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Abstract
Suppose that � is a Schramm–Loewner evolution (SLE�) in a smoothly bounded sim-
ply connected domain D � C and that � is a conformal map from D to a connected
component of D n �.Œ0; t �/ for some t > 0. The multifractal spectrum of � is the func-
tion .�1; 1/! Œ0;1/ which, for each s 2 .�1; 1/, gives the Hausdorff dimension of
the set of points x 2 @D such that j�0..1� �/x/j D ��sCo.1/ as �! 0. We rigorously
compute the almost sure multifractal spectrum of SLE, confirming a prediction due to
Duplantier. As corollaries, we confirm a conjecture made by Beliaev and Smirnov for
the almost sure bulk integral means spectrum of SLE, we obtain the optimal Hölder
exponent for a conformal map which uniformizes the complement of an SLE curve,
and we obtain a new derivation of the almost sure Hausdorff dimension of the SLE
curve for � � 4. Our results also hold for the SLE�.�/ processes with general vectors
of weight �.
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1. Introduction
The Schramm–Loewner evolution (SLE� ) is a one-parameter family of random fractal
curves in a simply connected domain in C, indexed by � > 0. SLE was introduced by
Schramm [51] and has since become a central object of study in both probability
theory and statistical physics (see, e.g., [23], [63] for an introduction to SLE). Its
importance is that it describes the scaling limit of the interfaces which arise in a
number of discrete models in statistical physics (see, e.g., [30], [35], [52], [53], [59]).

Roughly speaking, the multifractal spectrum of a domain D �C refers to one of
the two functions

s 7! dimH ‚
s.D/ or s 7! dimH

e‚s.D/;
where dimH denotes the Hausdorff dimension and e‚s.D/ is the set of points x 2 @D
with the property that the modulus of the derivative j�0..1��/x/j of a conformal map
� from the unit disk D into D grows like ��s as �! 0 and ‚s.D/ D �.e‚s.D//.
There are several more or less equivalent definitions of this concept (see Section 1.1
for the precise definition we use in this article).

The multifractal spectrum ofD is a means of quantifying the behavior of j�0j near
@D, even though � need not be differentiable on @D. It is closely related to various
other quantities associated with @D, for example, the Hausdorff dimension, Hölder
regularity, and packing dimension of @D; the integral means spectrum of D; and the
harmonic measure spectrum of the complement of a hull (see [34] for some results in
this direction). Such complex analytic quantities are often difficult if not impossible to
compute explicitly for specific deterministic domains. However, for random domains
(like the complement of an SLE curve) explicit calculations can sometimes be more
tractable.

There has been substantial interest in the multifractal properties of SLE� (i.e.,
that of the domain obtained by excising the curve) in both mathematics and physics
in recent years. For example, it is shown by Beffara [2] that the almost sure Hausdorff
dimension of the SLE� curve is 1C �=8 for � 2 .0; 8/ and 2 for � � 8. The optimal
Hölder exponent for the SLE� curve (with the capacity parameterization) is derived
in [60], building on the work of Rohde and Schramm [50] and Lind [31].

There have also been a number of works which study various versions of the
multifractal spectrum of SLE. The first such works from Duplantier [8], [9] give
nonrigorous predictions of the multifractal exponents for Brownian motion and self-
avoiding random walks, which correspond to SLE� for � D 6 and � D 8=3, respec-
tively. Duplantier [10] extends this to a nonrigorous prediction of the multifractal
spectrum of the SLE� curve for general values of � > 0. Observing that the predicted
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multifractal spectrum for SLE� in [10] is invariant under the replacement � 7! 16=�

is what originally led Duplantier to conjecture SLE duality (see [10], [11]), which
states that the outer boundary of an SLE� curve for � > 4 is described by a type
of SLE16=� curve. Various forms of SLE duality have since been rigorously proven
in [6], [37], [64], [66], and [41].

In [13] and [14], Duplantier and Binder study (nonrigorously) a notion of spec-
trum involving the argument, rather than just the modulus, of the derivative of the
SLE maps. In [11], these predictions are expanded to higher multifractal spectra, for
example, the dimension of the set of points on the curve where the behavior of the
derivative on both sides of the curve is prescribed (see also [12] for additional discus-
sion of these and other multifractal-type spectra).

The first mathematical work on the multifractal spectrum of SLE is due to Beliaev
and Smirnov [4], who compute the average integral means spectrum for a whole-plane
SLE curve. Expanding on the results of [4], Duplantier, Nguyen, Nguyen, and Zins-
meister [17] (see also [32], [33]) use exact solutions of differential equations for the
moments of the derivatives of the whole-plane SLE maps to study the integral means
spectrum of certain SLE and generalized SLE processes. Duplantier, Hieu Ho, Binh
Le, and Zinsmeister [15] extend these calculations to the case of mixed moments for
the modulus of an SLE� Loewner map and the modulus of its derivative and study
a generalized integral means spectrum. Viklund and Lawler [61] rigorously compute
the multifractal spectrum at the tip of the SLE curve; this is the first work in which an
almost sure result for the multifractal spectrum for SLE is obtained. Alberts, Binder,
and Viklund [1] compute the almost sure dimension of the set of points where an SLE�
curve (� > 4) intersects the boundary at a given “angle.” Binder and Duplantier [5]
have informed the authors in private communication of a forthcoming work in which
they prove formulas for the average mixed integral means spectra (i.e., ˇ-spectrum
with complex exponent) both in the bulk and at the tip, for chordal SLE. The corre-
sponding formulas agree after Legendre transform with the predictions from [13] and
[14] concerning the mixed multifractal spectra for harmonic measure and rotation
(equivalently, modulus and argument).

In this article, we will give the first rigorous derivation of the almost sure bulk
multifractal spectrum of chordal SLE� (i.e., that of the complementary domain). We
will also obtain the almost sure bulk integral means spectrum of SLE; the spectrum
that we find confirms [4, Conjecture 1]. Our approach differs from those used else-
where in the literature to prove results of this type in that we make use of various
couplings of SLE processes with the Gaussian free field (GFF). In the proof of the
upper bound we use a coupling of the reverse SLE Loewner flow with a free-boundary
GFF (sometimes called the “quantum zipper”; see [16], [40], [58]). Our proof of the
lower bound will make extensive use of the coupling of SLE with a GFF with Dirich-
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let boundary conditions (sometimes called the “imaginary geometry” coupling; see
[7], [37]–[39], [41], [56]). This latter coupling has also been used to aid in proving
lower bounds for the Hausdorff dimensions of sets associated with SLE in [46]. Our
approach at a high level is similar in spirit to the one used in [46], but the technical
details are rather different.

1.1. Multifractal spectrum definition
We will now introduce the sets whose Hausdorff dimension we will compute, in the
setting of general domains in the complex plane. Our definitions are similar to those
in [61, Section 2], but we deal with the boundary of a domain rather than the tip of a
given curve.

Let D � C be a simply connected domain, and let � W D!D be a conformal
map. For s 2R, define

e‚s.D/ WD °x 2 @D W lim
�!0

log j�0..1� �/x/j

� log �
D s

±
(1.1)

and

‚s.D/ WD �
�e‚s.D/�: (1.2)

Also define

e‚sI�.D/ WD °x 2 @D W lim sup
�!0

log j�0..1� �/x/j

� log �
� s

±
;

‚sI�.D/ WD �
�e‚sI�.D/�;

e‚sI�.D/ WD °x 2 @D W lim sup
�!0

log j�0..1� �/x/j

� log �
� s

±
;

‚sI�.D/ WD �
�e‚sI�.D/�:

The multifractal spectrum of D can be defined as one of the two functions s 7!
dimH ‚

s.D/ or s 7! dimH
e‚s.D/. It is easy to check that these definitions do not

depend on the choice of conformal map �. We note that, although the sets‚s.D/ ande‚s.D/ are defined for all s 2R, these sets are empty for s … Œ�1; 1� (see Lemma 2.11
below).

1.2. Main results
Our main result is the following theorem.
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THEOREM 1.1
Let � � 4. Let � be a chordal SLE� from �i to i in D. Let D� be the connected
component of D n �.Œ0;1// containing 1 on its boundary. Let

e�.s/ WD 1� .4C �/2s2
8�.1C s/

; (1.3)

�.s/ WD
8�.1C s/� .4C �/2s2

8�.1� s2/
; (1.4)

s� WD
4� � 2

p
2
p
�.2C �/.8C �/

.4C �/2
; (1.5)

sC WD
4� C 2

p
2
p
�.2C �/.8C �/

.4C �/2
: (1.6)

For s 2 .�1; 1/, almost surely

dimH
e‚s.D�/D dimH

e‚sI�.D�/De�.s/; 0� s � sC;

dimH
e‚s.D�/D dimH

e‚sI�.D�/De�.s/; s� � s � 0;

dimH ‚
s.D�/D dimH ‚

sI�.D�/D �.s/;
�

4
� s � sC;

dimH ‚
s.D�/D dimH ‚

sI�.D�/D �.s/; s� � s �
�

4
:

Moreover, we almost surely have e‚s.D�/D‚s.D�/D; for each s … Œs�; sC�.

Remark 1.2
See Figure 1, left, for a graph ofe�.s/ and �.s/. The significance of s� and sC is thate�.s/� 0 for s 2 Œs�; sC�, and the significance of s D �=4 is that it is the value which
maximizes � . Note s� 2 .�1; 0/ and sC 2 .0; 1� for any � > 0 and sC D 1 if and only
if � D 4. We refer the reader to Remark 8.7 below for more detail regarding the case
in which � D 4 and s D 1.

The SLE�.�/ processes are an important variant of SLE in which one keeps track
of extra marked points—so-called force points. The force points can be either on the
domain boundary or in its interior and are, respectively, referred to as “boundary” and
“interior” force points. These processes were first introduced by Lawler, Schramm,
and Werner [29, Section 8.3], and just like ordinary SLE� , the SLE�.�/ processes nat-
urally arise in many different contexts. Since SLE�.�/ for different vectors of weights
� has the same behavior when it is not interacting with its force points, one expects
an analogue of Theorem 1.1 to be true for such processes provided that we exclude
points near the boundary of the domain and stop the path before interacting with an
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Figure 1. Left: A graph of the Hausdorff dimensionse�.s/ of e‚s.D�/ and �.s/ of ‚s.D�/ from
Theorem 1.1 as s ranges from �1 to 1 for � D 2. The value of s which maximizese� is 0, and the

value of s which maximizes � is �=4D 1=2. Note that �.�=4/D 1C �=8, which is the almost
sure Hausdorff dimension of SLE� (see [2]). Right: A graph of the bulk integral means spectrum

IMSD�.a/ of D� from Corollary 1.9 as a ranges from �7 to 7 for � D 3.1

interior force point. Furthermore, by SLE duality, one expects an analogue of The-
orem 1.1 for � > 4. Such results do indeed hold true, as described in the following
corollary.

COROLLARY 1.3
Let D � C be a smoothly bounded domain. Let � > 0, and let � be a vector of real
weights. Let � be a chordal SLE�.�/ process inD, with any choice of initial and target

points and force points located anywhere in D, run up until the first time it either hits
an interior force point or hits the continuation threshold (see [37, Section 2.1]). Fix
s 2 .�1; 1/. Almost surely, the following is true. Let V be a connected component
of D n � or a connected component of D n �.Œ0; t �/ for any t > 0 before � hits an
interior force point or the continuation threshold, and let � W D! V be a conformal
map. Then

dimH

�e‚s.V / n ��1.@D/�D dimH

�e‚sI�.V / n ��1.@D/�De�.s/; 0� s � sC;

dimH

�e‚s.V / n ��1.@D/�D dimH

�e‚sI�.V / n ��1.@D/�De�.s/; s� � s � 0;

dimH

�
‚s.V / n @D

�
D dimH

�
‚sI�.V / n @D

�
D �.s/;

�

4
� s � sC;

dimH

�
‚s.V / n @D

�
D dimH

�
‚sI�.V / n @D

�
D �.s/; s� � s �

�

4
:

1Color versions of the figures are included in the screen-enhanced version of this article, which is available
online at https://doi.org/10.1215/00127094-2017-0049.
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That is, the conclusion of Theorem 1.1 holds almost surely away from the domain
boundary at all times simultaneously for an SLE�.�/ with a general � > 0 and vector
of weights � up until the process either hits an interior force point or the continuation
threshold.

Proof
This follows from Theorem 1.1 combined with Proposition 2.15 below. Note that the
functionse�.s/ and �.s/ are unaffected if we replace � by 16=�, as one would expect
from SLE duality (see [6], [37], [41], [64], [66]).

Remark 1.4
We believe that the techniques developed in this article could also be employed to
describe the multifractal behavior of the SLE�.�/ processes even near their intersec-
tion points with the domain boundary and near their tip, though we will not carry this
out here.

Roughly speaking, the harmonic measure spectrum of a hull A � H gives, for
each ˛ 2 .1=2;1/, the Hausdorff dimension of the set ‚˛hm.A/ of points x 2 @A for
which the harmonic measure from1 of B�.x/ in H nA decays like �˛ as �! 0 (or
in the preimage e‚˛hm.A/ of‚˛hm.A/ under a conformal map D!HnA). Viklund and
Lawler [61, Section 2.3] give a rigorous treatment of the harmonic measure spectrum
at the tip of a curve. A nearly identical construction works for the harmonic measure
spectrum of a whole hull in H. Similar constructions also work for hulls in D or C. In
particular, one has (see [61, Lemma 2.3])

‚s.A/D‚
1
1�s

hm .H nA/ 8s 2 .�1; 1/: (1.7)

Remark 1.5
In light of the relationship between SLE6 and Brownian motion (see [25]), we see
that Corollary 1.3 with � D 6 yields the harmonic measure spectrum for the Brownian
frontier computed in [22], [25]–[27], and [28].

Remark 1.6
Duplantier [10] (see, in particular, [10, (6)]) predicts that the harmonic measure spec-
trum for the bulk of the SLE� curve is given by

f .˛/D ˛C
25� c

24

�
1�

1

2

�
2˛ � 1C

1

2˛ � 1

��
; (1.8)

where

c D
.6� �/.6� 16=�/

4
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is the central charge. The exponent (1.4) is related to the exponent (1.8) by

�.s/D f
� 1

1� s

�
:

This is what we would expect in light of (1.7).

The dimension �.s/ attains a unique maximum value of 1C�=8 on Œ�1; 1� at s D
�=4. This maximum value coincides with the Hausdorff dimension of the SLE� curve
(see [2]), which suggests that, near a “typical point” of �, the modulus of the derivative
of a conformal map fromD� to D grows like dist.z; �/

�
4�� . Hence, Theorem 1.1 gives

an alternative proof of the following.

COROLLARY 1.7
Let � � 4. The Hausdorff dimension of an SLE� curve � is almost surely equal to
1C �=8.

We remark that we believe that the methods that we use to establish the lower
bound in Theorem 1.1 could be employed to give an independent derivation of the
lower bound of the dimension of SLE� for all � > 0; however, we will not carry this
out here.

1.3. Optimal Hölder exponent for map uniformizing an SLE
Another consequence of Theorem 1.1 is that it allows us to determine the optimal
bulk Hölder exponent for the conformal map which uniformizes the complement of
an SLE� curve. (Note that this result concerns a different problem than [60], which
gives the optimal Hölder exponent for the SLE� curve itself with the capacity param-
eterization.)

COROLLARY 1.8
Suppose that we have the same setup as in Theorem 1.1, and let � W D! D� be a
conformal map taking �i and i , respectively, to the start and end points of �. On
any subset of D lying at positive distance from ¹�i; iº, the function � is ˛-Hölder
continuous for every ˛ < .1 � sC/ and is not ˛-Hölder continuous for every ˛ >
.1� sC/.

Proof
Suppose that s > sC. By Theorem 1.1, e‚sI�.D�/D; almost surely. In fact, the proof
of Theorem 1.1 gives a slightly stronger statement, namely, for each ı > 0, it is almost
surely the case that j�0.z/j � ��s for each sufficiently small � > 0 and each z 2 .1�
�/@D lying at distance at least ı from ¹�i; iº. (The relation (5.2) from Proposition 5.1
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shows this with � replaced by the inverse of the centered forward Loewner map for
� stopped at time t > 0, and this is easily transferred to �.) Consequently, if x 2 @D
lies at distance at least ı from ¹�i; iº, then j�0.z/j � .1� jzj/�s for each z in the line
segment Œ.1 � �/x; x�. Integrating this relation gives j�.x/ � �..1 � �/x/j � �1�s .
Similarly, if z;w 2 .1� �/@D each lie at distance at least ı from ¹�i; iº, then j�.z/�
�.w/j � jz � wj��s . Combining these relations with � D jx � yj and applying the
triangle inequality shows that j�.x/� �.y/j � jx � yj1�s whenever x;y 2 @D lie at
distance at least ı from ¹�i; iº. This proves the upper bound.

Now suppose that s < sC. Theorem 1.1 implies that e‚s.D�/¤ ; almost surely.
Fix x 2 e‚s.D�/, and for � > 0, let y� D .1 � �/x. Then we know that j�0.y�/j �
��sCo�.1/. Standard distortion estimates for conformal maps then imply that j�0.z/j �
��sCo�.1/ for all z 2 B�=2.y�/, which in turn implies that � is not .1 � s/-Hölder
continuous. This proves the lower bound.

As explained above in the context of Theorem 1.1, the statement of Corollary 1.8
also applies for SLE� curves with � > 4 away from intersections with the domain
boundary (by SLE duality) and for SLE�.�/ curves for all � > 0 also away from
intersections with the domain boundary (by absolute continuity).

1.4. Integral means spectrum
The integral means spectrum of a simply connected domain D � D is the function
IMSD WR!R defined by

IMSD.a/ WD lim sup
�!0

log
R
@B1��.0/

j�0.z/ja dz

� log �
; (1.9)

where � W D! D is a conformal map. (There is a three-parameter family of such
conformal maps, but IMSD.a/ does not depend on the specific choice of �.) The
integral means spectrum is of substantial interest in complex analysis, primarily in
the form of the universal integral means spectrum, which is defined by

IMSU .a/ WD sup
D

IMSD.a/;

where the supremum is over all simply connected domains D � C. It has been con-
jectured by Kraetzer [21] that IMSU .a/ D t2=4 for jt j � 2 and IMSU .a/ D jt j � 1
for jt j � 2. This conjecture has several important consequences in complex analysis
(see, e.g., [3], [19], [48], [49] for more details). The integral means spectrum is often
very difficult to compute in practice for deterministic domains. However, domains
bounded by random fractals (e.g., the complement of an SLE� curve) are sometimes
more tractable. For example, Beliaev and Smirnov [4] give an explicit calculation of
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the average integral means spectrum of the complement of a whole plane SLE� curve
(which is defined as in (1.9) but with j�0.z/ja replaced by E.j�0.z/ja/).

In this article we shall be interested in a slight refinement of the definition of
the integral means spectrum for the complement of a curve which negates possible
pathologies arising from unusual behavior at its end points or when it intersects itself
or the boundary of the domain. Namely, let D � C be a bounded simply connected
domain with smooth boundary, and let � W Œ0; T �!D be a non-self-crossing curve.
(We allow T D1.) Let V be a connected component of D n �. Let xV be the first
(equivalently last) point of @V hit by �, and let � WD! V be a conformal map.

For 	 > 0, let

I � .�/ WD ��1
�
@V n

�
B�
�
�.T /

�
[B� .xV /[B� .@D/

��
: (1.10)

Let A�� .�/ be the set of z 2 @B1��.0/ with z=jzj 2 I � .�/. The bulk integral means
spectrum of V is the function IMSV WR!R defined by

IMSbulk
V .a/ WD sup

�>0

lim sup
�!0

log
R
A
�
�.�/
j�0.z/ja dz

� log �
: (1.11)

One can check that the definition (1.11) does not depend on the choice of �.
We extract the following from the proof of Theorem 1.1.

COROLLARY 1.9
For a 2R with a < .4C�/2

8�
, let

s�.a/ WD �1C
4C �p

.4C �/2 � 8a�
: (1.12)

Also let s� and sC be as in (1.5) and (1.6), and let a� (resp., aC) be the value of a
for which s�.a/D s� (resp., s�.a/D sC). Set

�IMS.a/ WD

8̂̂<̂
:̂
�1C s�a a < a�;

�aC
.4C�/.4C��

p
.4C�/2�8a�/

4�
a 2 Œa�; aC�;

�1C sCa a > aC:

(1.13)

Suppose that we are in the setting of Corollary 1.3. Almost surely, the following is
true. Let a 2R, and let V be a complementary connected component of either D n �
or of D n �t for any t > 0 (before � hits an interior force point or the continuation
threshold if it is an SLE�.�/ process). Then

IMSbulk
V .a/D �IMS.a/: (1.14)
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See Figure 1, right, for a graph of �IMS.a/. The result of Corollary 1.9 is in agree-
ment with the (rigorously proven) formula2 for the average bulk integral means spec-
trum of whole-plane SLE in [4, Theorem 1] for a 2 Œa�; aC� and with [4, Conjec-
ture 1] for the almost sure bulk integral means spectrum for all values of a 2R.

Remark 1.10
As conjectured in [4], the almost sure bulk integral means spectrum of Corollary 1.9
differs from the average integral means spectrum computed in [4] for values of a …
Œa�; aC�. We explain why this is the case. First, as noted in [4], we expect the aver-
age and almost sure bulk integral means spectra to differ because the function which
gives the average bulk integral means spectrum does not satisfy Makarov’s [34] char-
acterization of possible integral means spectra. At a more heuristic level, the aver-
age integral means spectrum for a … Œa�; aC� is distorted by the occurrence of the
small (but still positive) probability event that a conformal map � W D! V satisfies
j�0.z/j � .1 � jzj/�s for some z close to @D and some s … Œs�; sC�. However, this
event almost surely does not occur in the limit (see Theorem 1.1), so it does not affect
the almost sure bulk integral means spectrum.

1.5. Outline
There is a systematic approach to computing Hausdorff dimensions of random fractal
sets of the sort we consider here. One first gets a sharp estimate for the probability
that a single point is contained in the set (the “one-point estimate”) and uses this to
get an upper bound on the Hausdorff dimension. One then defines a subset of the set
of interest (the “perfect points”) and obtains an estimate for the probability that any
two given points are perfect (the “two-point estimate”). This enables one to define a
Frostman measure on the set of perfect points and thereby obtain a lower bound on the
Hausdorff dimension of the set of interest (see [47, Section 4] for more on Frostman
measures and their connection to Hausdorff dimension). We will follow this outline
here (see, e.g., [44]–[46], [61] for more examples of this technique).

We will now give a moderately detailed outline of the remainder of this article.
The reader should note that this section does not constitute a precise description of
all of the proofs in our article, but rather is only a heuristic guide. For the sake of
brevity, many technical details have been omitted, especially in regards to proof of
the two-point estimate.

In Section 2, we will give some background on the objects which appear in our
proofs, including SLE, the GFF, and the various couplings between them. We will
also establish some notation, introduce the main regularity conditions we will use in

2The formula appearing in [4, Theorem 1] for the bulk integral means spectrum is actually equal to 5 plus the
formula (1.13); the 5 in their formula is a misprint.
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our estimates, and prove some elementary lemmas which we will need later in this
article.

Next we will prove our one-point estimate. This is done in two stages. In Sec-
tion 3, we will establish pointwise derivative estimates for the inverse centered
Loewner maps .f �1t / for an SLE� . Roughly, our estimates will take the form

P
�ˇ̌
.f �1t /0.z/

ˇ̌
� ��s; regularity conditions

�
� �˛.s/;

8s 2 .�1; 1/;8z 2H with Im z D �; (1.15)

with ˛.s/D .4C�/2s2

8�.1Cs/
. The proof of these estimates is based on a family of nonneg-

ative martingales for the reverse Loewner flow .gt /, analogous to the martingales
for the forward SLE� flow in [55, Section 5]. The reverse Loewner flow is of inter-

est because we have gt
d
D f �1t for each fixed t (see, e.g., [50, Lemma 3.1]). For

a given z 2 H with Imz D �, one can find a martingale M z
t with the property that

Mt1E.z/ � ��˛.s/, where E.z/ denotes the event in the probability in (1.15) with gt
in place of f �1t . We then arrive at

P
�
E.z/

�
� �˛.s/Pz�

�
E.z/

�
;

where Pz� denotes the measure obtained by reweighting the law of the original SLE�
process by M (which will be the law of a reverse chordal SLE�.�/ for an appropriate
�). Hence, we just need to show that Pz�.E.z// is uniformly positive, independent of
�. This is done in two steps. First, to obtain Pz�.jg

0
t .z/j � �

�s/! 1 as �! 0, we use a
coupling of gt with a GFF together with a coordinate change argument similar in spirit
to the proof of [40, Theorem 8.1]. To obtain that the auxiliary regularity conditions
hold with uniformly positive probability under Pz�, we use a combination of stochastic
calculus, forward/reverse (in the sense of Loewner flows) SLE symmetry, and GFF
coupling arguments.

In Section 4 we use the estimate of Section 3 to establish pointwise derivative
estimates for the “time infinity” conformal map ‰� associated with an SLE� process
� from �i to i in the unit disk D, defined as follows. Let D� be the right connected
component of D n �, as in Theorem 1.1. Let ‰� WD�! D be the unique conformal
map fixing �i , i , and 1. Our estimates for ‰� take the form

P
�
dist.z; �/� �1�s;

ˇ̌
‰0�.z/

ˇ̌
� �s; regularity conditions

�
� ��.s/;

8s 2 .�1; 1/;8z 2D; (1.16)

where 
.s/ D ˛.s/ � 2s C 1 and ˛.s/ is as above. The idea of the proof of (1.16)
is as follows. First we observe using the Koebe quarter theorem that, for each � > 0
and each t > 0, the set of points A�.t/ in D for which the analogue of the event
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of (1.15) with D in place of H occurs is (approximately) the image under ft of the
set A�.t/ of points in D for which the event of (1.16) holds with ‰� replaced by ft
and � replaced by �.Œ0; t �/. Hence, the estimate (1.15) together with an elementary
change of variables yields E.AreaA�.t//� ��.s/. We are then left to (a) transfer this
area estimate from finite time to infinite time and (b) argue that the probability of
the event (1.16) does not depend too strongly on z. Both tasks will be accomplished
by means of various conditioning arguments which rely crucially on the regularity
conditions involved in the estimate (1.15).

In Section 5, we will use the estimates (1.15) and (1.16) to prove upper bounds
for the Hausdorff dimensions of the sets e‚sI�.D�/ and ‚sI�.D�/, where 	 stands for
� or � as well as an upper bound for the bulk integral means spectrum of D� , as
claimed in Corollary 1.9.

Before proving our two-point estimate, we need a modification of the estimate
(1.16), which we prove in Section 6. Namely, let � denote the time reversal of �, which
has the law of a chordal SLE� from i to �i (see [65]). Let �ˇ (resp., �ˇ ) be the first
time � (resp., �) hits the ball of radius e�ˇ centered at the origin. Let ��ˇ D �.Œ0; �ˇ �/,
let ��ˇ D �.Œ0; �ˇ �/, and let �ˇ be the conformal map from Dn.��ˇ [��ˇ / to D which
fixes �i , i , and 1. Then we will use the one-point estimate (1.16) to show

P
�ˇ̌
�0ˇ .z/

ˇ̌
� e�ˇq; regularity conditions

�
� e�ˇ�

�.q/;

8q 2 .�1=2;1/: (1.17)

Here q D s=.1� s/ and 
�.q/D 
.s/=.1� s/D .qC 1/
.q/, with 
 as in (1.16).
In Section 7 we prove our two-point estimate. This section contains the most

technical, but also the most novel, arguments in the article (see Section 7.1 for a more
detailed outline of this section than the one given here). The estimate (1.17) allows
us to break the event that j‰0�.0/j � e

�nˇ down into several stages and estimate each

individually. Indeed, if we apply a conformal map from D n .��ˇ [ ��ˇ / to D which
fixes 0, then the rest of the curve will be mapped to another curve whose law is the
same as that of � (modulo perturbations of its end points, which can be dealt with in
various ways). In this manner we can construct two approximately independent events
E0;1 and E0;2 whose intersection is contained in the event ¹j‰0�.0/j � e

�2ˇqº. By
iterating this procedure we construct a sequence of approximately independent events
E0;j such that j‰0�.0/j � e

�nˇq on En.0/ WD
Tn
jD1E0;j and P.Ez;j /� e�ˇ�

�.q/.3

We can similarly construct events Ez;j and En.z/ for any z 2 D by first mapping z
to 0.

For the lower bound on dimH ‚
s.D�/, the perfect points will be, roughly speak-

ing, the set of z 2 D for which En.z/ occurs for every n 2 N. In order to obtain a

3Actually, we will need to increase ˇ by a little bit at each stage for technical reasons, but the basic idea of the
argument is the same if we consider a fixed but large ˇ .
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Figure 2. If jz �wj � e�ˇk , then after applying a conformal map which takes the complement
of the parts of � and � involved in the event Ek0 .z/ to D and takes z to 0, the images of z and w

will be at constant-order distance from each other. Note, however, that in this setting the
derivatives of the stage .kC 1/-map near z and w are not approximately independent, since they

each depend on the whole curve in the picture on the right.

lower bound on the Hausdorff dimension of the set of perfect points, we need to esti-
mate the probability that En.z/ and En.w/ both occur for z;w 2 D, depending on
jz �wj. To this end, suppose that jz �wj � e�ˇk . We condition on the event Ek.z/,
corresponding to what happens before we get near z and w. After we map out the part
of the curve which is grown before the kth stage, z and w will be at constant-order
distance from each other (see Figure 2).

We would like to say that the behaviors of the curve near z and near w are
approximately conditionally independent given Ek.z/. However, the derivatives of
the maps we are interested in depend on the whole curve. Hence, we need to localize
our events. This is accomplished using a different coupling with a GFF, namely, the
forward SLE/GFF coupling, or “imaginary geometry” coupling studied in [7], [37]–
[39], [56], [58], and [41].

At each stage in the construction of the events En.z/, we can add auxiliary
curves, which are all flow lines (in the sense of [37]; see Section 2.5) of the same
GFF. These auxiliary curves will form pockets surrounding z with the property that
the parts of � inside different pockets are independent once we condition on the pock-
ets, and the derivative of ‰� at a point inside a pocket can be estimated by the deriva-
tive of a map which depends only on the behavior of � inside this pocket. We then
define the event Ez;j so that it depends only on the behavior of the curve inside the
j th pocket (see Figure 3 for an illustration). The independence of the parts of � inside
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Figure 3. A modified version of Figure 2 where we add auxiliary curves at each stage to form a
pocket. Here we define the events at each stage in terms of only the part of the curve inside the

previous pocket. This gives us the needed local independence of the events Ez;j and Ew;j .

different pockets will eventually enable us to establish the two-point estimate needed
for the proof of the lower bounds in Theorem 1.1.

We expect that arguments similar to those in Section 7 may also be useful for
proving other estimates for sets related to SLE (see Section 7.6 for further discussion
of this point).

In Section 8, we use our two-point estimate to prove lower bounds for the Haus-
dorff dimensions of the sets e‚s.D�/ and ‚s.D�/, as well as for the bulk integral
means spectrum of D� .

Appendix A contains the proof of an estimate which is needed in Section 3.
Appendices B and C contain some technical lemmas which are needed in Sections 6
and 7.

2. Preliminaries
In this section we will establish some notation, give some background on the objects
involved in the article, and prove some elementary lemmas. We recommend that the
reader familiarize themselves with Sections 2.1 and 2.2 before reading the remainder
of the article, as the notation and results of these subsections will be used frequently
in the sequel. Sections 2.3, 2.4, and 2.5 contain background on results on SLE, GFFs,
and the couplings between them. Readers who are already familiar with these topics
may wish to skim these subsections to acquaint themselves with the notation, and
refer back to them as needed. Sections 2.6 and 2.7 contain some elementary lemmas
about the sets whose Hausdorff dimensions we will compute. The results of these
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sections are not used extensively in the sequel, but are needed in Sections 5 and 8.
Finally, in Section 2.8, we recall some lemmas from [46] which we use frequently
throughout the article.

2.1. Basic notation
Given two variables a and b, we say b D oa.1/ if b! 0 as a! 0 (or as a!1,
depending on the context), and we say b D Oa.1/ if b is bounded above by an a-
independent constant for sufficiently small (or sufficiently large, depending on the
context) values of a. We usually allow oa.1/ and Oa.1/ terms to depend on cer-
tain parameters other than a, but not on others. We will describe this dependence as
needed.

We say that a � b (resp., a � b) if there is a constant c which does not depend
on the main parameters of interest such that a � cb (resp., a � cb). We say a 
 b
if a � b and a � b. As in the case of oa.1/ and Oa.1/ above, we usually allow the
implicit constants in �;�, and 
 to depend on certain parameters, but not on others,
and we describe this dependence as needed.

For a point z 2 C and r > 0, we write Br.z/ for the ball of radius r centered at
z. More generally, for a set A�C, we write Br.A/D

S
z2ABr.z/.

For a curve � W Œ0; T �!C, we will often use the abbreviation

�t D �
�
Œ0; t �

�
: (2.1)

Furthermore, when there is no risk of ambiguity we will simply write � for the entire
image of �.

For a domain D and z 2D, we write hmz.�ID/ for the harmonic measure from
z in D. That is, for A � @D, hmz.AID/ is the probability that a Brownian motion
started from z exits D in A.

If D0 D D n � for some non-self-crossing curve � in D and z is a point on �
which is visited only once, we will write z� (resp., zC) for the prime end of D0

corresponding to the left (resp., right) side of z. When we use this notation, our curve
� will have an obvious orientation and “left” and “right” are as viewed by someone
walking along � in the forward direction. We will also use the following notation.

Notation 2.1
Given a Jordan domain D and x;y 2 @D, we write Œx; y�@D for the closed counter-
clockwise arc from x to y in @D. We similarly define the open arc .x; y/@D and the
half-open arcs .x; y�@D and Œx; y/@D .
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2.2. Reverse continuity conditions

2.2.1. In the upper half-plane
Here we introduce a regularity condition which will arise frequently in the remain-
der of the article. This regularity event will depend on a certain increasing function
(thought of as a modulus of continuity). To lighten notation when referring to such
functions, we introduce the following definition.

Definition 2.2
We denote by M the set of increasing functions � W .0;1/ ! .0;1/ with
limı!0�.ı/D 0.

Definition 2.3
Let f be a (random) map from a subdomain D of H into H. For � 2M, let G.f;�/
be the event that the following occurs. For any ı > 0 and any x;y 2 R \ @D with
jxj; jyj � ı�1 and jx�yj � ı, we have jf .x/j; jf .y/j � �.ı/�1 and jf .x/�f .y/j �
�.ı/.

The statement that G .f;�/ holds is the same as the statement that f �1 has a
certain �-dependent modulus of continuity on f .R [ 1/, with R [ 1 given the
one-point compactification topology. We note that

G.f;�1/\G.g;�2/ ) G.g ı f;�2 ı�1/: (2.2)

We are interested in the condition G.f;�/ (and the analogous conditions in the
next subsection) for two reasons. The first is that these conditions imply bounds on
the distance from certain subsets of @D to certain subsets of R (or @D in the setting
of the next subsection) and on the diameter of such subsets (see Lemmas 2.4 and 2.8
below). Such bounds are needed for several purposes in our proofs. One reason is
that some of our derivative estimates do not hold if the curve gets too close to the
boundary—intuitively, if the curve comes close to hitting the boundary and forming a
“bubble,” then the derivative of its associated Loewner map at points inside the bubble
will be very small. This manifests itself in the fact that the martingale (3.6) blows up.
Another use of such estimates is in checking the hypotheses of the harmonic measure
estimates from Appendix B.

The second reason for our interest in G.f;�/ is as follows. We will often want
to study conformal maps which are normalized by specifying the images of certain
marked boundary points. When composing various maps, our marked points might be
mapped to somewhere other than where we want them to go. So, we will frequently
need to apply a conformal automorphism (of D or H) at the end of our arguments
to move the marked points to their desired positions. The condition G.�;�/ ensures
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that the images of the marked points are not too close together, and so allows us to
control the derivative of this conformal automorphism. Both of the above uses of our
regularity events appear in numerous places throughout the article.

LEMMA 2.4
Let � be a simple curve started from 0 in H parameterized by capacity which does
not hit R, and recall that �t WD �.Œ0; t �/. Let ft WH n �t !H be the centered Loewner
maps for �; that is, ft is the time t Loewner map for �, minus a real number chosen
so that it maps 0 to 0. Fix T 2 .0;1/, and suppose that, for some � 2M,

fT .�ı/�fT .0
�/���.ı/ and �.ı/� fT .ı/�fT .0

C/; 8ı > 0: (2.3)

Then there are a �0 2M and a d > 0 depending only on � and T such that

diam�T � d and Imz � �0.ı/; 8ı > 0;8z 2 �T with jRe zj � ı: (2.4)

Conversely, if (2.4) holds for some d > 0 and some �0 2M, we can find � 2M

depending only on d and �0 such that G.fT ;�/ holds.

Note that it is clear that G.fT ;�/ implies (2.3), so Lemma 2.4 implies in par-
ticular that (2.4) holds for some d and �0 depending only on � whenever G.fT ;�/
occurs.

Proof of Lemma 2.4
Let hm1T D hm1.�IH n �T / denote the harmonic measure from1 in H n �T , so for
a set I � @.H n �T / (viewed as a collection of prime ends),

hm1T I WD lim
y!1

yPiy.B� 2 I /

for B a Brownian motion and � its exit time from H n �T . It follows from the confor-
mal invariance of Brownian motion that, for any I � @.H n �T /,

hm1T .I /D
1



lengthfT .I /; (2.5)

where by length we mean the Lebesgue measure.
Now, assume (2.3) holds. For any r > 0 and x 2 R, the harmonic measure from

1 in H of the line segment Œx; xC ir� from x to xC ir is a constant depending only
on r . For ı > 0, we can find r D r.ı/ > 0 such that this constant is less than 
�.ı/. If
�T contains a point x C iy with x � ı and y � r , then hm1T .Œ0; ı�/� hm1T .Œx; x C
ir�/ < 
�.ı/. This contradicts our hypothesis on (2.3) and the relation (2.5). A similar
statement holds if we instead consider x ��ı. Hence, each point of �T with real part
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at least ı in absolute value has imaginary part at least r . This proves the second part
of (2.4) with �0.ı/D r .

For the first part of (2.4), fix ı > 0. Denote by Sı the set of points in z 2H with
jRe zj � ı. By the second part of (2.4),

hm1T .�
T \ Sı/�

1

�0.ı/
lim
y!1

yEiy.ImB�1.B�2�T\Sı//: (2.6)

By [23, Proposition 3.38],

T D hcap�T D lim
y!1

yEiy.ImB� /; (2.7)

so (2.6) is at most T=�0.ı/. On the other hand, (2.7) and the Beurling estimate imply
that supz2�T Imz is bounded above by a constant C0 depending only on T . The har-
monic measure from1 in H of Œ�ı; ı� � Œ0;C0� is at most a constant C1 depending
only on ı and T . Therefore,

hm1T .�
T /� T=�0.ı/CC1:

By [23, (3.13)], this implies that diam�T is bounded above by a constant depending
only on � and T .

Conversely, suppose that (2.4) holds. For ı > 0, let Uı be the set of points in
z 2 H with jzj � d and either jRe zj � ı=2 or Imz � �0.ı=2/. Then �T � Uı . The
harmonic measure from 1 of each subinterval of Œı=2; ı�1� [ Œ�ı�1;�ı=2� in H n
Uı of length ı=2 is at least some constant �0.ı/ depending only on ı and �0.ı=2/.
By (2.5), this implies that the length of the image of such an interval under fT is
at least 
�0.ı/. On the other hand, [23, Proposition 3.46] implies that we can find
�1.ı/ > 0 depending only on ı and d such that jfT .x/j � �1.ı/�1 for each x 2
Œ�ı�1; ı�1�. This proves that G .fT ;�/ holds with �D .
�0/_�1.

