2009; Yang et al. 2010]. Elad [2010]
comprehensively illustrates the whole framework of sparse repre-
sentation and the underlying mathematical theory. Xu et al. [2015]
introduce how sparsity is used in geometric processing. Recent
work [Xiong et al. 2014] uses a dictionary learning framework to
reconstruct gemoetry.

Geometry as a signal also contains redundant information and
thus should be able to be sparsely represented. We represent the
local function on a manifold chart as a sparse representation of
a redundant dictionary of atom functions. The manifold construc-
tion benefits from this sparse representation. Unlike images, which
have regular parameterization, geometric objects have complicated
overlapping areas between two patches or charts. Thus, we develop
an optimization algorithm for compatible sparse representation in
manifold construction, which as far as we know is the first attempt
to address this issue.

3. CONSTRUCTION

This section introduces the approach for constructing manifolds via
an optimization framework of compatible sparse representations.
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3.1 Manifold Surfaces

Manifold structure. Manifold modeling is a technology used to
construct surfaces from a domain manifold [Grimm and Hughes
1995; Ying and Zorin 2004]. As shown in Figure 1, the domain
manifold D is covered by a collection of charts {(Ui, φi)}n

i=1 with
overlapping regions. Here φi : Ui → R

2 is a one-to-one map
(parameterization) from Ui to an open set φi(Ui) in a plane domain,
which defines the local coordinate system for Ui . If two charts
(Ui, φi) and (Uj , φj ) overlap, the transition function φij = φj ◦φ−1

i

describes the transformation from φi(Ui) to φj (Uj ).

Local geometry. On each chart (Ui, φi), a local function qi(u, v)
from φi(Ui) to Euclidean space R

d is constructed for defining the
geometry locally, where (u, v) are the local coordinates of a point
x ∈ Ui .

Weight function. A set of weight functions wi : φi(Ui) → R with
partition of unity are defined on charts, i.e.,

∑
j : x∈Uj

wj (φj (x)) =
1, where the summation subscript {j : x ∈ Uj } means that the
summation is for all j belonging to the index set {j | x ∈ Uj }.

Global geometry. The global geometry function on the domain
manifold D is defined by f = ∑n

j=1 wj (φj )qj (φj ), which is prac-
tically evaluated on an individual chart (Ui, φi) as

f (x) =
∑

j : x∈Uj

wj (φj (x))qj (φj (x)), ∀x ∈ Ui. (1)

According to manifold theory, the continuity of the global geome-
try function f (x) depends on the continuity of transition functions
{φij (u, v)}, weight functions {wi(u, v)}, and local geometry func-
tions {qi(u, v)}.

3.2 Sparse Representation of Local Geometry

Using the given mesh as a domain mesh, suppose that we already
have a collection of charts and their transition maps. Our immediate
goal is to define the local geometry on each chart using a sparse
representation.

Defining local geometry. Generally, the local function qj (u, v)
on the chart (Uj , φj ) is considered a linear combination of a set of
atom functions A = {al(u, v)}L

l=1 defined on φj (Uj ), i.e.,

qj (u, v) =
L∑

l=1

clj al(u, v). (2)

Denote cj = (c1j , . . . , cLj )T as the coefficient vector of local func-
tion associated with chart (Uj , φj ).

Fitting observation data. We view geometries from a perspec-
tive of signals, which are observed on the domain manifold. As-
sume that there are K observations on chart {(Uj , φj )} given by
{((uk, vk), hk)}K

k=1. The observation signal hk at the point (uk, vk)
can be any scalar or vector values. For the vector values (like
the coordinates of geometry positions) of observations, we pro-
cess each component individually. Denote h = (h1, . . . , hK )T and
A = (akl = al(uk, vk))K×L. The solution of least-squares fitting by
minimizing ‖Acj − h‖2

2 is given by ĉj = (AT A)−1AT h to predict
the local geometry.

Problem of overfitting. Generally, polynomials are chosen as the
set of atom functions. However, the choice of the maximal poly-
nomial degree might result in artifacts in the least-squares fitting.
Lower degrees make it difficult to match rich details of signal,
whereas higher degrees lead to overfitting effects, like the small-
scale surface artifacts shown in Figure 6 of Tosun and Zorin [2011].
Figure 2 shows another example.

