HEAT EQUATIONS ON MINIMAL SUBMANIFOLDS AND THEIR
APPLICATIONS

By SHIu-YUEN CHENG,* PETER L1* and SHING-TUNG Yau

0. Introduction. Let M" be a n-dimensional minimally immersed
submanifold of M"*¢, ¢ > 1. Throughout this paper M"*! s taken to be
one of the simply connected space forms with curvature 1,0, or —1, i.e.
M= gt R or H"'. Given a point p € M, let r,(x) be the dis-
tance function on M, we denote the restriction of r, to M as the extrinsic
distance function on M. For any a > 0, we define the extrinsic ball cen-
tered at p with radius a by

D,(a) = B,(a) N M

where B, (a) = {xeM |r,(x) < a}. Unless ambiguity arises, the subscript p
will be subpressed.

Let D C M be a compact domain. We consider the fundamental solu-
tions of the heat equation (heat kernels), H(x, y, t) and K(x, y, t), for the
Dirichlet and the Neumann boundary conditions respectively. They pos-
sess the properties:

() O,H(x, y,t) = U,K(x, y, t) =0, forallx, ye D andt € [0, o).
(ii) H(x, y, 0) = K(x, y, 0) = 6,, forx € D.
(iii) H(x, z, t) = 0, for z € D
dK/dv,(x, z,t) = 0, for z € dD.

where 8/dv, stands for the differentiation in the z variable in the outward
normal direction to dD.

The purpose of this paper is to develop comparison theorems for H
and K.

Tureorem 1. Let D be a compact domain in M. If M"*' = R"™! (or
H" 1Y), and for any p € D we define the extrinsic outer radius at p by

a = supr,(z)
zeD
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then

H(p,y, 1) < H,(r,(y), )

forall y € D and t € [0, ). Here I_Ia (rp (), t) stands for the heat kernel
with Dirichlet boundary condition on the ball centered at 0 with radius a in
R” (or H" respectively).

TuEOREM 2. Let D,(a) be the extrinsic ball centered at p with ra-
dius a in M. If M"t* = R"™* (or H"Y), and ifI?a(rp(y), t) is the heat
kernel with Neumann boundary condition on the ball centered at 0 with
radius a in R" (or H"), then

K(p,y,t) < K,(r,(»), 1)

forall y € Dp(a) and t € [0, o).
THEOREM 3. Let M"T' = §"*!. Suppose D is a compact domain in
M. For p € D if the outer radius at p is not greater than w/2, then
H(p, y, 1) < H,(r,(y), 1)
forall y e D and t € [0, o). I_Ia (rp(y), t) is the heat kernel with Dirichlet
boundary condition on the ball of radius a in S” centered at the northpole.

TueoreM 4. Suppose M" =57 Lot Dp(a) be any extrinsic ball
of M with radius 0 < a < w. If K,(r,(y), t) is the heat kernel with
Neumann boundary condition on the ball of radius a in §", then

K(p, y, t) < I?a(rp(y), t)

forally e D,(a)and t € [0, o).

THEOREM 5. Let M" be a compact manifold without boundary.
Suppose M" — S" ' is a minimal immersion of M into S" . If we denote
the heat kernel on M (without boundary condition) by K(x, y, t) and the
heat kernel on S" by K (x, y, t), then

K(p,y,t) < K(r,(y), )

forall p, y € M and t € [0, o).
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Remark. In the above theorems, we simply transplanted the heat
kernel of the model space into the domain in question. It is unambiguous
to write the kernels on the model spaces, namely H and K for the ball of
radius a centered at 0 in R”, H”, or §", as a function of r, because of the
uniqueness of the kernels and the presence of the group of rotations as
isometries.

In the first section of this work, we will prove Theorem 1 and 2, while
Theorems 3 to S will be proved in Section 2. The last section consists of
applications and consequences which follow Theorem 1-5.

One of the applications of Theorem and 3 are the mean-value inequal-
ities for subharmonic functions defined on M (also see [10] and [11]).
Lower bounds for the volume of the ball of radius a is obtained as a result.
However in the case of when M = "' and a > 7/2, the usual technique
does not give the mean-value inequality, but volume lower bound still fol-
lows by utilizing the Neumann heat kernel in Theorem 4.

Comparison theorems for the first eigenvalue of Dirichlet boundary
problem on any compact domain D in M S R"*! (or H"*") are derived.
Similar results also hold when M = $"1¢, but we have to restrict ourself to
domains which contain in a hemisphere of S"**. These comparisons are
sharp and equality holds iff M is totally geodesic and D is an extrinsic ball.
Theorems 1 and 3 also imply lower estimation for high eigenvalues of D.
These estimates are up to a constant comparable to the H. Weyl formula.

The consequences of Theorem 5 are most interesting. By estimating
the heat kernel for $” carefully, we conclude that if the volume V(M) of M
is closed to the volume V(S”) of S”, then M is totally geodesic. In fact,
since the closeness requirement increases linearly with respect to the codi-
mension £, this implies that if M — §" ' is of maximal dimension (M does
not lie on any hyperplane of R"*!) then

20+ 1

V>[1+

for some constant B, which depends only on . In general, we also observe
that the number of components of M-H, where H is any hyperplane in
R” 1!t which passes through the origin, is bounded from above by a con-
stant depending on V(M). Lower bounds for all the eigenvalues of M are
also established in terms of the ordered of the eigenvalue and V(M).
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1. Mt = R"*  or H"*!. In this section we will mainly deal with
the cases when M " equals R"** or H"*!. Before we prove Theorems 1
and 2, we will present the following proposition which can be found in
standard references (also see [3] and [8]).

