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Abstract

We consider an inverse problem of recovering a time-dependent factor of an
unknown source on some subboundary for a diffusion equation with time
fractional derivative by nonlocal measurement data. Such fractional-order
equations describe anomalous diffusion of some contaminants in hetero-
geneous media such as soil and model the contamination process from an
unknown source located on a part of the boundary of the concerned domain.
For this inverse problem, we firstly establish the well-posedness in some
Sobolev space. Then we propose two regularizing schemes in order to
reconstruct an unknown boundary source stably in terms of the noisy mea-
surement data. The first regularizing scheme is based on an integral equation
of the second kind which an unknown boundary source solves, and we prove a
convergence rate of regularized solutions with a suitable choice strategy of the
regularizing parameter. The second regularizing scheme relies directly on
discretization by the radial basis function for the initial-boundary value pro-
blem for fractional diffusion equation, and we carry out numerical tests, which
show the validity of our proposed regularizing scheme.

Keywords: anomalous diffusion, fractional order derivative, ill-posedness,
regularization, stability, error estimate, numerics
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1. Introduction

In this paper, we consider an inverse problem of determining a time-dependent factor of a
boundary source for a fractional diffusion equation in a bounded domain 2 C R, d>1,
with piecewise smooth boundary 9. Let x = (x, ..., x;) € R? and [, C 99 be a relatively
open sub-boundary and set I} :== 0Q\I). Here D denotes the closure of a set D under
consideration.

Let o € (1/2, 1). We consider the following diffusion problem:

d
Ou(x, t) = Zi(a,j(x)a—u]—i—c(x)u, xeQ, 0<r<T (1.1

i‘j:laxi an
with
u(x, 1) =0, xelp, 0<t<T,
ux, ) =F@®gkx), x€l,0<t<T, (1.2)
u(x, 0) =0, x € Q.

Throughout this paper, we assume that a; = a; € C'(Q), ¢ € C(Q), ¢ < 0 in €, and there
exists a constant 7, > 0 such that

d d
2 a(0&E > %208 forallv € Qand g, ..., & ER,
ij=1 i=1

and we use the Caputo derivative for variable ¢ defined by

Ofu(x, t) = ! fl ! 8—u(x, s)ds
I'd—a)Jdo (¢t — ) s
and I'( - ) is the Gamma function.

Here we assume that g € HS 2M)isa spatial distribution amplitude factor of the source,
while F(¢) describes a time amplitude factor of the source. Our inverse problem is to deter-
mine F(¢) by some extra data of the solution u, provided that g is known. Such a separation
form of variables has also been assumed for example for a classical inverse heat conduction
problem in Cannon et al [4]. In practice, the boundary source F (¢) g (x) in the form of variable
separation is motivated by a point source F (¢)0,,(x) where 0,, is the Dirac delta function at
xo € I, i.e., the delta function is replaced by a suitable bell-shaped function centered at x,
which is a reasonable approximation of the point source.

In (1.1) and (1.2), the function u(x, t) denotes the density of e.g., a contaminant or
temperature, and (1.1) is called a fractional diffusion equation. In modeling the diffusion in
heterogeneous media such as soil, the classical diffusion equation like % = Au does not
appropriately simulate profiles of diffusion as the time passes (e.g., Adams and Gelhar [1]).
Thus several kinds of model equations have been proposed and the fractional diffusion
equation in the form (1.1) is one of them (e.g., Suzuki et al [31]). We refer also for example to
Klafter and Sokolov [16], Metzler and Klafter [22-24]) about the physical backgrounds. In
(1.2), the boundary value u(x, t) = F(t)g(x) for x € I and 0 < ¢t < T is interpreted to
describe a boundary input of contaminant or heat into the domain {2 and cause the anomalous
diffusion in Q x (0, T).

For given F and g, as is proved later, there exists a unique solution to (1.1) and (1.2) in a
suitable class (Gorenflo et al [9], and also theorem 2.2 in Sakamoto and Yamamoto [28]). By
the linearity, we can similarly discuss non-zero boundary values on I} and non-zero initial
values, but we do not treat here.
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We can find extensive references on the theoretical analysis and numerical algorithms on
fractional diffusion equations and see Boris et al[3], Gorenflo ef al[9], Lin and Xu [18],
Podlubny [26], Wang and Liu [32], Yang and Liu [33], Ye and Xu [34], Zhang and Liu [35],
for example.

The main problem in this paper is

Inverse problem of determining a t-factor of the boundary source: Given g in (1.1) and
(1.2), determine F(f) by

h(t) == fﬂ u(x, Nux)dx, 0<r1<T, (1.3)

where ¢ € C5° (), # 0 is a non-negative weight function.

In (1.3), the support of p is presumed to be small and data mean that we are given the
average spatial distribution information in a small sub-domain. Physically, the weight 1 (x)
can be considered as an internal tiny sensor measuring the average distribution in the small
domain and see e.g., Prilepko er al [27, p 60].

As for inverse problems for the parabolic case («« = 1) and the hyperbolic case (o = 2),
there are many works and we refer to Denisov [7], Isakov [14], Prilepko et al[27] as
monographs. As for numerical methods for inverse problems, see also Duc and Tuan [8], Guo
and Murio [12], Jonas and Louis [15], Lesnic and Elliott [17], Liu [19], and here we do not
intend to create any comprehensive lists of the references. On the other hand, for inverse
problems for fractional diffusion equations, the references are rapidly growing but we refer
only to Bondaranko and Ivaschenko [2], Cheng et al [6], Liu and Yamamoto [20], Luchko
et al [21], Miller and Yamamoto [25], Sakamoto and Yamamoto [28, 29]. Here the list is far
from the complete. For fractional diffusion equations, the difficulty comes from the definition
of the fractional-order derivatives, which is essentially an integral with the kernel of weak
singularity. For such a non-classical derivative, some standard methods for treating the
inverse problems such as the Carleman estimates cannot be applied. Such a difference implies
that the inverse problems for fractional diffusion equations should be more difficult.