2.2.2. In the disk
The following is the analogue of Definition 2.3 for the unit disk D.

Definition 2.5
Let D � D be a subdomain, and let I � @D \ @D. Let f WD! D be a conformal
map. Let � 2M (Definition 2.2). We say that GI .f;�/ occurs if the following is true.
For each ı > 0 and each x;y 2 I with jx � yj � ı, we have jf .x/ � f .y/j � �.ı/.
We abbreviate

G .f;�/D G@D\@D.f;�/:

We also define the following event, which is closely related to G.f;�/ and is a
variant of the condition (2.3).
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Definition 2.6
Let A � D be a closed set, and let I � @D nA. (Oftentimes we will take I to be a
closed arc with end points in A or a finite union of such arcs.) We say that G 0I .A;�/

occurs if the following is true. For each ı > 0, A lies at distance at least �.ı/ from
I nBı.I \A/. We write

G 0.A;�/D G@DnA.A;�/:

Remark 2.7
We will frequently find ourselves in the following situation. Suppose that we are given
a deterministic arc I � @D, a random closed subset A � D with I � @D nA almost
surely, and a deterministic � > 0. In this case we can find (using monotonicity) a
deterministic � 2M for which P.GI .A;�//� 1� �, where P is typically the law of
SLE.

The conditions of Definitions 2.5 and 2.6 will serve as the main “global regular-
ity” conditions in our estimates starting from Section 4. The relationship between the
conditions G .�/ and G 0.�/ is contained in the following lemma.

LEMMA 2.8
Let A � D be a closed set, and let I D Œx; y�@D be an arc contained in @D nA. Let
m 2 .x; y/@D, and suppose that jx �mj and jy �mj are each at least �> 0. Let D
be the connected component of D nA containing I on its boundary. Let ˆ WD! D
be the unique conformal map taking x to �i , y to i , and m to 1.
(1) For each � 2M, there exists �0 2M depending only on � and � such that if

GI .ˆ;�/ occurs, then G 0I .A;�
0/ occurs.

(2) Conversely, suppose that I 0 � I (possibly I 0 D I ) and G 0I 0.A;�/ occurs for
some � 2 M. There is a �0 2 M depending only on � and � such that
GI 0.ˆ;�

0/ occurs. In fact, the following superficially stronger statement is
true. For each ı > 0, ˆ is Lipschitz continuous on I 0 n .Bı.x/[Bı.y// and
ˆ�1 is Lipschitz continuous on ˆ.I 0 n .Bı.x/[Bı.y/// with Lipschitz con-
stants depending only on �.ı/, ı, and �.

Proof
The basic idea of the proof is similar to that of Lemma 2.4, but we consider the
harmonic measure from m rather than the harmonic measure from1. Let bD be the
radial reflection of bD across I , viewed as a subset of the Riemann sphere. Extend
ˆ to bD by Schwarz reflection. Then ˆ maps bD into C n Œi;�i �@D and maps I to
Œ�i; i �@D.
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For ı > 0, let xı and yı be the unique points of I lying at distance ı from x and y,
respectively. Also let bDı D bD n Œyı ; y�@D, and let eyı WDˆ.yı/. Then eyı is determined
by the condition that the harmonic measure of Œyı ; i �@D from m in bDı equals the
harmonic measure of the side of Œeyı ; i �@D closer to 0 from 1 in .C[1/ n Œeyı ;�i �@D.

If G �I .ˆ;�/ occurs, then eyı lies at distance at least �.ı/ from i , which means
that the harmonic measure of Œyı ; y�@D from 1 in bDı is at least some constant � > 0
depending only on �.ı/. By symmetry, the same holds for Œx; xı �@D.

By the Beurling estimate, we can find 	0 > 0 depending only on � such that
dist.m;A/ � 	0. We can also find a 	1 > 0 such that if z 2 Œxı ; yı �@D lies at distance
at least 	0 from m, then the probability that a Brownian motion started from m hits
B�1.z/ before hitting Œi;�i �@D is at most �. If dist.z;A/ < 	1 for such a z, then a
Brownian motion started from 1 must hit B�1.z/ before hitting either Œyı ; y�@D or
Œx; xı �@D. Hence, we must have dist.z;A/ � 	1 ^ 	0 for each z 2 Œxı ; yı �@D. This
proves assertion (1) with �0.ı/D 	1 ^ 	0.

Conversely, suppose that I 0 � I and G 0I 0.A;�/ occurs for some � 2M. For ı > 0
let x0

ı
be either xı (as defined just above) or the end point of I 0 closest to x, whichever

is farthest from x. Define y0
ı

similarly. A Brownian motion started from any point of
Œx0
ı
; y0
ı
�@D has a positive probability depending only on ı, �.ı/, and � to stay within

distance �.ı/ of I until it hits Œy0
ı
; y�@D (resp., Œx; x0

ı
�@D). By the Beurling estimate

there is a �0.ı/ > 0 depending only on �.ı/, ı, and � such that ˆ.Œx0
ı
; y0
ı
�@D/ lies at

distance at least �0.ı/ from Œi;�i �@D. Thus, GI 0.ˆ;�
0/ occurs.

It remains to establish the Lipschitz continuity statement. For this, we observe
that, for any z 2 Œx0

ı
; y0
ı
�@D, the Koebe quarter theorem implies

dist.ˆ.z/; Œi;�i �@D/

4dist.z;A/^ ı
�
ˇ̌
ˆ0.z/

ˇ̌
�
4dist.ˆ.z/; Œi;�i �@D/

dist.z;A/^ ı
:

Hence,

�0.ı/

8
�
ˇ̌
ˆ0.z/

ˇ̌
�

8

�.ı/^ ı
:

So, jˆ0j is bounded above and below by positive constants on Œx0
ı
; y0
ı
�@D depending

only on �.ı/, ı, and �, which establishes the desired Lipschitz continuity.

2.3. SLE
Let t 7!Wt be a continuous function on Œ0;1/. The chordal Loewner equation is the
ordinary differential equation (ODE)

@tgt .z/D
2

gt .z/�Wt
; g0.z/D z: (2.8)
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A solution to (2.8) is a family of conformal maps ¹gt W t � 0º from subdomains of H
to H satisfying the hydrodynamic normalization limz!1.gt .z/� z/D 0. The com-
plements .Kt / of the domains of .gt / in H are an increasing family of closed subsets
of H called the hulls of the process. The centered Loewner maps corresponding to
.gt / are defined by

ft WD gt �Wt :

A chordal Schramm–Loewner evolution with parameter � > 0 (SLE� ) is the ran-
dom evolution obtained by solving (2.8) where the driving process W is

p
� times

a Brownian motion. It can be shown (see [50]) that this Loewner evolution is gener-
ated by a curve which we typically denote by �. Chordal SLE� on other domains is
defined by conformal mapping. We refer the reader to [23] or [63] for a more detailed
introduction to SLE.

More generally, suppose that we are given a vector of real weights � D .�1;
: : : ; �n/ and a collection of points z1; : : : ; zn 2 H. Chordal SLE�.�/ is the random
evolution obtained by solving (2.8) with the driving function W part of the solution
to the system of stochastic differential equations (SDEs)

dWt D
p
� dBt C

nX
iD1

Re
�i

Wt � V
i
t

dt; dV it D
2

V it �Wt
dt;

(2.9)
W0 D y; V i0 D z

i :

The points zi are called the force points. It is shown in [37] that if the force points
are located in @H, then the SLE�.�/ curve is almost surely defined and continuous up
until the first time it reaches the so-called continuation threshold, that is, the first time
that the sum of the weights of the force points it has either hit or disconnected from its
target point is at most �2. By local absolute continuity, the same is true if the curve
almost surely does not hit any of its interior force points. The continuity of SLE�.�/
for � <�2 is proved in [42] and [43] (see [29], [37], [55] for more on SLE�.�/).

We will also need to consider the reverse Loewner equation. This is the ODE

@tgt .z/D�
2

gt .z/�Wt
; g0.z/D z; (2.10)

whose solution is a family of conformal maps from H to subdomains of H. Reverse
SLE� is obtained by taking Wt to be

p
� times a Brownian motion. For each time t ,

the time t centered Loewner map of a reverse SLE� has the same law as the inverse
of the time t centered Loewner map of a forward SLE� (see [50, Lemma 3.1]).

A reverse SLE�.�/with force points z1; : : : ; zn is obtained by solving (2.10) with
the driving function W part of the solution to the system of SDEs
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dWt D
p
� dBt C

nX
iD1

Re
�i

Wt � V
i
t

dt; dV it D�
2

V it �Wt
dt;

W0 D y; V i0 D z
i :

For a general � we do not have as simple a relation between forward and reverse
SLE�.�/ as we do for ordinary SLE� . However, there are various forward and reverse
symmetries, some of which are discussed in [16] and [58].

Throughout most of the rest of this article we will fix � 2 .0; 4�, and we will not
always make dependence on � explicit.

2.4. GFFs
For some of our results, we will make use of couplings of SLE� with GFFs. In this
section we give some basic background about the latter objects.

Let D be a domain in C with harmonically nontrivial boundary (i.e., a Brownian
motion started in D almost surely exits D in finite time). We denote by H.D/ the
Hilbert space completion of the subspace of C1.D/ consisting of those smooth,
real-valued functions f such thatZ

D

ˇ̌
rf .z/

ˇ̌2
dz <1;

Z
D

f .z/dz D 0;

with respect to the Dirichlet inner product

.f;g/r D
1

2


Z
D

rf .z/ � rg.z/dz: (2.11)

A free-boundary Gaussian free field (GFF) onD is a random distribution (in the sense
of Schwartz) on D given by the formal sum

hD

1X
jD1

Xjfj ; (2.12)

where ¹fj º is an orthonormal basis for H.D/ and .Xj / is a sequence of independent
and identically distributed (i.i.d.) standard Gaussian random variables. It is not defined
as a pointwise function, but for each g 2H.D/, the formal inner product

.h;g/r D

1X
jD1

.f;g/r

converges almost surely. Moreover, .h;g/ is almost surely defined for each fixed g 2
L2.D/ by the formula

.h;g/D .h;���1g/r ; (2.13)
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where ��1 denotes the inverse Laplacian with Neumann boundary conditions. More
generally, this formula makes sense if g is any distribution whose inverse Laplacian
is in H.D/.

Similarly, one can define a zero-boundary GFF on D by replacing H.D/ with
H0.D/, defined as the Hilbert space completion of the space of smooth compactly
supported functions onD in the inner product (2.11). A zero-boundary GFF is defined
without the need to make a choice of additive constant. A GFF with a given choice
of boundary data on @D is defined to be a zero-boundary GFF plus the harmonic
extension of the given boundary data to D.

If V;V ? � H.D/ are complementary orthogonal subspaces, then the formula
(2.12) implies that h decomposes as the sum of its projections onto V and V ?. In par-
ticular, we can take V to be the closureH0.D/ of C1c .D/ in the inner product (2.11)
and take V ? to be the set HarmD of functions in H.D/ which are harmonic in D.
This allows us to decompose a free-boundary GFF as the sum of a zero-boundary
GFF and a random harmonic function h on D, the latter defined modulo an additive
constant. We call these distributions the zero-boundary part and harmonic part of h,
respectively. We refer to [57] and the introductory sections of [54] and [40] for more
details on GFFs.

2.4.1. Reverse SLE/GFF coupling
The following relation between free-boundary GFFs and reverse SLE�.�/ is estab-
lished in [58, Section 4.2]. Let .gt / be the centered Loewner maps of a reverse
SLE�.�/ with force points z1; : : : ; zn as in Section 2.3. Let h be a free-boundary
GFF on H, independent of .gt /. For t � 0 let

ht D h ı gt C
2
p
�

log
ˇ̌
gt .�/

ˇ̌
C

1

2
p
�

nX
iD1

�iG
�
gt .z

i /; gt .�/
�
;

where

G.x;y/ WD � log jx � yj � log jx � yj

is the Green’s function on H with Neumann boundary conditions. Let

QD
2
p
�
C

p
�

2
: (2.14)

Let � be a stopping time for � which is almost surely less than the first time t that

ft .z
i / D 0 for some i . Then [58, Theorem 4.5] implies that h� CQ log jg0� j

d
D h0,

modulo an additive constant. See Figure 4 for an illustration.
There is also an analogue of the above coupling for a zero-boundary GFF paired

with a forward SLE�.�/, which we discuss in Section 2.5.
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Figure 4. An illustration of the reverse SLE/GFF coupling in the case of a single force point of
weight �=.2

p
�/. This is the case we will use in Section 3.

2.4.2. Estimates for the harmonic part
In the course of proving our one-point estimate we will need some basic analytic
lemmas about the harmonic part of a free-boundary GFF, which we will prove here.

LEMMA 2.9
Let h be the harmonic part of a free-boundary GFF on D, normalized so that h.0/D
0. Then for any z;w 2 D, h.z/ and h.w/ are jointly Gaussian with means zero and
covariance

E
�
h.z/h.w/

�
D�2 log j1� zwj:

Proof
For n� 1, let

�n.z/D .2=n/
1=2Re zn;  n.z/D .2=n/

1=2 Imzn: (2.15)

Then ¹�n; n W n� 1º is an orthonormal basis for the set of harmonic functions on D
in the Dirichlet inner product. So, by the definition of the free-boundary GFF, we can
write

1X
nD1

Xn�nC

1X
nD1

Yn n; (2.16)

where the Xn’s and Yn’s are i.i.d. N.0; 1/. From this expression, it follows that
.h.z/;h.w// is centered Gaussian for each z;w 2D, and one easily computes

E
�
h.z/h.w/

�
D

1X
nD1

�n.z/�n.w/C

1X
nD1

 n.z/ n.w/

D 2

1X
nD1

.Re zn/.Rewn/C .Imzn/.Imwn/

n
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D

1X
nD1

.zw/nC .wz/n

n
D� log.1� zw/� log.1�wz/

D�2 log j1� zwj:

We also need the following estimate for circle averages of the GFF.

LEMMA 2.10
Let h be a free-boundary GFF on H with additive constant chosen so that its harmonic
part vanishes at a for some a 2H. Let A�H be a deterministic hull lying at positive
distance from a, and let g W H! H n A be the map which takes some marked point
of a to 0 and looks like a translation at1. Let ehD h ı g, and let .eh�/ be the circle
average process for eh (see [18, Section 3.1] for more on the circle average process).
Fix x 2R and � > 1=2. For any ı � � > 0,

P
�ˇ̌eh�.xC iı/ˇ̌> .log ��1/	

�
D o�.�

p/ 8p > 0; (2.17)

at a rate depending only on x, a, diamA, � , and ı, but uniform for x in compact
subsets of R, a in compact subsets of H, and ı in compact subsets of Œ�;1/.

Proof
Write hD h0C h, for h0 a zero-boundary GFF and h an independent harmonic func-
tion. Let hA be the projection of h0 onto the set of functions which are harmonic on
H nA, and let h0A D h

0jA � hA be the zero-boundary part of h0jA. Then we can write

hjHnA D h
0
AC hAC hjHnA; (2.18)

with the three summands independent. The function g increases imaginary parts, so it
follows from Lemma 2.9 and a coordinate change to D that h.g.xC iı// is centered
Gaussian with variance at most 2 log ı�1CO�.1/.

By the Koebe distortion theorem, jg0.x C iı/j is at least a constant depending
only on y times ıjg0.xC iy/j for any y > ı. By [23, Proposition 3.46] and the Koebe
quarter theorem, for large enough y (depending only on diamA), jg0.x C iy/j is
bounded above by a constant depending only on diamA. By another application of
the Koebe quarter theorem, we therefore have

dist
�
g.xC iı/;A

�
� ı2: (2.19)

It follows from [37, Lemma 6.4] that hA.g.x C iı// is centered Gaussian with vari-
ance at most 2 log ı�1CO�.1/.

By conformal invariance, h0A ı g has the law of a zero-boundary GFF on H.
By (2.19) and [18, Proposition 3.1], the circle average .h0A ı g/�.xC iı/ is Gaussian
with mean 0 and variance at most 2 log ��1CO�.1/. By (2.18),
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eh�.xC iı/D .h0A ı g/�.xC iı/C hA
�
g.xC iı/

�
C h

�
g.xC iı/

�
is Gaussian with mean 0 and variance at most 6 log ��1 C O�.1/. We obtain (2.17)
from the Gaussian tail bound.

2.5. Imaginary geometry
The proof of the lower bounds in our main theorems will make heavy use of the so-
called forward coupling of SLE� or SLE�.�/ with the GFF with Dirichlet boundary
conditions. In this coupling, SLE�.�/ for � 2 .0; 4/ can be interpreted as the flow line

of the formal vector field eih=
, where h is a GFF and

�D
2
p
�
�

p
�

2
: (2.20)

For � > 4, SLE�.�/ can be interpreted as a “tree” or “light cone” of SLE16=� flow
lines (see [37]). The case � D 4 is somewhat degenerate (though simpler to analyze)
since �! 0 as � ! 4. SLE4.�/ has the interpretation of being a level line (rather
than a flow line or light cone) of the GFF (see [62] for a detailed study of this case).

The coupling of SLE4 with the GFF was actually the first coupling in this family
to be discovered (see [54]; see also [53], which gives the convergence of the con-
tours of the discrete GFF to SLE4). The existence of the forward coupling in the
general setting is established in [7], [54], [56], and [37] (see [37, Theorem 1.1] for
a precise statement). The theory of how different flow lines and light cones of the
same GFF interact is developed in [37]–[39], and [41]; these works are also where the
term “imaginary geometry” is coined. At this point in time, there are several places
which contain short “crash courses” on imaginary geometry which are sufficient to
understand its usage in this work. We refer the reader to one of [38, Section 2.2], [41,
Section 2.3], or [46, Section 2.2]; [37, Section 1] and [41, Section 4] contain many
of the main theorem statements in addition to more detailed overviews of the related
literature.

2.6. Properties of the multifractal spectrum sets
In this subsection we will prove some elementary deterministic properties of the sets
of Section 1.1, as well as a lemma which is relevant to the integral means spectrum
(see, e.g., [61, Section 2] for some similar estimates in the setting of the tip multifrac-
tal spectrum). Our first lemma tells us that the sets of Section 1.1 are only nonempty
in the case in which s 2 Œ�1; 1�.

LEMMA 2.11
Let D � C be a simply connected domain, and let � W D!D be a conformal map.
For each x 2 @D, there is a constant C > 1 depending only on � and �.x/ but uniform
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for �.x/ in compact subsets of D such that, for each sufficiently small � > 0,

C�1� �
ˇ̌
�0
�
.1� �/x

�ˇ̌
� C��1:

Proof
By the Cauchy estimate,ˇ̌

�0
�
.1� �/x

�ˇ̌
� ��1 sup

z2B�..1��/x/

ˇ̌
�.z/

ˇ̌
;

which gives the upper bound. For the lower bound, we apply the Koebe distortion
theorem.

Next we prove some lemmas which give that the multifractal spectrum sets are
invariant under reasonable modifications of the definitions.

LEMMA 2.12
LetD �C be a simply connected domain, let � WD!D be a conformal map, and fix
x 2 @D. Let 
 W Œ0; 1�! D be a simple smooth curve such that 
.0/D x, 
..0; 1�/�
D, and 
 0.0/ is not tangent to @D at x. Then

lim sup
�!0

log j�0..1� �/x/j

� log �
D lim sup

�!0

log j�0.
.�//j

� log �
: (2.21)

If one of the limsups is in fact a true limit, then the other is as well.

Proof
This is a straightforward application of the Koebe distortion theorem.

We next show that the multifractal spectrum depends locally on the domain.

LEMMA 2.13
Let D and D0 be two simply connected domains in C, bounded by curves, which
share a common boundary arc I . Let z be a prime end lying in the interior of I . Then
for each s 2 R, we have z 2‚s.D/ if and only if z 2‚s.D0/. The same holds with
‚s;�.�/ or ‚sI�.�/ in place of ‚s.�/.

Proof
By comparingD andD0 to the connected component ofD\D0 with I on its bound-
ary, it suffices to consider the case where D0 �D. Let � W D!D and  W D!D0

be the corresponding conformal maps. We can factor � D ı � , where � D �1 ı �.
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Then

�0
�
.1� �/��1.z/

�
D 0

�
�
�
.1� �/��1.z/

��
� 0
�
.1� �/��1.z/

�
: (2.22)

By Schwarz reflection, � extends to be analytic in a neighborhood of ��1.z/, so
j� 0..1 � �/��1.z//j is bounded above and below by positive constants for small �.
Let 
.�/D �..1� �/��1.z//. Note that 
 is a simple curve in D with 
.0/D �1.z/
and 
 0.0/D�� 0.��1.z//��1.z/. Since � maps a neighborhood of ��1.z/ in @D into

@D, it follows that � 0.��1.z// is a real multiple of 	.�
�1.z//

��1.z/
D  �1.z/

��1.z/
. Hence, 
 0.0/

is a real multiple of  �1.z/. In particular, 
 is not tangent to @D at  �1.z/, so the
stated result follows from Lemma 2.12.

We also record the analogue of Lemma 2.13 for the integral means spectrum.

LEMMA 2.14
Let D and D0 be two bounded Jordan domains in C, and suppose that there exists
a connected boundary arc I shared by D and D0. Let � W D!D and  W D!D0

be conformal maps. Let J 0 be a closed subset of the interior of I , and let J be a
closed subset of the interior of J 0. For � > 0, let A� be the set of z 2 @B1��.0/ with
z=jzj 2 ��1.J /, and let A0� be the set of z 2 @B1��.0/ with z=jzj 2 �1.J 0/. Then

lim sup
�!0

log
R
A�
j�0.z/ja dz

� log �
� lim sup

�!0

log
R
A0�
j 0.z/ja dz

� log �
: (2.23)

Proof
Let � be the conformal map from a subdomain of D to a subdomain of D0\D which
equals  �1 ı � wherever the latter is defined. By Schwarz reflection, � extends to a
conformal map from a neighborhood of ��1.J 0/ to a neighborhood of  �1.J 0/. In
particular, j� 0j 
 1 on a neighborhood of ��1.J 0/, with implicit constants indepen-
dent of �. By a change of variables, for sufficiently small � > 0,Z

A�

ˇ̌
�0.z/

ˇ̌a
dz 


Z
A�

ˇ̌
 0
�
�.z/

�ˇ̌a
dz 


Z
	.A�/

ˇ̌
 0.w/

ˇ̌
dw: (2.24)

Let p� be the radial projection from D onto @B1��.0/. By the above application of
Schwarz reflection (and the fact that J is contained in the interior of J 0), for suf-
ficiently small � > 0, we have that p� restricts to a diffeomorphism from �.A�/ to
a subset eA0� of A0� . Furthermore, since j� 0j 
 1 on a neighborhood of  �1.J 0/, we
have jp0�j 
 1 on �.A�/ for sufficiently small �, and by the Koebe distortion theorem,
j 0.p�.w//j 
 j 

0.w/j for w 2 �.A�/ and sufficiently small �. Therefore, a second
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change of variables yieldsZ
	.A�/

ˇ̌
 0.w/

ˇ̌
dw


Z
eA0�
ˇ̌
 0.z/

ˇ̌
dz �

Z
A0�

ˇ̌
 0.z/

ˇ̌
dz: (2.25)

We obtain (2.23) by combining (2.24) and (2.25).

2.7. Zero-one laws
In this section we will prove that the multifractal spectrum and integral means spec-
trum of an SLE�.�/ curve are almost surely deterministic and do not depend on �
or on which complementary component of the curve we consider. These statements
will be used to conclude the proofs of our main results in Section 8 once we show
that the desired lower bounds on the quantities we are interested in hold with positive
probability for one specific type of SLE.

PROPOSITION 2.15
Let D � C be a smoothly bounded domain. Let � > 0, and let � be a vector of real
weights. Let � be a chordal SLE�.�/ process inD, with any choice of initial and target

points and force points located anywhere in D, run up until the first time it either hits
an interior force point or hits the continuation threshold after which it is no longer
defined (see [37, Section 2.1]). Fix s 2 .�1; 1/. Almost surely, the following is true.
Let V be a connected component of D n � or a connected component of D n �.Œ0; t �/
for any t > 0, and let � W D! V be a conformal map. The Hausdorff dimension of
each of the multifractal spectrum sets

‚s.V / n @D; ‚sI�.V / n @D; ‚sI�.V / n @D;e‚s.V / n ��1.@D/; e‚sI�.V / n ��1.@D/; and e‚sI�.V / n ��1.@D/
from Section 1.1 is almost surely equal to a deterministic constant which depends only
on � and s. Furthermore, the almost sure Hausdorff dimensions of the corresponding
sets for � and 16=� are equal.

Proof
We will prove the proposition for the sets ‚s.V / and e‚s.V /; the statements for the
sets with the � or � are proven similarly. By changing coordinates from D to H, it
suffices to prove the proposition with e‚s.V / and ‚s.V / replaced by

e‚sH.V /D °x 2R W lim
�!0

log j 0.xC i�/j

� log �
D s

±
and

(2.26)
‚sH.V /D 

�e‚sH.V /�
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for  W H! V a conformal map. This will be more convenient since we will be
working with chordal SLE� .

First consider the case where D DH, � � 4, and � is an ordinary SLE� process.
In this case, the statement of the proposition for a complementary connected compo-
nent V of H n � follows from the statement for V DH n �t by Lemma 2.13 and the
countable stability of the Hausdorff dimension, so it suffices to prove the statement
with V DH n �t for a general choice of t > 0. This will be deduced from the domain
Markov property.

By scale invariance the law of each ‚sH.H n �
t / is independent of t . Since the

derivative of the conformal map ft=2 is bounded above and below by positive (ran-
dom) constants in a neighborhood of each point of �t n �t=2, we infer that ‚sH.H n
�t / n �t=2 D‚sH.H n ft=2.�

t n �t=2//.
Since conformal maps preserve the Hausdorff dimension of sets in the interior

of their domains and by Lemma 2.13, we thus have that the Hausdorff dimension of
each ‚sH.D n �

t / is equal to the maximum of dimH ‚
s
H.H n �

t=2/ and dimH ‚
s
H.H n

ft=2.�
t n �t=2//. These latter two sets are i.i.d. (by the Markov property of SLE),

and their Hausdorff dimensions agree in law with that of ‚sH.H n �
t / (by the scale

invariance property noted above). A random variable can be equal to the maximum
of two independent random variables with the same law as itself only if it is almost
surely constant.

To prove the analogous statement for e‚sH.H n�t /, we observe that dimH
e‚sH.H n

�t / is the maximum of dimH f
�1
t .e‚sH.H n �t /\ �t=2/ and dimH f

�1
t .‚sH.H n �

t / n

�t=2/. By the smoothness of the map ft=2 ıf �1t on ft=2.Hn�t=2/ and of f �1t on �t n
�t=2, respectively, these dimensions equal dimH f

�1
t=2
.e‚sH.H n �t=2// and dimH .ft ı

f �1
t=2
/�1.e‚sH.H n ft=2.�t n �t=2///, respectively. By the Markov property these latter

two quantities are i.i.d., and we conclude as above.
The case when � � 4 and � and D are arbitrary follows from the above case,

Lemma 2.13, and the local absolute continuity of the laws of SLE�.�/ and SLE�
away from the boundary. The case for � > 4 follows from the statement for 16=� < 4
together with Lemma 2.13 and SLE duality (see, e.g., [6], [37], [41], [64], [66]).

For the proof of Corollary 1.9, we will also need the analogue of Proposition 2.15
for the integral means spectrum.

PROPOSITION 2.16
Suppose that we are in the setting of Proposition 2.15. Fix a 2 R. Almost surely, the
following is true. Let V be a complementary connected component of either D n � or
of D n �t for any t > 0. Then IMSbulk

V .a/ is equal to a deterministic constant which
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depends only on � and a. This deterministic constant is the same if we replace � with
16=�.

Proof
This is proven similarly to Proposition 2.15 but with Lemma 2.14 used in place of
Lemma 2.13.

2.8. SLE stays close to a fixed curve with positive probability
Miller and Wu [46] prove several estimates which give that SLE� curves have a pos-
itive chance of staying in a small “tube” around a deterministic curve until getting
close to its end point. These estimates will be used frequently throughout the article,
so we restate these estimates here.

Suppose that � D .�LI�R/ D .�L
l
; : : : ; �L0 I�

R
0 ; : : : ; �

R
r / is a vector of l C r

weights with �L0 ; �
R
0 > �2, and let � be a chordal SLE�.�LI�R/ from 0 to 1 in

H with force point located at points xL
l
< � � � < xL0 D 0

� and 0C D xR0 < � � � < x
R
r .

The following is [46, Lemma 2.3].

LEMMA 2.17
Let � > 0, and let 
 W Œ0; T �!H be a deterministic simple curve started from 0 which
stays in H after time 0. Let A� be the �-neighborhood of 
 . Then with positive prob-
ability, � hits B�.
.T // before exiting A� .

We will also need the analogue of Lemma 2.17 for curves which hit the boundary,
which is [46, Lemma 2.5].

LEMMA 2.18
Suppose that k 2 ¹1; : : : ; r � 1º with �Rk WD

Pk
jD1 �

R
j 2 .�=2 � 4; �=2 � 2/, so that

� can hit ŒxR
k
; xR
kC1

�. Let 
 be a simple curve from 0 to a point in ŒxR
k
; xR
kC1

� which
stays in H except at its end points. Let � > 0, and let A� be the �-neighborhood of

 . There exists p D p.�; �; �; 
/ > 0 such that the following is true. Suppose that
jxR
kC1
� xR

k
j � � and jxR

kC1
j � ��1. Let A� be the �-neighborhood of 
 . Then with

probability at least p, � hits ŒxR
k
; xR
kC1

� before exiting A� .

Remark 2.19
Lemma 2.18 can also be used to control the behavior of an SLE�.�/ curve in a
bounded domain for all time, as follows. First we observe that the statement of Lemma
2.18 is also valid if the interval ŒxR

k
; xR
kC1

� is replaced by a single point which is
almost surely hit by �, with the same proof as in [46]. Suppose now for concreteness
that we have changed coordinates to D in such a way that the start and end points of



ALMOST SURE MULTIFRACTAL SPECTRUM OF SLE 1131

� are �i and i , respectively, and the vector of weights � is such that � almost surely
does not hit the continuation threshold in finite time (and so is defined for all time). If
we let f W D!H be a conformal map taking �i to 0 and i to 1, then by Theorem 3
of [55], the law of f .�/ is a certain SLE�.�0/ from 0 to 1 in H, with force points
located at 1 and the images of the force points for � run until the almost surely finite
time at which it hits 1. By applying Lemma 2.18 to f .�/, we infer that, for an appro-
priate choice of �, � has positive probability to stay in the �-neighborhood of a curve
from �i to i in D for all time.

3. One-point estimates for the inverse maps
In this section we will prove derivative estimates for the inverse centered Loewner
maps of a chordal SLE� process, which we state just below. Let � 2 .0; 4�. Let �
be a chordal SLE� process from 0 to 1 in H. Let .ft / be its centered Loewner
maps. For z 2H with Imz D �, u > 0, s 2 .�1; 1�, c > 0, and r > 0, let EsIu.zI t /D
EsIu.zI t; c; r/ be the event that

c�1��sCu �
ˇ̌
.f �1t /0.z/

ˇ̌
� c��s�u and Imf �1t .z/� r: (3.1)

THEOREM 3.1
Let z 2H with Imz D � 2 .0; 1/ and R�1 � jRe zj � R for some R > 1. Define the
event EsIu.zI t /DEsIu.zI t; c; r/ as above, and define the exponents

˛.s/D
.4C �/2s2

8�.1C s/
; ˛0.s/D

.4C �/2s.2C s/

8�.1C s/2
: (3.2)

Also let G.ft ;�/ be the event of Definition 2.3. For each t; c; r > 0, each � 2M,
each s 2 .�1; 1�, and each R > 1,

P
�
EsIu.zI t /\G.ft ;�/

�
� �˛.s/�˛0.s/u: (3.3)

Furthermore, for each r > 0, there exists t� D t�.r/ > 0 such that, for each t � t�, we
can find �D �.t; r/ 2M such that, for each c;u > 0, there exists �0 D �0.t; r; c; u/ >
0 such that, for � 2 .0; �0�,

P
�
EsIu.zI t /\G.ft ;�/

�
� �˛.s/C˛0.s/u: (3.4)

In both (3.3) and (3.4), the implicit constants in � and � depend on the other param-
eters but not on �, and they are uniform for z 2H with R�1 � jRe zj �R.

Remark 3.2
The reason for the condition Imf �1t .z/ � r in the definition of the event EsIu.zI t /
is because we are interested in the bulk of the curve, not the behavior near the starting
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point, so we want to eliminate contributions to P.c�1��sCu � j.f �1t /0.z/j � c��s�u/

coming from the event that f �1t .z/ is near 0. The purpose of the condition G.ft ;�/
is as explained in Section 2.2.1.

Remark 3.3
Estimates similar to Theorem 3.1 can be deduced in a somewhat more efficient man-
ner from the results in [50, Section 3] and those of [4]. In particular, [50, Lemma 3.3]
implies the upper bound (3.3) for a restricted range of parameter values, and an esti-
mate similar to (3.4) can be deduced from [50, Corollary 3.5]. Additionally, a version
of Theorem 3.1 for whole-plane SLE can be obtained using the moment estimates
of [4]. These estimates lead to almost sure upper bounds for the integral means spec-
trum of SLE and for the dimension of the set e‚s.D�/� @D (at least for certain param-
eter values) via arguments similar to those given in Sections 5.1 and 5.3. However,
these results do not include the additional regularity conditions on the event in the
lower bound of Theorem 3.1, so they do not lead to proofs of the lower bounds in
Theorem 1.1 and Corollary 1.9. Most of the work in the proof of Theorem 3.1 comes
from obtaining a lower bound with these regularity conditions.

The proof of Theorem 3.1 proceeds by way of a martingale reweighting argu-
ment. The upper bound (3.3), explained in Section 3.1, is straightforward, but the
lower bound is more involved. For this, one has to show that the event EsIu.zI t / \
G.ft ;�/ holds with uniformly positive probability under the law when we reweight
by our martingale. It is shown in Section 3.8 that the main derivative condition in (3.1)
holds with high probability under this weighted law using a coupling with the GFF
and a coordinate change trick reminiscent of arguments in [40, Section 8]. (We expect
that this can also be proven via a longer argument which does not involve the GFF,
but we do not carry out such an argument here.) To check that the auxiliary condi-
tions hold with uniformly positive reweighted probability, we use a rather involved
stochastic calculus argument which is mostly given in Appendix A.

3.1. Reverse SLE martingales and upper bound
Let .gt / be the centered Loewner maps of a reverse SLE� flow, so

dgt .z/D�
2

gt .z/
dt � dWt ; g0.z/D z; (3.5)

for Wt D
p
�Bt and .Bt / a standard linear Brownian motion. Our interest in .gt /

stems from the fact that if .ft / is as in Theorem 3.1, then gt
d
D f �1t for each t (see,

e.g., [50, Lemma 3.1]).
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Let Kt DH n gt .H/ be the hulls corresponding to .gt /. Since f �1t
d
D gt for each

t , it is only a minor abuse of notation to replace f �1t with gt in the definition of the
events of Theorem 3.1, and we do so in the remainder of this section.

3.1.1. Reverse SLE martingales
We state here a result originally due to Lawler [24, Proposition 2.1], but in a form
which is more convenient for our purposes.

LEMMA 3.4
Let � > 0. Let .gt / be as above, � 2R, z 2H, and

M z
t D

ˇ̌
g0t .z/

ˇ̌ .8C2���/�
8�

�
Imgt .z/

���2
8�
ˇ̌
gt .z/

ˇ̌�=�
: (3.6)

Then M z
t is a martingale. Let Pz� be the law of .gt / weighted by M z . The law of .gt /

under Pz� is that of the centered Loewner maps of a reverse SLE�.�/ with a force
point at z. That is, under the reweighted law,

dWt D�Re
�

gt .z/
dt C

p
� dBzt (3.7)

for Bzt a Pz�-Brownian motion.

Remark 3.5
The martingale (3.6) is the reverse SLE analogue of the local martingale of [55, Sec-
tion 5] in the case of a single force point.

3.1.2. Proof of the upper bound
In this subsection we will prove (3.3) of Theorem 3.1. We will actually prove some-
thing a little stronger which is needed to get an upper bound for the dimensions of the
sets ‚sI�.D�/ and ‚sI�.D�/ from Section 1.1.

PROPOSITION 3.6
Let ˛.s/ be as in (3.2), and let .gt / be the centered Loewner maps of a reverse SLE�
as above. Fix c; d > 0. For s 2 Œ0; 1�, a time t > 0, and z 2H with Imz D � 2 .0; 1/,
let

EsI1.zI t /DEsI1.zI t; c; d/

WD

´
¹jg0t .z/j � c

�1��s; jgt .z/j � d
�1º if s 2 Œ0; 1�;

¹jg0t .z/j � c�
�s; jgt .z/j � d

�1º if s 2 .�1; 0/:
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For any bounded stopping time � for .gt /,

P
�
EsI1.zI �/

�
� �˛.s/: (3.8)

For any R > 1, the implicit constant in (3.8) is uniform for z 2 H with R�1 �

jRe zj �R.

The estimate (3.3) is immediate from Proposition 3.6 in the case in which s 2
Œ0; 1�. To extract (3.3) from Proposition 3.6 in the case in which s 2 .�1; 0/, we
observe that Lemma 2.4 implies that diamKt is bounded by a constant depending
only on t and � on the event G.g�1t ;�/ (see the discussion following Definition 2.3).
For R�1 � jRe zj � R, [23, (3.14)] then implies that jgt .z/j is bounded by a con-
stant depending only on t;�, and R on EsIu.zI t / \ G.g�1t ;�/. Thus, EsIu.zI t / \
G.g�1t ;�/�EsCuI1.zI t; c; d/ for a suitable choice of d .

Proof of Proposition 3.6
This is a standard martingale reweighting argument. Throughout, we fix R > 1 and
require all implicit constants to be uniform for z 2H with R�1 � jRe zj �R. Let

�D �.s/ WD
.4C �/s

1C s
; (3.9)

and denote by Pz� the law of .gt / reweighted by the martingale of Lemma 3.4 with
this choice of �. By the Loewner equation, Img� .z/ is bounded above by a constant
depending only on the essential supremum of � . Therefore,

M z
� 1EsI1.zI�/ � �

�s.8C2���/�
8� 1EsI1.zI�/: (3.10)

(We can replace the � with an 
 if we assume that Imgt .z/ is bounded below and
jgt .z/j is bounded above.) Furthermore, if R�1 � jRe zj �R, then

M z
0 
 �

�
�2

8� : (3.11)

Thus, the optional stopping theorem implies

�
�s.8C2���/�

8� P
�
EsI1.zI �/

�

 E.M z

� 1EsI1.zI�//� �
��2=8�Pz�

�
EsI1.zI �/

�
:

Therefore,

P
�
EsI1.zI �/

�
� �

s.8C2���/�
8�

�
�2

8� Pz�
�
EsI1.zI �/

�
: (3.12)

The value of the exponent on the right is maximized by taking �D �.s/, as in (3.9).
Choosing this value of � yields the upper bound (3.8).
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3.2. Reduction of the lower bound to a result for a stopping time
Now we turn our attention to the lower bound (3.4) in Theorem 3.1. We continue to
assume that we have replaced f �1t with gt in the definition of the events of Theo-
rem 3.1, as in Section 3.1.

Let T zr be the first time t that Imgt .z/� r , and fix a time t > 0. Put

� D �zr WD T
z
r ^ t ; (3.13)

so that, up to an event of probability zero,

¹� < tº D
®
Img� .z/� r

¯
D
®
Imgt .z/� r

¯
:

We claim that, to prove that (3.4) holds with t in place of t , and hence to finish the
proof of Theorem 3.1, it is enough to prove the following statement.

PROPOSITION 3.7
Let �D �.s/ be as in (3.9). Let Pz� be the law of a reverse SLE�.�/ process .gt / with
hulls .Kt /, with an interior force point located at z 2H with Imz D �. Let � D �zr be
as in (3.13). Define the events EsIu.zI �/ as in (3.1), but with .gt / in place of .ft / and
the time � hull K� for .gt / in place of �� . For each R > 1 there exists r� > 0 such
that, for each r � r�, we can find � 2M and t� > 0 such that for each u > 0 there
exists �0 > 0 such that, for each z 2H with Imz D � � �0 and R�1 � jRe zj �R and
each t � t�,

Pz�
�
EsIu.zI �/\G.g�1� ;�/

�
� 1: (3.14)

Here the implicit constant is independent of � and uniform for z with R�1 � jRe zj �
R (but may depend on r , R, �, t , u, and s).

We will prove Proposition 3.7 in subsequent sections. In the remainder of this
section we deduce Theorem 3.1 from Proposition 3.7. To lighten notation, in what
follows we write � D �zr .