PropositioN 1. Let M be a compact manifold with boundary 0M.
Suppose p € M, and if G(p, y, t) and 6(p, y, t) are two C? functions
defined on M X M X [0, o) with the properties that:

(i) G(p, y,t) = 0 forallye M, t € [0, )
(i) G(p, y, 0) = G(p, »,0) = §,
(iii) O, G(p, y,t) = 0 and U,G(p, y,t) =0 forallyeMandte
[0, o)
(iv) 1)G(p,z,t) =0and G(p,z,t) = 0 forallz€dM,t € [0, ); or
(2)8G/dv,(p,z,t) = 3G /dv,(p,z,t) =0 forallze dM and t €
[0, o).

Then
G(p,y,t) = G(p,y, 1)

forall y e M and t € [0, o).
Proof. By property (ii),

(1.1) G(p,y,t) — G(p, y, 1)

t
= g N S é(p, z,8)G(y, z, t — s)dz ds
0 0s Jum

t
ZS S A,G(p, z, 5)G(y, z, t — s)dzds
0JM

t
- S S G(p, z, $)A,G(y, z, t — s)dzds
0Jm

(properties (i) and (iii)

: —
= S § it (p, z,8)G(y, z, t — s)dzds
0Jom 97,

t
- S S G(p, z, s)—qg(y, z,t — s)dzds.
oM av

0 z
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Clearly if either condition (1) or (2) of property (iv) holds, then the proposi-
tion follows.

We are ready to prove Theorems 1 and 2. Since the proof for the case
M = H"*'is quite similar to that of R" ¢, we will restrict ourself to M =
Rn-H’.

Proof of Theorem 1. M = R"™*. In view of the above proposition, it
suffices to check conditions (ii), (iii) and (iv) (1) for the transplanted heat
kernel H (r(y), t). Due to the asymptotic expansion of H (r(y), t) for r(y)
near O ast — 0

1.2) H(, t) ~ (4mt)™ "2 exp< >[1 +at +a?+ -],

and also because of the fact that on M, the extrinsic distance functionr » )
is asymptotic to the intrinsic distance function, it is apparent that
H(@r,t) ~ 6, ast = 0, hence condition (ii) is satisfied. Condition (iv) (1)
follows from the fact that H = 0 on By(a) < R” and the definition of the
outer radius a. We only need to check that

(1.3) O,H@F(y), ) <0
We observe that by minimality of M in R" ",
(1.4) Ar3(y) =2n forall p,yeM

Hence it is convenient to write H as a function of s(y) = r( y). Computa-
tion shows that

(1.5) AH(s,t) = H"|Vs|> + H' As

= P—I”(4r2]Vr|2) + 2nH’
where H' and H " are the first and second derivatives of H with respect to
the variable s. Since |Vr| < 1, clearly if H” = 0 then equation (1.4)
becomes

(1.6) AH(s,t) < H"(4s) + 2nH"

= AH(s, t)
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where A is the Laplace operator on the ball By(a) in R". By the fact that H
is the heat kernel of By(a), this gives

OH(s, ) < OHG, t)
= (,

To show H” = 0, we differentiate twice the equation

(1.7) H, = AH
= 4sH" + 2nH"

and obtain

(1.8) A = 4sH + (2n + HH”

and

(1.9) H/ = 4sHY + 2(n + HH®.

The function H ” hence satisfies a second ordered parabolic equation
(1.8), and the maximum principle can be applied. The nonnegativity of
H " will then follow from the nonnegativity of H” on the boundary of 0 <
s <aandtel0, ©) . Whent = 0 ands # 0, H(s, 0) = 0, hence
H"(s,0)=0. Ats = a?, since H satisfies the Dirichlet boundary condition

(1.10) OH | _ g <o
or r=a r=a

and

1.11) il =0

Therefore from (1.6), we get

(1.12) 4a’H"|,_, = 0.
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For the case s = 0, we consider the equation

_ AH nH,
(1.13) H"(s@r), t) = g T
r r
AH n|VH |
) + 3

We will study the limit

+

lim
) )

r—0

. usy

However since H(0, y, t) = £ e N'¢,;(0)¢;(y),

n|VH |
=

(1.14) AH + == E —Ne N (0)0;(y)

+ | L 5o N, (0078:(»)

This reduces the questions to studying the behavior of each eigenspace at
points near 0.

