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We consider the problem of reconstructing unknown inclusions inside a thermal conductor 
from boundary measurements, which arises from active thermography and is formulated 
as an inverse boundary value problem for the heat equation. In our previous works, 
we proposed a sampling-type method for reconstructing the boundary of the unknown 
inclusion and gave its rigorous mathematical justification. In this paper, we continue our 
previous works and provide a further investigation of the reconstruction method from 
both the theoretical and numerical points of view. First, we analyze the solvability of 
the Neumann-to-Dirichlet map gap equation and establish a relation of its solution to 
the Green function of an interior transmission problem for the inclusion. This naturally 
provides a way of computing this Green function from the Neumann-to-Dirichlet map. 
Our new findings reveal the essence of the reconstruction method. A convergence result 
for noisy measurement data is also proved. Second, based on the heat layer potential 
argument, we perform a numerical implementation of the reconstruction method for the 
homogeneous inclusion case. Numerical results are presented to show the efficiency and 
stability of the proposed method.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Consider the heat conduction in a two-layered medium (Fig. 1.1). Denote by D0 and D the outer and inner layers, 
respectively. Set � = D ∪ D0. Suppose that the thermal conductivities of D0 and D are 1 and k, respectively. We also 
assume that the boundaries ∂ D0 and ∂ D of D0 and D , respectively, are of class C2. For simplicity of notations, throughout 
this paper we denote X × (0, T ) and ∂ X × (0, T ) by XT and (∂ X)T , respectively, where X is a bounded domain in R2 and 
∂ X denotes its boundary. Injecting a heat flux g on ∂� over some time interval (0, T ), the temperature distribution u in 
�T can be modeled by the following initial-boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(∂t − ∇ · k∇)u = 0 in DT ,

(∂t − �)u = 0 in (� \ D)T ,

u|− − u|+ = 0 on (∂ D)T ,

k∂νu|− − ∂νu|+ = 0 on (∂ D)T ,

∂νu = g on (∂�)T ,

u = 0 at t = 0,

(1.1)
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Fig. 1.1. Configuration of the medium.

where ν on ∂ D (or ∂�) is the unit normal vector directed into the exterior of D (or �). Here the subscripts “+” and “−” 
indicate the trace taken from the exterior and interior of D , respectively.

The above model has many important applications in sciences and engineering. In active thermography, D is regarded 
as an inclusion and D0 is the background medium. In this case, the forward problem is to determine the temperature 
distribution in �T for any injected heat flux g on (∂�)T , while the inverse problem is to reconstruct the unknown inclusion 
D from boundary measurements. Instead of recovering the thermal conductivity, we are more interested in finding the 
location, size and shape of the inclusion as a defect inside the conductor. We proved in [17] that for any g ∈ H− 1

2 ,− 1
4 ((∂�)T )

there exists a unique solution u to (1.1) in H̃1, 1
2 (�T ). Define the Neumann-to-Dirichlet map by

�D : H− 1
2 ,− 1

4 ((∂�)T ) → H
1
2 , 1

4 ((∂�)T ), g �→ u|(∂�)T ,

which is an idealized measurement data for active thermography. Then our inverse problem is to reconstruct D from �D , 
where k is unknown. The uniqueness and stability estimate are established in [7,8]. As for reconstruction methods, we refer 
to [6,9,13–16,21] and the references therein, where the dynamical probe method and the enclosure method are developed. 
Recently, the authors established a linear sampling-type method for the heat equation in [12,17,18]. However, numerical 
studies of these reconstruction methods for parabolic inverse boundary value problems are rather limited [19]. Some related 
works on other kinds of parabolic inverse boundary value problems can be found in [2,3,5,10,11,20].

In this work, based on the heat layer potential theory, we investigate both the forward and inverse problems from the 
numerical point of view. Especially, the sampling-type reconstruction method established in [17] for our inverse problem 
will be numerically implemented. Roughly speaking, this reconstruction method is based on the characterization of the 
solution to the so-called Neumann-to-Dirichlet map gap equation

(�D − �∅)g = G�
(y, s)(x, t), (1.2)

where �∅ is the Neumann-to-Dirichlet map when D = ∅, and G�
(y, s)(x, t) := G�(x, t; y, s) is the Green function for the 

heat operator ∂t − � in �T with homogeneous Neumann boundary condition on (∂�)T . In terms of this characterization, 
the norm of the solution to (1.2) serves as an indicator function and the boundary of D can be reconstructed approximately 
by computing the values of the indicator function at a set of sampling points. Although the sampling-type reconstruction 
method for inverse scattering problems has been extensively studied; see [1] and the references therein, very few numerical 
results for parabolic inverse boundary value problems are reported. We recently studied in [19] the numerical implementa-
tion of the sampling method for identifying unknown cavities in the thermal conductor, but the rigid inclusion case has not 
yet considered.