Moreover, for the reconstruction, available data 1 (¢) are often measured as noisy data of
h(t) satisfying

”h(S o h”LZ(o,T) <o

Then our inverse problem aims at the reconstruction of F(#) and consequently the solution
u(x, t) in Q x [0, T] approximately from the available data A% (¢) based on system (1.1)
and (1.2).

This paper is composed of four sections. In section 2, we prove the well-posedness for
our inverse problem provided that data & are in some Sobolev space, and the proof is based on
the reduction of the inverse problem to an integral equation of the second kind. Section 3 is
devoted to our first regularizing scheme which is based on the integral equation derived in
section 2, and establish an a priori choice strategy of regularizing parameters which gives a
convergence rate of regularized solutions. In section 4, we discuss the second regularizing
scheme which is based on direct discretization by radial basis functions (RBFs) of the original
initial-boundary value problem, and we give numerical examples which show the validity of
our regularizing scheme.

2. Stability and uniqueness

Throughout this paper, the constant C > 0 denotes generic constants and may be different in
the whole paper, and we denote the scalar product in L(2) by ( -, - ). We assume

3
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g € Hy*(Lh), %<o¢< 1.

We can discuss the case 0 < a < %, but the treatments are more complicated and here we

discuss only the case of % < a < 1. The cases for 0 < o < % require more work in the
future.
Let H*(0, T) denote the Sobolev space of the order « (e.g., Shimakura [30]). We set

oH®(0, T) := {f € H*(0, T) : f (0) = 0}.

Here £(0) is well-defined in the trace sense by the Sobolev embedding and o > %
Let G satisfy

d
Z%(%’(@%) +cx)G=0, x€Q,
i j

i1 2.1)
Glp, =0, Glr=g¢g
for g € HS/Z(E).
In sections 2 and 3, we assume
(G, ) = 0. (2.2)

Condition (2.2) is satisfied for example if g > 0, Z 0 on I} and i > 0, # 0 in 2. In fact, by
(2.1) and ¢ < 0, the maximum principle yields G > 0 in 2. Therefore by p > 0, £ 0, it
follows that (G, p) = 0.

Now we state our first main result on the well-posedness of our inverse problem
in ¢H*(0, T):

Theorem 2.1. For given h € H“(0, T), there exists a unique solution

w(F), F) € (OH“(O, T; LZ(Q)) N £2(0, T; HZ(Q))) X oH*(0, T)

to (1.1)—(1.3). Moreover there exists a constant C > 0 such that
C M All e (o.ry < NFllome(o.r) < C [l ae 0.1
for each h € (H*(0, T).

Theorem 2.1 is derived from theorem 2.2 stated below. For the statement of theorem 2.2,
we need to introduce notations, functions and operators. Throughout this paper, by E, 3(z)
with «, 8 > 0, we denote the Mittag—Leffler function which is defined by

> k

Evs@) = > —

—, z€C.
i—o'(ak + 1)

Here the series is absolutely convergent for all z € C and E, 3(z) is an entire function in
z € C (e.g, [26]).
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We define an operator —A in L?({2) by
d
0 Ou
—A = —|a;(x)— |+ , x €,
u(x) ,-,jZ::1axi (aj(X) ax]] c(xX)u, x
D(A) = HX() N Hy ().

Denote by {(\,, ¢,(x)):n = 1,2,...} an orthonormal -eigensystem of A:
Ay, = M\, and ||, l|l20.r) = 1. Henceforth we number ), by

O< <A<

and it is known that {(, },cy is an orthonormal basis in L?(£2). Moreover, for y € L*(0, T),
we define

K@—-m= (PG(—CZ) Y (G, @) (s @)Eaa( =Xt — 7)) — 1, (2.3)
’ n=1
[ LrKe—7
(Bay)(t) B '»/(‘) (l‘ — T)l—(y y(T)dT
T & Co B .
=G n:l(G’ @) (s 80,,)](; (t — 1) Ey o =Mt — T)¥)y(T)dT (2.4)
and
I (@) = — L
PO T OTd — )
X fot (f: (s — T)_O%((t — K@ — S))dS)y(T)dT, 0<t<T. (2.5)

The operator L is well-defined for y € L?(0, T), which is proved in theorem 2.2 below.
We are ready to state the key Volterra integral equation for the inverse problem.

Theorem 2.2. (i) L :L*0,T)— (H*(0,T) is a linear bounded operator. (ii) If
W (F), F) € (oHY(0, T; L>(€)) N L?>(0, T; H*(Q))) x ¢H*(0, T) satisfies (1.1) and
(1.2), then F € (H“(0, T) satisfies

(@) — DF@) = —(LF)@®) + %h(t), 0<tr<T. (2.6)

s

In theorem 2.2, our inverse problem is reduced to the Volterra integral equation (2.6) of
the second kind, which plays an important role also in the first regularization discussed in
section 3.

2.1. Preliminaries

For the proof of the theorems, we show two lemmata.

Lemma 2.3. For given F € (H*(0, T), there exists a unique solution

u=u(F) € H0,T; L) () L*(0. T; HX()
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to (1.1) and (1.2). Moreover there exists a constant C > 0 such that
[ () lpe (0,7502(0)) + P2z (0,7:0200) < IFl oo (0.7)
for each F € (H*(0, T).