Sparse representation. Inspired by the work on sparse coding in
image processing [Elad 2010], we introduce a set of redundant atom
functions A = {al(u, v)}L

l=1 (a dictionary) to represent the local ge-
ometry. As the atom functions are redundant, the local geometry
can be represented by a sparse combination of these atom func-
tions. The fitting problem with a redundant dictionary is actually
a sparse representation that accounts for most or all information
of a geometry signal by a linear combination of very few ele-
mentary signals. Thus, we come to a regression problem of sparse
representation,

min
cj

‖Acj − h‖2
2 s.t. ‖cj‖0 ≤ δ, (3)

where δ is the sparsity parameter, which describes the number of
atom functions, i.e., the support size, used to represent a local func-
tion. Minimization (3) with respect to cj is a sparse coding operation
that can be handled by the orthogonal matching pursuit (OMP) al-
gorithm [Pati et al. 1993].

3.3 Compatible Sparse Representations

Problem of individually fitting. The sparse optimization (3) is per-
formed to obtain the local function at each chart individually. How-
ever, the global function (1) that is defined by blending all local
functions may not fit the observation data well (Figure 3(d)), as the
local functions are not compatible with each other in the overlapping
regions.

Fitting with global compatibility. To this end, we propose a
new optimization framework for compatible sparse representations,
which is able to guarantee the global compatibility of geometry
functions in overlapping regions.

Suppose that the observation data of global geometry function
f on the domain manifold are given as {(pk, hk)}K

k=1 and the local
coordinates of these data on chart (Uj , φj ) are {φj (pk) = (uj

k , v
j

k )}.
Then we have

f (pk) =
∑

j : pk∈Uj

wj (φj (pk))qj (φj (pk))

=
∑

j : pk∈Uj

wj

(
u

j

k , v
j

k

)
qj

(
u

j

k , v
j

k

)
.

(4)

Note that the function value of the global geometry at one point is
influenced by several local functions that actually have relationships
with others. Therefore, the �2-norm of fitting error on all points is
computed as a whole and given by

Efit(C) =
K∑

k=1

⎛
⎝ ∑

j : pk∈Uj

(
wj

(
u

j

k , v
j

k

) L∑
l=1

clj al

(
u

j

k , v
j

k

)) − hk

⎞
⎠

2

,

(5)

where cj = (c1j , . . . , cLj )T is the coefficient vector of the local
function on the chart (Uj , φj ) and C = (c1, . . . , cn) is the matrix of
decision variables.
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Fig. 2. Given a set of sampling points (100 points in total) from a C0 surface (a), the obtained fitting surface via polynomials (b), redundant atom functions
(c), and sparse representation (d). (e) The first five atom functions (C0 shape functions in red boxes and polynomials in gray boxes) selected in the sparse
representation. The sparsity is set at 25.

Fig. 3. Given subdivision surface with control mesh (a), the results of sparse representations on individual charts (b), the surface’s appearance in overlapping
regions (c), the result of a manifold (d) by simple blending, and the obtained surface (e) by compatible sparse representation.

To obtain the sparse coefficients of the local function on each
chart, we formulate the compatible sparse representation of global
geometry function as

min
C

Efit(C)

s.t. ‖cj‖0 ≤ δ, j = 1, 2, . . . , n.
(6)

It is worth pointing out that our compatible sparse representation (6)
for global geometry differs from the existing methods of sparse
coding by taking into account the global compatibility.

3.4 Optimization Solver

To solve the compatible representation system (6), we develop an
iterative splitting algorithm that alternatingly updates each cj . At
first, for each j ∈ {1, . . . , n}, we separately obtain the solution of a
local sparse optimization problem as an initialization, i.e.,

c(0)
j = arg min

cj

∑
pk∈Uj

(
L∑

l=1

clj al

(
u

j

k , v
j

k

) − hk

)2

,

s.t. ‖cj‖0 ≤ δ.