LemMma 7. Let M be a manifold with boundary. Suppose there exists
a point p € M, such that the metric of M is invariant under rotation around
p, and M can be written as the ball of radius a around p with respect to the
rotationally invariant metric. Then for each eigenspace

Ey ={¢|A¢ = —\¢}
with eigenfunctions satisfying either the Dirichlet or Neumann boundary
condition, either
(i) ¢(p) = 0 for all ¢ € E (up to scalar multiple)

or

(ii) there exists a unique (up to scalar multiple) ¢ € E\ which is rota-
tionally symmetric i.e. ¢ can be written as a function of r,(y). In particu-
lar, if we insist that ¢(p) = 0 and jM ¢2 =1, then ¢ is unique in E, .
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Proof. Assuming conclusion (i) does not hold, we define the finite
dimensional subspace E'y of E, by

E, = {¢ € Ey|¢(p) = 0},

then Ey # E,. We claim that the orthogonal complement of E,\inE, is
one-dimensional. Indeed, if ¢, and ¢, are linearly independent in the
orthogonal complement of E, and if ¢;(p) = « and ¢,(p) = B, with
o, B # 0, then

Bo1(p) — ad,(p) = 0.

This shows B¢; — ad,e E »» which contradicts the fact that ¢, and ¢, are
in the orthogonal complement of E,. Clearly the uniqueness of the nor-
malized ¢ which span the orthogonal space of E, in E, is the required
rotationally symmetric eigenfunction in £ .

Remark. A similar version of Lemma 1 for homogeneous manifold
can be found in [9]. The unique normalized function ¢ is usually known as
the zonal function at p with respect to E.

Returning to the proof of Theorem 1, in view of the lemma, Equation
(1.13) can be written in the form

n|VH |
—

(1.15)  AH + - ?‘“%(O)[l%x(y)l Z— >\¢x(y)}

a
= §e—“¢x<0)[—% S5 L Am(y)}

where ¢, with ¢,(0) > 0 is the rotational symmetric representative of E.
The last equality follows from the fact that

Adr(p) = —Apr(p) < 0

hence ¢, has a local maximum at p. We will show that for each \, ¢
satisfies

1im[——r”3—¢, - 72—4 =0

r—0
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where the subscript \ is being suppressed. Then Theorem 1 follows.
In fact, we show that the function

no,
g = + Ao

vanishes to 2™ order as » — 0, hence it suffices to check that

3% | no,
—3;7{ = + M)} = 0.
By I'Hopital’s rule
. no,
(1.16) Egg—r— =no,|,=o.

However at r = 0, one can easily check that
(117) nd)rr‘r:() = Z“b lr‘—'O
= —xe(0)

for rotationally symmetric metric around 0, hence

lim[ nor M} —0.

r—0 r

Also
ag _ no,, no,
> 7 prRLIRA IS
asr — 0, this gives
ag e n ¢r
e Sl
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but since
(1.19) —\p = Ad

n—1

= d)rr + ¢r

after differentiating this yields

n—1

¢,
—)\¢r = ¢rrr + ——r_—[(brr - 7 :|

As r — 0, this implies

-1 .
¢rrr|r=() = llznl(i__)-[_f'f_ - d’rr]

0 r

therefore substituting into (1.17), we have

33 - 2{ o, ops ]
¢ O = _
ar r=0 r2 r
_ ag
= —n —
ar r=0
hence
0
k| _,
ar r=0
Finally,

32g _ n P B
- )\d)rr + '—r—{‘brrr - T + ) ]

or? r
n ¢r
B 7["’"“ g ]

asr — 0, we have

azg

(120 =3

r=

. )\2 . n 2¢'rr

2¢,

"

|
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The second term on the right hand side gives

2 2
» lim l[qb,,, _ 2 2% ]

r—0 7 r r2

_ : 2¢,,, 4¢,, 4¢,
—n EEI(} |:¢rrrr - P + 2 - .

On the other hand, differentiating Equation (1.17) twice yields

_>\¢rr = brrrr + L_7_‘—_1_[¢rrr - +

r 72

26, | 20, ]

Substituting into the above equation, then

}igrg%[¢,rr - zq:” + 2;2’ }
o o 2 20
=X 0~ + 133%{%, S Zr‘ﬁ' }

Therefore

(n +2) mé[% - Z‘f” + 2:2’ } = —%2-¢>(0)

hence combining with Equation (1.19) gives

d’g IREEN 5 \?

o |y T PO T 00
) S
= T ont 2 t@=0

as to be shown.
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In the case where M = H" !, one simply writes H as a function of s =
cosh r since A cosh r = A cosh r where A is the Laplacian on H". The
computation on H"” will follow similarly to that of R".

Proof of Theorem 2. Again we will consider the case when M =
R+ only. Similar to the proof of Theorem 1, we can reduce to check if K
satisfies conditions (ii), (iii) and (iv) (2). Clearly condition (ii) follows from
the remark in the previous proof. Consider

K @), 0 =% (@), 0 2
ar dv,

v,

=0, for ze€ aDp(a)

since K is the Neumann heat kernel on By(a) in R”. This gives (iv) (2).
To check condition (iii), we again write K as a function of s = r2.
Equation (1.6) asserts that if K ” = 0, then Theorem 2 follows. Once again

we differentiate Equation (1.7) twice and obtain (1.9)
K/ = 4sK“ + 2(n + K.

In order to apply the maximum principle to K ”, we need to check that
K" = 0 on the boundaryof 0 < s < a’and 0 < ¢ < . Whens = 0, or
t < o, Whens = 0, or¢t = 0, the proof of Theorem 1 is still valid, hence
we will discuss the case when s = a?.

