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The equivariant Delm's lemma and loop theorem 

WILLIAM H. MEEKS III and SHING-TUNG YAU 

Introduction 

In [4] the authors observed that the topological methods in the theory of 
three-dimensional manifolds can be modified to settle some old problems in the 
classical theory of minimal surfaces in euclidean space (see also [1], [12]). In [4] 
and [5] we found that we could use the theory of minimal surfaces to extend the 
theorems of Papakriakopoulous, Whitehead and Shapiro, Stalling and Epstein on 
the Dehn's  lemma, loop theorem and sphere theorem. The key point to our 
approach to these topological theorems is the following: Given a certain family of 
maps of the disk or sphere into our three-dimensional manifold M, we minimize 
the area of the maps (with respect to the pulled back metric) in this family and 
prove the existence of the minimal map. Then by using the area minimizing 
property of the map and the tower construction in topology, we prove that any 
area minimizing map in the family is an embedding. In this way, we realize the 
solutions to the above topological theorems by minimal surfaces. In [4] and [5] we 
used the above area minimizing solutions to prove equivariant versions of the 
loop and the sphere theorem, and we applied these new theorems to the 
classification of compact group actions on R 3 in [11]. 

In this paper we generalize some of the theorems in [4] and [5] to compact 
planar domains by proving the existence of embedded planar domains of least 
area of a given genus and by proving a certain disjointness property for planar 
domains of least area. We then use this disjointness property to prove the 
equivariant Dehn's  lemma for planar domains. 

On the other  hand, we use a different variation approach to get a geodesic 
version of the loop theorem. More precisely, we prove the following: suppose that 
the induced map i.:~rl(OM)--* "rr~(M) of the inclusion of the boundary has 
nontrivial kernel K. Then for any metric on OM, any nontrivial geodesic of least 
length in K is embedded and any two such geodesics are equal or disjoint. This 
geodesic loop theorem coupled with the above equivariant Dehn's  lemma yields a 
new version of the equivariant loop theorem in [5]. As the placement of curves on 
a surface is easier to understand this new equivariant loop theorem is easier to 
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apply to study group actions. Applications of this theorem to classification of group 
actions o n  R 3 will appear  in [11]. 

Throughout  this paper  we will be working with compact  three-dimensional 
Riemannian manifolds M with convex boundary. For simplicity we sometimes 
refer to such an M as a convex manifold. 

1. Delm's lemma |or planar domai~t~ 

T H E O R E M  1 (Dehn 's  l emma for planar domains of a given genus). Let 
F={71 ,  72 . . . . .  7,} be a collection of disjoint unoriented Jordan curves on the 
boundary of a three-dimensional orientable convex manifold M. Suppose that these 
Jordan curves bound a continuous mapping g from a smooth compact planar 
domain (possibly disconnected). Let Fk be the family of all piecewise smooth maps 
mapping from a compact planar domain with k components into M whose boundary 
consists of curves in F. Let Ak be the infimum of the areas of the maps in Fk. If Ak is 
strictly less than Ak+l, then there exists a branched minimal immersion which has 
least area among maps in Fk. Furthermore, any branched minimal immersion of 
least area in Fk is an embedding. 

Proof. The existence of a map f :  12 ~ M of planar domain with k components  
and least area follows from the inequality Ak < Ak §  from Morrey [7] and from 
Theorem 1 in [4]. From the approximation technique in the proof  of Theorem 5 
in [4], we may assume that the map f is a simplicial immersion with respect to 
some triangulations of I2 and M. 

Since f : / 2  ~ M is a map of least area for a given genus, f restricted to each 
component  O '  of O is a map of least area from a planar domain with boundary 

curves f(OO'). By Theorem 5 in [4], r i o '  is an embedding. Suppose that there are 
two distinct components  O1, O2 of O such that f(O1) and f(O2) intersect. In this 
case it is shown in [4] that there are Jordan curves ~q : S t ---, I)  1 and 72 : S t ~ ~)2 
such that f(3q(t))=f(3,2(t)). The standard cutting and gluing argument  (see the 
end of the Proof of Theorem 5 in [4]) along the image curve f ( v 0  =f(72)  
produces a map  of a planar surface with the same Euler characteristic as O and 
with the same area as f. However ,  the area of the new map can be decreased 
along the folding curve f(Tt). Since the Euler  characteristic of a planar domain 
with n boundary curves determines the genus and the number  of components ,  the 
existence of the new map contradicts the least area property for f. This contradic- 
tion proves Theorem 1. 