First we note that the probability of the event of Theorem 3.1 is decreasing in r , so
it suffices to prove (3.4) for r � r�, with r� as in Proposition 3.7. Observe that jg� .z/j
is almost surely bounded above by a positive constant on the event EsIu.zI �/ \
G .g�1� ;�/ (see Section 3.1). By combining this with the definition of EsIu.zI �/ we
see that

M z
� 1EsIu.zI�/\G .g�1� ;�/ � �

�.sCu/.8C2���/�
8� 1EsIu.zI�/\G.g�1� ;�/:

By (3.11) and our choice (3.9) of �,

�˛.s/C˛0.s/uPz�
�
EsIu.zI �/\G.g�1� ;�/

�
� P

�
EsIu.zI �/\G.g�1� ;�/

�
: (3.15)
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Assuming that Proposition 3.7 holds, we see that (3.15) implies (3.4) with � in
place of t . To get the desired bound at the deterministic time t , for t � � let g�;t
be the conformal map defined on H which satisfies g�;t ı g� D gt . By the strong
Markov property, the conditional law given ¹gt W t � �º of the family of conformal
maps ¹g�;vC� W v � 0º is the same as the law of the ¹gv W v � 0º. For w 2C, �0 2M,
and C > 1, let F D F�;t .wIC;�

0/ be the event that the following is true.
(1) C�1 � jg0�;t .w/j � C for each t 2 Œ�; t �.
(2) G.g�1

�;t
;�0/ occurs.

If C is chosen sufficiently large and �0 2M is chosen sufficiently small, depending
on t but uniform for w in compact subsets of H, then P.F / is at least a positive
constant depending uniformly on w in compact subsets of H. Furthermore, since we
have a bound on diamK� on the event EsIu.zI �/ \ G.g�1� ;�/ (see Lemma 2.4), it
follows from the Markov property that

P
�
F \EsIu.zI �/\G.g�1� ;�/

�
� P

�
EsIu.zI �/\G.g�1� ;�/

�
:

On the other hand, the definition of F implies that

F \EsIu.zI �/\G.g�1� ;�/�EsIu.zI t ; c0; r/\G.g�1
t
;� ı�0/

for some c0 > 0 depending on the other parameters. (Here we use that Imgt .z/ is
increasing in t for the condition involving r .) By making c sufficiently small, we can
make c0 as small as we like. We conclude that (3.4) with � in place of t implies (3.4)
with t in place of t .

Thus, to prove Theorem 3.1 it remains to prove Proposition 3.7. The proof is
separated into two major steps. First, we prove that the derivative condition in the
definition of EsIu.z/ holds at time � with Pz�-probability tending to 1 as � D Imz!
0. This is done in Section 3.3 via a coupling with a GFF. Then we prove that Pz�.¹� <
tº\G.g�1� ;�// is uniformly positive for sufficiently small � and sufficiently large t .
This is done in Appendix A via a stochastic calculus argument.

3.3. Derivative estimate via reverse SLE/GFF coupling
Assume we are in the setting of Proposition 3.7. In this subsection we will prove
that jg0� .z/j � �

�s with high probability under Pz�. Throughout this subsection, we fix
R > 1, c > 0, r > 0, � 2M, t > 0, and z 2H with Im z D � and require all implicit
constants to be independent of � and uniform for R�1 � jRe zj � R and all o�.1/
errors to be uniform for R�1 � jRe zj �R. These quantities are, however, allowed to
depend on R, c, r , �, t , s, and u.
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PROPOSITION 3.8
In the setting of Proposition 3.7,

Pz�
�®ˇ̌
g0� .z/

ˇ̌
… Œc�1��sCu; c��s�u�

¯
\G.g�1� ;�/\ ¹� < tº

�
D o�.1/: (3.16)

We prove Proposition 3.8 using a coupling with a GFF. (We expect that one could
also do this without using the GFF—perhaps via a longer argument.)

Let h be a free-boundary GFF on H, independent of .gt /, normalized so that its
harmonic part h vanishes at iy for some y > 0 (which we will specify below in such
a way that it depends on t , but not on �). Let Ph be the law of h. For t � 0 let

ht D h ı gt C
2
p
�

log
ˇ̌
gt .�/

ˇ̌
C

�

2
p
�
G
�
gt .z/; gt .�/

�
; (3.17)

where

G.x;y/ WD � log jx � yj � log jx � yj

is the Green’s function on H with Neumann boundary conditions.

Let � be as in (3.13). By [58, Theorem 2.5], h� CQ log jg0� j
d
D h0, modulo an

additive constant, whereQD 2p
�
C
p
�

2
is as in (2.14). Let b� be this additive constant,

so

h� CQ log jg0� j � b�
d
D h0: (3.18)

The idea of the proof of (3.7) is to estimate the terms other than log jg0� j in (3.18) and
thereby obtain an estimate for jg0� j (see the proof of [40, Theorem 8.1] for another
argument using a similar idea).

Let eh0 D h� CQ log jg0� j � b� (3.19)

so that, by (3.18), eh0 dD h0. Rearranging the definition of eh0 gives

Q log
ˇ̌
g0� .w/

ˇ̌
Deh0 � h� C b�
Deh� h ı g� C 2

p
�

log
jwj

jg� .w/j

C
�

2
p
�

�
log
jg� .w/� g� .z/j

jw � zj
C log

jg� .w/� g� .z/j

jw � zj

�
C b� ; (3.20)

where eh is a field with the same law as h and we use w instead of � as a dummy
variable. Since all of the non-GFF terms in (3.20) are harmonic away from z, the
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equation still holds for w ¤ z if we replace eh and h ı g� with the circle average
processes eh� and .h ı g� /� for these two fields. We will use (3.20) to estimate b� and
then to estimate jg0� .z/j.

LEMMA 3.9
Let � > 1=2. If y is chosen sufficiently large (independently of � and uniform for
R�1 � jRe zj �R), then

.Pz�˝ Ph/
�®
jb� j> .log ��1/	

¯
\G.g�1� ;�/\ ¹� < tº

�
D o�.1/: (3.21)

Proof
If we replace the GFF terms with circle averages in (3.20) and evaluate at wD iy, we
get

Q log
ˇ̌
g0� .iy/

ˇ̌
Deh�.iy/� .h ı g� /�.iy/C 2

p
�

log
y

jg� .iy/j

C
�

2
p
�

�
log
jg� .iy/� g� .z/j

jiy � zj
C log

jg� .iy/� g� .z/j

jiy � zj

�
C b� : (3.22)

By Lemma 2.4, diamK� � 1 on G.g�1� ;�/. By [23, Proposition 3.46], Img� .iy/

jg� .iy/j 
 1 on G.g�1� ;�/. By the Koebe quarter theorem we also have jg0� .iy/j 
 1
on G.g�1� ;�/ provided that y is chosen sufficiently large, depending only on �, t ,
and R. Hence each of the terms in (3.22) except for b� and the two circle averages is

 1 on G.g�1� ;�/\ ¹� < tº (implicit constants also depending on y) if y is chosen
sufficiently large, depending only on �, t , and R. By Lemma 2.10, for � > 1=2,

.Pz�˝ Ph/
�ˇ̌eh�.iy/� .h ı g� /�.iy/ˇ̌> .log �/	

�
D o�.1/:

Note that we took AD ; in that lemma to estimate eh�.iy/ and we took ADK� and
used that K� is independent of h to estimate .h ı g� /�.iy/. By rearranging (3.22) we
conclude.

Proof of Proposition 3.8
Since the circle average process is continuous (see [18, Proposition 3.1]), we can take
the limit as w! z in (3.20) to get

Q log
ˇ̌
g0� .z/

ˇ̌
Deh�.z/� .h ı g� /�.z/C �

2
p
�

log
ˇ̌
g0� .z/

ˇ̌
�

�

2
p
�

log �

C
2
p
�

log
jzj

jg� .z/j
C

�

2
p
�

log
ˇ̌
Img� .z/

ˇ̌
C b� : (3.23)
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Since we have a uniform upper bound on diamK� on the event G.g�1� ;�/ and
Img� .z/D r on the event ¹� < tº, the absolute value of the sum of the fifth and sixth
terms on the right-hand side of (3.23) is � 1 on G.g�1� ;�/\ ¹� < tº.

By Lemma 2.10 (applied as in the proof of Lemma 3.9), for any � > 1=2,

.Pz�˝ Ph/
�ˇ̌eh�.z/� .h ı g� /�.z/ˇ̌� .log ��1/	

�
D o�.1/:

By Lemma 3.9, the probability that the last term in (3.23) is at least .log �/1=2 and
G.g�1� ;�/\ ¹� < tº occurs is of order o�.1/. Hence, except on an event of Pz�˝ Ph-
probability of order o�.1/, on the event G.g�1� ;�/\ ¹� < tº it holds that

Q log
ˇ̌
g0� .z/

ˇ̌
D

�

2
p
�

log
ˇ̌
g0� .z/

ˇ̌
C

�

2
p
�

log ��1C o�.log ��1/:

Rearranging, we get that, except on an event of Pz� ˝ Ph-probability of order o�.1/,
on the event G.g�1� ;�/\ ¹� < tº,

log
ˇ̌
g0� .z/

ˇ̌
D

�

� C 4� �
log ��1C o�.log ��1/: (3.24)

With � as in (3.9),

�

� C 4� �
D s;

so integrating out Ph yields (3.16).

3.4. Proof of Proposition 3.7
In light of Proposition 3.8, to prove Proposition 3.7 and hence Theorem 3.1, it remains
to prove that Pz�.G.g

�1
� ;�/ \ ¹� < tº/ is uniformly positive. In particular, we will

prove the following.

PROPOSITION 3.10
Let .gt / be as in (3.5), and let .Kt / be the associated hulls. Let z 2H. For r > Im z
let T zr be the first time t that Imgt .z/ D r . Let � 2 .�1; �=2C 2/, and let Pz� be
the law of .gt / weighted by M z , as in Lemma 3.4. For any given R > 1, there exists
r� > 0 such that, for each r � r�, we can find � 2M, t� > 0, �0 > 0, and p > 0 such
that, for z 2H with jRe zj �R and Im z � �0,

Pz�
�
¹T zr < t�º \G.g

�1
T zr
;�/

�
� p: (3.25)

The proof of Proposition 3.10 is given in Appendix A. In the remainder of this
section, we use Proposition 3.10 to conclude the proof of Proposition 3.7 and hence
(recall Section 3.2) the proof of Theorem 3.1.



1140 GWYNNE, MILLER, and SUN

Proof of Proposition 3.7
Fix R > 1 and c > 0. Let r� > 0 be as in Proposition 3.10 for this choice of R.
Given r � r�, let � 2M, t > 0, �0 > 0, and p > 0 be as in Proposition 3.10, so
that (3.25) holds. Given t � t�, let � be as in (3.13). By Proposition 3.8, we can find
�00 2 .0; �0� (depending on c, R, t , r , �, s, and u) such that, whenever z 2 H with
R�1 � jRe zj �R and Imz D � 2 .0; �00�,

Pz�
�®ˇ̌
g0� .z/

ˇ̌
… Œc�1��sCu; c��s�u�

¯
\G.g�1� ;�/\ ¹� < tº

�
� p=2:

If T zr < t� � t , then � < t and Img� .z/ � r . By (3.25), it follows that, for such a
choice of z,

Pz�
�
EsIu.zI �/\G.g�1� ;�/

�
� p=2:

3.5. Estimates for chordal SLE in the disk
In the rest of this article, we will work mostly in the unit disk D rather than in the
upper half-plane H. In this brief subsection we make some trivial remarks about how
Theorem 3.1 generalizes to this setting.

Suppose that � is a chordal SLE� from �i to i in D. Let  W D! H be the
conformal map taking �i to 0 and i to 1 and having positive real derivative at 0.
Suppose that � is parameterized in such a way that  .�/ is parameterized by half-
plane capacity. For each time t � 0, let

ft WD n �t !D

be defined so that  ıft ı �1 is the time t centered forward Loewner map for  .�/.
For s 2 .�1; 1/, u > 0, z 2 D with 1 � jzj D �, and t; c; d > 0, let EsIuD .zI t /D

E
sIu
D .zI t; c; d/ be the event that

��sCu �
ˇ̌
.f �1t /0.z/

ˇ̌
� ��s�u and f �1t .z/ 2Bd .0/:

Then in this context Theorem 3.1 reads as follows.

COROLLARY 3.11 (Theorem 3.1 for the disk)
Suppose that we are in the setting described just above. Let ı > 0, and let z 2D with
jz � i j; jz C i j � ı and 1 � jzj D �. Define the events G .�/ as in Definition 2.5. For
each t; c; d; ı > 0, each s 2 .�1; 1�, and each � 2M,

P
�
E
sIu
D .zI t /\ G .ft ;�/

�
� �˛.s/�˛0.s/u: (3.26)

Furthermore, there exists t� > 0 such that, for each t � t�, we can find � 2M and
d 2 .0; 1/ such that, for each c > 0 and each u > 0, there exists �0 > 0 such that, for
� 2 .0; �0�,

P
�
E
sIu
D .zI t /\ G .ft ;�/

�
� �˛.s/C˛0.s/u: (3.27)
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In both (3.26) and (3.27), the implicit constants in � and � depend on the other
parameters but not on �, and they are uniform for z 2D with jz � i j; jzC i j � ı.

Proof
This is immediate from Theorem 3.1 and a coordinate change. Note that we use
Lemma 2.4 to obtain a d 2 .0; 1/, depending on �, such that (3.27) holds.

4. One-point estimates for the forward maps

4.1. Statement of the estimates
In this section we transfer the estimates of Theorem 3.1 to estimates for certain
“infinite-time” forward Loewner maps, which we will define shortly. We work in
the setting of D, rather than H, as this setting will be more convenient for our two-
point estimates. We emphasize that, in contrast to Section 3, all of the Loewner maps
considered in this section go in the forward, rather than the reverse, direction.

We start by defining the events whose probabilities we will estimate. Let x;y 2
@D be distinct, and let m be the midpoint of the counterclockwise arc connecting x
and y in @D. Suppose that we are given a simple curve � in D connecting x and
y. Let D� be the connected component of D n � containing m on its boundary. Let
‰� WD�! D be the unique conformal map taking x to �i , y to i , and m to 1. For
s 2R, u > 0, � > 0, c > 1, and z 2D, let E

sIu
� .�; zI c/ be the event that

(1) z 2D� ;
(2) c�1�1�sCu � dist.z; @D�/� c�1�s�u; and
(3) c�1�sCu � j‰0�.z/j � c�

s�u.
For technical reasons it will also be convenient to consider the counterclockwise

arc of @D from y to x. We denote by m� the midpoint of this arc. Let D�� be the
connected component of D n � containing m� on its boundary, and let ‰�� WD

�
� !D

be the unique conformal map taking x to i , taking y to �i , and taking m� to �1 (see
Figure 5 for an illustration).

THEOREM 4.1
Suppose that � 2 .0; 4� and � is a chordal SLE� from x to y in @D. Also, let s 2
.�1; 1/. Define the domains D� and D�� and the event E

sIu
� .�; zI c/ as above. With

˛.s/ and ˛0.s/ as in (3.2), define


.s/ WD ˛.s/� 2sC 1D
.4C �/2s2

8�.1C s/
� 2sC 1;

(4.1)


0.s/ WD 2˛0.s/C 2D
2.4C �/2s.2C s/

8�.1C s/2
C 2:
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Figure 5. An illustration of the domains and maps used in Theorem 4.1.

Also define the events G .�;�/ as in Definition 2.5. For each d 2 .0; 1/, � 2M, c > 0,
and z 2Bd .0/,

P
�
EsIu� .�; zI c/\ G .‰�;�/\ G .‰�� ;�/

�
� ��.s/��0.s/u: (4.2)

Furthermore, for each d 2 .0; 1/ there exists � 2M such that for each c > 0 and
u > 0 we can find �0 > 0 such that, for each � 2 .0; �0� and each z 2Bd .0/,

P
�
EsIu� .�; zI c/\ G .‰�;�/\ G .‰�� ;�/

�
� ��.s/C�0.s/u: (4.3)

In (4.2) and (4.3) the implicit constants are independent of � and uniform for z 2
Bd .0/ and for jx � yj bounded below by a positive constant.

The proof of Theorem 4.1 proceeds as follows. First we use Theorem 3.1 and a
change of variables to prove estimates for the area of the sets where certain finite-
time analogues of the sets of Theorem 4.1 occur. This is done in Section 4.2. This
subsection also contains a result which allows us to extend the estimate for determin-
istic times to estimates for certain stopping times, which will be needed in the sequel.
Then, in Section 4.3, we prove several lemmas comparing finite-time and infinite-time
maps and use these lemmas to obtain estimates for the area of the set of points where
the events of Theorem 4.1 occur. Finally, we complete the proof of Theorem 4.1 in
Section 4.4 by proving a lemma which gives that the probabilities of the events of
Theorem 4.1 do not depend too strongly on z, so that pointwise estimates can be
deduced from area estimates. In Section 4.5 we deduce an analogue of Theorem 4.1
for the curve stopped at a finite time.

4.2. Area estimates and stopping estimates for finite-time maps
In this section we will prove estimates for the expected area of the set of points where
finite-time analogues of the events of Theorem 4.1 occur. We will also prove a result
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which allows us to compare probabilities for events at stopping times whose differ-
ence is bounded. Suppose that we are in the setting of Theorem 4.1.

Definition 4.2
Let � be a chordal SLE� from �i to i in D. Define its forward centered Loewner maps
.ft / as in Section 3.5. For t; �; u; ı; c > 0, s 2 .�1; 1/, and z 2D, let EsIu� .�; zI t; ı; c/

be the event that the following hold.
(1) c�1�sCu � jf 0t .z/j � c�

s�u.
(2) c�1�1�sCu � dist.z; �t /� c�1�s�u.
(3) jft .z/� i j and jft .z/C i j are both at least ı.
Let AsIu� .�I t; ı; c/ be the set of z 2D for which EsIu� .�; zI t; ı; c/ occurs.

LEMMA 4.3
Suppose that we are in the setting of Theorem 4.1 with x D �i and y D i . Fix ı >
0. Define the sets AsIu� .�I t; ı; c/ as in Definition 4.2 and the events G .ft ;�/ as in
Definition 2.5. For any choice of parameters t; c;� and any d 2 .0; 1/,

E
�
Area

�
As;u� .�I t; ı; c/\Bd .0/

�
1G .ft ;�/

�
� ��.s/��0.s/u (4.4)

with the implicit constants independent of � and uniform for z 2 Bd .0/. Moreover,
there exists t� > 0 such that, for each t � t�, there exist � 2M and d 2 .0; 1/ such
that, for each c > 0 and each u > 0, there exists �0 > 0 such that, for � 2 .0; �0�,

E
�
Area

�
AsIu� .�I t; ı; c/\Bd .0/

�
1G .ft ;�/

�
� ��.s/C�0.s/u; (4.5)

with the implicit constants independent of � and uniform for z 2Bd .0/.

Proof
This will follow by integrating the estimate of Corollary 3.11 and performing a change
of variables. Let AsIu� DA

sIu
� .�I t; ı; c; d/ be the set of z 2D such that

(1) c�1�1Cu � 1� jzj � c�1�u;
(2) jz � i j and jzC i j are each at least ı;
(3) the event EsIuD .zI t; c; d/ of Section 3.5 occurs.

By (3.26) in Corollary 3.11, if the first two conditions in the definition of AsIu�
hold for some z 2D, then

P
�
E
sIu
D .zI t; c; d/\ G .ft ;�/

�
� �˛.s/�˛0.s/u:

By integrating this over all such z, we get

E
�
Area.AsIu� /1G.ft ;�/

�
� �˛.s/C1�.˛0.s/C1/u: (4.6)
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Similarly, suppose that t , d , �, and �0 are chosen so that (3.27) in Corollary 3.11
holds. Then for � 2 .0; �0�,

E
�
Area.AsIu� /1G.ft ;�/

�
� �˛.s/C1C.˛0.s/C1/u: (4.7)

By the change-of-variables formula,

Area
�
AsIu� .�I t; ı; c/\Bd .0/

�
D

Z
ft .A

sIu
� .�It;ı;c/\Bd .0//

ˇ̌
.f �1t /0.z/

ˇ̌2
dz: (4.8)

The Koebe quarter theorem implies

AsIu=2� .�I t; ı; c0; d /� ft
�
AsIu� .�I t; ı; c/\Bd .0/

�
�AsI2u� .�I t; ı; c00; d /

for appropriate c0; c00 > 0, depending only on c. Thus, (4.6) implies (4.4). Simi-
larly, (4.7) implies (4.5).

In the remainder of this subsection we record a straightforward estimate which
allows us to transfer estimates between stopping times and deterministic times.

LEMMA 4.4
Let � be a chordal SLE� from �i to i in D with centered Loewner maps .ft /. Let �; � 0

be stopping times for �, and suppose that there is a deterministic time T > 0 such
that almost surely � � � 0 � T . For any c > 0, � 2M, and ı > 0, we can find c0 > 0,
ı0 > 0, and �0 2M such that, for each u > 0, there is an �0 D �0.u; c;�; ı/ > 0 such
that, for each z 2D and each � 2 .0; �0�,

P
�
EsIu� .�; zI �; ı; c/\ G .f� ;�/

�
� P

�
EsIu� .�; zI � 0; ı0; c0/\G.f� 0 ;�

0/
�
; (4.9)

with the implicit constant uniform for z in compact subsets of D and independent of �.

Proof
LetH be the event that the SLE� curve f� .�n�� / stays in the tube ¹z 2D W �ı=100�
Re z � ı=100º until time T . By Lemma 2.17 and the strong Markov property, P.H j
�� /� 1, with deterministic implicit constant depending only on ı. On the other hand,
if � is sufficiently small relative to ı (so that f� .z/ is within distance ı=100 of @D on
E
sIu
� .�; zI �; ı; c/ \ G .f� ;�/, say), then f� .z/ lies at distance at least ı=2 from this

tube on the eventEsIu� .�; zI �; ı; c/\G .f� ;�/. Since � 0�� � T , it follows easily that

EsIu� .�; zI �; ı; c/\ G .f� ;�/\H �E
sIu
� .�; zI � 0; ı0; c0/\G.f� 0 ;�

0/

for appropriate c0, ı0, and �0 as in the statement of the lemma. Thus,

P
�
EsIu� .�; zI � 0; ı0; c0/\G.f� 0 ;�

0/
ˇ̌
EsIu� .�; zI �; ı; c/\ G .f� ;�/

�
� 1;

so (4.9) holds.
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4.3. Comparison lemmas
In this section we prove several lemmas comparing probabilities of sets associated
with the finite-time Loewner maps to probabilities of sets associated with the infinite-
time Loewner maps of Theorem 4.1, and we use these results to estimate the area
of the set where the event of Theorem 4.1 occurs. The next lemma is needed for the
proof of the lower bound in Theorem 4.1.

LEMMA 4.5
Suppose that we are in the setting of Theorem 4.1 with x D �i and y D i . Fix d 2
.0; 1/. For each ı > 0, � 2M, and c > 0, there exist �0 2M and c0 > 0 such that, for
each u > 0, there exists �0 D �0.c; c0; u; ı;�;�0; d / > 0 such that, for z 2Bd .0/ and
� 2 .0; �0�,

P
�
EsIu� .�; zI c0/\ G .‰�;�

0/\ G .‰�� ;�
0/
�

� P
�
EsIu� .�; zI t; ı; c/\

®
Reft .z/� 0

¯
\ G .ft ;�/

�
; (4.10)

with implicit constants independent of � and uniform for z 2Bd .0/.

Proof
The idea of the proof is that if we condition on the event on the right side of (4.10),
then with uniformly positive conditional probability the curve �jŒt;1/ will behave
nicely and hence the event on the left-hand side in (4.10) will also occur. (This is
similar to the idea of the proof of Lemma 4.4, but slightly more involved since we
have to go all the way to time1.)

To explain this formally, let ft W D n �t ! D be the centered forward Loewner
maps for � as in Section 4.2. For t � 0, let �t D ft .�jŒt;1//. Also let Dt be the
connected component of D n �t containing 1 on its boundary, and let D�t be the other
connected component of Dn�t . Let‰t WDt !D (resp.,‰�t WDt !D) be the unique
conformal maps fixing �i; i; 1 (resp., �i; i;�1). Let bt (resp., b�t ) be the image of the
right (resp., left) side of �i under ft . Finally, let  t (resp.,  �t ) be the conformal
automorphism of D fixing i , taking ‰t .bt / to �i , and taking ‰t .ft .1// to 1 (resp.,
fixing i , taking ‰�t .b

�
t / to �i , and taking ‰�t .ft .�1// to �1). Then for each t ,

‰� D t ı‰t ı ft ; ‰�� D 
�
t ı‰

�
t ı ft : (4.11)

Moreover, .‰t ;‰�t / and ft are independent and ‰t
d
D ‰� , ‰�t

d
D ‰�� (see Figure 6

for an illustration of some of these maps).
For C > 1, �0 2M, and w 2 D, let F.w/ D F.wI t;C;�0/ be the event that

w 2Dt , C�1 � j‰0t .w/j � C , dist.w;�t /D dist.w; @D/, and G .‰t ;�
0/\ G .‰�t ;�

0/

occurs. By Lemma 2.17, for each ı > 0, we can find C > 1 and �0 2M such that,
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Figure 6. An illustration of the maps used in the proof of Lemma 4.5 for the right side of D. The
marked boundary points are the images of �i; i , and 1 under the various maps. The last map  t
takes these points back to their original positions so that by composing all three maps we recover

the original map ‰� .

for each w 2 D lying at distance at least ı from ˙i with Rew � 0, we have that
P.F.w//� 1, with the implicit constant independent of � and uniform for w satisfy-
ing the conditions above.

If we let

F �.z/ WDEsIu� .�; zI t; ı; c/\
®
Reft .z/� 0

¯
\ G .ft ;�/\F

�
ft .z/

�
;

then by the independence of ft and �t and our choice of parameters for F.�/,

P
�
F �.z/

�

 P

�
EsIu� .�; zI t; ı; c/\

®
Reft .z/� 0

¯
\ G .ft ;�/

�
: (4.12)

By the “G ” condition in the definition of F.ft .z//, we have that j 0t j and j. �t /
0j are

bounded above and below by positive �-independent constants on the event F �.z/.
Hence it follows from (4.11) that F �.z/ � E

sIu
� .�; zI c0/ \ G .‰�;�

00/ \ G .‰�� ;�
00/

for some c0 > 0 and some �00 2M which do not depend on � and are uniform for
z 2Bd .0/. By combining this with (4.12) we get (4.10) (with �00 in place of �0).

Our next lemma is needed for the proof of the upper bound in Theorem 4.1. The
proof in this case is much more involved than the proof of Lemma 4.5. Intuitively, the
reason for this is that it is easy to construct a full SLE curve which contains a given
segment of an SLE curve run up to finite time (just grow the rest of the curve), but
it is harder to construct an SLE run up to a finite time which has nice behavior and
contains a conformal image of a given full SLE curve. (One has to use reversibility
and define appropriate regularity conditions for an SLE and its time reversal in order
to successfully “splice in” the given full SLE curve.)
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LEMMA 4.6
Suppose that we are in the setting of Theorem 4.1 with x D �i and y D i . Fix d 2
.0; 1/. There is a ı > 0 such that, for each � 2M and c > 0, there exist �0 2M and
c0 > 0 such that, for each u > 0, there exist �0 > 0 and a bounded stopping time � for
� such that, for each z 2Bd .0/ and each � 2 .0; �0�,

P
�
EsIu.�; zI c/\ G .‰�;�/\ G .‰�� ;�/

�
� P

�
EsIu� .zI �; ı; c0/\ G .f� ;�

0/
�

(4.13)

with the implicit constants independent of � and uniform for z 2Bd .0/.

Proof
Suppose that EsIu.�; zI c/\ G .‰�;�/\ G .‰�� ;�/ occurs. We will prove the lemma

by growing some more of the curve out from �i and i to get a new curvee� d
D � with

the property that EsIu� .e�; zI �; ı; c0/ \ G .f� ;�
0/ occurs for an appropriate bounded

stopping time � and the derivatives of the conformal maps associated with e�� and
with � at z are comparable.

To this end, let �0 be a chordal SLE� from �i to i in D, independent of �. Let �0
be its time reversal. Then �0 has the law of a chordal SLE� from i to �i (see [65]).
Fix parameters ı0;C;ˇ; 	; r; a > 0 and �0 2M, and suppose that 	
 1� d . Let P
be the event that the following is true.
(1) Let T be the first time �0 gets within distance e�ˇ of z. Then T <1, and �T0

is disjoint from .D nH/[B1=2.1/.

(2) For each t � 0, let �t W D n .�t0 [ �
T
0 / be the unique conformal map fixing

z and taking �0.T / to i . Let T be the first time t that �t .�0.t// D �i and
j�0.t/� zj � 2e

�ˇ . Then T <1, and �T0 is disjoint from .D\H/[B1=2.1/.
(3) Henceforth, put � D �T . We have C�1 � j.��1/0.w/j � C for each w 2

B.1Cd/=2.0/.
(4) We have ��1.Bı0.�i/[Bı0.i/[B1�r.0//�B.1�d/=2.z/.
(5) Let � be the last exit time of �0 from B� .i/ before time T . Then �
0 �B2� .i/.
(6) Let

K WD �T0 [ �0
�
Œ�; T �

�
[B.1�d/=2.z/: (4.14)

The harmonic measure from i of each side of K \B.1�d/=2.i/ and each side
of K \B.1�d/=2.�i/ in the Schwarz reflection of D nK across Œ�1; 1�@D is at
least a.

(7) G 0.K;�0/ occurs (Definition 2.6).
See Figure 7 for an illustration of the event P . In what follows, all implicit con-

stants are required to depend only on �, d , and the parameters for P .
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Figure 7. An illustration of the event P and the curvee� used in the proof of Lemma 4.6. The
marked boundary points on the right-hand side of the figure other than the end points of Q� are the
image of �i , i , and 1, which are the marked boundary points on the left-hand side of the figure.

First we will argue that, for any choice of the parameters d , 	, and r , we can
choose the other parameters for P in such a way that P.P / � 1. It follows from
Lemma 2.17 and reversibility of SLE that conditions (1), (2), and (5) hold with posi-
tive probability depending only on ˇ, 	, and d . By the Koebe growth theorem, if ˇ is
chosen sufficiently large (depending on r and d ) and ı0 is chosen sufficiently small
(depending only on d ), then condition (4) also holds simultaneously with positive
probability depending only on ˇ, 	, d , ı0, and r . By choosing C sufficiently large
and a and �0 sufficiently small (see Lemma 2.7), depending only on d and the other
parameters for P , we can arrange that the remaining conditions in the definition of P
hold with probability arbitrarily close to 1. Thus P.P /� 1.

Lete�D �0 on the event that P does not occur. On P , lete�D ��1.�/[ �T0 [ �T ,
parameterized in such a way that its image under the conformal map from D to H
taking �i to 0, i to 1, and 0 to i is parameterized by capacity. By the Markov
property and reversibility of SLE, e� has the same law as �. Let . eft / be the centered
Loewner maps fore�. Let

eE D EsIu� .�; zI c/\ G .‰�;�/\ G .‰�� ;�/\P:

Let � be the hitting time of B� .i/ by e�. Then � is a bounded stopping time for e�.
Furthermore, if we choose 	 sufficiently small relative to d (independently of �), then
on the event eE we have e� ne�� D �
0 , with � as in condition (5) in the definition
of P .



ALMOST SURE MULTIFRACTAL SPECTRUM OF SLE 1149

We claim that if the parameters for P are chosen appropriately (independently of
� and z 2Bd .0/), then for sufficiently small � > 0,

eE �EsIu� .e�; zI �; ı;ec /\ G . ef� ;e�/ (4.15)

for some e� 2M depending only on d and some ec > 0, depending only on d , �, c,
and the parameters for P . Given the claim (4.15), our desired result (4.13) follows by
taking probabilities and noting that P is independent of �.

By condition 4 in the definition of P , on the event eE we have e�� � K , as
in (4.14), provided that r is chosen sufficiently small, depending only on � and ı0. By
condition 7 in the definition of P and Lemma 2.8, we can find e� 2M depending only
on �, d , and the parameters for P such that eE � G . ef� ;e�/. By condition (6) in the
definition of P , we can find ı > 0 depending only on a such that ef� .z/ lies at distance
at least ı from ˙i on eE . That is, condition (3) in the definition of EsIu� .e�; zI �; ı;ec /
holds on eE .

By condition (3) in the definition of P , we have dist.z;e� /
 dist.z; �/ on P . It
therefore follows that condition (1) in the definition of EsIu� .e�; zI �; ı;ec / holds on eE
for someec 
 1.

It remains to show that condition (1) in the definition of EsIu� .e�; zI �; ı;ec / holds
on eE provided thatec 
 1 is chosen sufficiently large. It is enough to show j ef 0� .z/j 

j‰0�.z/j on eE . We will do this in two stages. Let ‰e� be as in Section 4.1 with e� in
place of �. First we will show that j‰0�.z/j 
 j‰

0e�.z/j, and then we will show that

j‰0e�.z/j 
 j ef 0� .z/j.
For the first stage, let g be the conformal automorphism of D taking‰�.�.�iC//

to �i , ‰�.�.i�// to i , and ‰�.�.1// to 1. Then

‰e� D g ı‰� ı �: (4.16)

By condition (7) in the definition of P , together with the definition of eE , jg0j 
 1
uniformly on D on eE , so by condition (3) in the definition of P , we have j‰0e�.z/j 

j‰0�.z/j on eE .

For the second stage, let ‰e�� be the conformal map from D ne�� to D taking
�iC to �i and fixing i and 1. Then ‰e�� differs from ef� by a conformal auto-
morphism of D taking ef� .�iC/ to �i and ef� .1/ to 1. Since G . ef� ;e�/ holds oneE , ˇ̌

‰0e�� .z/ˇ̌
 ˇ̌ ef 0� .z/ˇ̌: (4.17)

Let I be the arc of @D of length 	 centered at 1. By condition (7) in the defi-
nition of P (see Remark B.2), the lengths of ‰e�.I / and ‰e�� .I / are � 1 on eE . By
conditions (1), (4), and (5) in the definition of P and a study of the harmonic measure
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from 1 in the Schwarz reflection of De� , the distances from ‰e�.z/ to ‰e�.I / and from
‰e�� .z/ to ‰e�� .I / are � 1 on eE provided that 	 is chosen sufficiently small relative
to d . By Lemma B.1, it holds on eE thatˇ̌

‰0e�.z/ˇ̌
 hmz.I IDe�/
dist.z;e� / and

ˇ̌
‰0e�� .z/ˇ̌
 hmz.I ID ne�� /

dist.z;e�� / : (4.18)

By the conformal invariance of the harmonic measure, hmz.I IDe�/ is the same as
the probability that a Brownian motion started from ‰e�� .z/ exits D in‰e�� .I / before
hitting‰e�� .e�.Œ�;1///. By conditions (5) and (6) in the definition of P , if 	 is chosen
sufficiently small, independently of �, then on eE , the distance from‰e�� .e�.Œ�;1/// to
‰e�� .z/[‰e�� .I / is at least a deterministic �-independent constant; and the diameter
of ‰e�� .e�.Œ�;1/// is smaller than 1=100 times this constant. (Here we again use the
harmonic measure from 1.) Therefore, the probability that a Brownian motion started
from ‰e�� .z/ exits D in ‰e�� .I / before hitting ‰e�� .e�.Œ�;1/// is proportional to the
probability that a Brownian motion started from ‰e�� .z/ exits D in ‰e�� .I /. That is,
hmz.I IDe�/
 hmz.I ID ne�� / on eE . By combining this with (4.17) and (4.18), we
conclude.

Now we can transfer our area estimates for the finite-time sets to area estimates
for the infinite-time sets.

LEMMA 4.7
Suppose that we are in the setting of Theorem 4.1 with x D �i and y D i . Let
A
sIu
� .�; c/ be the set of z 2 D for which E

sIu
� .�; zI c/ occurs. For each d 2 .0; 1/,

each � 2M, and each c > 0,

E
�
Area

�
AsIu
� .�I c/\Bd .0/

�
1G .‰�;�/\G .‰�� ;�/

�
� ��.s/��0.s/u: (4.19)

Furthermore, there exists d 2 .0; 1/ such that, for each c > 0, there exist � 2M and
�0 > 0 such that, for each � 2 .0; �0�,

E
�
Area

�
AsIu
� .�I c/\Bd .0/

�
1G .‰�;�/\G .‰�� ;�/

�
� ��.s/C�0.s/u: (4.20)

In both (4.19) and (4.20) the implicit constants depend on the other parameters but
not on �.

Proof
The relation (4.19) follows by integrating the estimate from Lemma 4.6 over Bd .0/,
applying Lemma 4.4 to replace the stopping time � with a deterministic time, and
then applying (4.4) from Lemma 4.3. The relation (4.20) similarly follows from
Lemma 4.5.
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4.4. Proof of Theorem 4.1
To deduce Theorem 4.1 from the area estimate of Lemma 4.7, we need to argue that
the probabilities of the events of Theorem 4.1 do not depend too strongly on z. This
is accomplished in the next lemma.

LEMMA 4.8
Suppose that we are in the setting of Theorem 4.1 with x D�i , y D i . Fix d 2 .0; 1/.
For any � 2M and c > 0, we can find �0 2M and c0 > 0 such that, for each z;w 2
Bd .0/ and � 2 .0; 1/,

P
�
EsIu� .�;wI c/\ G .‰�;�/\ G .‰�� ;�/

�
� P

�
EsIu� .�; zI c0/\ G .‰�;�

0/\ G .‰�� ;�
0/
�

(4.21)

with implicit constants independent of � and uniform in Bd .0/.

Proof
The basic idea of the proof is as follows. First we apply a conformal map taking z to
w and fixing �i . The image of � under such a map will be an SLE� with a new target
point b. To compare such a curve to our original curve, we grow a carefully chosen
segment of the new curve backward from b in such a way that, when we map back
to D, we get a chordal SLE� from �i to i . We now commence with the details.

For z;w 2 Bd .0/, let � D �z;w WD!D be the unique conformal map fixing �i
and taking z to w. Let b WD �.i/ and �b D �.�/. The law of �b is that of a chordal
SLE� process from �i to b in D.

The map � depends continuously on z and w in the topology of uniform conver-
gence on compact subsets of D. It follows that for any � 2M we can find a determin-
istic constant c0 > 0 depending only on c, �, and d (linearly on c) and a deterministic
�0 2M depending only on � and d such that, for z;w 2Bd .0/,

EsIu� .�b;wI c/\ G .‰�b ;�/\ G .‰�
�b
;�/

� EsIu� .�; zI c0/\ G .‰�;�
0/\ G .‰�

�b
;�0/: (4.22)

Let �b be the time reversal of �b . Then �b is a chordal SLE� from b to �i in D
(see [65]). We give �b the usual chordal parameterization, so that it is the conformal
image of a chordal SLE� parameterized by capacity from 0 to1 in H. For each t � 0,
let gt WD n�

b.Œ0; t �/!D be the unique conformal map fixing �i and w. Let � be the
first time t that gt . �

b.t//D i .

Fix �b 2M, and let E
b

be the event that � is less than or equal to the first time t
that �b hits Bd�.0/, where

d� WD 1�
1

4
inf

z;w2Bd .0/
dist

�
�z;w

�
Bd .0/

�
; @D

�
;
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Figure 8. An illustration of the maps used in the proof of Lemma 4.8 on the event E
b

.

and the event G .g� ;�
b/ occurs. By Lemma 2.17, if �b is chosen sufficiently small,

then P.E
b
/ is a positive constant depending only on �b and Bd .0/.

By the Markov property, conditional on E
b
, the law of g� . �

bjŒ�;1// is that of a
chordal SLE� process from i to�i in D. Therefore, its time reversalb� WD gb� .�jŒ0;�b�/,
where �b is the time corresponding to � under the time reversal, has the law of a

chordal SLE� from �i to i in D. In particular,b� d
D �.

Define the open sets D�b ;Db� and the maps ‰�b ;‰b� as in Section 4.1 with �b;b�,
respectively, in place of �, except that in the definition of �b we use the points �.�1/
and �.1/ instead of the midpoints m� and m. Also let  and  � be the conformal
automorphisms of D such that

‰�b D ı‰b� ı g� and ‰�
�b
D � ı‰�b� ı g� :

See Figure 8 for an illustration of some of these maps.