It is known [3] that the heat kernels on a rotationally symmetric ball

satisfies
(1.22) K’ =2s?K, <0

forall0 < s < a?andt # 0. On the other hand by the Neumann boundary
condition on K, K’ = 0 when s = a?. Hence K’ attains its maximum on
s = a2. Now consider equation on a%2/2 < s <a*and0 <t < o, we can

apply the boundary maximum principle [17, pp. 170] and conclude that
K"(@?t) >0 for t#0,

which proves the theorem.
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2. M"Tt = 8"t When M"is §"1!, one needs to write the ker-
nels H and K as functions of cos r, where r, is the distance function from
the northpole of $”. In fact, for convenience sake, we will write H (s, ¢) and
K (s, t) as functions of s = 2(1 — cos r) and £. We are now ready to prove
Theorems 3-5.

Proof of Theorem 3. _Clearly in view of Proposition 1 and the bound-
ary conditions on H and H, it suffices to check that

OH(s, t) < 0.

However
(2.1) AH(s,t) = H"|Vs|*> + H'As
=H"s(4 — s)|Vr|* — 2H'(A cos r),
and since cos r is the restriction of the coordinate functions on the sphere,

Acosr = —n cosr.

Hence
AH(s, 1) = H"s(4 — 5)|Vr|?> + 2n cos rH'.
If we can show that H” = 0, together with the fact that | V7 |? < 1, we have
AH(s,t) < s(4 — s)H” + n(2 — )H’
= AH(s, t)
= H,(s, t)
where A = Laplace operator on S”. We differentiate twice the equation

(2.2) H, = AH

=54 —s)H” +n2 — s)H’
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and apply the maximum principle to H”, since it satisfies
23) H' =s@4—HY +@n+ 492 —s)H” —2(n + DH".
Similar to Theorem 1,
H” =0 on {(s,t)|s #0,t =0}
and H” > 0 at (s = 2(1 — cosa), t) fort > 0, becauseI-—I, = (Qats =

2(1 — cosa)and 0 > H, = H'2 sinr (see [3]) forr < a < 7/2.
To prove H” (0, t) = 0, we consider the equation

e AH — n(2 — s)H'
(2'4), H" = @ =5

which follows from (2.2). Using the eigenfunctions expansion for H and
applying Lemma 1, we get

_ B Ao n cos r(0¢y /0r)
(2.5) AH" =T e M<¢>x(0)<— - 2
A sin? r sin® r
where ¢,(0) > 0 and all ¢,’s are rotationally symmetric. Suppressing the
subscript N\, we claim that the function

n cosro,

g =Np + -
sinr

vanishes in 2" order and 32g/dr? is nonpositive as » — 0. The theorem will
then follow.
In fact
cos ro,

(2.6) lgr(}g(r) =Np(0) + n 113(} pem

cos r¢,, — sinr¢,
cos r

= Np(0) + lin(’)l

by I'Hopital’s rule.
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On the other hand, since

lin(} né, = A¢(0)

—A\¢(0)
and ¢, > Oasr — 0,
lirrolg(r) =0.

Also

(27) a_g — )\d)r +n COS' rd’rr - .¢r },
or sin r sin? r

as r — 0 this becomes

. Og cos ro,, b,
lim—=— = n lim : T e
r—0 Or r—0 sin r sin® r

®,, cosr n b, }

= p lim| ¢,,, — - -
r—’Ol: " sin r sin? r

where the second equality is obtained by I'Hopital’s rule. On the other
hand, differentiating the equation

2.9) —N\p = Ad = ¢, + {n — Deosré,

sin

with respect to r yields

cos ro,, _ o, :l

sin r sin? r

—\p, = &b, + (n — 1)|:
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Taking limit as » = 0, we have

. _ (mn—1 . og
e A
Combining with (2.8) yields
g
. lim —— = li
(2 10) rl—l”r(.)l or rl}j(} d)rrr
. [ cosro, o,
= lim . - —
r~0\ sinr sin? r

= 0.
Finally, we consider the function

d’%g _
F A, + n<

cos ro,,, 26,, n 2¢, cosr >

sin r sin? r sin3 r

asr — 0, this gives

.9’ A2
@11 lim=F = == 6(0)
COS r,,, 29,, 2¢, cos r
+nlim< AL >
r—0\ sinr sin? r sin3 r
)\2 a4¢ 2¢rrr
n ¢ )+nr1—1}(}{ art sin r cos r
PRIl S }
sin r sind 7 sin 7 cos r
A2 A
= =S $(0) + 206(0) + n lim =3
S d’g

o0~ 2im
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Therefore

0’%g < 32 > 3
2.12 31 = — — i
( ) rl”{% ar? n 2 Ul = = ll—r»rol art

However differentiating (2.9) twice yields

3* cos rd,,, 2¢,, 2 cosro,
A, = ¢’+(n—1)[ s A S "’5}
ar? sin sin?r sin3 r
hence
% R X" n—1)|, % a2
0= 11}}(;1 ar* + n 31—{% ar? e

This together with (2.12) gives

8% AN — n)
2.13 i =~
@19 0 9r2 n(n + 2)

$(0).

But on a ball centered at p with radiusa < 7/2 in §”, the eigenvalues for
Dirichlet boundary conditions are known [13] to be no less than n, hence
the right hand side of (2.13) is nonpositive which is to be proved.

