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Abstract

A conjecture of Lerman, Montgomery and Sjamaar states that two singular symplectic
reductions 7*M // G and T*N /| H are isomorphic if M /G is diffeomorphic to N/H
as stratified spaces. We confirm this conjecture under the assumptions that the action
G x M — M is polar with a section N and generalized Weyl group H.
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Mathematics Subject Classification 53C20 - 53D20

1 Introduction

Let G be acompact Lie group acting isometrically on a complete Riemannian manifold
(M, g). It is well known that the lifting action on the cotangent bundle 7*M with its
canonical symplectic structure o is a Hamiltonian action with a moment map given
byu: T*M — g* with

ux(x,§) = (&, X*(x)), (1.1)
where g is the Lie algebra of G, g* is the dual of g and ux(x, &) = (u(x, &), X),
X € g. Moreover, X™* is the vector field on M generated by X. The moment map

satisfies the following equations:

duxy = iyro,
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Singular Cotangent Bundle Reduction and Polar Actions 3499

u(g - (x,8)) = Ady -u(x, ), vg € G,

where X* is the vector field on 7*M generated by X.

The symplectic reduction T7*M || G := u~1(0)/G is not a smooth manifold in
general. However, it is a stratified symplectic space defined in [20]. The reader is
referred to [20] for the precise definition of stratified symplectic spaces. Singular
symplectic reductions have played an important role in geometric quantization [10].

Following [20], we define a function f : T*M )/ G — R to be smooth if there
exists a function F € C®(T*M)C with Fl -10) = 7* f, where w : u~1(0) —
n~1(0)/G is the projection map. In other words, C®(T*M // G) is isomorphic to
C®(T*M)° /1Y, where I© is the ideal of G-invariant smooth functions on T*M
vanishing on 1= 1(0). The algebra C°°(T*M /| G) inherits a Poisson algebra structure
from C>°(T*M).

Let G and H be Lie groups and M, resp. N, be smooth manifolds on which G,
resp. H act properly. The stratified symplectic spaces T*M // G and T*N J/ H are
isomorphic if there exists a homeomorphism ¢ : T*M | G — T*N J/ H and the
pullback map

¢*: C¥(T*N | H) - C®(T*M J| G),
[ fod

is an isomorphism of Poisson algebras.
In [9, p. 13, Conjecture 3.7], they made the following conjecture.

Conjecture 1.1 Let G and H be Lie groups and M, resp. N be smooth manifolds on
which G, resp. H act properly. Assume that the orbit spaces M /G and N/H are
diffeomorphic in the sense that there exists a homeomorphism ¢ : M/G — N/H
such that the pullback map ¢* is an isomorphism from C®(N/H) := C*®(N) to
C®(M/G) := C®(M)S. Then T*M }) G and T*N || H are isomorphic.

Conjecture 1.1 has been verified for isotropic representation of symmetric spaces
(p. 17 in [9] and [22]). In this paper, we confirm Conjecture 1.1 for a much general
class of group actions. To start with, we recall that an isometric group action G x
(M, g) — (M, g) is polar if there exists a closed submanifold ¥ € M meeting all
orbits orthogonally [13]. Then M is called a polar G-manifold and such a submanifold
Y is called a section and comes with a natural action by a discrete group of isometries
[T = TI(X), called its generalized Weyl group. Recall that by definition, [T1(X) :=
N(X)/Z(%), where

N(X) ={g € GlgX = X},
Z(X)={geGlgx=x, x e X}.

Polar actions have nice properties and have been studied by many people, see for
instance [3,6,12,13,15]. A basic example of polar action is given by the adjoint action
of a compact Lie group on its Lie algebra. More generally, isotropy representations of
symmetric spaces are also polar. It is a classical theorem of Dadok [3] which shows
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that a polar representation is (up to orbit equivalence) the isotropy representation of
a symmetric space. It follows from classical Chevalley Restriction Theorem [13] that
M /G is diffeomorphic to X /I1, i.e. the inclusion ¥ /IT — M /G is ahomeomorphism
and the restriction |y : C®(M)¢ — C*(2)™ is an isomorphism.

Our main result in this paper is the following theorem which gives a partial answer
to Conjecture 1.1:

Theorem 1.1 Let M be a polar G-manifold with a section ¥ and generalized Weyl
group T1. Then T*M || G and T*X /| T1 are isomorphic.

