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The medial axis transform (MAT) is an important shape representation for
shape approximation, shape recognition, and shape retrieval. Despite years
of research, there is still a lack of effective methods for efficient, robust and
accurate computation of the MAT. We present an efficient method, called
Q-MAT, that uses quadratic error minimization to compute a structurally
simple, geometrically accurate, and compact representation of the MAT.
We introduce a new error metric for approximation and a new quantitative
characterization of unstable branches of the MAT, and integrate them in
an extension of the well-known quadric error metric (QEM) framework for
mesh decimation. Q-MAT is fast, removes insignificant unstable branches
effectively, and produces a simple and accurate piecewise linear approxi-
mation of the MAT. The method is thoroughly validated and compared with
existing methods for MAT computation.
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1. INTRODUCTION

The medial axis transform (MAT) is a fundamental shape descrip-
tor and has applications in shape approximation, recognition, and
retrieval. The medial axis of an object in 3D is a set of points with
at least two closest points on the object’s boundary. It comprises
the centers of the spheres that are called medial spheres, contained
in the object, and touching the object’s boundary at two or more
points. The MAT [Blum et al. 1967] stores for every point on medial
axis its distance to the boundary of the object, that is, the radius of
the associated medial sphere. Hence, the MAT is the combination
of the medial axis and the radius function defined on it. Any closed
object has a unique MAT and can be reconstructed from its MAT.

We shall assume that the MAT is represented as a 2D simplicial
complex, called a medial mesh, which is a nonmanifold triangle
mesh with its vertices being the centers of a set of medial spheres.
Through linear interpolation of the mesh spheres along its edges
and triangle faces, the medial mesh gives a piecewise linear approx-
imation to the true MAT. Note that such a geometric representation
based on sphere interpolation has been adopted in several previous
works for geometric modeling [Sun et al. 2013, 2014] and vol-
ume approximation [Faraj et al. 2013]. The most commonly-used
method for computing a medial mesh of a 3D object is based on
computing the Voronoi diagram of a set of sampled points on the
object boundary [Amenta and Bern 1998].

A notorious difficulty with the computation of MAT is its insta-
bility: the MAT is sensitive to boundary noise or variations; that is,
small perturbations to the shape boundary lead to numerous long
and unstable branches of the MAT, in the form of dangling line
segments or thin and long triangles sticking to the main part of
MAT (see the 2D example in Figure 1). Such unstable branches will
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Fig. 1. The instability of MAT. (a) The medial axis of a swan shape with a
smooth boundary (in red). (b) The medial axis of the same shape with slight
boundary perturbations. The approximated medial axis (in red) is a subset
of the Voronoi diagram (in blue or red).

be called spikes. The spikes are geometrically insignificant because
they contribute little to defining the object geometry.

The instability issue becomes even more severe and difficult to
resolve for the MAT of 3D objects. First, spikes may arise due to
small variations of the boundary surface. Second, when using the
Voronoi-based method to compute the MAT in 3D, spikes may also
be generated from sliver tetrahedra in the dual Delaunay triangula-
tion of the Voronoi diagram of the sample points, even if the sample
points lie exactly on a noise-free boundary surface [Amenta and
Bern 1998] (see Figure 6). A sliver is a flat tetrahedron of small
volume but has nondegenerate faces. No matter how dense are
the boundary sampling points, there exist inevitably many quadru-
ples of adjacent sample points that are nearly co-circular. These
quadruple of points define sliver tetrahedra whose centers of cir-
cumscribing sphere are far off the true medial axis, thus causing
spikes.

For many applications, it is important to remove spikes to yield
a structurally simple MAT. Many methods have been proposed
for pruning spikes, but they pay little attention on the geometric
simplicity and accuracy of the resulting MAT. The requirement on
preserving geometric accuracy during MAT simplification is hard
to meet because it is difficult to categorically decide which branches
are spikes and so should be removed and which are stable so should
be kept as geometric features.

Another major issue is the redundancy of the MAT representa-
tion. An initial medial mesh computed using a Voronoi diagram-
based method is typically a dense and nonmanifold mesh—it is
structurally complex with many spikes and geometrically redun-
dant with many vertices. While there exist methods for simplifying
the MAT by pruning the spikes, it is common to approximate the
input 3D shape by the union of medial spheres at the vertices of the
medial mesh. That means that a large number of mesh vertices have
to be maintained to attain a high approximation accuracy, resulting
in a redundant MAT representation. Hence, it is imperative to study
how to compute a compact representation of MAT of a small data
size. A compact MAT representation is obviously useful for shape
compression and helps improve the efficiency of shape deforma-
tion, dynamic simulation and shape matching where the MAT is
employed.

To summarize, there are three main requirements for a desirable
approximate MAT: (1) structural simplicity; (2) geometric accu-
racy; and (3) compactness of representation. Therefore, the goal of
MAT simplification is to both prune spikes and reduce the num-
ber of mesh vertices while ensuring the approximation accuracy.
In this regard, the existing methods are quite successful in pruning
spikes but they tend to remove apparent spikes too aggressively

at the expenses of the approximation accuracy. Thus, in general,
they perform poorly in preserving approximation accuracy or do
not provide a compact MAT representation.

We shall present an efficient method for MAT simplification that
meets the given requirements on a high quality MAT approximation.
This method, to be called Q-MAT, is an extension to the Quadric
Error Metric (QEM) framework for mesh decimation by Garland
and Heckbert [1997] and inspired by the recent work on spher-
ical QEM [Thiery et al. 2013]. We adopt the QEM framework
due to its simplicity, elegance and superior efficiency. However,
several major extensions and modifications are needed to adapt
the QEM framework to solving the MAT simplification problem.
Unlike an ordinary 2D surface mesh in 3D Euclidean space, the
medial mesh is a 2D mesh embedded in 4D space, since every mesh
vertex is represented by four coordinates (x, y, z, r)�, which con-
tain the center (x, y, z)� of a medial sphere and its radius r . For
shape approximation purposes, the approximate metric on the me-
dial mesh is the Minkowski distance between two spheres, rather
than the ordinary Euclidean distance. Hence, we shall reformu-
late the quadratic error term in the QEM framework using a new
metric to properly evaluate and minimize the approximation error
for MAT simplification. Furthermore, we use the piecewise linear
interpolation of adjacent medial spheres of the medial mesh to ap-
proximate the input 3D object. This makes it possible to produce
a much simpler medial mesh than merely using the union of me-
dial spheres for approximation, while meeting the same accuracy
requirement.