Proof of Theorem 4. 1t is obvious to see that the proof of Theorem 2
together with the computations in the proof of Theorem 3 implies Theorem
4. In fact, we only need to check that the eigenvalues on B,(a), a < ,
which appear in the expansion (2.5) with Neumann boundary condition
satisfied

A= n.

Lemma 1 asserts that we may assume the eigenfunctions are rotationally
symmetric, in particular, they take constant value on 3B, (a). Theorem 4
will indeed follow from the next lemma.

LemMA 2. Let M be a compact manifold with boundary 0M. Sup-
pose the Ricci curvature of M is bounded below by (n — 1)K > 0. If any
eigenfunction ¢ with eigenvalue \ satisfies

@ |,p = constant
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and
0
¢ =0,
aV oM
then
A=n

In particular,if M = B, (a) with a rotationally symmetric metric and if ¢ is
a rotationally symmetric eigenfunction, then N = n.

Proof. Assume \ < n, we consider the function

h=|Ve|*>+ %&.

Then
2
SAh =T ¢ + Lo + %IVMZ - )\T¢>2
LJ L]
2 2
> —AVo2+ (= DT+ B Aoy N g

=<n-——1)—- >|V¢|2
=0

which implies the maximum of 4 occurs on M, say x,. By the Hopf maxi-
mum principle, we have

oh A
0< W(xo) = 2<§: ®;0;,(x0) + 7¢¢y(xo)>
=2 §: ¢j¢j"|x0

However ¢ |,,, = constant and ¢, |,,, = 0 means ¢,(x,) = 0 for all j. This
contradicts the assumption.
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Proof of Theorem S.  Since the heat kernel for the compact manifold
§" is the same as the kernel with Neumann condition B, () (see [3]), by the
proof of Theorem 4 this implies K ” = 0, hence Proposition 1 can be ap-
plied. However if the image of M in "' does not contain the antipodal
point p’ of p, then the transplanted function K may not be C? in M. We
will show that this does not create any problem for the purpose of applying
Proposition 1.

Let @ = sup,ep 7,(x) be the extrinsic diameter of M at p. Clearly
M < Bp(a) = the ball of radius a centered at p in st Equation (1.1) of
Proposition 1 asserts that for any y e B,(a — ¢) N M = D(a — ¢).

(2.14) K(r,(y), 1) — K(p, y, 1)

t
= E S (r (z), )K(y, z, t — s)dzds
aD(a—e) aV

+ j j K(r (), s) (y, t — s)dzds
dD(a—¢) Vz

where we use D(a — ¢) instead of M. We will show that the right hand side
of (2.14) converges to zero as e = 0. Since for any z € dD(a) is a supremum
point for Tps

K _ a
‘;K (ry@), 5) = K, (r)(2), 5)- a;”

tends to 0 as e = 0. Therefore the first term on the right hand side of (2.14)

vanishes. On dD(a — e¢), the transplanted function K takes the constant
value K(a — ¢, s), hence the second term

j S K(r (2), s) (y, t — s)dzds
dD(a—¢) Vz

t
=S Iz(a—e,s)g (y,z t — s)dzds
0 aD(a—¢) 31!

t
= S K(a — ¢, ) j AK(y, z, t — s)dzds
0 D(a—e)
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which tends to

t
S K(a,s) S AK(y, z,t — s)dzds = 0
0 M

by the compactness of M. Since y is an arbitrary point in D(a — e) for any
¢, this proves the assertion for any y ¢ dD(a). However by continuity of K
and K on M, the theorem follows.

3. Applications. We will discuss some of the applications of the
comparison theorems (1 to 5). Some of the consequences are the mean-
value inequalities which was proved by Michael and Simon [10] for the
case of M in R* 1!, and proved by Mori [11] for the case when M is in st

_ CoroLLARY 1. Let M" be a minimally immersed submanifold in
M= R HH or ST Suppose f is a nonnegative subharmonic
function defined on M. If p € M and D,(a) = B,(a) N M, then

f(p) = C7\(n, a) S fx)dx
aD(a)

where
nw,(sin a)* ! if M = §"*!
cn,a) = { nw,a""! if M =R""!
nw,(sinha)"~! if M= H" !

and w, = volume of the unit n-ball in R". When M = S"*!, one has the
restriction that a < /2.

Proof. Let G(x, y) denote the Green’s function with Dirichlet
boundary condition on D(a). Then

fp) = —g G(p, y)Af (y)dy
D(a)

dD(a) a

|
|

aD(a) 3
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by the nonnegativity of G and the subharmonicity of /. We claim that if
G(rp(y)) denote the Green’s function on B(a) the ball centered at 0 (or
p = north pole) with radius a in R”(H" or §”), then

GG( 13 G
av, Ps VI = av,

(P, y)

for y € 0D(a). Indeed, since the Green’s functions are given by

(=]

G(p,y) = S H(p, y, t)dt
0
and

=]

Gr,(») = jo H(r,(y), t)dt

and H = H with both
H(r,(y),t) = H(p, y, 1)
=0 for yedD(a),

the claim follows. Together with (3.1), we have

7(p) < —g 2E (p, )f Gy
dD(a) Vy
. = or
= —X G,(r(y) Tf (»)dy
aD(a) vy
<

—X G,(r(»)f (y)dy
3D (a)
since |Vr| < 1 and G, < 0. By the fact that G is rotationally symmetric

f(p) = =G, (r(») S f()dy,

3D (a)

and the constant C(a, n) can be obtained by explicit computation of G,.
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Remark. A consequence of Corollary 1 is the a estimate on the vol-
ume of D(a) from below. Namely, if we let f = 1, then Corollary 1 gives a
lower bound on the area of dD(r). Integrating the inequality from 0 to a
yields: The volume of D(a) is greater than or equal to the volume of B(a) in
R*(H" or S”). In case of M = S”, a is restricted to be no greater than n/2.