In this paper, we continue our previous works and investigate the numerical realization of the sampling method for 
parabolic inverse boundary value problems with unknown inclusions. First of all, we supplement the theoretical analysis of 
our reconstruction method by analyzing the solvability of the equation (1.2) and showing the relation of its solution to the 
Green function of an associated interior transmission problem. These new findings reveal the essence of the sampling-type 
reconstruction method. In addition, a convergence result for noisy measurement data is proved. Then, we simulate the 
measurement data �D by solving the forward problem (1.1), and compute the Neumann-to-Dirichlet map �∅ and the Green 
function G�

(y, s)(x, t) by solving the problem (1.1) with D = ∅. By expressing the solution as a single-layer heat potential, 
the initial-boundary value problem (1.1) is transformed into a system of boundary integral equations. A numerical scheme 
for solving the resulting integral equations is introduced. Finally, we solve the discretized Neumann-to-Dirichlet map gap 
equation using the Tikhonov regularization technique. We show the performance of the reconstruction method from the 
following two aspects. 1. We test the method for inclusions of different shapes and thermal conductivities. 2. We test the 
method with short time measurements, namely, using measured data only in a very short time interval. Our numerical 
results illustrate the efficiency of the reconstruction method.
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The rest of this paper is organized as follows. In Section 2, we revisit the sampling-type reconstruction method and show 
some new theoretical results. In Section 3, we introduce a numerical scheme for solving the forward problem to simulate 
the measurement for our inverse problem. Two numerical examples are provided in Section 4. Finally, in Section 5, we give 
some concluding remarks.

2. Reconstruction method for the inverse problem

In this section, we revisit the sampling-type reconstruction method for the heat equation with unknown inclusions 
studied in [17], and give a further investigation on this method by showing some new theoretical results. Explicitly, we will 
analyze the solvability of the Neumann-to-Dirichlet map gap equation and explain what is the solution if it does exist. The 
relation of its solution to the Green function of a related interior transmission problem is established, which reveals the 
essence of the reconstruction method. For noisy measurement data, a convergence result is also proved.

To begin with, let us introduce the anisotropic Sobolev spaces. For p, q ≥ 0 we define

H p,q(R2 ×R) := L2(R; H p(R2)) ∩ Hq(R; L2(R2)).

For p, q ≤ 0 we define the space H p,q by duality H p,q(R2 ×R) := (
H−p,−q(R2 ×R)

)′
. By H p,q(XT ) we denote the space of 

restrictions of elements in H p,q(R2 ×R) to XT . The space H p,q((∂ X)T ) is defined analogously. We also define the function 
spaces

H̃1, 1
2 (XT ) :=

{
u ∈ H1, 1

2 (X × (−∞, T ))
∣∣ u(x, t) = 0 for t < 0

}
,

Ĥ1, 1
2 (XT ) :=

{
u ∈ H1, 1

2 (X × (0, +∞))
∣∣ u(x, t) = 0 for t > T

}
,

H̃1, 1
2 (XT ; ∂t − ∇ · γ ∇) :=

{
u ∈ H̃1, 1

2 (XT )
∣∣ (∂t − ∇ · γ ∇)u ∈ L2(XT )

}
,

where γ = 1 + (k − 1)χD , and χD is the characteristic function of D .
In this paper, we work in the above Sobolev spaces, and solutions to initial-boundary value problems should be under-

stood in the weak sense. For example, the solution to (1.1) should be interpreted as follows. For given g ∈ H− 1
2 ,− 1

4 ((∂�)T ), 
we seek u ∈ H̃1, 1

2 (�T ; ∂t − ∇ · γ∇) such that

T∫
0

∫
�

(
γ ∇u · ∇v + ∂u

∂t
v

)
dxdt = 〈g, 	v〉

for any v ∈ Ĥ1, 1
2 (�T ), where 	 is the Dirichlet trace map on (∂�)T and 〈·, ·〉 should be understood in the sense of duality.

For later use, we denote by

Ga(x, t; y, s) :=
⎧⎨
⎩

1

4aπ(t − s)
exp

(
− |x − y|2

4a(t − s)

)
, t > s,

0, t ≤ s
(2.1)

the fundamental solution of the heat operator ∂t − a�, where a is a constant. We sometimes write it as Ga
(y, s)(x, t).

Note that �∅ is defined by �∅ g := v|(∂�)T with v satisfying⎧⎪⎨
⎪⎩

(∂t − �)v = 0 in �T ,

∂ν v = g on (∂�)T ,

v = 0 at t = 0.

(2.2)

Define the operator

F := �D − �∅.

Then our reconstruction scheme is based on the characterization of the solution to the Neumann-to-Dirichlet map gap 
equation

(F g)(x, t) = G�
(y, s)(x, t), (x, t) ∈ (∂�)T (2.3)

for a fixed time s ∈ (0, T ) and the sampling point y ∈ �.
First, we analyze the solvability of (2.3).
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Theorem 2.1. For y ∈ D and s ∈ (0, T ), the equation (2.3) has a solution if and only if the interior transmission problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t − ∇ · k∇)w = 0 in DT ,

(∂t − �)v = 0 in DT ,

w − v = G�
(y, s)(x, t) on (∂ D)T ,

k∂ν w − ∂ν v = ∂νG�
(y, s)(x, t) on (∂ D)T ,

w = 0 at t = 0,

v = 0 at t = 0

(2.4)

is solvable with the solution w and v satisfying the equations (∂t − ∇ · γ∇)w = 0 and (∂t − �)v = 0 in �T , respectively.

Proof. Suppose that g ∈ H− 1
2 ,− 1

4 ((∂�)T ) is a solution to (2.3). Let w and v satisfy⎧⎪⎨
⎪⎩

(∂t − ∇ · γ ∇)w = 0 in �T ,

∂ν w = g on (∂�)T ,

w = 0 at t = 0

(2.5)

and ⎧⎪⎨
⎪⎩

(∂t − �)v = 0 in �T ,

∂ν v = g on (∂�)T ,

v = 0 at t = 0,

(2.6)

respectively. Then we have

w − v = �D g − �∅g = G�
(y, s) on (∂�)T ,

∂ν w − ∂ν v = 0 = ∂νG�
(y, s) on (∂�)T ,

and therefore

w − v = G�
(y, s) in (� \ D)T .