Not all the vertices of a medial mesh are of the same nature.
Those vertices involved in defining spikes should be identified
and removed in the early stage of simplification to yield a struc-
turally simple and highly accurate simplified medial mesh, while
other redundant vertices in a smooth region can be removed at a
later stage of simplification if a more compact medial mesh is de-
sired. To achieve this, we introduce a novel measurement, called
stability ratio, of the geometric significance of each edge of a
medial mesh and apply it to prioritizing mesh vertices for sim-
plification in a graded manner, with spike-related vertices removing
first.

In summary, the following contributions are made in this article.

—A new quadratic error metric, called slab quadratic error metric,
is proposed for measuring approximation errors in MAT simpli-
fication;

—A new measure, called stability ratio, is proposed for measuring
the geometric significance of the edges of a medial mesh. It is
used for ranking all the mesh edges so that edges associated with
spikes are more likely to be collapsed first.

—A complete method for efficiently simplifying an initial medial
mesh to obtain a structurally simple, geometrically accurate, and
compact MAT representation.

Figure 2 shows different simplification levels of the MAT of the
Ant model and their reconstruction results. More test examples are
presented in a later section for validation.

The remainder of the present article is organized as follows.
Related works on MAT computation are discussed in Section 2.
Preliminaries and preparations are given in Section 3 for developing
the main algorithm, including the introduction of the stability ratio
and the slab quadratic error metric. Our method, Q-MAT, for MAT
simplification is presented in Section 4. The experimental results for
validation and comparison are presented and discussed in Section 5,
and the conclusion is given in Section 6.
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Fig. 2. Medial axis simplification results by Q-MAT. (#v is the number of vertices.) (a) The input 3D mesh of Ant model. (b) The initial medial mesh. (c),
(d) and (e) The medial meshes at different levels of simplification. (f) The reconstructed surface from the medial mesh in (e). Here, ε is the Hausdorff distance
from the input surface to the reconstructed surfaces, defined relative to the length of a diagonal of the rectangular bounding box of the input shape. The three
color-coded surfaces above the simplified medial meshes show approximation error distributions in Hausdorff distance.

2. RELATED WORK

2.1 Medial Axis Simplification Methods

In the following we shall discuss some main existing approaches to
MAT computation.

Angle-based filtering method [Attali and Montanvert 1996;
Amenta et al. 2001; Foskey et al. 2003; Dey and Zhao 2004;
Sud et al. 2005] computes, for every point of the medial axis, the
angle formed by its two closest points on the shape boundary. It
removes a medial point if the angle associated with that point is
less than a user-specified threshold. Angle-based filtering methods
usually produce a simplified medial axis with a different topology
from the input, although it can preserve local features quite well.

λ-medial axis method [Chazal and Lieutier 2005] uses the cir-
cumradius of the closest points of a medial point as a pruning
criterion. A medial point is removed if the circumradius associated
by the medial point is smaller than a given threshold λ. A small
value of λ will preserve the topology of the medial axis. But this
criterion cannot preserve features at different scales [Pizer et al.
2003; Siddiqi and Pizer 2008; Attali et al. 2009].

Scale Axis Transform (SAT) [Miklos et al. 2010] prunes spikes
more effectively than the previous methods. In SAT, all medial
spheres are first scaled by a factor s > 1. After scaling, a medial
sphere will be removed if it is contained in another medial sphere.
Because narrow gaps or small holes may be filled in this step, the
homotopy type of the input object may not be preserved by SAT. The
final approximate object is obtained by scaling back all the surviving
medial spheres by the factor 1/s. Another shortcoming of SAT is
that it can only control the level of simplification by setting the
value of s, which is not an intuitive parameter related to the number
of mesh vertices to retain. If s is set to be too large, a compact MAT
is obtained at the cost of losing many geometric features.

MAT simplification via edge-collapse. The progressive MAT
(PMAT) method [Faraj et al. 2013] performs MAT simplification
using edge collapse. For an edge connecting two medial spheres, it
uses the ratio of the edge length to the difference of the medial radii
at the two endpoint as the cost for collapse. However, this method
does not optimize the position of medial sphere after each edge-
collapse and the results are similar to SAT with little improvement.

An alternative for MAT simplification is the Hausdorff error-
based Method [Sun et al. 2013, 2014], which defines the error met-
ric by computing the one-sided Hausdorff distance from the original
shape to the approximate volumes during simplification. The advan-
tage of the method is its guarantee on approximation accuracy due

to its use of the one-sided Hausdorff distance. However, the method
has to perform a local exhaustive search for evaluating maximum
errors in order to compute the Hausdorff distance, which renders
the method slow. Furthermore, because of the difficulty in mini-
mizing an error metric based on the one-sided Hausdorff distance,
the vertex position after edge collapse is not placed at an optimal
position – one of the endpoints of the collapsed edge is chosen to
be the position of the merged point.

Most existing methods for medial axis simplification approxi-
mate the medial axis by the union of medial spheres and simplify
the MAT using a local or global threshold. In contrast, our Q-MAT
method uses the interpolation of medial spheres to define a piece-
wise approximation of the MAT. Furthermore, the adoption of a
novel quadratic error measurement in Q-MAT allows us to achieve
fast and accurate MAT simplification.

2.2 QEM and Spherical QEM

Quadric Error Metric. Given an input mesh to be simplified,
QEM [Garland and Heckbert 1997] uses a quadratic error met-
ric that is the sum of the squared distances from a vertex of a
simplified mesh to the containing planes of its associated boundary
triangles in the input mesh. The algorithm simplifies the input mesh
by evaluating and minimizing these errors between the original in-
put shape and its simplified mesh. Its algorithmic framework takes
advantage of the quadratic form of the error terms to allow efficient
maintenance and optimization, yielding fast computation.

Spherical Quadric Error Metric (Spherical QEM) [Thiery et al.
2013] extends the QEM framework to extreme simplification of
volume representation by computing the squared distance from a
sphere to the containing planes of its associated boundary triangles.
The spherical QEM method starts by placing the initial spheres (of
zero radius) at the vertices of the input surface mesh, and iteratively
merges the spheres until a coarse volume approximation of the input
shape is produced. Because the Spherical QEM method cannot, in
general, produce a valid volume representation at the early stage
when the surface approximation error is small, it is not suitable for
MAT simplification or high-accuracy volume simplification.