(7)

where each problem is solved by the algorithm [Pati et al. 1993].
In the t-th step, we iteratively update each cj by fixing coordinates
of other local functions {ci}i 	=j and solving the sparse optimization
problem as follows:

c(t+1)
j = arg min

cj

∑
pk∈Uj

[
wj

L∑
l=1

clj al

(
u

j

k , v
j

k

)

+
∑

i: pk∈Ui 	=j

wi

L∑
l=1

c
(t)
li al

(
ui

k, v
i
k

) − hk

⎤
⎦

2

s.t.‖cj‖0 ≤ δ.

(8)

Minimization with respect to cj in (8), while assuming that the
others {ci}i 	=j are fixed, can be done as a sparse coding operation

that employs the OMP. The pseudocode of the compatible sparse
representation is given in Algorithm 1. Note that our algorithm can
also adopt the Gauss-Seidel iterative technique, in which ct+1

i is
used instead of ct

i while updat-
ing ct+1

j for j > i. The Gauss-
Seidel technique can be used
to accelerate the convergence
as observed in our implementa-
tion. For instance, the right fig-
ure shows the steps of iteration
for constructing the model of
Figure 3 using and without us-
ing the Gauss-Seidel technique.

ALGORITHM 1: Optimization of Compatible Sparse Representa-
tion
Input: Charts {(Uj , φj )} and weight functions {wj }, observations
{(pk, hk)}, the dictionary {al(u, v)}L

l=1, and sparsity parameter δ.
Output: Global geometry function f , which is sparsely represented
by the coefficient vectors {cj }n

j=1.
Initialization Separately obtain the initial coefficient vector on
each chart by solving (7).
while [ Efit(C) is reduced ] {

Update each cj by minimizing (8), where the others {ci}i 	=j

are fixed at their values from the last step.

} endwhile

4. RESULTS AND APPLICATIONS

We demonstrate the flexibility of our proposed approach for con-
structing manifolds with varying features in this section.
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4.1 Approximating Subdivision Surfaces

As did Ying and Zorin [2004], we adopt our approach to construct
manifolds to approximate the subdivision surfaces. The manifolds
constructed by Ying and Zorin [2004] are C∞. Differently, we
construct manifolds that can approximate subdivision surfaces with
C0 sharp features [DeRose et al. 1998].

Domain manifold. We use the same scheme of Ying and Zorin
[2004] to define the charts per vertex, construct transition maps, and
build weights with partition of unity (See Ying and Zorin [2004] for
details). As the transition maps and weight functions are all C∞,
the smoothness of the manifold is determined by the smoothness of
local functions defined on the charts.

Dictionary repository. To enable the capability of representing
sharp features, we use a dictionary A that consists of two types of
atom functions, i.e., A = A1 ∪A2. The first type of atom functions
A1 includes all polynomials up to degree 14, i.e., a total of 120
polynomial functions, which are C∞. The second type of atom
functions A2 includes 55 C0 shape functions that are usually used in
FEM [Zienkiewicz and Taylor 1977] (See the Appendix for details.)

Observation data. We sample all control points from the refined
mesh after two Catmull-Clark subdivision steps and compute the
limit positions of these points as our observation data for the global
geometry. The subdivision surfaces could have various sharp fea-
tures, such as creases, darts, and cusps, if C0 constraints are enforced
on certain edges of control meshes [DeRose et al. 1998].

Manifold construction. The global geometry of manifold is ob-
tained by fitting the observation data with the dictionary atom func-
tions by solving (6).

4.2 Experimental Results

We first test our algorithm on some synthetic (clean and noisy) data
and then apply our approach for approximating subdivision surfaces
with various sharp features.

Robustness of sparse representation. To represent the local ge-
ometry, a solution is usually obtained by least-squares fitting the
input data with a set of specified basis functions, e.g., using polyno-
mials as in Ying and Zorin [2004]. Instead, our approach represents
the local geometry via sparse optimization, i.e., sparsely choose
suitable ones from a redundant set of atom functions. We test the
least-squares method and our algorithm on clean and noisy synthetic
data, as shown in Figure 4. The experimental results demonstrate
the robustness of sparse representation, whereas the least-squares
method leads to overfitting phenomenon in the presence of noise.