Example 1.1 Let M = (S% x S?)#(S? x S$?). Then M admits a polar action of G =
S1 x S1 with a section ¥ = T?#T? and the generalized Weyl group IT = Z, x Z, (see
Example 2.1.1in [11] and p. 309 in [6]). Applying Theorem 1.1, we getthat T*M /| G
and 7*% // I are isomorphic.

Under a slightly different assumption, it was proved that 7* M // G is homeomorphic
to T*% // I in [9, Proposition 3.8]. Also see [4,5,7] for related work. However, they
considered cotangent bundle reduction under a strong assumption (p. 189 in [7]) which
is not satisfied in general in our situation.

The proof of Theorem 1.1 consists of two parts. First we prove the inclusion T*X //
I1 - T*M // G is a homeomorphism. Secondly, we show that the restriction |7+x :
C®(T*M)° — C®(T*%)M is a surjective homomorphism of Poisson algebras.
These will be proved in Sect. 3. A main ingredient of the proof is a characterization
of symplectic slice representations of the lifting action G on T* M, which is done by
using the natural Sasaki metric on 7* M. Then combining the multivariable Chevalley
restriction theorem proved by Tevelev [22] and other things, we are able to prove our
results. For details, see Sect. 3.

2 Sasaki Metricson TM and T*M

The proof of main theorem will use the geometry of Sasaki metrics on 7'M [16] which
we describe here briefly. Given a Riemannian metric g on M, its Levi-Civita connection
determines a splitting TTM = HM & VM, where VM = kerdn,nm : TM — M
is the projection and HM is spanned by X", X is a smooth vector field on M. To
describe X", let (x, v) € TM and y(t) : (—e, €) = M be a smooth curve such that
y(0) =x, y'(0) = X(x). Let Y (¢) € T, )M such that

V, Y =0

Y(0) =v.
Then X" (x, v) =: 7/(0), where  (t) = (y (t), Y (¢)). From the definition of X", we
see that dm(X"(x,v)) = X(x). Let I, be the natural isomorphism 7*M = TM
induced by the Riemannian metric g. Then using the splitting 7TM = HM &
VM=TM & T M, we define the Sasaki metric g by

g((X1, X2), (Y1, Y2)) = g(Xy, Y1) + g(X2, 12).
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Define an almost complex structure J by setting J(X,Y) = (=Y, X). Then
g(J-,J) = g(,-) and the symplectic form  := g(J-, -) is nothing but the pull-
back of w by the isomorphism /,° L' TM = T*M, where w is the standard symplectic
form on T*M.

The Sasaki metric on 7* M is the pullback of g under the isomorphism I, : T*M —
T M. The following lemma will be important for us.

Lemma 2.1 If X is a totally geodesic submanifold of (M, g), then TX is a totally
geodesic submanifold of (T M, g), where g is the Sasaki metric on T M.

Proof Let X be a smooth vector field on M such that X(x) € T, X, Vx € X. As
¥ is totally geodesic, we see that X" |75 is a smooth vector field on TX from the
construction of X".

The vector field X also induces a vertical vector field X+ on 7M. We choose a

local coordinate to describe X1. Let (x!, ..., x™) be a local coordinate system at
x € M, where n = dim M. Then any tangent vector v € T,y M can be decomposed as
v =" %. The set of parameters T L 1L S v"} forms a natural coordinate

system of 7M. The natural frame in T, )T M is given by & = ai and 5n+i = 2

Xi v *
Now if X = X! 8871 is a vector field on M, then the vertical vector field X+ on T M is
given by X+ = X! §n+,-. As X(x) € T, =, Vx € X, by definition we see that X |75
is a vector field on T X.
To see that 7' X is totally geodesic in T M, choose two vector fields X, Y on M such
that X (x), Y(x) € Ty X, Vx € X, then we have the following formula [8]:

VYt =0, (2.1)
(Vxn YD) (x, v) = (VxY) " (x,v) + %(Rxw, Yo, X)) (x, v), (2.2)
(VY™ (x, v) = %(Rxw, Xy, Yo (x. v). (2.3)
(VxnY")(x,v) = (Vx V) (x, v) — %(Rxm, Y, )" (x, v), (2.4)

where (x, v) € T and V, resp. V are Levi-Civita connections of g, resp. g and R is
the Riemann curvature tensor of g.