Our method (Q-MAT) is inspired by the QEM method and the
Spherical QEM method, but devised for MAT simplification. Un-
like the Spherical QEM method that is only for extreme volume
simplification, Q-MAT is for MAT simplification, while it is also
capable of generating simplified volume representations at different
levels of accuracy, including extreme volume simplification.
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Fig. 3. Interpolation of spheres. (a) A medial cone: the interpolation of
two spheres along an edge of the medial mesh. (b) A medial slab: the
interpolation of three spheres over a triangle face of the medial mesh.

3. MEDIAL AXIS SIMPLIFICATION

3.1 Medial Mesh

Several previous works use the interpolation of spheres for shape
representation. ZSpheres, from ZBrush tool [PIXOLOGIC 2001],
uses a manually constructed skeleton of spheres to represent a coarse
shape. B-Mesh [Ji et al. 2010] optimizes such a representation
for better mesh extraction. Spherical QEM [Thiery et al. 2013],
PMAT [Faraj et al. 2013], and the method in [Sun et al. 2013,
2014] all use spheres and their interpolation for volume representa-
tion or MAT approximation. We are going to briefly introduce this
representation in the following text.

We use a triangle mesh Ms , called medial mesh to approximate
the MAT of a 3D shape S. Each vertex mi of Ms represents a medial
sphere and is denoted as a 4D point m = (c, r)�, where c ∈ R3

is the center of the medial sphere and r its radius. An edge of Ms

incident to two medial spheres mi and mj is denoted eij = {mi , mj }.
Similarly, a triangle face of Ms is denoted fijk = {mi , mj , mk}.

Each edge or face of the medial mesh Ms defines a simple com-
posite volume primitive, as shown in Figure 3. The primitive given
by the edge {mi , mj } is swept by the family of spheres defined
by the linear interpolation of the medial spheres mi and mj , that
is, (1 − t)mi + tmj , t ∈ [0, 1]. It comprises two spherical caps
joined by a truncated cone, and will be called a medial cone. The
primitive given by the face {mi , mj , mk} is obtained by linearly
interpolating the three medial spheres mi , mj , and mk , that is,
a1mi + a2mj + a3mk , where ai(i = 1, 2, 3) are the barycentric
coordinates with ai ≥ 0 and a1 + a2 + a3 = 1. This primitive is
called a medial slab (or just slab), bounded by three spherical caps,
three conical patches, and two triangles, as shown in Figure 3(b).

3.2 Slab Quadratic Error

To develop an edge-collapse strategy for MAT simplification, we
shall introduce a new error function, called the slab quadratic error
(SQE), that measures the approximation from the simplified MAT
to the initial MAT. SQE is evaluated for each medial sphere of the
simplified medial mesh to measure its “distance” to a medial slab of
the initial medial mesh in the least squares sense. When performing
edge collapse, a new medial sphere results from merging an edge of
the medial mesh. The position of this merged sphere is determined
by minimizing an error function that is the sum of the SQE terms
associated with the two medial spheres to be merged. Similarly
to QEM, throughout this iterative edge-collapse process, the SQE
function always encodes the approximation error from a medial
sphere in the simplified MAT to the initial MAT.

In the following we shall first define the error formula of
SQEs(mx), for measuring the distance from a medial sphere mx

to a slab s defined by a triangle face of the medial mesh. There

Fig. 4. Illustration for the definition of SQE function. The slab s is specified
by a sphere m = (c, r)� (in red) and the outward unit normal vectors n1 and
n2 of the two bounding planes tangent to m. The SQE function SQEs (mx )
measures the distance from the sphere mx = (cx , rx )� (in blue) to the
slab s.

are the following requirements on this error measurement. First, the
SQE function should be a positive definite quadratic function in the
variables, which are the center and radius of the sphere mx , in order
to allow efficient minimization in the QEM framework. Second,
we require that the function SQEs(mx) be minimized if and only
if the sphere mx is tangent to the two planes containing the two
boundary triangles of the slab s; that is, mx is sandwiched between
the two bounding planes of the extended slab. This is similar to the
error formulation in the QEM method–the error function in QEM
measures the squared distance from a point to the plane containing
a face triangle, rather than to the triangle itself.

Let an extended slab be defined by its two bounding planes. See
Figure 4. Clearly, the two planes are both tangent to some common
sphere m = (c, r)� (in red) and denoted by s = {m, n1, n2}, where
n1, n2 are the outward unit normal vectors of the two planes. For
the variable sphere mx = (cx, rx)� (in blue), we use e1 and e2

to measure its distances to the two bounding planes of the slab
s. It follows that the squared distances from the variable sphere
mx = (cx, rx)� (in blue) to the two bounding planes of the slab are

e2
1 = [n1

� · (c − cx) + (r − rx)]2,

e2
2 = [n2

� · (c − cx) + (r − rx)]2.

Then we define

SQEs(mx) = e2
1 + e2

2. (1)

The fact that e1 and e1 are linear functions is of great facility, since
this enables us to present SQEs(mx) as a quadratic function in order
to adopt the QEM framework.

To put the given notation in 4D homogenous coordinates, we
denote n1 = (n1, 1)�, n2 = (n2, 1)�, yielding

SQEs(mx) = [n�
1 · (m − mx)]2 + [n�

2 · (m − mx)]2

= mx
� · A · mx + b� · mx + c,

where

A = n1 · n�
1 + n2 · n�

2 ,

b = −2A · m,

c = m� · A · m.

Because the MAT of a 3D object can become a curve, such as the
MAT of a canal surface, which is approximated by a sequence of
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edges in a medial mesh, we also need to define a similar quadratic
error term for measuring the distance from a sphere to a medial
cone, the volume primitive induced by an edge of the medial mesh.

To this end, we bound a medial
cone by four planes that are tan-
gent to the cone and symmetric
under a rotation of π/2 about the
central axis of the cone, as shown
in the right. Since each pair of op-
posite planes in the four planes
forms an extended slab, we sum
up the SQE terms of the two re-
sulting slabs to define the error
term for the medial cone. Clearly,
due to rotational symmetry, although these two bounding slabs of
the medial cone are not unique, the final SQE function defined ear-
lier is independent of the choice of these slabs. This SQE function
for a medial cone is also a positive-definite quadratic function and
becomes zero if and only if the sphere mx is inscribed in the medial
cone.