In addition, we approximate the known polynomial via our solver
assuming that the sparsity is the same as the size of the polynomial.
For instance, we extract samples from polynomial 0.6x2 +0.25y2 +
0.09x4y2 + 0.12x6y7 and solve the problem with sparsity 4. In this
case, the OMP algorithm precisely recovers the polynomial. Ac-
tually, in our limited trial (about 100 times), the OMP algorithm
accurately recovers all polynomials. However, the OMP algorithm
can only guarantee the precise recovery when the bases in the dic-
tionary are orthogonal to each other [Pati et al. 1993], whereas the
bases we use do not fit such a property. Thus, we can only say that
the practical performance of fitting polynomials is quite good.

Adaptivity to various features. Due to the redundancy of atom
functions and the sparse optimization, our approach can gener-
ate manifolds that adapt to various features by choosing suitable
atom functions to represent the corresponding features. As shown in

Fig. 4. The results of representing local geometry (a) using least-squares
method and sparse representation with fitting error visualized by color map.
Approximating results in the fashion of least-squares using polynomials
with degree up to 5 (b) and 14 (c); approximating results using sparse
representation (d). The input consist of clean data (upper row) and noisy
data (lower row).

Fig. 5. Constructing manifold to approximate subdivision surface. (a) The
input control mesh with enforced C0 features shown in red. (b) The manifold
generated by our approach. (c) The close-up views of three parts of sharp
features including crease, dart, and cusp. The first five atom functions that
are adaptively selected for representing the local features are shown.

Figure 5(a), we enforce C0 constraints on some of the edges (shown
in red) of the control mesh. Thus, various sharp features, including
creases, darts, and cusps, can be created in the subdivision surface
defined by the control mesh. Using the observation data on the
subdivision surface, our approach produces a manifold surface as
shown in Figure 5(b). The dashed rectangular regions in green, red,
and yellow are zoomed and shown in Figure 5(c), respectively. It
is seen that the surface part within the green region (bottom row in
Figure 5(c)) represents a crease feature and that the surface parts
within the red and yellow regions (middle row and upper row in
Figure 5(c)) represent a dart feature and a cusp feature, respectively.
The atom functions with the first five largest nonzero coefficients
by solving (6) are shown on the right side of the corresponding
surface parts. The C0 atom functions are marked as red throughout
the article.

Figure 6 shows another example of the manifold generated by our
approach, which approximates various features, including crease,
dart, and cusp. In Figure 7, various C0 constraints are enforced
in the control mesh (a) and the manifold surfaces generated by our
approach can approximate the various features well. More examples
of manifolds constructed by our approach are shown in Figure 8.

Sparsity parameter. The sparsity parameter δ in our algorithm
controls the sparsity, i.e., the number of nonzero coefficients for
the atom functions. Figure 9 shows an example illustrating how the
constructed manifolds are affected by different values of the spar-
sity parameters. In general, the larger sparsity parameter tends to
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Fig. 6. From a mesh (a), our approach generates a manifold surface (b) approximating its Catmull-Clark subdivision surface. Sharp features are created in
the subdivision surface by enforcing C0 constraints on edges shown in red (a). The constructed manifold (b) approximates various features like crease, dart,
and cusp well. The regions in red, green, and blue are zoomed and shown in (c), (d), and (e), respectively.

Fig. 7. (a) Control mesh. (b-d) Manifolds constructed by our approach
to approximate the subdivision surface with various C0 constraints on the
edges (shown in red).

Fig. 8. Examples of manifolds constructed by our approach to approxi-
mate the subdivision surfaces with given control meshes in the lower right.
C0 constraints shown in red are enforced to created sharp features in the
subdivision surfaces.

produce overfitting effects on the resulting manifolds (see Fig-
ure 9(e)), whereas a small one lacks the freedom to represent a
certain shape (see Figure 9(c)). The sparsity parameter is empiri-
cally set to 25 in our implementation.

Fig. 9. Manifolds constructed with different sparsity parameters. (a) In-
put control mesh with C0 constraints on the edges in red. (b) The limit
subdivision surface with sharp features. (c-e) Manifolds constructed by our
approach with δ = 5, 25, 55, respectively.