In [4] the authors also proved a disjointness property for least area disks when F 
in the above theorem consists of one curve ~. In that  paper  we prove that any two 
geometrically distinct least area disks intersect only along their boundary.  This 
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disjointness property for least area disks is useful in proving equivariant group 
action theorems. For this reason we would like to generalize the disjointness 
property to the case of planar domains given in the above theorem. However,  in 
the following example two Jordan curves in parallel planes in R 2 are given which 
bound two distinct embedded annuli of least area that intersect their interiors. 

EXAMPLE.  Let  6-1ooo be a circle of radius 10 in the xy plane centered at the 
point (0, - 1000 ,  0) and let 61ooo be a circle of radius 10 in the xy plane centered 
at the point (0, 1000, 0). Let  71 be the connected sum of 6-1ooo and 81ooo along 
part of the interval I joining (0, -1000 ,  0) to (0, 1000, 0) in such a way that 71 is 
the union of parts of 8-1ooo, 81ooo, and the intervals I + ( - 1 ,  0, 0) and I + ( 1 ,  0, 0). 
Let 72 = 71 + (0, 0, 1) be the curve on the plane of distance one from the xy plane. 
A least area annulus f:g2--* R 3 connecting 3'1 and ~2 appears as in Figure 1. Let 
R :R3-~ R 3 be rotation by 180 degrees around the z-axis. Then the least area 
annuli f (O) and R of(O) intersect in their interiors. (A rigorous proof of the 
existence of O produced in this example can be found by using the bridge 
theorem in [6].) 

Figure 1. 
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In spite of this example, the disjointness property holds when the following 
assumptions on F hold. 

T H E O R E M  2. Let F = {3'1, ")/2 . . . . .  'Yn} be a collection of disioint unoriented 
Jordan curves on the boundary of a compact three-dimensional orientable convex 
manifold M. Suppose that ~1 is homotopically nontrivial when n equals two or that 
F generates a rank (n - 1) subgroup of the first homology group of M. If there exists 
a continuous map g of a compact planar domain into M with boundary F, then 

(1) there exists a branched minimal immersion of a compact planar domain 
which bounds F and has (finite) least area among all such maps. 

(2) Every such map is an embedding of a connected planar domain. 
(3) Any two such least area maps intersect only along their boundary F or else 

they differ by a conformal reparametrization. 

Proof. Part (1) is just the statement of Theorem 5 in [4]. Part (2) follows 
because the condition that the curves in F represent n - 1 independent homology 
classes implies the connectedness of the surface. The proof of part (3) is based on 
the proof of Theorem 6 in [4]. The nontrivial approximation procedure in 
Theorem 6 in [4] reduces part  (3) to the special case that the two least area maps 
f : 121 --~ M and g : 122 ~ M are simplicial with respect to some fixed triangulations 
of 121, 02 and M. 

Suppose now that X = f l (Ol)Nf2(O2) is not equal to the union of F. In [4] it is 
shown that X is a finite one-dimensional subcomplex of M with every vertex in X 
meeting at least two edges in X and the intersection of f(01) and f(O2) is traverse 
except possibly at the vertices. A simple induction argument (see Lemma 10 in 
[4]) proves that X contains a closed Jordan curve a which is not contained in the 
union of F or for some i and k > 0 there is a unique Jordan arc tr : [0, 1] ---, X with 
cr([0, 1])fq F = {tr(0), or(l)} and cr(0)~ 3'~ and tr(1)~ 3~i+k. 

Suppose that tr exists. By the classification of compact planar surfaces, there 

would be a smooth Jordan curve T in the interior of O1 such that ~- n X = ~- N o- is 
one point which is not vertex and the intersection of ~- and tr on O1 is transverse 
at this point. As ~- intersects 02  transversely in one point, [~']N[Du] is nonzero 
where fq denotes the intersection pairing on homology in M with Zu-coetticients. 
However,  as 01 is a compact planar domain, "r is homologous with Z2-coeflicients 
to some sum of boundary curves of 01. As the boundary curves of 121 and 02  are 
the same, some boundary curve ~/i of /22 must intersect /22 nontrivially in 
homology. However,  M is orientable and therefore we can push ~/i off /22 to 
create a curve ~/[ which is disjoint f rom/22.  This curve is homologous to 3'~ but 
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does not intersect ~2- This contradicts the intersection equation on homology and 
therefore tr can not exist. Hence  there must be a Jordan curve ot in X which is not 
contained in F. 

Let  or1 : S 1 -~ ~1 and Ot 2 : S 1 ~ ~'~2 be the Jordan curves with f (a l ( t ) )  -- g(a2(t)) 
and f ( a l ) = a .  Suppose for the momen t  that a l  and a2 are contained in the 
interior of ~1 and /'/2. The curve oil disconnects ~i into two planar domains n'~, 
~'~ where ~'~ is the planar domain containing the Jordan curve 3"1. 