Proof. First we prove the uniqueness of u(F). Let F = 0. Then we have

Ofu=—Au, x€Q,0<t<T,
ux,t) =0, x€0Q,0<r<T,
ulx,0) =0, xecq.
Therefore the uniqueness to the initial-boundary value problem (e.g., theorem 4.2 in [9])

yields u = 0 in 2 x (0, T), that is, the uniqueness is proved.
Next let

vix, ) =ulx,t) — FO)Gx), x€Q,0<t<T, 2.7

where G € H?(2) is a unique solution to (2.1). Then, in terms of (2.1) and F (0) = 0, we can
rewrite (1.1) and (1.2) as

v =—Av — G(x)O0F (1), x€N,0<t<T,

vix, 1) =0, x€0N,0<t<T. (2.8)
v(x, 0) =0, x € Q.
By F € (H“(0, T), applying theorem 4.2 in [9], we see that there exists a unique solution
v € HY(0, T; L*(Q)) N L*(0, T; HX(Q) N Hi () to (2.8). Therefore
u=v+ GF € H*O, T; L>(Q)) N L*(0, T; H*(Q)) satisfies (1.1) and (1.2). O

Henceforth we set K’ (¢) := %(t). Next we prove

Lemma 2.4. With some constants dy, dy, a\, ay (which may be 0) and p,, p,, r € C[0, T1,

we have
(i)
K@) = dot® + 1*py(), 0<t<T.
(ii)
K'(t)=dio '+ 12" Ipt), 0<t<T.
(iii)
%( t— 507K —9) =at — 924+ ay(t — P2+ r — )t — 5)**72 (2.9)
for0 <t —s<Tand
I ()| < Cr! (2.10)
for0 <t <T.

Proof. Henceforth by u e Cp° () C DA™ with m e N, we note
that (1, A" ,) = (A" 1, 3.
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By the definition of K and

o]

Enn0) = ﬁ G, 1) =3(G. ¢) (1 3.
n=1

we have

K@) = 56, 6) (s 6 (Euca = Mt?) — Eara @),
G &

On the other hand, we have

00 (=A%) o (= A1) !
Enroz_)\na—EaaO: _—_ = — a
( t) o ® Iczzlr(k+a) ,;F(ak—i—a)
B Jd 1 " o (=A%) 2
M [F(2a) 22 I'(ok + )
__W[;_ s A ]
I'Ca) oLy + 30)
_ @ 2 2a o «a
= — Mt Tow + Mt Eq 30 (= Aat®).
Hence
K@) = s G, ) (= Apt®
0=t )(G u),,Z( @) (1t e)( )
F(a) 2.0
> tn )‘nt aEa, e} _)\ntu
G nZl( @) s @) 30 )
') I'(a) ad
=————(G, — At + ——1*> (G, ¢,)(Aw ¢,
T2 G ) Wt G ’;( @) (A n, @)
X Ea,3a(7)\nta) = dot® + po(t)tzo‘.
Here, by u € Cg°(2) C D(A?), we used (1, Ag,) = (Ap, @),
> (G @), %)(—Anf“)—Z(G G =)
n=1
=2(G, @)1 — Ag)1* = 32(G, ) (—Ap, )1 = (G, —Apwr® @2.11)
n=1 n=1
and

(G’ Son)('u" 5011))\5 = (G’ Son)( )\zgpn) (G’ %1)(”’ Achn) = (G’ Spn)(Azu’ <'0")'

By theorem 1.6 (p 35) in [26], for «, § > O, there exists a constant C, g > 0 such that
|E0g(—At®)l < Copp 1>0,n€N. (2.12)

Therefore it follows from G, A%j € L*(S2) that p, € C[0, T] and the proof of (i) is
completed.
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Next since E, ,(z) is an entire function, the termwise differentiation yields

%(H*‘EM(—/\,,N)) =1 2E, (= Mt?),  a,v>0.

We apply (2.13) to have
(Ear ( —)\nt“)), = (7 "Ean ( —)\nt“)tl’”)/
= (" "Eq( —A,,t“))'t“”f’ + 7 E, (= M\t) (1 — N,
that is
Ear (= Mat®) = 17 (Eapo1(=Mat®) = (7 = DEqy (= Aat®)).

Therefore we have

/ (@) d
K'(t) = SNG, 0) (s 9)—(Eao( —Ant®
I'()

TG =

t_IZ(G’ <‘0")(“’ gpll)(E“’”*l(_/\"ta) - (a - I)Ea,a(_/\nta))'

(2.13)

(2.14)

Here the termwise differentiation can be justified by the convergence of (2.15) in C[0, T]

which can be seen below. Moreover

Ea,ozfl(fAnta) - (O[ - I)Ea,a(fknta)

(B st )

Lk +a—-1) 2 I'(ak + @)

( 1 a — 1)
— A\t —

I'Ca —1) I'Qa)
o (=)

+ )\ﬁﬂ“[ >

STk+a—1) f

Nk

(=Xt P a — 1)
> I'(ak + )

( 1 a — 1)
= — A\ 1 —
I'a—1 TI'Qa)

+ Aztz‘*[i—(A"ta)j ARY ya e ]

ST(aj+3a—1) =oT(0j + 3a)

1 a—1
= —\,1° —
(F(Za -1 F(Za))
+ M2 (Egza-1(=Aut®) — (@ = DEg30( = Aat®)).

