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Abstract

This paper develops a novel computational technique to define and construct manifold splines with only one singular point by employing the
rigorous mathematical theory of Ricci flow. The central idea and new computational paradigm of manifold splines are to systematically extend
the algorithmic pipeline of spline surface construction from any planar domain to an arbitrary topology. As a result, manifold splines can unify
planar spline representations as their special cases. Despite its earlier success, the existing manifold spline framework is plagued by the topology-
dependent, large number of singular points (i.e., |2g − 2| for any genus-g surface), where the analysis of surface behaviors such as continuity
remains extremely difficult. The unique theoretical contribution of this paper is that we devise new mathematical tools so that manifold splines
can now be constructed with only one singular point, reaching their theoretic lower bound of singularity for real-world applications. Our new
algorithm is founded upon the concept of discrete Ricci flow and associated techniques. First, Ricci flow is employed to compute a special metric
of any manifold domain (serving as a parametric domain for manifold splines), such that the metric becomes flat everywhere except at one point.
Then, the metric naturally induces an affine atlas covering the entire manifold except this singular point. Finally, manifold splines are defined over
this affine atlas. The Ricci flow method is theoretically sound, and practically simple and efficient. We conduct various shape experiments and our
new theoretical and algorithmic results alleviate the modeling difficulty of manifold splines, and hence, promote the widespread use of manifold
splines in surface and solid modeling, geometric design, and reverse engineering.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

1.1. Problem statement

Despite many algorithmic and theoretical advances in
solid modeling and shape computing in most recent years,
one fundamental objective of our research community
has always been to develop novel modeling, design, and
simulation schemes that are capable of accurately representing
complicated real-world objects in a compact manner, and
facilitating rapid computation of their desirable properties both
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globally and locally such as differential properties, smoothness
requirements, and topological validity. Strongly inspired by
the recent development of subdivision surfaces and manifold
splines, our current research goal in this paper is to further
advance the state of the knowledge about manifold splines. At
the theoretic level, we devise manifold splines with only one
singular point through the mathematical rigor of Ricci flow
and relevant computational techniques. At the application level,
we design a brand new algorithmic pipeline that enables all
the computational elements needed for the widespread use of
manifold splines (especially the new, improved scheme with a
single extraordinary point) in solid modeling, shape design, and
reverse engineering.

1.2. Manifold splines

For the perspectives of solid modeling, engineering design,
finite element simulation, and scientific computation, elegant
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1 Discrete Gaussian curvature is defined as the difference between 2π and
the summation of all angles adjacent to the vertex (see Section 3.2).
geometric properties such as high-order continuity and the ease
of computing all the desirable properties rapidly are always
mandatory for the development of novel shape representations.
Therefore, it is not surprising to see that spline-centric polar
forms [21] are becoming the most popular computational
tools in geometric modeling and shape design. Essentially,
the methodology of polar forms naturally gives rise to
parameterization-centered, piecewise polynomials defined on
any planar parameter domain for the effective modeling and
accurate computing of smooth spline surfaces.

However, examining all the real-world applications, we
observe that the most natural shapes are manifolds with
complicated topologies and arbitrarily detailed geometric
configurations, which cannot be completely covered by a single
open surface defined in one coordinate system (note that, it
does not matter if the parametric surface is a polynomial or a
non-polynomial; this fundamental principle remains the same).
Instead, a manifold might be covered by a family of coordinate
charts, each coordinate chart covering only a portion of the
manifold. Different charts may overlap with each other, a
coordinate transition function transforms from one coordinate
system to the other. If we follow the algorithmic procedure of
polar forms and other relevant computational techniques in a
principled way, we can easily realize that conventional splines
(defined over any open domain) cannot be transferred over the
manifold directly.

In order to model a manifold using piecewise polynomials,
current approaches will segment the manifold into many
patches, define a single coordinate system over each patch, such
that each patch can be modeled by a spline patch. Finally, any
generic approach will glue/abut all the spline patches together
by adjusting the control points and the knots along their
common boundaries. This whole process is mainly performed
manually, and it requires the users’ skill and mathematical
sophistication, and is tedious and error-prone.

It is highly desirable to design splines defined over
manifolds directly, such that different spline patches can be
automatically glued together with high continuity, so the
modelling process requires neither segmentation nor patching.
Pioneering work has been done by Grimm and Hughes [6],
which can model splines on arbitrary surfaces. Recently, Ying
and Zorin [25] introduced a general method by constructing
a conformal atlas. In both methods, smooth functions are
defined on each chart and blended together to form a function
coherently defined over the entire manifold. The methods
are flexible for all manifolds with arbitrary topologies. The
functions are created with any degree of desirable continuity
without any singularity. The primary drawbacks of these
methods are that surfaces constructed this way are no-longer
polynomials and their computational expenses are relatively
high in comparison with conventional spline surfaces.

Most recently, the manifold splines proposed by Gu, He,
and Qin [8] offer a different approach to manifold domain
construction. The main advantage for manifold splines is
that on each local chart, the functions are all piecewise
polynomials in common use; currently available spline surfaces
in commercial software packages can easily serve as building
blocks towards the effective design of complicated models
of arbitrary topology, and hence, the evaluation and all the
necessary computational procedures are both efficient and
robust. Furthermore, existing algorithms and software for
conventional spline surfaces can all be easily adopted for
use in applications of manifold surfaces. Nevertheless, certain
drawbacks still remain: there must be singularities for general
manifolds except tori. In [8], they discovered that the existence
of manifold splines is equivalent to the existence of a special
atlas of the underlying manifold domain, whose transition
functions are all affine among themselves, denoted as their
affine atlas. Unfortunately, it is impossible to find an affine atlas
to cover arbitrary closed surfaces except tori. There must be
singularities for the atlas which cannot be covered by any chart
within its collection set. Moreover, they proved that the minimal
number of singularities equals one without developing any
practical algorithm. So, how to lower the number of singular
points remains elusive, and how to devise new algorithms with
a minimum number of singular points for practical applications
remains extremely technically challenging.