Since X is totally geodesic, then Vx Y (x), Ry(v, Xy, Yy) € Ty 2. From (2.1) to
(2.4), it follows that T X is totally geodesic. O

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. The first key observation is the following
proposition.

Proposition 3.1 Let (M, g) be a polar G-manifold with a section X. Then T* % meets
all G-orbits of the action G X u=1(0) = u=1(0).
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3502 X.Chen, J.Ou

Here T* X is seen as a submanifold of 7* M under the natural isomorphism 7*M =
T M induced by the Riemannian metric g. Note that in general 7*% cannot meet all
orbits of the lifting action of G on T*M as it is easy to see that T*¥ C u~1(0) from

(1.1).
The crucial properties of polar actions we will use in the proof are the following
results [13]:

Proposition 3.2 Let M be a polar G-manifold with a section %. Then:

(1) X is totally geodesic.
2) G- xNX=I1-x, Vx € .
(3) The slice representation at x is polar with a section Ty %, Vx € X.

Given Proposition 3.2, we can now give a proof of Proposition 3.1.
Recall that u : T*M — g* is given by

ux(x,§) = (& X" (x)).

Then for any (x,&) € u=10), (£, X*(x)) = 0, VX € g. Under the isomorphism
I, : T*M = T M induced by the Riemannian metric g, the vector ¥ = I, (§) is
orthogonal to T, (G - x), 1.e. % e T (G - x)T.

As the isometric action G X M — M is polar with a section X, there exists h; € G
such that h1x € X. Then h1&% € T),,, (G - x)*.

By Proposition 3.2, the slice representation

Ghyx X Tix(G - X))t = T3 (G - x) T

is polar. Hence there exists hy € Gy, such that ho(hE") € Thx 2.
Let h = hoh, then

hix, " = (hx, he®) = (hix, hah ") e TX.

So T*X meets all orbits of the action G x u~1(0) = u~1(0).
Theorem 1.1 will follow from the following two theorems:

Theorem 3.1 Let (M, g) be a polar G-manifold with a section ¥ and generalized
Weyl group T1. The inclusion T*Y | T1 — T*M )| G is a homeomorphism.

Theorem 3.2 Let (M, g) be a polar G-manifold with a section ¥ and generalized
Weyl group T1. Then the following restriction to T*X is a surjective homomorphism
of Poisson algebras:

lpss : C(T*M)° — C>®(T*)1.
First, we give the Proof of Theorem 3.1. By Proposition 3.1, it suffices to show

G- (x,&)NT*ET =T11-(x,&), V(x,&) e T*X.

@ Springer



Singular Cotangent Bundle Reduction and Polar Actions 3503

Clearly IT- (x,&) € G- (x,&)NT*X. On the other hand, Vi (x,&) € G- (x,&)N
T*%,wehave hix € G -x N X and h £¥ € Ty, T. By Proposition 3.2, we get

G- xNX=II1-x, Vx € X.
Hence
h1x=h2x, h2€ IT. (3.1)

Then (hz_]hl)x = x and so hz_lhl € G,.Since (x, &) e T*Z, wegeté# € T (G-x)*t.
By Proposition 3.2, the slice representation: G, x T (G - x)* — Ty (G - x)* is polar
with a section 7y ¥ and generalized Weyl group I1,. By Proposition 3.2 again,

G, &nr.x =1, &

Ashy'hy € Gy, hy € T, hyE? € Ty, S, we get hy 'hyE* € Gy - €% N T, 2. Then
there exists h3 € I, such that

hy ' E* = st

Hence hi&% = hohz&® e I1- €. Combined with (3.1), we obtain hj(x, &%) =
(hox, hoh3E") = hohs(x, EF) e 1 - (x,£%).S0 G - (x,E) NT*E CI1- (x,£). O
Then we prove Theorem 3.2. Recall that we have a splitting TT*M = HM &V M,
(dn,1y)
which induces an isomorphism 77*M = ) TM&TM, where drt is the differential
of the projection 7*M — M and I, is the natural isomorphism 7*M = T M induced
by the Riemannian metric g.
Let {x', ..., x" &,...&,) be alocal coordinate of T*M at (x, &) and Ffj be the
Christoffel symbols of the Levi-Civita connection V induced by g. Then the horizontal
lift of 52 at (x, &) is given by

i

d d P
B
o, o ik JE!