Now consider the surface ~ obtained by gluing f ( ~ )  and f ( ~ )  along a. If 
has a nonempty  boundary,  then for some i different from 1, an oriented boundary 

curve 3"i of ~ is homologous in ~ to a collection of curves in {+3"2, ~ 3 " 3  . . . . .  

+'~ . . . . .  +3",~} where for the moment  the curves F are oriented in an arbitrary 
manner.  Therefore  the curves F-{3"1, 3"i} generate a subgroup of Hi(M, Z) with 
the same rank as F which is n - 1. For n -> 3, this contradicts our assumptions. If 
n -- 2, then X is a disk and so 3"2 is homotopically trivial. This also contradicts our 
assumptions and so ~ must have no boundary.  

As ~ has no boundary,  the surfaces f ( ~ )  and f ( ~ )  have the same boundary 
curves. The  usual cutting and gluing argument  shows that f or g does not have 
least area and hence part  (3) is valid if the Jordan curve Ot I lies in the interior of 
~1. Actually the only reason that we chose the case "cq lies in the interior of ~1"  
was to make  visualization of the intersection easier. The same argument  still 
produces a contradiction when part  of a intersects the union of the curves in F. 
This proves part  (3) and completes the proof of the theorem. 

Remark. Theorem 2 can be proved by assuming appropriate  conditions about 
areas of planar domains which bound some subcollection of curves in F rather 
than topological conditions. For example,  suppose that F = {3'1, 3"2} and that either 
3'1 or 3'2 does not bound a disk with area less than twice the area of some annular 
region joining them. Then the planar domain of least area joining 3'1 and 3'2 will 
be an embedded  annulus and any two such annular surfaces intersect only along 
their boundary curves. Note that this area condition fails for the example 
described before Theorem 2. 

2. Embedding of the partially free boundary value problem 

Another  type of embedding theorem that can be proved using the topological 
tower construction is the partially free boundary value problem considered in 
Courant 's  book [2]. In its simplest topological form the partially free boundary 
value problem can be stated as follows. Let M be a compact  three-dimensional 
Riemannian manifold and 3'1 be a Jordan curve on a boundary component  01 of M 
which is freely homotopic  to a closed curve 3"2 on another  component  02 of the 
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boundary of M. Let  F be the family of all maps from the annulus/2  to M which 
maps one boundary curve of /2 homeomorphically onto "Y1 and the other  
boundary curve o f / 2  into 02. Then we say that a minimal immersion f :  I2 ~ M is 
a solution to the partially free boundary value problem for Vl and 02 if f ~ F and f 
has least area in F. 

T H E O R E M  3. Suppose M is a compact orientable Riemannian three- 
dimensional manifold with convex boundary, ~/1 is a Jordan curve on a component 
01 of the boundary of M and Vl is freely homotopic to a curve on a different 
component 02 of the boundary. Then 

(1) There exists a solution f : / 2 - ~ M  to the partially free boundary value 
problem for 2/1 and 02 if the infimum of areas of maps in F is strictly less 
than the area of any map of a disk with boundary 3'1. Furthermore f is 
continuous in /2  and smooth in the interior of/2. 

(2) Any  such solution f is one-to-one and everywhere orthogonal to 02. 

Proof. The existence of a solution to the partially free boundary value problem 
can be proved using the methods in the proof of the free boundary value problem 
in [5]. 

After conformal reparametrization we may assume tha t /2  is a circular domain 
where the inner circle is the unit circle S ~ and f(S 1) = ~/1. From the approximation 
arguments in [4] and [5] we may assume that the map f is simplicial with respect 
to some triangulations of /2 and M. Therefore the image surface f(/2) has a 
regular neighborhood N1 in M. After restricting the range space of f to N1, there 
is a new map f1:/2--~ N1. Let  H be the subgroup of HI(N  1, Z 2) generated by 
fl(Sl).  If H is not all of Hi(N1, Z2), then there exists a surjective homomorphism 
p:HI(N1, Z2)--~ Z2 with p([fl(S1)])= 0. This homomorphism induces a surjective 

~z fl NI 
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homomorphism 15:~rl(N1)~ Z2. Since the kernel of 15 has index two in "/rl(Nl) , 
there is a 2-sheeted covering space P~ : N~ --~ N~ associated to this subgroup. Since 
the map f :  ~ -*  N1 satisfies fl*(~rl(/2)) =/~l*(~rl(N1)) = ker (15), the lifting theorem 
for covering spaces implies that fl lifts to a map fl :/2 ~ N~. After restricting the 
range of fl to a regular neighborhood N2 of f2(/2), we get a new map f2:/2 --~ N2. 

