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Introduction

Let M be a compact Riemannian manifold with a fixed conformal structure.
Then we introduce the concept of conformal volume of M in the following
manner. For each branched conformal immersion ¢ of M into the unit sphere
S", we consider the set of all branched conformal immersions obtained by
composition of ¢ with the conformal automorphisms of S". We let V.(n, ¢) be
the maximum volume of these branched immersions. The conformal volume of
M is defined to be the infimum of V.(n,¢) where ¢ ranges over all branched
conformal immersions of M into the unit sphere S™.

In this paper, we study the case when M is a compact surface and we call
the conformal volume of M to be the conformal area of M. We demonstrate
that this conformal invariant is non-trivial. In fact, we prove that if there exists
a minimal immersion of M into S$" where coordinate functions are first eigen-
functions, then the conformal area of M is given by the area of M with respect
to the induced metric. This enables us to compute the conformal area for
several surfaces. For example, the conformal area of RP? is 6z and the
conformal area of the square torus is 27% We believe that the computation of
the conformal area for general surfaces will be very important in studying the
geometry of compact surfaces. We demonstrate this claim by applying the
concept of conformal area to two different branches of surface theory.

The first application is to study the total curvature of a compact surface in
R". This problem has a long history. Fenchel and Fary [9] proved that for a
closed curve ¢ in R, [|k|=2n where k is its curvature. Then Milnor [12]

proved that {|k|=4n if ¢ is knotted in R*. For an account of these, one can

read the beautiful article of Chern [7]. In 1957, Chern and Lashof [8] studied
the absolute total curvature of a compact manifold in R" where k is replaced
by the Gauss-Kronecker curvature and the lower bound can be expressed in
terms of the sum of the Betti numbers of the manifold. Since then, topological
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methods have been introduced in the study of the total curvature, and the

concept of tight manifolds has been studied extensively by Kuiper, Pohl,

Banchoff, and others. In fact, a whole book is needed to give a full account of

this theory. On the other hand, in 1965 Willmore [16] proposed to study a

different total curvature for surfaces M embedded in R*. Instead of the Gauss

curvature, he proposed to estimate the quantity | H? where H is the mean
M

curvature of M. In [16] Willmore computed [H? for all circular tori in R? and
found that {H?>=2n* with equality only for the Clifford torus. Based on his
computation, he conjectured that [H?=2z* for all embedded surfaces in R?
which has genus one. For a long time the only known lower estimate for [H?
came from the following argument. By using a simple arithmetic, one can
estimate {H? in terms of {K* from below where K* is the positive part of the
curvature. Since [K* 2=4m, one obtains [H?=4n. Although there are deeper
and more intricate arguments due to Wingten [17] and Rodriguez and Gua-
dalope [14] for knotted compact surfaces in R* their basic ideas were of
similar structure and special properties of [H? were not utilized. (For more
arguments of this type, we refer the reader to articles of B.Y. Chen [4] and
Proposition 2 of §5.)

In this paper we prove that for any compact surface in R”, [ H? is not less

M

than the conformal area of M and equality holds iff M is the sterographic
projected image of a minimal surface in §” whose coordinate functions are first

eigenfunctions. As a corollary, we prove that | H?*>6n for any branched
RP>

immersion of RP? into R" and that equality holds only if it is a sterographic
projection of a minimal surface in §* to R* We also prove that if M is
conformally equivalent to the square torus, then for any branched immersion
of M into R", {H?>2x". In fact the same inequality holds if M is conformally
equivalent to elements in an open region in the modular space of genus one.
Equality holds only if M is the sterographic projected image of some embed-
ded minimal torus of S* which is conformally equivalent to the square torus.