Difference from Ying and Zorin [2004] and Tosun and Zorin
[2011]. The differences among our approach, Ying and Zorin
[2004], and Tosun and Zorin [2011] lie in the construction of local
geometry, which are twofold. First, the method of Ying and Zorin
[2004] uses polynomial functions, the method of Tosun and Zorin
[2011] uses spline functions to represent local geometry, and our
approach uses polynomial functions as well as C0 shape functions
as atom functions, having the capability to represent sharp features.
Second, our approach adopts sparsity optimization to select a small
number of atom functions to represent the local geometry. Thus,
our approach has more flexibility to represent shapes with sharp
features.

Figure 10 shows examples of constructing manifolds by using the
methods of Ying and Zorin [2004] and Tosun and Zorin [2011] and
ours. The parameters of Tosun and Zorin [2011] are set as g = 5
and the spline functions are C3 continuous. In the upper row, no
C0 constraints are enforced in the edges. All methods approximate
the smooth subdivision surface very well. In the lower row, C0 con-
straints are enforced in some edges of the control mesh. Our method
can capture sharp features in the subdivision surface, whereas the
methods of Ying and Zorin [2004] and Tosun and Zorin [2011]
produce artifact in the result.

Choice of atom functions. As mentioned in Section 4.1, the
default set of atom functions in our implementation consists of
polynomials up to degree 14 and C0 shape functions. We have
tested some different alternatives of atom functions and show in
Figure 11 the results of approximating a subdivision surface by us-
ing only polynomials (see Figure 11(b)); only C0 shape functions
(see Figure 11(c)); aricher set of atoms consisting of polynomials,
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Fig. 10. Comparison with Ying and Zorin [2004] and Tosun and Zorin
[2011]. (a) The limit subdivision surfaces of input control meshes (in the
upper right) where edges in red are enforced with C0 constraints. (b) Man-
ifolds produced by the method of Ying and Zorin [2004]. (c) Manifolds
produced by the method of Tosun and Zorin [2011]. (d) Manifolds gen-
erated by our approach. Upper row: Results from a smooth subdivision
surface. Lower row: Results from a subdivision surface with sharp features.

Fig. 11. Manifolds construction approximating subdivision surface with
different atom functions. (a) Control mesh. (b) Manifolds generated with
only polynomials. (c) Manifolds generated with only shape functions.
(d) Manifolds generated with polynomials, spline functions, sine and cosine
functions, and shape functions. (e) Manifolds generated with polynomials
and shape functions.

splines [Tosun and Zorin 2011], trigonometric, and C0 shape func-
tions (see Figure 11(d)); and our default set of atom functions (see
Figure 11(e)). The first two alternatives perform with poor approxi-
mation, and the third alternative can achieve good approximation as
well as our chosen set of atom functions. Overall, our algorithm uses
a default set of fewer atom functions and has adequate capability to
approximate surfaces with various features.

Smoothness of manifold. The constructed manifold using our
approach has a close-form representation as a linear combination of
atom functions. Obviously, the manifold is at least C0 continuous.
C0 can only happen on the curves where the basis functions are C0.
In other regions except the curves, the manifold is C∞. Thus, the
manifold constructed by our approach is C∞ almost everywhere.

Advantages over subdivision surfaces. In geometric modeling,
extra requirements are generally enforced on the smoothness of
the surface. The manifold constructed by our approach can achieve
higher smoothness at a chart if we discard the C0 atom functions in
the dictionary of this chart. Taking the mesh shown in Figure 12(a)
as an example, the valence of the top vertex is 10. It is an
extraordinary point and is thus only C1 in the subdivision surface.
In our approach, we can discard the C0 shape functions from the
dictionary of the chart of this vertex and the manifold is C∞ at this
point as shown in Figure 12(b). At the same time, the manifold can
represent the sharp features if C0 constraints are enforced at the

Fig. 12. (a) Control mesh with C0 constraints shown in red. The top vertex
of (a) has a valence of 10. We discard the C0 atom functions from the
dictionary at the chart around this vertex. The manifold surface constructed
by our approach is shown in (b). The surface adapts to the sharp features
in blue region and is C∞ in the red region. (c) Close-up view of the blue
region. (d,e) Gaussian curvature and mean curvature of the red region.