Using existing popular techniques of polar forms and
Euclidean metrics, the manifold splines in the neighborhood
of singularities appear to be extremely difficult to construct,
unstable, and error-prone. In addition, the mapping distortion
from the surface to the affine atlas significantly affects
the quality of the final spline surface. The distortions are
intrinsically determined by the singularities for the affine atlas.
Therefore, it is highly desirable for users to be able to control
the positions and the number of singularities. For open surface
cases, however, it is ideal to push the singularities away from
the surfaces. In this paper, we demonstrate that the Discrete
Ricci flow is a powerful theoretic and computational tool for
constructing an affine atlas with full control of singularities,
and specifically, one capable of minimizing the number of
singularities to its theoretical lower bound (which is at most
one for closed surfaces and zero for all open surfaces).

1.3. Intrinsic shape space

In reality, surfaces are typically acquired via modern
scanning devices, and they are initially approximated by a set of
points and/or triangular meshes. We shall consider the triangle-
mesh approximation of domain manifolds first. In order to find
an affine atlas of a triangle mesh, it is sufficient to find a
configuration of edge lengths such that the one-ring neighbor
of each vertex is flat. So, any parameterization problem can be
formulated as:

Finding a configuration of edge lengths, such that each vertex
has zero discrete Gaussian curvature1

One could naturally raise the following much broader
questions: given a mesh,

(i) What are the all possible configurations of edge lengths?
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(ii) What are the all possible configurations of curvatures on
vertices?

(iii) What is the relation between edge length configurations
and curvature configurations? It is obvious that edge
lengths determine curvatures. Can curvatures determine
edge lengths?

The entire space of all possible configurations of edge lengths
is denoted as the metric space. The entire space of all possible
configurations of vertex curvatures is denoted as the curvature
space. Metric space and curvature space are intrinsic shape
spaces of the mesh.

The answer to the admissible edge lengths is straight-
forward: any configuration satisfying triangle inequality is
admissible. For admissible curvature configuration, the answer
is much more complicated. There are mainly two constraints:
topological constraint and combinatorial constraint. The topo-
logical constraint is represented as the Gauss–Bonnet formula,
and the total curvature equals to the 2πχ , where χ is the
Euler number of the mesh. The combinatorial constraint en-
sures that all angles are between 0 and π , and represented solely
by inequalities of curvature and connectivity. The technical
details will be discussed in the next Section.

The answer to the third question has fundamental
importance, it is the main focus of this research work. It is
easy to compute curvature using edge lengths, but the inverse
is much more complicated. Intuitively speaking, the Gaussian
curvature is a map from the metric space to the curvature space,
and the mapping in general is not injective. However, one can
select a subspace of the whole metric space, such that any two
metrics in the subspace are conformally equivalent. Restricted
to this subspace, Gauss curvature map is a homeomorphism,
namely, any curvature configuration uniquely determines an
edge length configuration in this subspace.

In practice, one can specify the target curvature and deform
the edge length according to the difference between the current
curvature and the target curvature. It is guaranteed that the
curvature configuration of the final mesh will reach the target
one. This kind of deformation process driven by Gaussian
curvature is the so called Ricci flow.

1.4. Ricci flow

Ricci flow was first introduced in differential geometry
by Hamilton in [9]. It has solid theoretical foundations. By
nature, it is a constructive geometric tool and can be easily
implemented; therefore, it has a great potential for real-world
applications.

The fundamental idea of Ricci flow is rather simple. We can
deform the surface driven by its curvature to the desired shape.
Suppose S is a closed surface with Riemannian metric g, and u
is a function on S; then e2ug is another metric on S conformal
to g. Ricci flow is explicitly defined as

du(t)

dt
= K̄ − K (t), (1)
where the area preserving constraint is explicitly formulated as∫
S

dA =

∫
S

e2udA, (2)

and K (t) is the Gaussian curvature induced by the metric
e2u(t)g, and K̄ is a constant

K̄ =
2πχ(S)∫

S dA
.

It has been proven that Ricci flow converges to the uniform
metric that induces constant Gaussian curvature K̄ on the
surface, K (∞) → K̄ . Furthermore, Ricci flow converges to
the final stable solution exponentially fast: for a given surface
S, there exist two positive constants c1, c2 determined by the
geometry of S, such that,

|K (t) − K (∞)| < c1e−c2t .

Ricci flow has many promising properties, which make it
very valuable for real-world applications,

- Ricci flow offers the freedom to traverse the intrinsic shape
space (all the admissible configurations of edge lengths) by
driving the surface to deform to all possible shapes as long
as the Gaussian curvature of the target shape is known.

- The deformation induced by Ricci flow is conformal.
- Ricci flow deforms the surface to a single solution and

converges to the solution exponentially fast.
- Ricci flow can be formulated as a variational problem. The

energy is a convex function; therefore it has a single global
optimum. Ricci flow is the negative gradient flow of the
energy, and can be further speed up using Newton’s method.

In our current research, the fundamental motivation for us
to use Ricci flow is its computational power to compute the
affine atlas of a mesh with any desired number of singularities,
especially with only one singularity.

1.5. Contributions

In this paper, we devise a novel algorithm to construct
manifold splines with only one singular point for closed
surfaces and no singular point for open surfaces, reaching its
lower bound in theory. The algorithm is uniquely founded up on
a mathematically rigorous tool in differential geometry, namely,
Ricci flow. Key contributions of this paper include:

(i) We formulate the intrinsic space of a mesh: the metric
space (i.e., all admissible configurations of edge lengths)
and the curvature space (i.e., all admissible configurations
of vertex curvatures). We point out the topological
constraints and the combinatorial constraints for the metric
spaces. We re-define the general surface parameterization
problem as being equivalent to finding flat metrics with any
user-assigned singularities.