We point out that the SQE function is an extension to the spher-
ical quadric error proposed by Thiery et al. [2013] for volume
simplification. Over there, the error term measures the distance
from a sphere to a single oriented plane extended by a boundary
triangle. Because of the lack of constraint in that formulation, a
user-specified radius bound has to be introduced during error min-
imization to prevent the fitting sphere from going unbounded. In
contrast, in our formulation such an unbounded sphere sticking out
the slab would lead to a larger SQE value and is therefore prevented
by the error-minimization mechanism.

3.3 Stability Ratio

The spike is an intuitive, over-simplifying term for describing un-
stable and geometric insignificant branches of an MAT. To allow
a quantitative analysis, we need a measure of this instability to be
able to speak about to what degree an edge is stable. Such a mea-
sure is also demanded for effectively pruning spikes. In order to
achieve progressive MAT simplification to have a structurally sim-
ple and accurate medial mesh, it is desirable to first prune spikes as
much as possible before decimating the other stable mesh vertices in
smooth manifold regions. However, when mesh edges are selected
for merging only based on their approximation errors, regardless of
whether they are spikes, many stable edges (i.e., nonspike edges)
in the dense and smooth regions of the MAT would be selected for
collapse equally likely as spikes. Consequently, the spikes would
not effectively be pruned until a much later stage of simplification
when the approximation error has already become quite large. To
address this issues, we shall introduce a quantitative measurement,
called stability ratio, for ranking mesh edges so that spike edges are
prioritized over other edges to collapse first.

Consider an edge eij = (mi , mj ) of the medial mesh, where
mi = (ci , ri) and mj = (cj , rj ) are two spheres being the endpoints
of eij . The distance between the two spheres [Choi and Seidel 2001]
is

dh(mi , mj ) = max{0, ||ci − cj || − |ri − rj |}. (2)

Note that ||ci − cj || − |ri − rj | < 0 if and only if one sphere is
contained inside the other. The stability ratio of the edge eij is then
defined as the ratio of this distance dh(mi , mj ) to the Euclidean
distance between the centers of the two spheres, that is,

�ij = dh(mi , mj )

||ci − cj || . (3)

Fig. 5. Illustration of the distance of two spheres.

Fig. 6. False-color display of the stability ratios of the edges for two medial
meshes. The blue color (towards 0) indicates unstable edges, that is, spike
edges, and the red color (towards 1) indicates stable edges.

Figure 5 shows dh(m1, m2) as the difference between the two
spheres m1 and m2. Clearly, �ij gives a continuous measurement
on the stability of an edge, with 0 ≤ �ij ≤ 1. When �ij is 0 for two
distinct spheres, the smaller sphere is internally tangent to the larger
one and the edge eij is a pure spike; when �ij = 1, the radii of the
two spheres are equal and the edge eij is a completely stable edge,
that is, not a spike. In Figure 6 we use false color to display the
stability ratios of all the edges of two unprocessed medial meshes
computed using the Voronoi-based method.

4. SIMPLIFICATION ALGORITHM

4.1 Outline of Algorithm

Our MAT simplification algorithm (Q-MAT) follows the QEM
framework [Garland and Heckbert 1997] based on edge-collapse.
All the edges are queued according to their cost values, and the
edge with minimum cost is iteratively collapsed to generate a new
medial sphere mg as the result of merging the two endpoints of the
edge. The flow of the algorithm is shown as Algorithm 1.

In the following subsections, we shall describe how to optimize
the position of the merged medial sphere mg when an edge is
collapsed and how to compute the collapse cost cij of an edge eij to
determine its priority to be merged. Note that all the coefficients and
parameter values to appear in the following expressions are given
for models that are scaled by setting the diagonal length of their
bounding boxes to be 1.
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4.2 Positioning a New Medial Sphere
for Edge Collapse

At initialization, each medial sphere m is assigned an error function
Em(mx) which is the sum of the SQE terms of m with respect to the
set of all the slabs that m is incident to, denoted by the set slabs(m).
This error function Em(mx) can be written as

Em(mx) =
∑

s∈slabs(m)

SQEs(mx). (4)

Each edge eij = {mi , mj } is assigned a cost function Ee
mi ,mj

(mx)
defined as the sum of the error functions associated with the two
medial spheres at its endpoints:

Ee
mi ,mj

(mx) = Emi
(mx) + Emj

(mx). (5)

The optimal position of the merged sphere mg of mi and mj is
computed as the minimizer of Ee

mi ,mj
(mx), that is,

mg = arg min
mx

Ee
mi ,mj

(mx). (6)

That is, we use the sphere mg that best approximates the set of the
involved slabs of slabs(mi) ∪ slabs(mj ) to replace the edge eij . The
edge collapse cost function of eij is then set to be edgecost (eij ) =
Ee

mi ,mj
(mg); the edge costs of all the edges are ranked to determine

which edge is to collapse first. If the edge eij is collapsed, the
merged sphere mg becomes associated with all the slabs in the
union of slabs(mi) and slabs(mj ), that is,

slabs(mg) = slabs(mi) ∪ slabs(mj ). (7)

Note that the set slabs(mg) of the slab is not recorded in the algo-
rithm. The error function Emg

(mx) of mg that properly measures
the approximation error from a variable sphere mx to slabs(mg) is
obtained by setting

Emg
(mx) = Ee

mi ,mj
(mx).

When minimizing the quadratic function

Ee
mi ,mj

(mx) = mx
� · A · mx + b� · mx + c,

we consider the following cases.

—If A is invertible, we compute the optimal sphere as mg = − 1
2 ·

A−1 · b;
—If A is not invertible, one way is to find an optimal sphere along

the edge as done similarly in Thiery et al. [2013]. However, for
simplicity, we just select the sphere with minimum Ee

mi ,mj
(mx)

from the three spheres: mi , mj , and (mi + mj )/2.

In addition, we apply some additional treatments to prevent the
shrinking of the boundary edges of the medial mesh, as we will
describe in Section 4.4.

