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1. Introduction. 

The purpose of this paper is to demonstrate in a rather general setup how 
isoperimetric inequalities and lower bounds of the eigenvalues of the Lapla- 
cian can be derived from existence of a distance function with controllable 
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Laplacian. For x G Mn, let us denote p(x) = \x\ = (J2ix<i) . It is obvious 
that we have the following two relations 

(1.1) A(p2) = 2n, 

(1.2) |Vp| = l,    x^O. 

By integrating (1.1) over the ball B(r) of radius r centered at the origin, we 
obtain 

2nVol(J5(r)) = /     A(p2) dVol(x) =  f       2p^ dk = 2rA(dB(r)) 
JB{r) JdB(r)       W 

where we have used the fact that on the boundary g£ = |Vp| = 1. Therefore, 
we have the following identity for the volume function V{r) := Vol(S(r)) 

71 

(1.3) V{r) = -V'{r). 

Of course, the relation (1.3) of the volume and the boundary area of the 
Euclidean ball is well known from the elementary geometry. However, (1.1)- 
(1.2) can also be used in a rather sophisticated way to prove the following 
isoperimetric inequality between the volume and the boundary area of any 
bounded region fi C Mn (assume for simplicity that the boundary d£l is 
smooth) 

(1.4) A(0ft) > cVol1-1/^). 

The constant c obtained in this way, is not the sharp one. As is well-known, 
the exact constant c in (1.4) is one for which both sides of (1.4) coincide for 
Q, being a ball. 

The present work makes consistent use of the hypothesis that, on a 
Riemannian manifold M, there exists a distance function4 p^{x) possessing 
an upper bound for |V^| and a lower bound for Ap|, where V and A are 
the Riemannian gradient and Laplacian, respectively. Given that much, we 
produce an isoperimetric inequality of type (1.4). 

Furthermore, we derive from the isoperimetric inequality a lower bound 
for Afc(^) being the fc-th Dirichlet eigenvalue of the Laplace operator in a 
region fi c M. Here is one of our main results, which will be proved at the 
end of Section 3. Denote by B^{r) the open p-ball centered at £ E M of 
radius r. 

4Despite the distance is symmetric in a;, £, we use the asymmetric notation to 
emphasize that p^{x) is always considered as a function of rr, with a fixed £. Note 
that Pt(x) is not necessarily the Riemannian distance. 
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Theorem 1.1. Let M be a complete Riemannian manifold of dimension 
n > 1. Let p^(x) be a distance function on M such that, for some Ro G 
(0, +oo] and all £ G M; the inequalities 

(1.5) |V/*| < 1 

and 

(1.6) Ap| > 2n 

hold inside the ball B^RQ). Then, for any precompact open set Q C M with 
smooth boundary and such that 

(1.7) Vol(ft)<ei2S, 

we have 

(1.8) A(dft) > cVol^)1"1/71, 

where e and c are positive constants depending only on n. 
Furthermore, if, for a positive integer k, 

(1.9) Vol(Q)<sR1Sk 

then 

k  ^'n 

(1.10) Afc(fi) > a(. 
VVol(ft) 

with some a = a(n) > 0. 

If RQ = oo, that is, (1.5) and (1.6) hold all over M, then the restrictions 
(1.7) and (1.9) are void, and we get (1.8) for all Q and (1.10) for all ft and 
ifc>l. 

If i?o < oo then the isoperimetric inequality (1.8) is claimed to be true 
only for fi with a small enough volume. However, whatever is Vol(f2), the 
condition (1.9) is satisfied for k large enough, namely for 

Therefore, the lower bound (1.10) is true for all \k(fi>) with such k. 
The following smoothness of p is assumed: p^ is Lipschitz in B^(Ro) and 

p| is C00 in B^(Ro). We can prove the same result assuming only that p^ 
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is Lipschitz in B^RQ), provided (1.6) holds in the sense of distributions. 
However, in the latter case, the proof involves some technical complications 
which make the argument less transparent and which are avoided by taking 
Pt being smooth enough. r 

Let us consider some examples when the hypotheses (1.5) and (1.6) hold. 

Example 1.2. Let p be the geodesic distance on M. Then (1.5) is satis- 
fied automatically. Suppose that M is a Cartan-Hadamard manifold, that 
is, a simply connected geodesically complete non-compact manifold with 
non-positive sectional curvature. The inequality (1.6) is satisfied, by the 
comparison theorem for the Laplacian (see [31]). Thus, Theorem 1.1 applies 
on such a manifold, with RQ — oo. 

The isoperimetric inequality (1.8) on Cartan-Hadamard manifolds was 
first proved by Hoffman and Spruck [19]. 

Example 1.3. Let M be a n-dimensional minimal submanifold of M^ and 
let pz(x) be the Euclidean distance function in R^ restricted to M. The 
inequality (1.5) is trivially satisfied. The well-known fact that the coordinate 
functions in RN are harmonic on M (see, for example, [27]) implies that, for 
the Laplacian on M, 

(1.11) Ap| = 2n. 

Thus, all the hypotheses of Theorem 1.1 are satisfied. 
The isoperimetric inequality on minimal surfaces was originally proved 

by Bombieri, De Giorgi and Miranda [2] (see also [1]). Michael and Simon 
[25] proved a similar result for more general submanifolds of R^. 

Example 1.4. Let M be a manifold with non-positive sectional curvature 
and let RQ be its injectivity radius. Then (1.6) holds for the geodesic distance 
p. If, in addition, manifold M is a compact then we may take ft = M (the 
Dirichlet boundary condition disappears though when considering Afc(M)) 
and obtain the lower bound (1.10) for Afc(M) provided 

(1.12) k>^l. v       J -     £R% 

Example 1.5. Let us show that one cannot in general obtain the estimate 
(1.10) for the lower eigenvalues. Indeed, let M consist of / disjoint copies of 
a compact n-dimensional manifold K for which the hypotheses of Theorem 
1.1 hold. For example, K may be a flat torus, and RQ may be its injectivity 
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radius (see the previous example). Then (1.5) and (1.6) hold also on M with 
the same RQ and P((x) (define p^(x) to be a huge constant when x and £ 
belong to different copies of K). By Theorem 1.1, we have the lower bound 
(1.10) for Ajb(M) provided k satisfies (1.12). 

On the other hand, for any k < Z, we have Afc(M) = 0, because the 
eigenvalue 0 has the multiplicity I. Hence, the lower bound (1.10) fails if 

VoKM) 
* "   " Vol(IO ' 

We see that the restriction (1.12) on fe has a correct (linear) order in Vol(M). 
Of course, one may obtain from this example a connected manifold M, by 
gluing all the copies of K by thin tubes. 

Denote by p(t, x, y) the heat kernel of the Laplace operator on M and 
by h(B) the Cheeger constant of an open set B C M, that is, 

urn        - f   A(^) • f     JBIWI^ h(B) :=   inf   -.'     ' =     inf       nr  . ,. ,     . v   J      nccBVol(fi)     feCF(B)  JB\f\dfi 

The proof of Theorem 1.1 is a combination of various arguments as shown 
on the following diagram (we omit all quantors for simplicity): 

(1.13) A/>| > 2n 

(1.14) HBdr)) > -r 

(1.15) 

4 
A(5n) > cVo^fi)1-1/" 

(1.16) 
0 

Ai(n) > ^-Vol(^)-2/n 

(1.17) 

(1.18) 

p(*,x,y)<Ct-n/2 

Afc(Q) > afc2/nVol(Q)-2/n 

Our contribution here is twofold: 
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1. the usage of the above chain of implications, which is new by itself 
(although most steps considered separately may be not new); 

2. the proof of the implication (1.14)=»(1.15) under the restriction (1.7). 

For the latter, we use a localized (and simplified) version of the argument of 
Michael and Simon [25]- The hypothesis (1.14) contains already some initial 
lower bound for A(dQ) provided Q lies in a ball of radius RQ. However, 
even if Vol(fi) is small as in (1.7), fi may be long and thin and may be not 
contained in any such ball. To prove the isoperimetric inequality (1.15) for 
such fi, we use a certain ball covering argument - see Steps 2 and 3 of the 
proof of Theorem 2.1 below. 

All other implications are relatively well-known, but we provide full 
proofs for the sake of completeness, especially as our setting does not al- 
together match those in the previous works. The part (1.13) =>(1.14) is 
obtained simply by integration of (1.13) over Q C B (see (2.10)). Inequality 
(1.14) can be restated as follows: for any fl c B(r) 

77 

(1.19) A(0ft) > -Vol(fi), 

which is a weak form of (1.15). 
The part (1.15)=>(1.16) is the well-known Cheeger argument [6] (see 

also [24])). It is implemented here as Step 1 of the proof of Theorem 3.1. 
The part (1.16)=4>(1.17) is due to the second author [15] and Carron 

[3]. It is presented in Steps 2-3 of the proof of Theorem 3.1. 
Finally, the part (1.17)=>(1.18) uses the argument of Cheng and Li [8] 

(see also [15, Corollaries 2.1, 2.2]) and constitutes Step 4 of the proof of 
Theorem 3.1. See also Corollary 3.3 for the final statement. 