(ii) We articulate our new computational method to construct
an affine atlas with any pre-determined singularities using
Ricci flow. The affine atlases serve as the key and
necessary elements for constructing manifold splines,
especially, for manifold splines with only one singular
point.
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(iii) We offer a theoretically rigorous, practically simple
and computationally efficient tool, Ricci flow, to solve
geometric and solid modeling problems. In its discrete
setting, given the Gaussian curvature on each vertex, Ricci
flow will be employed to compute the configuration of
edge lengths.

2. Background review

This section briefly reviews previous work on splines, Ricci
flow, parameterization, and circle packing.

Manifold splines. Pioneering work has been done earlier by
Grimm and Hughes [6], which can model splines on arbitrary
surfaces. Recently, Ying and Zorin [25] introduced a general
method by constructing a conformal atlas. The function bases
in their constructions are smooth and without singularities;
however, they are not polynomials, requiring the necessary data
exchange between polynomial-based spline surfaces and their
special-purpose functions for surface design.

Manifold splines defined by piecewise polynomials over
manifold domains of arbitrary topology were first rigorously
formulated in [8], which unifies the conventional spline
surfaces based on polar forms and the subdivision surfaces of
arbitrary topology. In their work, it is proven that a manifold
admits manifold splines based on polar forms if and only if it
has an affine atlas. The topological obstruction for the existence
of the affine atlas is the Euler class. By removing only one point,
any oriented surface has an affine atlas.

Ricci flow. Ricci flow on a surface is introduced by Hamilton
in [9], which will conformally deform the metric of a surface
to a canonical metric with constant Gaussian curvature. For a
closed genus-zero surface, Ricci flow will change the metric to
the spherical metric with constant positive Gaussian curvature;
for a genus-one closed surface, the solution to Ricci flow is the
planar metric with zero Gaussian curvature; for a high genus
closed surface, the solution to Ricci flow is the hyperbolic
metric with constant negative Gaussian curvature. The analogue
of Ricci flow in the discrete, combinatorial setting is first
studied in [3]. It is proven that combinatorial Ricci flow will
deform the metric of a triangle mesh to metrics with constant
vertex curvatures. Recently, Jin et al. applied discrete Ricci
flow to compute the hyperbolic and real projective structures
of surfaces [16].

Circle packing and circle pattern. Circle packing and circle
patterns are used for approximating conformal deformations.
Circle packing is first introduced by Thurston in [24], where
he designed an algorithm to find the circle packing of a graph
by adjusting the radii at vertices one at a time. Stephenson
et al. developed practical algorithms in [23]. Circle pattern
is introduced in [1] and applied for surface parameterizations
in [17], which is closely related to circle packing. Instead of
using circles centered at each vertex, this method uses the
circumcircles of triangles. Comparing with circle pattern, the
theoretic framework of Ricci flow is much simpler and clearer.
Furthermore, the implementation of the Ricci flow is much
easier in practice.
Global surface parametrization. The affine atlas can be
computed using surface parametrization algorithms. In the
literature, there exist many parameterization methods using a
variety of distortion metrics. For a thorough survey, we refer
the readers to the excellent work of Floater and Hormann [5,
22]. We shall focus on the most related work, especially global
parameterization methods.

Gu and Yau computed the conformal structure based on
Hodges theory in [7]. The method computes the holomorphic
1-form basis, and induces a flat metric with 2g−2 singularities.
Ni et al. extracted the topological structure using a harmonic
Morse function; the vector fields are holomorphic 1-forms, and
induce a flat metric with more singularities [18]. Recently, Ray
et al. [19] computed the global conformal parameterization
also using holomorphic 1-forms, but specifically tailored the
parameterization to follow the principle curvature lines.

It may be noted that, all current parameterization methods
will introduce multiple singularities due to the topological
obstruction. The method to be developed in this paper is
capable of reducing the number of singularity points to its
theoretical lower bound (which is one).

3. Global surface parameterization using discrete Ricci
flow

Conventional local surface parameterization refers to the
process of mapping a simply connected surface patch to a
planar region. In contrast, a global surface parameterization
maps the whole surface to the plane R2, the unit sphere S2

or the hyperbolic space H2 periodically. The global surface
parameterization problem could be formulated in a precise
and general way as deforming the given surface to satisfy
the prescribed curvatures. By deforming the surface, we mean
finding a different Riemannian metric (the first fundamental
form). If conformality is required, then the new metric should
be conformal to the original metric. Mathematically, suppose g
is the original metric; then the metric conformal to g has the
form e2ug, where u is the function defined on the surface. Then
global surface parameterization is to solve function u by the
prescribed curvature.

In the following, we assume the surface is an oriented 2-
manifold, represented by a two dimensional simplicial complex
(i.e., triangular mesh) M = (V, E, F), where V is the set of all
vertices, E is the set of all non-oriented edges, and F the set
of all faces. We use vi , i = 1, 2, . . . , n to denote its vertices,
ei j to denote an oriented edge from vi to v j , fi jk to denote an
oriented face, vi , v j , vk are sorted counterclockwise.

3.1. Discrete conformal metrics

The central task is to approximate Ricci flow (1) in the
discrete mesh setting. Continuous Ricci flow conformally
deforms a surface.

Fig. 1 illustrates an important observation for continuous
conformal mappings: they transform infinitesimal circles to
infinitesimal circles, and preserve the intersection angles among
the circles. Based on this property, Thurston introduced the
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Fig. 1. Circle packing for a surface. Conformal mappings transform the infinitesimal circles on the texture plane to the infinitesimal circles on the surface.
(a) Front side. (b) Back side.

Fig. 2. Affine atlas induced by a global conformal surface parameterization.
The affine atlas is illustrated by the texture mapping of a checkerboard pattern.
There are 2g − 2 singularities centered at the white octagons.
(a) Closed surface. (b) Flat circle packing metric. (c) Open surface.