Since E
b
� G .g� ;�

b/, on the event E
b
\E

sIu
� .b�;wI c/\G .‰b�;�/\G .‰�b� ;�/,

it holds that j 0j and j. �/0j are bounded above and below by deterministic positive
constants depending only on�b and�. Furthermore, G . ;�2/\G . �;�2/ holds for
some �2 2M depending on �b;�. The Koebe distortion theorem and the definition

ofE
b

imply that jg0� .w/j is bounded above and below by positive constants depending

only on d on the event E
b
. Hence, for some c0 > 0, independent of � and uniform for

z;w 2Bd .0/,

E
b
\ EsIu� .b�;wI c/\ G .‰b�;�/\ G .‰�b� ;�/
� EsIu� .�b;wI c0/\ G .‰�b ;�2 ı� ı�

b/

\ G .‰�
�b
;�2 ı� ı�

b/: (4.23)
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By the Markov property and the fact that P.E
b
/ is uniformly positive,

P
�
E
b
\ EsIu� .b�;wI c/\ G .‰b�;�/\ G .‰�b� ;�/�


 P
�
EsIu� .b�;wI c/\ G .‰b�;�/\ G .‰�b� ;�/�: (4.24)

Sinceb� d
D �, (4.21) now follows from (4.22) (applied with �2 ı� ı�b in place of �,

c0 in place of c, and a possibly larger choice of c0 and �0), (4.23), and (4.24).

Proof of Theorem 4.1
By applying a coordinate change it is enough to consider the case in which x D �i
and y D i . By Lemma 4.8, for any z 2Bd .0/, we have, in the notation of that lemma,

P
�
EsIu� .�; zI c/\ G .‰�;�/\ G .‰�� ;�/

�
� E

�
Area

�
AsIu
� .�; zI c0/\Bd .0/

�
1G .‰�;�0/\G .‰�� ;�0/

�
;

P
�
EsIu� .�; zI c0/\ G .‰�;�

0/\ G .‰�� ;�
0/
�

� E
�
Area

�
AsIu
� .�; zI c/\Bd .0/

�
1G .‰�;�/\G .‰�� ;�/

�
;

where A
sIu
� .�/ is the set where E

sIu
� .�/ occurs, as in Lemma 4.7. We conclude by

combining this with Lemma 4.7 (and slightly decreasing u and shrinking �0 as in the
proof of Lemma 4.7 to get a small enough constant in the event used in the lower
bound).

4.5. Finite-time estimates
In this subsection we use Theorem 4.1 and the comparison lemmas of Section 4.3 to
prove estimates for the finite-time Loewner maps. The result of this subsection is not
needed for the proof of our main result and is stated only for the sake of completeness.

THEOREM 4.9
Let � 2 .0; 4�. Let .ft / be the centered Loewner maps of a chordal SLE� process �
from �i to i in D. Fix d 2 .0; 1/. Define the events EsIu� .zI t; ı; c/ as in Definition 4.2
and the sets G.ft ;�/ as in Definition 2.5. For any � 2M, t; ı; c > 0, � > 0, and
z 2Bd .0/,

P
�
EsIu� .�; zI t; ı; c/\ G .ft ;�/\

®
Reft .z/� 0

¯�
� ��.s/�2�0.s/u: (4.25)

Moreover, there exist t� > 0, ı > 0, and � 2M such that, for each c > 0 and each
u > 0, there exists �0 > 0 such that, for � 2 .0; �0� and z 2Bd .0/,

P
�
EsIu� .�; zI t; ı; c/\ G .ft ;�/

�
� ��.s/C2�0.s/u: (4.26)
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In (4.25) and (4.26) the implicit constants are independent of � and uniform for z 2
Bd .0/. The estimate (4.25) holds with t replaced by a bounded stopping time. The
estimate (4.26) holds with t replaced by a bounded stopping time which is almost
surely greater than or equal to t�.

Proof
The statement for deterministic times follows by combining Theorem 4.1 with
Lemmas 4.4, 4.6, and 4.5. The statement for stopping times follows from this and
Lemma 4.4.

5. Upper bounds for multifractal and integral means spectra
In this section we will use the upper bounds in Theorems 3.1 and 4.1 to prove the
Hausdorff dimension upper bounds in Theorem 1.1 as well the upper bound in Corol-
lary 1.9.

5.1. Upper bound for the Hausdorff dimension of the subset of the circle
In this subsection we use Theorem 3.1 to obtain upper bounds on the Hausdorff
dimension of the sets e‚s.D nKt / of Section 1.1 for the hulls .Kt / of a chordal SLE�
from �i to i in D. In light of Lemma 2.15, Proposition 5.1 implies the upper bounds
for dimH

e‚sI�.D�/ and dimH
e‚sI�.D�/ in Theorem 1.1.

PROPOSITION 5.1
Let � be a chordal SLE� process from �i to i in D with forward centered Loewner
maps .ft / (defined as in Section 3.5) and hulls .Kt /. Let e�.s/, s�, and sC be as
in (1.3). For each t > 0 and s 2 Œ�1; 1�, almost surely

dimH
e‚sI�.D nKt /�e�.s/; 0� s � sC;

(5.1)
dimH

e‚sI�.D nKt /�e�.s/; s� � s � 0:

Almost surely, for each s … Œs�; sC� we have e‚s.D nKt /D ;. In fact, for each ı > 0
and each s > sC, it is almost surely the case that, for small enough � > 0,ˇ̌

.f �1t /0
�
.1� �/x

�ˇ̌
� ��s;

8x 2 @D with jx � i j; jxC i j � ı and 1�
ˇ̌
f �1t .x/

ˇ̌
� ı; (5.2)

and a similar statement holds for s < s�.

Remark 5.2
If ˛.s/ is as in (3.2) in the statement of Theorem 3.1, thene�.s/D 1� ˛.s/.
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Proof of Proposition 5.1
For ı > 0 and s 2 .�1; 1/, let

e‚sI�
ı
.D nKt / WD e‚sI�.D nKt /\ ®x 2 @D W jx � i j; jxC i j � ı; 1�

ˇ̌
f �1t .x/

ˇ̌
� ı

¯
;

where 	 stands for � in the case in which s � 0 or � in the case in which s < 0.
The reason for this definition is that it will allow us to apply the estimates of Propo-
sition 3.6 after a change of coordinates from D to H. By the countable stability of the
Hausdorff dimension, to prove (5.1), it is enough to show that almost surely

Hˇ
�e‚sI�

ı
.D nKt /

�
D 0 8ı > 0;8ˇ >e�.s/:

Henceforth, fix ı, ˇ, and s as above. Also let s0 2 Œ0; s/ (if s � 0) or s0 2 .s; 0/ (if
s < 0) be chosen in such a way thate�.s0/ < ˇ. For n 2N and k 2 ¹1; : : : ; 2nº, let

Bkn WD
°
w 2D W


.k � 1/

2n�1
� argw �


k

2n�1
; 2�n � 1� jwj � 2�nC1

±
: (5.3)

Let Ekn be the event that there is a w 2Bkn with 1� jf �1t .w/j � ı=2 and´
j.f �1t /0.w/j � 2ns

0
if s � 0;

j.f �1t /0.w/j � 2ns
0

if s < 0:
(5.4)

Each Bkn can be covered by at most an .n; k/-independent constant number of balls of
radius less than 2�n�1, and each point of Bkn lies at distance at least 2�n from @D. So,
the Koebe distortion and growth theorems imply that, for sufficiently large n, on the
eventEkn if z is the center of one of these balls, then j.f �1t /0.z/j is at least (if s � 0) or
at most (if s < 0) an .n; k/-independent constant times 2ns

0
and 1� jf �1t .z/j � ı=4.

For n 2 N, let Kn be the set of those k 2 ¹1; : : : ; 2nº such that exp.i
k=2n�1/
lies at distance at least ı=2 from �i and i . By Proposition 3.6 and a change of coor-
dinates to H, whenever k 2Kn,

P.Ekn /� 2
�n.1�e	.s0//; (5.5)

where the implicit constant is independent of n and uniform for k 2Kn.
For n 2N and k 2 ¹1; : : : ; 2nº, let

I kn WD
°
x 2 @D W


.k � 1/

2n�1
� argx �


k

2n�1

±
:

For m 2 N, let Im be the collection of those intervals I kn for pairs .n; k/ such that
n � m, k 2Kn, and Ekn occurs. We claim that, for each m 2 N, Im is a cover ofe‚sI�
ı
.D nKt /. Indeed, if x 2 e‚sI�

ı
.D nKt /, then for any m 2 N we can find n � m

and w 2 D with 1 � jwj � 2�n, argw D argx, j.f �1t /0.w/j � .1 � jwj/�s
0

(resp.,
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j.f �1t /0.w/j � .1 � jwj/�s
0

if s < 0), and 1 � jf �1t .w/j � ı=2. The point w lies in
Bkn for some pair .n; k/ with In;k 2 Im. Since argw D argx, we have x 2 In;k for
this choice of .n; k/.

Now, observe that (5.5) implies

E
� X
I2Im

.diamI /ˇ
�



1X
nDm

X
k2Kn

2�nˇP.Ekn /�
1X
nDm

2�n.ˇ�
e	.s0//: (5.6)

This tends to 0 asm!1 since ˇ >e�.s0/ (by our choice of parameters above). Since
Im is a covering of e‚sI�

ı
.D nKt / by intervals of diameter tending to zero as m!1,

this proves Hˇ .e‚sI�
ı
.D nKt //D 0.

If s 2 Œ�1; 1� n Œs�; sC�, then e�.s/ < 0, so the right-hand side of (5.6) for ˇ D 0
decays exponentially fast in m. Thus, the expected number of sets in Im tends to zero
exponentially fast, and it follows from the Borel–Cantelli lemma that almost surely
Im D ; for sufficiently large m. Hence, almost surely e‚sI�

ı
.D n Kt / D ; for each

ı > 0. In fact, it is clear from the definition of Im and the definition of the event Ekn
from (5.4) that (5.2) also holds.

5.2. Upper bound for the Hausdorff dimension of the subset of the curve
In this subsection we will use Theorem 4.1 to give an upper bound for the Hausdorff
dimension of the sets ‚sI�.D/ and ‚sI�.D/ of Section 1.1 with D DD� as in The-
orem 1.1. We will work with a slight variant of the sets of Section 1.1. For a domain
D �C, a conformal map � WD!D, s 2R, and u > 0, let

‚sIu.D/ WD
°
x 2 @D W s � u� lim sup

�!0

log j�0..1� �/��1.x//j

� log �
� sC u

±
: (5.7)

LEMMA 5.3
Let � be a chordal SLE� from �i to i in D, and let D� , �.s/, s�, and sC be as in
Theorem 1.1. Then almost surely

dimH ‚
sIu.D�/� �.s/C ou.1/; (5.8)

whenever s 2 Œs�; sC� and s < 1, and almost surely ‚sIu.D�/ D ; for sufficiently
small u otherwise. The ou.1/ in (5.8) tends to 0 as u! 0 and can be taken to be
uniform for s in compact subsets of .�1; 1/.

Remark 5.4
If ˛.s/ is as in (3.2), 
.s/ is as in (4.1), and �.s/ is as in (1.4), then

�.s/D 2�

.s/

1� s
D
1� ˛.s/

1� s
: (5.9)
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To prove Lemma 5.3 we first need the following lemma.

LEMMA 5.5
Let D � C be a simply connected domain, and let � W D!D be a conformal map.
Suppose that x 2 ‚sIu.D/ for some s 2 .�1; 1/ and u 2 .0; 1 � jsj/. There is a
sequence of points .wk/ in D converging to x such that

�s � u

1� sC u
� lim inf

k!1

log j.��1/0.wk/j

� log dist.wk; @D/
� lim sup

k!1

log j.��1/0.wk/j

� log dist.wk; @D/

�
�sC u

1� s � u
(5.10)

and

lim sup
k!1

log jwk � xj

� log dist.wk; @D/
��

1� s � u

1� sC u
: (5.11)

Proof
Let x 2‚sIu.D/, and for � > 0, put z� D �..1� �/��1.x//. By the definition from
(5.7) of ‚sIu.D/, j�0..1� �/��1.x//j � ��sCu�o�.1/, and for any k 2N, we can find
�k > 0 with �k! 0 as k!1 such thatˇ̌

.��1/0.z�k /
ˇ̌
D
ˇ̌
�0
�
.1� �k/�

�1.x/
�ˇ̌�1
2 Œ�

sCuC1=k

k
; �
s�u�1=k

k
�: (5.12)

By the Koebe quarter theorem,

dist.z�k ; @D/
 �k
ˇ̌
.��1/0.z�k /

ˇ̌�1
2 Œ�

1�sCuC1=k

k
; �
1�s�u�1=k

k
�: (5.13)

Hence, (5.10) holds with wk D z�k . By [61, Proposition 2.7], v.xI �/� �1�s�u�o�.1/,
where v.xI �/ is the length of the image of the curve t 7! zt for t 2 Œ0; ��. Conse-
quently, jz� � xj � �1�s�u�o�.1/. Combining this with (5.13) yields (5.11).

We note that in verifying (5.11) we used that the definition of (5.7) of ‚sIu.D/
involves a limsup instead of a liminf. This is the reason why the sets ‚sI�.D/ and
‚sI�.D/ from (1.2) are defined with a limsup rather than a liminf.

Proof of Lemma 5.3
The statement for s … Œs�; sC� follows from the analogous statement in Proposition
5.1, so we henceforth assume s 2 Œs�; sC�.

By the countable stability of the Hausdorff dimension, to prove (5.8), it is enough
to show that almost surely Hˇ .‚s;u.D�/ \ Bd .0//D 0 for each ˇ > �.s/C ou.1/
and each d 2 .0; 1/. Moreover, it is enough to prove the result restricted to the event
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G .‰�;�/ \ G .‰�� ;�/ (in the notation of Theorem 4.1) for an arbitrary choice of
� 2M.

Fix u 2 .0; 1� jsj/, and let

r >
1� s � u

1� sC u
:

Note that we can take r D 1�ou.1/. For n 2N let Dn D 2�n.1�s/�4Z2 be the dyadic
lattice of mesh size 2�n.1�s/�4. For z 2Dn, let Bn0 .z/;B

n
1 .z/, B

n
2 .z/, and Bn3 .z/ be

the disks centered at z of radii 2�n.1�s/�4, 2�n.1�s/�2, 2�n.1�s/C2, and 2�n.1�s/rC1,
respectively.

Define ‰� as in Section 4.1. For z 2 D let En.z/ be the event that the following
occurs.
(1) �\Bn2 .z/¤; and �\Bn1 .z/D;.
(2) There is a w 2Bn0 .z/ with 2�n.sC2u/ � j‰0�.w/j � 2

�n.s�2u/.
On En.z/,

dist.z; @D�/
 2
�n.1�s/ and 2�n.sC2u/ �

ˇ̌
‰0�.z/

ˇ̌
� 2�n.s�2u/;

with constants uniform in Bd .0/. (The inequality for j‰0�j follows from the Koebe
distortion theorem.) So, by Proposition 4.1,

P
�
En.z/\ G .‰�;�/\ G .‰�� ;�/

�
� 2�n.�.s/�2�0.s/u/ (5.14)

with constants uniform in Bd .0/.
Let Un be the set of disks Bn3 .z/ for z 2Dn such that z 2 Bd .0/ and En.z/

occurs. Note that the cardinality of the set of disks which can belong to Un is at most
a universal constant times 22n.1�s/. We claim that

‚sIu.D�/\Bd .0/�
[
n�N

[
Bn
3
.z/2Un

Bn3 .z/

for each N 2N.
Indeed, suppose that x 2 ‚sIu.D�/ \ Bd .0/. By Lemma 5.5, we can find a

sequence nk !1 and a sequence of points wk 2 D� converging to x such that,
for each k, 2�nk.1�s/�2 � dist.wk; @D�/ � 2�nk.1�s/, jwk � xj � 2�nk.1�s/r , and
2�nk.sC2u/ � j‰0�.wk/j � 2

�nk.s�2u/.
Each wk belongs to Bnk0 .z/ for some z 2Dnk . Our hypothesis on the distance

from wk to @D� implies that condition (1) in the definition of Enk .z/ holds for this
z. Clearly, condition (2) also holds for this z. Thus, for such a z, En.z/ holds and
x 2Bn3 .z/. (Here we use the condition on jwk � xj.) This proves our claim.
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Thus, for any m 2 N,
S
n�mUn is a cover of ‚sIu.@D�/ \ Bd .0/. Each set in

this cover has diameter � 2�m.1�s/r , and by (5.14),

E
�

1G .‰�;�/\G .‰�� ;�/
1X
nDm

X
U2Un

.diamU /ˇ
�

�

1X
nDm

X
z2Dn\Bd .0/

2�nˇ.1�s/rP
�
En.z/\ G .‰�;�/\ G .‰�� ;�/

�

�

1X
nDm

22n.1�s/2�nˇ.1�s/r2�n.�.s/�2�0.s/u/: (5.15)

This tends to 0 as m!1 provided that

ˇ >
2.1� s/� .
.s/C 2
0.s/u/

.1� s/r
D �.s/C ou.1/;

where the ou.1/ can be taken to be uniform for s in compact subsets of .�1; 1/. Since
� is arbitrary we conclude that Hˇ .‚sIu.@D�/\Bd .0//D 0 for any such ˇ.

From Lemma 5.3, we can deduce the upper bounds on dimH ‚
sI�.D�/ and

dimH .‚
sI�.D�// in Theorem 1.1.

PROPOSITION 5.6
Suppose that we are in the setting of Theorem 1.1. Then almost surely

dimH ‚
sI�.D�/� �.s/;

�

4
� s � sC;

dimH ‚
sI�.D�/� �.s/; s� � s �

�

4
:

Proof
For s � �=4 and any n 2N,

‚sI�.D�/�

m1[
jDm0

‚j=nI1=n.D�/; (5.16)

where m0 is the greatest integer such that m0=n � s� and m1 is the least integer
such that m1=n� s. The dimension function s0 7! �.s0/ is increasing on Œs�; �=4�. In
the case in which s � �=4 and s < 1 (this latter condition is only relevant when � D
4), our desired upper bound for dimH ‚

sI�.D�/ therefore follows from Lemma 5.3
and (5.16) upon sending n!1. In the case in which � D 4 and s D 1, the upper
bound instead follows from the fact that dimH � � 3=2 D �.1/ (see [2]). A similar
argument gives the upper bound for dimH ‚

sI�.D�/ when s � �=4.
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5.3. Upper bound for the integral means spectrum
In this subsection we will prove the upper bound for the bulk integral means spectrum
of the SLE curve in Corollary 1.9. In light of Lemma 2.16, it will be enough to prove
an upper bound for the bulk integral means spectrum of D n �t for given t � 0 in the
case of an ordinary SLE� from �i to i in D for � � 4.

PROPOSITION 5.7
Let � 2 .0; 4�, and let �IMS.a/ be defined as in Corollary 1.9. Let � be a chordal
SLE� from �i to i in D. For each t > 0 and each a 2R, almost surely IMSbulk

Dn�t .a/�

�IMS.a/.

Proof
Let .ft / be the centered Loewner maps for �, as defined in Section 3.5. The basic
idea of the proof is to split up @B1��.0/ into the sets where .f �1t /0.z/� ��s for spec-
ified s, bound the expected Lebesgue measure of each such set using Proposition 3.6,
and then for each a look at which value of s makes the greatest contribution to the
integral defining the integral means spectrum.

For ı > 0, let Ut .ı/ be the set of z 2Dn�t with 1�jf �1t .z/j � ı and jz� i j; jzC
i j � ı. Also define the setsA�� .f �1t / as in Section 1.4 (immediately following (1.10)).
For any given 	 > 0 there almost surely exists (random) ı > 0 such that A�� .f �1t /�

@B1��.0/ \ Ut .ı/ for sufficiently small �. Therefore, it is enough to show that, for
each ı > 0 and each ˇ > �IMS.a/, almost surely

lim sup
�!0

log
R
@B1��.0/\Ut .ı/

j.f �1t /0.z/ja dz

� log �
� ˇ: (5.17)

Fix ı > 0 and ˇ > �IMS.a/ as above. Also fix t > 0, and let s� and sC be as in the
statement of Theorem 1.1. For n 2N and k 2 ¹0; : : : ; nº, let

un D
sC � s�

n
and snk D s0C kun:

For n 2N, � > 0, and k 2 ¹0; : : : ; nº, let

An� .k/ WD
®
z 2 @B1��.0/\Ut .ı/ W �

�sn
k
Cun �

ˇ̌
.f �1t /0.z/

ˇ̌
� ��s

n
k
�un

¯
:

Also let An� .�/ (resp., An� .C/) be the set of z 2 @B1��.0/ \ Ut .ı/ such that
j.f �1t /0.z/j � ��s�Cun (resp., j.f �1t /0.z/j � ��sC�un ). Let `n� .k/ be the Lebesgue
measure of An� .k/, and let `n� .˙/ be the Lebesgue measure of An� .˙/.

In what follows, we require implicit constants to be independent of �, but not of n
or k, and we denote by on.1/ a term which tends to 0 as n!1 and does not depend
on k or �.
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By construction, we have @B1��.0/\ Ut .ı/D An� .�/[A
n
� .C/[

Sn
kD0A

n
� .k/,

whenceZ
@B1��.0/\Ut .ı/

ˇ̌
.f �1t /0.z/

ˇ̌a
dz �

nX
kD0

��as
n
k
Con.1/`n� .k/C �

�as�`n� .�/

C ��asC`n� .C/:

By (5.2) of Lemma 5.1, for each n 2 N there almost surely exists a random �n0 > 0

such that, for � 2 .0; �n0 �, the sets An� .�/ and An� .C/ are empty. Hence, for � 2 .0; �n0 �,Z
@B1��.0/\Ut .ı/

ˇ̌
.f �1t /0.z/

ˇ̌a
dz � max

k2¹0;:::;nº
��as

n
k
Con.1/`n� .k/: (5.18)

By Proposition 3.6 and a change of coordinates to D, for k 2 ¹0; : : : ; nº,

E
�
`n� .k/

�
� �˛.s

n
k
/Con.1/;

where ˛.s/D 1�e�.s/ is the exponent from Theorem 3.1. By Chebyshev’s inequality,

P
�
��as

n
k `n� .k/ > �

�ˇ
�
� �˛.s

n
k
/�asn

k
CˇCon.1/: (5.19)

We have

inf
s2Œs�;sC�

�
˛.snk /� as

n
k

�
D��IMS.a/: (5.20)

Note that the range .a�; aC/ in Corollary 1.9 is precisely the set of a 2 R for which
the minimizer in (5.20) is not equal to s� or sC. It follows that, for sufficiently large
n 2N depending only on ˇ,

P
�

max
k2¹0;:::;nº

��as
n
k `n� .k/ > �

�ˇ
�
� �ˇ�	IMS.a/Con.1/:

Since ˇ > �IMS.a/, if n 2N is chosen sufficiently large (depending only on ˇ and a),
then the Borel–Cantelli lemma together with (5.18) implies that almost surelyZ

@B
1�2�j

.0/\Ut .ı/

ˇ̌
.f �1t /0.z/

ˇ̌a
dz � 2�jˇ

for sufficiently large j 2 N. By the Koebe distortion theorem, it follows that almost
surely

lim sup
�!0

log
R
@B1��.0/\Ut .ı/

j.f �1t /0.z/ja dz

� log �
� ˇ:

This proves (5.17) and hence the statement of the proposition.
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6. Event at the hitting time
In this section we introduce an event which will serve as the basic building block for
the “perfect points” which we will use to prove our lower bounds on the Hausdorff
dimensions of ‚s.D�/ and e‚s.D�/ in Section 7 and prove upper and lower bounds
for the probability of this event. Roughly speaking, this amounts to transferring the
derivative estimates of Theorem 4.1 from the setting where we grow the entire curve
� to the setting where we only grow � and its time reversal until they hit a small ball
centered at the origin.

6.1. Definitions and statement of estimates
Let ed 2 .0; 1/, and let x;y 2 @D with jx � yj � ed . Suppose that � W Œ0;1�! D is a
random simple curve in D from x to y. We recall the notation

�t D �
�
Œ0; t �

�
; �D �

�
Œ0;1�

�
from Section 2.1. Let � be the time reversal of �. We also introduce the abbreviation

Bˇ WDBe�ˇ .0/; 8ˇ > 0: (6.1)

Let ˇ > 0, q 2 .�1=2;1/, a 2 .0; 1=4/, u; c > 0, and � 2M. The parameter ˇ
corresponds to log ��1 (so we will eventually be sending ˇ!1); the parameter q
corresponds to s=.1 � s/ for s the parameter of Theorem 1.1; and a, c, and � are
auxiliary parameters used in regularity events.

Let E DEqIu
ˇ
.�Ia; c;�/ be the event that the following holds.

(1) Let �ˇ (resp., �ˇ ) be the first time that � (resp., �) hits @Bˇ . Then �ˇ ; �ˇ <1.
(2) Let �ˇ W D n .��ˇ [ ��ˇ / ! D be the unique conformal transformation

which takes xC to �i , y� to i , and the midpoint m of Œx; y�@D to 1. Then
c�1e�ˇ.qCu/ � j�0

ˇ
.0/j � ce�ˇ.q�u/.

(3) The harmonic measure from 0 in D n .��ˇ [ ��ˇ / of each of the two sides of
��ˇ and each of the two sides of ��ˇ is at least a.

(4) G 0.��ˇ [ ��ˇ ;�/ occurs (Definition 2.6).
The goal of this section is to estimate the probability of the event E .

PROPOSITION 6.1
Suppose that x;y 2 @D with jx � yj � ed . Let � be a chordal SLE� from x to y in D,
and define E DEqIu

ˇ
.�Ia; c;�/ as above. Let 
.s/ be the exponent from (4.1), and let


�.q/ WD .qC 1/

� q

1C q

�
D
8� C 8�qC .4� �/2q2

8.� C 2�q/
: (6.2)

There exist a function 
�0 W .�1=2;1/! .0;1/ (with 
�0 .q/ depending only on q)
and a u� D u�.q/ > 0 such that the following is true for each q 2 .�1=2;1/ and
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u 2 .0;u��. For any choice of parameters ˇ;�;a; c as above,

P.E/� e�ˇ.�
�.q/���

0
.q/u/: (6.3)

Moreover, there exists � D �.ed/ 2M such that, for each a 2 .0; 1=4/, c > 0, and
u 2 .0;u��, there exists ˇ� D ˇ�.u; a; c/ > 0 such that, for ˇ � ˇ�,

P.E/� e�ˇ.�
�.q/C��

0
.q/u/: (6.4)

The implicit constants in (6.3) and (6.4) are independent of ˇ and uniform for x;y 2
@D with jx � yj � ed , but may depend on the other parameters.

We will prove the estimates (6.3) and (6.4) in the next two subsections. The upper
bound (6.3) is a straightforward consequence of the upper bound in Theorem 4.1 and
the Markov property, but the lower bound will take more work. For the proof, we
write

Fˇ WD �.�jŒ0;�ˇ�; �jŒ0;�ˇ�/: (6.5)

6.2. Upper bound
Here we will prove the upper bound (6.3) in Proposition 6.1, which is a straightfor-
ward consequence of Theorem 4.1.

Proof of Proposition 6.1, upper bound
This will follow by growing the middle part of � connecting ��ˇ and ��ˇ , noting that
it behaves in a regular manner with positive probability, and then applying the upper
bound of Theorem 4.1. More precisely, let b� be the image under �ˇ of the part of �
lying between �.�ˇ / and �. �ˇ /. Let bx D �ˇ .�.�ˇ // and by D �ˇ . �. �ˇ //, so that the
conditional law ofb� given the � -algebra Fˇ of (6.5) is that of an SLE� from bx to by
in D. Note that jbx �byj is typically small when ˇ is large. For C > 1, let bE D bE.C/
be the event that the following occurs.
(1) b� does not exit �ˇ .B1/.
(2) Let Db� be the domain lying to the right ofb�, as in Section 4.1. Then �ˇ .0/ 2

Db� and C�1.1� j�ˇ .0/j/� dist.�ˇ .0/; @Db�/� C.1� j�ˇ .0/j/.
(3) Let ˆb� W Db� ! D be the conformal map fixing �i , i , and 1. Then C�1 �

jˆ0b�.�ˇ .0//j � C .
It follows from condition (3) in the definition of E and Lemma 2.17 that we can find
a C > 0 depending only on a such that, for sufficiently large ˇ, P.bEjE/� 1. Thus,

P.E/
 P.E \ bE/: (6.6)

So, it will suffice to prove an upper bound for P.E \ bE/.
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Let s 2 .�1; 1/ and � > 0 be chosen so that

s

1� s
D q; �1�s D e�ˇ : (6.7)

Let D� , ‰� , ‰�� , and E
sIu
� .�; 0I c/ be as in Section 4.1. It follows from Lemma 2.8

and condition (4) in the definition of E that

E � G .�ˇ ;�
0/ (6.8)

for some �0 2M depending only on �. By combining this with condition (1) in the
definition bE we see that E\ bE � G .‰�;�

0/\G .‰�� ;�
0/ for some (possibly smaller)

�0 2M depending only on �. We furthermore have ‰� D‰b� ı �ˇ . Hence,

E \ bE � EsIu� .�; 0I c/\ G .‰�;�
0/\ G .‰�� ;�

0/

for a suitable choice of �0 and c. Thus, (6.3) follows from (6.6) and the upper bound
in Theorem 4.1. Note that we can take the dependence on u to be linear (with slope
depending on q), since the exponent in the upper bound in Theorem 4.1 depends
smoothly on s 2 .�1; 1/ and u > 0 sufficiently small.

6.3. Lower bound
The proof of the lower bound in Proposition 6.1 will take substantially more work
than the proof of the upper bound. The basic idea is to stop � and � at times t0 and t0
for which the following is true. On the event E

sIu
ˇ
.�/ of Theorem 4.1, the conformal

map from D n .�t0 [ �t0/ to D which takes xC to �i , y� to i , and m to 1 has the
same derivative behavior at 0 as the conformal map ‰� W D� ! D with the same
normalization; the points �.t0/ and �. t0/ are at distance slightly less than e�ˇ from
0; and the conditional law of the remainder of the curve given �t0 [ �t0 is that of a
chordal SLE� . We also need to require that �.t0/ and �. t0/ are sufficiently far apart
in a conformal sense, so that they do not immediately link up after times t0 and t0. We
then condition on �t0 [ �t0 and use standard arguments to get that the curves reach
Bˇ without any pathological behavior. The main difficulty in the proof is constructing
the times t0 and t0.

We start by inductively defining a means of growing � and � in an alternating
fashion to get an increasing family of hulls Kt � D. Assume � (resp., �) is param-
eterized in such a way that its image under the conformal map D! H taking �i
to 0, i to 1, and 0 to i (resp., the reciprocal of this conformal map) is parameter-
ized by half-plane capacity. Let �1 be the first time t that hm0.�t ID n �t / D 1=2.
This time is almost surely finite, since a Brownian motion started from 0 has prob-
ability at least 1=2 to hit � before @D. For t � �1, let Kt D �t . Let �1 be the first t
that either hm0.�t ID n .�
1 [ �t //D 1=2 or �. t/D �.�1/. For t 2 Œ�1; �1 C �1� let
Kt D �


1 [ �t�
1 .
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Inductively, suppose that n � 2 and �n�1, �n�1, and Kt for t � �n�1 C �n�1
have been defined. IfK
n�1C
n�1 D �, we let �n D �n�1 and �n D �n�1. Otherwise,
let �n be the least t � �n�1 such that either hm0.�t IDn.�t [�
n�1//D 1=2 or �.t/D
�.�n�1/. LetKt D �t�
n�1 [�


n�1 for t 2 Œ�n�1C�n�1; �nC�n�1�. Let �n be the
first time t � �n�1 such that either hm0.�t ID n .�
n [ �t //D 1=2 or �. t /D �.�n/.
Let Kt D �
n [ �

t�
n for t 2 Œ�nC �n�1; �nC �n�.
For each t � 0, let Tt (resp., T t ) be the time such that �.Tt / (resp., �.T t /) is the

tip of the part of � (resp., �) included in Kt . Observe that the Markov property and
reversibility of SLE imply that, for each t , the conditional law of � nKt given Kt is
that of a chordal SLE� from �.Tt / to �.T t / in D nKt .

It is not immediately obvious from the construction that the curves � and � grown
according to the above procedure will almost surely link up in finite time. To show
that this is indeed the case, we first need the following end point continuity property.

LEMMA 6.2
Let �1 D limn!1 �n and �1 D limn!1 �n. (The limits necessarily exist by mono-
tonicity.) Let K1 D �
1 [ �


1 . Then almost surely

lim
n!1

hm0.�
n ID nK
nC
n/D lim
n!1

hm0.�
n ID nK
nC
n�1/

D hm0.�
1 ID nK1/

and

lim
n!1

hm0. �
n ID nK
nC
n/D lim
n!1

hm0. �
n�1 ID nK
nC
n�1/

D hm0. �
1 ID nK1/:

Proof
We almost surely have 0 … �, so it is almost surely the case that, for each � > 0, we can
find a random ı > 0 such that, for any z 2 �, the probability that a Brownian motion
started from 0 hits Bı.z/ before leaving D is at most �. By the almost sure continuity
of �, we can almost surely find a (random)N 2N such that, for n�N , �.Œ�n; �1�/�
Bı.�.�1// and �.Œ�n; �1�/ � Bı. �.�1//. Hence, with probability at least 1 � �,
a Brownian motion started from 0 exits DnK
nC
n at the same place it exits DnK1.
This proves the limits involving K
nC
n . The limits involving K
nC
n�1 are proven
similarly.

We now check that the curves almost surely meet in finite time and that the meet-
ing point divides the curve into two segments whose harmonic measures from 0 are
approximately the same.
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LEMMA 6.3
We almost surely have K1 D �. Let z1 D �.�1/D �.�1/ be the meeting point. On
the event that 0 lies to the right of � and dist.0; �/� e�ˇ , it holds almost surely that
hm0.�
1 ID�/ and hm0. �
1 ID�/ are each at least 1=2� oˇ .1/, where the oˇ .1/ is
a deterministic quantity which tends to 0 as ˇ! 0.

Proof
First we argue that K1 D �. Suppose not. Almost surely, either hm0.�
1 ID nK1/
or hm0. �
1 ID nK1/ is less than 1=2. Suppose that hm0.�
1 ID nK1/ < 1=2. The
other case is treated similarly. By Lemma 6.2 we almost surely have hm0.�
n ID n
K
nC
n�1/ < 1=2 for sufficiently large n. By the definition of �n this can be the case
only if �.�n/D �.�n�1/, which implies K1 D �.

It is immediate from Lemma 6.2 and the definition of the times �n and �n that
hm0.�
1 ID�/ and hm0. �
1 ID�/ are each at most 1=2. Furthermore, the Beurling
estimate implies hm0.@DID�/D oˇ .1/. Hence,

hm0.�
1 ID�/D 1� hm0. �
1 ID�/� hm0.@DID�/� 1=2� oˇ .1/;

and a similar statement holds for �
1 .

The following lemma is what allows us to compare conformal maps defined on
the domains D nKt to those defined on the domains D� . (The derivative behavior of
conformal maps on the latter domain can be controlled using Theorem 4.1.)

LEMMA 6.4
For t � 0, let ˆt be the conformal map from the connected component of D nKt with
1 on its boundary (this component is all of D nKt if the curves have not linked up
before time t ) to D taking xC to �i , y� to i , and m to 1, and let êt be the conformal
map from this same connected component to D which fixes 0 and takes m to 1. Also
let ‰� WD� ! D be as in Section 4.1. For � 2M, there are a C > 1 and a ˇ� > 0
depending only on � such that if ˇ � ˇ�, then on the event G .‰�;�/\ ¹dist.0; �/�
e�ˇ º\¹0 2D�º, there almost surely exists a time � > 0 such that the following holds.
(1) dist.0;K� /� C dist.0; �/.
(2) C�1j‰0�.0/j � jˆ

0
� .0/j � C j‰

0
�.0/j.

(3) ê
� .�.T� // and ê� . �.T � // lie in the left semicircle Œi;�i �@D.

(4) hm0.� nK� ID�/� 1=4C oˇ .1/, with the oˇ .1/ deterministic and depending
only on ˇ.

Proof
Throughout, we assume we are working on the event G .‰�;�/\¹dist.0; �/� e�ˇ º\
¹0 2D�º, and we require all implicit constants to be deterministic and depend only
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on �. Let e‰� WD�! D be the conformal map which fixes 0 and takes 1 to 1. If z1
is as in Lemma 6.3, then by the conformal invariance of the harmonic measure,ˇ̌e‰�.z1/C 1ˇ̌D oˇ .1/; (6.9)

at a deterministic rate.
Let � be the first time t that e‰�.�.Tt // and e‰�. �.T t // are both in Œi;�i �@D.

By Lemma 6.3 such a t necessarily exists provided that ˇ is at least some universal
constant. Let eA� D Œe‰�. �.T � //;e‰�.�.T� //�@D be the arc of the left side of @D sepa-
rating these two points. By continuity, one of the two end points of eA� is �i or i , so
by (6.9), hm0. eA� ID/ � 1=4� oˇ .1/. Furthermore, the harmonic measure from 0 in
D of each of the two arcs connecting eA� and 1 is at least 1=4� oˇ .1/.

Let A� D e‰�1� . eA� /D �nK� . By the conformal invariance of the harmonic mea-

sure, hm0.�T� ID�/, hm0. �T � ID�/, and hm0.A� ID�/ are each at least 1=4� oˇ .1/.
By Lemma B.3 (applied with I D Œ�i; i �@D and � D ˆ� ) we have dist.0;K� / 

dist.0; �/ and jˆ0� .0/j 
 j‰

0
�.0/j. Since e‰�.�.T� // and e‰�. �.T � // lie in Œi;�i �@D

and removing A� can only increase the harmonic measure from 0 of parts of @D�
outside of A� , we find that ê� .�.T� // and ê� . �.T � // must lie in Œi;�i �@D. Thus, the
conditions of the lemma hold for this choice of � .

The following lemma is the main input in the proof of the lower bound in Propo-
sition 6.1: it provides times t0; t0 > 0 for which j�.t0/ � �. t0/j is of order e�ˇ , the
derivative of a conformal map D n .�t0 [ �t0/! D with the same normalization as
�ˇ is of order e�ˇq , the points �.t0/ and �. t0/ are well separated in the harmonic
measure sense, and the conditional law of the “middle” segment of � given �t0 [ �t0

is that of an SLE� . Once we have these times, we just need to grow a little bit more
of � and � after times t0 and t0, respectively, to get the estimate of Proposition 6.1.

LEMMA 6.5
Let v > 0, 	 > 0, and �0 2M. For ˇ > 0 and two times t; t > 0, let E0

ˇ
.t; t/ D

E0
ˇ
.t; t Iv; 	;�0/ be the event that the following occurs.

(1) 32e�ˇ � dist.0; �t [ �t /� e�ˇ.1�v/.
(2) Let �t;t W D n .�

t [ �t /! D be the conformal map which takes xC to �i , y�

to i , and m to 1. Then e�ˇ.qCv/ � j�0
t;t
.0/j � e�ˇ.q�v/.

(3) Let  t;t W D n .�
t [ �t /! D be the conformal map which fixes 0 and takes 1

to 1. Then j t;t .�.t//� t;t . �. t//j � 	.

(4) G 0.�t [ �t ;�0/ occurs.
There are a deterministic 	 > 0 and �0 2M, independent of v and ˇ, such that, for
each v > 0, there exists ˇ� D ˇ�.v;ed/ > 0 such that, for each ˇ � ˇ�, there exist
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random times t0 and t0 such that

P
�
E0ˇ .t0; t0/

�
� e�ˇ.�

�.q/C��
0
.q/v/; (6.10)

where 
�.q/ and 
�0 .q/ are as in Proposition 6.1 and the implicit constant is indepen-
dent of ˇ. Furthermore, we can choose t0 and t0 in such a way that the conditional
law given �t0 [ �t0 of the part of � between �.t0/ and �. t0/ on the event E0

ˇ
.t0; t0/

is that of a chordal SLE� from �.t0/ to �. t0/ in D n .�t0 [ �t0/.