4.3 Modified Edge Collapse Cost

As discussed in Section 3.3, if the mesh edges are selected for col-
lapsing based on their approximation errors only, some spikes will
not be pruned until a much later stage when the approximation error
is already quite large. Consequently, we may then get a structurally
simple medial mesh but it is not an accurate approximation any
more. Recall that we have introduced the stability ratio to measure
the stability of a medial edge. In order to prioritize unstable edges
to collapse first, we select the edges to collapse based on a modified

ALGORITHM 1: Medial Axis Simplification

Input: Ms = {{mi}, {eij }}, the medial axis of S
Input: σ , the number of medial spheres; when reaching this,

the algorithm ends
Input: η, the number of medial spheres; when reaching this,

the topology check starts
Output: Ms = {{mi}, {eij }}, simplified medial axis of S
// Q is a priority queue of edges sorted by

cost;
// no is the number of the original medial

spheres;
// nr is the remaining number of medial spheres;
nr = no;
for each edge eij do

compute the optimal contraction target mg;
compute the collapse cost cij ;
Q ← eij with mg and cij ;

end
while Q not empty and nr > σ do

eij ← Q.top() ;
Q.pop();
if mi is valid and mj is valid then

if nr <= η then
topology preservation check;

end
collapse eij → mg;
make all neighbor of mi and mj adjacent to mg;
mark mi , mj as invalid;
for each neighbor mk of mg do

compute the optimal contraction target mt ;
compute the collapse cost ckg;
Q ← ekg with mt and ckg;

end
nr - - ;

end
end

collapse cost, which is a combination of the SQE function and the
stability ratio. This new cost function is defined as

cij = (
Ee

mi ,mj
(mg) + k

) ∗ �ij
2, (8)

where Ee
mi ,mj

(mg) is the original edge cost defined previously in
the last subsection, k a positive constant, and �ij the stability ratio.

The rationale behind the formulation of this new collapse cost
is as follows. At the initial stage, since the approximation error is
nearly zero and therefore much smaller than the constant k, this
new cost formulae makes us select the edges to collapse mainly ac-
cording to the values of stability ratio �ij ; that is, those edges with
smaller stability ratios will be selected first. Hence, most spikes will
get pruned in the early stage. As the simplification progresses, the
approximation error Ee

mi ,mj
(mg) will be larger due to error accu-

mulation and eventually become the dominating term of the cost
function cij . By that time, the edges will be selected mainly ac-
cording to the values Ee

mi ,mj
(mg), since most spikes, which have

relatively small stability ratio �ij , have already been removed and
the stability ratios of the remaining edges are relatively large. Hence,
in this stage, the stable edges with smaller approximation errors, es-
pecially those interior edges in the dense and smooth regions of the
mesh, will be selected to be collapsed.
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Fig. 7. Influence of the importance parameter k. (a) The initial medial
mesh with edges displayed using false-color of the stability ratios. (b), (c)
and (d): The simplified medial meshes with 5, 000 vertices generated using
different values of k.

Table I. Quality Comparison of Simplified Medial Mesh
Model θ̄min θ̄max θ < 30◦

Fig.7(b) 18.55 108.98 78.3%
Fig.7(c) 20.99 106.55 72.2%
Fig.7(d) 25.19 101.76 61.1%

θ̄min is the average of minimal angles of each triangle in the medial mesh; θ̄max is
the average of maximal angles of each triangle in the medial mesh; θ < 30◦ is the
percentage of triangles with its minimal angle smaller than 30 degrees.

Certainly, the constant k is an important parameter affecting the
behavior of this edge selection strategy. We now use the Plane model
in Figure 7 to show the influence of k. It is clear that the stability
ratios of the boundary edges are smaller than those of the interior
edges, as shown in Figure 7(a). As a consequence, as shown in Fig-
ure 7, a too large value of k causes to prune the spikes faster, since
it delays the time when the error term Ee

mi ,mj
(mg) becomes domi-

nant. However, after pruning the spikes, such a large k makes the
simplification focus more on the edges with smaller stability ratio,
thus generating a medial mesh with nonuniform vertex distribution,
as shown in Figure 7(b) and (c). We can see from Table I that the
mesh quality of Figure 7(d) is clearly better than that in (b) and (c).
When the value of k is too small, the influence of Ee

mi ,mj
(mg) is

overemphasized at the beginning, leading to more uniform vertex
distribution of the simplified medial axis but at the cost of delaying
the pruning of spikes, as shown in the Figure 8(d). Based on our ex-
tensive testing, including those cases shown in Figure 7, we choose
k = 10−5 in the implementation of Q-MAT for generating all the
results in Section 5.

We next use the Bear model in Figure 8 as an example to show
the necessity of incorporating k and the stability ratio �ij in the new

Fig. 8. Simplification results with different conditions. (a) The initial me-
dial mesh. (b) and (c): The simplified medial mesh by setting k = 0 in
Equation (8). (d), (e) and (f): The simplified medial mesh with �ij = 1 and
k = 0 in Equation 8;

cost function in Equation (8). Figure 8 shows the simplification
processes without using k (i.e., setting k = 0) or without using k
and �ij (i.e., setting �ij = 1), respectively.

Figures 8(b) and (c) show that if we do not use k then the prun-
ing of spikes will be delayed and we cannot get a smooth medial
mesh until simplifying the medial mesh down to 3000 vertices.
Figures 8(d), (e) and (f) show the simplification results using only
the error term Ee

mi ,mj
(mg) (i.e., without k and �ij ) in Equation (8).

In this case we cannot get a smooth medial mesh even when the
MAT is simplified to have only 500 vertices. In comparison, Fig-
ure 17 shows the simplification process using Equation (8), with
k = 10−5. In this case the spikes are removed at the early stage
while maintaining good mesh quality throughout. Here, a compact
medial mesh is already produced when the MAT is simplified to
have 10,000 vertices.

4.4 Boundary Preservation

The boundary edges of the medial axis are the edges incident to only
one face or no face in the medial mesh. The MAT in general consists
of 2D nonmanifold surfaces and 1-D curves and therefore has open
boundaries. A problem with QEM-like simplification is that some
stable boundary edges of MAT may shrink during simplification.
Hence, we will introduce additional constraints to prevent the stable
boundary edges of the medial mesh from shrinking. There are two
kinds of boundary elements to consider: (1) a boundary vertex mv

(which is a boundary medial sphere) is incident to exactly one mesh
edge e that is not incident to any triangle face; (2) a boundary edge
e (which is a boundary medial cone) incident to exactly one triangle
face f .
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Fig. 9. Boundary preservation strategy. (a) Protection of a dangling edge
of a medial mesh; the blue sphere represents the boundary medial sphere.
(b) Protection of a boundary edge of a medial mesh; the green cone represents
the boundary medial edge. These added green planes make the merged
sphere stay close to the boundary.