(d) Flat metric. (e) Universal covering space.

Fig. 3. Computing the affine structures for genus one surfaces using discrete Ricci flow. The right column (b) and (d) shows the embedded fundamental domain.
The last row shows the universal covering space.
circle packing metric in early eighties [24]: a circle with the
radius γi is associated with each vertex vi . For an each edge
ei j , two circles intersect at the angle Φi j , called the edge weight.
The edge length of ei j is determined by γi , γ j and Φi j ,

li j =

√
γ 2

i + γ 2
j + 2γiγ j cos Φi j . (3)

It can be shown that for any face fi jk with vertex radii
{γi , γ j , γk} and edge weights {Φi j ,Φ jk,Φki }, if edge weights
are acute angles, then the edge lengths {li j , l jk, lki } satisfy the
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Fig. 4. Close-up view of the flat circle packing metric using Ricci flow.

Fig. 5. Circle packing metric for a triangle. Triangle [v1, v2, v3] has vertices
v1, v2 and v3, edges e12, e23 and e31. Three circles centered at v1,v2, v3, with
radii γ1, γ2 and γ3 intersect one another, the intersection angles are Φ12,Φ23
and Φ31, which are the weights associated with the edges. The edge lengths of
the triangle are determined by γi and Φi j by the cosine law.

triangle inequality,

li j + l jk > lki .

We use Γ : V → R+ to denote the vertex radii, Φ : E →

[0, π
2 ] for the edge weight;, then a circle packing metric is

represented as (M,Γ ,Φ).
Two circle packing metrics (M,Γ1,Φ1) and (M,Γ2,Φ2)

are conformal to each other, if Φ1 ≡ Φ2. Namely, a discrete
conformal mapping will change the vertex radii only and
preserve the intersection angles. Figs. 4 and 5 illustrate the
circle packing metric.

3.2. Discrete curvature

Given a discrete metric (M,Φ,Γ ), suppose fi jk is a face,

the angle of vertex vi in fi jk is denoted as θ
jk

i ; then the discrete
Gaussian curvature Ki at an interior vertex vi is defined as
Fig. 6. Circle packing metric and curvature. For a canonical tetrahedron, the
edge lengths are equal to l = 1.0, the radii on all the vertices are equal to
r = 0.5. The curvature on each vertex equals to Ki = π . The weights of all
edges Φ equal 0.

Fig. 7. Gaussian curvature is a homeomorphism between the circle packing
metric space based on (M,Φ) and the curvature space, the inverse map can be
computed using Ricci flow. We start from the known metric γ 0 and the known
curvature k0, then flow to the target curvature K∞ using Ricci flow, then the
metric will flow to the corresponding metric γ ∞ = Π−1(K∞).

Ki = 2π −

∑
fi jk∈F

θ
jk

i , vi 6∈ ∂ M, (4)

The discrete Gaussian curvature for an boundary vertex vi is
defined as

Ki = π −

∑
fi jk∈F

θ
jk

i , vi ∈ ∂ M. (5)

Fig. 6 demonstrates the circle packing metric for a tetrahedron
surface, where all the edge weights are zeros, all the vertex radii
are 0.5, and all the vertex curvatures are π .

The Gaussian curvature at each vertex could be arbitrary, but
the total curvature is confined by the topology of the surface.
This is indicated by the Gauss–Bonnet theorem.

Theorem 1 (Gauss–Bonnet). Suppose M is a mesh; the total
discrete Gaussian curvature equals the product of 2π and its
Euler number,∑

Ki = 2πχ. (6)

Furthermore, for any discrete metric (M,Φ,Γ ), Φ : E →

[0,
φ
2 ] and any proper subset I of vertices V ,∑

i∈I

Ki (v) > −

∑
(e,v)∈Lk(I )

(π − Φ(e)) + 2πχ(FI ), (7)

where FI is the set of all faces in M whose vertices are in I ,
Lk(I ) is the link of I being the set of pairs (e, v) of an edge e
and a vertex v so that (1) the end points of e are not in I and (2)
the vertex v is in I and (3) e and v form a triangle.
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The following theorem is fundamental, showing that the map
between the vertex radii Γ and the discrete curvature K is a
homeomorphism; detailed proof can be found in [3].

Theorem 2. If a discrete metric (M,Γ ,Φ) induces a discrete
curvature K , then K satisfies the Gauss–Bonnet equation (6)
and the set of all linear inequalities (7). If M and Φ are given,
K satisfies (6) and the set of all linear inequalities (7); then
there exists a Γ unique up to scaling, such that K is induced by
the metric (M,Γ ,Φ).

The global surface parameterization problem can be re-
formulated as follows:

Global surface parameterization is meant to find a special
metric, such that the curvatures are zero almost everywhere
except at several singularities.

For example, conventional global conformal surface
parameterization is done to compute a special metric on the
mesh, such that at |2g−2| singularities, the curvatures are equal
to −2π . The singularities are determined by the geometry of the
surface, as shown in Fig. 2. The Ricci flow method allows the
user to freely assign singularities for global parameterizations,
as long as the target curvature satisfies the conditions in
Theorem 2. Fig. 7 illustrates the relation between circle packing
metric space and curvature space.

3.3. Discrete Ricci flow

One can assign a discrete Gaussian curvature K̄ for a
weighted mesh (M,Φ) as long as K̄ satisfies the conditions
in Theorem 2. Discrete Ricci flow is able to solve the vertex
radii Γ . We use euΓ to denote the conformal metric with vertex
radius eui γi at vertex i . Similar to the continuous Ricci flow (1),
we consider

Definition 3 (Discrete Ricci Flow). The discrete Ricci flow is
defined as

dui

dt
= (K̄i − Ki ), (8)

where K̄i is the desired discrete Gaussian curvature at vertex
vi , under the constraint

∑
ui = 0 (equivalent to the area-

preserving constraint).