Therefore, again similarly to (2.11), we obtain

gy = — (@) o 1 a1\
Fo= (G, M)t (F(Za -1 I‘(za));(G’ @) At 6,)
() 0 v )
+ A G, 0,) a1, @,
(G, 1) ’;( @) A (s @)
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X (E(Y,Safl(_AntO() - (O[ - I)Ea,3a'(_)\ntu))
I N C)) (al B 1 )(G,A,u)t““
G, W\ I'Cw) I'Ca —1)
F'(@) ha-i
+ G, ¢)(Ap, ¢,
G Z( o) (i 5,)
X (E(Y,S()afl(_Anta) - (O[ - l)Ea,Sa(_)\nta))
c=die !+ 227 Ip (1) inC(O, TI. (2.15)

In terms of (2.12), we verify that p, € C[0, T], which implies (ii). Next we will prove (iii).
By (i) and (ii), we have

g((z — ) TIK(@—89)) =1 — ) — K@ — ) — (t — 5Kt — 5)
S

= (1 — a)(t — 9)°72(do(t — 5)* + py(t — $)(t — 5))

= (= 9" (di(t = 9"+ py (= ) = 977
=((1 — do — d)(t — > 72 + ((1 — a)py(t — ) — p,(t — 5))(t — 5)** >
= t>* 2 + (1 — 2Rt — 5).

That is, ¢ = (1 — a)dy — d; and

R(1) = (1 = a)py (1) — py (1)

['(a) ZOC 2
= G, h A s ¥ 1 - En(’ o _>\n @
(G, /l)n:]( @)( : 90){( WFas ( t )

- (E(y 3a— l(_>\nta) - (a - I)Ea,3a'(_)‘ntu))}

F
(a) Z( > wﬂ)(Azu’ @n)Enﬁa—l(_)\nta).

Hence
! = ()
Eakaf /\ A
sam1( =) = TGa -1 ,;F(ak +3a-1)
B 1 ”Z (_)\ ta)k—l
CT'GBa—1) — T(ak + 3a — 1)
%) *)\nta
- /\,,ta’Z—(. )
I'Ga —1) jzol“(og + 4o — 1)
1

e Mt Epga (= Mt),
I'Ga — 1) sai( )
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and so
(@) ) 1
R()=- G, ¢,)(Au, ¢,)————
== G, 0 20 @)W a)mm
P(a) & )
— G, o )(A% 1, @ ) (= Ant®)Eqaa—1(—Ant®
(G,u)n;( @) (A p. ,)( )Eq 40-1( )
_ I'(a) )
TG, u>r<3a—1>( b 6)
I'(a)
( IQZ( ’ Son)( /‘L’ Son)EaA(lfl(_)\nta)'
Setting
_ I'(a) )
= G ot Ga — 1 )
and
INa) & ;
)= ——= G’ n A s ¥n Ea, a— _)\nta )
we have

Rt — )t — 8P 2 =ay(t — $)32 + r(t — 5)(t — s)* 2,
Therefore we obtain (2.9). Finally we have to prove (2.10). By (2.14), we have
11(04) -

2. (G ) (A1 )

( a,da— 2( /\nta) — (4a — Z)E@AQ_](—)\nl‘a)).

Again, by (2.12), we have proved (2.10). Thus the proof of lemma 2.4 is completed. (Il

/t:
r' (1) .

2.2. Proof of theorem 2.2

We define the Riemann-Liouville fractional integral operator J : L?(0, T) — L*(0, T) by

_ ! _ a—1
(Joy) (@) : F()fo(r 1y (s)ds 2.16)

(e.g., Gorenflo and Vessella [10]).
Lemma 2.4 (iii) yields

f (s — e ((t 1K (= 5))ds

- f (s — T)*G'(al(t — 92072 ay(t — 8P 4 r(t— )t — ) 2)ds

_ald-—a)lRa-1  &ll-alGa-1) o |
= @ t— 7+ T2 (t—7)

+ f’ (s — 77 Or(t — $)(t — sy**=2ds,
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Hence
(Ly)(t) = %(]“)})(2‘) _ %(‘]2%})0)
. ﬁf; (ft (s — 7)Or(t — 5)(t — s)‘m_zds)y(T)dT
(6% — T
_—al'Qa—-1), _ arI'Ga - 1), ,,
e (o) @) BT (J29)@) + 1(). (2.17)

We calculate I’ (¢). By 4a — 2 > 0,0 < o < 1 and lemma 2.4 (iii), we have

-t NN a2 )
P(a)r(loof;a’(f; (s = 7 r(t = )t — sy 72ds |y (m)dr

e U LA O N (oS
S T(@T(1 — ) fo (f (s =7) (r (t =)t — 9
+ r(t — 5)(da — 2)(t — s)**3)ds)y(1)dr.

By lemma 2.4, we obtain |r'(r — s)| < C(t — s)™! for 0 < t < T, so that
(s — 7y (r'(t — ) — 92+ r(t — 5)(da — 2)(t — s)*73)]
<C(s — 7)o@t — s)*3,

Since4a — 3 > — 1 by a > %, we obtain

't =

U; (f s (K= 90— 9% (- da - 2 - S)“‘H)ds)y (rdr

<cf( [ 6=mroa—veu)yoler =c [ - ool

and

LT |J;’ (L/;t (s — T)*a(r/(t 9 — syl?