Let us mention that the sharp constant a in (1.10)/(1.18) is still unknown 
even for Rn. According to the Polya conjecture [28], it should be equal to 
the constant in the Weyl asymptotic formula. The best known a in Mn is 
due to P.Li and the third author [20] (see also [21]). 

In Section 4, we obtain, under the hypotheses of Theorem 1.1, a certain 
Sobolev inequality. We use a localized version of the argument of Federer 
and Fleming [14], [13] and Maz'ya [22], [23]. 

In the second part of the paper, we consider the discrete case. Previously, 
two of the authors [9] proved that under the assumption of 

A^nj^cVol^)1"1^, 

for any finite subset Q of a graph F, we can derive Sobolev inequalities for 
graphs and establish lower bounds for eigenvalues A/.. 
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However, obtaining the isoperimetric inequalities is not straightforward 
if we wish to start with a distance function in the spirit of Theorem 1.1. For 
example, the graph distance function, say, for the rectangular lattices Zn, 
does not satisfy (1.13). To circumvent this difficulty, we will consider more 
than one distance-like functions and we will introduce a notion of spring 
ratio v (see definition (6.3) in Section 6). Here we state one of results that 
will be proved in Section 6. 

The underlying space in the discrete setting is a weighted graph (r, cr) 
where a is a measure on the edge set E of F. It induces also a measure fi on 
the vertex set V of F (see Section 5 for detailed definitions). Assume that 
there are a distance function p^{x) and a function q^{x) of pairs of vertices 
£,£ which satisfy the following hypotheses, with some positive constants 
i?o, £ and i\ 

for any vertex £ and for all adjacent vertices x, y G B^RQ), 

\pdx)-pdy)\ <!> 
\qdx)^Qdy)\ <pdx) + L> 

and, for any x 6 B^RQ), 

(1.20) Aq^x)>5, 

Here B^(r) is the open p-ball centered at £ of radius r, and A is the discrete 
Laplace operator associated with the weight a. 

Furthermore, assume that 

n := 6iyRo+i > 1, 

where the spring ratio ur is as defined in (6.3). Then, for any subset £1 C V 
such that /i(f2) < SRQ, we have 

a(dn) > c/i^)1-1/71 

where c and e are positive constants depending on the hypotheses (see The- 
orem 6.3). 

The analogue of the function q in the case of manifolds would be ^p2, in 
which case (1.13) would become (1.20) with 5 = n. However, even for the 
rectangular lattice Zn, for all reasonable choices of p and g, the number S 
in (1.20) is smaller than n. An additional argument with the spring ratio is 
required to recover the isoperimetric dimension n. 
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Under the above hypotheses, we obtain also the eigenvalues estimates 
analogous to Theorem 1.1. Most proofs in the graph case are similar to 
those in the case of manifolds. In Sections 6 and 7, we pay special attention 
to the differences between the discrete and continuous settings. 

Acknowledgments. This work was done during the second author's visit 
of the Harvard University. He is grateful to the Mathematics Department 
of this university for its hospitality. He also acknowledges support of the 
EPSRC (England). 

2. Isoperimetric inequality for weighted manifolds. 

By a weighted manifold, we call a pair (M, /x) of a Riemannian manifold 
M and a Radon measure // on M. We always assume that measure /i 
has a smooth strictly positive density r](x) with respect to the Riemannian 
measure. It is well known that a Riemannian structure induces an associ- 
ated Laplace operator. Similarly, a weighted manifold possesses a natural 
weighted Laplace operator defined by 

A/ := i^divfaV/) 

where V and div are the Riemannian gradient and divergence, respectively. 
It is easy to see that A is formally self-adjoint with respect to measure //. 
If 77 = 1 then A is the Riemannian Laplace operator. 

Apart from having measure JJ, on M, we assume that M is endowed 
with a distance function p^(x) between the points re, £ G M (which is not 
necessarily the Riemannian distance). This function should satisfy all usual 
axioms of the distance. We use the asymmetric notation for the distance to 
facilitate considering it as a function of x, with a fixed f. Denote by 

B((r) := {x e M : pfo) < r} 

balls associated with p^(x). 
We always assume that p((x) is Lipschitz as a function of x and that /?| 

is C^-smooth in x, provided x varies in B^(Ro) with a fixed radius RQ. For 
example, if p((x) is the Riemannian distance then these assumptions hold 
provided i?o is smaller than the injectivity radius of M (which ensures that 
x is away from the cut locus of £). 

Other notation: 
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cr - the boundary area which has the density 77 with respect to the Rieman- 
nian Hausdorff measure of codimension 1; 

Afc(ft) - the fc-th Dirichlet eigenvalue of —A in the region ft c M. 

Theorem 2.1. Let M be a geodesically complete manifold. Assume that 
there exists RQ > 0 such that, for any £ G M, the following inequalities hold 
in the ball B^(Ro): 

(2.1) |V*| < 1 

and 

(2.2) Ap| > 2n, 

with some constant n > 1. Assume also that, for any £ G M; we have 

(2.3) u^pffll^, 

with some constant UJ > 0. Let ft 6e an open subset of M with smooth 
boundary such that 

(2.4) /.(ft) < jl%. 

Then 

(2.5) <T{dto)>cn{£lf-xln, 

where 
l/n 

c = 2 l-2n 

(l) 
Remark 2.2. Constant c is not claimed to be sharp. 

Remark 2.3. Manifold M may be not geodesically complete. However, ft 
must be then precompact. More precisely, we need in the proof that the 
intersection of ft with any ball is precompact. 

Remark 2.4. Condition (2.3) holds automatically if n is the dimension of 
M and if // is the Riemannian measure. However, in general, condition (2.3) 
cannot be dropped. Indeed, let M = Rl with I > n and let p^{x) = \x — £|. 

Then Ap| = 21 > 2n so that (2.2) is satisfied. However, ^B^R^ -> 0 as 
R —► 0, and (2.3) fails. Clearly, the isoperimetric inequality (2.5) does not 
hold, for example, when ft is a ball, in which case we have 

a(dQ)^^(Q)1'1/l = o(ljL(Q)1''1/n)    as    ^(ft) -> 0. 
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Proof. For any £ E M, let us introduce the following functions defined for 
r e (0,+oo): 

(2.6) me(r) := //(fi nB^r)) 

and 

(2.7) 5?(r) :=(7(afin5^(r)). 

STEP 1.   We claim that following inequality holds 

(2.8) -^:(r^me(r))<r^(r), 

for almost every r G (0, RQ). 

Since the point £ will be fixed for a while, we skip the subscript £ 
from all notation. By Sard's theorem, for almost all r, each of the sets 
{x G M : p{x) = r} and {x G <9fi : p\dci(x) = r} contains no critical points 
of p. Therefore, the former set, which is dB(r), is a smooth hypersurface on 
M transversal to dQ. 

In other words, the boundary of the set Qr := ft D B(r), 

(2.9) dnT = (dn H B(r)) U (dB(r) n fl) , 

consists of two hypersurfaces which intersect transversely for almost every 
r. 

For every such r, let us integrate (2.2) over Qri pre-multiplied by 1/2, 
assuming r G (0, RQ). We obtain, by using the Green formula, (2.1) and 
p(x) < r in J3(r) (see Fig. 1) 

n/x(£V) < - /   Ap2 dji 

Jd 

<r f    \Vp\ , dcr 

(2.10) < r(T(dSlr). 

Taking into account the splitting (2.9) and definitions (2.6), (2.7) we rewrite 
(2.10) as follows: 

nm(r) < r<T{&Cl D B{r)) + rcr(dB(r) n to) 

(2.11) =rs(r) + r-^. 
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Figure 1: Ball B(r) and set fi 

Finally, dividing (2.11) by rn+1, we obtain (2.8). 

STEP 2.   Let us denote 

(2.12) ro:=(-/i(ft) 

and prove that, for any £ € fi, there exists r e (0, ro) such that 

(2.13) 

We start with the following elementary fact. 

2i-2n 

Lemma 2.5. Let /(r) be an absolutely continuous positive function on 
(0, oo) (see Fig. 2). Assume that, for some ro > 0, C E (0,4) and for 
almost every r G (0, ro), we have 

(2.14) 

JTien 

-/'(r) < -/(4r). 