For the purpose of estimating {H?, one can redefine the concept of confor-
mal area so that it depends also on the topology of the immersion. In
particular, we can prove that for any branched minimal immersion of M into

R, if the self-intersection of M is non-trivial then [H*>8r.
P

The second application of the concept of conformal area is to give an
upper estimate of the first eigenvalue of a compact surface M. We prove that

the first eigenvalue is not greater than 212%2 where V(M) is the area of M.
Equality holds if and only if M is a minimal surface of the unit sphere whose
coordinate functions are first eigenfunctions. This inequality is sharp if M is
RP? or if M is the square torus. Since we can estimate V(M) in terms of the
genus of M, we can estimate 1, V(M) from above by a absolute constant
depending only on the genus of M. This type of estimates originated from
Szegd [15], who was the first one to estimate A, for a simply connected
domain in R? His method was then used by Hersch [10] to give an upper
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bound for the first cigenvalue of any metric on S* Then using a method of
branched covering, Yang and Yau [18] gave an upper estimate of 4, V(M) for
any Riemann surface in terms of its genus. Our method here has the advantage
of being applicable to non-orientable surfaces and the estimates are sharp in
many cases. We would also like to point out that in an article [1] of Berger,
he raised some interesting questions concerning the above probiem.

Some other simple applications are that for a minimal surface M in the
unit sphere S":

(i) if M is homeomorphic to RP?, then V(M)=6x.

(i) if M is conformally equivalent to the square torus, then V(M)=2n?

(iif) if V(M)<8m, then M must be embedded.

Finally, we give upper estimate for the first eigenvalue of a Kidhler manifold
in terms of its Kihler class and some information of a meromorphic function
on the manifold.

We shall point out that J.P Bourguignon has obtained upper estimate for
the first eigenvalue of RP?* by utilizing some special properties of the projective
group.

This work was done while both authors were visiting the University of
California at San Diego in 1980. We would like to thank them for their
hospitality.

§ 1. Non-degenerate Conformal Maps from a Manifold Into the Unit Sphere

Let M be a m-dimensional compact manifold which admits a conformal map ¢
into the n-dimensional unit sphere S”. Let ds* be the metric on M and ds be
the standard metric on S”. Then

p*dsi=o(x)yds? (1.1)

where o is a non-degenerate function defined on M.
If G denotes the group of conformal diffeomorphisms of §”, then we define
the n-conformal volume of ¢ by

V.(n,¢)=sup [ dV,=sup [ |V(go@)*dV),, (1.2)

G M geG M
where dV, is the volume element (possibly degenerate) associated to the tensor
p* g*ds?.
The n-conformal volume of M is then defined to be

V.(n, M)=infV.(n, ¢) (1.3)
¢
where ¢ runs over all non-degenerate conformal mappings of M into S".

Fact 1. If M admits a degree d conformal map onto another manifold N, then

V.(n, M)<[d| V,(n, N). (1.4)
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Since any compact surface can be conformally branched over S* or RP?,
we can apply the above inequality to give an upper estimate of the conformal
area of any compact surface in terms of the degree of the conformal map and
the conformal area of S2 or RP?. The conformal area of S? is easily seen to be
47 (see Fact2). In §3, we shall prove that V.(n,RP*)=6n for n=4. If X is an
orientable surface without boundary, then by the theorem of Riemann-Roch,
we can choose a conformal map onto S? with degree <(g+1) where g is the
genus of X. If ¥ is a non-orientable surface, then a double cover £ of T is
orientable and we can choose a conformal map from X onto S? which com-
mutes with the deck transformation of 2 and the antipodal map of S*. For
example, let s be a meromorphic one form on 2 and ¢ be the deck transfor-
mation. Then s(o) is also a meromorphic one form and ]/——13 s(o)~ ! defines a
meromorphic function from X onto S2. Since antipodal map of S? is given by
z——Z~', we obtain a conformal map onto RP? The degree of this map is
2(g(X)+1). In conclusion, if X is orientable, V,(n, 2)<4(g(Z)+ )n for n=2. If
is non-orientable, V. (n, 2)<12(g(2)+1)n for n=4. Note that we do not com-
pute V,(3,RP?). However, the arguments in §4 show that V,(3, RP*)=8n.