By the continuities of w and v across ∂ D , we further have

w|− − v|− = G�
(y, s) on (∂ D)T ,

k∂ν w|− − ∂ν v|− = ∂νG�
(y, s) on (∂ D)T .

Totally, we have the interior transmission problem (2.4).
Conversely, assume that (w, v) is a solution to (2.4) and satisfies the equations (∂t − ∇ · γ∇)w = 0 and (∂t − �)v = 0 in 

�T , respectively. By the continuities of w and v across ∂ D , we obtain from the transmission conditions in (2.4) that

w|+ − v|+ = G�
(y, s) on (∂ D)T ,

∂ν w|+ − ∂ν v|+ = ∂νG�
(y, s) on (∂ D)T .

Notice that w − v satisfies the heat equation (∂t − �)(w − v) = 0 in (� \ D)T . Then it follows from the unique continuation 
principle that

w − v = G�
(y, s) in (� \ D)T , (2.7)

and hence

w − v = G�
(y, s), ∂ν(w − v) = ∂νG�

(y, s) on (∂�)T . (2.8)

This implies that ∂ν w = ∂ν v on (∂�)T and g := ∂ν v is the solution to (2.3). The proof is now complete. �
This theorem analyzes the solvability of the Neumann-to-Dirichlet map gap equation (2.3). Furthermore, if it does exist 

a solution, we explain what is the solution in the following theorem.
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Theorem 2.2. If g is the solution to (2.3), we let v be the solution to (2.6) with the boundary data ∂ν v|(∂�)T = g. Then we can conclude 
that

v = G D
(y, s)(x, t) − G�

(y, s)(x, t) in DT , (2.9)

where G D
(y, s)(x, t) is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t − ∇ · k∇)H D
(y, s) = 0 in DT ,

(∂t − �)G D
(y, s) = δ(x − y) δ(t − s) in DT ,

H D
(y, s) − G D

(y, s) = 0 on (∂ D)T ,

k∂ν H D
(y, s) − ∂νG D

(y, s) = 0 on (∂ D)T ,

H D
(y, s) = 0 at t = 0,

G D
(y, s) = 0 at t = 0.

(2.10)

Proof. Set

G̃ D
(y, s)(x, t) = G D

(y, s)(x, t) − G1
(y, s)(x, t), (2.11)

G̃�
(y, s)(x, t) = G�

(y, s)(x, t) − G1
(y, s)(x, t). (2.12)

Note that G̃�
(y, s)(x, t) is the reflected solution of the fundamental solution G1

(y, s)(x, t) in �T and satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∂t − �)G̃�
(y, s) = 0 in �T ,

∂ν G̃�
(y, s) = −∂νG1

(y, s)(x, t) on (∂�)T ,

G̃�
(y, s) = 0 at t = 0.

We observe from (2.10) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t − ∇ · k∇)H D
(y, s) = 0 in DT ,

(∂t − �)G̃ D
(y, s) = 0 in DT ,

H D
(y, s) − G̃ D

(y, s) = G1
(y, s)(x, t) on (∂ D)T ,

k∂ν H D
(y, s) − ∂ν G̃ D

(y, s) = ∂νG1
(y, s)(x, t) on (∂ D)T ,

H D
(y, s) = 0 at t = 0,

G̃ D
(y, s) = 0 at t = 0.

Let w and v be the solutions to (2.5) and (2.6) with the same boundary data ∂ν v|(∂�)T = g , respectively. Then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂t − ∇ · k∇)(w − H D
(y, s)) = 0 in DT ,

(∂t − �)(v − G̃ D
(y, s) + G̃�

(y, s)) = 0 in DT ,

(w − H D
(y, s)) − (v − G̃ D

(y, s) + G̃�
(y, s)) = 0 on (∂ D)T ,

k∂ν(w − H D
(y, s)) − ∂ν(v − G̃ D

(y, s) + G̃�
(y, s)) = 0 on (∂ D)T ,

w − H D
(y, s) = 0 at t = 0,

v − G̃ D
(y, s) + G̃�

(y, s) = 0 at t = 0.

(2.13)

The uniqueness of solutions to the interior transmission problem (2.4) says that

v = G̃ D
(y, s)(x, t) − G̃�

(y, s)(x, t) in DT ,

which gives (2.9) and completes the proof. �
Here we would like to emphasize that the reflected solution G̃�

(y, s)(x, t) and the Green function G�
(y, s)(x, t) are com-

pletely determined by the domain �. So they are actually known in our inverse problem. Thus, once we have the solution 
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g to (2.3), we solve the initial-boundary value problem (2.6) with the boundary data ∂ν v = g on (∂�)T and then obtain the 
Green function G D

(y, s)(x, t) = v + G�
(y, s)(x, t). In this sense, our reconstruction method in principle provides a way of com-

puting the Green function G D
(y, s)(x, t) for the interior transmission problem (2.4) from the Neumann-to-Dirichlet map �D .

For y ∈ � \ D , we have proven the following result in our previous work [17]:

Theorem 2.3. For s ∈ (0, T ) and y ∈ � \ D, the equation (2.3) has no solution.

According to Theorems 2.2 and 2.3, we cannot guarantee the solvability of (2.3). However, we could find an approxima-
tion solution in some sense that characterizes the boundary of the inclusion. The theoretical results are obtained in [17]
and can be summarized as follows.