Table I. Statistics of Performance Including the Number of
Charts, Average Number of Used C0 Shape Functions for a

Chart, and Time Cost of Models in Figure 8
Model: Figure 8 (a) (b) (c) (d) (e) (f)
Charts (#) 24 74 64 56 42 802
C0 Functions (#) 3.71 4.32 2.03 2.38 5.64 0.17
Time (s) 2.2 6.1 5.4 5.6 3.3 34.1

edges in red as shown in Figure 12(a). This cannot be accomplished
for subdivision surfaces, as they are only C1 at extraordinary points.

The color maps of Gaussian curvature and mean curvature of
the local region around the vertex are shown in Figure 12(d) and
(e), respectively, which shows that the manifold constructed by our
approach remains fair on the top region.

Statistics. We implemented our algorithm on a dual-core 2.9GHz
laptop with 8G memory. Generally, our algorithm takes dozens of
seconds to construct a manifold with about 800 charts. Table I
shows the statistics of the performance of our algorithm, including
the number of charts, the average number of used C0 shape functions
for a chart, and time cost of models. Note that the sparsity is set at
25 in our implementation.

4.3 Modeling from Curve Network with Manifold

Due to the sparsity nature of geometry, the proposed manifold con-
struction approach provides a nice scheme for constructing surfaces
from a 3D curve network.

Curve network. The curve network consists of a set of curves that
roughly reveal a 3D shape. The curves can be specified by users
using sketch-based 3D painting tools [Bae et al. 2008, 2009] or
extracted from some existing shapes.

Domain manifold. First, the cycles in the curve network are iden-
tified by the method of Zhuang et al. [2013]. The intersection points
among cycles are regarded as vertices of the domain manifold.
If there is a cycle curve connecting two vertices, we create a line
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Fig. 13. The procedure for constructing a manifold surface from a given curve network (a). First we use the identified cycle information to build the domain
manifold (b). Then we obtain observation data by local parameterization of curves on each chart (c). Finally, the manifold surface (d) is constructed using our
approach. (c1) Sampling points on curves. (c2) Local coordinates of samples on individual charts. (c3-c5) The observation data of (x, y, z), respectively.

Fig. 14. Generating manifold from different geometries defined on the same domain manifold. (a) The domain mesh. (b-d) Three manifolds created from
given curve networks (in the upper right) and the first five chosen atom functions (in the lower right). C0 shape functions are shown with red frames.

Fig. 15. The fitting of a mushroom like curve network. (a) Illustratration
of the curve network and domain mainfold. The result of our method is
shown as (b), and the result using only polynomials is shown as (c). Note
that (b) fits better on the curves than (c) with C0 functions.

between them and regard it as an edge of the domain manifold.
Finally, the domain manifold is built over the generated polygonal
mesh.

Parameterization of curves. Each curve corresponds to an edge
in the domain manifold. For each curve, points are sampled from
it and are parameterized in arc length along its corresponding edge
on the domain manifold. The sampled points of all curves are then
mapped to their local coordinates in φi(Ui) by the map φi . The
spatial positions of the points are considered as the observation
data of the geometry functions.

Examples. Ultimately, we can achieve a manifold surface that
approximates the given curve network by our approach. Although
the points on the curve network give very sparse observation data
on the manifold, our method can still properly generate a manifold
from this sparse information. Figure 13 shows an example to
illustrate the whole process of creating a manifold from a given 3D
curve network. Figure 14 shows how different manifold surfaces
are constructed from three given curve networks, respectively,
which are all defined on the same domain manifold. In this

Fig. 16. Examples of manifold surfaces generated from 3D curve networks
(in the lower right).

example, our approach adaptively chooses the atom functions to
achieve varying smoothness along the curves.

When our method is applied to fit a curve network with more com-
plex geometry like a mushroom in Figure 15, our method smartly
represent the geometry in a reasonable way (b). Since the network is
fitted automatically and if one wants to get a smooth object, we can
get the result using only polynomials (c). Both results conform to hu-
man intuition. In addition, (b) has a smaller error on existing curves.

More manifolds constructed from 3D curve networks are shown
in Figure 16. The results demonstrate that our approach can produce
intuitively reasonable surfaces from sparse 3D curve networks.