Here a horizontal lift of a vector X at (x, &) is defined to be the unique vector X e HM
such that d7 (x, £)(X) = X.

In terms of local coordinate system {xl, oo x™ €, L0 &), the almost complex
structure J defined in Sect. 2 can be rephrased as

2N, @
9x; _gljafj’

) ;0
J|l— ) =-¢"—,
& dx;

0 0 ) and (g%) is the inverse matrix of (8ij)-

Ixi 0 A

where g;; = g(
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Let X* = X' 8% be a vector field on M generated by X € g. Then the corresponding
vector field on T*M generated by X is

" l__ X7
X*(x, §) =X Zaxﬁagw

see [1, p. 16, Lemma 11].
The Sasaki metric g on T*M satisfies

Lemma3.1 V(x, &) € T*X, the Sasaki metric g on T*M induces an orthogonal
splitting

Ty T"M = T(x (G - (x,6) ® JT(x6)(G - (x,§)) @V

with Ty eyT*X C V and V is the orthogonal complement of Tx £y(G - (x,§)) @
JT(x,6)(G - (x,6)).

Proof Let X}# be two vector fields on 7*M generated by X; € g,i = 1, 2, respectively,
and Y € Ty ) T*E. Then g(J X1, X%) = o(X¥, X}) = (ixfw)(Xg). Let u be the

moment map defined in (1.1), as (x, £) € T*% C u~'(0), by the G-equivalence of u,
wegetG - (x,§) C u~1(0). Hence

FUX}, X5) = (i) (XB) = dux, (XB) = 0.

By the definition of J, we get JT(x 6)T*E C T, 6yT*X. AsT*X C u=1(0), we
get

Xt Yy=gUx¥ JY)=wXt JY) = (ixt@)(JY) = dux,(JY) = 0.

Similarly, g (JX?, Y) =0.Hence T, &\ T*Z C V. O

Similar statements as Lemma 3.1 were also obtained in [14,18].
The representation

GuexV -V
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Singular Cotangent Bundle Reduction and Polar Actions 3505

is called the symplectic slice representation at (x, &§). Note that G g) = (Gy)e =:
{h € Gi| h§ =&}
The following lemma will be crucial for us.

Lemma 3.2 Let M be a polar G-manifold with a section 2. Then the symplectic slice
representation at (x, &) € T*X is the diagonal action (up to identification)

(Gx)é# x(WeW)—> WoWw,

where W := (G, - €M1 is the orthogonal complement of G &% in the slice (G - x)*,
i.e. we have

ToM =T (G - x) ® (T (G - x)7b),
(G-t =G, - ® (G, - " .

Proof Let Gy gy x V — V be the symplectic slice representation at (x, ). Under the
)
8

isomorphism ® : HM & VM TM & TM, we first claim that
V) =WopWw.
Choose a local coordinate system (xl, . x™ & ..., &) of T*M at (x, ). Then
we have

AR
«\ogr) =% oy

LetZ =a' ;- 4 p;L e TT*M.Then ®(Z) = (dn, I,)(Z) = (@ . gk ) =

(Y1, Y2).
Let X* = X' 3 - be the vector field on M generated by X € g, then the correspond-

ing vector field on "T*M is

lagl

.0 aXJ
X# , — Xl_ _
(x.§) = X' 7 Z ik agl

.9 90X/
:Xl_—XF Skagl IXJ: Sjagl

0Xx;

.9 d
— r_- *
=X . g(vaiX 3 >asi'
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Then we have

.9 3 .9 )
s(X* Z) =g (X' — — gV, x* &\— a’ b —
8(X"%, 2) g< 7y BV X g ox; ’as./>
= g,'inClj —gijbjg(VaiX*,s#)
= g(X*, 11) — g(Vr, X*, £"). (3.2)

We also have

g(x*,Jz) =g <Xf% — (V. X7, gﬂ%i’ J (aji n b.i)>

X; ax; 0x; T ogd
3 3 . 9 .0
=(X'— —g(Ve X" ) — dlgn— —b;jg/F—
8< ox; g = 3 >8§l @ eikger ~bis" 5o
= —X'b; — aig<Vai X*, g")
= —g(X*, Y2) — g(Vy, X*, &%), (3.3)