Theorem 2.4. Let s ∈ (0, T ) be fixed. We have the following conclusions:

(1) if y ∈ D, then for any ε > 0 there exists a function g y ∈ H− 1
2 ,− 1

4 ((∂�)T ) satisfying

‖F g y − G�
(y, s)‖H

1
2 , 1

4 ((∂�)T )
< ε

such that

lim
y→∂ D

‖g y‖
H− 1

2 ,− 1
4 ((∂�)T )

= ∞ (2.14)

and

lim
y→∂ D

‖Sg y‖
H̃1, 1

2 (DT )
= ∞, (2.15)

where the operator S is defined by

S : H− 1
2 ,− 1

4 ((∂�)T ) → H̃1, 1
2 (DT ), g y �→ v|DT ,

with v being the solution to (2.2);
(2) if y ∈ � \ D, then for any ε, η > 0 there exists a function g y ∈ H− 1

2 ,− 1
4 ((∂�)T ) satisfying

‖F g y − G�
(y, s)‖H

1
2 , 1

4 ((∂�)T )
< ε + η

such that

lim
η→0

‖g y‖
H− 1

2 ,− 1
4 ((∂�)T )

= ∞ (2.16)

and

lim
η→0

‖Sg y‖
H̃1, 1

2 (DT )
= ∞. (2.17)

Based on Theorem 2.4, we define the indicator function by

I(y) := ‖g y‖
H− 1

2 ,− 1
4 ((∂�)T )

and reconstruct the geometric information on D using the following algorithm:

Algorithm 2.5.

1. Fix s ∈ (0, T ) and select a set of “sampling points y” in �;
2. Compute an approximate solution to the equation (2.3) for each sampling point;
3. Assert that y ∈ D if and only if I(y) ≤ C , where the cut-off constant C should be chosen properly.

In practice, the measurement data always contain some noise, so the operator F cannot be given exactly and some 
regularization technique is necessary in numerical implementations. Denote by F δ the perturbed operator of F with

‖F δ − F‖ ≤ δ,

where δ is the noise level and ‖ · ‖ is the operator norm. Using the Tikhonov regularization method, we construct an 
approximate solution to the perturbed Neumann-to-Dirichlet map gap equation
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F δ g = G�
(y, s)

by

g y
α,δ := [

α I + (F δ)∗ F δ
]−1 (

F δ
)∗ [

G�
(y, s)

]
. (2.18)

Then we have the following convergence result:

Theorem 2.6. Let y ∈ D and the Neumann-to-Dirichlet map gap equation (2.3) have a unique solution g y. If we choose the regular-
ization parameter α properly such that α(δ) → 0 and δ

α3/2(δ)
→ 0 as δ → 0, then it holds that

g y
α,δ → g y as δ → 0. (2.19)

Proof. By direct calculations, we have

g y
α,δ − g y =

{[
α I + (

F δ
)∗

F δ
]−1 − [

α I + F ∗ F
]−1

} (
F δ

)∗ [
G�

(y, s)

]
+ [

α I + F ∗ F
]−1

[(
F δ

)∗ − F ∗] [
G�

(y, s)

]
+ [

α I + F ∗ F
]−1

F ∗ [
G�

(y, s)

]
− g y . (2.20)

From the estimate∥∥∥∥[
α I + (

F δ
)∗

F δ
]−1 − [

α I + F ∗ F
]−1

∥∥∥∥ ≤ 2δ

α3/2
,

we have{[
α I + (

F δ
)∗

F δ
]−1 − [

α I + F ∗ F
]−1

} (
F δ

)∗ [
G�

(y, s)

]
≤

∥∥∥(
F δ

)∗∥∥∥ ∥∥∥G�
(y, s)

∥∥∥ 2δ

α3/2 . (2.21)

Notice that

‖(α I + B)−1‖ ≤ 1

α

holds for any self-adjoint and positive operator B in Hilbert space. Then we obtain that∥∥∥[
α I + F ∗ F

]−1
[(

F δ
)∗ − F ∗] [

G�
(y, s)

]∥∥∥ ≤
∥∥∥G�

(y, s)

∥∥∥ δ

α
. (2.22)

In addition, it follows from standard regularization theory that

[
α I + F ∗ F

]−1
F ∗ [

G�
(y, s)

]
→ g y as α → 0.

Thus, the proof is completed by combining it with the estimates (2.21) and (2.22). �
Remark 2.7. By the well-posedness of the initial-boundary value problem (2.2) and the equality (2.9), we can easily deduce 
from (2.19) that∥∥∥S[g y

α,δ] −
(

G D
(y, s)(x, t) − G�

(y, s)(x, t)
)∥∥∥

H̃1, 1
2 (DT )

→ 0 as δ → 0, (2.23)

which leads to the convergence for computing the Green function G D
(y, s)(x, t) from the Neumann-to-Dirichlet map �D .