Repeating this construction k-times yields the tower below. As was discussed 
in [4] or [5], this construction terminates with a map fk :g/- '* Nk with fk(S 1) 
generating H1(Nk, Z2). Here  Pi is the restriction of /5 to Ni+l and each N~ is a 
Riemannian manifold with the pulled back Riemannian metric. 

ASSERTION 1. fk :/2 -'*/Vk is one-to-one. 

Proof. As HI(Nk, Z2) is generated by fk(Sl), HI(Nk, Z2) is equal to the trivial 
group or the group Z2. If H~(Nk, Z2) is the trivial group, it is straightforward to 
check that the boundary of Nk consists entirely of spheres (see [4] for a proof). In 
this case V =fk(S ~) lies on some sphere S in the boundary of Nk. 

In [4] and [5] it is shown that there exists, after subdivision, a simplicial 
retraction R : N  k -"~fk(/2) such that (1) R I(ONk--fk(c31~)) is locally one-to-one,  
and (2) R IONk covers each 2-simplex of f~(O) exactly two times. 

The Jordan curve V disconnects the sphere S into two disks D~ and D2. 
Computing areas, we have 

Area (R l D1)+Area  (R [ D2) = Area (R ! S) -< Area (R [ 0N~)<_2 Area (fk). 

Hence either the area of R [ D1 or R ] D2 is not greater than Area (fk) = Area (fl). 
Therefore  we may assume that the area of, say, g = P~ o P2 . . . . .  Pk-~ o R [Dx is not 
greater than the area of f. Furthermore,  the area of g can be decreased along a 
folding curve which is a self-intersection curve of [k(/2) in the case fk(D) is not 
embedded (see Theorem 4 in [4] for a rigorous proof of this fact). This contradicts 
the original assumption that f is a solution to the partially free boundary value 
problem. 

Thus we may assume that HI(Nk, Z2) is Z2. In this case it is easy to show that 
fk(o/2) is contained in a torus component  T of the boundary of Nk (see the proof 
of Theorem 5 in [4]). Furthermore,  as HI(Nk, Z2) is generated by f(Sl), the 

boundary curves of fk(O) are disjoint and are nontrivial homology classes on ONk. 
From the simple topology of curves on a torus we may conclude that fk(OO) 
disconnect T into a collection of closed planar domains, two of which are annular 
regions A1 and A2 where the boundary of the annular region Ai consists of fk(S 1) 
and part of the other boundary curve of fk(/2). 

Let R:Nk--*fk(12) be the retraction discussed above. Then, as before, 
A r e a ( R l A 1 ) + A r e a ( R [ A 2 ) - < A r e a ( f k ) ,  and so we may assume that 
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Area (RIA1) is strictly less than Area (_fk). However,  the boundary curves of 
g = (plop2 . . . . .  Pk_loR)[A1 consists of 3"1 and a curve on the boundary compo- 
nent 02. As Area (g) < Area ([), we arrive at a contradiction which shows the map 
[k is one- to-one and proves Assertion 1. 

ASSERTION 2. [k-~ is one-to-one. 

Proo[. If [k-1 is not one-to-one,  then the map [k-1 has singular points which 
are double points. As [k-~ is everywhere orthogonal to the boundary of Nk-~, the 
maximum principle or Lemma 5 in [4] implies that the image of the boundary 
component  o f / 2  different from S~ is not completely contained in the singular set 
S([k-O. The arguments in [4] show that there exists a Jordan curve a l  : S 1 --~ 12 or 
a Jordan arc a~:[0,  1] ~ O with a(0),  or(l)~ 0 0  which bounds with some part  of 
00  a dosed  connected domain O~ in O with O1NSffk-1)=  oq. Let  a2 be the 
double curve corresponding to ~q. By our choice of a~, the Jordan curve a2 will 
bound, with some parts of 00,  a closed subdomain 02  of /2 whose interior is 

disjoint from O1. 
A cutting and gluing argument shows that we can interchange the region 121 

and 122 to get a new continuous piecewise smooth map g :O--~  [k-~(O) with the 
same area as [k-l(O) and such that G =P~~ . . . . .  Pk_2og is a candidate for a 
solution to the partially free boundary value problem. However,  the area of G 
can be decreased along the folding curve oq which contradicts the least area 
property for [. This contradiction proves the assertion which in turn implies part 

(2) of the theorem. 