+r(t — s@a — 2)( — s)4“‘3)ds) ly(r)|dT >dt

T t 2
<C j; ( j; (t — 72y (r)| dT) dt = C |2~y )220,

2
< c(fOT t3“2dt) (LT |y(T)|2dT),

where we used the Young inequality for the convolution. Therefore ||| 0.1y < Cllyllzo.1)-
Moreover by theorem 2.1 in [9], we have

[ llome 0.1y < C [Yll20.7)
and
172 laze 0.7y = I (I)lorre0.7) < C 1Y z0.r) < C I¥llzo.r) -

Here the final inequality follows from (2.16) and the Young inequality for the con-
volution. Therefore (2.17) yields
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C 17l ya= 0.1y + C 12Vl (o.ry + [Mlloaeo0.7)
Clylzor + C a0 < Clylrorn-

1Lyl g 0.7) <
<

Thus the proof of (i) is completed.
Next we prove theorem 2.2 (ii). By (2.7) we have

h@) =0 .0, W+ F@(G, pw), 0<t<T. (2.18)

It follows from theorem 2.2 in [28] that the solution to (2.8) is represented by
S t
v 0 = — 3(G. ) f (t = ) Eg o= At — T))O2F (1)dr @, (x).
n=1 0

Then this expression with (2.18) yields

oo

h(t)=F®)(G, 1) — >.(G, @) (1 @)
n=1
! _ a—1 _ _ o «
x j; (t = 7Y Ep o (=Mt — T)?)O°F (T)dr. (2.19)

We represent (2.19) in terms of B, defined by (2.4) to have
_ I'(a)
(G, )

Thus, by the proof of theorem 1 in Gorenflo and Yamamoto [11] for example, we have
the identity

h(@t) + F(OT(a) = (B,07F)®), 0<1t<T. (2.20)

(Buy)() = (1 — L)(J%)®), yeL*O,T). (2.21)
Therefore (2.20) and (2.21) imply

EENCOR

h(t) + F(OT () = (1 — L)(J9F)(). 2.22
(G»M)() (O () = ( )( )(®) (2.22)

In [9] (theorem 3.1), it is proved that
9F = (J°)'F (2.23)
for F € (H*(0, T). Hence (2.22) yields (2.6). Thus the proof of theorem 2.2 is completed.

2.3. Proof of theorem 2.1

In view of theorem 2.2, it suffices to prove that the integral equation (2.6) possesses a unique
solution F € ¢H*(0,T) for any given h € ¢H*(0,T). Since the embedding
oH*(,T)— L*(0,T) is compact, by theorem 22 (i), the operator
L : L%, T)— L*(0, T) is compact. Therefore when we prove that if F € L2(0, T)
satisfies

() = DF (@) = — (LF)(@), 0<t<T,

then F = 0 in (0, T), the Fredholm alternative yields that there exists a unique solution
F € L?0,T) to (2.7) for any h € L?>(0, T). We apply lemma 2.4 (iii) and the Cauchy—
Schwartz inequality to have
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t t
Fon<cirol<c [ ([ =nea - o a)irol e
0 T
t t %
<C| (=1 YF(r)|d gcw‘( F 2d),
Joa—mriF@an { [ irapar
which leads to
t
IFOP < cf IF(s)Pds, O0<r<T
0

by % < «. The Gronwall inequality implies that ¥ =0 in (0, 7). Consequently (2.6)

possesses a unique solution F € L2(0, T) for each h € L*(0, T).
Next let & € oH*(0, T). Then there exists a unique solution F € L2(0, T) to (2.6). We
have to prove that F € (H*(0, T). In fact, theorem 2.2 (i) implies LF € (H“(0, T'). Since

2.6) yields F () = 1 (=@F)®) + 20 ). we obtain F € oH" (0, 7). Thus the
proof of theorem 2.1 is completed.

The original inverse problem can be transformed into the linear integral equation (2.6) of
the second kind with respect to F € (H“(0, T), which can be represented in the operator

form

F@t) — (KF)(#) = coh(t), te]0,T], (2.24)

with some linear operator K and constant c,. Although the operator K is proved to be
compact, available data h° contaminated with noises in L?(0, T) are not necessarily in
oH® (0, T) and we cannot guarantee that the solution F* to (2.6) for A% is in (H® (0, T), which
means that F¢ cannot be the solution to our original inverse problem. Thus in sections 3 and
4, we discuss regularization schemes.

3. First regularizing scheme

In this section, we start to discuss

Stable reconstruction scheme: Let ug = ug(x, t) satisfy (1.1) and (1.2) with
Fy € ¢H*(0, T), and denote by ho(t) := (ug( -, t), u) for 0 < t < T the exact measurement
data. Given the noisy data h® of hy satisfying

|h® — holl2.1) < 6, 3.1

construct approximations F® € L?(0, T) stably such that lims_o ||[F® — Fy|l20.r) = 0.
Theorem 2.1 asserts that if 2% € (H*(0, T), then a solution to (2.6) exists uniquely in
L*(0, T), but in general does not belong to (H“(0, T). Thus as our first regularization
scheme, we propose to smooth h® by the mollifier and solve (2.6) with such mollified data.
Thus our first regularizing scheme can be described as follows.
Step 1. We smooth h® € L*(0, T) by the mollifier. Let 3 > 0 be a parameter. Henceforth
for g € L*(0, T), by g we denote the zero extension of g outside (0, T):

() = 8, 0<r<T,
&=, either <0 or t>T.
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We set
hi(r) = f Y op— DR, 0<1t<T, 3.2)
-0

where 0 < p € C5°(R), supp p C (—1, 1), foc p(t)dt = 1 and we set

1 t
)= E"(E)'

The parameter 3 > 0 is presumed to be small and plays the role of regularizing
parameter.

Step 2. Construct a regularized equation of (2.6) for noisy data 4 (¢) by
I'(o)
(G, 1)

Since hg € C5(0, T) C oH“(0, T), by theorem 2.1 we note that F*% € L2(0, T) exists
uniquely and (3.3) can be solved stably in L2(0, T). We can regard F* as a reasonable
approximation to F by choosing G > 0 suitably in terms of the noise level 6 > 0.