3. Numerical scheme for solving the direct problem

In this section, we present a numerical scheme to solve the forward problem (1.1) for two-dimensional spatial domains. 
Based on the potential theory for the heat equation, we first reformulate the initial-boundary value problem (1.1) as a 
system of boundary integral equations, and then introduce a discretization scheme for solving this system. This scheme is 
an extension of the method proposed in [2,3] to the layered medium case. Our problem (1.1) involves the operator ∂t − a�

with a = 1, k, so the discretization of the integral operators for a general constant a will be considered.
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Define the following heat layer potentials:

V a
ij[ϕ](x, t) :=

t∫
0

∫
Si

Ga(x, t; y, s)ϕ(y, s)dσ(y)ds, (x, t) ∈ S j × (0, T ),

Na
ij[ϕ](x, t) :=

t∫
0

∫
Si

∂Ga(x, t; y, s)

∂ν(x)
ϕ(y, s)dσ(y)ds, (x, t) ∈ S j × (0, T ),

where Ga(x, t; y, s) is the fundamental solution defined by (2.1). Later we will take i, j = 1, 2 with S1 = ∂ D and S2 = ∂�.
Assume that D is a homogeneous inclusion, that is, k is a constant. We express the solution u to (1.1) by the following 

single-layer potentials:

u(x, t) =
t∫

0

∫
∂ D

Gk(x, t; y, s)ϕ1(y, s)dσ(y)ds, (x, t) ∈ DT , (3.1)

u(x, t) =
t∫

0

∫
∂ D

G1(x, t; y, s)ϕ2(y, s)dσ(y)ds

+
t∫

0

∫
∂�

G1(x, t; y, s)ϕ3(y, s)dσ(y)ds, (x, t) ∈ (� \ D)T , (3.2)

where ϕ1, ϕ2 and ϕ3 are density functions to be determined. Using jump relations of heat layer potentials [4], we can verify 
that u expressed by (3.1) and (3.2) is the solution to (1.1) provide that ϕ1, ϕ2 and ϕ3 satisfy

V k
11[ϕ1] − V 1

11[ϕ2] − V 1
21[ϕ3] = 0, (3.3)

ϕ1 + 2kNk
11[ϕ1] + ϕ2 − 2N1

11[ϕ2] − 2N1
21[ϕ3] = 0, (3.4)

2N1
12[ϕ2] + ϕ3 + 2N1

22[ϕ3] = 2g. (3.5)

Note that the integral kernels of V 1
21, N1

21 and N1
12 are smooth, while those of V k

11, Nk
11, V 1

11, N1
11 and N1

22 are singular at 
(x, t) = (y, s). To numerically solve the equations (3.3)-(3.5), we present a discretization scheme as follows [2,3].

Assume that the boundaries ∂ D and ∂� have the parametric representations

∂ D = {x1(α) : x1(α) = (x11(α), x12(α)), 0 ≤ α ≤ 2π} ,

∂� = {x2(α) : x2(α) = (x21(α), x22(α)), 0 ≤ α ≤ 2π} ,

where xij(x) (i, j = 1, 2) are of class C2 and 2π -periodic functions. The unit outward normal vectors on ∂ D and ∂� are 
given by

ν1(α) = (x′
12(α), −x′

11(α))

|x′
1(α)| , ν2(α) = (x′

22(α), −x′
21(α))

|x′
2(α)| .

Set ϕ̃1(β, s) := ϕ1(x1(β), s), ϕ̃2(β, s) := ϕ2(x1(β), s), ϕ̃3(β, s) := ϕ3(x2(β), s), ri j(α, β) = |x j(α) − xi(β)|.
We apply a collocation method using piecewise constant interpolation with respect to the time variable on the equidis-

tant grid tn := nT /N , n = 0, 1, · · · , N . That is, we approximate the density ϕ̃i(β, s) by

ϕ̃i(β, s) ≈
N∑

n=1

ϕ̃i,n(β)�n(s),

where ϕ̃i,n(β) := ϕ̃i(β, tn), i = 1, 2, 3 and

�n(s) :=
{

1, tn−1 < s ≤ tn,

0, otherwise.

Take

K a,p
i j (α, β) :=

⎧⎪⎪⎨
⎪⎪⎩

1
4πa E1

(
Nr2

i j(α, β)

4aT

)
, p = 0,

1
4πa E1

(
Nr2

i j(α, β)

4aT (p+1)

)
− 1

4πa E1

(
Nr2

i j(α, β)

4aT p

)
, p = 1, · · · , N − 1,

(3.6)
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where E1 is the exponential integral function defined by

E1(z) =
+∞∫
1

e−tz

t
dt =

1∫
0

e−z/u

u
du.

Note that K a,0
j j has logarithmic singularity and can be decomposed into

K a,0
j j (α, β) = − 1

4πa
ln

(
4

e
sin2 α − β

2

)
+ K̃ a,0

j j (α, β), α �= β,

where

K̃ a,0
j j (α, β) = K a,0

j j (α, β) + 1

4πa
ln

(
4

e
sin2 α − β

2

)
, α �= β

with

lim
β→α

K̃ a,0
j j (α, β) = − γE

4πa
− 1

4πa
ln

(
eN|x′

j(α)|2
4aT

)
.

Here γE = 0.55721 is the Euler constant. It is easy to see that

lim
β→α

K a,p
j j (α, β) = 1

4πa
ln

p + 1

p
, p = 1, · · · , N − 1.

For i �= j the kernels K a,p
i j are continuous for p = 0, 1, · · · , N − 1.

Set

La,p
i j (α, β) :=

⎧⎪⎪⎨
⎪⎪⎩

(xi(β)−x j(α))·ν j(α)|x′
i(β)|

2πar2
i j(α, β)

exp

(
− Nr2

i j(α, β)

4aT

)
, p = 0,

(xi(β)−x j(α))·ν j(α)|x′
i(β)|

2πar2
i j(α, β)

{
exp

(
− Nr2

i j(α, β)

4aT (p+1)

)
− exp

(
− Nr2

i j(α, β)

4aT p

)}
, p = 1, · · · , N − 1.