Similar to continuous Ricci flow, it is proven that discrete
Ricci flow also converges to this stable solution exponentially
fast.

Definition 4 (Convergence). The solution to (8) is called
convergent if

(i) limt→∞ Ki (t) = K̄i exists for all i ,
(ii) limt→∞ γi (t) = γ̄i ∈ R+ exists for all i .

A convergent solution is called convergent exponentially fast if
there are positive constants c1, c2, so that for all time t ≥ 0,

|Ki (t) − K̄i | ≤ c1e−c2t ,

and

|γi (t) − γ̄i | ≤ c1e−c2t .
The following theorem states that discrete Ricci flow is
guaranteed to converge exponentially [3].

Theorem 5. Suppose (M,Φ) is a closed weighted mesh. Given
any initial circle-packing metric based on the weighted mesh,
the solution to the discrete Ricci flow (8) in the Euclidean
geometry with the given initial value always exists and
converges exponentially fast. The solution converges to the
metric Π −1(K̄ ).

3.4. Conformality

In practice, it is highly desirable for the deformation to
be conformal, namely, angle preserving. A conformal map
transforms an infinitesimal circle to an infinitesimal circle, as
shown in Fig. 1. Therefore conformal mapping only changes the
radii γ in the circle packing metric (M,Φ,Γ ), and preserves
the intersection angles Φ among the circles. It can be proven
that continuous conformal mapping can be approximated with
arbitrary accuracy by discrete maps using circle packing [20].

In graphics applications, the meshes are embedded in R3, the
metrics are induced from that of R3. We can find the optimal
weight Φ with initial circle radii Γ , such that the circle packing
metric (M,Φ,Γ ) is as close as possible to the Euclidean metric
in the least square sense. Namely, we want to find (M,Φ,Γ ) by
minimizing the following functional

min
Γ ,Φ

∑
ei j ∈E

|li j − l̄i j |
2, (9)

where l̄i j is the edge length of ei j in R3.

4. Affine atlas construction

In this section, we detail our algorithm for constructing the
affine atlas by employing Ricci flow. The entire pipeline of the
algorithm is illustrated in Fig. 9.

Step 1: Selecting singularities

We can select the singular vertices {v1, v2, . . . , vk}, k ≥ 0
anywhere on the mesh arbitrarily; then we assign the target
curvature of the singular vertices such that

k∑
i=1

K̄ (vi ) = 2πχ,

where χ is the Euler number of the surface; the target curvature
of other vertices are zero. Note that, there are several special
cases that must be addressed.

- If the surface is a closed genus one mesh, then no singular
vertex is needed.

- For a high genus mesh, we can select only one singular
vertex and concentrate all curvatures on it.

- If the mesh is open, we can assign the target curvatures
for all the interior vertices to be zero and assign the
target curvatures for boundary vertices such that the total
boundary curvatures equal 2πχ . By this way, all the non-
zero curvature will be pushed to the boundary.
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(a) Canonical homology basis
passing the singular vertex.

(b) Flat circle packing metric. (c) One ring neighbor of the
singularity.

(d) Central chart and the one ring
neighbor of the singularity.

(e) Open Covering front view. (f) Open covering back view. (g) The central chart. (h) Other charts covering the cut
graph.

Fig. 8. Affine atlas automatically acquired by using Ricci Flow. First, the user selects one singular point as shown in (a). Then a cut graph is labelled either manually
or automatically as the dark curves in (a), where the cut graph is a set of canonical homology basis curves passing through the singular vertex. Second, the flat circle
packing metric is computed using Ricci flow, illustrated in (b). The flat metric induces a planar embedding. The entire surface is sliced open along the cut graph to
form a topological disk (i.e. fundamental domain). The interior of the fundamental domain is bijectively mapped to the plane. The mapping of the one-ring neighbor
of the singular vertex is not 1 to 1, but 2g − 1 to 1 shown in (d). Other charts covering the cut graph are constructed as shown in (e) and (f), and their overlapping
relation with the central chart is shown in (g) and (h) by encoded colors, respectively. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 9. The pipeline to compute the affine atlas using discrete Ricci flow.
Ricci flow only changes the vertex radii; therefore, the
resulting metric is conformal to the original one, and no
angle distortion will be introduced. But the area distortion
is unavoidable. The uniformity of the parameterization varies
drastically depending on the choice of singularities. Our
selection is based on the minimal area distortion among all
possible cases. For each case, we set one vertex as the single
singularity.
The area distortion error is measured with the following
equation:

n∑
i=1

(− log(Si ) − log(si ))
2

n
,

where Si is the i-th triangle area in surface, si is its area in
parametrization domain, and n is the total number of triangles.
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ig. 10. (a) The distribution of the area distortion is color encoded. (b) The
ath of the arrow illustrate the rough behavior of the error distribution for the
ight model. (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)

ig. 10(a) shows the distribution of the area distortion, blue
rea with low distortion, and red area with high distortion. In
ig. 10(b), the path of the arrow illustrates the rough behavior
f the error distribution for the eight model.

When we sort the vertices with the area distortion errors,
e may find the best position to put the singularity. Fig. 11
ives five different cases of setting singularity. From the left to
he right, the area distortion is increasing, with the left most
eing the best parameterized and the right most being the worst
arameterized.

tep 2: Modify local connectivity around the singular vertex

In order to determine the desired flat metric, the
ombinatorial constraints for the curvature (7) have to be
atisfied. If both the initial curvature configuration and the
arget curvature configuration satisfy the constraints, any
ntermediate curvature configuration during Ricci flow will
atisfy the constraints. Thus, it is enough to only consider the
arget curvature. If some singularities have high target curvature
oncentrations, we need to modify the local connectivity in
heir neighborhoods.
Fig. 11. The first row gives the different positions of singularities on the same model; The second row shows their corresponding flat metrics. From left to right, the
area distortion increases.
Fig. 12. A genus two surface with a set of canonical fundamental group
generators {a1, b1, a2, b2} is shown on the left. A finite portion of its universal
covering space is shown on the right. Different fundamental domains are drawn
in different colors. The boundary of each fundamental domain is the preimage
of a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 . The points {p0, p1, p2} are the primages of p on

the surface. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

In practice, we replace the combinatorial constraints Eq. (7)
by a stronger one which is independent of the edge weight Φ,∑
i∈I

Ki (v) > −

∑
(e,v)∈Lk(I )

π + 2πχ(FI ).