COROLLARY 2. Let M be a minimally immersed submanifold of
S"T then Dp(a) =MnN Bp(a) has volume no less than the ball B;’,(a) in
S", foralla < w. When M is compact, the volume of M is no less than the
volume of S§".

Proof. We consider the kernel K(p, y, t) on D,(a). Since

K(P, Yy, t) = E e_)\it(bi(p)qsi(y)
and

K(r,(»), ) = L e Me,(p)d:(y)

where \;, ¢; and )\_,-, ¢T, are eigenvalues and eigenfunctions of Dp(a) and
B, (a) respectively. By Theorem 4, we have

(3.3) T e Ng(p)di(y) = L e N, (p)di(y).

However, the first eigenvalue for Neumann boundary condition is zero
with normalized eigenfunction V~!/2, by taking t = oo in (3.3) we obtain

1 1
VD@) -~ V(B@)

which is to be shown.

COROLLARY 3. Let M “> M be a minimal immersed submanifold.
Suppose D is a C? compact domain in M. We define the outer radius of D

by

a = inf sug)r,,(z).

peD ze
If]\_l = $" we assume a < w/2, otherwise 0 < a < o, then

A (D) = N (B(a))
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where B(a) is the ball of radius a in R” (H" or §") respective to M = Rt
(H"* or §"*Y). Equality holds iff M is totally geodesic in M and
D = B(a).

Proof. By Theorem 1 and 3, it is clearly that if we compare the heat
kernel H and H and let ¢ — o, we obtain a comparison for \, . However for
the sake of the equality case, we will adopt another proof.

Let p € D, be the point in D which realized as the center of D =
D,(a). Suppose &(r) is the first eigenfunction on B(a) in R” (H" or §”). Itis
unamblguous to write ¢> as a function of r because it is known that q& is
rotationally symmetric. We rewrite ¢ as a function of s = r“ (s = cosh r or
s = —cos r). Then

Ad = ¢"|Vs|? + ¢'As
= ¢"|Vs|* + ¢'As

where ¢’ and ¢ ” are first and second derivatives of é with respect to s, and
A is the Laplacian on R" (H” or $”). Since

|Vs|2 = (2r|Vr|)4(sinh? r| Vr|? or sin® | Vr|?)
< |Vs|?,
if ” = 0, then
Ap < Ap = —\ .

For simplicity we will only demonstrate the case when M = R"(,
The proofs of the other cases follow roughly along the same idea. Consider

(3.4) -\ = Ad
= 45¢” + 2no’.

To check ¢” > 0 ats = 0, we look at the equation

- —N\¢ — 2n¢’
lim 4" = lim_u.
s—0 s—0 s
. _>\a n¢r
= lim —
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However by the proof of Theorem 1 this is

272 -
B n(n + 2) $(0)
> 0.

Now let 5 be the first s = 0 such that £”(sy) = 0. Because f”(0) > 0, this
implies at s, the function f* has either a maximum or a point of inflection.
On the other hand, if we differentiate Equation (3.4), we have

—\o’ = 456® + 2(n + 2)¢".

At sy, we see that

0 < —X\o'(sg) = 4s06P(so)

because

for t}le first eigenfunction é. This is a contradiction. Therefore Ap <
_)\1¢
To compare the first eigenvalues, first we consider the comparison
M (D) = \(D(a))
since D(a) 2 D. Equality holds iff
D = D(a),

hence we have reduced to the case when D = D(a). An observation of
Barta gives (see [4])

A (D(@) = —ﬁ(}m
Ad pAD — DA
= —-— 4+ -
s o0 .
- Ad — dA

v

z

+
©
©

X
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However since both ¢ and ¢ are positive and also
j (pAd — $AP) = 0
D(a)

by the boundary conditions on ¢ and ¢, the function pAd — dA¢ must
change sign. Therefore

MD@) = N + sup [gééd;_iég}
=\
as asserted. Equality holds iff
A = $AD
= —\i(D(@)¢é
= —N\1¢o.

On the other hand, the proof of
Ap < —N\ o
implies that equality holds iff
|Vr| =1,

which is equivalent to the condition that D(a) is a minimal cone. However
by the assumption that M is C 2 this implies D(a) = B(a). Analytic contin-
uation then asserts that M is totally geodesic.