,, N / 4 + 3C sup /(r) < -——   sup   /(r) 
(0,ro) 4-C (ro,4»-o) 
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/ 

ro 4ro 

Figure 2: Example of function / 

Proof. Fox any r G (0, ro), we have, by integrating (2.14), 

(2.15) /(r) _/(ro) < £ P f{Au)dv 
ro Jr 

1U 

< 
fi      />4ro 

4^/     ^ 

(2.16) 

Orro /»4ro\ 

i +i )mdt 

< — sup / + —-   sup   /. 

c_ 
4ro 

(0,ro) (ro,4ro) 

By replacing in the left-hand side of (2.15) /(ro) by sup(r0j4roj / and by 
taking sup over r G (0,ro), we obtain from (2.15)-(2.16) 

C 3C 
sup / -   sup   / < — sup / + —   sup   / , 
(0,ro) (r-o,4ro) 4 (0,ro) 4   (ro,4ro) 

whence 

C\ (      3(7^ 
1 - -    sup / <    1 + — )   sup   / , 

4 / (0,ro) V 4  / (ro,4ro) 

which was to be proved. □ 
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Let us now prove (2.13). Assume from the contrary that, for all r G 
(0,ro), 

2l-2n 
s(r) < m(4r). 

(where we suppress again the subscript £). Observe that (2.4) and (2.12) 
imply ro < i?o- Therefore, we can use (2.8) and write 

-— (r-nm(r)) < —(4r)-nm(4r), 
dr TQ 

for almost every r G (0,ro). 
Next we apply Lemma 2.5, for function /(r) = r~nm{r) and for C — 2, 

which yields 

(2.17) sup   r~nm(r) < 5    sup    r~nm{r). 
re(0,ro) rG(ro,4ro) 

The left-hand side of (2.17) is bounded from below by a;, by the hypothesis 
(2.3). The right hand-side of (2.17) can be bounded from above by using 
the fact that m (r) < /i(fi), for all r > 0. Thus, (2.17) implies, together with 
the definition (2.12) of ro, 

5 
" < 3rMfi) = ^ 

which is a contradiction. 

STEP 3.   We will prove here that 

2l-2n 
(2.18) (7(0«) >  /i(ft), 

where ro is defined by (2.12). Clearly, (2.18) implies (2.5). 
To prove (2.18), let us recall that, for any point £ G $1, there exists 

r = rf G (0,ro) such that (2.13) holds. Then, for any x G fi, we have, by 
(2.13), 

2l-2n 
(2.19) (j{dSl n Bx{rx)) > /i(n n Bx{4rx)). 

ro 

Let us show that there exists a countable set T C O of points x such 
that all balls {-B:E(ra;)}x€r are disjoint whereas the balls {5a;(4ra;)}a,€r cover 
fi. If such a family of balls is found already, then we just add up (2.19) for 
all x G T and obtain (2.18). 

Thus, we are left to prove the following statement. 
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Lemma 2.6. (The well-known ball covering argument). Let (M, d) be a 
metric space with a countable base. Suppose that any point x from a set 
Q C M is assigned a metric ball Bx(rx) of radius rx G (0, ro). Then there 
exists a (at most countable) set S C fi such that all balls Bx(rx), x G 5; are 
disjoint whereas the union of the balls Bx(£rx), x G S, covers all of the set 

Proof We construct by induction a sequence of points xi which will form 
the set 5, and an auxiliary decreasing sequence of at most countable sets 
Ti C Cl. Here i = 0,1,2,... is an integer if fi is a compact but, in general, i 
is a transfinite number so that we have to use the transfinite induction. 

By the countable basis hypothesis, there exists a countable family of 
balls Bx(rx) which covers Q as well. Let To be the set of their centers (there 
will be no point XQ). 

Given i > 1 and assuming that Tj has been already constructed for all 
j < i, let us denote 

j<i 

The inductive process stops at step i if T* is empty. 
Otherwise, choose a point Xi G T* so that 

2 
(2.20) u :=rXi > - sup rx. 

Let us throw away from T* all points x such that 

(2.21) d(x, xi) <ri + rx 

and denote by Ti the rest of T* (see Fig. 3). 
Let us prove following two properties of the sequence {xi}: 

(i) Hi ^ j then the balls BXi(ri) and BXj{rj) are disjoint; 

(ii) the union of all balls BXi{4ri) covers £1 

Proof of (i). By the construction of T;, for any x G T*, the inequality 
(2.21) fails, which implies that BXi{ri) and Bx(rx) are disjoint. The same 
property is true for the previous inductive steps: for any x G T/, j < i, 
the balls Bx.(rj) and Bx(rx) are disjoint. This can be applied for x = xi 
because xi G T* C Tj, whence (i) follows. 
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Figure 3: Constructing of Xi and Ti 

As a consequence of (i) we see that the points Xi and Xj are different 
for different i and j. This implies that the inductive process will stop at 
some i because all Xi belong to the countable set To whereas the set of all 
transfinite numbers is uncountable. 

Proof of (ii). It suffices to show that any ball ^(r^) centered at To 
is covered by one of the balls BXi{Ari). For any x E To, there exists the 
smallest transfinite number i such that x ^ Ti (indeed, as was shown above, 
for all i large enough, Ti is empty whence x £ Ti). Hence, for any j < i, we 
have x e Tj, which implies x G T* and x e T* \Ti. By construction, we 
have (2.21) and rx < ^n (the latter follows from (2.20)), whence 

d(x, Xi) +rx< (ri + rx) + rx = ri + 2rx < An . 

Therefore, Bx(rx) is covered by BXi{Ari). □ 
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3. Eigenvalues of subsets. 

Theorem 3.1. Let us assume that, for any open precompact set Q C M 
with smooth boundary such that 

the following inequality holds 

(3.1) ^(dft^c/i^)1-1/71, 

where c > 0; VQ > 0 and n > 1 are constants. Then, for any open precompact 
open set Q C M and for any integer k such that 

(3.2) k > v     / ft m.), 
VQ 

we have 

(3.3) 
(     k      \2/n 

where a = e~ -2/n2- -Hn + 2)1-2/"c2. 

Proof The proof consists of four steps. 

STEP 1.     We first prove Theorem 3.1 for k = 1. We replace hypothesis 
(3.2) by a weaker assumption // (fi) < VQ, which suffices in this case. The 
following argument is due to Cheeger [6] and Maz'ya, [23]. 

Given a non-negative function / 6 CQ
0
 (£}), we denote 

fit = {x : f{x) > t). 

Since /x(fit) < ^o and, by Sard's theorem, the boundary Sfi* is smooth, 
for almost all £, we may apply the isoperimetric inequality (3.1) for fit and 
obtain 

(3.4) ^(dfit^c/^fit)1-1771, 

for almost alH. 
Next, we use the co-area formula 

(3.5) /  |V/| dn= [   G{dSlt)dt, 
JM JO 
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which implies with (3.4) 

/ |V/|dM>c f   iL{Slt)l-x/n dt 
JM JO 

c f00 

^rr / A* (a) > dt 

lnJM 
f d/J,, 

li{Q)lln JM 

and 

(3.6) / / dp < c-V(^)1/n /  |V/| dp. 
JM JM 

We have, by the Cauchy-Schwarz inequality, 

(3.7) /  \Vf2\d» = 2 [ f\Vf\<2\[ f2dn I |V/|2dM 
JM JM IJM JM 

By applying (3.6) to /2 instead of / and by (3.7), we obtain 

f /2^<c-V(n)1/w I |v/2|^ 
JM JM 

<2c-V(^)1/n[/ Z2^/  IV/I2^ 
IJM JM 

1/2 

1/2 

whence 

and 

(3.8) 

/ /2^<4c-2/z(ft)2/n/ |V/|2^ 
JM JM 

Al(n)=     inf     /MIV/N^C;   ^    2/n 

STEP 2.   Let us prove the following lemma which is a localized version of 
similar statements in [17] and [15]. 

Lemma 3.2. Assume that, for any open precompact setQcM such that 

(3.9) v(tt)<vo, 
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the following inequality holds 

Ai(ft)>A(/i(0)), 

where A(-) is a non-negative non-increasing function on (0,oo). Let u(x) 
be a Lipschitz non-negative function on M with compact support and let us 
denote 

/   ud/jt = a    and       /   u dfi = /?. 
JM JM 

Then, for any s > so := a/vo, 

(3.10) /  |V^|2 d/x > (/? - 2sa) A^a). 
JM 

Proof. We start with the obvious inequality 

u2 < (u - s)+ + 2su, 

which holds for any 5 > 0 and which implies 

/3= /   u2dfi< /        (u-s)2diJ, + 2s       udfi 
JM J{u>s} JM 

and 

(3.11) l3-2sa< /        {u-s)2dLi. 
J{u>s} 

On the other hand, 

fi{u > s} < s~1a. 

Therefore, if s > so := ^5 then the set Qs := {u > s} (see Fig. 4) satisfies 
the hypothesis (3.9), whence 

Ai^^A^^^^A^a). 