In the first case, as shown in Figure 9(a), the medial cone defined
by the edge e incident to the boundary vertex mv (shown as the blue
sphere) is already bounded by four planes tangent to it. We just need
to add an oriented plane p tangent to the boundary medial sphere
mv and orthogonal to the edge e. In the second case, as a slab the
face f incident to the boundary edge e is already bounded by two
planes. Then we just need to add an oriented plane p tangent to the
medial cone defined by the edge e and orthogonal to the triangle f ,
as shown in Figure 9(b).

The error terms defined by the squared distances from a sphere to
the added planes are then included in the SQE terms of the involved
medial spheres as “soft” constraints in the simplification process
to help prevent the stable boundary of the MAT from shrinking.
Specifically, at initialization, for a boundary medial sphere mv in
the first case, the corresponding error term is added to the error
function associated with mv; for a boundary medial cone defined
by an edge e in the second case, the corresponding error term is
added to the error function associated with each of the two medial
spheres at the endpoints of the edge e.

Because unstable boundary vertex or edges (i.e., spikes) should
not be protected, we weigh these added error terms with the squared
stability ratio so that those error terms associated with unstable
boundary vertices or edges will have smaller weights. Consequently,
unstable boundary vertices or edges will not be protected as much
as stable boundary vertices or edges. Specifically, we let the added
quadratic error terms associated with boundary vertices or edges
take the form

ē2 = k′ ∗ �ij
2 ∗ d2

p(mx),

where d2
p(mx) is the squared distance from the variable sphere mx to

the added bounding plane p. We set k′ = 0.1 in all our experiments.
Hence, these error terms are first weighted before they are added to
the SQE functions of the involved medial spheres. We have observed
that the stable boundaries of the MAT are well preserved with this
scheme, without compromising the effectiveness or efficiency of
the overall method.

4.5 Topology Preservation

To preserve the topology of the medial mesh, we use the strategy of
hole detection and link condition detection similar to the method of
Dey et al. [1998], which discusses edge contractions in simplicial
complexes and local conditions for topology preservation, that is,

Fig. 10. Simplification results with topology preservation. (a) The initial
medial mesh. (b) The simplified medial mesh. (c) The reconstructed shape
from (b).

Fig. 11. Effectiveness of the topology preservation scheme. (a) The input
boundary mesh. (b) The initial medial mesh. (c) The simplified result without
checking for topology preservation. (d) The simplified result with topology
preservation.

preventing a hole from disappearing due to edge contraction. We
apply this strategy only when the number of vertices of simplified
MAT is reduced to 200, since almost all spikes have been removed
at that stage and this treatment works well for all of our experiments.
With this strategy, the simplification process will stop when further
edge contraction will lead to topological change. Taking the Fertility
model in Figure 10 for example, we need at least 9 medial cones
to preserve the topology and any further contraction will make a
loop of the MAT disappear. Small loops in the MAT are also well
preserved with this strategy. As shown in Figure 11. Here the small
loops at the tip of the weapon in the Neptune model are preserved.
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Fig. 12. The comparison of Q-MAT with the angle-based method and the λ-medial axis method. (#v is the number of mesh vertices.) (a) The input mesh of the
Venus model, the initial medial mesh, and the color-coded distribution of the errors from the input mesh to the reconstructed surface. (b) and (c): Simplification
results by the angle-based method. (d) and (e): Simplification results by the λ-medial axis method. (f) and (g): Simplification results by Q-MAT. In each group,
from left to right, there are the simplified medial mesh, the reconstructed surface from it, and the color-coded distribution of the errors from the input surface
to the reconstructed surface.
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Fig. 13. The comparisons of Q-MAT with the SAT method. (#v is the
number of mesh vertices.) (a) The input mesh. (b) The initial medial mesh.
(c) The simplified medial mesh by SAT with s = 1.1. (d) The simplified
medial mesh by Q-MAT. (e) The simplified medial mesh by SAT with
s = 1.5. (f) The simplified medial mesh by Q-MAT. (g) and (h): Two further
simplified medial meshes by Q-MAT. (i) The shape reconstructed from the
medial mesh in (h).

Fig. 14. Comparison with HEM. (a) The input surface and the initial medial
mesh. (b), (d), (f) and (h): Simplification results by HEM. (c), (e), (g) and
(i): Simplification results by Q-MAT. Groups (b), (c), (d) and (e), from left
to right, the simplified medial mesh and the reconstructed surface from it.
Groups (f), (g), (h) and (i) also show the color-coded distributions of errors
from the input mesh to the reconstructed surface, respectively.
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As default, we start the topology check when there are 200 ver-
tices left. Of course, this default setting does not work for a model
with genus larger than 200, for example. In such cases, the user
may specify when to start the topology check. We do not add this
topology check step from the very start of simplification because it
is quite time consuming–the time needed for topological checking
is about 3 to 5 times longer than the current running time.

4.6 Preventing Mesh Inversion

Collapsing an edge eij = {mi , mj } may cause some of its neigh-
boring faces to fold over. A method for avoiding this kind of un-
desirable mesh inversion has been discussed in the original QEM
method [Garland and Heckbert 1997]. When this occurs, we adopt
the following strategy. We consider the three options of placing the
merged vertex at mi , mj , or (mi + mj )/2, and choose the one that
attains the smallest collapse cost among the three options and is free
of mesh inversion. If none of the options is free of mesh inversion,
the edge eij will not be collapsed.

5. RESULTS AND DISCUSSIONS

In this section we will show the simplification results of Q-MAT
for validation and comparisons with other methods. We implement
Q-MAT in C++ and our program runs on a Windows 7 workstation
with an Intel i5 CPU @2.50GHz and 8 GB memory. All the models
are processed after being scaled such that the diagonal lengths of
their bounding boxes are equal to 1.

5.1 Preparation of Initial MAT

In the following we will show the results of using Q-MAT to sim-
plify initial MATs that are output by the SAT method [Miklos et al.
2010] and by the method of Amenta and Bern [1998], respectively.
In the former case, we use the publicly available executable program
of SAT provided by the authors and use its output as the initial MAT
for Q-MAT. SAT incrementally builds a set of sample points and
an approximating surface mesh until the approximation tolerance is
met, then identifies the inner poles from the constructed Voronoi di-
agram. As for the output of the method of Amenta and Bern [1998],
we make the following adjustment. While the method of Amenta
and Bern [1998] provides a way of filtering the Voronoi diagram
using the “poles” of the Voronoi cells to improve the stability of the
MAT, we take the original Voronoi cells without using any filtering,
since we wish to test how Q-MAT can handle highly complex ini-
tial MAT with many spikes. The Voronoi diagram is computed by
first getting the Delaunay triangulation of the sample points using
the CGAL package “Delaunay Triangulation 3” and then taking its
dual. The conversion from the set of individual medial spheres to
a triangle mesh representation of the MAT is carried out by using
the CGAL package “Skin Mesh Generation”. In this way, we get
the initial medial mesh with the medial spheres connected to its
neighbors.