Proof
We will deduce the lemma from Theorem 4.1 and Lemma 6.4. Fix v0 2 .0; v=4/, to
be chosen later in a manner depending only on v and q, and let s WD q=.q C 1/. If
ˇ > 0 is chosen sufficiently small, in a manner depending only on v0 and q, then we
can find �D �.s; v0; ˇ/ > 0 such that

�1�s D e�ˇ.1�ov0 .1// and �1�sC2v
0

� 32e�ˇ :

Let c > 0, and let E
sIv0

� .�; 0I c/ be the event of Section 4.1 (with v0 in place of u). Let
‰� WD�!D and ‰�� WD

�
� !D be as in that section. Let �0 2M, and let

E WD EsIv
0

� .�; 0I c/\ G .‰�;�
0/\ G .‰�� ;�

0/:

By Theorem 4.1, if the parameter �0 is chosen appropriately (in a manner depending
only on q), then we can find ˇ� > 0 as in the statement of the lemma such that, for
each ˇ � ˇ�,

P.E/� e�ˇ.�
�.q/C��

0
.q/v0/;

for an appropriate choice of 
�0 .q/ as in Proposition 6.1. Lemma 2.8 implies that we
can find �0 2M depending only on �0 such that

G .‰�;�
0/\ G .‰�� ;�

0/�
\
t;t�0

G 0.�t [ �t ;�0/: (6.11)

Let �0 be the first time � that the first two conditions in the definition of
E0
ˇ
.T� ; T � / are satisfied and that ê� .�.T� // and ê� . �.T � // (as defined just above

Lemma 6.2) both lie in Œi;�i �@D. By Lemma 6.4 and the definition of E , if c is cho-
sen sufficiently large, then �0 <1 almost surely on E . Moreover, decreasing � only
increases hm0.� nK� ID�/, so on E almost surely

hm0.� nK�0 ID�/� 1=4� oˇ .1/: (6.12)

Let �0 D ê�0.�nK�0/, with the parameterization it inherits from �. By the strong
Markov property, the conditional law of �0 given K�0 is that of a chordal SLE� from
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x0 WD ê�0.�.T�0// to y0 WD ê�0. �.T �0// in D. (Here we used that we made �0 the
smallest time for which our desired conditions are satisfied.)

By definition, the event E0
ˇ
.t0; t0/ almost holds with t0 D T�0 and t0 D T �0 , butê

�0.�.T�0// and ê�0. �.T �0// may be too close together. To this end, we will choose
slightly larger times at which the images of the tips of � and � are separated. Note
that (6.12) implies diam�0 � 	0 on E for some universal constant 	0 2 .0; 1=4/. Let
�0 be the time reversal of �0, with the parameterization it inherits from �.

Let T 0 (resp., T
0
) be the first time that �0 (resp., �0) enters B1��0=4.0/. Let T 00 be

the first time t � T�0 that arg�0.t/ � argx0 C 	0=8. Let T
00

be the first time t � T �0
that arg�0. t/� argy0�	0=8. Since diam�0 � 	0 almost surely on E , either jx0�y0j �
	0=8 or one of T 0, T

0
, T 00, or T

00
is finite on this event. (If not, then �0 is contained

in the wedge ¹z 2 D W argy0 � 	0=8� argz � argx0 C 	0=8; jzj � 1� 	0=8º and this
wedge has diameter less than 	0.) Hence, the intersection with E of at least one of
the events ¹jx0 � y0j � 	0=8º, ¹T 0 <1º, ¹T 00 < T 0º, or ¹T

00
< T

0
º has probability at

least 1
4

P.E/� e�ˇ.�
�.q/C��

0
.q/v0/.

It is therefore enough to show that the conclusion of the lemma is true in each
of the four possible cases (provided that ˇ is sufficiently large). We will do this by
choosing t0 to be one of T�0 , T 0, or T 00 and t0 to be one of T �0 , T

0
, or T

00
. By the

strong Markov property, the last statement of the lemma holds for any such choice.
Clearly, condition (1) in the definition of E0

ˇ
.t0; t0/ holds almost surely on E for any

such choice of t0 and t0 and any v0 2 .0; v/. By (6.11), condition (4) holds for any
such choice. By Lemmas 6.4(1) and 6.4(2), on E ,

jˆ0�0.0/j

j‰0�.0/j

 1 and

dist.0;K�0/

dist.0; �/

 1

with deterministic, ˇ-independent proportionality constants. By combining this with
Lemma B.1 and condition (4) (see Remark B.2), we infer that on E

hm0.I ID nK�0/

hm0.I ID n �/

 1; (6.13)

for I a subarc of Œ�i; i �@D which is slightly smaller than Œ�i; i �@D. For any choice of
t0 and t0 as above, we have K�0 � .�

0/t0 [ . �0/t0 . Since 4v0 < v, (6.13) and a second
application of Lemma B.1 yield condition (2) for large enough ˇ.

Finally, we will verify that condition (3) holds in each of the four cases (for an
appropriate choice of 	 > 0 depending only on 	0). Here we note that jx0 � y0j is
proportional to the harmonic measure from 0 of the boundary arc of D n ..�0/t0 [
. �0/t0/ separating �0.t0/ from �0. t0/.
(1) If P.jx0 � y0j � 	0=8;E/ � e�ˇ.�

�.q/C��
0
.q/v0/, then we can just set t0 D T�0 ,

t0 D T �0 , and 	 D 	0=8.
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Figure 9. An illustration of the argument of Lemma 6.5 in the case ¹T 0 <1º showing the hull
K�0 , the curve �0 and its preimage under ê�0 , and the extra part of the curve which we grow

after growing K�0 .

(2) If P.T 0 <1;E/ � e�ˇ.�
�.q/C��

0
.q/v0/, then we set t0 D T 0 and t0 D T �0 .

A Brownian motion has probability at least a constant 	 > 0 depending only
on 	0 to exit B1��0=16.0/ within distance 	0=4 of 1 and then make a counter-
clockwise loop around the origin before leaving D n B1��0=8.0/. In this case
it necessarily exits D n .�0/T

0
on the left side of .�0/T

0
(see Figure 9 for an

illustration in this case).
(3) If P.T 00 < T 0;E/ � e�ˇ.�

�.q/C��
0
.q/v0/, then we set t0 D T 0 ^ T 00 and t0 D

T �0 . A Brownian motion has probability at least a constant 	 > 0 depending
only on 	0 to exit D before hitting any point outside of D nB1��0=8.0/ whose
argument is not between argx0 and argx0 C 	0=8. If this is the case and T 0 �
T 00, then a Brownian motion necessarily exits D n .�0/t0 on the left side of
.�0/t0 .

(4) The case for ¹T
00
< T

0
º is treated in the same manner as the case for ¹T 00 <

T 0º.
Thus, we have exhausted all possible cases, and we conclude that condition (3) holds.

Proof of Proposition 6.1, lower bound
Suppose that 	 > 0,�0 2M, and random times t0; t0 are chosen so that the conclusion
of Lemma 6.5 holds. Let v > 0, and let ˇ� > 0 be chosen as in Lemma 6.5. Let
ˇ � ˇ�, and let E0

ˇ
D E0

ˇ
.t0; t0; v; 	;�0/ be as in Lemma 6.5. We need to transfer
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the estimate of Lemma 6.5 from the setting when we stop at times t0 and t0 to the
setting when we stop at times �ˇ and �ˇ . The idea of the proof is to consider the
hitting times of � and � of logarithmically many balls centered at 0 whose radii differ
by an exponential factor and argue that, at each scale, there is a positive probability
that the curves continue to behave nicely. We then apply the strong Markov property
and multiply over all of the scales.

To this end, let ěD� log dist.0; �t0 [ �t0/. Note that, on E0
ˇ

,

ˇ.1� v/� ě� ˇ � log32:

Also fix r 2 .log16; log32/. We will consider the hitting times of the balls BěCkr for
k 2N.

We start with the case k D 1, which is slightly different. Let �1 be the image
under the map  t0;t0 WDn .�

t0 [�t0/!D which fixes 0 (defined as in Lemma 6.5) of
the part of � between �.t0/ and �. t0/, and let x1 and y1 be its end points. Let � 01 (resp.,
� 01) be the first time �1 (resp., �1) hits t0;t0.BěCr/, so that t0;t0.�.�ěCr//D �1.� 01/
and similarly for �. Let G1 be the event that the following holds.
(1) j�1.�

0
1/� �1. �

0
1/j � .1=32/e

�r .

(2) �
� 0
1

1 [ �
� 01
1 � t0;t0.B1/.

(3) �
� 0
1

1 [ �
� 01
1 is disjoint from the 	=2-neighborhood of the segment connecting 0

and the midpoint of the shorter arc between x1 and y1.
By the Koebe quarter theorem,

BrClog16 � t0;t0.BěCr/�Br�log16:

Hence, by Lemma 2.17, condition (3) in the definition of E0
ˇ

, and the last statement

of Lemma 6.5, P.G1jE0ˇ / is at least a ˇ-independent positive constant.

Now we consider the case k � 2. For k D 1; 2; 3; : : : , let e k be the map from D n
.�� ěCkr [�� ěCkr / to D with e k.0/D 0 and e 0

k
.0/ > 0. For k � 2, let �k be the image

under e k�1 of the part of � which lies between �.�ěC.k�1/r/ and �. � ěC.k�1/r/.
Then the law of �k given FěC.k�1/r (defined as in (6.5)) is that of a chordal SLE�
from xk WD e k�1.�.�ěC.k�1/r// to yk WD e k�1. �. � ěC.k�1/r//. Let �k be the time
reversal of �k .

Let � 0
k

and � 0k be the hitting times of e k�1.BěCkr/ by �k and �k , respectively,

so that e k�1.�.�ěCkr//D �k.� 0k/ and similarly for �. Fix ı > 0, and for k � 1 let Gk
be the event that ��k (resp., ��k ) is contained in the ı-neighborhood of the segment
Œxk ; 0� (resp., Œyk; 0�).

By the Koebe quarter theorem, whenever e k�1 is defined we have

BrClog16 � e k�1.BěCkr/�Br�log16:
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By the conformal invariance of the harmonic measure, onGk�1 for k � 2, jxk�ykj is
at least a universal constant provided that ı is taken sufficiently small. It now follows
from Lemma 2.17 that, for each k � 2,

P
�
Gk

ˇ̌̌
E0ˇ \

k�1\
jD1

Gj

�
� p (6.14)

for some p > 0 which depends only on ı.
Let k� be the least integer k such that kr C ě� ˇ. Note that k� � ˇv=r . Let

G� WD

k�\
kD1

Gk :

We will now argue that E0
ˇ
\G� �E and then complete the proof by establishing an

appropriate lower bound for P.E0
ˇ
\G�/ provided that v
 u is chosen appropriately.

It is clear that, on the event E0
ˇ
\G�, conditions (1), (3), and (4) in the definition

ofE hold provided that we take ı sufficiently small, depending on a. It remains to deal
with condition (2). For k � 1, let b�k be the curve obtained by connecting �.��ěCkr/
and �. ��ěCkr/ via the arc of BěCkr which does not disconnect 0 from Œx�; y��@D.

Let ‰b�k be the conformal map from the connected component of D nb�k containing
Œx�; y��@D on its boundary to D, which takes x� to �i , y� to i , and the midpoint of
Œx�; y��@D to 1. By Lemma B.3,

C�1
ˇ̌
‰0b�k .0/

ˇ̌
�
ˇ̌
�0ˇ 0.0/

ˇ̌
� C

ˇ̌
‰0b�k .0/

ˇ̌
;

8ˇ0 2
�ěC .k � 1/r; ěC kr�;8k � 2; (6.15)

on G� for some deterministic C > 1 depending only on a, r , and �. A similar state-
ment holds for k D 1 provided that we replace C with a constant C1 > 0 which is
allowed to depend on 	 but not on ˇ.

The estimate (6.15) implies, in particular, that j�0ěC.k�1/r.0/j and j�0ěCkr.0/j
differ by a factor of at most C 2. Iterating (6.15) at most ˇv=r times shows that, on
G�,

C�11 C�2ˇv=re�ˇ.qCv/ �
ˇ̌
�0ˇ .0/

ˇ̌
� C1C

2ˇv=re�ˇ.q�v/:

If we choose v such that v � u=3 and C 2v=r � e.1^�
�
0
.q//u=3 and choose ˇ sufficiently

large that C1eˇ�
�
0
.q/u=3 � c, then condition (2) in the definition of E holds on E0

ˇ
\

G�. By possibly further shrinking v, we can arrange that pv=r � e�
�
0
.q/u=2, where

p is the parameter from (6.14). From Lemma 6.5, our estimates for the conditional
probabilities of the Gk’s, and our choice of parameters above,

P.E/� P.G1jE0/pˇv=r�1e�ˇ.�
�.q/C��

0
.q/v/ � e�ˇ.�

�.q/C��
0
.q/u/:
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7. Two-point estimate

7.1. Outline of the two-point estimate
The goal of this section is to prove our two-point estimate, which will lead to a lower
bound for the Hausdorff dimensions of the sets‚s.D�/ and e‚s.D�/ in Theorem 1.1.
In particular, we will define events En.z/ for z 2 D and n 2 N, we will show that if
En.z/ occurs for every n 2 N (i.e., z is a perfect point), then z 2 ‚s.D�/, and we
will show that the correlation of En.z/ and En.w/ is small when jz�wj is large, in a
quantitative sense (Proposition 7.17). The proof of this latter correlation estimate uses
the theory of imaginary geometry to get long-range independence for certain events.

Throughout this section, we will consider the following setup. Let �D 2=
p
� �

p
�=2, and let � D 
=

p
� be the imaginary geometry parameters from (2.20). Let

h be a zero-boundary GFF on D plus a harmonic function chosen in such a way
that if  W H! D is the conformal map taking 0 to �i , 1 to i , and i to 0, then
h ı � � arg 0 is a GFF on H with boundary data �� on .�1; 0� and � on Œ0;1/.
By [37, Theorem 1.1] the 0-angle flow line � of h started from �i is a chordal SLE�
from �i to i in D.4 Let � be the time reversal of �. Also fix a multifractal spectrum
parameter s 2 .�1; 1/, and let q WD s=.1� s/ 2 .�1=2;1/.

We will shortly give an outline of the content of the rest of this section, but before
we do so we make some general comments about notation.
� We continue to use the notation Bˇ D Be�ˇ .0/ from (6.1). We also recall the

notation �� D �.Œ0; ��/, and we will always denote the time reversal of a curve
by an overbar.

� All curves in this section are assumed to have some arbitrary parameterization.
The times we consider will only be used to specify certain segments of the
curve, and these segments will not depend on the choice of parameterization.

� The notation in the remainder of this section is quite heavy, but it is easier to
navigate if the reader keeps in mind several conventions. Objects denoted with
a superscript f are associated with the full curve �, as opposed to the curve �z;j
at scale j . Conformal maps denoted by the symbol  with some decoration
map the complement of some part of � (or a conformal image thereof) to D and
are required to fix the origin. Conformal maps denoted by � or ˆ with some
decoration map the complement of some segment of � (or a conformal image
thereof) to D and are specified by the images of three points on the boundary.
Conformal maps denoted by 
 with some decoration map a “pocket” formed

4In the case in which � D 4, we replace flow lines of h with a given angle by level lines of h at a given level
(see [53], [54], [62]). Everything that follows works identically with this replacement. In fact, since (in contrast
to the situation for flow lines) the time reversal of a level line is also a level line (see [62, Theorem 1.1.5]), some
of the proofs are easier for �D 4.
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Figure 10. Illustration of the definition of the event E . Middle: The full curve �, with the
segments of the curve involved in the definitions of the events L, eE , and E as well as the

auxiliary flow lines �˙ involved in the definition of F are shown. For clarity, the disks Be�, B�,
and Bˇ here are shown larger than they actually are in practice. Top left: The image of the

middle picture under the map � WD n .�� [ �� /!D. The derivative of this map at the origin is
of order e�ˇq on eE . Bottom left: The image of the middle picture under the map 
 WD!D
with 
.0/D 0 and 
 0.0/ > 0. In the setting of Section 7.3, if �D �z;j , then the curve in this

picture is �z;jC1. Right: The map  takes D n .�� [ �� / to D and fixes 0. The event F includes
several conditions which say that the flow lines  .�˙/ behave nicely.

by two auxiliary flow lines to D. Conformal maps denoted by f or g with
some decoration are automorphisms of D.

� Much of the notation in this section is illustrated in Figures 10, 11, and 12 and
summarized in Section 7.7.

We start in Section 7.2 by defining an event E depending on parameters ˇ > 0
and u 2 .0; 1/ (which will eventually be sent to 0 and 1, respectively) and a field
h on D with Dirichlet boundary data and its 0-angle flow line � started from x 2

@D to y 2 @D. (Eventually, we will apply this definition inductively with � replaced
by the conformal image of a certain segment of our original SLE� curve �.) The
definition of E also involves several constant-order auxiliary parameters which we
list in Definition 7.1. Roughly speaking, E is the event that the following hold.
(1) If we run � (resp., its time reversal) until the first time � that it gets within

distance e�ˇ of the origin and then apply a conformal map � WDn .�� [�� /!
D normalized so that �.xC/D�i , �.y�/D i , and �.midpoint of Œx; y�@D/D

1, then j�0.0/j is of order e�ˇ.q˙u/.
(2) Let �� and �C be flow lines of h started from �.�/, with angles chosen so

that they almost surely intersect each other. Then �� and �C form a “pocket”
surrounding the origin with diameter of order e�ˇ and a roughly round shape.
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Figure 11. Top left: Illustration of two stages of the inductive construction in Section 7.3. (The
picture shows a small neighborhood of the point z 2D.) Segments of � associated with the
events Lz;j (resp., eEz;j�1 and eEz;j ; the last parts of Ez;j�1 and Ez;j ) are shown. As in

Figure 10, balls and curve segments are not shown to scale. Top right: The picture we obtain
after applying the map 
 f

z;j�1 WD
f
z;j�1!D. This is the same as the setting of the middle panel

in Figure 10 with �D �z;j . Note that here x�z;j ¤ xz;j and y�z;j ¤ yz;j since �z;j hits @D.
Bottom left: The setting we obtain after applying the map  z;j , which corresponds to the right
panel in Figure 10. Bottom right: The setting we obtain after applying the map 
z;j . The curve

�z;jC1 is the image under 
z;j of the segment of �z;j contained in Dz;j .
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Figure 12. An illustration of some of the maps associated with the events Ez;1 and Ez;2, with
the images of �i , i , 1, and z; the curve segments associated with each of these events are shown.

The map b�z;2 is the composition of the last three maps in the figure. The map ˆf
z;2 is the

composition of all four maps.

The first of these two conditions will ensure that the behavior of the derivative of
a conformal map from one side of � to D has the right derivative behavior, and the
second condition will allow us to get the long-range independence needed for our
two-point estimate. We will also prove an estimate (Lemma 7.7) for the probability
of E .

The actual definition of E will involve several regularity conditions which are
needed to rule out various types of pathological behavior. We will break the definition
up into four steps, which each serve a particular purpose in the proof of our two-
point estimate. Let us now give a more detailed outline of each of these four steps
and its purpose (see Figure 10 for an illustration of the definition and the objects
involved).

The first step is to get away from the boundary, so that our curve will look like
an ordinary SLE� (even if it was originally an SLE�.�/). We grow the curves � and
� up to times � and � , respectively, which are approximately equal to the first time
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these curves hit a certain ball centered at 0 with small (but ˇ-independent) size. Our
first event L is a list of regularity conditions for �
 and �
 . The purpose of most
of these conditions is to ensure that we can apply Lemma C.4 to get that the seg-
ment of � from �.�/ to �.�/ is close in law to an SLE� curve, even if � is itself an
SLE�.�LI�R/ curve for �L; �R 2 .�2; 0/. The probability of L will be of constant
order, independent of ˇ (Lemma 7.2). We note that the objects in the definition of L
are used infrequently outside the proof of Lemma 7.3.

The second step takes care of the derivative behavior; in particular, we let eE be
the event described in item (1) above, with the same regularity conditions appear-
ing on the event of Proposition 6.1. The event eE is the only event in the definition
of E whose conditional probability given the previous events is not of constant (ˇ-
independent) order (see Lemma 7.7 and Proposition 6.1).

Since the behavior of the derivative of a conformal map from the complement of
� to D can a priori depend on the whole curve �, we next introduce auxiliary flow
lines �˙ to localize our events. These are flow lines of h started from the point �.�/,
with angles chosen so that they almost surely bounce off each other, but do not cross.
We define an event F which is the intersection of eE and the event that these auxiliary
flow lines make a pocket surrounding 0 (which we call D) before hitting �� and
satisfy certain regularity conditions.

The key property which these pockets D satisfy, and which is the source of the
long-range independence needed for our two-point estimate in Section 7.5, is that,
conditional on a pocket, the restrictions of h to the inside and outside of the pocket
are conditionally independent (see Lemma 7.4). Since h determines � in a local man-
ner, this will lead to independence between certain segments of �. The regularity
conditions in the definition of F govern the size and shape of the pocket D and will
be important in Section 7.4 when we compare derivatives of various conformal maps;
they also ensure that the points where � enters and exits the pocket are separated in
the sense of the harmonic measure from 0. Finally, we define E to be the intersection
of F and the event that � and � do not have any pathological behavior between the
time they hit Bˇ and the time when they enter the pocket D.

In Section 7.3, we define events Ez;j for z 2 D and j 2 N associated with our
original field/curve pair .h; �/ as follows. Fix sequences ˇj !1 (at a logarithmic
rate) and uj ! 0 (at a very slow rate), which are chosen in Lemma 7.10. In the case in
which j D 1, we apply a conformal automorphism fz;1 WD! D sending z to 0, and
let Ez;1 be the event E of Section 7.2 defined with ˇD ˇ1, uD u1, and fz;1 ı�z;1 in
place of �. Inductively, for j � 2 we letDz;j�1 be the pocket formed by the auxiliary
flow lines used in the definition of Ez;j�1, let 
z;j�1 WDz;j�1! D be a conformal
map which fixes 0, and let Ez;j be the event E of Section 7.2 with � replaced by the
image under 
z;j�1 of the segment of (a conformal image of) � which is contained in
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Dz;j�1 and with ˇD ˇj and uD uj . We then set

En.z/ WD

n\
jD1

Ez;j :

See Figure 11 for an illustration of the definitions of Ez;j and En.z/.
In Section 7.4, we use a purely complex analytic argument to prove Lemma 7.13,

which says that the derivatives of certain conformal maps and the diameters of certain
sets are of the correct order on En.z/. This will be used in Section 8 to show that
the perfect points (roughly speaking, those for which En.z/ occurs for every n 2 N)
all belong to the multifractal spectrum set ‚s.D�/. The proofs in this subsection are
perhaps the most technical ones in this section; the reader who wishes to see only
the main ideas of the proof of our two-point estimate may wish to read Lemma 7.13,
which is the only result from this subsection used in the rest of the proof, and skip the
rest of Section 7.4.

In Section 7.5, we prove our two-point estimate Proposition 7.17 using the aux-
iliary flow lines in the definitions of our events and various conditioning arguments
based on results from [37]. The main idea of the proof is that (roughly speaking)
the behavior of the field h, and hence also the curve �, inside the pockets Df

z;n and
Df
w;n formed by the auxiliary flow lines is independent provided that these pockets

are disjoint, which allows us to get long-range independence for our events.
Section 7.6 contains a discussion about what adaptations one would make to our

argument when proving two-point estimates for other sets associated with SLE. For
the convenience of the reader, we have included an index of the notation used in this
section in Section 7.7.

7.2. Event for an SLE�.�LI�R/ curve coupled with a GFF
Fix ed > 0, and suppose that x;y 2 @D with jx � yj � ed . Also let �L; �R 2 .�2; 0�,
and let h be a GFF on D with Dirichlet boundary data chosen in such a way that its
0-angle flow line � from x to y is an SLE�.�LI�R/ from x to y, with force points
located immediately to the left and right of x. Also fix u 2 .0; 1/ and ˇ > 0. (We will
eventually send u! 0 and ˇ!1.)

All objects in this subsection are allowed to depend on �L, �R, and �, and we do
not make this dependence explicit. We will, however, be careful about dependence on
x and y, which is why we introduce the parameter ed .

In this subsection, we will define an event E associated with the curve �, the field
h, the parameters ˇ and u, and several constant-order auxiliary parameters. We will
also record an estimate for P.E/. In the next subsection we will define the eventsEz;j
and the associated objects by replacing h with the conformal image of the restriction
of h to a subdomain and replacing � with the corresponding conformal image of a
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segment of � (see Figure 10 for an illustration of most of the objects defined in this
subsection).

Definition 7.1 (Auxiliary parameters)
The auxiliary parameters are the objects �> e�> 1, ıL; r;pL 2 .0; 1/, a 2 .0; 1=4/,
and �;�L;�F 2M, all chosen in a manner which does not depend on ˇ or u.

The auxiliary parameters will be used in the definition of our events below and
will be chosen in the following manner. In Lemma 7.7, we show that, for a given
choice of r , a, and ed , a certain estimate holds provided that ıL, pL, �, �L, and �F
are chosen sufficiently small, � and e� are chosen sufficiently large, and ˇ is large
enough (depending on all of the auxiliary parameters). In Section 7.4, we make our
choice of r . The parameter a is allowed to remain arbitrary.

We now proceed with the definition of the event E , as outlined in Section 7.1.
Let � be the time reversal of �. We first grow initial segments of � and � in such a
way that the “middle part” of �, between these two segments, looks like an ordinary
SLE� .

Let � (resp., �/ be the first time � (resp., �) hits B� (or1 if no such time exists).
Let Œx�; y��@D be the largest subarc of Œx; y�@D which is not disconnected from the
origin by �
 [ �
 . Note that x� D x and y� D y if � does not hit @D except at its end
points (e.g., if � is an ordinary SLE� ).

Let L be the event that the following occurs.
(1) �;� <1 and �
 (resp., �
 ) is contained in the e�2�-neighborhood of the seg-

ment Œx; 0� (resp., Œy; 0�). Furthermore, � (resp., �) does not exit Be� between
the first time it enters B�=2 and time � (resp., � ).

(2) The harmonic measure from 0 in D n .�
 [ �
 / of each of the two sides of �


and each of the two sides of �
 is at least a.
(3) Let  L W D n .�
 [ �
 /! D be the conformal map with  L.0/ D 0 and

. L/0.0/ > 0. Then . L/�1 maps B1��.ıL/.0/ [ BıL. 
L.�.�/// [

BıL. 
L. �.�/// into Be�.

(4) GŒx�;y��. 
L;�L/ occurs (Definition 2.5).

(5) The conditional probability given �
 [ �
 that the part of � lying between
�.�/ and �.�/ never exits Be� is at least pL.

See the middle panel of Figure 10 for an illustration. The main reason for most of the
conditions in the definition of L is so that the conditions of Lemma C.4 are satisfied,
which will be used in Lemma 7.3 just below. The objects involved in the definition of
L (� , � ,  L, etc.) are used infrequently in the rest of this section.
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LEMMA 7.2
For each ed 2 .0; 1/, e� > 0, and � 2M, it holds for sufficiently small ıL 2 .0; 1/,
�L 2M, and pL 2 .0; 1/ and sufficiently large �> e�> 1, depending only on ed , e�,
and �, that for each a 2 .0; 1=4/ we have P.L/� 1, with implicit constant depending
on ed , �L; �R; �, and the auxiliary parameters but uniform over all choices of end
points x;y with jx � yj � ed .

Proof
This follows from Lemma 2.17. Note that we can apply the Koebe growth theorem
to . L/�1 to find a ıL D ıL.e�;�/ > 0 so that the statement of the lemma holds, no
matter how large we make e�.

We next define the “part” of the definition of E which gives us control of the
derivatives of certain conformal maps. This is the only event in this subsection which
does not occur with constant-order (i.e., ˇ-independent) conditional probability given
the earlier events.

Recalling the auxiliary parameters from Definition 7.1, let eE be the intersection
of L and the event EqIu

ˇ
.�Ia; 1;�/ considered in Section 6, that is, eE is the event that

the following is true.
(1) The event L defined above occurs. Moreover, let � (resp., � ) be the first time

� (resp., �) hits Bˇ (or1 if no such time exists). Then �; � <1.
(2) The conformal map � WD n .�� [ �� /!D with �.xC/D�i , �.y�/D i , and

�.midpoint of Œx; y�@D/D 1 satisfies e�ˇ.qCu/ � j�0.0/j � e�ˇ.q�u/.
(3) The harmonic measure from 0 in D n .�� [ �� / of each of the two sides of ��

and each of the two sides of �� is at least a.
(4) With  L as in condition 3 in the definition of L, the event G 0. L.�� [�� /;�/

occurs (Definition 2.6).
The event eE is illustrated in the middle panel of Figure 10. We now record our esti-
mate for P. eE/.
LEMMA 7.3
There exists u� D u�.q/ 2 .0; 1/ such that, for each u 2 .0;u�� and each ed 2 .0; 1/,
it holds for sufficiently small ıL 2 .0; 1/, �;�L 2M, and pL 2 .0; 1/ and sufficiently
large � > e�, depending only on ed , and all a 2 .0; 1=4/ that the following is true.
There exists ˇ� > 0 (depending on u, ed , and the auxiliary parameters) such that, for
ˇ � ˇ�,

e�ˇ.�
�.q/C��

0
.q/u/ � P.eE/� e�ˇ.��.q/���0 .q/u/; (7.1)

where 
�.q/ and 
�0 .q/ are the exponents from Proposition 6.1 and the implicit con-
stants depend on u, ed , and the auxiliary parameters.
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Due to the Markov property and reversibility of SLE� , Lemma 7.3 is almost
immediate from Lemma 7.2 and Proposition 6.1 if �L D �R D 0. In order to treat the
case of general �L; �R 2 .�2; 0�, we will use an absolute continuity argument based
on the result of Appendix C, since Proposition 6.1 is only proven for �L D �R D 0.

Proof of Lemma 7.3
Let  L WDn.�
 [�
 /!D be the conformal map from condition (3) in the definition
of the event L. Define the curve �0 WD L.� n .�
 [ �


 //. Also let H� WD ¹� n .�
 [
�
 /�Be�º, as in Appendix C. By condition 3 in the definition of L and condition 4
in the definition of eE , we infer that eE �H�.

By conditions (1) and (5) in the definition ofL, this event is contained in the event
S of Lemma C.4. By Lemma C.4, if e� (and hence also�) is chosen sufficiently large,
then the regular conditional law of the curve �0 given �
 [�
 and the eventH� on the
event L is strictly mutually absolutely continuous (SMAC; see Definition C.1) with
respect to the law of a chordal SLE� from  L.�.�// to  L. �.�// in D conditioned
to stay in  L.Be�/, with implicit constants depending only on ed , �L, �R, �, and the
auxiliary parameters. By condition (5) in the definition of L, the same is true of the
regular conditional law of �0 given �
 [�
 on the event L restricted to the eventH�.
By condition (5) in the definition of L, G .�0;�/�H

�.
By condition (2) in the definition of L, j L.�.�// �  L. �.�//j is bounded

below by a positive a-dependent constant on L. By this, Proposition 6.1, and the
absolute continuity considerations in the preceding paragraph, we find that (in the
notation of Proposition 6.1), for an appropriate choice of u� 2 .0; 1/ and a small
enough choice of � 2M, it holds on L that, for each u 2 .0;u�� and c > 0, there
exists ě� D ě�.u; a; c/ > 0 such that, for ě� ě�, the conditional probability of the
event of Proposition 6.1 on L almost surely satisfies

e�
ě.��.q/C��

0
.q/u/ � P

�
E
qIuě .�0Ia; c;�/ j �


 [ �

�
� e�

ě.��.q/���
0
.q/u/: (7.2)

Note that if � is chosen sufficiently small, then EqIuě .�0Ia; c;�/ � H
� by condi-

tion (3) in the definition of L. By the Koebe quarter theorem, we can find C > 0

depending only on � such that on L,

BˇCC � 
L.Bˇ /�Bˇ�C : (7.3)

It is clear from Lemma 2.17, the above absolute continuity statement, and the Markov
property of ordinary SLE� that, for an appropriate choice of c D c.�/ 2 .0; 1/, the
conditional probability of eE given �
 [ �
 and the event EqIu

ˇ�C
.�0Ia; c;�/ and the

conditional probability of EqIu
ˇCC

.�0Ia; c
�1;�/ given �
 [ �
 and the event eE are

each almost surely bounded below by positive deterministic constants depending only
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on ed and the auxiliary parameters. Combining this with (7.2) and Lemma 7.2 yields
the statement of the lemma with ˇ� D ě�CC .

We next define auxiliary flow lines �˙ started from �.�/ which form a “pocket”
surrounding 0 with size of order e�ˇ with uniformly positive probability. The reason
for introducing these flow lines is as follows. Roughly speaking, the part of � inside
D is conditionally independent of the part of �which is outsideD given the flow lines
�˙ (see Lemma 7.4 below). When applied at various scales, this fact will eventually
allow us to get the needed long-range independence for our two-point estimate.

Fix � > 0, to be chosen momentarily, in a manner depending only on �. OneE , let �� and �C be the flow lines of h started from �.�/ with angles � and �� ,
respectively. Note that the flow line with a negative sign has positive angle and vice
versa. This is because a flow line with a negative angle almost surely stays to the right
of �, and a flow line with a positive angle almost surely stays to the left of � (see [37,
Theorem 1.5]).

By examining the boundary data of the field h along � and applying [37, The-
orems 1.1 and 2.4], we find that the conditional law of �� (resp., �C) given � on
the event ¹� <1º is that of a certain SLE�.�/ process from �0.�/ to i in the right
(resp., left) connected component of D n �0, with force points immediately to the left
and right of its starting point and at the end points x and y. The weights of the force
points immediately to the left and right of the starting point are given by

�0 D�
��

�
and �1 D

��

�
� 2; (7.4)

with �0 the force point on the side corresponding to �� (see [37, Section 2.2] for a
discussion and rigorous construction of SLE�.�0I�1/ with force points immediately
to the left and right of the starting point).

By [37, Theorem 1.5(iii)], �˙ almost surely intersect (but do not cross) each
other provided that � < 
�=.4��/. By [37, Remark 5.3], �˙ almost surely do not hit
�� provided that ���=� � �=2 � 2. Hence, we can choose � > 0 sufficiently small,
depending only on � in such a way that �˙ almost surely intersect each other and
almost surely do not hit �� . We henceforth assume that � has been chosen in this
manner.

If there is a connected component of D n .�� [ �C/ lying between �� and �C

which contains 0, we take D to be this connected component, and we set D D ;
otherwise. We also let 
 WD!D be the conformal map with 
.0/D 0 and 
 0.0/ > 0.

The next piece in the definition of our event E is a list of regularity conditions
for the flow lines �˙ which ensures that the pocket D they form has a roughly round
shape. Let tC be the first time that �C hits �� after the first time it exits the disk of
radius e�ˇ�1 centered at �.�/. Let t� be the time such that ��.t�/ D �C.tC/. Let
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b D ��.t�/D �C.tC/, and let b be the last intersection point of �˙ before hitting b,
so that if D ¤ ;, then b and b are the first and last points of @D hit by �˙. Also letet˙ be the first exit times of �˙ from the annulus Bˇ�� nBˇC�. Let F be the event
that the following occurs.
(1) eE occurs, tC �etC, t� �et�, D ¤;, and b … �� .
(2) Let  WD n .�� [ �� / be the conformal map with  .0/D 0 and  0.0/ > 0. Let

xF D  .�.�// and yF D  .�. �//. Then j .b/� xF j and j .b/� yF j are
each at most r .

(3) Each point of  ..�C/t
C
/ (resp.,  ..��/t

�
/) lies within distance r of

ŒxF ; yF �@D (resp., ŒyF ; xF �@D).
(4) G 0. ..�C/t

C
[ .��/t

�
/;�F / occurs (Definition 2.6).

See the right panel in Figure 10 for an illustration of the event F .
The main reason for our interest in the domain D is contained in the following

lemma, which will be a key tool in our two-point estimate.

LEMMA 7.4
Recall the pocket D formed by the auxiliary flow lines �˙ and its two marked bound-
ary points b and b. On the event ¹D ¤ ;º, if we condition on D and hjDnD , then the
joint conditional law of hjD and the segment of � contained inD is that of a GFF with
Dirichlet boundary data determined by .D;b; b/ and its zero-angle flow line from b

to b. In particular, the conditional law of this segment of � given D and hjDnD is that
of a chordal SLE�.�1I�1/ in D from b to b, with �1 as in (7.4).

Proof
By [37, Theorem 1.1] and since � is a stopping time for �, the set

A WD �� [ �� [ �C

is a local set for h in the sense of [54, Section 3.3], that is, the conditional law of
hjDnA given A and hjA is that of an independent zero-boundary GFF in each con-
nected component of D nA plus a harmonic function determined by .hjDnA;A/. This
harmonic function is described explicitly in [37, Theorem 1.1]: in particular, the con-
ditional law of hjD given .A;hjDnA/ on the event ¹D ¤ ;º is that of a GFF on D
with boundary data �� ��� � �winding on Œb; b�@D and ��C ��� � �winding on
Œb; b�@D , where � and � are as in Section 2.5 and the term “winding” has the meaning
of [37, Figure 1.9].

The domain D is one of the connected components of D nA and the field hjDnD
is determined by A, hjA, and the restrictions of h to the other connected components
of D n A. Since A is a local set for h and is almost surely determined by h (by [37,
Theorem 1.2]), we infer that A is almost surely determined by D and hjDnA. Hence,
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we get the same conditional law for hjD if we instead condition on D and hjDnD .
The statement about the conditional law of the segment of � contained in D follows
easily from our description of the conditional law of hjD and [37, Theorems 1.1
and 2.4].

To complete the definition of our event E , we need one last regularity condition
to rule out pathological behavior of the segments of � and � before they hit D. Let
�� (resp., ��) be the time at which � (resp., �) hits b (resp., b). Note that these times
are almost surely finite if F occurs, since �� and �C almost surely lie to the left and
right of �, respectively. Let E be the event that the following occurs.
(1) F occurs.
(2) With  as in condition (2) in the definition of F ,  .�0.Œ�; ���// (resp.,

 .�0.Œ� ; �
��/) is contained in the disk of radius 2r centered at xF (resp.,

yF ; with notation as in condition (2) in the definition of F ).

Remark 7.5
By [37, Theorem 1.5] � cannot cross �˙. By combining this with condition (3) in the
definition of L, condition (4) in the definition of eE , and condition (2) in the definition
of E , it follows that the segment of � between �.�/ and �.�/ is contained in Be� on
the event E .

We now estimate the conditional probability of E given the second intermediate
event eE defined above.

LEMMA 7.6
For each r 2 .0; 1=2/, it holds for sufficiently small �F 2M and sufficiently large
�> 1, depending only on r , a, and ed , that P.E j eE/� 1, with the implicit constant
depending only on ed and the auxiliary parameters.

Proof
Let �F be the image under  of the part of � between �.�/ and �. �/. Note that the
distance between the end points xF and yF of �F is uniformly positive on eE by
condition (3) in the definition of eE .

Leter 2 .0; r2/, and let U be theer-neighborhood of the line segment from xF to
yF . Also let �0F 2M, and let S be the event that �F � U , G 0.�F ;�0F / occurs, and
the time reversal of �F does not enter Ber.yF / after leaving B2er.yF /.

The absolute continuity considerations in the proof of Lemma 7.3 (still applied
at times � and � ) show that the conditional law of �F given �� [ �� on the event eE ,
restricted to the event S , is SMAC (see Definition C.1) with respect to the law of a
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chordal SLE� from xF to yF in D, with implicit constants depending only on ed , �L,
�R, �, and the auxiliary parameters. By Lemma 2.17, we infer that P.S j eE/� 1.

The conditional law of  .�C/ given � on the event eE \ S is that of an SLE�.�/
process in the right connected component of D n �F from xF to  .i�/; it has force
points with weights (7.4) on either side of its starting point and it has two other
boundary force points lying at uniformly positive distance from its starting point and
end point. (This distance is uniformly positive by condition (3) in the definition ofeE .) Similar statements hold with � in place of C and “left” in place of “right.” By
Lemma 2.18 and the Beurling estimate (to make sure that  .BˇC�/ covers most of
D) we infer that P.E j eE \ S/� 1 provided that �F is chosen sufficiently small and
�> 1 is chosen sufficiently large, in a manner depending only on r .5 Sinceer < r , if
F \ eE \ S occurs, then so does E . We conclude by observing that

P.E j eE/� P.E \ S j eE/D P.E j eE \ S/P.S j eE/:
By combining Lemmas 7.3 and 7.6, we infer the following one-point estimate for

the event E .