This implies 

(3.12) A (s^a) [   (u - s)2 d/x < /   \Vu\2 dfx. 
JQS Jris 

Comparison of (3.11) and (3.12) yields (3.10). □ 
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Figure 4: Function u and sets Qs 

We apply Lemma 3.2 for A(v) = ^v~2/n and for a function u such that 
JMudijL < 1, that is a < 1. For this function, (3.10) becomes 

(3.13) / \Vu\2dn>^s2/n((3-2s) 
JM 4 

provided s > v^ 1. 

The right-hand side of (3.13) takes the maximum at s = ^j^.   Let us 
choose the optimal s. If 

n + 2 

then we let s = ^^ an(l obtain 

If 

" <»„-', n + 2 

then the best value of s in (3.13) is VQ
1
, whence 

JM\Vu\2d^>Cjv-2/n(/3-2v^)+. 
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(n+2)vd 

Figure 5: Function F(/3) 

We summarize the above inequalities in the following one: 

(3.14) 

/ V< dp > F((3) := - 
M 4 

0, p < 2VQ
1 

v'2'71 (13 - 2Vo-1),   2t;0-1 < 0 < (n + 2)v^\ 
(n+2^+2/n /31+2/n,    /3>(n + 2H-1, 

(see Fig. 5). In fact, we will use this inequality only in the range (3 > 
(n + 2)VQ

1
. In this range, (3.14) is a Nash type inequality. Nash [26] used 

a similar inequality to obtain upper bounds of the heat kernel. So we do in 
the next step. 

STEP 3. For any precompact region ft C M, we denote by pn(t, x, y) the 
Dirichlet heat kernel in fi; that is, the kernel of the minimal heat semigroup 
etA in fi with respect to the measure (JL (see [4], [7], [11], [16] for detailed 
definition and properties of heat kernels). 

Let us prove that, for any fi, the heat kernel admits the following upper 
bound, for all t > 0 and x E fi, 

(3.15) pn{t,x,x) < max (KQ, Kr^ , 
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where 

(3.16) Ko = (n + 2)vQl    and   K = c"^71/2 (n + 2)n/2+1. 

Fix a; G Jl and denote 

Jn 

By the semigroup property and by the symmetry of the heat kernel, we have 
'^(*) — Pn(2^, x, x). Denote also u(t, y) = pn(*? a;? 2/)- The heat equation 

ut = Aw 

implies, by multiplying by -u and by integrating over O, that 

r(t) = -2 / |Vw|2 dM(y). 

Since /n u(t, y) d^y) < 1, we can apply (3.14), which yields 

(3.17) I'(t) < -2F(I). 

Function I(t) is decreasing in t, and I(t) —> oo as t I 0. We would like to 
integrate (3.17) when I(t) stays in the range ((n + 2)v^"1, oo). This means 
that the variable t should vary within (0, to), where I (to) = (n + 2)v^1. By 
integrating (3.17) from 0 to t < to, we obtain 

/ 

00   dl 
>2t 

F(I) 

and (see Fig. 6) 

(3.18) I(t) < c-n (n + 2)n/2+1 t-n/2. 

Thus, if I(t) > (n + 2)^1, then (3.18) holds.  Otherwise, I(t) < (n + 
2)VQ

1
, and we can write, for all t > 0, 

I(t) < max ((n + 2)^1, c"" (n + 2)n/2+11""/2) 

and, changing t to t/2 

Pn(*, x, x) < max ((n + 2)^1, c-n2n/2 (n + 2)n/2+11""/2) . 
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(7i+2)V0    <►■ 

Figure 6: Upper bound for I(t) 

STEP 4.     Let us finally prove (3.3), assuming (3.2).  What follows is a 
modification of the argument of Cheng and Li [8]. 

Inequality (3.15) implies 

(3.19) / pn(t, x, x) dii(x) < n (ft) max (KQ, Krnl2\ . 

By the trace formula, we have, for any k > 1, 

/ pn(t,x,x)dfi(x) = Y c-W* > fce-AfcW* 

whence, by (3.19), we obtain 

fce-Afc(fi)i < ^ ^ max ^0) Kt-n/2^ 

and 

(3.20) Afc(fi)>-log 
t    & fx(n)max(Ko, Kt-n/2) 
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Figure    7:       Functions    t     —*     i log maxli  t-1)    (thin)    and    £ 

| log max(l,  t-1) (thick) 

Let us choose here t to satisfy 

= e 

or 

(3.21) 

For this t, we claim that 

t = 

H (Q) Kt-nl2 

eKn{Q.)\2/n 

k 

KQ < Kt-nl2. 

Indeed, by (3.21) and (3.16), this is equivalent to 

li(Q,) < 
VQ k 

Koe      (n + 2)e 
k 

which is true by the hypothesis (3.2). 
Let us mention that if k is not big enough then the right hand side of 

(3.20) may be non-positive for all t. In this case, we get no non-trivial lower 
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bound for A^. Typical graphs of the right-hand side of (3.20) are shown on 
Fig. 7. 

Hence, (3.20) implies, for t from (3.21), 

which was to be proved. □ 

By putting together Theorem 2.1 and 3.1, we obtain the following Corol- 
lary. 

Corollary 3.3.   Under the hypotheses of Theorem 2.1, for any precompact 
open set Q C M and for any integer k > 1 such that 

where K = «(n), we have 

k   \2/n 

where a = c\(n)u)2ln > 0. 

Indeed, by Theorem 2.1, we have the isoperimetric inequality 

or^n^c/iffi)1-17", 

where c = 21-2n (f )1/n, provided 

A*(n) ^ ^o := ^Ro ■ 

We feed this to Theorem 3.1 and obtain 

At(M)>c1(„)^»G7y
2/'', 

provided 

A*(f!) > <• t rr^J    , 

^^^- 
□ 

Theorem 1.1 from Introduction is a particular case of Theorem 2.1 and 
Corollary 3.3, for n = dimM and for // being the Riemannian measure. The 
hypothesis (2.3) of Theorem 2.1 holds automatically because fi(B^(R)) ~ 
cjnR

n as R -> 0. 
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4. Sobolev inequality. 

Let us introduce the notation 

/ \f\adn 
JM 

l/CL 

Theorem 4.1. Assume that, for any precompact open set Q C M with 
smooth boundary, such that 

the following inequality holds 

(4.i) a(dn) > c^n)1-1/71, 

where c > 0; VQ > 0 and n > 1.   Then, for any Lipschitz function f with 
compact support, the following inequality holds 

_, n-l 

(4.2) f  \Vf\dfi + ce(Qo) f  \f\dfi>c2-1/n    (   \f\^ dfi 
JM JM UM 

where Q,Q = {x G M : \f(x)\ > 0} and 

{ ;"~,K-1/i(n)1-1/B
? if i*(n)>v0. 

Furthermore, for any p G [l,n); we have 

(4.3) C ||V/H,, + cG(fio) H/H, > c21/P-i-i/« 

TO^/I some constant C = C(n,p) > 0. 

Remark 4.2. In inequality (4.2), one can get rid of the term 2-1/n provided 
M^o) < ^o- In this case, we get the inequality 

(4.4) /  \Vf\dn>c\[   Ifl^dp 
JM UM 

where the constant c is sharp - see [14], [23], [18]. 
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Figure 8: Level sets of function f(x) 

Proof. Let us first prove (4.2). Without loss of generality, we may assume 
/ G Cfj°{M) and / > 0. Denote «* := {x : f(x) > t} (see Fig. 8). 

Let to be large enough so that 

(4.5) /i(^to) <^0 

(such to always exists). Then, for any t > to, we have also /^(Ctt) < ^o and, 
by hypotheses, the isoperimetric inequality (4.1) holds for fit, that is 

The co-area formula (3.5) implies 

/ |V/| dfi> [   a(dQt) dt 
JM Jto 

and 

(4.6) /   |V/| dp > c /     /A (fit)1"1771 dt = c        n (nto+s)~ ds. 
JM Jto Jo 

Let us use the inequality of Hardy, Littlewood and Polya which says 
that, for any non-negative non-increasing function h on (0, oo) and for any 
a> 1, 

noo ["   roo 1 1/OL 

/     h1/a(s)ds>    /     h(s)d(sa) 
Jo Uo 

Applying it to h(s) = /i (flt0+a) and 

a = 
n 



Higher eigenvalues on manifolds and graphs 995 

we obtain 

POO POO 

/    ^(ao+s)
1/a^>    /    fx(QtQ+s)d(sa) 

Jo Uo 
"    POO 

= / ix(Qt)d((t-t0r) 
Jto 

I/O 

(4.7) / a - ^n 
JM 

dfi 
l/a 

If fi(Qo) < ^o then we can take to = 0 and obtain from (4.6)-(4.7) the 
sharp Sobolev inequality (4.4). This is the classical way of proving the 
Sobolev inequality, which is due to Federer - Fleming [14] and Maz'ya [22], 
[23, Section 2.3.3]. 