We use the one-sided Hausdorff distance error, denoted ε, to
assess the approximation accuracy of the simplified medial meshes
to be presented in this section. For a simplified medial mesh, this
error is defined to be the maximum of the shortest distances from
a set of densely sampled points on the input surface to the surface
reconstructed from the simplified medial mesh and is expressed in
percentages with respect to the diagonal length of the input object’
bounding box. The reconstructed shape can be got by rendering all
the primitives including medial spheres, medial cones and medial
slabs, so the shortest distance from a point to the reconstructed

Table II. Comparison of HEM and Q-MAT
Model (#v) HEM (s) Q-MAT (s) Ratio of time

Ant (29,703) 142.3 4.0 35.6
Bear (34,703) 229.7 5.5 41.8

Venus (74,998) 684.0 11.9 57.5
Plane (20,806) 118.2 2.5 47.3

Dolphin (54,241) 386.2 9.5 40.7
Octopus (39,342) 230.0 5.4 42.6

“#v” is the number of vertices in the initial medial mesh. The first column shows the
model, the second column shows the simplification time of HEM, the third column
shows the simplification time of Q-MAT, and the fourth column shows the ratios of
simplification time of HEM over to that of Q-MAT. The simplification time is from
the initial MAT to getting the simplified MAT with 100 vertices.

Fig. 15. MAT Simplification of Sphere model. (a) The initial medial mesh.
(b) The simplified medial mesh.

surface can be computed by finding its shortest distance to the
surfaces of all the primitives.

5.2 Comparisons and Discussions

We compare our simplification method, Q-MAT, with the following
four methods: (1) the angle-based method [Foskey et al. 2003];
(2) the λ-medial axis method [Chazal and Lieutier 2005]; (3) the
SAT method [Miklos et al. 2010]; and (4) the method [Sun et al.
2013, 2014], which will be referred to as HEM because it uses the
one-sided Hausdorff error metric to control the simplification of a
medial mesh. For the SAT and HEM methods, we use the codes
provided by the authors. We use our own implementations of the
angle-based method and the λ-medial axis method.

Comparison with angle-based simplification and λ-medial axis.
Figure 12 shows the comparison of Q-MAT with the angle-based
method and the λ-medial axis method. Starting with an initial MAT
of 74,998 vertices of the Venus model, we use the three methods to
simplify it to produce three medial meshes of 20,000 vertices and
three medial meshes of 10,000 vertices, respectively. For each sim-
plified medial mesh, we also show the reconstructed object and its
color-coded distribution of the one-sided Hausdorff error between
the input mesh and the reconstructed objects relative to the diameter
of the bounding box.

For the simplified medial mesh of 20,000 vertices produced by
the angle-based method (Figure 12(b)), there still remain unstable
branches while the medial mesh has already become disconnected.
For the simplified medial mesh of 20,000 vertices produced by the
λ-medial axis method (Figure 12(d)), there are many holes in the
medial mesh, and the holes become larger as the medial mesh is
further simplified to have 10,000 vertices (Figure 12(e)). In contrast,
Q-MAT produces more accurate approximations to the MAT with
smaller Hausdorff errors ((Figure 12(f) and (g)).

Comparison with the SAT method. Here an initial MAT of
140, 607 vertices of a vase model is generated using the same
method used for generating initial MATs in the original paper
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Fig. 16. MAT simplification by Q-MAT with different levels of noises (η)
added to the same Bird model, which are generated with random per-vertex
displacements expressed in percentages w.r.t. the diagonal length of the
model’s bounding box. For each noise level we show the initial boundary
surface, the initial medial mesh of approximately the same number of ver-
tices, the simplified medial mesh of 1, 000 vertices, and the reconstructed
surface from the simplified medial mesh.

[Miklos et al. 2010] on the SAT method. We experimented with
the SAT method using two values of the scaling parameter: s = 1.1
and s = 1.5, to generate two simplified medial meshes. Then we
ran Q-MAT to generate two medial meshes with the same number
of vertices, respectively. Figure 13(c) shows the medial mesh by the
SAT method with s = 1.1. It has 91, 325 vertices and is structurally
cleaner than the simplified result by Q-MAT, which is shown in
Figure 13(d), while the result by Q-MAT is more accurate. The me-
dial mesh by the SAT method with s = 1.5 has 38, 921 vertices. It
has become structurally incomplete and has a large approximation
error, as shown in Figure 13(e). In contrast, the simplified medial
mesh by Q-MAT with the same number of vertices is structurally
simpler and still very accurate, as shown in Figure 13(f). The medial
mesh is further simplified by Q-MAT to have 10, 000 vertices and
250 vertices, as shown in Figure 13(g) and (h), respectively. Note
that it is difficult to choose a value of the scaling factor s in the SAT
method to produce such extreme simplification of the medial mesh
having only 250 vertices and having the matching approximation
quality. Hence, Q-MAT is more suitable than the SAT method for
progressive MAT simplification.

Comparison with the Hausdorff error-based method (HEM). We
use the Octopus model in Figure 14 to compare Q-MAT with

Fig. 17. MAT simplification of the Bear model by Q-MAT. (a) The initial
medial axis. (b), (c) and (d): The simplified medial mesh with different
number of vertices. (e) The input boundary mesh. (f), (g) and (h): The
reconstructed shapes from the medial meshes in (b), (c) and (d), respectively;
(i), (j) and (k): the color-coded distribution of the one-sided Hausdorff errors
from the input boundary mesh to the reconstructed boundary surfaces in (f),
(g) and (h), respectively. (l) shows the distribution of error distance from
10 percentage of the Hausdorff distance to 100 percentage of it.