5. CONCLUSION AND FUTURE WORK

This article presents a novel approach for constructing manifolds
over meshes. The local geometry is represented by a sparse
representation of a dictionary consisting of redundant atom
functions. A compatible sparse representation optimization is
proposed to guarantee the global compatibility of the manifold. We
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Table II. Statistics of All Results Showing the Number of Darts, Creases, and Edges, the Number of Charts, the Average Number of C0

Functions Used, the Average Number of C0 Functions Used in Smooth Charts, and the Computation Time

Model Fig. 5 Fig. 6 Fig. 9 Fig. 10
Fig.

11(e)
Fig.
7(c)

Fig.
7(d)

Fig.
8(a)

Fig.
8(b)

Fig.
8(c)

Fig.
8(d)

Fig.
8(e)

Fig.
8(f)

Darts (#) 3 12 0 0 0 0 0 0 0 0 0 0 10
Cusps (#) 1 2 0 4 8 0 8 8 8 0 0 2 2
Creases (#) 4 12 2 4 12 4 12 13 12 4 1 10 2
Charts (#) 50 158 24 40 64 48 48 24 74 64 56 42 802
Avg. C0

functions
4.2 3.35 2.08 1.25 1.97 2.08 2.31 3.71 4.32 2.03 2.38 5.64 0.17

Avg. C0 on
smooth charts

0.0 0.015 0.045 0.0 0.02 0.0 0.0 0.0 0.017 0.0 0.0 0.063 0.0

Time (s) 3.1 10.2 2.5 3.1 5.1 3.2 3.5 2.2 6.1 5.4 5.6 3.3 34.1

have demonstrated the flexibility and practicability of our approach
on approximating subdivision surfaces for discrete meshes and
modeling from 3D curve networks.

Real-world objects are usually of complex geometry and topol-
ogy, but there remains sparsity to be discovered in their repre-
sentations. Our work is the first attempt to generalize the Sparse-
Land [Bruckstein et al. 2009] model onto a manifold.

Limitations. The dictionary allows redundancy, and thus there is
much flexibility to choose various atom functions that can represent
geometries with different smoothness, e.g., exponential, trigono-
metric, and splines. Although our current dictionary repository has
proved its good performance in representing manifolds with vari-
ous features, theoretically there is no guarantee for the dictionary
to capture all geometric features in any target shapes. This leads
to yet another approach for obtaining dictionaries that overcomes
this limitation by adopting a learning point of view. The learning
method on geometries will be a nice but challenging topic for us in
future studies. Our framework of compatible sparse representation
has shown its practicality and effectiveness in the construction of
manifolds with varying smoothness. Nevertheless, our algorithm
needs to solve a global optimization problem for maintaining the
compatibility of a manifold. It currently cannot achieve real-time
efficiency that is usually requested in local manipulation for the
designers. One of the next directions is to speed up the algorithm
with real time.

Future work. The Sparse-Land model generalized on the mani-
fold is fascinating because of its universality and flexibility, which
make many of the geometric processing tasks clear and simple, and
the superior performance to which it leads in various applications.
As with sparse coding in image processing, we can also apply our
framework of compatible sparse representations to various tasks
in geometric processing, e.g., reconstruction, inpainting, denois-
ing, and compression. We believe that some of the extensions are
feasible but not straightforward.
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APPENDIX

The C0 atom functions are constructed from shape functions in the
finite element method (FEM) [Zienkiewicz and Taylor 1977]. Here
we use four-node bilinear quadrilateral element shape functions.

The general formulation for one node is that Ne
1 = 1

4 (1 − ξ )(1 −η).
For the other three nodes, the procedure is the same, traversing the
element cyclically. Considering that one chart may have different
degree, we generally construct the 55 shape functions with degrees
3 through 7 (which is suitable for most domain manifolds). When
the domain manifold has a vertex with degree more than 7, the
dictionary repository would add the shape functions with that degree
for this specified domain manifold. All functions are shown next.

An adequate statistics table is shown in Table II, containing the
number of darts, creases, edges, and charts; the number of C0 func-
tions used on average; and the number of C0 functions that show
up on smooth charts. Actually, our method cannot guarantee that
no C0 functions are used on smooth charts, as OMP automatically
decides what functions are chosen. Experientially,there are few C0

functions used, and the coefficient is nearly zero.
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