Fact 2. If M is of dimension m, then
V(n M) 2 V,(n, S™)= V(S (1.5)

To see this, let # be a point on S, and g,(t) be the one parameter
conformal subgroup of G generated by the gradient of the linear function of
R**! in the direction . Then, for all ¢, g,(¢) fixes the points 0 and —0.
Moreover

lim g, (1)(x)=0 (1.6)

1=
for all xeS"—{—0}. Notice that g, corresponds to the homotheties of R" by
stereographic projection with poles at 6. Therefore, if ¢: M—S" is a conformal
map whose differential has rank m at x, the volume of g _,,(f) o ¢(M) will tend
to some non-trivial integral multiple of the volume of §” as t—cw because
g_ 4(f) has the same effect as blowing up the picture on the tangent space of
S" at ¢(x). From now on, we will denote this procedure as blowing up at the
point ¢(x). The identity V. (n,S™)=V(S™) for all n will be discuss in §3.

Fact3. If M is of dimension m, and ¢: M—S" is a conformal map with the
property that there exists exactly k distinct points on M {x,}¥_, such that ¢(x,)
=peS" for all 1 i<k, then V,(n, @)= kV(S™).

This follows from the same arguments as in Fact 2. One blows up at the
point p and obtains k totally geodesic spheres through p in the limit, hence
provide the lower bound. In general, we will denote such a point p to be a k-
point indicating its preimage set consists of k points.

Fact 4. For an integer n such that a conformal map ¢: M—S" exists, we have
obviously the inequality

V.(n, M)2 V.(n+1, M), (1.7)
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In view of this, we define the conformal volume of M to be

V.(M)=Ilim V,(n, M). (1.8)
Question I. For any compact manifold M, can one find a conformal mapping ¢
of M into some S" such that V.{n,¢)=V.(n, M). If M is of dimension two, this is
closely related to the question of whether the area of a minimally embedded
surface in §" is the same as its n-conformal area. We shall prove that for
compact minimal surfaces (without boundary) of $" and for minimal sub-
manifolds of dimension m>3 which are obtained as orbits in S" under the
action of some subgroup of O(n+1),

V.(n, M) V(M). (1.9)
In fact, for a special class of minimal surfaces in S", we shall also prove that
V.(n, M)z V(M). (1.10)

Question 2. 1f the n-conformal volume of a m-dimensional manifold is equal to
the volume of §™, is the manifold necessarily conformal to $™?

When the manifold has non-trivial boundary, we define V.(n, M) in the
same way as above. Then clearly we have the following

Fact5. If M is a subdomain of another manifold N, then for all n,
V.n,M)<V.(n, N). Hence to obtain an upper estimate of the conformal area for
any compact surface X with boundary, we can embed X conformally into another
compact surface X without boundary so that each component of ¢X bounds a disk
in . The conformal area of X has already been estimated in Fact 1. Therefore
we have an upper estimate of the conformal area of any compact surface
depending only on the topology of the surface.

Finally, we remark that we can refine the concept of conformal volume so
that it is sensitive to the topology of the map ¢: M —S". This is very useful for
the study of the Willmore conjecture in §4. This concept can be described as
follows.

Let ¢: M—S" be a fixed non-degenerate conformal map. Then we define
V. s(n. M) to be the infimum of all V,(n, /) where  is a conformal map so that
y=Fo¢ for some diffeomorphism of F of S". We see from Fact 3 that if ¢ is
an immersion, V, ,(n, M) is not less than the product of the volume of §™ with
the number of times of its multiplicity at one point.

§2. Relationship Between the First Eigenvalue
and the Conformal Area for Surfaces

Theorem 1. Let M be a compact surface ( possibly with boundary ). Let A, >0 be
its first non-zero eigenvalue for the Laplacian (with Neumann boundury con-
dition if M % 0). Then

A VIM)S2V.(n M) (2.1)



274 P. Li and S.-T. Yau

for all n where V.(n,M) is defined (i.e., there exists a conformal mapping ¢:
M—S8"). Equality implies M must be a minimal surface of S§", moreover the
immersion is given by a subspace of the first eigenspace. Hence by a result of
Cheng [5], we can assume that n is less than a constant depending only on the
genus of M.