LEMMA 7.7
Let ed 2 .0; 1/ and a; r 2 .0; 1=4/. There exists u� D u�.q/ 2 .0; 1/ such that the fol-
lowing is true for each u 2 .0;u��. If we choose ıL, pL, �, �L, and �F sufficiently
small and �> e� sufficiently large in a manner depending only on ed , a, and r , then
we can find ˇ�.u/ > 0 (depending on u, ed , and the auxiliary parameters) such that,
for ˇ � ˇ�.u/,

e�ˇ.�
�.q/C��

0
.q/u/ � P.E/� e�ˇ.�

�.q/���
0
.q/u/

with the implicit constants depending only on u, ed , and the auxiliary parameters.

The last lemma in this subsection will be used to circumvent the fact that the
laws of our objects will not be exactly the same at every scale. To explain this, we
observe that Lemma 7.4 gives the objects defined in this subsection a certain self-
similarity property: if E occurs and we replace .h; �/ with the pushforward under the
map 
 WD! D of .hjD; � n .��

�
[ ��

�

/, then we end up in the same situation we
started with but with .�1; �1/ in place of .�L; �R/ and a possibly different choice of

5To get that the flow lines �˙ intersect one another where we want them to with uniformly positive probability,
we can further condition on a second pair of flow lines e�˙ with the same angles as �˙ , started at a point near
where we want the intersection to occur. We then apply Lemma 2.18 to the conditional law of �˙ given e�˙
and �, and we observe that �˙ merge with e�˙ upon intersecting (see [37, Theorem 1.5]) and that e�˙ almost
surely intersect one another at points arbitrarily close to their starting points. See [46] for several examples of
similar arguments.
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start and end points for the curve. If we start with �L D �R D �1, then we can remove
the lack of stationarity coming from the change of �-values. The asymmetry coming
from the change of start and end points is nontrivial and is dealt with in the following
lemma. We note that, by rotational invariance, we only care about arg.y=x/, not the
particular values of x and y.

LEMMA 7.8
Let rH > 0, and let H DH.a; rH / be the event that the following is true.
(1) With � as in condition (1) in the definition of eE , we have � <1 and the

harmonic measure from 0 in D n �� of each side of �� is at least a.
(2) Let H WDn�� !D be the conformal map with H .0/D 0 and H .�.�//D

�i . Then each point of  H .@D/ lies at distance at least rH from @DnBa.�i/.

Recalling the map 
 WD!D which fixes 0, let x0 WD 
.b/ and y0 WD 
.b/, so that x0

and y0 are the start and end points of the image under 
 of the segment of � contained
inD. Suppose also that we are given two choices of start/end point pairs .x1; y1/ and
.x2; y2/ for � with jx1 � y1j; jx2 � y2j � ed , and for i 2 ¹1; 2º, denote the objects
defined above with .xi ; yi / in place of .x; y/ with a subscript i . The conditional law
of arg.y01=x

0
1/ given H1 and the conditional law of arg.y02=x

0
2/ given H2 are SMAC

(see Definition C.1), with the implicit constant depending only on ed , a, and rH (not
on ˇ, u, or the particular choice of .x1; y1/ and .x2; y2/).

With H the event of Lemma 7.8, it follows from condition (3) in the definition
of eE , condition (4) in the definition of F , and the Schwarz lemma applied to the
map  ı . H /�1 WD n H . �� /!D that, for any choice of the auxiliary parameters
a 2 .0; 1=4/ and �F 2M, there is an rH D rH .a;�F / for which E �H .

Proof of Lemma 7.8
We observe that arg.y0=x0/ is equal to 2
 times the harmonic measure from 0 of
@D\�C. Hence, we need to prove an absolute continuity statement for this harmonic
measure.

The conditional law of the curve  H .��/ (resp.,  H .�C/) given �� is that of a
certain chordal SLE�.�/ (resp., SLE�.�/) from �i to  H .i/ in D with force points
of weight �1 (as in (7.4)) and ��=� located on either side of �i and additional force
points located at  H .x�/ and  H .xC/. By condition (1) in the definition of H , on
H each of these additional force points lies at distance at least 2a from �i .

Let U be the set of points in D which lie at distance at least rH from @DnBa.�i/,
and let tU;˙ be the exit time of �˙ from U . By [46, Lemma 2.8] (applied once to ��

and once to the conditional law of �C given ��), we infer that, in the notation of the
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lemma, (1) the joint conditional law of ..��1 /
t
U;�
1 ; .�C1 /

t
U;C
1 / given ��11 on the event

that condition (2) in the definition of H1 holds and (2) the joint conditional law of

..��2 /
t
U;�
2 ; .�C2 /

t
U;C
2 / given ��22 on the event that condition (2) in the definition of

H2 holds are SMAC, with implicit constants depending only on ed , a, and rH . This
immediately implies the statement of the lemma.

7.3. Events for the perfect points
Recall the setting described at the beginning of Section 7.1: h is a GFF on D with
Dirichlet boundary data chosen so that its 0-angle flow line � from �i to i is an
ordinary SLE� . Fix auxiliary parameters r; a (to be chosen later), and assume that
the other auxiliary parameters from Definition 7.1 are chosen in such a way that the
conclusion of Lemma 7.7 holds for this choice of r and a.

Fix d 2 .0; 1/; we will work on Bd .0/ to avoid pathologies coming from the
boundary. Also fix sequences of positive numbers ˇj !1 and uj ! 0 to be chosen
in Lemma 7.10 just below; we note that, in particular, ˇj will grow like logj .

In this subsection we will define the main events and objects we consider in the
rest of this section using the construction of Section 7.2 and induction over scales of
size e�ˇj (see Figure 11 for an illustration of the objects defined in this subsection
and Section 7.7 for an index of these objects).

7.3.1. Inductive definitions of events
Here we will use the events of Section 7.2 with � replaced by a conformal image of
an appropriate segment of � to define the following objects for z 2Bd .0/ and j 2N:
� events: Lz;j , eEz;j , Fz;j , and Ez;j ;
� points: xz;j , yz;j , x�z;j , y�z;j , xFz;1, yFz;1, bz;j , and bz;j ;
� conformal maps:  Lz;j , �z;j ,  z;j , and 
z;j ;
� random times: �z;j , �z;j , �z;j , �j;z , ��z;1, and ��z;j ;
� curves: �z;j and �˙z;j ;
� fields: hz;j ;
� domains: Dz;j .
First, we consider the case in which j D 1. For z 2 Bd .0/, let fz;1 be the conformal
automorphism of D satisfying fz;1.z/D 0 and fz;1.�i/D �i . Let �z;1 WD fz;1.�/,
and let xz;1 WD �i D fz;1.�i/ and yz;1 WD fz;1.i/ be its start and and end points.
Also define the field hz;1 WD hf ı f �1z;1 � � arg..f �1z;1 /

0/, where �D 2=
p
� �
p
�=2 is

the imaginary geometry parameter.
Define the event Ez;1 and the associated objects as in Section 7.2 with ˇ D ˇ1,

u D u1, �z;1 in place of �, and hz;1 in place of h, and denote these objects with a
subscript z; 1. We recall, in particular, thatDz;1 is the domain formed by the auxiliary
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flow lines �˙z;1, with marked points bz;1; bz;1 2 @Dz;1, and we let 
z;1 WDz;1!D be
the conformal map with 
z;1.0/D 0 and 
 0z;1.0/ > 0.

Now suppose that j � 2 and that our objects have been defined for all positive
integers l � j �1. IfDz;j�1 D;, we take all of the objects defined below to be equal
to a graveyard point. Otherwise, let �z;j be the image under 
z;j�1 of the segment of
�z;j�1 contained inDz;j�1 (equivalently, the segment of �z;j�1 from �z;j�1.�z;j�1/

to �. �z;j�1/). Then xz;j D 
z;j�1.bz;j�1/ and yz;j D 
z;j�1. bz;j�1/ are the initial
and terminal points of �z;j . Define the field

hz;j WD hz;j�1 ı 

�1
z;j�1 � � arg.
�1z;j�1/

0:

Lemma 7.4 implies that hz;j is a GFF with Dirichlet boundary data, �z;j is its 0-angle
flow line from �i to yz;j , and �z;j is an SLE�.�1I�1/ with force points located on
either side of �i .

Define the event Ez;j and the associated objects as in Section 7.2 with ˇ D ˇj ,
u D uj , �z;j in place of �, and hz;j in place of h, and denote these objects by a
subscript z; j .

Remark 7.9
There exists ed 2 .0; 1/, depending only on d , such that if z 2 Bd .0/, then each con-
formal automorphism D!D taking z to 0 takes �i and i to a point of @D at distance
at least ed from each other, so jxz;1 � yz;1j � ed . By conditions (2) and (3) in the def-
inition of eEz;j and condition (3) in the definition of Fz;j , after possibly shrinking ed
(in a manner depending only on r and a) we can arrange that also jxz;j � yz;j j � ed
for j � 2.

7.3.2. Objects associated with the full curve �
Let

En.z/ WD

n\
jD1

Ez;j : (7.5)

Also define the � -algebra

Fz;n WD �.�z;j jŒ0;��
z;j
�; �z;j jŒ0;��z;j �

; ��z;j jŒ0;t�z;j �; �
C
z;j jŒ0;tC

z;j
�
W j � n/ (7.6)

so that En.z/ 2 Fz;n.
We will also need to define a few additional objects associated with the full

curve �, which are denoted with a superscript f. (Recall the notational convention
described at the beginning of Section 7.1.) For z; j 2N, define the conformal map


 f
z;j WD 
z;j ı � � � ı 
z;1 ı fz;1: (7.7)
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Also set 
z;0 WD fz;1. Then 
 f
z;j WD

f
z;j ! D, for Df

z;j a domain in D containing z

and 
 f
z;j .z/D 0. For z 2Bd .0/ and j 2N, let � f

z;j and � f;�
z;j (resp., � f;�

z;j and � f;�
z;j ) be

the times for � (resp., �) such that


 f
z;j�1

�
�.� f

z;j /
�
D �z;j .�z;j / and

(7.8)
. z;j ı 


f
z;j�1/

�
�.� f;�

z;j /
�
D �z;j .�

�
z;j /

(resp., the analogous relation holds for � and �z;j ).

Let �f;˙
z;j be the flow lines of h with angles �� started from �.�z;j /. Then �f;˙

z;j

trace @Df
z;j , and if we let t f;˙z;j be the time at which �f;˙

z;j finishes tracing @Df
z;j , then

.�˙z;j /
t˙
z;j D 
 f

z;j�1

�
.�f;˙
z;j /

t f
;˙
z;j
�
: (7.9)

7.3.3. Choosing ˇj and uj
We now choose the sequences ˇj !1 and uj ! 0 which are used in place of ˇ and
u, respectively, in the definitions of the events in Section 7.2. Lemma 7.7 (applied withed as in Remark 7.9) tells us that, for each u 2 .0; 1/, there exists ˇ�.u/D ˇ�.u;ed/ >
0 such that if we are in the setting of Section 7.2 with ˇ � ˇ�.u/, either �L D �R D �1

or �L D �R D 0, and jx � yj � ed , then

C�1u e�ˇ.�
�.q/C��

0
.q/u/ � P.E/� Cue�ˇ.�

�.q/���
0
.q/u/; (7.10)

where, for u > 0, Cu is a constant which is allowed to depend on u, ed , and the
auxiliary parameters but not on ˇ or the particular choice of x and y. We now choose
ˇj !1 and uj ! 0 in such a way that (7.10) remains true with ˇj in place of ˇ
and uj in place of u.

LEMMA 7.10
For each choice of ed (which we recall from Remark 7.9 depends on d ) and each
choice of the auxiliary parameters, there exists ˇ0 > 0 such that, with ˇj D logj C
ˇ0, one can choose .uj /j2N such that the following is true.
(1) uj decreases to 0 as j !1.
(2) For each j 2N, we have ˇj � ˇ�.uj / so that (7.10) holds with ˇj in place of

ˇ and uj in place of u.
(3) For each j 2N, Cuj � e

ˇjuj �
�
0
.q/.

(4) ˇjuj !1 as j !1.

Remark 7.11
The reason we allow ˇ and u to vary here is that we eventually want to get a lower
bound for the Hausdorff dimension of the sets ‚s.D�/ and e‚s.D�/. If we fixed u,
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we would instead get the Hausdorff dimension of the sets where the limits in the
definitions of ‚s.D�/ and e‚s.D�/ are between s � u and s C u. In order to allow
u to vary, we also need to allow ˇ to vary, for otherwise the constants Cu in (7.10)
would be larger than eˇ when u is very small. The idea in Lemma 7.10 below is to let
uj ! 0 and ˇj !1 slowly enough that our estimates are not much different than
they would be with fixed ˇ and u.

Proof of Lemma 7.10
Fix u0 2 .0; 1/. Choose ˇ0 much larger than � _ 
�0 .q/

�1 logCu0 and large enough
that (7.10) holds with ˇ0 in place of ˇ and u0 in place of u. Set ˇj D logj C ˇ0
for this choice of ˇ0. We now inductively choose .uj /j2N. Start with a sequence
.u�
l
/l2N � .0;u0/ which decreases to 0. Let j1 be the least positive integer j such

that ˇj � ˇ�.u�1/, Cu�1 � e
ˇju
�
1
��
0
.q/, and ˇju�1 � 1. Such a j exists since ˇj !

1 as j !1. Set uj D u0 for j 2 ¹1; : : : ; j1º. Inductively, suppose that l � 1 and
j1; : : : ; jl�1 and uj for j � jl�1 have been defined. Let jl be the least integer j �
jl�1 C 1 such that ˇj � u�l , Cu�

l
� eˇju

�
l
��
0
.q/, and ˇju�l � l . Let uj D u�l�1 for

j 2 ¹jl�1C 1; : : : ; jlº. It is clear that conditions (2), (3), and (4) hold for this choice
of .uj /.

We henceforth assume that the sequences .ˇj / and .uj / are chosen as in Lemma
7.10. We also define

ˇm WD

mX
jD1

ˇj and um WD

mX
jD1

ˇjuj ; 8m 2N: (7.11)

Due to our choice of the ˇj ’s and uj ’s, we obtain the following estimate for the
probabilities of the events En.z/.

LEMMA 7.12
With En.z/ as in (7.5), it holds for each n 2N that

e�ˇn�
�.q/�2��

0
.q/un � P

�
En.z/

�
� e�ˇn�

�.q/C2��
0
.q/un (7.12)

with the implicit constants independent of n and uniform for z 2 Bd .0/. The same
is true if we replace .ˇj ; uj /j2N by .ˇjCm; ujCm/j2N for any m 2 N (both in the
definition of En.z/ and in (7.12)), with the implicit constants unchanged.

Proof
By Lemma 7.4, (7.10), and Remark 7.9, for each j 2N,

C�1uj e
�ˇj .�

�.q/C��
0
.q/uj / � P

�
Ez;j

ˇ̌
Ej�1.z/

�
� Cuj e

�ˇj .�
�.q/���

0
.q/uj /:
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The estimate (7.12) follows by multiplying this over all j 2 ¹1; : : : ; nº and applying
condition 3 in Lemma 7.10.

7.4. Analytic properties
In this subsection we study some analytic properties of the events of Section 7.3. The
results of this subsection are needed to analyze the correlation structure of our events
in the next subsection and to show that the perfect points are in fact contained in the
sets whose Hausdorff dimension we want to compute in Section 8. The main result of
this subsection is the following proposition.

LEMMA 7.13
Assume we are in the setting of Section 7.3, and recall in particular the event En.z/
for n 2 N and z 2 Bd .0/ from (7.5). On En.z/ let ˆf

z;n be the conformal map from

D n .��
f;�
z;n [ ��

f;�
z;n/ to D which takes �iC to �i , i� to i , and 1 to 1. We can choose

the parameter r sufficiently small, in a manner depending only on a, and ˇ0 (and
hence every ˇj ) sufficiently large, in a manner which does not depend on .uj / and
is uniform for z 2 Bd .0/, in such a way that the following holds almost surely on
En.z/, with all implicit constants deterministic, independent of n, and uniform for
z 2Bd .0/.
(1) We have

e�ˇnq�2un �
ˇ̌
.ˆf

z;n/
0.z/

ˇ̌
� e�ˇnqC2un :

(2) There is a constant �� > 0, independent of n and uniform for z 2Bd .0/, such
that

e�ˇn���n � dist.z; ��
f;�
z;n [ ��

f;�
z;n/� e�ˇnC��n:

(3) We have ˇ̌
�.� f;�

z;n/� z
ˇ̌


ˇ̌
�. � f;�

z;n/� z
ˇ̌

 dist.z; ��

f;�
z;n [ ��

f;�
z;n/:

(4) We have

e�ˇn���n � dist.z; @Df
z;n/� diamDf

z;n � e
�ˇnC��n:

Lemma 7.13 is the only statement from this subsection which will be needed
in later sections, and the proof is a rather technical complex analysis argument. The
reader may wish to skip the rest of this subsection to see the more probabilistic aspects
of the proofs of our main results.

It may seem at first glance that Lemma 7.13 should be a simple consequence of
the definitions in Section 7.3 and the chain rule. This is not the case, however, as
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at each stage in our construction we restrict to the domain Dz;j , so ˆf
z;n (which is

defined on all of D n .��
f;�
z;n [ ��

f;�
z;n/) cannot be expressed as a composition of maps

defined in Section 7.3. To prove the lemma, we will express ˆf
z;n as a composition of

maps corresponding to scales j D 1; : : : ; n (see, in particular, (7.14)) and then argue
that these maps are in some sense comparable to the maps appearing in Section 7.3.

To prove Lemma 7.13 we will need to compare the derivatives of several different
maps. To this end, we will define the following objects:
� conformal maps:  f

z;j , e�z;j , b�z;j , fz;j , and gz;j ;
� random times:e� �z;j ande� �z;j ;
� points:exz;j and eyz;j ;
� curves:e�z;j .
For the definitions, we recall the notational conventions discussed at the beginning of
Section 7.1. We assume we are working on the eventEj .z/ for all of these definitions.

For j 2 N, let  f
z;j be the conformal map from D n .��

f;�
z;j [ ��

f;�
z;j / to D which

fixes 0 and whose derivative at 0 has the same argument as .ˆf
z;j /
0.z/. (The latter

map is defined in Lemma 7.13.)
For j D 1, the conformal automorphism fz;1 taking z to 0 has already been

defined in Section 7.2. For j � 2, we let fz;j W D! D be the conformal automor-
phism which takes ˆf

z;j�1.z/ to 0 with f 0z;j .ˆ
f
z;j�1.z// > 0. Observe that  f

z;j�1 D

fz;j ıˆ
f
z;j�1. (Here we take ˆf

z;0 to be the identity map and  f
z;0 D fz;1 in the case

in which j D 1.)
For j � 1, lete�z;j be the image under  f

z;j�1 of the part of � between �.� f;�
z;j�1/

and �. � f;�
z;j�1/. Note thate�z;j is a conformal image of the same part of the curve � as

�z;j , but the conformal map used to gete�z;j is defined on D n .��
f;�
z;j [ ��

f;�
z;j / rather

than the pocketDf
z;j . Lete� �z;j ande��z;j be the times fore�z;j and its time reversale�z;j

such that

 f
z;j

�
�.� f;�

z;j /
�
De�z;j .e�z;j �/ and  f

z;j

�
�. � f;�

z;j /
�
De�z;j .e��z;j /:

Let exz;j and eyz;j be the start and end points for e�z;j . Let e�z;j W D n .e�e� �z;jz;j [e�e�z;jz;j /! D which takes exCz;j to �i , ey�z;j to i , and the midpoint of Œexz;j ;eyz;j �@D to
1. Let gz;j WD! D be the conformal automorphism taking .e�z;j ı fz;j /.b/ to b for
b D�iC; i�; 1. Let

b�z;j WD gz;j ıe�z;j ı fz;j WD n .e�e��z;jz;j [e�e�z;jz;j /!D; (7.13)

and observe that (with ˆf
z;j as in Lemma 7.13)

ˆf
z;j D

b�z;j ı � � � ıb�z;1: (7.14)
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See Figure 12 for an illustration of these maps in the case in which j D 2 (which has
all of the features of the general case).

The following straightforward lemma tells us that, on En.z/, the derivatives at 0

of the conformal maps fromDf
z;n to D and from Dn .��

f;�
z;n
z;n [�

� f;�
z;n
z;n / to D which take z

to 0 are comparable. (Equivalently, by the Koebe quarter theorem, the distance from

z to @Df
z;n is comparable to the distance from z to �

� f;�
z;n
z;n [ �

� f;�
z;n
z;n .)

LEMMA 7.14
If ˇ0 is chosen sufficiently large, independently of everything else, then on the event
En.z/, ˇ̌

.
 f
z;n/
0.z/

ˇ̌


ˇ̌
. f
z;n/
0.z/

ˇ̌
; (7.15)

with the implicit constants independent of n and uniform for z 2Bd .0/.

Proof
Assume we are working on the event En.z/. Let b
z;n�1 be the conformal map from
 f
z;n.D

f
z;n�1/ to D with b
z;n�1.0/D 0 and b
 0z;n�1.0/ > 0. (In the case in which nD

1, we take b
z;n�1 to be the identity.) Let b
�z;n be the conformal map from .b
z;n�1 ı
 f
z;n/.D

f
z;n/ to D with b
�z;n.0/D 0 and arg.b
�z;n/0.0/ chosen in such a way that


 f
z;n Db
�z;n ıb
z;n�1 ı f

z;n: (7.16)

By the Beurling estimate and [23, Exercise 2.7] the diameters of the connected com-
ponents of D n f

z;n.D
f
z;n�1/ each tend uniformly to 0 as ˇn!1 (and hence also as

ˇ0!1). Therefore, if ˇ0 is chosen sufficiently large, then j.b
z;n�1/0.0/j 
 1.
Let  z;n W D n .�

�z;n
z;n [ �

�z;n
z;n /! D be as in condition (2) in the definition of

Fz;n. The set .b
z;n�1 ı  f
z;n/.@D

f
z;n/ is the image of  z;n.@Dz;n/ under a confor-

mal map which fixes 0 and maps the complement of the set  z;n.�z;1.Œ�z;n; ��z;n�//[
 z;n. �z;n.Œ�z;n; �

�
z;n�// to D. By condition (2) in the definition of Ez;n, the distance

from 0 to .b
z;n�1ı f
z;n/.@D

f
z;n/ is proportional to the distance from 0 to z;n.@Dz;n/.

By condition (1) in the definition of Fz;n, this distance is 
 1. Consequently,
j.b
�z;n/0.0/j 
 1, so (7.15) follows from (7.16).

LEMMA 7.15
Let 	 2 .0; a=100/. If the auxiliary parameter r is at most some constant depending
only on a and 	 and if ˇ0 is chosen sufficiently large (in a manner which does not
depend on .uj / and is uniform for z 2 Bd .0/), then for any n 2 N and any subarc
I of Œexz;nC1;eyz;nC1�@D lying at distance at least 	 from exz;nC1 and eyz;nC1, the mape�z;nC1 is Lipschitz on I and e��1z;nC1 is Lipschitz on e�z;nC1.I / on the event En.z/
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Figure 13. An illustration of the maps used in the proof of Lemma 7.15. In order to control the
distance frome�z;nC1 to an arc on the right boundary of the disk, we comparee�z;nC1 to the
curve ��z;nC1 and then to the curve �Fz;n, which is the image under  z;n of the part of �z;n

between �z;n.�z;n/ and �z;n. �z;n/. The distance from the last curve to an appropriate arc of the
right boundary is bounded below by condition (4) in the definition of Fz;n.

with Lipschitz constants independent of .ˇj / and .uj / and uniform for z 2 Bd .0/
and n 2N.

Proof
See Figure 13 for an illustration of the argument. Throughout, we work on the event
En.z/.

Let A WD f
z;n..�

f;C
z;n/

t
C
z;n/, where we recall that �f;C

z;n is the stage-n right auxiliary
flow line for h. Then A disconnectse�z;nC1 from I in @D. We claim that if r is chosen
sufficiently small, then there is a constant ı > 0, depending only on 	, d , and the
auxiliary parameters from Definition 7.1, such that, for large enough ˇ0,

En.z/�
®
dist.A; I /� ı

¯
: (7.17)

Given the claim, the statement of the lemma follows from Lemma 2.8 and the fact thate�z;nC1 lies to the left of A due to the monotonicity of flow lines (see [37, Theorem
1.5]).

Let �z;n be a conformal map from the connected component of Dn.�
��z;n
z;n [�

��z;n
z;n /

containing 1 on its boundary to D which fixes 0. This map is defined only up to a
rotation, which we will specify shortly. Let ��z;nC1 be the image under  �z;n of the
part of �z;n between �z;n.��z;n/ and �z;n. �

�
z;n/. We can choose the normalization for

 �z;n in such a way that

��z;nC1 Db
z;n�1.e�z;nC1/;
with b
z;n�1 as in the proof of Lemma 7.14.

By condition (3) in the definition of eEz;n and condition (2) in the definition of
Ez;n, the set D n f

z;n.D
f
z;n�1/ lies at distance at least a positive constant depending
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only on a fromexz;n and eyz;n on En.z/. Since the diameters of the connected compo-
nents of D n f

z;n.D
f
z;n�1/ and @D each tend to 0 uniformly as ˇn!1 (by the argu-

ment of Lemma 7.14), the mapb
�1z;n�1 is nearly constant nearexz;n and eyz;n if ˇ0 (and
hence also ˇn) is sufficiently large. By the Schwarz lemma,b
�1z;n�1 increases distances
to @D. Hence, the distance from A to I is at least an n-independent constant times
the distance from bA to I if ˇn is chosen sufficiently large, where bA WD b
z;n�1.A/.
Hence, it is enough to prove (7.17) with bA in place of A.

Let I 0 � I be a slightly larger arc. By condition (3) in the definition of eEz;n,
condition (2) in the definition of Ez;n, and a harmonic measure estimate, the distance

from bA to I is � the distance from  z;n..�
C
z;n/

t
C
z;n/ to I 0 if r is chosen sufficiently

small, depending only on a and 	, where  z;n is as in the definition of Fz;n. We
conclude by applying condition (4) in the definition of Fz;n.

We can now get an estimate for the derivatives of our �-type conformal maps
(which, recall, are specified by the images of three boundary points). Iterating this
estimate will eventually lead to Lemma 7.13.

LEMMA 7.16
If the auxiliary parameter r in the definition of Ez;n is at most some universal con-
stant, then on En.z/,

e�ˇn.qCun/ �
ˇ̌
�0.w/

ˇ̌
� e�ˇn.q�un/; (7.18)

where the pair .�;w/ is any one of .�z;n; 0/, .e�z;n; 0/, or .b�z;n;ˆf
z;n�1.z//. The

implicit constants are independent of n and uniform for z 2Bd .0/.

Proof
By condition (2) in the definition of eEz;n, the statement of the lemma is true for
.�;w/D .�z;n; 0/. We will now transfer the estimate (7.18) from �z;n to e�z;n to b�z;n.
This latter map is our primary interest, mostly because of (7.14). Throughout, we
assume that En.z/ occurs and require all implicit constants to be independent of n
and uniform for z 2Bd .0/.

Let ��z;n be the conformal map from the connected component of D n .�
��z;n
z;n [

�
��z;n
z;n / containing 0 to D which takes .x�z;n/

C to �i , .y�z;n/
� to i , and the midpoint of

Œx�z;n; y
�
z;n�@D to 1. Intuitively, ��z;n is a slight perturbation of �z;n (which is defined

in the same manner but with �z;n and �z;n in place of ��z;n and ��z;n). It is easily seen
from condition (2) in the definition of Ez;n that (7.18) for .�z;n; 0/ implies (7.18) for
.��z;n; 0/.

To transfer from ��z;n to e�z;n, we apply Lemma B.1 to find that, for any arc
I � Œx�z;n; y

�
z;n�@D with length 
 1,
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 dist.0;e�e��z;nz;n [e�e��z;nz;n /
�1 hm0

�
Œexz;n;eyz;n�@DID n .e�e��z;nz;n [e�e��z;nz;n /

�
and (7.19)ˇ̌
.��z;n/

0.0/
ˇ̌

 dist.0; �

��z;n
z;n [ �

��z;n
z;n /

�1 hm0
�
I ID n .�

��z;n
z;n [ �

��z;n
z;n /

�
:

By Lemma 7.14 (applied with n� 1 in place of n) and the Koebe quarter theorem,

dist.0;e�e��z;nz;n [e�e��z;nz;n /
 dist
�
0; .�

��z;n
z;n [ �

��z;n
z;n /

�
(7.20)

with the implicit constant independent of n and uniform for z 2 Bd .0/. Moreover,
it is easily seen from condition 3 in the definition of Fz;n�1 that the harmonic mea-
sure terms in (7.19) are likewise proportional. (Here we recall that Œx�z;n; y

�
z;n�@D D


 f
z;n�1.�

f;C
z;n�1 \D

f
z;n�1/.) Thus, we obtain (7.18) for e�z;n from (7.18) for ��z;n.

To transfer the estimate to b�z;n, recall (7.13) and writeˇ̌b�0z;n�ˆf
z;n�1.z/

�ˇ̌
D
ˇ̌
g0z;n

�e�z;n.0/�ˇ̌ˇ̌e�0z;n.0/ˇ̌ˇ̌f 0z;n�ˆf
z;n�1.z/

�ˇ̌
; (7.21)

where we take ˆf
z;0 to be the identity map in the case nD 0. By condition (3) in the

definition of eEn�1, we can find 	 > 0 depending only on a such that fz;n.Œ�i; i �@D/

lies at distance at least 	 fromexz;n andeyz;n onEn�1.z/. By Lemma 7.15, onEn�1.z/,
it holds that e�z;n distorts the distances between points in fz;n.Œ�i; i �@D/ by at most a
constant factor. (Here we use that z 2 Bd .0/ in the case in which nD 1.) The maps
gz;n and f �1z;n are two conformal automorphisms of D, and each takes three points in
Œ�i; i �@D (which lie at uniformly positive distance from˙i ) to �i , i , and 1. Since the
distances among the marked points for these two conformal maps differ by a constant
factor, it follows easily that ˇ̌

g0z;n.w1/
ˇ̌


ˇ̌
.f �1z;n /

0.w2/
ˇ̌

for any points w1 and w2 in the left half of D. By combining this with (7.21) and the
estimate (7.18) for e�z;n, we conclude.

Proof of Lemma 7.13
Throughout, we require all implicit constants to be independent of n and uniform for
z 2 Bd .0/. Assume En.z/ occurs and that r and ˇ0 have been chosen so that the
conclusion of Lemma 7.16 holds. Assertion (1) is immediate from Lemma 7.16 and
the relation (7.14). Note that we can absorb the implicit constants in (7.18) into an
additional factor of eun due to Lemma 7.10(4).

To prove assertion (2), we induct on n. The case n D 1 is immediate from the
definitions of the events. Now suppose that n � 2 and assertion (2) has been proven



ALMOST SURE MULTIFRACTAL SPECTRUM OF SLE 1197

with n replaced by n� 1. Since . f
z;n�1/

�1 maps D n .e�e� �z;nz;n [e�e� �z;nz;n / to D n .��
f;�
z;n [

��
f;�
z;n/ and fixes 0, the Koebe quarter theorem implies that

dist.z; ��
f;�
z;n [ ��

f;�
z;n/


ˇ̌�
. f
z;n�1/

�1
�0
.0/
ˇ̌
dist.0;e�e� �z;nz;n [e�e� �z;nz;n /: (7.22)

By a second application of the Koebe quarter theorem,ˇ̌�
. f
z;n�1/

�1
�0
.0/
ˇ̌

 dist.z; ��

f;�
z;n�1 [ ��

f;�
z;n�1/: (7.23)

By the inductive hypothesis,

e�ˇn�1���.n�1/ � dist.z; ��
f;�
z;n�1 [ ��

f;�
z;n�1/� e�ˇn�1C��.n�1/: (7.24)

By (7.20) and the definition of Ez;n,

dist.0;e�e��z;nz;n [e�e��z;nz;n /
 e
�ˇn (7.25)

on En.z/. provided that �� is chosen sufficiently large, independently of n and z 2
Bd .0/, we can now complete the induction by combining (7.22), (7.23), (7.24), and
(7.25).

By condition (3) in the definition of eEz;n and condition (2) in the definition of
Ez;n, if we choose r sufficiently small relative to a, then the harmonic measure from

z of each of the two sides of ��
f;�
z;n (resp., each of the two sides of ��

f;�
z;n ) in Dn .��

f;�
z;n [

��
f;�
z;n/ is at least some constant which does not depend on n or the particular choice

of z 2Bd .0/. By the Beurling estimate this implies assertion (3).
For assertion (4), we use assertion (2) (with n � 1 in place of n) and the Koebe

quarter theorem to see that there exist radii �0 > � >0 such that � � e�ˇn���n,
�0 � e�ˇnC��n, . f

z;n�1/
�1.BˇnC�/ � B�.z/, and . f

z;n�1/
�1.Bˇn��/ � B�0.z/.

By combining this with condition (1) in the definition of Fz;n we see that assertion (4)
holds (after possibly increasing ��).

7.5. Probabilistic properties
Continue to assume we are in the setting of Section 7.3. In this subsection we will
prove estimates for the correlations of the events En.z/ of (7.5). These estimates will
eventually lead to our two-point estimate, which we now state.

PROPOSITION 7.17
Let z;w 2 Bd .0/. Let �� be the constant from Lemma 7.13, and for n 2 N, define
the events En.z/ and En.w/ as in (7.5). Choose k 2 N such that e�ˇkC1���.kC1/ �
jz�wj � e�ˇk���k . We can choose the auxiliary parameters in a manner depending
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only on d such that the following is true. If ˇ0 is chosen sufficiently large (depending
on the auxiliary parameters), then for any n 2N with ˇn���n� ˇkC1C��.kC2/,

P
�
En.z/\En.w/

�
� eˇkok.1/

P.En.z//P.En.w//
P.Ek.w//

; (7.26)

with the implicit constants independent of n and k, the ok.1/ independent of n, and
both uniform for z;w 2Bd .0/.

Remark 7.18
In the setting of Proposition 7.17, e�ˇk D jz �wj1Cojz�wj.1/, so by Lemma 7.12 we
can rewrite the estimate (7.26) as

P
�
En.z/\En.w/

�
� jz �wj��

�.q/Cojz�wj.1/P
�
En.z/

�
P
�
En.w/

�
: (7.27)

This is the form of the estimate we will use when we prove lower bounds for the Haus-
dorff dimensions of our sets. We emphasize that there is no e�ˇnon.1/ error in (7.27);
this is important for the proofs in Section 8.

Throughout this subsection, we fix the auxiliary parameters from Definition 7.1
in such a way that the conclusions of Lemmas 7.7 and 7.13 hold. The starting point of
the proof of Proposition 7.17 is the following absolute continuity statement. Note that,
to get strict mutual absolute continuity, we need to skip one scale (i.e., we condition
on what happens up to stage n� 2 and look at the objects at or after stage n) in order
to rerandomize the locations of the end points of the curve.

LEMMA 7.19
Suppose that we are in the setting of Section 7.3, and for z 2 Bd .0/ and j 2 N,
let Hz;j be the event of Lemma 7.8 with �D �z;j and rH chosen sufficiently small
that Ez;j �Hz;j . If ˇ0 is chosen sufficiently large, independently of z 2Bd .0/, then
for n � 2 and z 2 Bd .0/, the following two laws are almost surely SMAC (Defini-
tion C.1) modulo rotations of D, with deterministic implicit constants uniform in n,
.ˇj ; uj /j�1, and z 2Bd .0/:
(1) the conditional joint law of �z;n and ¹.�Cz;j ; �

�
z;j /ºj�n given the event Hz;n�1

and the � -algebra Fz;n�2 of (7.6) on the event En�2.z/;
(2) the conditional joint law of �z;2 and ¹.�Cz;2; �

�
z;2/ºj�1 given Hz;1 with the

sequence .ˇj ; uj /j2N replaced by .ˇnCj�2; unCj�2/j2N.

Proof
The � -algebra Fz;n for n 2 N is generated by flow lines of h which lie outside of
Df
z;n, so since h determines its flow lines in a local manner (this follows from [37,

Theorem 1.2] and the fact that flow lines are local sets in the sense of [54]), we
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infer that Fz;n � �.D
f
z;n; hjDnD/. By Lemma 7.4 and induction, we infer that, for

n � 1 and any x;y 2 @D, the conditional joint law of �z;n and ¹.�Cz;j ; �
�
z;j /ºj�n

given Fz;n�1 on the event that the start and end points xz;n and yz;n for �z;n are
equal to x and y, respectively, coincides with the conditional joint law of �z;2 and
¹.�Cz;2; �

�
z;2/ºj�1 given ¹xz;2 D x; yz;2 D yº with the sequence .ˇj ; uj /j2N replaced

by .ˇnCj�2; unCj�2/j2N.
Since we require only strict mutual absolute continuity modulo rotations of D,

in order to prove the statement of the lemma, it therefore suffices to show that the
conditional law of arg.yz;n=xz;n/ given Hz;n�1 and Fz;n�2 on the event En�2.z/ is
SMAC with respect to the conditional law of .xz;2; yz;2/ given Hz;1. (This is why we
condition only on Fz;n�2—if we conditioned on Fz;n�1, then the end points xz;n�1
and yz;n�1 would be determined.) This, in turn, follows from Lemma 7.8.

In light of Lemma 7.19, it will be convenient to consider events defined with the
sequence .ˇj ; uj /j2N replaced by a shifted version. In particular, we define Emn .z/
for n;m 2 N in the same manner as the event En.z/ of (7.5) but with .ˇj ; uj /j2N

replaced by .ˇmCj�1; umCj�1/j2N. We similarly define the event Hm
z;j as in Lemma

7.19 but with .ˇj ; uj /j2N replaced by .ˇmCj�1; umCj�1/j2N.
For n1; n2 2N with n1C 1� n2, we also write

En1;n2.z/ WD

n2\
jDn1C1

Ez;j : (7.28)

We define Emn1;n2.z/ in the same manner but with .ˇj ; uj /j2N replaced by .ˇmCj�1;
umCj�1/j2N. As a consequence of Lemma 7.19, we get the following approximate
multiplicative property for the probabilities of the events Emn .z/.

LEMMA 7.20
For z 2D and k;n;m 2N with k � n� 2,

P
�
Emn .z/

�
D eO.ˇkCm/P

�
Emk .z/

�
P
�
EmCk
n�k

.z/
�

(7.29)

with the rate of the O.ˇkCm/ depending only on the auxiliary parameters.

We emphasize that the O.ˇkCm/ error in Lemma 7.20 does not depend on n;
rather, it will eventually correspond to an error of order jz � wjojz�wj.1/ in (7.27).
This error comes from the need to skip one scale in Lemma 7.19.

Proof of Lemma 7.20
We have

P
�
Emn .z/

�
D P

�
Emk .z/

�
P
�
Emn .z/

ˇ̌
Emk .z/

�
: (7.30)
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By Lemma 7.19 and since the definitions of our events are invariant under rotations
of D, with Hm

z;k
as above,

P
�
Emn .z/ jE

m
k .z/

�
� P

�
Emk;n.z/

ˇ̌
Emk�1.z/\H

m
z;k

�
� P

�
EmCk�1
1;n�kC1

.z/
ˇ̌
HmCk�1
z;1

�
(7.31)

and

P
�
Emn .z/

ˇ̌
Emk .z/

�
� P

�
EmkC1;n.z/

ˇ̌
Emk .z/\H

m
z;kC1

�
� P

�
EmCk�1
2;n�kC1

.z/
ˇ̌
EmCk�11 .z/\HmCk�1

z;2

�
: (7.32)

Using Lemma 7.7 and some straightforward algebra with conditional probabilities, we
see that the right-hand side of (7.31) (resp., (7.32)) is bounded below (resp., above)
by eO.ˇkCm/P.EmCk

n�k
.z//. Plugging this into (7.30) yields (7.29).

The next lemma is the key input in the proof of Proposition 7.17. It reduces the
problem of estimating P.En.z/ \En.w// to the estimates of the preceding lemmas
and is the place where we use the local independence provided by the auxiliary flow
lines.