Remarks. The previous theorem can be generalized in a number of interesting 

ways. For  example, one can replace 3,~ by a collection F1 ={3'1, V2 . . . . .  3,k} of 
pairwise disjoint Jordan curves and 3,2 b y / ' 2  = {a~ . . . . .  a,} a collection of curves 
which lies on distinct boundary components of 0M different from the boundary 
components containing the Jordan curves in F~. In this case we assume that there 
is a map of a planar domain into M whose boundary curves are F~ t_J/'2. One can 
then pose a partially free boundary value problem and if there is a least area 
solution to this problem, one can prove that the solution is embedded.  The proof 
of this fact  can be shown using the techniques of proof given in Theorem 3 and in 

Theorem 5 of [4]. 
It is important to note that the existence of embedded solutions to other free 

boundary value problems can also be shown. For example, suppose we replace the 
condition that 3,~ and 3,2 lie on distinct components of the boundary of M, by the 
condition that 3"2 lies in the complement of some compact piece P of the 
boundary surface containing 3"1. Then if a solution to this free boundary value 
problem exists and the boundary of the map is disjoint from OP, then the solution 
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is an embedding. Such free boundary value problems occur naturally for, say, 
certain convex subsets of euclidean three space. 

The solution to the free boundary value problem in [5] can be generalized to 
annular or even planar domains. For example, suppose that 71 is a loop on a 
boundary component  al of a convex M, which is homotopically nontrivial in M. 
Suppose 71 is homotopic to a loop 3'2 on a different boundary component  a2 of M. 
Then there exists an immersion f :g] - -*  M of an annulus of least area with one 
boundary curve on 01 and the other  boundary curve on 02 and so that the induced 
map on fundamental groups is nontrivial. Furthermore,  f is as regular as the 
metric of M and any such f is one-to-one.  

3. The equivariant Dehn's lemma 

In [5] we proved the equivariant loop theorem by using the disjointness 
property of least area disks. The disjointness property in Theorem 2 for least area 
planar domains can also be used to prove the following equivariant theorem. 

T H E O R E M  4 (Equivariant Dehn's  lemma for planar domains). Suppose F = 
{~/1, 72 . . . . .  7n} is a collection of smooth disjoint unoriented Jordan curves on the 
boundary of an orientable three-dimensional manifold M. Suppose either the curves 
in F generate a rank (n - 1) subgroup of the first homology group of M or n equals to 
two and the curve 3'1 is homotopicaUy nontrivial in M. Suppose also that the 
collection F is the image of the boundary of a map of a compact planar domain into 
M. If  G is a compact subgroup of Diff + (M) which acts freely on the union of F, 
then F is the boundary of an embedded compact planar domain in M which is 
invariant under those elements of G that leave some 7i in F invariant. 

Proof. As G is compact, we may assume that G acts on M as a group of 
isometrics. Furthermore,  it is elementary to construct an invariant metric on M 
with convex boundary by averaging the metric on aM and taking the product 
metric in a neighborhood of aM. We may also assume that M is compact by 
restricting the manifold to a regular neighborhood of the G orbits of the image of 
the map of the compact planar domain given in the hypothesis. 

By Theorem 1, there exists a smooth embedded connected compact planar 
domain /2  of least area in M with boundary curves in F. By Theorem 2, any two 
such least area planar domains are either disjoint in the interior of M or equal. 

Suppose now that g :M--~ M is an element of G which leaves invariant the 
Jordan curve 7i and suppose g ( O ) #  O. As g leaves 7i invariant and has no fixed 
points on 7~, g acts on a regular neighborhood of 7~ as a rotation. As g ( O ) #  
and g(O) is another planar domain of least area, g(O) is disjoint from ~ in the 
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interior of M. This implies that g(/2) lies locally on one side of O. By convexity 
(see for example [4] or [6]), the surfaces 12 and g(O) are immersed and transverse 
to the boundary of M. 

Le t  J(~/'~(t)) denote the vector obtained by rotating the tangent vector 3,'~(t) 
clockwise by 90 degrees in the tangent space of T.,.(,)OM with respect to the 
induced orientation. Define Cta(3'~(t)) and ot~a)('y~(t)) as the oriented angle 
between the vector J(3,'~(t)) and the tangent planes of the corresponding surfaces. 
After integrating along -/~, we have 

1 1 

Oa = aa(3~(t)) dt  and Og(a) = ag~a)('/(t)) dr. 

As g acts as rotation on the regular neighborhood of 3'i, aa(g( 'y( t ) ) )= ctg~a)(3~(t)) 
and hence Oa = Og(a). On the other hand, as D lies locally on one side of g(O), 
either oto('Yi(t))<---ag~a)(3'~(t)) for all t or else eta(3,~(t))>-C%(a)('Yi(t)) for all t. As the 
integrals are the same, aa(V~(t)) = 3'g~a)(3'i(t)). This shows that g(O) and /2 are 
everywhere tangential to each other along 3'1. Therefore,  the maximum principle 
(or Lemma 5 in [4]) implies tha t /2  and g(/2) intersect in an open set. Hence the 
disjointness property o f / 2  implies tha t /2  = g(/2). This completes the proof of the 
theorem. 