Proof. We shall utilize the variational characteristic of 4, given by

AfllVf 2
A, =i1nf 7 (2.2)
M
where inf is taken over all Lipschitz functions with { f=0.
Let ¢ be a conformal map of M into §" so that :
Vi )< V,(n M) +e. (23)

Suppose X;’s are the coordinate functions of R"*', we claim that there exists
an element g € G, the conformal group of §", such that

{Xiogogp=0, forall ISisn+l. (2.4)
M

The action of G can be extended to the unit ball B**' bounded by $" in
R"*! The isotropic subgroup at the origin is simply O(n+1). For each point
AeB*t! with A#0, one obtains a conformal vector field V, on $" by project-
ing A/||A|| on the tangent space of each point of §". The conformal vector field
extends to be a conformal vector field of B"*'. It generates a one-parameter
family of conformal automorphism g(f) of B"*! onto itself. In the group g(f),
there exists a unique conformal automorphism g, which maps the origin to 4.
In this way, one obtains an embedding of B"*! into G. Call this embedding F.

We defined a map from F(B"*') to B"*! in the following manner. For
geF(B"*1), we associate the point

1 »
H(g):-l-/-MAj;xogoqseB . (2.5)

HoF maps B"*! into itself, and when prolonged by continuity to ¢B"*'=S8"is
the identity map. By a standard topological argument, HoF must be sur-
jective. Hence, in particular, there exists geF(B"*"') such that H(g)=0. This
establishes our claim (2.4).

Now we may use X;ogo¢ as trial functions in (2.2). One observes that

fIVX ogogpP={(god)*[IVX,[*dV] (2.6)

g M

for each 1<i<n+1. Therefore
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n41
Y J WX agegP={(gep)*[YIVX,|>dV]
i=1 M M i
=2§(g°¢)*dV
=2V.(n.¢)
<2(V.(n, M) +¢). 2.7
On the other hand,
Y (X, cged)=[ Y(X,cg00)
=1 M M i
=V(M) (2.8)
since ZX,?: 1. By (2.2), we find that
)~1Z.§.(Xi°g°(/) §Z§|V(X,-og0(/))lz. (2.9)
i M i M
This implies
2 V(M)S2(V.(n, M) +5). (2.10)

Inequality (2.1) follows by letting £—0.
We now assume that (2.1) holds with equality. By scaling, we may assume

=2, (2.11)
hence

V(M)=V.(n, M). (2.12)
Suppose ¢,: M—S" is a sequence of conformal mappings such that

limV.(n,¢,)=V.(n, M) (2.13)

h—
and
ino¢>k:0 (2.14)
M

for all i and k. Then by choosing coordinates appropriately, we may assume
that

lim {(X;°$)*>0 (2.15)
k= M

for 1<i<N, and
lim §(X,°¢)>=0 (2.16)
k= M

for N+1<i<n+1, with some N. Equations (2.2), (2.7), and (2.11) imply

n+ 1

)= > [IVX, 0|2

i=1 M

22nil j’(XEOQ/)k)2~ (217)

i=1 M
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Taking the limit as k— oo, this yields
n+ 1

Vi M)zlim Y [ (X002 (2.18)

k—oc i=1 M

On the other hand, the fact that

__Zl Afl (X0 d)*=V(M) (2.19)
implies )
lim Y [(X;0¢)=V(M). (2.20)
k—oC i=1 M

This together with (2.15) and (2.16) means

N
lim Y [(X;o¢)>=V(M). (2.21)
k= i=1 M
The assumption (2.12) therefore implies that the inequalities in (2.17) become
equalities when passed to the limit as k—co. We can therefore assume that for
each 1=i<n+1, the functions X,-¢, converges weakly in H, ,(M) and
strongly in L,(M) to some function y,. Clearly

i yi=1 (2.22)

almost everywhere, and

Y, =0 for N+1gisn+1. (2.23)
Moreover,
lim {|VX;op,2=4, [y}
k—oc M M
for 1 i< N. Therefore the sequence {X,;c¢,} in fact converge to {y;} strongly
in H, ,(M) and ¥, are first eigenfunctions of M. In particular, the map
(W, ..., ¥y) defines a smooth conformal mapping of M in SV~ 1,
Taking the Laplacian of (2.22), we obtain