Henceforth C > 0 denotes generic constants which are independent of 3, § and
dependent on «, Fy, hy, G.

We give a choice strategy of the regularizing parameter ( for the noise level 6.

(@) — DF* (@) = — L[ F**]@) + hi@, 0<t<T. (3.3)

Theorem 3.1. We assume (2.2) and Fy €9y H*(0, T). With the regularizing parameter
B(6) ~ v, we have

|FP0-6 — Fllzo.r < C8' . (3.4

This result gives an a priori strategy for choices of regularizing parameter (3 (6) for given
noise level 6 > 0, which can be presumed to be quasi-optimal. More precisely, our a priori
choice strategy 3 = 8o of regularizing parameter guarantees the convergence rate &' ~2 of the
regularized solutions towards the exact solution F,. The convergence rate is smaller than % for
all a € (%, 1) and cannot reach 1 and is always worse than the linear convergence rate 6.
This is a common feature in the regularization of an ill-posed problem, although there is a
possibility that the best convergence rate may be improved by a different regularization

method. Other interesting research topic for convergence rate is the a posteriori choice
strategy for the regularizing parameter 3, but we do not treat here.

Proof. Without loss of generality, we can assume that 3, 6 > 0 are sufficiently small. Let
F?29 be the solution to (3.3) with (ho)s.
Next we note

[F? — Rl < IIFY = FR2or) + 1F70 = Rllzorn- (3.5)

Henceforth we recall that

(A~ ko), ) = fjo Pyl — T)(Zé' - %)(T)dT, 0<i<T.
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By (3.3) in step 2, we know that F?¢ — F3.0 and F30 — F; satisty

P

F“g’é(z‘) _ F{;,o(t) — 11_‘( )(L(Ffw _ Fﬁ’o))(l‘)
(6%
1 I‘(a)
_— t
1 - ' (G, u)( o) 0 56
‘ 1 ‘ '
F3O(t) — Fy(t) = W(L(Fﬁ-o - FO))(I)
R S ) C)) _
@ @ g L (M)~ 1)

As is seen from the proof of theorem 2.1, the linear operator

-1

L . 120.T) = I2(0. T) is invertible and H(I S L) H < C. There-
1 — ') 1-T(a)

fore (3.6) yields

|F% — Fyllrz0,1

(1 - 1_;%&)1 (1~ o),

< C( (- h0)3||L2(O,T) + ||(h0)ﬁ - h0||L2(0,T))- (3.7

For the first term on the right-hand side of (3.7), by the Cauchy—Schwartz inequality and

<C

N—"

20,71 t+ H(ho)d — hollz0.1)

supp p; C (=0, B), changing the variable 7 to { by § = T we have

(1 = ho),0] < [~ 10,0 = DI(Fo) = oo )iar < of [ oy = | 'ar -
f —00 t—0

172
—%(flwsnzds) < c%, 0<i<T.

Therefore
Cé

ik

For the second term, by (3.2) and f ps(t — s)ds = 1, we have for 0 < 7 < T that

I(h® — hO)ﬂHLZ(O,T) < (3.8)

[(h0),0 = o] = | [ 0 = (ko) ~ h(0)as

N

t+0 ~
I , 1oste = Aots) — hoto)lds.

We separately estimate in the two cases t € (3, T — ) and t € (0, T)\ (3, T — B).

Case 1:t € (B, T — ).

Then0 <t — B < t+ < T andso ho(s) = hy(s) fors € (t — B, 1 + ). By a > 3,
the Sobolev embedding theorem (e.g., corollary E.13 (p 259) in Shimakura [30]) implies that
for hy € (H“(0, T), there exists a constant C > 0 such that

lho(t) — ho()| < Clt — s |°~7, 5 €0, T].
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Hence

1+ ~ 1+ 1
I s = 9] hots) = moolds <€ [ [ gt = 9|10 s 1 as
t—0 —/

C rtt8

p(t—s)
B Ji-p B

Changing the variables £ = t—_s7 we obtain

|t — s |*2ds.

L o[ =2 = setas = [ @ieneHpelae < g Il
BJi-s P I6; o Ja P = 200 + 1 pletL-
Hence

t+0 ~ |
I s = 9]l — holas < coo s B<i<T—5 39

Case 2:1 € (0, H\(B, T — D).
Then

ft+ﬁ
t—f3

ps(t = 9)] [Tols) - ho<r>|ds<ft'j\pﬁ<r— | (|| + | rot] )ds
t+3
< 2 |lhollero.r j,‘,ﬂ ps(t — s)ds

53
=2lollcwn [ | papdn =2 lollciory
(3.10)
00 8
byp>0andl = f p3(§)dg = f p3(§)dg. Consequently
00 -0

cpe—2, B<it<T-4,

ho), (1) — ho(D)] <
I 0)%3() 0@l { C, either 0<tr<forT—p0<t<T

and so

1 8 \b T 3
(7o), = hollzo.r) < C| B2 + (fo ds) " (frﬁ ds)

<c(pt+ ph) <2080t (3.11)

At the last inequality, we used that 3 > 0 is small and so 0 < 8 < 1 and o < 1. Thus
inserting (3.8) and (3.11) into (3.7), we have

46 6 1
IF7? = Folleor < C(— + B¢ 5)-
NE]
We choose 3 > 0 so that the right-hand side is as small as possible. That is, we set
% = [ 3, that is, 8 = e gives an optimal choice of 3 for the convergence rate. The proof
is completed. (]

We have established the regularizing scheme (3.3) for approximately constructing Fj
from noisy data h® with convergence order analysis. However, this proposed scheme has
some drawback from numerical points of view. That is, in order to solve (3.3) numerically, we

16
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need to discretize the integral term with singular kernel, which may cause some instability,
noticing that we can only compute K ( — s) approximately and then the numerical compu-
tation of %((r — 5)* K (t — 5)) is ill-posed. Thus in section 4, we discuss the second
regularizing scheme and test it numerically.