T H E O R E M  5 (Equivariant Dehn's lemma for disks). Suppose F =  

{3'1 . . . . .  3,}  is a collection of  disjoint Jordan curves on the boundary of an 
orientable three-dimensional manifold M. Suppose each 2/i is homotopically trivial 
in M. I f  G is a compact  group acting on M as a group of orientation preserving 
diffeomorphism which acts freely on the union of F, then there exists a collection of 
embedded invariant disks {D1, D2, . . . , Dn} which are pairwise disjoint with ODi = 
2/~ and whose union is invariant under G. 

Proof. After picking an invariant metric, G acts as a group of isometries. As in 
the previous lemma, we can assume that this metric is convex and M is compact. 
Let  D1 be a disk of least area with boundary curve 3q and let G �9 D1 denote the 
union of the least area disks which are images of D1 under G. By the argument 
given in the previous theorem, D1 is the only disk in G .  D1 whose boundary 
curve is 3'1- This implies that each of the curves in G �9 3'1 bound a unique disk in 
G �9 D1. 

If G �9 3'1 is not all of F, then let D2 be a disk of least area with a boundary 
curve in F \ ( G  �9 Vl) and G �9 D2 be the union of the orbits of D2 under the action 
of G. As before,  these are embedded and disjoint. As the disks in GI"  D1 and 
G �9 D2 can only intersect in their interiors and as they have least area, they do not 
intersect. This last fact is proved in [4] where we show that if two embedded 
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minimal disks intersect only in their interiors, then there is a closed Jordan curve 
in their intersection which bounds two least area disks. Then by a cutting and 

gluing argument we can decrease the area of one of the G(Di)  which is 
impossible. 

If G - 3", t_J G �9 3"2 does not exhaust the curves in F, then we can find a new 

least area disk D 3 with boundary curve in F - ( G  �9 3", tAG �9 3"2). Let G �9 D3 be the 
orbits of D3. Continuing this process eventually, we can produce the required 
disks G �9 D, ,  G �9 D~ . . . . .  G �9 Dk. 

C O R O L L A R Y .  Suppose T : M ~ M is an orientation preserving diffeomorphism 
of a three-dimensional manifold M which is an isometry with respect to some metric 

on M. I f  I" leaves invariant a Jordan curve 3" on the boundary of M which is 
homotopicaUy trivial in M, then �9 has a fixed point on M. 

Proof. Let  G be the closure in Diff + (M) of the cyclic subgroup generated by 
I-. As 3' lies on the boundary of an orientable three-dimensional manifold, G 

restricts to an effective action on 3". Here G is either a finite cyclic group or S 1. By 
the previous theorem there is either a fixed point of ~- on 3" or else there is a disk 
in M which is invariant under "r. If 1- has no fixed points on % then the Brower 

fixed point theorem implies that ~- has a fixed point on the invariant disk. This 
proves the corollary. 

4. The equivariant loop theorem 

In this section we are going to prove the equivariant loop theorem by first 

proving a disjointness property of a certain generating set of closed geodesics on 
the boundary of the three-dimensional manifold and then applying the 

equivariant Dehn's  lemma of Section 3. We begin with the following 

DEFINITION.  Let M be an n-dimensional compact Riemannian manifold 
and let H be a normal subgroup of lr,(M). Then a collection F =  

{3"1, 3"2 . . . . .  3'n . . . .  } of closed geodesics is said to be a short generating set for H if 
for each n, 3", represents a closed curve in H of least length in the complement of 
the normal subgroup of H generated by the free homotopy classes F =  

{3'1, 3"2 . . . . .  3',-1}. 

L E M M A  1. Suppose 3', and 3"2 are embedded distinct closed geodesics on a 

boundary surface Y, of a three-dimensional Riemannian manifold M. I f  !fl and 3"2 

intersect nontrivially and are homotopicaUy trivial in M, then one of these geodesics, 

say 3"2, can be expressed as the product of two closed nongeodesic curves in 3"1 U 3"2, 
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each with length less than or equal to length of 3'2, and these nongeodesic curves are 
homotopically trivial in M. 

Proof. Since an embedded geodesic is determined by its tangent vector at a 
single point and the exponential map is a local diffeomorphism, it is easily seen 
that 3"1 and 3"2 intersect transversally in a finite number of points. Hence we may 
consider 3'1 and 3"2 as simplicial curves on ~ with respect to some triangulation of 
M. By Dehn's  lemma there exist embedded piecewise linear disks D1 and D2 with 
boundary curves 3'1 and 3"2 respectively, which are in general position. 