N N
SIPWE=2Y y2=2=1, (2.24)
i=1 i=1

Together with the fact that (¥, ...,¥,) is conformal, we conclude that it
must be an isometry. Hence M is therefore a minimal submanifold of $" '
given by (Y, ..., ¥

A theorem of Yang and the second author can be obtained as a corollary
of Theorem 1. They proved that if M is a surface of genus g, then

2L V(IM)<87(1+g). (2.25)

According to Theorem 1, in order to prove this, we only need to estimate the
conformal volume of M from above. By Riemann-Roch, we know there exist a
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map ¢: M—S* which is a conformal branch covering of M over S? with
|deg(¢)| =(1+g). Hence, by Fact 1

2V,(2, M)£2(1 +8) V,(2,5?)
=8n(l +g),
as to be proved. The theorem in [18] is however stronger than ours, because

they have proved

>

1 3V(M)
Sz
i=1% ( +g)
which implied (2.25).

Corollary 1. Let M be a compact surface without boundary of genus 1. If M is
conformally equivalent to a flat torus with lattice generated by {(1,0),(x, )},
where 0 x <L and 1/1 —x2<y <1, then

2r2 S V.(M).
Proof. In view of Theorem 1, we only need to show that
A2 <A (THV(T? (2.26)

where /,(T?) and V(T?) are computed with respect to the flat metric. If (1,0)
and (x,y) are the generators of the lattice corresponding to T2 then the
volume

V(T?=y. (2.27)

Moreover, by the computation in [1],
/11(7""‘)——--y—2 (2.28)

when /1 —x?<y<1. Therefore

2

4 _
x,(TZ)V(TZ):i:-gM*

which was to be proved.

Corollary 2. Let M be a compact surface. Let 0<i,=...<4,... be the eigen-
values of M. Then for any n=k,
L I
Y [2 ViM)V.(n—1,M) ! (2.29)
i=1

Proof. As in Theorem 1, we can find a conformal map X: M—S5""' so that

| X,=0 for 1 <i<n. By making an orthonormal change of basis in R", we may
M

assume that X, is orthogonal to X for i#j. Therefore
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k
1
) T2 2 UxHvx H! (2.30)
i=17% ij<izg<..<ix M X{(M)
where i, <i,<...<I, Is an arbitrary chosen subsequence of {1,...,n}.

n

Since )(2 == 1, we can choose i, <...<i, so that
i 1 k
i=1

. k
> §XZ=-V(M). (2.31)
il<iz<..<ix M h
The corollary follows from the fact that [VX, [<1.

Corollary 3. Let M be an m-dimensional compact manifold. Then

2 -2
A (MY S m(n+ 1)V, (n, Myn(V (M) ™ (232)
Proof. Since , ,
VIV v mmvMy m (2.33)
M M
and | |Ff|™ is a conformal invariant, all the previous arguments apply. (The
M
number n+1 occurs because among the functions X ,,..., X, |, we can choose
X, so that
[x22— vy, (234)
w o ntl

Remark. In both Corollary 2 and Corollary 3, the constants are not sharp. The
reason is that we do not have good control on the quantities [|VX,|" in these
situations. Therefore we propose in these cases, we should study the conformal
moment of an m dimensional manifold M which is defined as follows.

For each non-degenerate conformal map X: M —S", we define

M (n,X)=supsup [ [V(goX, A" (2.35)

geG AeS" g(X(M))

The n conformal moment of M is defined to be

M (n, M)=1nf 4 (n, X).
X

Then in both Corollaries 2 and 3, the number V (n, M) can be replaced by
M (n, M). However, at this moment, we do not have good computation of the
conformal moment yet.

§3. Minimal Surfaces and Equivariant Minimal Submanifolds
of the Unit Spheres

In this section, we shall compute the conformal volume for minimal surfaces of
§”, and for minimal submanifolds (of dimension m=3) in §” which are given as
orbits of some subgroups of the isometry group O(n+1) of S".
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Proposition 1. Let M? be a compact minimal surface of S" given by the isometric
immersion ¢: M*—S". Then

Veln, @)=V (M).