HEM [Sun et al. 2013, 2014]. Starting from the same initial MAT of
39, 342 vertices, we use both simplification methods to reduce the
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Fig. 18. MAT simplification results by Q-MAT. The first column lists the initial medial meshes. The second column through the fourth column show medial
meshes of different levels of simplification. The last column shows the shapes reconstructed from the simplified medial meshes in the fourth column. All the
results are computed with k = 10−5 in the edge-collapse cost function (Equation (8)).
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Fig. 19. MAT simplification results by Q-MAT. All the initial medial meshes are generated using the SAT method [Miklos et al. 2010]. The Raptor model
is generated using δ = 0.006 and s = 1.0, and the others using δ = 0.01 and s = 1.0. The first column shows the initial medial meshes. The second column
through the fourth column show medial meshes of different levels of simplification. The last column shows the shapes reconstructed from the simplified medial
meshes in the fourth column. All the results are computed with k = 10−5 in the edge-collapse cost function (Equation (8)).

vertex number to 18, 000, 1, 000, 100 and 50, respectively. We will
only show the color-coded results for the stage of 100 and 50 ver-
tices because the errors for the first two cases (18, 000 and 1, 000)
are very small. It can be seen that Q-MAT removes almost all the
spikes when there are 18, 000 vertices left, while HEM fails to do
so even when the number of vertices has been reduced to 1, 000.

Since HEM always chooses to collapses the edge that has the
smallest Hausdorff approximation error, the Hausdorff distance is
generally smaller than Q-MAT at the beginning. However, at the
extreme level of simplification, that is, when #v = 100 or 50,
Q-MAT produces smaller Hausdorff errors than HEM, as observed
consistently on many models we have tested. That is mainly because
the position of the merged medial sphere after each collapse is more
carefully optimized in Q-MAT than in HEM. Moreover, computing
the Hausdorff distance to evaluate local maximum errors for makes
HEM relatively slow. The total simplification time of HEM for the
Octopus model from its initial state to 100 vertices is about 230s,

while Q-MAT takes less than 6s. Table II gives the simplification
time of Q-MAT from the initial medial meshes of various objects
to simplified medial meshes of 100 vertices.

5.3 More Results

To test Q-MAT in some special cases with known ground truths,
we show an example in Figure 15 of using Q-MAT to simplify the
MAT of a mesh surface approximating a unit sphere centered at
the origin, with 2, 562 vertices. The initial medial mesh has 7, 156
vertices. Q-MAT simplifies the initial medial mesh to a single medial
sphere centered at (10−9, −10−9, −4.0 ∗ 10−10) with radius equals
to 0.9999997, which is a good approximation to the unit sphere.

Robustness to noise. Since boundary surface noises tend to cause
spikes, we wish to know whether Q-MAT still works effectively
in the presence of increased levels of boundary surface noises. In
Figure 16, we add random displacements for each vertex of the Bird
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Fig. 20. Self-intersection in an extreme simplification situation. (a) The
input pipe surface without self-intersection. (b) There is self-intersection
in the surface reconstructed from a simplified medial mesh with 6 medial
spheres.

model, in different percentages with respect to the diagonal length
of the bounding box, denoted by η ∈ [0, 1]. Although Q-MAT
tends to treat the noises as details of the shape, as simplification
progresses, it is capable of distinguishing the important parts of the
MAT and preserving them.

Figures 17–19 show some more MAT simplification examples by
Q-MAT. In the examples of Figure 19, we use the initial medial mesh
from SAT [Miklos et al. 2010]. For other examples, the initial medial
meshes are generated by the method of Amenta and Bern [1998].

For each model, we show different levels of simplified medial
meshes and some reconstruction results. It can be seen that all
the spikes are pruned before the number of vertices is reduced to
10, 000, resulting in structurally clean and yet accurate simplified
medial meshes. Furthermore, the geometric features of the input
models are well preserved at all simplification levels even when
there are fewer than 100 medial vertices left. Hence, Q-MAT not
only prunes spikes effectively but also reduces the number of mesh
vertices drastically while maintaining high approximation accuracy.
The simplified medial meshes by Q-MAT meet the aforementioned
three requirements for MAT simplification: (1) structural simplicity;
(2) geometric accuracy; and (3) compactness of representation.

Topology preservation. Q-MAT produces, in most practical set-
tings, a medial mesh of the same homotopy type as that of the input
object, but the homotopy type of the object reconstructed from the
simplified MAT is not guaranteed to be the same as that of the
original object. For example, a change in homotopy happens when
extreme simplification causes self-intersection of the reconstructed
shape from the simplified medial mesh, as shown in Figure 20.

Computation time. Table III lists the timing of initialization and
timing of using Q-MAT for MAT simplification for various models.
Because of its adoption of the QEM framework for efficient mainte-
nance of the quadratic error terms and error minimization, Q-MAT
is very fast in comparison with other existing methods.

6. CONCLUSIONS AND FUTURE WORK

We have presented an efficient method, called Q-MAT, for comput-
ing a structurally simple, compact, and accurate linear approxima-
tion of the medial axis transform. The efficacy of Q-MAT is due
to two novel metrics we proposed: the slab quadratic error metric
and the stability ratio. The slab quadratic error metric measures
approximation errors in MAT simplification and the stability ratio
measures the geometric significance of each edge in the medial
mesh in order to distinguish and prune spikes. Q-MAT is also ca-
pable of computing an extreme simplification of an input shape to

Table III. Computation time of Q-MAT
Model (#V) Initialization (ms) Simplification (ms)
Ant (29,703) 869 4,075

Vase (140,607) 5,754 36,366
Bear (34,703) 1,084 5,603

Venus (74,998) 2,316 12,067
Chair (36,536) 1,051 4,386
Hand (81,561) 2,696 12,216
Plane (20,806) 569 2,530

Dolphin (54,241) 1,689 9,586
Seahorse (67,767) 1,990 10,937
Octopus (39,342) 1,100 5,560

Pig (114,617) 4,744 28,390
Raptor (179,180) 7,542 45,245

Armadillo (121,248) 5,704 32,148
Fertility (153,695) 6,252 40,221
Neptune (95,420) 4,089 23,496

“#V” is the number of vertices in the initial medial mesh. “Initialization” includes
the time of computing matrices of the initial slab quadric error functions and that of
choosing optimal contraction target points. “Simplification” shows the time from the
beginning to the end when no edge remains.

produce a faithful volume approximation represented by a medial
mesh with a small number of vertices.

However, the current version of Q-MAT cannot preserve very
well sharp features on 3D shapes. Since sharp feature preserva-
tion is important in many applications, such as CAD/CAM, further
research is needed to address this problem. Another outstanding
issue is how to accurately and efficiently convert a medial mesh
representation of a 3D object to a boundary surface representation.
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