In general, to may be positive. We apply the elementary inequality 

(x + y)a<2«-1(x<* + y«), 

which holds for all a > 1 and positive x, y, and obtain 

(f-to)%>21-ar-i%, 
whence 

(4.8)       / (/ - *>)« dp = / (/ - to)% dfx > 2l-<* [   f°diA -Ifii* (flo) • 
JM JQQ JQO 

By another elementary inequality 

-7^Va>.T1/a_7|l/« (x - y)_l   > x V 

we have 

> 2^^ 
J + 

(4.9) \2l-« !   rdfi-t^(Qo) 
L       Jno 

Combining together (4.6)-(4.9), we obtain 

(4.10) f  \Vf\df,>c2-1/n    [   f^dfi 
JM UM 

I r 
Jno 

dfi - top (Qo)" • 

■ ctofjbfaoy 

Let us choose to now to satisfy (4.5). If ^(fio) ^ ^o then we take to = 0 
and obtain (4.4). If /u(f2o) > vo, then we observe that 

M(^o) < 7" /    fdp. 
^o JM 
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Therefore, (4.5) is satisfied for 

(4.11) to = - f   fd/A. 
vo JM 

For this to, we deduce form (4.10) 

f IV/l^ + c^V^o)1"17" f fdfi>c2-1/n    f   f^dp 
JM JM UM 

which was to be proved. 
Now we prove (4.3). Denote </:=(/ — to)+ and G := {g > 0} = nto. 

By the choice of to, we have //(G) < VQ. Therefore, as was shown above, the 
function g satisfies the Sobolev inequality (4.4). Moreover, (4.4) holds as 
well for the function g^, for any K > 1. Applying also the Holder inequality, 
we obtain 

_ n-l 

djj, 

(4.12) 
r r '\ 1/p r r ,    ,    11/q 

where q is defined by | + i = 1. Choose K = ^^ so that 

n-l = («-!)?• 

Then after obvious simplifications, (4.12) implies 

where C = C(n,p). 
By setting a = ^- we can rewrite this as 

C\\Vf\\p>c\\(f-to)+\\a. 

We apply again inequalities (4.8), (4.9) and obtain 

C||V/||p>c21/-i||/||a-cto/x(no)1/a, 

Taking to as in (4.11), we have 
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C ||V/||p + c^^ H/lli > c21/-i ||/||a . 

Finally, we observe that, by the Cauchy-Schwarz inequality, 

I too 

whence 

which was to be proved. D 

CIIV/H, + c^^1"17" ||/||p > c21/-i ||/||a, 

5. Analysis on weighted graphs. 

Let F denote a connected graph with the vertex set V and the edge set E. 
For vertices x, y e V, we write x ~ y if a: and y are neighbors in F, that is, 
x and y are adjacent and joined by an edge, which will be denoted by xy. 
Here we consider locally finite graphs i. e., every vertex has a finite number 
of neighbors. 

For a subset fi of vertices in F, we denote by dQ, the set of edges which 
join a vertex in ft with a vertex outside ft. We normally assume that each 
edge in dft is oriented so that it points outwards from ft unless otherwise 
specified. 

5.1. Measures on graphs. 

We consider a weighted graph in which each edge e is associated with a 
positive edge weight ae. For any edge set S C B, we define its measure by 

*($) = $>.. 
ees 

If edge e connects vertices x, y then we write also ae = aXy = ayX. 
Extend the function aXy by zero for those x and y which are not neighbors 
so that it becomes a (symmetric) function on V x V. Depending on the 
context, we may regard aXy as a measure on edges or as a function on pairs 
of vertices. 
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For any vertex x e V, we introduce the vertex weight 

{2/:2/^a;} 

For example, if ae = 1 on all edges then //^ is the number of neighbors of the 
vertex x, that is, the degree of x. We regard fix as a measure on vertices. 
Namely, for any subset Q of vertices, we define 

xeci 

A graph F equipped with the weight a (and its derivative - measure ^) 
is called a weighted graph and is denoted by (F, a). 

5.2. Discrete Laplacian. 

Given a real-valued function / on the vertex set of (F, <T), we consider its 
gradient V and the Laplace operator A. The gradient of / assigns the 
following value to each ordered pair x, y G V 

Vxyf = m-m- 
Expression V/ can also be considered as a function on oriented edges: if 
e = xy then Vef = VXyf. 

The Laplace operator A is defined on all functions / on V as follows: 

(5.1) Af(x) = —   E   (Vxy/K^—   E   f(y)<r*v-f(*)' 
{y:y~x} {y:y~x} 

The matrix of A has in the bases {Sx}xev t^e following components 

A(x1y) = l a*vl*°>   X^y' K 'UJ      \ -1, x = y. 

Although this matrix is not symmetric, in another basis \ fix ' 5X > , the 

Laplace operator is represented by a symmetric matrix 

A(x v) = l axy ^^)"1/2 '   x^y 
y 'y)     \ -1, x = y. 

See [10] for more details. 
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5.3. Green's formula. 

The following discrete analogue of the Green formula is true. If Q is a finite 
subset of V and / is a function on ft then 

(5.2) Y, Af(x>> /** = Z(V^) ^v = S (Ve/)ae • 
xeQ xeQ eedQ 

y<£n 

If / and g are functions on V and one of them has a finite support then 

(5.3) 

J2 A/fc) g(x) Afe = -^ £ (V:c^) (V:c^) ff*tf = " 2 (Ve/) (Ve5) ^ • 

The multiple 5 appears in the middle term because each edge counts twice. 
In the third term, each edge may be oriented arbitrarily because the product 
(Ve/) (VeflO does not depend on the choice of orientation. 

5.4. Integration versus Summation. 

Most of the proofs in the case of graphs follow the same line of arguments 
as in the case of manifolds. This becomes especially clear if we write down 
the basic facts from analysis on graphs in terms of integration against the 
measures /i and a. By suppressing the subscripts of //, a and V, we can 
write 

y2f(x)tAx= /  fd/A, 

^|Ve/|ae= f \Vf\dG, 
eeE jE 

Y,^ef){Veg)ae= f VfVgda, 
eeE 

where /, g are functions on V. 
The Green formula (5.3) can be rewritten, by using the integration, as 

follows 

(5.4) [ Afgdfi = - f VfVgda, 
JV JE 

provided one of the functions f,g has finite support. 
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5.5. Eigenvalues of Laplacian. 

Let Q be a finite subset of vertices of a weighted graph (F, a). Denote by 
Co(fi) a class of functions on V which vanish outside fi. We say that a 
function / defined on V satisfies the Dirichlet boundary condition in Q, if 
/ G Co(f2). Denote by AQ restriction of the Laplace operator A to the space 
Co (SI) that is, 

^Hr^a 
The operator AQ is referred to as the Laplace operator with the Dirichlet 
boundary condition in £1 

As follows easily from the Green formula (5.4), for all /, g G Cb(f2), 

[ (Anf)gdfi=- [ VfVgd(j= [ (AQg)fdfi. 
JQ JE Jn 

In particular, the operator AQ is symmetric with respect to the measure fix 

and negative definite. 
Let \Q\ denote the number of vertices in fi. The space Co(fi) has the 

finite dimension \fl\. Therefore, the operator — A^ has a real positive5 spec- 
trum consisting of \il\ eigenvalues Ai < A2 • • • < A|Q|. The corresponding 
eigenfunctions <^ G Co(fi) are called the Dirichlet eigenfunctions of Q. 

The first eigenvalue Ai(fi) can also be defined by the variational principle 

M0). inf /«!*£*. 
f£Co(fl)      JyPdfl 

5.6. Heat kernel. 

Given a finite set f] C V, we introduce the heat kernel pQ(t,x,y) (where 
x, y G V and t > 0) as the kernel of the operator etAn with respect to the 
measure //. In other words, for any function / G Co(tt), 

etA"f(x) = J m(t,x,y)f(y)diJLy. 

The following are the basic properties of the heat kernel pn which follow 
directly from the definition. 

5 Strictly speaking, this is true if ft is a proper subset of V.   If 0 = V then 
|fi| < 00 implies Ai (0) = 0 because the constant function is the first eigenfunction. 
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1. PQ(£, X, y) > 0; moreover, if x or y £ Q then pn(^ #, y) = 0. 

2. pn(t,x,y) =pn(t,y,x). 

3. For a fixed vertex y, pn(t,x,y) as a function of x G fi and t > 0, 
satisfies the heat equation 

-QtVn(t,x,y) = Apa(t,x,y). 

4. p(0, x, •) = [x-iSx . 