For i = j, we can easily deduce that

lim
β→α

La,0
j j (α, β) = x′′

j1(α)x′
j2(α) − x′

j1(α)x′′
j2(α)

4πa|x′
j(α)|2 , (3.7)

lim
β→α

La,p
j j (α, β) = 0, p = 1, · · · , N − 1. (3.8)

For i �= j, the kernels La,p
i j are continuous for p = 0, 1, · · · , N − 1.

Then, by the same derivations as in [2,3], we have

V a
ij[ϕi](x j(α), tn) ≈

n∑
m=1

2π∫
0

K a,n−m
ij (α, β)ϕ̃i,m(β)|x′

i(β)|dβ,

Na
ij[ϕi](x j(α), tn) ≈

n∑
m=1

2π∫
0

La,n−m
ij (α, β)ϕ̃i,m(β)dβ.

Using these approximations and setting t = tn for (3.3)–(3.5), we have the following integral equations:

2π∫
0

K k,0
11 (α, β)|x′

1(β)|ϕ̃1,n(β)dβ −
2π∫
0

K 1,0
11 (α, β)|x′

1(β)|ϕ̃2,n(β)dβ −
2π∫
0

K 1,0
21 (α, β)|x′

2(β)|ϕ̃3,n(β)dβ

= −
n−1∑
m=1

2π∫
0

K k,n−m
11 (α, β)|x′

1(β)|ϕ̃1,m(β)dβ +
n−1∑
m=1

2π∫
0

K 1,n−m
11 (α, β)|x′

1(β)|ϕ̃2,m(β)dβ

+
n−1∑
m=1

2π∫
K 1,n−m

21 (α, β)|x′
2(β)|ϕ̃3,m(β)dβ, (3.9)
0
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1

2
ϕ̃1,n(α) + k

2π∫
0

Lk,0
11 (α, β)ϕ̃1,n(β)dβ + 1

2
ϕ̃2,n(α) −

2π∫
0

L1,0
11 (α, β)ϕ̃2,n(β)dβ −

2π∫
0

L1,0
21 (α, β)ϕ̃3,n(β)dβ

= −k
n−1∑
m=1

2π∫
0

Lk,n−m
11 (α, β)ϕ̃1,m(β)dβ +

n−1∑
m=1

2π∫
0

L1,n−m
11 (α, β)ϕ̃2,m(β)dβ +

n−1∑
m=1

2π∫
0

L1,n−m
21 (α, β)ϕ̃3,m(β)dβ, (3.10)

2π∫
0

L1,0
12 (α, β)ϕ̃2,n(β)dβ + 1

2
ϕ̃3,n(α) +

2π∫
0

L1,0
22 (α, β)ϕ̃3,n(β)dβ

= g̃(α, tn) −
n−1∑
m=1

2π∫
0

L1,n−m
12 (α, β)ϕ̃2,m(β)dβ −

n−1∑
m=1

2π∫
0

L1,n−m
22 (α, β)ϕ̃3,m(β)dβ, (3.11)

where g̃(α, tn) = g(x2(α), tn).
For the discretization with respect to the space variable, we apply the Nyström method to the above integral equations 

using the trapezoidal rule on the equidistant mesh β j := jπ/M , j = 0, · · · , 2M − 1. Especially, for the integral involving 
K a,0

11 (α, β), we need to deal with the singular integral of the form

2π∫
0

ln

(
4

e
sin2 α − β

2

)
ϕ(β)dβ.

In fact, it can be computed approximately by the quadrature rule

2π∫
0

ln

(
4

e
sin2 αi − β

2

)
ϕ(β)dβ ≈ 2π

2M−1∑
j=0

R |i− j|ϕ(α j) (3.12)

for α j := jπ/M , j = 0, · · · , 2M − 1, where the weights are given by

R j := − 1

2M

{
1 + 2

M−1∑
m=1

1

m
cos(mα j) + (−1) j

M

}
, j = 0, 1, · · · ,2M − 1.

Finally, we have the following linear system:

− 1

2k

2M−1∑
j=0

R |i− j||x′
1(β j)|ϕ̃1,n; j + π

M

2M−1∑
j=0

K̃ k,0
11 (βi, β j)|x′

1(β j)|ϕ̃1,n; j

+ 1

2

2M−1∑
j=0

R |i− j||x′
1(β j)|ϕ̃2,n; j − π

M

2M−1∑
j=0

K̃ 1,0
11 (βi, β j)|x′

1(β j)|ϕ̃2,n; j

− π

M

2M−1∑
j=0

K 1,0
21 (βi, β j)|x′

2(β j)|ϕ̃3,n; j

= − π

M

2M−1∑
j=0

n−1∑
m=1

K k,n−m
11 (βi, β j)|x′

1(β j)|ϕ̃1,m; j + π

M

2M−1∑
j=0

n−1∑
m=1

K 1,n−m
11 (βi, β j)|x′

1(β j)|ϕ̃2,m; j

+ π

M

2M−1∑
j=0

n−1∑
m=1

K 1,n−m
21 (βi, β j)|x′

2(β j)|ϕ̃3,m; j, (3.13)