LEMMA 7.21
Let z;w 2 Bd .0/, and let �� be the constant from Lemma 7.13. Choose k 2 N such
that 1

2
e�ˇkC1���.kC1/ � jz � wj � 1

2
e�ˇk���k . For any n 2 N with ˇn � ��n �

ˇkC1C ��.kC 1/,

P
�
En.z/\En.w/

ˇ̌
Ek.z/\Ek.w/

�
� eˇkok.1/P

�
Ekn�k.z/

�
P
�
Ekn�k.w/

�
(7.33)

with the implicit constants independent of n and k, the ok.1/ independent of n, and
both uniform for z;w 2Bd .0/.

Proof
Throughout, we require implicit constants and ok.1/ terms to satisfy the conditions of
the statement of the lemma. Let k0 be the least integer such that ˇk0 ���k

0 � ˇkC1C

��.kC 1/. Note that k � k0 � n. Let Pz;k0 be the event that the pocket Df
z;k0

formed

by the auxiliary flow lines is nonempty and satisfies diam.Df
z;k0
/ � e�ˇk0C��k

0
and

the end points xz;k0 and yz;k0 for �z;k0 differ by at least ed , where ed is the constant
from Remark 7.9.

By the definition 7.5 of En.z/, Lemma 7.13(4), and our choice of ed (see Remark
7.9),

En.z/� Pz;k0 \Ek0;n.z/ and En.w/� Pw;k0 \Ek0;n.z/;
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where Ek0;n.z/ is as in (7.28). Therefore,

P
�
En.z/\En.w/

ˇ̌
Ek.z/\Ek.w/

�
� P

�
Ek0;n.z/\Ek0;n.w/

ˇ̌
Ek.z/\Ek.w/\Pz;k0 \Pw;k0

�
: (7.34)

So, we need only estimate the right-hand side of (7.34).
Let H be the � -algebra generated by Df

z;k0
, Df

w;k0
, and hjDn.Df

z;k0
[Df

w;k0
/. By

our choices of k and k0, on the event Pz;k0 \ Pw;k0 , the domains Df
z;k0

and Df
w;k0

are disjoint. Hence, Pz;k0 and Pw;k0 belong to H . (The boundary data of hj@Df
z;k0

determines the locations of xz;k0 and yz;k0 and similarly with w in place of z.) By
Lemma 7.13(4) (applied with k in place of n) and our choices of k and k0, on the
event Ek.z/\Ek.w/\Pz;k0 \Pw;k0 ,

Df
z;k0
[Df

w;k0
� B

e�ˇk0C��k
0 .z/[B

e�ˇk0C��k
0 .w/

� B
e
�ˇkC1���.kC1/

.z/[B
e
�ˇkC1���.kC1/

.w/

� B
e�ˇk���k

.z/\B
e�ˇk���k

.w/�Df
z;k
\Df

w;k
:

Since flow lines are determined locally by the field, the event Ek.z/ is determined by
Df
z;k

and hjDnDf
z;k

, and similarly with w in place of z. Therefore, Ek.z/\Ek.w/\

Pz;k0 \Pw;k0 2H .
By [37, Theorem 1.2], the objects involved in the definition ofEk0;n.z/ are almost

surely determined by hjDf
z;k0

, and similarly withw in place of z. Hence, the preceding

paragraph together with Lemma 7.4 imply that the events Ek0;n.z/ and Ek0;n.w/ are
conditionally independent given H on the event Ek.z/\Ek.w/\Pz;k0 \Pw;k0 , that
is, on this event,

P
�
Ek0;n.z/\Ek0;n.w/

ˇ̌
H
�
D P

�
Ek0;n.z/

ˇ̌
H
�
P
�
Ek0;n.w/

ˇ̌
H
�
: (7.35)

By Lemma 7.4, the conditional law of the objects involved in the definitions of Ez;j
for j � k0C1 given H is the same as the conditional law of these objects given Fz;k0

on the event Ek.z/\Ek.w/\Pz;k0 \Pw;k0 . Since Ek0.z/�Hz;k0C1 \Ek0C1;n.z/,
Lemma 7.19 implies that (in the notation defined just above (7.28))

P
�
Ek0;n.z/

ˇ̌
H
�
1Ek.z/\Ek.w/\Pz;k0\Pw;k0

� P
�
Ek
0C1
1;n�k0

.z/
ˇ̌
H k0C1
z;1

�
1Ek.z/\Ek.w/\Pz;k0\Pw;k0 ; (7.36)

and similarly with z and w interchanged. Using Lemma 7.7 and straightforward alge-
bra with conditional probabilities, we get

P
�
Ek
0C1
1;n�k0

.z/
ˇ̌
H k0C1
z;1

�
� eOk0 .ˇk0 /P

�
Ek
0C1
n�k0

.z/
�
;
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so by Lemma 7.20 (applied with k in place of m and k0 � kC 1 in place of k),

P
�
Ek
0C1
1;n�k0

.z/
ˇ̌
H k0C1
z;1

�
� eOk0 .ˇk0 /

P.Ek
n�k

.z//

P.Ek
k0�kC1

.z//
:

By Lemma 7.12 (applied with .ˇjCk; ujCk/ in place of .ˇj ; uj /) and by our choices
of k and k0,

P
�
Ekk0�kC1.z/

�
� e�ˇkok.1/:

Therefore,

P
�
Ek
0C1
1;n�k0

.z/
ˇ̌
H k0C1
z;1

�
� eˇkok.1/P

�
Ekn�k.z/

�
: (7.37)

We also have the analogue of (7.37) with w in place of z. By (7.34), (7.35), (7.36),
and (7.37), we obtain (7.33).

Proof of Proposition 7.17
We have

P
�
En.z/\En.w/

�
D P

�
En.z/\En.w/

ˇ̌
Ek.z/\Ek.w/

�
� P

�
Ek.z/\Ek.w/

�
(by definition/

� eˇkok.1/P
�
Ekn�k.z/

�
P
�
Ekn�k.w/

�
� P

�
Ek.z/

�
(by Lemma 7.21):

By Lemma 7.20 (applied with mD 0 and n� k in place of n),

P
�
Ekn�k.w/

�
D eok.1/ˇk

P.En.w//
P.Ek.w//

and

P
�
Ekn�k.z/

�
P
�
Ek.z/

�
D eok.1/ˇkP

�
En.z/

�
:

By combining the above relations we get (7.26).

7.6. Remarks on adaptations to other settings
We expect that the arguments in this section can be adapted to prove two-point esti-
mates for other sets associated with SLE or conformal loop ensembles which can be
coupled with a GFF using imaginary geometry. Here we make some remarks about
which aspects of the definitions of our events and our proofs are also useful in other
settings and which are specific to the multifractal spectrum (and hence are unnec-
essary when working with other sets). See also [46] and [36] for other examples of
Hausdorff dimension calculations using imaginary geometry.



ALMOST SURE MULTIFRACTAL SPECTRUM OF SLE 1203

The regularity events G .f I�/ and G 0.AI�/ of Section 2.2.1 seem to be useful in
general when dealing with SLE, since they allow us to avoid the pathological behav-
ior of the curve near the boundary and control how much points on the boundary are
moved by conformal maps. Other regularity conditions could be used for this pur-
pose, but this might lead to more complicated definitions of events for the two-point
estimate.

The most basic simplification one can make when computing the dimension of
sets other than the multifractal spectrum sets (e.g., the dimension of the SLE� curve)
is that it is not always necessary to grow the curve from both the forward and reverse
directions simultaneously. We need to do this in the setting of the present article, since
we would get only the derivative behavior near the tip of the curve, not the derivative
behavior in the bulk, if we only grew the curve in the forward direction. This makes
some definitions easier, since one does not have to worry about the fact that the time
reversal of a flow line is not a flow line.

The main purpose of the first event L from Section 7.2 is to allow us to apply
Lemma C.4 in order to transfer the estimate for the event eE in the case �L D �R D 0
to the case of general �L; �R 2 .�2; 0� in the proof of Lemma 7.3. (We need the esti-
mate to hold for �L; �R ¤ 0, since the segment of � inside the pocket formed by the
auxiliary flow lines is an SLE�.�LI�R/ for nonzero �L; �R.) If one is growing � in
only the forward direction, rather than in the forward and reverse directions simulta-
neously, one can simplify the definition of L and apply [46, Lemma 2.8] in place of
Lemma C.4.

The event eE from Section 7.2 is of course specific to the multifractal spectrum.
For other dimension calculations, eE would be replaced by an entirely different event.

In other settings, one would still need to introduce the auxiliary flow lines �˙ and
define some variant of the regularity event F for these flow lines as in Section 7.2.
The specific regularity conditions in the definition of F can be modified somewhat
depending on the situation, but one always needs to make sure that �˙ form a pocket
containing the point of interest (0, in our case) and that the images of the points where
� enters and exits this pocket under a conformal map fixing the point of interest lie
at a uniformly positive distance from one another. The proof of Lemma 7.4 and the
iterative construction of Section 7.3 would also remain largely unchanged in other
settings.

When using auxiliary pockets to define curves iteratively, one needs some way
to deal with the fact that the laws of the curves �z;n are not exactly stationary in n.
In our setting, the end points of �z;n are different for each n, and we get around this
issue by skipping one scale to rerandomize the end points (Lemma 7.8).

Most of the conditions in Lemma 7.13 are specific to the multifractal spectrum
and are used to show that the perfect points are contained in the multifractal spectrum
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sets. For the proof of the two-point estimate one really only needs to show that the
size of pockets Dz;j is of the right order (i.e., Lemma 7.13(4)). In other settings one
would need to establish different analytic properties to show that the perfect points
are contained in the sets of interest; establishing such properties would replace most
of Section 7.4.

The argument of Section 7.5 should remain largely unchanged for other two-point
estimate proofs using imaginary geometry. In particular, one still has to establish the
strict mutual absolute continuity of the objects used to define the events at each scale
(Lemma 7.19), use this to prove the approximate multiplicativity of the probabilities
of the events En.z/ (Lemma 7.20), and then use the independence of what happens
inside disjoint pockets formed by auxiliary flow lines to conclude.

7.7. Index of notation
In this section we list most of the notation used in Section 7. Note that the subscript
z; j is dropped in Section 7.2. We also recall the notational conventions discussed at
the beginning of Section 7.1:
� Bˇ for ˇ > 0: Euclidean ball Be�ˇ .0/;
� ed : lower bound for the distance between the end points of the curve;
� hz;j : intermediate GFF, equal to h ı .
 f

z;j�1/
�1 � � arg..
 f

z;j�1/
�1/0;

� �z;j : j th curve in construction, equal to 
z;j�1.�z;j�1 \Dz;j�1/ for j � 2,
is an SLE�.�0I�0/ for j � 2;

� xz;j and yz;j : start and end points for �z;j ;
� x�z;j and y�z;j : end points of largest arc of Œxz;j ; yz;j �@D not hit by �


z;j
z;j or

�

z;j
z;j ;

� �z;j and �z;j : hitting times of B� by �z;j and �z;j ;
� Lz;j : regularity event for �


z;j
z;j and �


z;j
z;j ;

� �z;j : curve close in law to ordinary SLE� , equal to  z;j .�z;j n .�

z;j
z;j [�


z;j
z;j /;

� eEz;j : event with derivative conditions for �z;j at its hitting time of Bˇ ;
� �z;j and �z;j : times when �z;j and �z;j hit Bˇ ;
� �z;j : conformal map D n .�

�z;j
z;j [ �

�z;j
z;j / ! D with �z;j .x

�
z;j / D �i and

�z;j .y
�
z;j /D i ;

� �˙z;j : auxiliary flow lines started from �z;j .�z;j /;
� Dz;j : pocket formed by �˙z;j containing 0;
� 
z;j : map Dz;j !D fixing 0;
� t˙z;j : time when �˙z;j finishes tracing @Dz;j ;
� et˙z;j : exit time of �˙z;j from Bˇ�� nBˇC�;
� Fz;j : regularity event for �˙z;j ;
� bz;j and bz;j : intersection points of �˙z;j on @Dz;j ;
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�  z;j : conformal map D n .�
�z;j
z;j [ �

�z;j
z;j /!D fixing 0;

� xFz;j and yFz;j : end points of  z;j .�z;j n .�
�z;j
z;j [ �

�z;j
z;j //;

� ��z;j and ��z;j : times when �z;j and �z;j hit Dz;j ;
� Ez;j : event containing Lz;j , eEz;j , Fz;j , and conditions for �z;j .Œ�z;j ; ��z;j �/,

�z;j .Œ�z;j ; �
�
z;j �/;

� En.z/:
Tn
jD1Ez;j ;

� Fz;j : � -algebra generated by objects used to define En.z/;
� �f;˙

z;j : flow line of h corresponding to �˙z;j ;
� Df

z;j : subdomain of D containing z bounded by �˙z;j ;
� 
 f

z;j : map Df
z;j !D taking z to 0;

� � f
z;j ; �

f;�
z;j ; �

f
z;j ; �

f;�
z;j : times for � corresponding to �z;j , ��z;j , �z;j , ��z;j ;

� ˇm and um:
Pm
jD1 ˇj and

Pm
jD1 ˇjuj ;

� ˆf
z;j : conformal map D n .��

f;�
z;j [ ��

f;�
z;j /!D fixing ˙i and 1;

� ��: constant appearing in Lemma 7.13;
�  f

z;j : conformal map D n .��
f;�
z;j [ ��

f;�
z;j /!D fixing 0;

� fz;j : conformal automorphism of D taking ‰f
z;j�1.z/ (if j � 2) or z (if j D

1) to 0;
� e�z;j : curve equal to  f

z;j .� n .�
� f;�
z;j [ ��

f;�
z;j //;

� e�z;j : conformal map D n .e�e��z;jz;j [e�e��z;jz;j /!D taking the end points ofe�z;j to
˙i ;

� gz;j : conformal automorphism of D defined so that gz;j ıe�z;j ıfz;j fixes �i ,
i , and 1;

� b�z;j : conformal map D n .e�e��z;jz;j [e�e��z;jz;j /!D given by gz;j ıe�z;j ı fz;j ;
� Emn1;n2.z/:

Tn2
jDn1C1

Emz;j , with Emz;j defined with .ˇjCm�1; ujCm�1/ in
place of .ˇj ; uj /.

8. Lower bounds for multifractal and integral means spectra

8.1. Setup
Let � be a chordal SLE� from �i to i in D. Let D� be the right connected compo-
nent of D n �, as in Theorem 1.1, and define the multifractal spectrum sets e‚s.D�/
and ‚s.D�/ as in Section 1.1. The goal of this section is to obtain lower bounds on
dimH

e‚s.D�/ and dimH ‚
s.D�/ and thereby complete the proof of Theorem 1.1.

We accomplish this using the estimates of Section 7.
Throughout this section we fix d 2 .0; 1/ and work in Bd .0/. We use the notation

defined in Section 7.3, with q D s=.1� s/ 2 .�1=2;1/ (see Section 7.7 for an index
of this notation), and we assume that the auxiliary parameters have been chosen in
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such a way that the conclusions of Lemmas 7.12 and 7.13 and Proposition 7.17 are
all satisfied. We also continue to use the notation Bˇ DBe�ˇ .0/ from (6.1).

In the next two sections we will use the events En.z/ of (7.5) to define various
notions of “perfect points” which are contained in the sets we are interested in and
which will allow us to obtain lower bounds on their Hausdorff dimensions. In the
remainder of this section, we will prove the following technical lemma, which is
needed to prove that the perfect points are contained in our sets of interest. For the
statement of the lemma, we recall the pocket Df

z;n formed by the auxiliary flow lines

�f;˙
z;n from Section 7.3.

LEMMA 8.1
Let ‰� WD�! D be the conformal map fixing �i , i , and 1. Suppose that z 2 Pk \

D� . For n � k � 1 let Iz;n be the image under ‰� of the segment of � contained in
Df
z;n. Then the following holds.

(1) We have e�ˇn.qC1/�3un � lengthIz;n � e�ˇn.qC1/C3un .
(2) If n � k � 2, then the distance from @Iz;nC1 to @Iz;n is at least a constant

times the length of Iz;n.
(3) If x 2 Iz;n, then there exists ın > 0 such that j.‰�1� /0..1� ın/x/j D ı

�sCon.1/
n

and ın D e�ˇn.qC1Con.1//.
The implicit constants are independent of n, and both the on.1/ and the implicit con-
stants are deterministic and independent of k, x, and z 2Bd .0/.

Proof
Fix n, k, and z as in the statement of the lemma. Throughout the proof we assume
Ek.z/ occurs and require all constants (either referred to as such or implicit in 
,
etc.) to be deterministic and independent of n, k, and z 2Bd .0/ (see Figure 14 for an
illustration of the argument).

The map 
 f
z;n WD

f
z;n! D defined in Section 7.3.2 takes z to 0 and �\Df

z;n to
the curve �z;nC1, whose end points are xz;nC1 and yz;nC1. Note that condition (3) in
the definition of eEz;n together with condition (3) in the definition of Fz;n implies a
lower bound on jxz;nC1 � yz;nC1j, depending only on the parameter a.

Recall that Œx�z;nC1; y
�
z;nC1�@D is the largest arc of @D to the right of �z;nC1 which

does not contain a point of �z;nC1 in its interior. By conditions (1) and (3) in the
definition of Lz;nC1 and condition (4) in the definition of eEz;nC1, there is a unique
arc A0 of @Be�=2 which lies to the right of �z;nC1 and which disconnects �z;nC1\Be�
from Œx�z;nC1; y

�
z;nC1�@D in D n �z;nC1 (see Remark 7.5). Let w0 be the point of A0

closest to the midpoint of Œx�z;nC1; y
�
z;nC1�@D, and letD0 be the connected component

of D n �z;nC1 containing Œx�z;nC1; y
�
z;nC1�@D on its boundary.
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Figure 14. An illustration of the proof of Lemma 8.1. The arcs Iz;n and Iz;nC1 and their images
under the various maps are shown. The regularity conditions in our events imply that the

harmonic measure from w in the middle picture of each of ��
f;�
z;n and ��

f;�
z;n is uniformly positive.

This is the key step in the proof of our regularity conditions for the arc Iz;n.

From the definitions of Lz;nC1 and eEz;nC1, we find that the harmonic mea-
sure from w0 in D0 of any subarc of Œx�z;nC1; y

�
z;nC1�@D lying at distance at least

e�2� from the end points is proportional to the length of that subarc. Furthermore,
hmw0.�z;nC1ID

0/
 1. Define  z;n W D n .��z;n [ ��z;n/! D as in condition (2) in
the definition of Fz;n. By condition (3) in the definition of eEz;n, the arc of @D which
is the image of the right side of ��z;nz;n (resp., the left side of ��z;nz;n ) under  z;n has
length 
 1. By the conformal invariance of Brownian motion and condition (3) in
the definition of Fz;n, the harmonic measure from . z;n ı


�1
z;n/.w

0/ in the right con-

nected component of D n z;n.�z;n n .�
�z;n
z;n [ �

�z;n
z;n // of each of these two subarcs is


 1.
Let w D .
 f

z;n/
�1.w0/. It follows from the above considerations and the confor-

mal invariance of Brownian motion that (with notation as in Section 2.1)

hmw.��
f;�
z;n ID�/
 hmw. ��

f;�
z;n ID�/
 hmw.�\Df

z;nID�/
 1: (8.1)

By Lemma B.3 and condition (1) in the definition of Lz;n, we thus haveˇ̌
‰0�.w/

ˇ̌


ˇ̌
.ˆf

z;n/
0.w/

ˇ̌
and dist.w;�/
 dist.w;��

f;�
z;n [ ��

f;�
z;n/ (8.2)

with ˆf
z;n the map from Lemma 7.13.

By the Koebe growth theorem applied to .
 f
z;n/
�1, we have jw � zj � 1

100
�

dist.z; ��
f;�
z;n [ ��

f;�
z;n/ provided that ˇn is chosen sufficiently large. By the Koebe dis-

tortion theorem, j.ˆf
z;n/
0.w/j 
 j.ˆf

z;n/
0.z/j, so by (8.2) and Lemma 7.13(1),

e�ˇnq�2un �
ˇ̌
.ˆf

z;n/
0.w/

ˇ̌
� e�ˇnqC2un : (8.3)
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Moreover, by Lemmas 7.13(2) and 7.10(4), dist.z; ��
f;�
z;n [ ��

f;�
z;n/ is bounded between

constants times e�ˇn�un and e�ˇnCun , so by (8.2) also

e�ˇn�un � dist.w;�/� e�ˇnCun : (8.4)

Let ewD‰�.w/. By (8.3), (8.4), and the Koebe quarter theorem, e�ˇn.qC1/�3un �

1 � jewj � e�ˇn.qC1/C3un . By (8.1) and the conformal invariance of the harmonic
measure,

dist.ew;Iz;n/
 length.Iz;n/
 1� jewj: (8.5)

This proves assertion (1).
To prove assertion (2), we observe that the harmonic measure fromw0, as defined

above, of each of �

z;nC1
z;nC1 and �


z;nC1
z;nC1 is 
 1, where �z;nC1 and �z;nC1 are the times

in the definition of Lz;n. It therefore follows from the conformal invariance of the
harmonic measure that the distance from the end points of Iz;n to the end points of
Iz;nC1 is � 1� jewj. We conclude by means of (8.5).

To complete the proof of assertion (3), suppose that we are given x 2 Iz;n. By
(8.5) the angle between the tangent line to @D at x and the segment Œx;ew � is bounded
away from 0 and 
 . Hence, we can find ın 
 1 � jewj D e�ˇn.qC1Con.1// and � 2
.0; 1/, bounded away from 0 and 1, such that ew 2 B�ın..1 � ın/x/. By the Koebe
distortion theorem we have j.‰�1� /0..1 � ın/x/j 
 j.‰

�1
� /0.ew /j. By combining this

with (8.3) we conclude that assertion (3) holds.

8.2. Lower bound for the Hausdorff dimension of the subset of the curve
In this subsection we will prove a lower bound on the Hausdorff dimension of the
multifractal spectrum sets ‚s.D�/� �.

PROPOSITION 8.2
Let s�; sC be as in Theorem 1.1. For each s 2 .s�; sC/, almost surely

dimH ‚
s.D�/� �.s/;

where �.s/ is as in (1.4).

For the proof, we assume we are in the setting of Section 8.1. We first define a
closed subset P of ‚s.D�/, the so-called perfect points, whose Hausdorff dimension
can be bounded below using the estimates of Section 7. Let �� be the constant from
Lemma 7.13. For n 2N, let n0 be the greatest integer such that ˇn � ��n� ˇn0C1C
��.n

0C 2/. Let

�n WD e
�ˇn0C1���.n

0C2/: (8.6)
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Note that Lemma 7.10 implies e�ˇn D �1Con.1/n . Our reason for choosing this value
of �n is that the pockets Df

z;n and Df
w;n are disjoint on En.z/\En.w/ provided that

jz �wj � �n (see Lemma 7.13).
Choose a collection Cn of 
 ��2n points in Bd .0/, no two of which lie within

distance �n of each other. Let C 0n be the set of z 2 Cn for which En.z/ occurs, and
define the perfect points by

P WD
\
n�1

[
k�n

[
z2C 0

k

B�k .z/: (8.7)

LEMMA 8.3
With P as in (8.7), we have P �‚s.D�/ for s D q=.q C 1/. In fact, if w 2P , then
for � > 0, ˇ̌

.‰�1� /0
�
.1� �/‰�.w/

�ˇ̌
D ��sCo�.1/; (8.8)

with the rate of the o�.1/ deterministic and uniform for w 2P .

Proof
Fix w 2 P . Since � is closed, it is clear that w 2 �. It remains to prove (8.8). By the
definition of P , if we are given n 2 N, then we can find k � nC 1 and z 2 C 0

k
such

that jz � wj � e�2ˇnC1 . By Lemma 7.13, w 2Df
z;n so ‰�.w/ 2 Iz;n, as defined in

Lemma 8.1. Let ın be as in that lemma with x D‰�.w/.
By the Koebe distortion theorem, for � 2 ŒınC1; ın�,

1� .ın � ınC1/=ın

.1C .ın � ınC1/=ın/3
�
j.‰�1� /0..1� �/‰�.w//j

j.‰�1� /0..1� ın/‰�.w//j

�
1C .ın � ınC1/=ın

.1� .ın � ınC1/=ın/3
: (8.9)

Since ın D e�ˇn.qC1Con.1// (Lemma 8.1(3)),

1� .ın � ınC1/=ın D e
�ˇnC1.qC1Con.1// D eˇnon.1/;

which is proportional to �o�.1/ by Lemma 7.10. We furthermore have ın D �1Co�.1/.
Hence, (8.9) and Lemma 8.1(3) imply j.‰�1� /0..1 � �/‰�.w//j D �

�sCo�.1/, as re-
quired.

Proof of Proposition 8.2
For a Borel measure � on a metric space X and ˛ > 0, write

I˛.�/D

Z
X

Z
X

d�.z/d�.w/

jz �wj˛
(8.10)
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for the ˛-energy of �. By standard results for the Hausdorff dimension (see [47, Theo-
rem 4.27]), a metric space which admits a positive finite measure with finite ˛-energy
has Hausdorff dimension at least ˛. In view of Lemma 8.3, we are led to construct
such a measure � on P for each ˛ < �.s/. We do this using the usual argument (see,
e.g., [2], [20], [46]) and the estimates of Section 7.5.

Define the events En.z/ as in Section 7.3 and the sets of points Cn and C 0n as in
the definition of P (right above (8.7)). Let �n be as in (8.6).

For each n 2N, define a measure �n on D by

d�n.x/D
X
z2Cn

1En.z/
P.En.z//

1.x2B�n .z// dx:

Then E.�n.D//
 1. Moreover,

E
�
�n.D/2

�
� �4n

X
z;w2Cn;
z¤w

P.En.z/\En.w//
P.En.z//P.En.w//

C �4n

X
z2Cn

1

P.En.z//
:

By Lemma 7.12 and Proposition 7.17 (see Remark 7.18), this is bounded by an n-
independent constant times

�4n

X
z;w2Cn;
z¤w

jz �wj��
�.q/Cojz�wj.1/C �4n

X
z2Cn

���
�.q/Con.1/

n ;

with the ojz�wj.1/ tending to 0 as jz �wj ! 0, at a rate which is independent of the
particular locations of z and w and of n. For s 2 .s�; sC/ we have 
�.q/D 
.s/=.1�
s/ < 2. Therefore, for sufficiently large n, E.�n.D/2/ is bounded above by a finite,
n-independent constant. By the Vitalli convergence theorem, we can almost surely
find a subsequence of the measures �n which converges weakly to a measure � whose
total mass is bounded above by some deterministic constant and whose expected mass
is positive.

On the other hand, we have

E
�
I˛.�n/

�
D

X
z;w2Cn

P.En.z/\En.w//
P.En.z//P.En.w//

“
B�n .z/�B�n .w/

1

jx � yj˛
dx dy

D
X

z;w2Cn;
z¤w

P.En.z/\En.w//
P.En.z/En.z//P.En.z//

“
B�n .z/�B�n .w/

1

jx � yj˛
dx dy

C
X
z2Cn

1

P.En.z//

“
B�n .z/�B�n .z/

1

jx � yj˛
dx dy
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�
X

z;w2Cn;
z¤w

P.En.z/\En.w//
P.En.z//P.En.z//

�4n
jz �wj˛

C
X
z2Cn

�4�˛n

P.En.z//

�
X

z;w2Cn;
z¤w

jz �wj��
�.q/�˛Cojz�wj.1/�4nC �

2�˛���.q/Con.1/
n :

We have 
�.q/C˛ < 2 for s 2 .s�; sC/ and ˛ < �.s/, so the above expression is � 1.
We conclude that, with positive probability, there exists a weak subsequential limit
� of the measures .�n/ supported on P and satisfying �.P / > 0 and I˛.�/ <1.
Hence, [47, Theorem 4.27] and Lemma 8.3 imply that, with positive probability, we
have dimH ‚

s.D�/ � �.s/. Proposition 2.15 implies that this in fact almost surely
holds.

8.3. Lower bound for the Hausdorff dimension of the subset of the circle
In this subsection we prove the following lower bound for the set Hausdorff dimension
of the set e‚s.D�/D‰�1� .‚s.D�//� @D.

PROPOSITION 8.4
Let s�; sC be as in Theorem 1.1. For each s 2 .s�; sC/, almost surely

dimH
e‚s.D�/�e�.s/;

wheree�.s/ is as in (1.3).

For the proof of Proposition 8.4, we will need a different set of perfect points.
Define �n and the sets Cn;C

0
n as in the definition (8.7) of P . For z 2 C 0n, let Iz;n�1

be as in the statement of Lemma 8.1. Let vz;n be the midpoint of Iz;n�1, and let I 0z;n
be the arc of length �

qC1
n centered at vz;n. By Lemma 8.1, length.I 0z;n/ D

length.Iz;n�1/1Con.1/. Our perfect points in this case are defined by

eP WD\
n�1

[
k�n

[
z2C 0

k

I 0
z;k�1

: (8.11)

Our first task is to check that eP � e‚s.D�/.
LEMMA 8.5
Define eP as in (8.11). If the auxiliary parameter e� (Definition 7.1) and the value ˇ0
are chosen sufficiently large, then eP � e‚s.D�/ for s D q=.qC 1/. In fact, if x 2 eP ,
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then for � > 0, ˇ̌
.‰�1� /0

�
.1� �/x

�ˇ̌
D ��sCo�.1/;

with the implicit constants and the o�.1/ deterministic and uniform in x.

Proof
If x 2 eP , then for any n 2 N we can find k � n and z 2 C 0

k
such that x lies within

distance length.I 0z;n/
2 of I 0

z;k
. If k is chosen sufficiently large, depending on n, then

by Lemmas 8.1(1) and 8.1(2) we have x 2 Iz;n. We then conclude as in the proof of
Lemma 8.3.

In the proof of Proposition 8.4, we will break up the sum which gives the second
moment of our measures into three terms, depending on the distance between the
points under consideration. The following lemma is needed to bound the number of
pairs of points at mesoscopic distance.

LEMMA 8.6
For each n 2 N there is an integer mn � n such that the following is true. We have
ˇn � ˇmn D ˇnon.1/, and if z;w 2 C 0n with jz � wj � e�ˇmnC1 , then dist.I 0z;n;
I 0w;n/� jz�wj

qC1Cojz�wj.1/, with the ojz�wj.1/ and implicit constants deterministic,
independent of n, and independent of the particular choices of z and w in C 0n.

Proof
We argue as in the proof of Lemma 7.21. Choose k 2N such that e�ˇkC1���.kC1/ �
jz�wj � e�ˇk���k . Let k0 be the least integer such that ˇk0���k

0 � ˇkC1C��.kC

1/. By our choice (8.6) of �n we have k0 � n�1. By Lemma 7.13,Df
z;k0
\Df

w;k0
D;

and hence Iz;k0\Iw;k0 D;. If length.I 0z;n/� length.Iz;k0C1/, then by Lemmas 8.1(1)
and 8.1(2), the midpoints of Iz;n0 and I 0w;n satisfy

dist.vz;n; vw;n/� e
�ˇk0C1.qC1/�3uk0C1 � jz �wjqC1Cojz�wj.1/:

On the other hand, by Lemma 8.1(1) we have length.I 0z;n/ � length.Iz;k0C1/ pro-

vided that ˇk0C1.qC 1/C 3uk0C1 � .ˇn � ��nC ˇnon.1//.qC 1/ or, equivalently,
provided that

ˇn � ˇk0C1 �
3uk0C1C ��nC ˇnon.1/

qC 1
:

It follows from Lemma 7.10 that we can choose mn � n such that ˇn � ˇmn D
ˇnon.1/ and length.I 0z;n/� length.Iz;k0C1/ whenever k0 �mn.
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Proof of Proposition 8.4
We argue as in the proof of Proposition 8.2. In particular, for any given ˛ <e�.s/,
we will construct a positive finite measuree� on eP (as defined in (8.11)) with finite
˛-energy (as defined in (8.10)).

Define �n as in (8.6). We require all implicit constants and ojz�wj.1/ terms to be
independent of n and uniform for z;w 2 Cn. For n 2 N, define a measuree�n on @D
by

de�n.x/D �1�qn

X
z2C 0n

1En.z/
P.En.z//

1.x2I 0
z;k
/ dx:

Then we have E.e�n.@D//
 1.
As in the proof of Proposition 8.2,

E
�e�n.@D/2

�
� �4n

X
z;w2Cn;
z¤w

P.En.z/\En.w//
P.En.z//P.En.w//

C �4n

X
z2Cn

���
�.q/Con.1/

n � 1:

Let mn be as in Lemma 8.6, and let Kn be the set of pairs .z;w/ 2 Cn �Cn with
jz �wj � e�ˇmn and z ¤w. By Lemma 8.6 we have #Kn � �

�2�on.1/
n .

By Lemma 7.12, Proposition 7.17, and Lemma 8.6,

E
�
I˛.e�n/�D �2�2qn

X
.z;w/2Cn�Cn

P.En.z/\En.w//
P.En.z//P.En.w//

“
I 0
z;k
�I 0
w;k

1

jx � yj˛
dx dy

�
X

.z;w/…Kn;z¤w

jz �wj��
�.q/Cojz�wj.1/jvz;n � vw;nj

�˛�2.qC1/C2�2qn

C
X

.z;w/2Kn

jz �wj��
�.q/Cojz�wj.1/�.2�˛/.qC1/C2�2qCon.1/n

C
X
z2Cn

�.2�˛/.qC1/C2�2q��
�.q/Con.1/

n

� �4n

X
z;w2Cn;
z¤w

jz �wj��
�.q/�˛.qC1/Cojz�wj.1/

C �.2�˛/.qC1/�2q��
�.q/Con.1/

n

C �.2�˛/.qC1/�2q��
�.q/Con.1/

n :

Note that for the middle term we used jz � wj � �n and #Kn � �
�2�on.1/
n . If s 2

.s�; sC/ and q D s=.1 � s/, we have 
�.q/C ˛.q C 1/ < 2 and .2 � ˛/.1C q/ �
2q � 
�.q/ > 0 for ˛ <e�.s/. It follows that we can almost surely find a subsequence
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of the measures .e�n/ which converges weakly to a finite positive limiting measure
supported on eP with finite ˛-energy. We then conclude using [47, Theorem 4.27],
Lemma 8.5, and Proposition 2.15.

8.4. Proof of Theorem 1.1
This follows by combining Propositions 5.1, 5.6, 8.2, and 8.4.

Remark 8.7
In the case in which � D 4, we have sC D 1, so the sets ‚1.D�/ and e‚1.D�/ for
� D 4 can be nonempty. We do not explicitly mention these sets in Theorem 1.1,
because our results do not apply in full in this case. However, we do prove some-
thing about these sets. In particular, we prove in Proposition 5.1 that almost surely
dimH

e‚1.D�/D 0. Since dimH .�/D 3=2 for � D 4, we get a trivial upper bound of
3=2 for dimH ‚

1.D�/ in the case in which � D 4. We do not prove a lower bound for
dimH ‚

1.D�/ in this article, and we are not sure if the upper bound of 3=2 is optimal.

8.5. Lower bound for the integral means spectrum
In this subsection we prove our lower bound for the bulk integral means spectrum of
the SLE curve and thereby complete the proof of Corollary 1.9.

Proof of Corollary 1.9
Throughout, we consider a fixed realization and allow implicit constants to be random
(but independent of the parameters of interest). Fix s 2 Œs�; sC� (as defined in (1.5)
and (1.6)) to be chosen later, and let eP be the set of perfect points defined in (8.11).
Also fix ˛ <e�.s/. By the proof of Proposition 8.4, the probability of the event

E WD ¹dimH
eP > ˛º

is positive. Moreover, it is clear from the definition that eP � ‰�1� .� \ Bd .0//. The
idea of the proof is that, on E , we have a lower bound for the size of the set of x 2 @D
where j‰0�..1� �/x/j grows like ��s , which gives us a lower bound for the integral
of j‰0�j

a over @B1��.0/. We then optimize over s to get a lower bound for the integral
means spectrum.

For n 2N letb�n WD 2�n. Let In be the collection of arcs Œe2�i.k�1/b�n ; e2�ikb�n �@D

for k 2 ¹1; : : : ; 2nº, and let I0n be the set of those arcs I 2 In which intersect eP .
Then I0n is a cover of eP consisting of sets of diameter at most On.b�n/. Hence, on E
we have .#I0n/b� ˛n � 1 (with possibly random, but n-independent implicit constant) so
#I0n �b��˛n .

For I 2 I0n choose xI 2 I \ eP , and let zI D .1 �b�n/xI . By Lemma 8.5,
j.‰�1� /0.zI /j �b��sCon.1/n , with the on.1/ and the implicit constant independent of
the choice of I and xI .
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Let JI be the intersection of .1�b�n/I with the arc of @B1�b�n.0/ centered at zI
of length b�1Crnn , where .rn/ is a sequence of positive numbers with rn! 0 slower
than the on.1/ above. Then the arcs JI are disjoint for sufficiently large n, and by the
Koebe distortion theorem, we have j.‰�1� /0.w/j �b� sCon.1/n for each w 2 JI . Each
point of eP is mapped into B1�d=2.0/ by ‰�1� . Hence, for sufficiently large n and suf-

ficiently small 	 (random), we have JI �A
�b�n.‰�1� / for each I 2 I0n, with A�b�n.‰�1� /

defined just below (1.10) with � D‰�1� . Hence, on E , it holds for a 2R thatZ
A
�b�n .‰�1� /

ˇ̌
.‰�1� /0.w/

ˇ̌a
dw �

X
I2I0n

Z
JI

ˇ̌
.‰�1� /0.w/

ˇ̌a
dw �b��˛�asC1Con.1/n :

Therefore, for any a 2R, on E it holds that

lim sup
n!1

log
R
A
�b�n .‰�1� /

j.‰�1� /0.w/ja dw

logb��1n � ˛C as � 1:

Thus, IMSbulk
D�
.a/� ˛C as � 1 with positive probability.

By Proposition 2.16, this lower bound in fact holds almost surely. Since ˛ <e�.s/
is arbitrary, it follows that almost surely

IMSbulk
D�
.a/�e�.s/C as � 1: (8.12)

In the notation of Corollary 1.9, this quantity is maximized over all s 2 Œs�; sC� by
taking s D s�.a/ if a 2 Œa�; aC�; s D s� if a < a�; and s D sC if a > aC. Choosing
this value of s in (8.12) gives us that the lower bound in (1.14) holds almost surely
for each fixed a 2R in the case in which � � 4, �D 0, and V DD� .

By Proposition 2.16, this lower bound in fact holds almost surely for each choice
of � > 0, vector of weights �, t > 0, and complementary connected component V
of �.Œ0; t �/. By combining this with Proposition 5.7, we get that (1.14) holds almost
surely for each fixed a 2 R for each choice of � > 0, vector of weights �, t > 0,
and complementary connected component V of �.Œ0; t �/. By Hölder’s inequality, it
follows that the bulk integral means spectrum is a convex (hence, continuous) function
of a (see [34, Theorem 5.2] for a related, but much stronger, statement for the ordinary
integral means spectrum). It follows that in fact (1.14) holds almost surely for all
a 2R simultaneously.

Appendices

A. Proof of Proposition 3.10
In this Appendix we will prove Proposition 3.10, which is one of the ingredients in
the proof of Theorem 3.1. The proof will be completed in two stages. First, we will
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Figure 15. An illustration of the proof of Proposition 3.10. First, we run the reverse Loewner
flow with a force point at z until the first time S0 that z is mapped to a point on the imaginary
axis. We show in Section A.1 that, for each 	 > 0, it holds with uniformly positive probability

(independent of the particular choice of z) that S0 � 	, YS0 D ImgS0.z/� 5	
1=2, and

KS0 �Bd .0/ for some d > 0 independent of the particular choice of z. Once we condition on
the reverse Loewner flow up until time S0, the law of the maps gS0;vCS0 which satisfy

gS0;vCS0 ı gS0 D gvCS0 for v � 0 is that of a reverse SLE�.�/ Loewner flow with force point
at ZS0 D gS0.z/. In Section A.2, we show that the first time that the force point for such a

Loewner flow reaches the line ¹ImwD rº (i.e., T zr � S0) is bounded independently of ZS0 with
high probability. Furthermore, the conformal map gS0;T zr is likely to “push” Bd .0/\H (and
hence also KS0 ) away from the real axis, and the hull of this map is unlikely to be too large.

These latter conditions together with Lemma 2.4 imply that G.g�1
T zr
;�/ occurs with uniformly

positive probability for an appropriate choice of �.

show that we can move the force point to the imaginary axis without any pathological
behavior (Lemma A.1). Then, we will use a forward/reverse SLE symmetry argument
to rule out pathological behavior after the force point has reached the imaginary axis
(see Figure 15 for an illustration).