5. If {<&}!_! are the eigenfunctions of —An which form an orthonormal 
basis in L2(0, /x), and {A;} are the corresponding eigenvalues then 

|n| 
Pn(t,x,y) = ^VuVi(x)<^(y). 

i=i 

In particular, it implies the trace formula 

, |n| 
/ pn(t, x, x) dnx = Y] e~tXi ■ 

6. For all x and t > 0, 

/ Pa(t,x,y)dfxy <1. 
Jv 

7. For all x, y and 0 < s <t, 

Pa(t,x,y)= / pn(s,x,z)pn(t- s,z,y)dijLz. 
Jv 

5.7. Co-area formula. 

The co-area formula (3.5) has a well-known discrete analogue (see, for ex- 
ample [5], [10], [29], [32]). 

Proposition 5.1.  Given any function f on V, let us denote 

nt = {x e V : f(x) > t}. 

Then 

(5.5) / |V/| da = r G(dSlt) dt. 
JE J-OO 
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Proof, For any edge e := xy e E, there corresponds an interval Ie C M which 
is defined as follows: 

h = [/(y), fix))    iff(x)>f(y). 

Also, let us denote 

cr(Ie) = aXy. 

Then we have 

^|V/|^ = i     Yl     \f(x)-m\(rxy = J2\Ie\a(Ie) 
{x,y:x~yy e£;E 

where \Ie\ is the Euclidean length of the interval Ie. 
The boundary <9f^ consists of edges e = xy such that x G fit and y ^ fi^ 

This is equivalent to f(x)>t and f(y) < t which, in turn, can be written 
as t e Ie- Thus, we have 

ee^fit {e:Ie3t} eeE 

Finally, by interchanging the summation and the integration, we obtain 

/+oo f+OO 

whence (5.5) follows. D 

6. Discrete isoperimetric inequality. 

6.1. Statement of the results. 

The purpose of this section is to prove a graph analogue of Theorem 2.1. 
As was mentioned in Introduction, in other to do so we need some more 
structure on the graph. 

We will consider distance functions on V. The simplest example of a 
distance function on V is the graph distance which is, by definition, the 
number of edges in the shortest edge path joining two points of V. We 
assume that we are given some distance function on V and denote it by 
/9^(x), where :r,£ G V. Denote by B^(x) the ball defined by p, that is, 

B((r) = {x: pe(x) <r}. 
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y 

Figure 9: Example: fii = 2 and iix = 5 

Let us assume that p^ has the following property: 

(6.1) |V^| < 1, 

for any edge xy G E and for any vertex f G V. For example, (6.1) obviously 
holds for the graph distance. 

Next, we will need the following constant characterizing a structure of 
edges at the boundary of the ball B^(r). Given points £, x G V, consider the 
following sum of aXy over all points y adjacent to x and satisfying p^(y) < 
Pe(x): 

(6.2) ,!£>= £ 
{y:y~x and p^(y)<p^(x)} 

Clearly, /4r < Px (see Fig. 9). We define the spring ratio j/r, for any r > 0, 
as follows 

(6.3) z/r =    inf Vx 
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* 
,K.^ L 

Mi^l S ^v^ 

M . 
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V/ J 

'£ 
X 
 1 

I^M 

Figure 10:  Z2 with the metric p^(x) = maxi \xi - ^| has the spring ratio 

i/r = 4 (/xx = 4 and max/i^   = 1) 

Example 6.1. We consider the graph (r,cr) with the vertex set Zn and 
with the measure 

1,   if x and y differ exactly at one coordinate by 1, 
otherwise. <7xy -\o, 

For vertices x, £ € Zn, we define the distance by 

(6.4) pe(x) = max |x<-^|. 

Clearly, |VxyPc(a:)| < 1 and (6.1) is satisfied. The p-ball B^r) is a cube 
centered at f and with the sides parallel to the coordinate axis. Let us find 
the spring ratio i/r defined by (6.3). Assume for simplicity that f is the origin. 
Any point x ^ £ has at most one neighbor y such that max* \yi\ < max; |^|, 

that is pf(y) < p^x). Thus, ^ = 1 or 0. Since fix = 2n, we conclude 
i/r = 2n (see Fig. 10). 

Together with the function p((x), we consider another function q^(x) - 
an analogue of the square distance. We postulate the following properties 
of g, for some positive constants 5, L and JRQ' 

(i) qe(x) > 0, and q^x) = 0 if and only if x = f. 
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(ii) For any vertex £ and for arbitrary adjacent vertices x,y € JB^(JRO), 

(6.5) VX2/^<^(x) + 6; 

clearly, we can always assume that 

(6.6) L > 1. 

(iii) For any vertex £ and all x E B^(Ro)^ 

(6.7) Aq^x) > 5. 

Example 6.2. Let (F, cr) be the rectangular lattice graph defined on Zn as 
in Example 6.1. Let us consider 

p£(x) = max \xi -£;| 

and 

1   n 

In other word, p^(x) is the /^-distance whereas q^(x) is determined by the 
Z2-distance. Condition (i) is obvious. Let us verify (ii) and (iii), assuming 
for simplicity that £ is the origin. 
For x ~ y, we know that y is obtained from x by changing by 1 of one of the 
coordinates of x. Let this coordinate be xi. Since \xi\ < pfa), we obtain 
(see Fig. 11) 

V^ = - ((*i ± I)2 + xl + ... + xl) - - Y, xi2 = ±x1 + 1 < pfc) + i 
2=1 

whence (ii) follows. 
To verify (iii), for any y ~ x, we denote by yf the vertex symmetric to y 

with respect to x. 
The contribution of the points y and y' to the sum (5.1), defining the 

Laplace operator A^(x), is equal to (see Fig. 12) 

qdy) + <idy,)-^^) = l\y\2 + l\y'\2 y + y' 
2 

2 
y-y' 

2 
= 1. 
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^ 
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Figure 12: Computing Aq^rr) 
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Since we have n such pairs of neighbors of x, and iix = 2n, we see that 

and (6.7) is satisfied with S = 1/2. 
We remark that neither of other natural choices of q such as 

qW = \(X,\xi\\ 

or 

q(x) = -maxN2, 

admits both (6.5) and (6.7) with 6 > 1/2. 

Definition. Given positive numbers 5, L and i?o, we say that a weighted 
graph (F, a) has property P(5,6, RQ) if there exist a distance function p 
satisfying (6.1) and a function q satisfying the hypotheses (i)-(iii) such that 

(6.8) n := 5vRo+i > 1, 

where VRQ+I and S come from (6.3) and (6.7) respectively. 

The claim that a graph has property P(J, £, RQ) contains two different 
issues. First, it means the existence of functions p and q as above. Second, 
it means that the number n defined by (6.8) is greater than or equal to 1. 
In particular, a small 5 in (6.7) is allowed provided it is compensated by a 
large spring ratio VRQ+I defined by (6.3). In what follows, the number n will 
play the role of the isoperimetric dimension. 

It will be more convenient for us to replace the argument 6 in P(5, £, RQ) 

by n because 6 will be used only through n. So, by somewhat abusing the 
notation, we will refer to the property P(n, L, RQ) rather than to P(5, *,, RQ). 

The value of the number L is not of much importance. We will assume L > 1 
as in (6.6). 

Note that Proposition 6.5 in the next section states that the property 
P(n, *,, Po) implies the following lower bound of the volume of any ball of 
radius r < RQ: 

n{Bt{r))>bHrn, 

where b = 6(6, n) > 0. Moreover, the following isoperimetric inequality is 
true. 
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Theorem 6.3. Assume that the weighted graph (F, a) has property 
P(n,L,Ro). Assume also that 

(6.9) u/ := inf aXy > 0 

and denote 

u> := inf IJ,X , 

Let Q be a finite subset of V such that 

L (6.10) tin) < ^RI 

where 

(6.11) e:=8Lne2n2. 

Then 

(6.12) cr(dQ) > c/^)1"1/71 

where c := 4-ri-3z/^o
1
+1^-1e-2na;/a;1/n-1. 

As an immediate consequence of Theorem 6.3 (with RQ = oo) and Ex- 
amples 6.1 and 6.2, we have the following: 

Corollary 6.4. For the lattice graph on Zn, for any finite subset Q of ver- 
ticeSy we have 

a(dn) > c/x^)1"1/71. 

where c = c(n) > 0. 

The constant c obtained in this way is not optimal. See [30] for the sharp 
constant c in Zn. 

Let us emphasize that Theorem 6.3 is not a straight analogue of Theorem 
2.1. To start with, in the setting of manifolds, we needed only one distance 
function p. However, also for manifolds, we can choose the function q by 

(6.13) q=±p2. 



Higher eigenvalues on manifolds and graphs 1009 

Figure 13: Graph C5 x Z1 

We have then \Vq\ < p which follows from |Vp|  < 1 and which is the 
analogue of (6.5). The hypothesis (2.2) takes the form 

(6.14) Aq>n, 

which is the analogue of (6.7). The reason why we do not assume the relation 
(6.13) for the graphs, is that we do not know whether there exists a function 
p on Zn such that (6.5) and (6.7) hold with q = \p2. 