1

2
ϕ̃1,n;i + k

π

M

2M−1∑
j=0

Lk,0
11 (βi, β j)ϕ̃1,n; j + 1

2
ϕ̃2,n;i − π

M

2M−1∑
j=0

L1,0
11 (βi, β j)ϕ̃2,n; j − π

M

2M−1∑
j=0

L1,0
21 (βi, β j)ϕ̃3,n; j

= −k
π

M

n−1∑
Lk,n−m

11 (βi, β j)ϕ̃1,m; j + π

M

n−1∑
L1,n−m

11 (βi, β j)ϕ̃2,m; j + π

M

n−1∑
L1,n−m

21 (βi, β j)ϕ̃3,m; j, (3.14)

m=1 m=1 m=1
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π

M

2M−1∑
j=0

L1,0
12 (βi, β j)ϕ̃2,n; j + 1

2
ϕ̃3,n;i + π

M

2M−1∑
j=0

L1,0
22 (βi, β j)ϕ̃3,n; j

= g̃(αi, tn) − π

M

n−1∑
m=1

L1,n−m
12 (βi, β j)ϕ̃2,m; j − π

M

n−1∑
m=1

L1,n−m
22 (βi, β j)ϕ̃3,m; j, (3.15)

for ϕ̃1,n;i := ϕ̃1,n(βi), ϕ̃2,n;i := ϕ̃2,n(βi), ϕ̃3,n;i := ϕ̃3,n(βi), i = 0, · · · , 2M − 1, n = 1, · · · , N . This system should be solved 
recursively for n = 1, · · · , N . For each n, we need to solve a system consisting of 6M linear equations with 6M unknowns. 
Its coefficient matrix B can be written as a block matrix in the following form:

B =
⎛
⎝ B11 B12 B13

1
2 I + B21 1

2 I + B22 B23

B31 B32 1
2 I + B33

⎞
⎠ =

⎛
⎝ B11 0 0

1
2 I 1

2 I 0
0 0 1

2 I

⎞
⎠ +

⎛
⎝ 0 B12 B13

B21 B22 B23

B31 B32 B33

⎞
⎠ =: B1 +B2

where Blk (l, k = 1, 2, 3) are 2M × 2M matrices with the matrix elements B11
i j = − 1

2k R |i− j||x′
1(β j)| + π

M K̃ k,0
11 (βi, β j)|x′

1(β j)|, 
B12

i j = 1
2 R |i− j||x′

1(β j)| − π
M K̃ 1,0

11 (βi, β j)|x′
1(β j)|, B13

i j = − π
M K 1,0

21 (βi, β j)|x′
2(β j)|, B21

i j = k π
M Lk,0

11 (βi, β j), B22
i j = − π

M L1,0
11 (βi, β j), 

B23
i j = − π

M L1,0
21 (βi, β j), B31

i j = 0, B32
i j = π

M L1,0
12 (βi, β j), B33

i j = π
M L1,0

22 (βi, β j). Then we can easily see that the above system is 
uniquely solvable, if B11 is invertible and −1 is not an eigenvalue of B−1

1 B2.
Once we have obtained the density functions ϕ1, ϕ2 and ϕ3 approximately by solving the above linear system, we 

compute u(x, t)|(∂�)T in terms of (3.2):

u(x2(βi), tn) ≈ π

M

n∑
m=1

2M−1∑
j=0

K 1,n−m
12 (βi, β j)|x′

1(β j)|ϕ̃2,m; j − 1

2

2M−1∑
j=0

R |i− j||x′
2(β j)|ϕ̃3,n; j

+ π

M

2M−1∑
j=0

K̃ 1,0
22 (βi, β j)|x′

2(β j)|ϕ̃3,n; j

+ π

M

n−1∑
m=1

2M−1∑
j=0

K 1,n−m
22 (βi, β j)|x′

2(β j)|ϕ̃3,m; j (3.16)

for i = 0, 1, · · · , 2M − 1, n = 1, 2, · · · , N .
Based on the above discretization scheme, we can get the discretized version AD of the Neumann-to-Dirichlet map �D . 

Indeed, let

U = (u(x2(β0), t1), · · · , u(x2(β2M−1), t1), · · · , u(x2(β0), tN), · · · , u(x2(β2M−1), tN))T ,

β = (g(x2(β0), t1), · · · , g(x2(β2M−1), t1), · · · , g(x2(β0), tN), · · · , g(x2(β2M−1), tN))T .

Then, combining (3.13)–(3.15) and (3.16), we can assemble a matrix AD ∈R
2MN×2MN such that

U = AD β. (3.17)

This implies that AD is the discretized version of �D . In the same way, we can obtain the discretized version A∅ of �∅
by solving the initial-boundary value problem (2.2). So the operator F is discretized as the matrix F := AD −A∅ . Note that 
the Green function G�

(y, s)(x, t) = G1
(y, s)(x, t) + G̃�

(y, s)(x, t), where G̃�
(y, s)(x, t) satisfies (2.2) with g = −∂ν(x)G1

(y, s)(x, t). The 
function G̃�

(y, s)(x, t) can also be computed by the above numerical method and the Green function G�
(y, s)(x, t) are therefore 

obtained. Let

G(y, s) =
(

G�
(y, s)(x2(β0), t1), · · · , G�

(y, s)(x2(β2M−1), t1), · · · , G�
(y, s)(x2(β0), tN), · · · , G�

(y, s)(x2(β2M−1), tN)
)T

.

Then we are led to the following linear equation:

Fβ =G(y, s), (3.18)

which is the discretized version of the Neumann-to-Dirichlet map gap equation (2.3).
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4. Numerical examples

In this section, we present some numerical results to show the performance of the reconstruction method for our inverse 
problem. First, we simulate the operator F = �D −�∅ and compute the Green function G�

(y, s)(x, t) by the numerical scheme 
provided in Section 3. Then, taking the synthetic data as measurements, we solve the discretized Neumann-to-Dirichlet map 
gap equation (3.18) by the classical Tikhonov regularization method. In the first example, we implement the reconstruction 
method for one inclusion of three different shapes. The cases of different thermal conductivities, namely, k < 1 and k > 1, 
are tested. The second example is devoted to the numerical reconstruction by using short time measurements, where the 
measured data are only available in a very short time interval.