We modify the connectivity around the extraordinary point
and make the sampling in the neighborhood of the singularity
much denser. We increase the connectivity of the singularity
to no less than four times the genus, and vertices in the
neighborhood have valence of about 6. This can be summarized
as follows:

(i) The valence of a singular vertex v is no less than 4 −
2K̄ (v)

π
.

(ii) For all the vertices in the first n ring neighbor of the singular
vertex, their valences are no less than 6, n is a small integer.
We set n = 3 in our experiments in this paper.

Fig. 15 demonstrates the step of the connectivity modifica-
tion around the extraordinary point. This step can be easily done
using the edge split operation in the half edge data structure.
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Fig. 13. The linear constraints in the least squares problem Eq. (14) for a cubic manifold triangular B-spline. (a) shows two adjacent triangles I = 4(v0, v1, v2)

and J = 4(v3, v1, v0) and the knot configurations. (b) highlights six control points, three for each triangle. Note that the constraint for case r = 0 is equivalent to
the shared control points, i.e., cJ

β0+1,β1,0 = cI
β0+1,β1,0 and cJ

β0,β1+1,0 = cI
β0,β1+1,0. The constraint for case r = 1 requires that the highlighted six control points

to be coplanar.
Fig. 14. Examples of manifold splines with various extraordinary points.
Rabbit: genus zero, two boundaries, no singularity; Vase: genus two, one
singularity; Cup: genus two, one boundary, no singularity.

Step 3: Ricci flow

In order to compute the flat metric, we use Ricci flow to drive
the mesh to deform in this order:

(i) Set the initial value ui = 0 for each vertex.
(ii) Assign the weight for each edge and the radii for each

vertex by minimizing the energy,

min
Γ ,Φ

∑
ei j ∈E

|li j − l̄i j |
2, (10)

where l̄i j is the edge length of ei j in R3. Namely, the
discrete metric (M,Φ,Γ ) is consistent with the induced
Euclidean metric on M .
(a) Original connectivity. (b) Modified connectivity.

Fig. 15. Modifying local connectivity around the extraordinary point. (a)
The extraordinary point and its one-ring neighbors are marked in red. (b)
Modifying local connectivity to satisfy the combinatorial constraint Eq. (7).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

(iii) Update the vertex radius γi by eui γi . Compute the current
edge lengths li j ’s using Eq. (3), corner angles, and discrete
curvatures for each vertex using Eq. (4) or (5).

(iv) Update vertex radii,

ui+ = ε × (K̄i − Ki ), (11)

where ε is a carefully selected step length. Note that if
the step length is too small, the convergence is very slow.
ε = 0.1 is used in the experiments in this paper.

(v) Normalize ui , such that the summation of all ui ’s equals to
zero.

(vi) Check the deviation between Ki and K̄i , if the error is less
than a predetermined threshold, the algorithm terminates.
Otherwise, goto Step 2.

The algorithm will converge exponentially fast. In practice,
the step length might be time-varying in order to improve the
efficiency.

Step 4: Segmentation

Next, in order to construct the affine atlas, an open covering
of the mesh needs to be built. The basic idea is to find a set
of curves G such that the mesh M can be sliced open along
the curves and form a topological disk. These kinds of curves
form the cut graph as introduced in the work on geometry
images [8].
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(a) Sculpture surface with 2000
faces.

(b) The central chart of (a). (c) Sculpture surface with 10,000
faces.

(d) The close-up view of the
central chart.

Fig. 16. Affine atlas using Ricci Flow for a genus 3 surface. The sculpture surface is of genus 3 with different resolutions, respectively, one is with 2000 faces as
shown in (a), the other one is with 10,000 faces as shown in (c). A vertex is selected as the singularity, and a set of canonical homology basis curves passing through
the singularity are drawn as the yellow curves in (a) and (c), respectively. By using Ricci flow, flat metrics on the meshes are computed such that all curvatures are
concentrated on the singularities. The flattened fundamental domains are shown in (b) and (d), respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
If there is only one singularity p0, the cut graph can be
constructed using a set of canonical homology bases passing
through the singularity as introduced in [2]. The cut graph
has one node and 2g edges. The edges can be labelled as
a1, b1, a2, b2, . . . , ag, bg (see Fig. 12).

Then the mesh is cut open along the cut graph to form a big
chart M̄ . The boundary of M̄ has canonical form

∂ M̄ = a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · · agbga−1
g b−1

g .

Each edge starts and ends at the singularity p0. We cover each
edge sk by a chart

Uk = ∪vi ∈sk Ni , vi 6= p0, Ni = ∪ fi jk,

where Ni represents the one ring neighbor of vertex vi . The
algorithm for computing an open covering of M is as follows:

(i) Compute a cut graph G using a canonical homology basis.
(ii) Slice the mesh along the cut graph to form a topological

disk M̄ .
(iii) For the edges of the cut graph, compute the union of one

ring neighbors of all its interior vertices.
(iv) The open covering of M is formed by M̄ and Uk ,

M/{p0} ⊂ M̄ ∪k Uk .