4. Second regularizing scheme and numerical reconstructions

In this section, as the second regularizing scheme, we propose a direct discretization of the
following initial-boundary value problem for fractional diffusion equation with smoothed data
in €2

ooubb ,
5 =AuPd + S, 1), x€N,0<t<T,
t(}
uﬁ’é(x, t) = up(x, 1), xelp, 0<t<T, 4.1
ut(x, 1) = gF* @), xe€,0<t<T,
u?0(x, 0) = a(x), x €

with the additional input condition for u?? (x, ¢):
[ 1¥]@) = f WP, Hu@)dx, 0 <1< T. 4.2)
Q

In this section, we consider a non-zero term S (x, ¢), a non-zero boundary value u, and a
non-zero initial value a, while we consider the simple case where —A = A for numerical
tests. Here we set

0(1) = ——e ", JOI(1) = foc Lol =T \imyar, 1R
,\/ﬁ > . 6 /8 s ’
and we recall that # denotes the zero extension of % outside (0, T).

We propose the RBF method using multiquadric basis function (MQ) to directly solve
(4.1)—(4.2) with respect to u¢ and F54.

In order to illustrate how to apply the RBF as a spatial meshless scheme for solving this
system, we firstly reduce the time-fractional diffusion equation in the system into a series of
elliptic equations using the finite difference approximation to discretize the time-fractional
derivative.

Divide the time interval [0, 7] wuniformly into K subintervals by grids
t=kAt, k=0,1, ..., K with Ar:= T/K. Let u??(x, ,) be the exact value of solution
u??(x, t) at ;. Then the time fractional derivative can be approximated by [18]

O (x, 1) (A &

B =~ T2 - o) jz::()wj[uﬁ'é(x, T—jr1) — u?(x, tk_j)] + (9( (At)z‘a)

4.3)

fork =0, 1, ..., K — 1, with the weight w; :== j + D" —j!=2j = 0,1, ..., k.
Let u* (x) be the numerical approximation to u*° (x, #1). By substituting (4.3) into
(4.1) and rearranging the terms, we obtain the following series of elliptic equations at each

time step #1 for two unknowns 1%, (x) and F*® (t;1):

ulh () — 08Ul (x) = Gy (x) + 0841 (x), x € 9, (4.4)



Inverse Problems 32 (2016) 015009 J J Liu et al

ul () = ug(x, fii1), x € T, 4.5)
w0 = gF (11), x € T, 4.6)
[ wiopede =12 h (e, @)

where k =0,1, ..., K— 1,0 = (AT Q2 — «), Sir1(x) = S(x, 1) and

k
3,6 8,6 5.5
u; (x) — E wil ui_:(x) — u, (x) 1,
i1 () = o oL b

u (x) = a(x), k = 0.

Using the above discretizaion on time ¢, the system (4.1)—(4.2) has been transformed into
a series of inhomogeneous elliptic equations. Under the framework of RBFs method, the
solution to (4.4)—(4.7) can be approximated as a linear combination of RBFs

N
ulh ) = S X (). (4.8)
j=1

Here, r; = ||x — x]H for some x; € Q and ¢ could be any of the commonly used RBFs. The
set of points {xj} | are the centers of the RBF and {)\k“} _, are the coefficients to be
determined. There are many classes of RBFs such as MQ, inverse MQ and thin plate splines.
Among all these candidates, MQ is one of the most popular RBFs. In our numerical
examples, we choose MQ as the basis function, which is of the form

d(ry = Nr? + 2, (4.9)

where c is the shape parameter specified in advance.
Substituting (4.8) into (4.4), we obtain the following equation

N
S X p(r) — 08¢ (1)) = Gri1(x) + 081 (x),  x € Q. (4.10)
j=1

For numerical implementations of this proposed scheme, we uniformly choose
N = Ng + Nr, + N, collocation points IV, cQ=QU TQUT), where N, and
Nr.(i = 0, 1) are the number of interior and boundary points, respectively. By substituting the
approximation of u,ff, (x) given in (4.8) into the boundary conditions (4.5)—(4.7), we establish
the following linear system for the unknowns X;“ and F**1:
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s

N
SN (o — xl) — 026 (Il — x1))
Jj=1

= Gr1(x) + 0S01(x), =1, ..., No,

N
XHo (I — x1|) = uo(xi, 1), i=1, ..., Ng,
; J ( J ) 0 4.11)

N
ZA§+]¢(H)C,‘ — .X/”) = g(x,-)F"“, 1= ], ey NFI,
j=1

N
S [ o = ylneods = 2.

=1

Here we consider F*¥*! as approximation of F*°(# ). The collocation system (4.11)
constitutes (N + 1)-coupled linear equations with (N + 1)-unknowns A\\*1, ... N&HL Rt gt
the (k + D)th time level. In matrix form, the unknowns ¢k+1 = (M1 NEFL KL phyT
can be solved from the matrix equations

Acktl = pkt1 (4.12)
where A is an (N 4+ 1) x (N + 1) matrix
b = (Grp1 () + 08 1(x), -y Grs1(Xn,) + 0Se1(xn,)s

Mo(xb tk+1)7 LR uo(er07 tk+1)’ (O)’ Jﬂ[h(s](tk+1))7‘

is a known (N + 1) x 1 vector and O is the Np;-dimensional zero row vector.