Now we proceed to prove ®(V) = W @ W. Let Z € TT*M such that ®(Z) =
(Y1,Y2) e W W. Weclaimthat Z € V and it follows that W @ W C & (V). In fact,
as (Y1, Y2) e W@ W, we get

g(X*, Y1) =0, (3.4)
g(X*, 1) =0. (3.5)

As X* is a Killing vector field, we get
g(Vr, X*, &%) = —g(Ves X*, Y2) = g(Ver Y2, X¥), (3.6)
and
* e\ *
g{Vr X7, §") = g(Ver Y1, X7). (3.7)
As M is a polar G-manifold with a section X, By Proposition 3.2, the slice rep-
resentation G, x Ty (G - x)+ — T, (G - x)t is polar with a section 7, 2. Then by

Proposition 3.2 again, the slice representation (Gx)é# x W — W is polar with a
section Tes T X, As Y1 € W, thereexists h € (Gx)é# such that hY; € T:+T:X. Hence

Yi € h ' (T (T D)) = Tew T (h™'E) = T (h™'). We also have £ = h=1£% €
T.(h~'X), as X is totally geodesic by Proposition 3.2, sois h~! .
Then

g(Ver Y1, X*) = g(B(E*, 11), X*) =0, (3.8)
g(VerYa, X*) = g(B(£*.12), X*) =0 (3.9)
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where B(, ) is the second fundamental form of A~ ¥.
By (3.2), (3.4), (3.6) and (3.9), we get

g(X", z) = g(X*. Y1) — g(Vr,X*, &%) = 0.
Similarly we get g(X*, JZ) = 0. Hence g(JX*,Z) = —g(X*,JZ) = 0. It

follows that Z € V, which implies that W @ W C & (V).
On the other hand, we claim that dim (W & W) = dim & (V). In fact,

dim(W @ W) = 2dim W
= 2(dim(7xG - x)* — dim(G, - £*))
=2(dmM —dimG -x — (dim G, — dim(Gx)S#))
=2dimM —2(dim G — dim Gy ¢)),

and

dim ®(V) = dimV
=dimT*M —2dim G - (x, &)
=2(dimM —dimG - (x, §))
= 2(dim M — (dim G — dim Gy ¢))).

Hence dim & (V) = dim (W & W) and we have ®(V) = W & W.
Now Lemma 3.2 follows from the following commutative diagram

Vv s wow

G(x,S)l \L(Gx)g#

v s wew
O

Given Lemma 3.2, we can now give a proof of Theorem 3.2. We first show that the
following restriction map is surjective:

725 1 CO(T*M)° — C(T*).
Forany (x, £) € T*%, the Sasaki metric g on T*M induces an orthogonal splitting
TaeyT"M =T )G - (x,6) @ JT(x6)G - (1, §) BV,
where ®(V) = W & W by Lemma 3.2.
The Slice Theorem says that for an open G-invariant tubular neighborhood U, ¢)
of the orbit G - (x, &), there is a G-equivalent diffeomorphism

expL G X Gy Sé’f)(e) — U g)s
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3508 X.Chen, J.Ou

where S(jg) = {T(x,g)G (x, &V, Sé@(e) is the e-ball in S(jg) and exp is the
normal exponential map of G - (x, &).

LetU = U U.e). As T*X intersects all orbits in u~10) by Proposition 3.1,
(x,£)eT*X

we see that U is a G-invariant open neighborhood of u10).Vf e C®(T*T)T, we
first show that there exists F, € C°°(U (x,g;))G such that

Felresnu, e = FlT*snue. (3.10)

By the existence of G-invariant partition of unity subject to the cover U =

U  Ug.g), then there exists F € C>®(U)° such that F|r+x = f. Extending
(x,£)eT*X

Fto F e C®(T*M)%, we then prove our desired result.

To prove (3.10), we first recall some facts on polar representations which we will
use. Let (G, K) be a symmetric pair and consider the isotropy representation of K
onp = Tx(G/K). It is a polar action and any maximal abelian sub-algebra ¥ is a
section. Its generalized Weyl group IT is also called the "baby” Weyl group. Consider
the diagonal action of K on p” (respectively IT on ) and the corresponding algebra
of invariant (m-variable) polynomials R[p™1X (respectively R[Z™]™T). Then we have
the following result due to Tevelev [22].