Step 5: Planar embedding

Because the curvature for each vertex is zero, the faces can
be flattened one by one on the plane. The following algorithm
describes the details on how to flatten an open set U ⊂ M/{p0}.
Let the desired parameterization is τ : U → R2,

(i) Label all faces in U as non-processed ones. Meanwhile,
label all vertices in U as non-processed.

(ii) Select randomly a face f0 = [V0, V1, V2] from U , label
f0 as processed, label all its vertices as processed. Assign
τ(v0) = (0, 0) and τ(v1) = (l01, 0). Compute τ(v2) such
that

|τ(v2) − τ(v0)| = l01, |τ(v2) − τ(v1)| = l12, (12)

and

(τ (v1) − τ(v0)) × (τ (v2) − τ(v0)) · n > 0, (13)
(iii) Find all faces in U sharing an edge with f0, insert them to
a face queue Q.

(iv) If Q is empty, simply terminate. Otherwise, fetch the first
face f = [v0, v1, v2] from Q, label f as processed.

(v) If all vertices of f have been processed, go to Step 3.
Otherwise, there must be only one vertex which has not
been processed; assume it is v2, label v2 as processed.

(vi) Compute τ(v2), such that both the distance condition (12)
and orientation condition (13) are satisfied.

(vii) Find all neighboring faces sharing an edge with f and they
are not yet to be processed, add them to Q. Go to Step (iii).

In order to reduce the accumulation error, the parameteriza-
tion can be further improved by minimizing the following func-
tional:

min
τ

∑
ei j

(|τ(vi ) − τ(v j )|
2
− l2

i j )
2.

The purpose of the above functional is to find a valid embedding
such that the distortion between the edge length in the
parametric domain and the Ricci flow output is minimal. In
practice, this step is usually unnecessary if singularities are
carefully chosen to spread out the surface and the curvature for
each of them is not extremely high.

Figs. 3, 8 and 16 demonstrate the affine atlas for surfaces
from genus one, two and three, respectively.

5. Manifold spline construction

After the affine atlases are constructed in the previous
section, this section first briefly summarizes the theory of
manifold splines, and then presents our experimental results.

Suppose M is a mesh with the one ring neighbors of the
singular vertices removed. {(Ui , τi )} is an affine atlas, where
Ui is a topological disk comprised of a set of faces of M ,
τi : Ui → R2 maps Ui onto the plane, namely, (Ui , τi )

forms a local coordinate chart. The chart transition functions
τi j : τi (Ui ∩ U j ) → τ j (Ui ∩ U j ) is a rigid-body motion in R2.

A manifold spline is defined on the mesh F : M → R3, such
that
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- The local representations of manifold splines, F ◦ τ−1
i :

τi (Ui ) → R3, are commonly used spline schemes with
planar parameter domain.

- The evaluation of manifold splines is independent of the
choice of local parameter charts,

F ◦ τ−1
i = F ◦ τ−1

j ◦ τi j

In our current implementation for this paper, we use
triangular B-splines [4], because it has no restrictions on
the connectivity of the mesh and it can represent any
polynomials defined over planar [10], spherical [11] and
manifold domain [8]. We have implemented our own version
based on a generic half edge mesh library as in [15], while
adding the edge lengths, vertex radii, and curvatures as the new
attributes for the underlying mesh.

In our prototype software system, we have tested several
meshes of genus from zero to three. In this paper, we choose the
manifold triangular B-spline because of its flexibility in domain
construction. This method can be also applied to other manifold
splines, such as T-splines [14] and Powell-Sabin splines [12].

Given a domain manifold M , a manifold triangular B-spline
surface is defined as follows:

F(u) =

∑
I

∑
|β|=n

cI,β NI,β(τI (u)), u ∈ M,

where I is the triangle index and β = (β0, β1, β2) is the 3-tuple
used to label the control points and knots. The algorithm for
constructing the manifold triangular B-spline is as follows:

(i) The initial control points cI,β are chosen by uniformly
subdivided the domain manifold M according to the user-
specified degree n. Each domain triangle is associated with
(n + 1)(n + 2)/2 control points.

(ii) To compute the optimal control points c̃I,β , we solve the
following linear constrained least square problem:

min
c̃

∑
I

∑
|β|=n

‖c̃I,β − cI,β‖
2 (14)

subject to c̃I,β = f J (V I
β ), ∀I, ∀β, |β| = n, β2 ≤ r

where I = 4(v0, v1, v2) and J = 4(v3, v1, v0) are
adjacent triangles with common edge {v0, v1}, V I

β =

{tI
0,0, . . . , tI

0,β0−1, . . . , tI
2,0, . . . , tI

2,β2−1} and tI
i, j are the

knots for triangle I .

Note that the initial manifold triangular B-spline surfaces
acquired by step 1 usually have very bad curvature distribution,
especially along the edges of the domain triangles. The purpose
of step 2 is to fair the spline surface by modifying the control
points. In the objective function Eq. (14), we minimize the
squared distance between the control points of the original and
the new spline surfaces, which implies a minimal change of the
shape. In the constraints, we use an integer r , 0 ≤ r ≤ n − 1, to
control the fairness of the spline surface. The bigger the value
r , the more faired the surface we obtain. In our experiments, we
can get visually pleasing surfaces with r = 1 for cubic splines
or r = 2 for splines of degree 5 or above. Fig. 13 illustrates the
case r = 1. For the detailed information about spline fairing,
please refer to [13].
Fig. 8 shows the flat circle packing metric of a genus two sur-
face and its affine atlas. Fig. 9 demonstrates the process of using
Ricci flow on how to compute the affine atlas. The sculpture
surface in Fig. 16 is of genus three with different resolutions.
The singular vertex and the cut graph are explicitly shown in
this figure. The affine atlases are also highlighted in the figure.

All the examples of manifold triangular B-splines are shown
in Figs. 14, 17 and 18. Table 1 shows the statistics of the test
cases. As shown in this table, our algorithms for constructing
the affine atlas and manifold triangular B-splines are extremely
fast, i.e., within only a few seconds.