In all numerical experiments, we take N = 100, M = 16. This yields a 3200 × 3200 matrix F := ( f i j) which is the 
discretized version of the operator F = �D − �∅ . The uniform random noise is added to F via

f δ
i j = f i j × (1 + δ rdi j),

where δ is the noise level and (rdi j) is a matrix whose elements are normally distributed with mean value 0 and standard 
deviation 1. In all numerics, we take � as a circle with radius r and center at the origin. We choose 20 ×32 sampling points 
in � specified by

yij = ri
(
cos(α j), sin(α j)

)
, ri = r

20
i, α j = π

16
j, i = 1, · · · ,20, j = 1, · · · ,32. (4.1)

For each sampling point yij , we compute the indicator function I(yij) defined by

I(yij) := 1/ ln(‖g yij ‖L2). (4.2)

Here we would like to mention that, instead of the norm of g yij , we use (4.2) as the indicator function in our numerical 
experiments and it turns out to be more efficient.

Example 4.1. We test the reconstruction method for one inclusion of differential shapes. Let � be a circle with radius 3 cen-
tered at the origin. For the inclusion D , we consider the following three different shapes, namely, kite-shaped, boat-shaped 
and pear-shaped domains parameterized by

“Kite”: ∂ D = {(cos(α) + 0.65 cos(2α) − 0.65,1.5 sin(α)) : α ∈ [0, 2π ]} ;
“Boat”: ∂ D = {(0.5 cos(α) − 0.1 sin(4α),−1.5 sin(α)) : α ∈ [0, 2π ]} ;
“Pear”: ∂ D = {(1 + 0.3 cos(3α))(cos(α), sin(α)) : α ∈ [0, 2π ]} .

Set T = 1 and δ = 0.05.

The numerical reconstructions are shown in Figs. 4.1–4.3, where the left pictures show 100 contour lines of the indi-
cator functions for k = 0.5 and the right pictures show those for k = 2. We can easily observe that the L2-norm of g y

becomes significantly large as the sampling point y approaches the boundary ∂ D and keeps large outside D . The numerical 
results greatly illustrate our theoretical analysis. We conclude that the reconstruction method works well for inclusions of 
differential shapes and thermal conductivities, and it has a high tolerance for the measurement noise.

Example 4.2. We test the reconstruction method with short time measurement. The domain � is taken as the same in 
Example 4.1. The inclusion D is set to be a boat or a pear defined above. Suppose that the measured data are available only 
in a short time interval.

The numerical results for the case that k = 2 and T = 0.4 are shown in Fig. 4.4, from which we see that the geometric 
information on D could still be captured, although the reconstructions look worse than those in Example 4.1. To numerically 
see the limit of shortness of the measuring time, we also test our method for T = 0.3 and T = 0.15. The numerical results 
for the pear-shaped domain are shown in Fig. 4.5. As the measuring time becomes short, the location of the inclusion can 
still be identified, but the shape is not well recovered.

Finally, let us mention that s of G�
(y,s) was fixed in our numerical experiments. However, it is free to choose, and we can 

use this freedom to do the sampling in the following way. Let {yij} be the sampling points given by (4.1). Define the order 
≺ for two pairs of indices (�, m) and (�′, m′) of y�, m and y�′, m′ by

(�, m) ≺ (�′, m′) if either the case �′ > � or the case �′ = � and m′ > m.

Numerate these pairs (�, m) of all y�, m ’s by this order so that {(�, m)} = { J } with J = 1, 2, · · · , 640. Consider a finite 
time series {s̃ J }640

J=1 ⊂ (0, T ) such that s̃1 < s̃2 < · · · < s̃640. At each s̃ J we give a transient input as before and measure 
over (s̃ J , s̃ J + τ ) with a small positive number τ . With these measurements, we can also reconstruct the inclusion by the 
sampling method as we did in [19] for the cavity case.
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Fig. 4.1. Kite-shaped domain: k = 0.5 (left), k = 2 (right).

Fig. 4.2. Boat-shaped domain: k = 0.5 (left), k = 2 (right).

Fig. 4.3. Pear-shaped domain: k = 0.5 (left), k = 2 (right).
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Fig. 4.4. Reconstructions for the case that k = 2 and T = 0.4.

Fig. 4.5. Reconstructions of the pear-shaped domain: T = 0.3 (left) and T = 0.15 (right).

5. Concluding remarks

This paper continued our previous works and gave a further investigation of the sampling-type reconstruction method 
for identifying unknown inclusions inside the heat conductor. We first analyzed the solvability of the Neumann-to-Dirichlet 
map gap equation and established the relation of its solution to the Green function of an interior transmission problem 
for DT . This naturally yielded a way of computing this Green function from the Neumann-to-Dirichlet map. A convergence 
result for noisy measurement data is also proved. Using the boundary integral equation method for the heat equation, we 
presented a numerical scheme for simulating the Neumann-to-Dirichlet map and the Green function G�

(y, s)(x, t) which are 
known for the considered inverse problem. The discretized Neumann-to-Dirichlet map gap equation was solved by using the 
Tikhonov regularization method. The numerical experiments showed that our reconstruction method for the heat equation 
with unknown inclusions is effective and relatively stable to noise.
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