Theorem 3.3 The restriction map |x : R[p™1X — R[Z™]T is surjective.

As a polar representation is (up to orbit equivalence) the isotropy representation of
a symmetric space [3]. Theorem 3.3 generalizes to the class of polar representations
[12, Corollary 2].

Corollary 3.1 Let K < O(p) be a linear representation which is also polar with a
section ¥ and generalized Weyl group T1. Then the restriction is surjective:

s @ Rp™1% — Rz

Corollary 3.2 Let p be a polar representation of a compact Lie group K with a section
Y and generalized Weyl group T1. Then the restriction to X is surjective:

Iz C¥@p™E - c> ™,

Proof 1t is a classical result of Hilbert [21, Proposition 2.4.14] that R[p™1X is finitely
generated. Let p1, ..., p, be generators. By Corollary 3.1, p1|x, ..., pnlx generate
R[ =M,

For any f € C®(X™), apply Schwarz’s Theorem [19] to the action of IT on
" we get F € C*®°(R") such that f = F o p|g, where p|y : X — R” be the
map whose coordinates are pi|x, ..., pnlx. Then f =Fope Coo(p’”)K such that

fls=1. O

We can now give a proof of (3.10). By Lemma 2.1, as X is totally geodesic in M,
then T*X is totally geodesic in 7*M. Hence the normal exponential map exp® of
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Singular Cotangent Bundle Reduction and Polar Actions 3509

the orbit G - (x, §) maps the e-ball B¢ in T, 6\ T*X=T, X @ T, X diffeomorphically
onto T*E N U ). Vf € CO(T*T)N, foexpt : Be — Ris a Iy g -invariant
smooth function, where Il(y ¢y = {h € II| h(x,§) = (x,§)}. Let W be a polar
representation of K := Gy ¢) with a section T¢# T X = T X defined in Lemma 3.2.

By Corollary 3.2, we see that there exists f. € C®°(W @ W)X such that

felp. = foexpt.

Hence f. o (expt)~! = fon T*E N U(x,&). Combined with Lemma 3.2 and the
Slice Theorem, then f¢ is pulled back to be a smooth function on G x § é £) (€) which

descends to Fe € C®(U¢))” such that Fe = f on T*E N Uy ¢). We finish the
proof of the surjectivity part of Theorem 3.2.

Let w be the standard symplectic form on 7*M. We show that the restriction to
T*% preserves Poisson brackets (C®(T*M)°,{, }1) and (C®(T*2)1, {, }n),
where { , };=; 2 are Poisson brackets induced by @ and w|7+y, respectively.

Let M € M be the union of principal orbits and ¥ = XN M.Then ¥ is open and
dense in X [6, Proposition 1.3]. It follows that T*% C T*X is also open and dense.
V(x, &) € T*3, we have the following orthogonal splitting with respect to the Sasaki
metric g on T*M:

TaoT*M = To6G - (x,6) ® I T 6)G - (x, &) @ Toeey TS, (3.11)
To see this, as 3 consists of principal orbits, the slice representation at x € 3 is trivial.
Hence G ¢) = Gy, V(x,§) € T*X. By [13], we also have dim G - x +dim X =
dim M. Then the dimension of the vector space on the right-hand side of (3.11) is
equal to

2dimG - (x, &) +2dim Y = 2(dim G - x + dim ¥) = 2dim M

which finishes the proof of (3.11).
VfeC®M)O, at(x,&) e T*S, we can write

where X, Y € Ti,6)G - (x,8), Z € Tre)T*E.
Recall that ix ,@ = df, w is the standard symplectic form on T*M. Since f is
G-invariant, we get (ix,0)(Y) = df(Y) = 0. Then

X5, V) =8UXp,Y)=3UX =Y +JZ,Y)=—§(,Y).

It follows that Y = 0.
Now let fi, f» € C®(T*M)C, at (x, &) € T*Y, we have

Xfi =X+ 7Z;,i=1,2
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where X; € T, 6)G - (x, ), Zi € T T*3.

Let f1 = f1|T*i’ then we claim that Xf1 = 7. In fact ixf o|T+y = df]. VY e
J1

Tix.e)T*3, we have

g(X;,Y) = w(Xfl’ JY)

S’
=dfi(JY)
=dfi(JY)
=w(Xyp,JY)
= g(Z1,Y).