COROLLARY 4. Let M — M be a minimally immersed submanifold
of M = R"" or H"*'. Suppose D is a compact domain in M, and if
{\¢ }x=1 are the eigenvalues of A on D with Dirichlet boundary condition,
then

(47r)n/2 . k

n/2
)\k = P VD)

forallk = 1.
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Proof. By Theorem 1, the heat kernel on D satisfies

H(x, x,t) < H,(0,0, t)

where
a = sup r,(z) forany xeD.
zeD
However it is known that [7]
H,0,0,1) < (4wt) "2,
This together with the eigenfunction expansion of H(x, x, t) yield

e N < V(D)4nt) "2,

Taking + = 1/A; and using the fact that \; < N\, fori < k, we have

k
kel <= X e MM
i=1
)\k n/2
=< V(D)<—->
47

which proves the Corollary.

We will consider the case when M" is a minimally immersed submani-
fold of $”*!. In order to draw conclusions from Theorem 5, we need to
estimate the trace of the heat kernel on S”.

LemMMA 3. LetK (x, y, t) be the heat kernel on S", then there exists a
constant C, depending only on n with

n"?el'(n/2, 1)

C, = 5

such that

TrK(t) = j K (x, x, t)dx
S”

1+ @+ De ™+ Cit le™

IA

forallt = 1.
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Proof. It is known that [1] the eigenvalues of S" are given by
Ne =k(n +k—1)

with multiplicities

m+k—2m+k—3) - (n+ n
k

mk) = (n + 2k — 1).
Therefore

e M =14+ e + T mlke .

lTvts

i

Now we claim that m(k) < (n/2)k" %(n + 2k — 1). We will show this by
induction on k. Clearly the claim is true for k = 2. For general k > 2, we
consider

m(k) _n+k—2<m(k—1)>

7 =
3.7) (n +2k— 1) k n+ 2k — 1

n+k—z<n(k—1)"‘2>
k 2

by induction hypothesis. We need to show that

(3.8 m+k—2k—1)""2<k"}, for all k.

When n = 2, this obviously holds. We will show the validity of (3.8) by
induction on n. Differentiating (3.8) as a function of k, we obtain for the
left hand side

3.9 mn—2)k —1)"3@m+k—2) + (k— 1)?

To see this we observe that the left hand side of (3.8) can be written as
B9 (r—D+k—1)k—1)"2=C(—=1D""+@—Dk—1D""
While the right hand side of (3.8) is
(3.10) K l=(Gk—1D+ D" > k=D A - Dk — D)

=(m+k—3Nk—1)"3n—1)
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and for the right hand side we have
(3.10) (n — k"2

Clearly as a function of k, (3.8) holds at k = 1, but (3.9), (3.10) and induc-
tion hypothesis on n shows that the derivative of the function on the left
hand side of (3.8) is no greater than the derivative of the function on the
right hand side. This shows (3.8) is valid, hence proves our claim. There-
fore

a8

i mk)e M < K"+ 2k — e N

|

k

18

)" + 2k — 1)e M,

n
S_
2k

However for ¢ = 1, one checks easily that
M) D2 + 2k — 1)e ™!

is a decreasing function of k£ = 1, hence by the integral test, the right hand
side of (3.11) is less than

—nz— X 2+ (n — Dx]®220Qx + n — 1)e &HHe=Dxlgy
1

for t = 1. Substituting u = x> + (n — 1)x, we have

A

oo _ o
E m(k)e—)\kt < _n_ X u(n~2)/2e—utdu
k=2 2 J,

o
n - — —
=2y n/ZS u(n 2)/2e “dy
2 nt

IA

%t—n/ze . F<-’%—, 1>e—nt(nt)(n—2)/2

n"2el'(n/2, 1)
— e

—ntt—l

fort = 1.
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It is known that an immersion of M” into " is minimal iff M C M
Ap = —no

for any coordinate function ¢ in R"T*1 In particular, if M" is a compact
minimal submanifold of $” 1! then n = A, is the k™ eigenfunction of M. In
addition, if the immersion of M into § n*lis a maximal dimension, i.e. M
does not contain in any hyperplane through the origin of R*TT1 then the
multiplicity of n = A, is at leastn + £ + 1.

THEOREM 6. Let M" — S" " be a minimal immersion of the com-
pact manifold M of maximal dimension. Suppose the spectrum of M is
ordered by magnitude and if n = N\, then

V(M)
V(s™)

k< [e +n+ 1+ nC,t7 '] —é'

foranyt = 0.

Proof. By Theorem S, the heat kernel K(x, x, t) = L2 e ¢} (x)
satisfies

e NpHx) = K(x, x, t).

vk

4

However it is easy to see that K (x, x, t) is a constant function since §” is a
homogeneous manifold, therefore

(3.13) S K(x, x,t) = V(S"K (x, x, t).
SII

Together with Lemma 3, this gives

(3.14)

18

e Nt < j K(x, x, t)dx
M

1

IA

g K@, x, t)dx
M

V(M)

D K(x, x, t)

V(M)

—ut -1, —nt
iem LT (e De™ + CurTle ™),
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Substituting #/n = t/\; in terms of ¢ into (3.14), we obtain

e—)\,»t/)\k < V(M)

I+ 1 V(§™)

1+ @+ De "+ nCyit e

[ K]

1

fort = 0.
On the other hand since, N\;/N\, < 1 fori < k, we have

V(M)

3.15 1+ke! <
( ) € = V(Sn)

1+ @+ e " +nC,t e

We can obtain the theorem by multiplying (3.15) by e’.