We adopt the following notation. Fix z 2H with jRe zj �R and Imz D �. Let

Zt D gt .z/DXt C iYt : (A.1)

By (3.7), we have that under Pz�,

dXt D .�� 2/
Xt

jZt j2
dt �

p
� dBzt ; dYt D

2Yt

jZt j2
dt;

(A.2)
X0 D Re z; Y0 D �

for Bzt a Pz�-Brownian motion. Also let

S0 WD inf¹t � 0 WXt D 0º: (A.3)
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A.1. Pushing the force point to the imaginary axis
In this subsection we will prove the following lemma, which deals with the setup on
the left side in Figure 15.

LEMMA A.1
Suppose that we are in the setting of Proposition 3.10. Let Zt D Xt C iYt be as
in (A.1), and let S0 be as in (A.3). For each 	 2 .0; 1/, there exist d > 0 and p0 > 0,
independent of � and of X0 2 Œ�R;R�, such that the Pz�-probability of the event

E0 DE0.z; d/ WD
®
S0 � 	; YS0 � 5	

1=2;KS0 �Bd .0/
¯

(A.4)

is at least p0.

Proof
By symmetry we can assume without loss of generality that Re z DX0 > 0. We will
treat the conditions in the definition of E0 in order. Let

� > 1^
�2.�� 2/

�
C 1

�
; (A.5)

and let eX be
p
� times a Bessel process driven by�Bzt , started fromX0, of dimension

�. From the form of the SDE (A.2), one sees that almost surely

eXt �Xt ; 8t � S0: (A.6)

Our choice (3.9) for � implies that (A.5) holds for some Bessel dimension � 2 .0; 2/,
in which case eX hits 0 before time 	 with uniformly positive probability (see [23,
Proposition 1.21]). Hence, we can find p0 > 0 independent of � and uniform for
X0 2 Œ�R;R� such that

Pz�.S0 � 	/� 2p0: (A.7)

By (A.2), Y is increasing and @tY 2t � 4. Hence, Yt � 4t1=2 C �, so on the event
¹S0 � 	º we have YS0 � 5	

1=2.
It remains for us to deal with the condition ¹KS0 �Bd .0/º. Let eX be the Bessel

process of dimension � started from X0 driven by �Bzt , as above. Since eX and Bz

are almost surely bounded up to time 	 and their laws do not depend on �, it follows
from (A.6) and (A.7) that we can find C0 > 0, independent of � and uniform for
X0 2 Œ�R;R�, such that the probability of the event

E�0 WD
®
S0 � 	; YS0 � 5	

1=2; sup
t��

j
p
�Bzt j � C0; sup

t��

jXt j � C0
¯

is at least p0.
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By (A.2), for t � S0 it holds that

j�� 2j

Z t

0

Xv

X2v C Y
2
v

dv � jX0j C jXt j C j
p
�Bt j: (A.8)

In the case in which �¤ 2, it follows from (A.8) that, on the event E�0 ,Z t

0

Xv

X2v C Y
2
v

dv � C1 WD
RC 2C0

j�� 2j
: (A.9)

In the case in which �D 2, it follows from (A.2) thatX is a constant times a Brownian
motion, so in this case we can (using (A.7)) find a possibly larger constant C1, still
independent of �, such that (A.9) holds with probability at least 1�p0=2. In this case
we add this latter condition to the event E�0 (and replace p0 with p0=2).

Now consider some b 2 R with jbj > 1. Let ı > 0, and let �b be the first time t
that jgt .b/j � ı. By (3.7) and the reverse Loewner equation,

gt .b/D�

Z t

0

2

gv.b/
dvC �

Z t

0

Xv

X2v C Y
2
v

dv �
p
�Bzt C b:

So, it follows from (A.9) that on E�0

inf
t�S0^�b

ˇ̌
gt .b/

ˇ̌
� jbj �C2;

where

C2 D 2	ı
�1C j�jC1CC0:

Hence, if we take jbj > 2C2, then we have inft�S0^�b jgt .b/j � C2, which implies
�b > S0 (provided that we choose ı < C0).

In particular, if b > 1 is chosen sufficiently large (independent of � and X0 2
Œ�R;R�), then gS0.�b/ and gS0.b/ lie in R. Therefore, the map g�1S0 takes @K� into
Œ�b; b�. This implies that the harmonic measure from1 of K� in H nK� is at most
2
b, so by [23, (3.14)], it follows that diamKS0 is bounded by a constant independent
of � and X0 2 Œ�R;R� on E�0 . Since Pz�.E

�
0 /� p0, the lemma follows.

A.2. Pushing the force point starting from the imaginary axis
In light of the strong Markov property and Lemma A.1, we now need to consider
the behavior of the process (A.2) if we start .X0; Y0/ from .0; y/ for y 2 Œ�; 5	1=2�
and 	 as in Lemma A.1. For this, we first need to review some calculations from [16,
Section 3]. Throughout this subsection, we assume X0 D 0 and Y0 D y 2 Œ�; 5	1=2�.
Let

�t D argZt and ty D
1

2
logy: (A.10)
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For t� ty define �.t/ by

tD

Z 
.t/

0

1

jZvj2
dvC ty ; (A.11)

so d�.t/D jZ
.t/j2 d t and �.ty/D 0. Denote processes under the time change t D
�.t/ by a star, so ��t D �
.t/, and so on. By some elementary calculations using Itô’s
formula (see the proof of [16, Proposition 3.8]), we have d logY �t D 2d t and

d��t D
p
� sin��t d bBtC

�
2C

�

2
�
�

2

�
sin.2��t / d t; ��ty D




2
; (A.12)

for bBt a Brownian motion. Since Y �ty D Y0 D y, it follows that Y �t D e
2t. Further-

more, as explained in the proof of [16, Proposition 3.8], there is a unique stationary
distribution for the SDE (A.12) which takes the form

C sinˇ .�/d�; ˇD
8� 2�

�
; (A.13)

where C is a normalizing constant.

Let e��t be a stationary solution to (A.12), and set eZ�t D e2tei
e��t

sine��t , so that Im eZ�t D
e2t and arg eZ�t De��t . Let eW �t be determined by eZ�t in the same manner that W �t is
determined by Z�t , and define

e�.t/ WD Z t

0

jeZ�v j2 dv:
Denote processes under the time change tDe��1.t/ by removing the star. Then we
have that .e�t ; eZt ; eWt / are related in the same manner as .�t ;Zt ;Wt /. Moreover,

e�.t/D inf¹t 2R W Im eZt D e2tº:
Following [16, Section 3], we define a reverse SLE�.�/ process with a force point
infinitesimally above 0 to be the Loewner evolution driven by eW .

We will eventually compare reverse SLE�.�/ with a force point starting from
.0; y/ and reverse SLE�.�/ with a force point infinitesimally above 0 by using the
convergence of a given solution of (A.12) to the stationary distribution. Before we
do so, we prove an estimate which is needed to show that the hulls of the reverse
SLE�.�/ with a force point starting from .0; y/ do not get too big during the interval
of times before a given solution mixes with the stationary solution.

LEMMA A.2
Let ty be as in (A.10). For any p 2 .0; 1/ and v > 0, there is a b > 0 depending on v,
p, and 	 but not � or the particular choice of y 2 Œ�; 5	1=2� such that

Pz�
�
K�tyCv �Bb.0/

�
� 1� p:
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Here K�t D K
.t/, for .Kt / the hulls of the reverse Loewner evolution driven by
.Wt /.

Proof
First note that ��t almost surely never hits 0 or 
 . To see this, one observes that
��t is a time change of a constant multiple of the process of [23, Section 1.11] with
aD .4C � � �/=� > 1=2, so the claim follows from [23, Lemma 1.27].

Therefore, there exists ı > 0 depending only on v such that if ��t is started at time
ty with initial condition ��ty D 
=2, then with probability at least 1 � p=2 we have
��t 2 .ı; 2
 � ı/ for each t 2 Œty ; ty C v�. Let G be the event that this occurs.

We can find a constant c > 0 depending only on ı such that, on the event G, we
have X�t =Y

�
t � c for t 2 Œty ; ty C v�. It then follows from (A.2) that on this event

@tYt �
1

cYt
; 8t 2

�
0; �.ty C v/

�
;

for a possibly larger c. This implies

Y 2t � c
�1t C y2 (A.14)

for a possibly larger constant c. In particular,

.e4v � 1/y2 D Y 2
.tyCv/ � y
2 � c�1�.ty C v/;

so for some possibly larger constant c we have

�.ty C v/� cy
2: (A.15)

Let Bzt be the Brownian motion of (3.7). We can find a C > 0 depending only
on 	 such that, with probability at least 1 � p=2, we have j

p
�Bzt j � Cy for each

t 2 Œ0; cy2�. Let G0 be the event that this occurs and that G occurs, so that Pz�.G
0/�

1� p. By (A.15) and since Yt � y for each t � 0, on G0,

ˇ̌̌Z 
.tyCv/

0

Re
1

Zt
dt
ˇ̌̌
�

Z cy2

0

Xt

X2t C Y
2
t

dt � 1:

By (3.7) and (A.15) it holds on G0 that

sup
t2Œ0;
.tyCv/�

jWt j � 1;

with the implicit constant depending only on C . By [23, Lemma 4.13] we then have
diamK
.tyCv/ � 1.
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Our next lemma controls the behavior of the Loewner transition maps eg�
t;t

corre-
sponding to a stationary solution to (A.12) after it has been run for a certain amount
of time. This estimate will eventually imply an estimate for the analogous transition
maps for the Loewner evolution driven by .Wt / by convergence solutions of SDEs to
their stationary distribution.

LEMMA A.3
Let .egt / be the reverse Loewner maps of a reverse SLE�.�/ process with a force
point infinitesimally above 0, with hulls . eKt /. We adopt the notation given just above
Lemma A.2, so in particular a star denotes processes under the time change t 7!e�.t/.
For t 2 R and t � t, let eg�

t;t
be the map defined on H which satisfies eg�t Deg�t;t ıeg�t ,

and let eK�
t;t
WD eK�t neg�t;t. eK�t / be the corresponding hull. For a;d > 0 and � 2M,

let Ft;t D Ft;t.a; d;�/ be the event that e�.t/ � a, and for each ı > 0, the harmonic
measure from1 of each of Œ�ı; 0� and of Œ0; ı� in H n .eK�

t;t
[eg�

t;t
.Bd .0/\H// is at

least �.ı/. For each t0 2R, d > 0, and p 2 .0; 1/, we can find t� D t�. t0; d;p/� t0

such that, whenever t � t0 and t � t�, there exist a D a.d;p; t; t0/ > 0 and � D
�.d;p; t; t0/ 2M such that

Pz�.Ft;t/� 1� p:

The reason for looking at the harmonic measure in H n .eK�
t;t
[eg�

t;t
.Bd .0/\H//

instead of just H n eK�
t;t

is that, for an appropriate choice of d , the set Bd .0/ \ H
contains the segment of the curve � grown before the force point gets to the imaginary
axis (see Lemma A.1).

Proof of Lemma A.3
By [16, Proposition 3.10], for each t> 0, the conditional law of eK�t given eZ�t is that
of a forward chordal SLE�.��8/ hull with an interior force point at eZ�t stopped at the
first time it hits its force point. By [55, Theorem 3] this law is the same as that of the
hull of a radial SLE�.�C2��/ from 0 to eZ�t with a force point at1, run until the first
time it hits eZ�t . Since � C 2� � > �=2� 2 (by our choice of �), [41, Theorem 1.12]
implies that such a process is transient (i.e., almost surely tends to its target point), and
[41, Lemma 2.4] implies that it almost surely does not intersect itself or hit R[ ¹1º.
In particular, eK�t is almost surely a simple curve which does not intersect R except at
its starting point and has finite half-plane capacity. By stationarity the same is almost
surely true of eK�

t;t
for each t 2R and t� t.

By the uniqueness of the stationary solution to (A.12), for each v 2 R we havee���Cv d
De��. Sincee�� determines the driving function eW � and hence also the Loewner
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chain .eg�t / and since eY �t D e2t, we have®
e�2veg�tCv.e2v �/ W t 2R

¯ d
D ¹eg�t W t 2Rº; 8v 2R: (A.16)

Now fix t0 2R, d > 0, and p 2 .0; 1/. By (A.16), the law of the diameter of eK�
t

is stochastically nondecreasing as t increases. By [23, Proposition 3.46], it follows
that we can find a deterministic D DD. t0; d;p/ > 0 such that

Pz�
��
Bd .0/\H

�
n eK�

t
�eg�

t

�
BD.0/\H

��
� 1� p=4; 8t� t0: (A.17)

Almost surely, the curve eK�
t

does not intersect R except at its starting point, so there
exist some deterministic ı > 0 and � > 0 (depending only on t and p) such that, with
probability at least 1� p=4, we have Imeg�0 .w/ � � for each w 2 Bı.0/. By (A.16),
we can find t� D t�. t0;D;p;�; ı/� t0 such that, for t� t�, it holds with probability
at least 1� p=4 that Imeg�t .w/� 1 for each w 2BD.0/\H.

Suppose that t � t0 and t � t�. If Imeg�
t;t
.x/ < 1 for some x 2 Bd .0/ \H, then

since K�
t

has empty interior, there must be some x0 2 .Bd .0/ \H/ n eK�
t

for which
Imeg�

t;t
.x0/ < 1. If the event in (A.17) holds, then x0 Deg�

t
.w/ for some w 2BD.0/\

H, so by the definition of eg�
t;t

we have Imeg�t .w/ < 1. By our choice of t�, we find
that

Pz�
�
Imeg�

t;t
.w/� 1;8w 2Bd .0/\H

�
� 1� p=2:

Since eK�
t;t
�K�t and K�t almost surely does not intersect R except at 0 and almost

surely has finite half-plane capacity, for each such t � t� we can find a and � as in
the statement of the lemma such that Pz�.Ft;t/� 1� p for each t� t0.

The following lemma and Lemma A.1 are the main inputs in the proof of Propo-
sition 3.10.

LEMMA A.4
Suppose that we are in the setting of this section (so that, in particular, X0 D 0 and
Y0 D y). Let eTr WD inf¹t � 0 W Yt D rº D �.12 log r/. Also let d > 0 and p 2 .0; 1/.
There is an r� > 0 (depending on 	, d , and p) such that, for r � r�, there exist
A> 0 and � 2M, independent of � and the particular choice of y 2 Œ�; 5	1=2�, such
that the following is true. Let E1 D E1.r; d;A;�/ be the event that eTr � A and,
for each ı > 0, the harmonic measure from 1 of each of Œ�ı; 0� and of Œ0; ı� in
H n .KeTr [ geTr .Bd .0/\H// is at least �.ı/. Then Pz�.E1/� 1� p.

Remark A.5
The purpose of the harmonic measure condition in the definition of E1 is as follows.
When we compose with gS0 on the event E0 of Lemma A.1, the part of the hull
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grown before time S0 is “pushed” into geTr .Bd .0//. The harmonic measure condition
in the definition of E1 together with Lemma 2.4 will then imply the occurrence of
G.g�1eTr ;�/ on the event E0 \E1 (see also Figure 15).

Proof of Lemma A.4
Define the processes X�t , Y �t , Z�t , �.t/, and ��t as above. Let .egt / be the reverse
Loewner maps of a reverse SLE�.�/ process with a force point immediately above 0.
We adopt the notation given just above Lemma A.3, so that for t> 0, eZt is the image
of the force point under egt and e��t D arg eZ�t is the corresponding stationary solution
to (A.12).

By the convergence of the law of the solution of (A.12) to its stationary distribu-
tion, there exists v > 0, independent of � and the particular choice of y 2 Œ�; 5	1=2�,
such that the following is true. The total variation distance between the law of ��tyCv ,
started from 
=2 at time ty , and the stationary distribution (A.13) is at most p=4. Let
ty D ty C v. We can couple �� with e�� in such a way that, with probability at least
1� p=3, these two processes agree at time ty and (by the Markov property) at every
time thereafter. Let F1 be the event that ��t De��t for each t� ty .

Define the maps eg�
ty ;t

and the hulls eK�
ty ;t

for t � ty as in Lemma A.3. Define

g�
ty ;t

andK�
ty ;t

for t� ty analogously but with g�t andK�t in place ofeg�t and eK�t . We

have that .��t ; e
2t/ determinesW �t and hence also .g�t /. A similar statement holds for

the corresponding processes under the stationary distribution. Therefore, on F1, we
have

g�
ty ;t
Deg�

ty ;t
; K�

ty ;t
D eK�

ty ;t
; 8t� ty : (A.18)

By Lemma A.2 we can find a b > 0 depending only on v such that the probability
of the event

F2 WD
®
K�

ty
�Bb.0/

¯
is at least 1� p=3. By combining this with [23, Proposition 3.46], we find that there
exists a deterministic constant d 0 D d 0.d; b/ > 0 such that on the event F2 we have

K�
ty
[ g�

ty

�
Bd .0/\H

�
�Bd 0.0/\H: (A.19)

Let t0 D 5	1=2 C v, so that ty � t0. Let t� be chosen so that the conclusion of
Lemma A.3 holds with this choice of t0, d 0 in place of d , and p=3 in place of p. Let
t� t�, and let aD a.d 0; p; t; t0/ > 0 and �0 D �0.d 0; p; t; t0/ 2M be chosen so that
with F3 D Fty ;t

.a; d 0;�0/ the event of Lemma A.3 we have Pz�.F3/ � 1 � p=3 for
each choice of ty � t0. Note that a and �0 do not depend on � or the particular choice
of y 2 Œ�; 5	1=2�. Then we have

Pz�.F1 \F2 \F3/� 1� p:
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If we set r� D e2t� and r D e2t, then r ranges over Œr�;1/ as t ranges over
Œ0;1/. We will now conclude the proof by showing that F1 \ F2 \ F3 � E1 for an
appropriate choice of parameters. On the event F1 \F2 \F3, we have

eTr D hcapK�t D hcapK�
t;ty
C hcapK�

ty
:

The first term is at most a by the definition of F3 together with (A.18). The second
term is at most a finite constant depending only on b. Hence, for r � r� we can find
A > 0 as in the statement of the lemma such that on F1 \ F2 \ F3 we have eTr � A.
Furthermore, on F1 \F2 \F3,

KeTr [ geTr �Bd .0/\H
�

DK�t [ g
�
t

�
Bd .0/\H

�
DK�

ty ;t
[ g�

ty ;t

�
K�

ty
[ g�

ty

�
Bd .0/\H

��
(by the definition of g�

ty ;t
)

D eK�
ty ;t
[eg�

ty ;t

�
K�

ty
[ g�

ty

�
Bd .0/\H

�� �
by (A.18)

�
� eK�t [eg�ty ;t�Bd 0.0/\H

� �
by (A.19) and the definition of K�

ty ;t

�
:

It now follows from the definition of F3 (see Lemma A.3) that, for each r � r�, we
can find � 2M satisfying the conditions of the lemma such that, with this choice of
� and A as above, the event E1 holds on F1 \F2 \F3.

A.3. Conclusion of the proof
Now we can combine the results of the previous two sections to complete the proof
of Proposition 3.10.

Proof of Proposition 3.10
Let 	 > 0, d > 0, and p0 > 0 be as in Lemma A.1, and let E0 DE0.	; d/ be the event
of that lemma, so that Pz�.E0/ � p0. Let S0 be as in (A.3), and for t � S0, let gS0;t
be the map defined on H which satisfies gt D gS0;t ı gS0 .

Conditional on ¹gt W t � S0º, the law of ¹gS0;vCS0 W v � 0º is the same as that
of ¹gv W v � 0º started from Z0 D .0;YS0/ instead of from Z0 D z. Note that YS0 2
Œ�; 5	1=2� on E0. Define the time eTr and the events E1 DE1.r;A;d;�/ as in Lemma
A.4 but with gS0;�CS0 in place of g�. Let r�, �, and A satisfy the conclusion of
Lemma A.4 for d as above and pD 1=2. Then if r � r�, we have Pz�.E1jE0/� 1=2,
whence Pz�.E0 \E1/� p0=2.

Since S0 � 	 on E0 by definition and by the definition of E1 we have T zr D
S0 C eTr � 	 C A on E0 \ E1. Furthermore, by the definition of E1, on the event
E0 \E1, the harmonic measure from1 of each of Œ�ı; 0� and Œ0; ı� in H nKT zr is at
least �.ı/. By Lemma 2.4 we can find �0 2M and t� > 0 as in the proposition such
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that

E0 \E1 � ¹T
z
r < t�º \G.g

�1
T zr
;�0/:

This proves the statement of the proposition.

B. Comparisons of derivatives using harmonic measure
In this section we will prove some technical lemmas which allow us to compare con-
formal maps defined on different domains. We recall the notation hmz.I ID/ for the
harmonic measure of I � @D from z in D. We start with a simple geometric descrip-
tion of the derivative of a certain conformal map defined on a subdomain of D.

LEMMA B.1
Let U �D be a simply connected subdomain. Let x;y 2 @D such that Œx; y�@D � @U .
Let m 2 .x; y/@D, and let ‰ W U ! D be the conformal map taking x to �i , y to i ,
andm to 1. Let z 2 U , let I be a subarc of Œx; y�@D, and suppose that, for some ı > 0,
the distance from ‰.z/ to ‰.I / and the length of ‰.I / are each at least ı. Then

hmz.I IU /
 dist.z; @U /
ˇ̌
‰0.z/

ˇ̌
with the implicit constants depending only ı.

Proof
By the conformal invariance of the harmonic measure, hmz.I IU / D

hm‰.z/.‰.I /IU /. By our hypotheses on ‰.I /, hm‰.z/.‰.I /IU /
 dist.‰.z/; @D/,
with the implicit constant depending only on ı. By the Koebe quarter theorem,
dist.‰.z/; @D/
 dist.z; @U /j‰0.z/j with a universal implicit constant.

Remark B.2
We note some circumstances under which the hypotheses of Lemma B.1 are satisfied.
Let bU denote the Schwarz reflection of U across Œx; y�@D. Suppose that I � .x; y/@D

with m 2 I and the distance from @U n @D to I is at least a constant 	 > 0. If z lies
at distance at least a constant 	0 > 0 from @D and is sufficiently close to @U , then by
considering the harmonic measure from m in bU (see the proof of Lemma 2.8), we
get that the hypotheses of Lemma B.1 are satisfied with ı depending only on 	, 	0,
and the length of I . In particular, if the event GŒx;y�@D.‰;�/ of Section 2.2.2 occurs,
then Lemma 2.8 implies that, under the same hypotheses on z, the hypotheses of
Lemma B.1 are satisfied with ı depending only on �, 	0, and the length of I .

We now deduce a consequence of Lemma B.1 which allows us to compare the
derivatives of conformal maps associated with an entire curve and with part of a curve.
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In particular, we consider a curve � connecting two points of @D and compare the
derivative behavior of a conformal map from the right side of D n � to D and the
derivative behavior of a conformal map from the complement of a segment of � and
its time reversal to D.

LEMMA B.3
Fix ı > 0. Let x;y 2 @D and m 2 .x; y/@D with jx � mj; jy � mj � ı. Also let � W
Œ0;1�! D be a simple curve which does not intersect .x; y/@D, and let D� be the
connected component of D n � containing Œx; y�@D on its boundary. Let ‰� WD�!D
be the conformal map taking x to �i , y to i , and m to 1.

Fix t2 > t1 � 0, set D0
� D D n .�.Œ0; t1�/ [ �.Œt2;1�//, and let ˆ WD0

� ! D be
the conformal map taking xC to �i , y� to i , and m to 1. Suppose that the following
holds for some arc I � Œx; y�@D and some point z 2D� .
(1) hmz.�.Œ0; t1�/ID�/ and hmz.�.Œt2;1�/ID�/ are each at least ı.
(2) The length of ‰�.I / and the distance from ‰�.z/ to ‰�.I / are each at least

ı.
(3) The length of ˆ.I / and the distance from ˆ.z/ to ˆ.I / are each at least ı.
Then jˆ0.z/j 
 j‰0�.z/j and dist.z; @D�/
 dist.z; @D0

�/ with implicit constants de-
pending only on ı and z but uniform for z in compact subsets of D.

Proof
See Figure 16 for an illustration of the proof. By Lemma B.1,

ˇ̌
ˆ0.z/

ˇ̌



hmz.I ID0
�/

dist.z; @D0
�/

and
ˇ̌
‰0�.z/

ˇ̌



hmz.I ID�/

dist.z; @D�/

with the implicit constants depending only on ı. We clearly have hmz.I ID0
�/ �

hmz.I ID�/. By the Beurling estimate, if r is chosen sufficiently large, in a manner
depending only on ı, then hmz.� \ Br dist.z;�/.z/ID�/ � 1 � ı=2. So, our hypothe-
sis (1) implies that dist.z; @D�/
 dist.z; @D0

�/. Therefore, it is enough to prove

hmz.I ID0
�/� hmz.I ID�/ (B.1)

with the implicit constant depending only on ı.
Let e‰� WD� ! D be the conformal map taking z to 0 and m to 1. By the con-

formal invariance of the harmonic measure and our hypothesis (1), the distance from
each of e‰�.�.t1// and e‰�.�.t2// to e‰�.I / is at least 2
ı. Hence, we can choose
a crosscut eA in D which disconnects 0 from e‰�.I / such that each point of eA lies
at distance at least ı from e‰�.I / and from Œe‰�.�.t2//;e‰�.�.tt //�@D. The harmonic
measure of e‰�.I / from each point of eA in D is bounded above by a constant depend-
ing only on ı times the length of e‰�.I /, which in turn is proportional to hmz.I ID�/.
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Figure 16. An illustration of the proof of Lemma B.3. In the left figure, the domain D� is the
part of D lying to the right of the curve � (including the dashed part �.Œt1; t2�/), and the domain
D0� is the complement of the two solid black segments of �. The probability that a Brownian

motion started from z exits D0� in the arc I is bounded by the supremum of the harmonic
measure of I in D0� from any point of the crosscut A. This, in turn, is bounded by a constant

times the supremum of the harmonic measure of I in D� from any point of A, which is bounded
by the harmonic measure of I from z in D� by our choice of eA.

Furthermore, the harmonic measure of the arc Œe‰�.�.t2//;e‰�.�.tt //�@D from each
point of eA in D is bounded above by a constant a < 1 depending only on ı.

Let AD e‰�1� . eA/. Then

hmw.I ID�/� hmz.I ID�/; hmw
�
�
�
Œt1; t2�

�
ID�

�
� a; 8w 2A; (B.2)

with the implicit constant depending only on ı.
A Brownian motion started from z must hit A before exiting D0

� in I . Therefore,

hmz.I ID0
�/� sup

w2A

hmw.I ID0
�/: (B.3)

For w 2A, we can decompose the event that a Brownian motion B started at w exits
D0
� in I as the union of the event that B hits I before �.Œt1; t2�/ and the event that B

hits �.Œt1; t2�/ and then I . By (B.2) the former event has probability at most a constant
C (depending only on ı) times hmz.I ID�/. By the Markov property the latter event
has probability at most

sup
w2A

hmw
�
�
�
Œt1; t2�

�
ID�

�
sup

v2�.Œt1;t2�/

hmv.I ID0
�/:

Since A disconnects �.Œt1; t2�/ from I in D0
� we have supv2�.Œt1;t2�/ hmv.I ID0

�/ �

supw2A hmw.I ID0
�/. By combining this with (B.2) we get

sup
w2A

hmw.I ID0
�/� C hmz.I ID�/C a sup

w2A

hmw.I ID0
�/: (B.4)
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Since a < 1, we can rearrange the estimate (B.4) to get

sup
w2A

hmw.I ID0
�/� hmz.I ID�/;

which together with (B.3) yields (B.1).

C. Strict mutual absolute continuity for SLE

Definition C.1
We say that a measure � is strictly mutually absolutely continuous (SMAC) with
respect to a measure � if � and � are mutually absolutely continuous with Radon–
Nikodym derivative almost everywhere bounded above and below by finite and posi-
tive constants.

In this appendix we will prove a lemma which gives that the conditional law of
the “middle part” of an SLE�.�LI�R/ curve given the initial and terminal segments,
on a certain regularity event, is SMAC with respect to the law of the middle part of
an ordinary SLE� curve (see Lemma C.4 below for an exact statement). This result
is needed in the proof of our two-point estimate (see, in particular, Lemma 7.3). We
will deduce our desired result from [46, Lemma 2.8] (which gives a similar strict
mutual absolute continuity statement for SLE�.�/ curves in domains which agree
in a neighborhood of the starting point) together with the coupling results of [37],
described in Section 2.5.

Before we can prove this result, we need to define the regularity event for the
initial and terminal segments of the path which we will work on. Let x;y 2 @D be
distinct. Let � be a random curve from x to y in D, with time reversal �. In what
follows, we write Bˇ D Be�ˇ .0/, and let �ˇ (resp., �ˇ ) be the first time � (resp., �)
hits Bˇ , as in Section 6.

Fix � > �0 > e� > 0. Suppose that we are given times �;� > 0. Let �� be the
part of � between �.�/ and �.�/. Let H� DH�.��Ie�/ be the event that �� �Be�.
Let S D S.�I�;�;�;e�/ be the event that the following occur.
(1) �� � � <1 and �� � � <1. (Here, �� D �ˇ and �� D �ˇ with ˇD�.)
(2) �
 (resp., �
 ) is contained in the e�2�-neighborhood of the segment Œx; 0�

(resp., Œy; 0�).
(3) The conditional probability of H� given �
 [ �
 is positive.
Also let S� D S�.�I�;�;�;�0;e�/ be the event that the following occur.
(1) S.�I�;�;�;e�/ occurs.
(2) �.Œ��0 ; ��/ (resp., �.Œ��0 ; ��/) is contained in Be�.
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Remark C.2
If the event L and the times � and � are defined as in Section 7.2, then we have

L� S�.�I�;�;�;�=2;e�/:
This is the primary reason for our interest in the event S�.�/.

Remark C.3
In the case in which � is an SLE�.�LI�R/ (which is what we consider in the section)
one can show that condition (3) in the definition of S is in fact implied by the other
conditions in the definition of S . To establish this, the idea is to realize � as a flow line
of a GFF and then condition on two counterflow lines (run up to a certain stopping
time) with the property that the interface between them is almost surely equal to �


(see [38, Section 5.4] for a similar argument). We do not need this fact here though,
so for the sake of brevity we include condition (3) as a condition.

The main result of this section is the following.

LEMMA C.4
Let �L; �R 2 .�2; 0�, ı > 0, and x;y 2 @D with jx � yj � ı. Let � be a chordal
SLE�.�LI�R/ process from x to y in D with force points located at x� and xC. Let
� be its time reversal. Let � be a stopping time for �, and let � be a stopping time
for the filtration generated by �
 and �. Let S� D S�.�I�;�;�;�0;e�/ as above.
Also let �� and H� DH�.��Ie�/ be as above. Let D be the connected component of
Dn.�
[�
 / containing 0. If e� (and hence also�0 and�) is chosen sufficiently large,
in a manner depending only on ı, �L, and �R, then almost surely on S� the regular
conditional law of �� given �
 [ �
 and the event H� is SMAC with respect to the
law of a chordal SLE� from �.�/ to �.�/ inD conditioned onH�, with deterministic
constants depending only on �L, �R, �, �, �0, e�, and ı.

The idea of the proof of Lemma C.4 is to consider a GFF on D whose flow line
�0 is an ordinary SLE� and then grow auxiliary flow lines with the same start and end
points in such a way that the conditional law of �0 given these auxiliary flow lines
is that of an SLE�.�LI�R/ for the given values of �L and �R. By [46, Lemma 2.8],
the conditional laws of these auxiliary flow lines given �0 do not depend strongly
on a small segment in the middle of �0. We then apply Bayes’s rule to invert the
conditioning (see Figure 17 for an illustration of the argument).

For the proof of Lemma C.4, we will assume that neither �L nor �R is equal to
0. The case in which one of the force points is equal to 0 is treated similarly but with
only a single auxiliary flow line.
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Figure 17. An illustration of the setup for the proof of Lemma C.4. The curve �0 in the left
picture has the law of an ordinary chordal SLE� from x to y in D. The curve � in the right

picture (obtained by mapping the “pocket” D0 formed by auxiliary flow lines to D) has the law
of a chordal SLE�.�LI�R/ from x to y. The amount by which  distorts distances is

exaggerated for clarity—typically,  is close to the identity on the event F .

Choose �0 > e�0 > 0 satisfying e�0 < e�<�0 <�0 <�, with �, �0, and e� as
in the statement of Lemma C.4. Let �0 be an ordinary chordal SLE� from x to y in
D. Let �0 be the time reversal of �0. Let �0 (resp., �0) be the first time �0 (resp., �0)
hits Be�. Let ��0 be the part of �0 between �.�0/ and �.�0/. Also let

S0 WD S.�0I�0; �0;�0;e�0/; H�0 DH
�.��0I

e�0/: (C.1)

We can couple �0 with a GFF h on D with appropriately chosen boundary data in
such a way that �0 is the 0-angle flow line6 (in the sense of Section 2.5) of h started
from x. Let �L > 0 and �R < 0 be chosen so that

�L�

�
� 2D �L; �

�R�

�
� 2D �R: (C.2)

Let �� and �C be the flow lines of h started from x with angles �L and �R, respec-
tively. Since �L; �R 2 .�2; 0/, the flow lines �� and �C are well defined. Let D0
be the connected component of D n .�� [ �C/ containing the origin. Let b and b,
respectively, be the first and last points on @D0 hit by �0. By the results of [37, Sec-
tion 7], the conditional law of the part of �0 which lies in D0 given �� [ �C is that

6In the case in which � D 4, we replace flow lines by level lines, as defined in [54] and [53]. Everything works
the same with this replacement.
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of a chordal SLE�.�LI�R/ from b to b in D0 with force points located on either side
of b. We also fix a small parameter ˛ 2 .0; 1/, and we let t� and tC, respectively, be
the first times �� and �C exit B1�˛.0/.

Throughout the remainder of this section, we require all implicit constants, includ-
ing those in SMAC, to depend only on �, e�, �0, �0, e�0, ˛, �L, �R, �, and ı. (In
particular, implicit constants are not allowed to depend on the realization of whatever
we are conditioning on or on the choice of stopping times �;� .)

LEMMA C.5
Let !0 be a realization of �
00 [ �


0 for which S0 occurs. If e�0 (and hence also �0)
is chosen sufficiently large and ˛ > 0 is chosen sufficiently small, in a manner which
is uniform over values of the end points x and y such that jx � yj is bounded below,
then the following is true for almost every such !0. Almost surely, the conditional
law of ��0 given ¹�
00 [ �


0 D !0º, H�0 , and .�t�� ; �
tC
C / is SMAC with respect to the

conditional law of ��0 given only ¹�
00 [ �

0 D !0º and H�0 .

Proof
Let P!0 denote the regular conditional probability given ¹�
00 [ �


0 D !0º and the
event H�0 . Let A�0 be an event with positive P!0 -probability which is determined by
��0 and �
00 [ �


0 and is contained in H�0 . Let AF0 be the intersection of H�0 with an
event which is determined by �
00 [ �


0
0 and .�t�� ; �

tC
C / and contained in S0 which

also satisfies P!0.A
F
0 / > 0. By Bayes’s rule,

P!0.A
�
0 jA

F
0 /D

P!0.A
F
0 jA

�
0/P!0.A

�
0/

P!0.A
F
0 /

: (C.3)

Hence, we are led to study the conditional law of .�t�� ; �
tC
C / given ¹�
00 [ �


0 D !0º

and ��0 , for varying realizations of ��0 for which H�0 occurs.
By the results of [37, Section 7.1], the conditional law of �C given �0 is that of

a chordal SLE�.�LF I�
R
F / process from x to y in the right connected component of

D n �0 for certain �LF ; �
R
F > �2 depending on �L and �R. A similar statement holds

for ��. Furthermore, �C and �� are conditionally independent given �0. By [46,
Lemma 2.8] and the analogue of condition (2) in the definition of S0, if e�0 is chosen
sufficiently large and ˛ > 0 is chosen sufficiently small, then the conditional laws
of the pair .�t�� ; �

tC
C / given ¹�
00 [ �


0 D !0º and ��0 for varying realizations of ��0
for which H�0 occurs are all SMAC. By averaging over all such realizations, we get
P!0.A

F
0 j A

�
0/ 
 P!0.A

F
0 /. By (C.3) we therefore have P!0.A

�
0 j A

F
0 / 
 P!0.A

�
0/.
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Proof of Lemma C.4
Let D0, b, and b be defined as in the discussion just above Lemma C.5. Let  W
D0! D be the conformal map which takes b to x and b to y, chosen so that j .0/j
is minimal among all such maps, and let

� WD .�0 \D0/; e�� WD .��0/:
Also let � be the time reversal of �. We define the objects in the statement of the
lemma with this choice of �. By the discussion just above Lemma C.5, the conditional
law of � given �� and �C is that of a chordal SLE�.�LI�R/ process from x to y in D.

Fix � > 0, to be chosen later, and let F D F.�/ be the event that the following
occur.
(1) �� and �C trace all of @D0 before times t� and tC. (Equivalently, since �˙

cannot cross themselves or each other, t� D t�CD1.)
(2) j .z/� zj � � for each z 2D0.
By Lemma 2.17, for each � > 0 almost surely P.F j �0/ > 0.

By choosing � > 0 sufficiently small (depending only on �, �0, e�, �0, and e�0),
we can arrange that the following are true on F .
(1) B� � .B�0/� .B�0/� .Be�0/�Be�.
(2) The image under  of the e�2�0 -neighborhood of the segment Œx; 0� (resp.,

Œy; 0�) contains the e�2�-neighborhood of the segment Œx; 0� (resp., Œy; 0�).
On the event F , let � 0 and � 0 be the stopping times for � and � corresponding

to �0 and �0, so  .�0.�0// D �.� 0/,  .�0. �0// D �.�
0/, and e�� is the part of �

between �.� 0/ and �.� 0/. Also let �� be the part of � between � and � , as in the
statement of the lemma.

By conditions (1) and (2) above together with condition (2) in the definition
of S�,

F \ S� \H� � F \ S0 \H
�
0 : (C.4)

(Note that the first inclusion is the only place where we use condition (2) in the defi-
nition of S�.) Furthermore, by the first inclusion in condition (1) and condition (1) in
the definition of S , on F \ S almost surely

� 0 � �� � � and � 0 � �� � �: (C.5)

Now let .!0;!F / be a realization of .�
00 [ �

0
0 ; �

tC
C [ �

t�
� / for which F \ S0

occurs. We observe the following.
(1) By the strong Markov property and reversibility of ordinary SLE� , the condi-

tional law of ��0 given ¹�
00 [ �

0
0 D !0º and H�0 is that of a chordal SLE�

from �0.�0/ to �0. �0/ in D n .�
00 [ �

0
0 /, conditioned on H�0 .
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(2) It therefore follows from Lemma C.5 that the conditional law of ��0 given
¹.�


0
0 [ �


0
0 ; �

tC
C [ �

t�
� / D .!0;!F /º and H�0 is almost surely SMAC with

respect to the law of a chordal SLE� from �0.�0/ to �0. �0/ in Dn .�
00 [�

0
0 /,

conditioned on H�0 .
(3) By [46, Lemma 2.8], this latter law is SMAC with respect to the law of a

chordal SLE� from �0.�0/ to �0. �0/ in the connected component of D0 n
.�

0
0 [ �


0
0 / containing 0, conditioned on H�0 .

(4) Therefore, the conditional law ofe�� given ¹.�
00 [�

0
0 ; �

tC
C [�

t�
� /D .!0;!F /º

and H�0 is SMAC with respect to the law of a chordal SLE� from �.� 0/ to
�.� 0/ in the component of D n .�


0
[ �


0

/ containing 0, conditioned on H�0 .
(5) By (C.4), (C.5), and the Markov property and reversibility of ordinary SLE� ,

assertion (4) implies the conditional law of �� given ¹�
tC
C [ �

t�
� D !F º; a

realization of �
 [ �
 for which S� occurs; and that H� is almost surely
SMAC with respect to the law of a chordal SLE� from �.� 0/ to �.� 0/ in the
component of D n .�


0
[ �


0

/ containing 0, conditioned on H�.
Since the law of � given almost every !F is that of a chordal SLE�.�LI�R/ from
x to y in D and there is a positive probability event of choices for !F , assertion (5)
implies the statement of the lemma.
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