Note that genus 1 surfaces, such as Rockerarm (closed)
and Hypersheet (open), do not have singularities. There is no
singularity for the cup model (genus 2 open surface) as all
the non-zero curvatures are pushed to the boundary. For the
Rabbit model, we introduce two cuts, one on the top, the other
on the bottom, and then apply the double covering to convert
it into a closed genus one surface. Thus, no singularity exists
for the Rabbit model. For the Bunny model, we specify the
singularity on the head. For other genus 0 surfaces with large
extrusion parts, such as Horse and Camel, we choose multiple
singularities on their legs to reduce the area distortion of the
affine atlas. For the high genus closed models, such as Eight,
Vase and 3-hole torus, only a single extraordinary point is
specified. As we remove the extraordinary points and their
one-ring neighbors in spline construction, there are holes in
the resulting splines. In the postprocessing step, we use planar
triangular B-splines to fill these holes with G1 continuities
along the boundaries.

6. Discussion

This section discusses several implementation related issues.
Conformal structure vs affine structure. It is proven

that conformal structure induces affine structure but not vice
versa [8]. Therefore, conformal structure is in some sense
stronger than affine structure. In [8], Gu et al. showed a method
to construct manifold triangular B-splines using conformal
structure. In fact, manifold splines are solely defined using
affine structures, since all the popular planar splines such as
NURBS, Bèzier splines, triangular B-splines are parametric
affine invariant. Thus, from the spline construction point of
view, one can totally ignore the conformal constraints. The
affine atlas shown in Fig. 9 is computed by ignoring the
conformal constraints, i.e., we simply skip Step 3 (ii) and assign
the initial radius of each vertex to be 1. Therefore, the angle
Φi j in the circle packing metric is zero for each edge ei j .
Since discrete Ricci flow preserves the Φi j , the triangles in the
isometric embedding tend to be equilateral triangles. We should
also point out that remeshing of the input domain mesh is not
necessary, except that the valance of the singular point needs to
be increased.

Number of singularities. The intrinsic connection between
manifold splines and polar forms results from the affine
structure and affine atlas. To make these geometric structures
computational tractable in shape modeling applications, we
resort to the powerful tool of global parameterization
over arbitrary manifold domain. It is known that global
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Fig. 17. Multiple singularities. Within our framework, the user can also specify multiple singularities on the models. The horse model has five boundaries (four
on the feet and one on the mouth) and two singularities. The camel model has five boundaries and one singularity. The target geodesic curvature of the boundary
vertices is zero. The holes and singularities are filled using minimal surfaces.
parameterization often suffers from severe area distortion. The
quality of the global parameterization is determined by many
factors, such as the connectivity of the mesh, the weights on
edges, the positions and curvatures of the singularities. It is
technically challenging to optimize these factors towards the
quality improvement of global parameterization.
Section 4 presents a brutal force method to locate the
singularity such that the area distortion of the affine atlas is
minimal. Usually, the larger the number of singularities, the less
area distortion in the affine atlas. In practice, the singular points
should be chosen on parts with large extrusions, e.g., the feet of
the horse model in Fig. 17.
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(a) Parametric domain. (b) The central chart. (c) Manifold splines. (d) Spline patchwork. (e) Control point distribution.

Fig. 18. Examples of manifold triangular B-splines. The affine atlases are computed using Ricci flow under free boundary conditions. The transition function is a
combination of translation and rotation. The red curves on the spline surfaces (see (d)) highlight the triangular patchwork. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Besides this work which minimizes the number of
singularities, we developed polycube T-splines which aim to
minimize the area distortion in the affine atlas [26]. However,
the price to pay for the lower area distortion is the significantly
larger number of extraordinary points. Therefore, in real
applications, it is the user’s call to make the balance.

7. Conclusion and future work

This paper has developed an efficient and rigorous algorithm
for constructing a manifold spline surface of complicated
topology and complex geometry with single extraordinary
point, which has already reached the theoretical lower bound of
the number of singularities. The uniqueness of this construction
algorithm for manifold splines is that, it is solely based on
a simple and powerful computational tool: Ricci flow. From
the mathematical point of view, Ricci flow has substantial
relevance to the curvature flow method in differential geometry.
For example, Ricci flow can conformally deform the metric to
induce any prescribed curvature.
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Table 1
Statistics of test examples

Object g N f Nb Ns Nc Tricci (s) Tspline (s) n Continuity

Bunny 0 621 3 1 2827 6 3 3 C2

Rabbit 0 1038 2 0 4698 12 8 3 C2

Horse 0 4002 5 2 18074 26 18 3 C2

Camel 0 2958 5 1 13380 18 12 3 C2

Rockerarm 1 614 0 0 7675 2 5 3 C2

Hypersheet 1 300 3 0 1446 5 2 3 C2

Eight 2 806 0 1 3644 4 3 3 C2

Vase 2 1480 0 1 6666 15 10 3 C2

Cup 2 1929 1 0 15515 20 18 4 C3

3-hole torus 3 878 0 1 3955 8 4 3 C2

g, genus of domain manifold M ; N f , # of faces in M ; Nb , # of boundaries in M ; Ns , # of singularities; Nc , # of control points; Tricci, time for computing the
discrete Ricci flow and isometric embedding (Step 3 and 5 in Section 4); Tspline, time for the spline construction; n, degree of splines. Note that time measures are
in seconds.
Current manifold splines are essentially founded upon the
natural integration of the affine atlases for domain manifolds
and polar forms used to define conventional spline surfaces
over any planar domain. Due to their topological obstruction,
general high genus surfaces admit neither a flat metric nor an
affine atlas. Therefore, ideally the most natural spline solutions
for high genus manifolds should not depend on their affine
structures. In the future, we shall investigate different spline
schemes which are not based on the affine structure of the
underlying surface domain.
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