COROLLARY S. Let M be a compact minimally immersed submani-
fold of S"™*. Suppose the immersion is of maximal dimension, then there
exists a positive constant

B, < 2n + 3 + 2 exp(2nC,)
such that

20— 1

n

V(M) > <1 + >V(S")

where { is the co-dimension of the immersion in S"*'.

Proof. We simply consider Theorem 6. Since the immersion is maxi-
mal dimension, the multiplicity of n is at leastn + ¢ + 1, hencek = n +
¢ + 1. Letting ¢t = 2nC,,, we have

n+i+1< V(M) <—1—B,,> — e2Ca,

V(§s?) 2
hence
1 1 V(M)
—B, +¢{— =< ——"B,.
27" 2 2V(s™) "

Remark. The case when n = 2 and M is homeomorphic to S2 has
been studied in [2], where Calabi showed that V(M) has to be an integral
multiple of 2, and the integer must not be less than Ya[(n + ¢ + 1)? — 1].
In particular, » + ¢ + 1 has to be an odd number.

The next corollary describes the way that a minimal submanifold im-
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merse into S”*'. It shows that any minimal immersion cannot be too patho-
logical.

COROLLARY 6. Let M be a compact manifold. Suppose M" — §" !
is a minimal immersion of maximal dimension. Then for any hyperplane H
which passes through the origin of R" ! cannot divide M into more than

<WM)*OBH_ 5

0+ =
V(S™) 2 2

components. In particular, if the minimal cone C(M) over M" in R" 2 is
area minimizing and if { = 1, then the number of components of M — H is

no more than
n+1 B
<Vw )_Q_L+i
V(s™) 2 2

Proof. Since the immersion is of maximal dimension, the multiplic-
ity of n is at least n + ¢ + 1. If we denote k to be the last \; = n, then
applying Theorem 6 and setting t = 2nC,,, we have

wm(&»_dﬁ'

VST \ 2

However since Ng—,—¢y = Ne—p—¢+1 = " °° = Nt = n, by the Courant
nodal domain theorem (see [6] and [S]), the number of nodal domains for
the (k — n — )™ eigenfunction cannot exceed

V(M) Bn B"

m—t41=
k=mn = Ve 2 )

On the other hand, since H N M are the nodal sets of the coordinate func-
tions, the number of components of M — H is the same as the number of
nodal domains of the (k — n — £)" eigenfunction. This proves the first
part of the corollary. The second part follows from the fact that area mini-
mizing cones in R"**1 has their volume bounded above by

v(M")

5 — V(CM+I(M) N BS+2(1))

V(Sn+1)
2
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CoroLLARY 7. Let M be a compact minimal submanifold of S"**.
The k™ nonzero eigenvalue of M satisfies

etk 1 >

n/2
Ne 2A"< VD) | VST

where A, is a computable constant depending only on n.

Proof. By Theorem 5,

oo B ‘V(M) ) .
1 2: At < )\,-t>
i=1 ¢ = V(§s”) ! i§l ¢

where \; are eigenvalues of S”. However it is well known that

e N' < (Constant)t ~"/2
1

e

1

where the constant of course depends on n. Hence, setting t = 1/),,

l(l_w_)(l + (Constant)\}/?).

1+ ke™!
€ V(S™)

IA

The corollary follows by letting A, = V(S")/Constant.

UNIVERSITY OF CALIFORNIA, LOS ANGELES
PURDUE UNIVERSITY
UNIVERSITY OF CALIFORNIA, SAN DIEGO

REFERENCES

[1] M. Berger, P. Gauduchon, and E. Mazet, Le Spectre d'une Variété Riemannienne,
Lecture Notes in Math., 194, Springer, Berlin, 1971.

[2] E. Calabi, Minimal immersions of surfaces in euclidean spheres, J. Diff. Geom., 1
(1967), 111-125.



HEAT EQUATIONS 1065

[3] J. Cheeger and S. T. Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math.,
34 (1981), 465-480.
[4] S. Y. Cheng, Eigenfunctions and eigenvalues of Laplacian, Proc. Symp. Pure Math. , 27
(1975), 185-193.
[5] , Eigenfunctions and nodal sets, Comm. Math. Helv., 51 (1976), 43-55.
[6] R. Courant and D. Hilbert, Methods of Mathematical Physics 1, Interscience.
[7] H. Donnelly and P. Li, Lower bounds for the eigenvalues of negatively curves manifolds,
Math. Zeit., 172 (1980), 29-40.
[8] P. Li, Thesis (1979), U. C. Berkeley.
[9] , Eigenvalues estimates on homogeneous manifolds, Comm. Math. Helv., 55
(1980), 347-363.
[10] J. H. Michael and L. Simon, Sobolev and mean-value inequalities on generalized sub-
manifolds of R”, Comm. Pure Appl. Math., 26 (1973), 361-379.
[11] H. Mori, Remarks on mean-value inequalities on m-dimensional submanifolds of §”,
Kodai Math. J., 2 (1979), 243-253.
[12] M. H. Protter and H. E. Weinberger, Maximum Principles in Differential Equations,
Prentice-Hall Inc., Englewood Cliffs, N.J., 1967.
[13] R. C. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana
U. Math. J. 26, 3 (1977), 459-472.