The main drawback for the RBF method is that the condition number of the interpolation
matrix A may be very large as observed in Chen et al [5], so is the case for the MQ. Hence
some regularization techniques are required for solving this ill-conditioned system. Here we
solve (4.12) by the Tikhonov regularization to stabilize the solution in our numerical tests. At
each time level #.., the Tikhonov regularized solution c’;ﬁﬂ, for (4.12) is defined as the

solution of the minimization problem

rrm]{ ||Ack+l _ bk+1||2 + 0k+1Hck+1”2}, (4.13)
C

with the regularization parameter o**! > 0. The performance of regularization methods
depends mostly on the suitable choice of the regularization parameter. For the Tikhonov
regularization method, several heuristical approaches have been proposed, including the L-
curve criterion, the cross validation (CV), and the generalized cross validation (GCV) Hansen
(e.g., [13]). Here we use the GCV to provide appropriate regularization parameters at each
time layer.

Now let us present several numerical results in terms of the RBF method stated above, to
demonstrate the performance of our regularizing scheme. Here for simplicity, we consider the
square 2 := {(x,y): 0 <x,y < 1} as the computational domain and partial boundary
I = {(,y): 0<y< 1}, and we choose

I, 0<x<1/3,0<y<1,
umw—{ . / Y
0, otherwise.

However, the proposed method can be easily applied for general polygonal domains.

19
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Figure 1. The exact data h(¢), the noisy data /°(r) as well as the smoothing data
JBTh®1(¢) (left), and the retrieved F(f) for § = 3% without regularization (right).

In order to measure the error of numerical solutions, we use two kinds of measurement

Erwmis (1) = \/Niozfﬁl(u*(xi, D —u(x, ), Epu(F) = max | F*(1;) — F ()],
where {u*, F*} and {u, F} are the numerical and exact solutions, respectively. Here, Ny is the
number of testing nodes chosen randomly within the domain. For all the results presented
below, we consider Ny = 400. In the numerics, we take («, At, ¢) = (0.7, 0.01, 1), and the
Gauss quadrature rule is used to evaluate the integral in (4.11). For the domain investigated,
we choose N = 121 collocation points evenly distributed in 2. All the numerical results
reported in the figures below are evaluated at = 1.
For all examples, the synthetic noisy data are generated using the following formula:

h® = h + max{|h|}éC, (4.14)

where & is the exact data, ¢ is the relative noise level, and ( is a Gaussian random variable
with zero mean and unit standard deviation.

Example 1. The exact solution to (1.1) with a(x) = sin (gxl) sin(gxz) can be given

explicitly as u(x, t) = E, | (%wzt(‘) sin(%xl)sin(gxz).

Firstly, consider the noisy data with 6 = 3%. The left figure of figure 1 shows the input
data (1), its noisy form A% () and the smoothing data J?[h®], while the right figure presents
the exact and numerical solutions for F(¢), obtained from the noisy data without any reg-
ularizing technique. It can be seen that the result becomes oscillatory and inaccurate. When
using our proposed regularization method, the numerical results for both F(f) and u (x, ¢) are
solved stably and accurately, see figures 2 and 3, respectively.

Next, we analyze the dependence of the numerical solution on the parameters (c,N) also
for the case 6 = 3%. Figure 4(a) illustrates the performance of Erys(u) and E.(F) as
functions with respect to the constant ¢ in (4.9). It can be seen that the accuracy of the
numerical results is relatively independent of the parameter c if ¢ > 1. The insensitivity of the
solution to ¢ over a fairly large range of the parameter is a favorable feature of MQ-RBF
because there is no need to search for optimal value of parameter. In figure 4(b) we present

20
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Figure 2. The retrieved F(¢) with regularization (left) and its absolute error (right).
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Figure 5. The data A(¢) (left) and the retrieved F(¢) (right).
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Figure 6. The numerical solutions u (x, 1) (left) and the absolute errors between the
numerical and the exact solutions (right) for example 2.

Erms(u(x, 1)) and E,.(F) as a function of Ax, where Ax denotes the internal distance
between grids. Both errors decrease as Ax decreases.

Example 2. Consider the following time-fractional diffusion system:

0u (x, 1) = Au(x, t) + [ﬂ - 2t2]exl+x2, x€N,te(0,1),
or® I'G -«

u(x, 1) = t2eqtx, xcIy,te(,1),
u(x, 1) = el "2 F (1), xeT,re0,1),
u(x, 0) =0, x € Q,

where F(t) = 2. In this example, we consider a non-homogeneous fractional diffusion
equation for describing the exact solution, but the regularizing scheme need not be changed.
For this system, the exact analytical solution is u (x, t) = t2e+*,

For 6 = 3% and 6 = 10%, we obtain the results shown in figures 5 and 6 by using
MQ-RBF with ¢=1. The numerical results for relative noise level
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Figure 7. The numerical results obtained using various amounts of noises for

example 2.
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Figure 8. The errors, as a function of (a) the shape parameter ¢, (b) Ax with § = 3% for
example 2.

§=1077,1075, 1072, 1074, 1073, 1072, 2 x 1072, 5 x 1072, 10~! are given in figure 7. It
can be seen that the MQ-RBF approximation provides very accurate numerical results.
Moreover, both E,..(F) and Eryms(u(x, 1)) decrease as the noise level 6 decreases.

The errors E,.(F) and Egys(u(x, 1)) with respect to ¢ and Ax, which may affect the
accuracy of the solution, are shown in figure 8. Similarly to the performance in example 1, we
observe that the accuracy of the numerical results is relatively independent of the parameter ¢
if ¢ > 2. The accuracy of the numerical results is much improved as Ax decreases.
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