There is a more substantial difference between the continuous and dis- 
crete case. In the case of manifolds, the isoperimetric dimension n comes 
directly from the lower bound of Ag as in (6.14). In the case of graphs, n 
is the product of two quantities 8 and z/ = I/J^+I that come from different 
hypotheses. The spring ratio v has no analogue for manifolds. It is clear 
that the Laplace operator of the distance function on a graph does not catch 
the isoperimetric dimension as we have seen for Zn. The spring ratio v helps 
"to see" the dimension. 

One may wonder if it is possible to catch the sharp isoperimetric inequal- 
ity only by using the spring ratio. The answer is negative. 

Indeed, let us consider graph Y which is the direct product of a cycle 
Ck with an odd fc and Z1 (see Fig. 13); in other words, T is a discrete 
cylinder based on Ck- Let the distance p on F be the maximum of the graph 
distances in Ck and in Z1, analogously to (6.4). It is easy to see that vr = 4 
for this graph (for any r > 1) exactly as for Z2. However, the isoperimetric 
dimensions of Z2 and Ck x Z1 are clearly different. 

The rest of this Section is devoted to the proof of Theorem 6.3. 
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6.2. Boundary of a ball. 

We start with the following statement establishing relation between the 
boundary area of a ball and its volume. 

Proposition 6.5. Assume that the weighted graph (F, cr) has property 
P(n, L, Ro). Then, for any value r G [0, RQ) and any vertex £ € V, we 
have 

(6.15) aiPBfr)) > -jr/itoM) 
r ~t~ t 

and 

(6.16) M5?(r))>&M^n, 

where 

(6.17) b = rnexp(-n2). 

Proof. For simplicity, we will write v = VRQ+I and B(r) = J5^(r). To prove 
(6.15), we sum up the inequality (6.7) pre-multiplied by /xx, over the ball 
B(r) and use the Green formula (5.2). We obtain 

(6.18) Sfi(B(r))<   J2  &q(x)Vx=   Y, Fxyfi^y 
xeB(r) xeB(r) 

y<tB(r) 

Of course, the summation on the right-hand side of (6.18) is restricted to 
adjacent re, y. Therefore, we can use the hypothesis (6.5), which states tha,t 

VX2/<? < p(x) + L<r + L. 

Thus, (6.18) implies 

(6.19) <WM) < (r + 0 <r(dB(r)), 

which proves (6.15). 
Next we prove that, for all r e [0, i?o), 

Th 
(6.20) fi(B(r + 1)) - vL(B(r)) > -—/x(B(r)). 



Higher eigenvalues on manifolds and graphs 1011 

Figure 14: The edges at x contributing to a(dB(r)) are bold whereas the 
others are dashed 

In the view of (6.19) and (6.8), inequality (6.20) will follow from 

(6.21) (r(OB(r))<-QjL(B(r + l))-rtB(r))) 

where we write u = VRQ+I . 

Let us verify (6.21). The hypothesis (6.1) implies that if x is adjacent 
to y e B(r) then x e B(r + 1). Therefore, any edge e e dB(r) connects a 
vertex y G B(r) with a vertex x e B(r + 1) \ B(r) whence 

a(dB(r)) <        £        a.. xy ' 

y€B(r) 
xeB{r+l)\B(r) 

Fix a vertex x € B(r + 1) \ B(r) and consider all edges e which join x with 
a vertex y in B(r) (see Fig. 14). 
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The sum of c7Xy over all such y is at most jix   as defined by (6.2). Therefore, 
we have 

a{dB{r)) < Y.        I®' 
xeB{r+l)\B{r) 

From the definition (6.3) of the spring ratio, we know that 

I® < -• 

Hence, 

a(dB(r)) < i J2        ^ = l» Wr + 1) \ B(r)) , 
a:€B(r+l)\B(r) 

which proves (6.21) and, thus, (6.20). 
Clearly, (6.20) can be rewritten as 

77 

(6.22) M(B(r + l))>(l + —)/i(B(r)). 

For an integer r E [1, i?o), we iterate (6.22) to obtain 

(6.23) n(B(r)) > riB(p)) fl (l + ^j . 
k=0 

By using the elementary inequality 1 + x > exp(a; — ^rr2) (x > 0), ^(3(0)) = 
H^ and L > 1 (see (6.6)) we derive from (6.23) 

>A*€f^~J   exp(-n2) 

(6.24) > fit (lil J   exp (-n2) . 

Observe that (6.24) is true also for r = 0 because /Li(5(0)) = fj,^. 
Finally, for any r € [0, RQ), we obtain 

M(B(r)) > MBdrJ)) > Me (:)"«? (-n2) 

whence (6.16) follows. □ 
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6.3. Proof of isoperimetric inequality. 

Here we prove Theorem 6.3. Let us denote 

(6.26)      "-(^r 

where 9 is defined by (6.11). Hypothesis (6.10) implies that ro < RQ. 

Let £ be any point in f} (we may assume that fi is not empty). By 
Proposition 6.5 and by the obvious inequality b > 6~l (see (6.17) and (6.11)) 
we have 

fji(B^Ro)) > b^RZ > e^urTS = /x(fi). 

Therefore, the complement to fi is not empty which implies that dQ is not 
empty, too and, by (6.9), iJ,(dQ) > uJ. 

We write then 

<7(dft)         J 
n-l    — 

If we assume that ro is small enough, say, as follows 

ro < 2n2 + 1, 

then we obtain 

C7(0fi) > eI^1(2n2 + if^Ju-^ii^l)1 

It follows easily from (6.11) that 

^(2n2 + l)1-n>l 

whence we conclude 

which proves (6.12) for ro < 2n2 + 1. 
We may assume in the sequel 

(6.26) ro > 2n2 + 1. 

The further proof will be split into three steps. 
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Figure 15: Splitting of 8(0,(1 B(r)) - the dashed edges belong to 9+(r), bold 
-to d-(r) 

STEP 1.    The boundary d(Q, D B^(r)) can be partitioned into two parts: 

a+(r) = {xyeE:xeiln Be(r)    and    y <£ Ct} 

and 

0-(r) = {xy e E : x € tt fl B((r)    and    y G Q \ B^r)} 

(see Fig. 15). Denote 

raf(r) :=/x(Sf(r)nfi). 

We claim that the following inequality holds, for all r £ [0, RQ], 

(6.27) m€(r) - me(r + 1) + —— m€(r) < v<r(d?(r)), 

where u = I/HQ+I. 

The point £ will be fixed during the proof of (6.27) so we skip the sub- 
script £ from all notation. As in the proof of Proposition 6.5, we integrate 
(6.7) over Q, fl B(r) and obtain, by the Green formula (5.2), 

(6.28) 5m(r)<     J^     &Q(x)Vx=        ^2       (V^Wy 
a:efinB(r) xyed(QnB(r)) 
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For any edge xy e 0(ftn2?(r)), we estimate V^g by using (6.5). Indeed, 
for x G il fl B(r), we have, by (6.5), 

Vsyqfc < p^(x) + !, < r + ^ 

Therefore, we obtain from (6.28) 

(6.29) 8m[r) < (r + L)a(d(nn B(r))). 

We now prove the following estimate of the measure of d~(r): 

(6.30) <r(d~(r)) < -(™<(r + 1) - m(r))- 

Indeed, for any edge xy G d~(r) with a; G B(r), (6.1) implies y G B(r + 1). 
In order to add up aXy over all xy G <9~(r), we first group those edges xy 
with the same end y. Since x G J5(r) and y £ 5(r), the sum of aXy over all 

possible x (such that xy G d~(r)) is at most fjUjf', by (6.2). Thus, 

^(0-(r)) < E # 
y€nn(B(r+l)\B(r)) 

^ y€nn(B(r+l)\B(r)) 

= -(m(r + 1) — m(r)) 

where we have used fiy   < i//y (see (6.3)). 
By combining (6.29) and (6.30), we conclude 

6m(r) < (r + L)a(d+(r)) + ^-±^(m(r + 1) - m(r)), 

whence (6.27) follows. 

STEP 2.    We claim that there exists r G [0,ro] such that 

(6.31) <7(d+(r)) > —m(4r), 

where 

(6.32) E = 4-ri-1z/-1. 
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Assume on the contrary that, for all r £ [0, ro], we have 

(j(d+(r)) < —m(4r). 

Together with (6.27), this yields 

(6.33) m(r) — m(r + 1) H m(r) < —m(4r). 
r + L ^o 

Let us introduce a new function (f)(r) = m{r — L)/rn, which is defined for all 
r > L. Replace r by r — L in (6.33) and rewrite the latter as follows: 

(6.34) rn(j){r) - (r + l)n0(r + 1) + ~rn0(r) < — (4r)n(/)(4r). 