Then at (x, &),

{1, 2h =X g, Xy,)
=g(UX1+JZ1, X2+ Z5)
=g(JZ1, Z2)
= o|r*x(Z1, £2)
= {f1, ).

By continuity, { f1, f>2}1 = { fl, fz}z on T*X everywhere.

Acknowledgements The first author is partially supported by National Natural Science Foundation of
China No. 11701427 and Scientific Research Foundation No. 8107144206, Institute for Advanced Study,
Tongji University. The second author is partially supported by the Project MYRG2015-00235-FST of
the University of Macau. Part of this work was done when both authors were visiting the Institute of
Mathematical Sciences in the Chinese University of Hong Kong. We thank Professors Huai-Dong Cao and
Naichung Conan Leung for helpful discussion. We also appreciate the referee for valuable suggestions.

References

1. Berline, N., Vergne, M.: Hamiltonian manifolds and moment map. http://www.cmls.polytechnique.fr/
perso/berline/cours-Fudan.pdf

2. Bulois, M., Lehn, C., Lehn, M., Terpereau, R.: Towards a symplectic version of the Chevalley restriction
theorem. arXiv:1604.04121

3. Dadok, J.: Polar coordinates induced by actions of compact Lie groups. Trans. Am. Math. Soc. 288,
125-137 (1985)

4. Feher, L., Pusztai, B.G.: Hamiltonian reductions of free particles under polar actions of compact Lie
groups. Theor. Math. Phys. 155, 646-658 (2008)

5. Feher, L., Pusztai, B.G.: Twisted spin Sutherland models from quantum Hamiltonian reduction. J.
Phys. A Math. Theor. 41, 194009 (2008)

6. Grove, K., Ziller, W.: Polar manifolds and actions. J. Fixed Point Theory Appl. 11(2), 279-313 (2012)

7. Hochgerner, S.: Singular cotangent bundle reduction & spin Calogero—Moser systems. Differ. Geom.
Appl. 26, 169-192 (2008)

8. Kowalski, O.: Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian
Manifold. J. Reine Angew. Math. 250, 124—-129 (1971)

9. Lerman, E., Montgomery, R., Sjamaar, R.: Examples of singular reduction. In: Salamon, D.A. (ed.)
Symplectic Geometry. Cambridge University Press, Cambridge (1993)

10. Meinrenken, E., Sjamaar, R.: Singular reduction and quantization. Topology 38(4), 600-762 (1999)

@ Springer



Singular Cotangent Bundle Reduction and Polar Actions 3511

11.
12.
13.

14.
15.
16.
17.
18.
19.
20.

21.
22.

Mendes, R.A.E.: Equivariant tensors on polar manifolds. PhD dissertation (2011)

Mendes, R.A.E.: Extending tensors on polar manifolds. Math. Ann. 365(3), 1409-1424 (2016)
Palais, R.S., Terng, C.L.: A general theory of canonical forms. Trans. Am. Math. Soc. 300(2), 771-789
(1987)

Perlmutter, M., Rodriguez-Olmos, M., Sousa-Dias, M.E.: The symplectic normal space of a cotangent-
lifted action. Differ. Geom. Appl. 26, 277-297 (2008)

Podesta, F., Thorbergsson, G.: Polar actions on rank-one symmetric spaces. J. Differ. Geom. 53, 131-
175 (1999)

Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math.
J. 10, 338-354 (1958)

Schwarz, G.W.: Generalized Orbit Spaces. Revised version of PhD thesis, MIT, Unpublished (1972)
Schmah, T.: A cotangent bundle slice theorem. Differ. Geom. Appl. 25, 101-124 (2007)

Schwarz, G.W.: Smooth functions invariant under the action of a compact Lie group. Topology 14(1),
63-68 (1975)

Sjamaar, R., Lerman, E.: Stratified symplectic spaces and reduction. Ann. Math. 134, 375-422 (1991)
Springer, T.A.: Invariant Theory. Lecture Notes in Mathematics, vol. 585. Springer, Berlin (1997)
Tevelev, E.A.: On the Chevalley restriction theorem. J. Lie Theory 10(2), 323-330 (2000)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