Since D1 and D E are in general position, they intersect in a compact one- 
dimensional manifold vdth boundary. Let I be an interval component  in D1 fq D2. 
The interval I disconnects D1 into two closed subdisks Dl l  and D12 and 
disconnects D 2 into two closed subdisks D21 and DEE. Let  o~i~ = Di~ N ~  and 
suppose that o[11 is the shortest such arc. Then the length of the boundary of each 
of the disks /)1 = D l l  t-Jz D21 and / ~ 2 = D l l  [3rD22 is less than or equal to the 
length of 3'2. Here  Llz means that we paste the disks along their common 
boundary arc I. On the other  hand, 3'2 can be expressed as a product  of 
0 / )  1 " 0 / ) 2 = ( a E 1 O t 1 1 )  ~ (Ogl l lOt22) .  Since 0/)1 and 0/)2 are not geodesics, 0/)1 and 
0/)2 are the required closed curves. This completes the proof of the lemma. 

T H E O R E M  6. Suppose M is a compact orientable three-dimensional Rieman- 
nian manifold with a boundary component 2~. Let K = Ker (i.) be the kernel of the 
map i . :  Ir1(2~) ---> ~rl(M) induced by inclusion. Then with respect to any fixed metric 
on 2~, there exists a jqnite short generating set F = {3"1, 3"2 . . . . .  3',} for K. For any 
such generating set the geodesics in F are embedded. Furthermore, any two geodesics 
in the union of any two short generating sets are either equal or disjoint. 

Proof. We first show that there is a minimal generating set F = {3'1, 3"2 . . . . .  3",} 
for K consisting of embedded geodesics. Since there are only a finite number of 
free homotopy classes on a compact surface having length less than a given 
constant, we can choose a short generating set for K by sequentially picking the 
next free homotopy class of least length. To  be precise, suppose by induction 
F , - I  --{3"1, 3"2,-. . ,  3"~-1} have been chosen. If F,-1 is not a short generating set, 
then we let 3', be a closed geodesic of least length in the complement of the 
normal subgroup of K generated by F,_I. We will now show that 3", is embedded.  

Since 3"n : S 1 --> M is a dosed  geodesic, it is determined by its tangent vector at 
a point and its multiplicity which is the number of times it transverses the same 
path. As a geodesic of multiplicity one is always in general position with respect to 
itself, we may assume that 3"~(S 1) is a simplicial curve with respect to some 
triangulation of M. Hence 3"~ : S 1 --~ M is also simplicial with respect to the pulled 
back triangulation on S 1. 
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Let  f :  D --* M be a branched simplicial immersion such that f I OD = V,. Then 
after restricting to a regular neighborhood N~ of f (D)  in M, there is a new map 
fl : D ~ N1. As in the proof of Dehn's  lemma (see [4] or [1]), we can construct a 
tower where we may assume that the boundary of Nk consists entirely of spheres 
and each of the manifolds Ni are Riemannian with respect to the pulled back 
metric. Here/5i-~ :/Qi-1 ~ Ni-~ is the universal covering space of Ni_x and N~ is a 
regular neighborhood of the image of some lift /~_~ to this universal covering 
space. 

. ,  N k c Nk. I 

~ .~ .~. t ~ ~ N2c: NI 

F l l / ~  

=, N 1 c M  
D fl PO 

ASSERTION 1. The lift fk has an embedded boundary curve. 

Proof. Since C =fk(OD) lies on a sphere, every Jordan curve in the 1-complex 
C is homotopically trivial in Nk-1. As the fundamental group of C is generated as 
a ~rl(C, p) module by Jordan curves, there is a Jordan curve ~/' in C such that 
3 / =  PooP~ . . . . .  Pk-~(3') does not lie in the normal subgroup of K generated by 
F,_I. If C is not a Jordan curve, then the length of 3t, is not minimal. This shows 
that C is a Jordan curve. Since C has less length than any nontrivial multiple of C 
and C is homotopically trivial, the lift fk t aD must be an embedding. 

ASSERTION 2. 3', is embedded. 