By dividing (6.34) by (r + l)n and by using (6.32), we obtain 

v IT* T?       v 
(6.35) {j^mr) - <f>(r + 1) < —(-^r^Ar) -.-(-^^(r). 

Since, for any x 6 [0,1] and n > 1, 

1 - xn < n(l - x), 

we have 

V + l;   -r + l 

Therefore, 

^(r) - ^(r + 1) = (-^I)»^(r) - </.(r + 1) + 1" (^TT)n 
r + l 

^(r) 

< (—T)n0(r)-0(r- + l) 
r + l 

and (6.35) implies, for /. < r < t + ro, 

+ n 
r + l #r), 

^(r) - <j>{r + 1) < 
n, 

4roVr + r Yy   '     rvr + r     v ' 

1- 

+ n 
r + ^(r) 

<-^-^(4r) + —,    .     . 
- 4ro   v   y     r + l V^ + l 

n-1' 
^(r) 
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Thus, we have 

1 n2 

(6.36)       ^(r) - #r + 1) < .^^(4r) + (r + 1)2^r)'    Vr € ^ ro + 4- 

On the other hand, we know also that, for all r > L, 

(6.37) 

and 

(6.38) m > mm >«. 
We would like to bring to a contradiction using (6.36), (6.37) and (6.38). 

Denote 

(6.39) 

(6.40) 

L = \2n2 +1] , 

R=[ro + i\. 

By (6.26), (6.39) and (6.40), we have 

t < L < R < ro + i. 

Let us set 

(6.41) M :=    max    0(r). 
v       ' re[L,R] 

r is integer 

By iterating (6.36), we obtain, for any integer r e [L,R], 

R R 

Hr)-HR+i)<i-t^k)+n2i:-M 
k=r k=r 

4ro 
k=L k=L 

(k + iy 

< 
4ro 

AR R ' 

E+E 
.k=R+l     k=L. 

4>{k) + n- 
,M 

(6.42) < 
4ro(i?+l) 

where we have used (6.37) and (6.41). 

ZR    u(fi)        R-L + l^,      2M K  '    + : M + n2— 
4ro 
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It follows from (6.40), (6.39) that R+l > ro, R-L+l < ro and L > 2n2. 
Therefore, (6.42) implies 

(6.43) ^)_^+i)<^+g+l)M. 

Choose r 6 [L, R] so that <^(r) = M and apply (6.37) in the form 

rv ' - (R + l)n -   r% 

Hence, we obtain from (6.43) 

'7/i(£)   ,  3; 
r0 

whence, by (6.25), 

- 4   r?       4    ' 

M < 7^-^ = 7-. 

In particular, this implies 

(6.44) ^(L) < 7^ 

whereas, by (6.38), 

(6-45) tfL) > ^. 

On the other hand, definitions (6.11) of 6 and (6.39) of L imply 

- > ine2n2 > in(l + 2n + 2n2)n > (t + 1 + 2n2)n > Ln 

and we see that (6.44) and (6.45) contradict each other. 

STEP 3.   For each vertex £ 6 fi, we denote by r^ the value of r determined 
by (6.31). Therefore, by (6.31), we have 

(6.46) <7(af(r))>—/i(fl€(4r€)nn)    V£€ft, 

where 

(6.47) d£(r) = {uveE:ueQn B^(r)    and   v <£ Q}. 

By Lemma 2.6, there exists a subset T C fi such that 
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(i) all balls Bx(rx), for x e T, are disjoint; 

(ii) the union of the balls ^(^a-), for x G T, covers ft. 

We claim that, for distinct x, y e T, the sets of edges d+(rx) and d+(ry) 
are disjoint. This is not altogether trivial because the boundaries dBx(rx) 
and dBy{ry) may have a common edge (the filled edge on Fig. 16). However, 
if there is an edge e G d+(rx) n d+(ry) then the edge e must have a vertex 
in ft fl £3(7^) and a vertex in ft fl -ByOy). Due to (i), these vertices are 
different. Therefore, both vertices of e belong to O which contradicts the 
definition (6.47) of 9+(r). 

Hence, all sets d+(rx), xe T, are disjoint whence 

(6.48) E^^W)^^5")- 

On the other hand, (ii) implies 

(6.49) /i(ft) < Y^ KBx(4rx) n ft). 
rrGT 

Using (6.49), (6.46), (6.48), (6.25), we obtain 

Mn)<X>(£x(4rx)nn) 

xeT 

< —a(dn) 
£ 

= e-1 vity^i-f^aidn). 

This implies together with (6.11), (6.32) and UJ > J that 

a(aft) > efl-^uZ/Xft)1-1/71 > 4-n-3i/-16-1e-2na;/a;1/n-V(^)1"1/ri, 

which was to be proved. □ 

7. Eigenvalues and Sobolev inequality on graphs. 

Most proofs below follow the same lines as their continuous counterparts in 
the previous sections. We emphasize only those places of the proofs which 
require additional argument specific to the discrete setup. 
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Figure 16: The boundaries dx(rx)i x € T, are disjoint (the dashed edges on 
the picture) whereas the balls Bx(4:rx) cover Q. 
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Proposition 7.1. In a weighted graph (F, a), we assume that 

a(dn) > ciifSl)1-1'71 

for any SI satisfying /z(ft) ^ ^0, where c > 0; VQ > 0 and n > 1.   T/ien the 
Dirichlet eigenvalue Ai(fi) satisfies 

Ai(n) > yM(fi)-2/n. 

Proo/. The proof is almost identical to that in Step 1 of Theorem 3.1. Only 
inequality (3.7), which is a part of Cheeger's argument, requires modification 
because we cannot use in the graph case the formula V/2 = 2/ V/. However, 
the recipe is well known how to overcome this difficulty (see, for example, 
[10], [12]). So, we argue as follows: 

\      \x,y ) \x,y 

- ((X|v/|2'''7)' fe^w^+E^W/'. 

<(2(/£lV/|^).(X/^)) 

This allows us to follow the rest of the proof as in the continuous case with 
a modified constant (off by a factor 2). □ 

Next Lemma is a straight analogue of Lemma 3.2. 

Lemma 7.2. In a weighted graph (F, /x); we assume that for any Q satisfy- 
ing ^(£1) < VQ, 

Ai(fi) > A(Mft)) 

y 

1/2 
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where A is a non-negative non-increasing function. Let u(x) denote a non- 
negative function defined on the vertex set of T with finite support. We 
denote 

/  ud/jL = a,      and      /  u dji = (3. 
Jv Jv 

Then for any s > SQ = QL/VQ, we have 

\Vu\2da > (/? - 2sa)k(s-la). 
JE IE 

Now we are ready to state the following lower bounds for A^ for large k. 

Theorem 7.3. In a weighted graph (F, a), we assume that 

for any fi satisfying /x(fJ) < VQ, where c > 0, VQ > 0 and n > 1.   Then the 
Dirichlet eigenvalue Afc(fJ) satisfies 

xk(n) > a ' 

for a = e-2/n(n + 2)1"2/nc2, provided 

\n\>k> (n + 2)e/i(fl). 

The proof goes the same way as that of Theorem 3.1. The latter used 
certain properties of the heat kernel and the Laplace operator which all are 
available in the case of a graph as was shown in Section 5. The constant a is 
twice as big as one in Theorem 3.1 because we use Proposition 7.1 instead 
of (3.8). 

Combining the above theorem with Theorem 6.3, we obtain the following 
result. 

Corollary 7.4. Assume that the weighted graph (F, a) satisfies the hypothe- 
ses of Theorem 6.3. Then, for any finite set Q C V, the Dirichlet eigenvalue 
Afc(f!!) satisfies 

(   k   \2/n 
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provided 

|n|>*>4f, 
where K = ci(ra) tn > 0 and a = C2(n) ^~2^+ia;/2^2//Tl 2 > 0. 

Corollary 7.5. For the lattice graph on Zn, for any finite subset Ct of ver- 
tices, we have 

(   k   \2/n 

where k is any integer between 1 and \Q\ and a = a(n) > 0. 

Similarly to Theorem 4.1, we have the following Sobolev inequality 

Theorem 7.6. In a weighted graph (F, a), suppose that for a finite subset 
Q of vertices with 

M(fi) ^ ^o, 

the following holds 

a(dQ) > cfi(n) l-l/n 

for some c, VQ > 0 and n > 1.  Then, for any function f with finite support, 
we have 

-*  n-l 

/ |V/| da + cO (fio) / l/l dft > C2-1/"   / |/|^ dfi 
JE JV UV 

where Q,Q = {x € M : \f{x)\ > 0} and 

e(n) •=(0' (fi)1-1/",   i/   /x(fi)>Uo. 

Furthermore, for any p € [1, n), 

-|1/J» 

/ |V/|P da 
JE 

+ c@ (fio) / i/r ^ 
1/P 

/   l/l' d/x 

where C = C(n,p) > 0. 
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