Proof. If ~/, is not embedded,  then there exists a smallest m > 0  such that 
f" 10D is not embedded.  By the previous assertion f,,§ I OD exists and is 
one-to-one.  Let  f "  = i of,,+ 1 be the composition of f"+l  with the inclusion map 
into the total space of the universal covering s p a c e / 5  : /q" ~ N". By definition of 
f" ,  f "  is a lift of the map f "  to its universal covering space. Since f "  is not 
one-to-one,  two points on f"(OD) must be identified under a nontrivial covering 
transformation "r: /Q" ~ / ( / " .  
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First, suppose T(f,.(OD)) ~ f,.(OD). Then with respect to the pulled back metric 
on N,., Lemma 1 implies that one of these geodesics, say fm(OD), can be 
expressed as a product  of two closed nongeodesic curves a l ,  a2 with length ( a J  < - 
length (fm(OD))=length(3".). Hence either Po . . . . .  P,._lo/Sm(cq) or Po . . . . .  
P,._lo/5..(a2) does not lie in the normal subgroup of K generated by F.-1 = 
{~/1, 3'2 . . . . .  3'.-1} and has length less than the length of 3".. This contradicts the 
least length property of V. and shows that 3". is embedded in the case 
"r(fm (OD)) =/= f,,(OD). 

If "r(fm(0D)) = fm(OD), then by the Corollary to Theorem 5, -r has a fixed point 
in/Q,, which implies that ~- is the identity map contrary to our hypothesis about ~-. 
This shows that this case can not occur and that 3", is embedded. This ends the 
proof of Assertion 2. 

By induction we can continue this process to find a short generating set F for 
K consisting of embedded geodesics. The argument given above also implies that 
any short generating set consists of embedded geodesics. 

Let  F={3"1 . . . . .  3", . . . .  } be a possibly infinite short generating set for K. We 
will now show that the embedded geodesics in F are disjoint and the number of 
elements in F are bounded by 3g where g is the genus of ,X. Suppose 3"~ and 3"~+k 
are geodesics in F which intersect each other and where k > 0. Lemma 1 shows 
that the free homotopy class of one of these geodesics can be expressed as the 
sum of two homotopy classes of less length. This immediately contradicts the least 
length property for these geodesics and thereby proves the geodesics in F are 
disjoint. This argument also proves the last statement in the theorem. 

If M 2 is a compact orientable surface of genus g and F = {Vl . . . . .  3%+1} is a 
collection of 3g + 1 disjoint Jordan curves on the surface, then the classification 
theorem for compact surfaces can be used to show that two of these Jordan curves 
are isotopic. Hence there are at most 3g + 1 elements in a short generating set for 
K where g is the genus of .X. This last observation completes the proof of the 
theorem. 

T H E O R E M  7 (Equivariant loop theorem). Suppose G is a finite group which 
acts on a compact orientable three-dimensional manifold M with boundary as" a 
group of orientation preserving diffeomorphisms. Then there exists a collection 
A = {D1, D2 . . . . .  D.} of embedded pairwise disjoint disks in M which satisfy 

(1) D~ nOM=aD~. 
(2) The normal subgroup generated by F = {OD1, OD2 . . . . .  OD.} is the kernel K 

of the inclusion map of the fundamental group of each component ~ of the 
boundary of M into M. 

(3) The union of A is G invariant. 
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Proof. If  we p r o d u c e  a co l lec t ion  of  d is jo in t  Jo rdan  curves F = {3'1, 3'2 . . . . .  3",} 

on 0 M  such tha t  the  no rma l  subg roup  of 7rl(0M) gene ra t ed  by F is K and G acts 

f ree ly  on the  union  of F, then the t h e o r e m  will fol low from T h e o r e m  5. To  prove  

the exis tence  of such a F, we first cons ider  a shor t  gene ra t ing  se t  F ' =  

{al ,  t~2 . . . . .  a~} given by  T h e o r e m  6. If  G acts f reely on  the  un ion  of F ' ,  then  F '  

is the  r equ i r ed  col lec t ion  of J o r d a n  curves.  If G has a fixed po in t  on  F',  then  we 

car ry  ou t  the  fo l lowing p rocedure .  

Le t  N~ be a regu la r  n e i g h b o r h o o d  of  the  curve ~, on  0 M  that  is small  enough  

so tha t  the  col lec t ion  of  these  n e i g h b o r h o o d s  is invar ian t  unde r  G and  these 

n e i g h b o r h o o d s  are  pa i rwise  dis joint .  Clear ly ,  N~ is d i f f eomorph ic  to S l x [ 0 ,  1]. 

Le t  F be  the  col lec t ion  of all the  b o u n d a r y  circles of these  regu la r  ne ighborhoods .  

As  G acts as a g roup  of o r i en t a t i on  p re se rv ing  t r ans fo rmat ions  of the  b o u n d a r y  of 

M, and  N~ is an annulus ,  any  e l e m e n t  g ~ G which  has  a fixed po in t  on 0N~ must  

be equa l  to the iden t i ty  on  Ni and  hence  the  iden t i ty  on  M. T h e r e f o r e  G acts 

f ree ly  on the  union  of F. By the  p rev ious  discussion this comple t e s  the  p roo f  of 

the theo rem.  
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