Proof. Let m: S"—>R" denote a stereographic projection. The composition ne ¢
is a conformal mapping of M into R". For each normal vector v* of M in R",
let {u?} be the principal curvatures associated to v*. Then it is well-known that
the quantity

oY —w)?

nop(M) a

is invariant under any conformal change of metric on R". Hence

I Yuws—mwy)’= | Y —my? (3.)

e p(M) a gop(M) «

where the i7’s are the corresponding principal curvatures of go@(M) in S"
with geG.

The Gauss curvature equation, on the other hand, enables us to write (3.1)
in the form

4 | (HP=K)=4 | (HP-K)+4V(god(M) (3.2)

me (M) go (M)

for all geG. Gauss-Bonnet then gives

{ HP= [ [HP+V(gepM). (3-3)

7o (M) gop(M)

However the left hand side is independent of g, therefore by assumption that
¢ (M) is minimal,

VieM)= [ |HI?
7o (M)
= | [HP+V(gedp(M)
gop(M)
2V(gep(M)). (3.4)
This shows that
Vin, ¢)sV(M)
as claimed.
The volume function corresponding to an immersion ¢: M —S8" is defined
on G given by

Vin ¢, g)=[dV,, (3.5)
M

where dV, is the volume element associated to the tensor ¢* g*ds?2. Clearly

Vn,$,g)=V(n ¢, hg),



280 P. Liand S.-T. Yau

if heO(n+1)=G. Hence, the volume function can be viewed as a function
defined on the cosets space G/O(rn+1). For simplicity, we will denote gO(n+1)
by g. Then

Vin. @)= sup  V(n d,g).
geG/Om+ 1)
Theorem 2. Let M be a homogeneous Riemannian manifold of dimension m.
Suppose ¢: M—S" is an immersion of M into §" which satisfies the properties:
(i) ¢ is an isometric minimal immersion
(ii) The transitive subgroup H of the isometry group of M is induced by a
subgroup, also denoted by H, of O(n+1) (i.e., ¢ is equivariant).
(iii) ¢(M) does not lie on any hyperplane of R"*!, ie. ¢ is a “full”
immersion. Then

V(n,d)=V(M).

In fact, the identity element 0eG/O(n+1) is the only local maximum for the
volume function defined on G/O(n+1).

Proof. We begin by observing that O is a local maximum for the volume
function on G/O(n+1). Indeed, the minimality condition (i) implies that O (i.e.,
$(M)) is a critical point. If {e,,....e,, ,} form an orthonormal basis for R"*',
then g, (¢) form a one-parameter subgroup of G for each i. The second varia-
tional formula (see [11]) for the volume in the direction e, is given by

2
dﬁV(n@,ge,(t)I,:o:m[mJ"X?—f VX, 171, (3.6)
t M M
where X, is the coordinate function of R"*! in the direction of ¢, and V
denotes the gradient computed on S*. However (1) implies
AX;=-mX, forall 1Zign+l.

i

Therefore
ijz j|l7X|2<j|l7X!2 (3.7)

for all [<i<n+1, where the strict inequality follows from assumption (iii).
Substituting (3.7) into (3.6), we conclude that

2

d
FV(na ¢7gel(t)|1:()<0 (38)

for all 1<i<n+1. Together with the fact that {e,,...,e, .} spans the tangent
space at O of G/O(n+ 1), we deduce that O is a local maximum.

Suppose O is not the only local maximum, then by the minimax method we
conclude that there exists another critical point g,eG/O(n+1) which is a
saddle point. The existence of g, follows from a rather standard construction
argument, and we will only give its outline as follows:
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We consider the number
sup infVin, ¢, ),
Yep gey
where inf is taken over all g on the path y joining the two local maximum in
G/O(n+1), and sup is taken over all such paths. The point g, on some yep
which achieves this number is then the saddle point which we seck for.
Let A be the level set of the volume function which contains g, We claim
that locally through g,, 4 contains a m-dimensional submanifold. To see this,
we write

80=280(t0) (3.9)

for some unit vector 0 in R"*! the tangent space of G/O(n+1) at O. The
equivariant property of ¢, (ii}, implies that

Vin, . gy(to) =V (1.0, 8)(10)) (3.10)

for all heH<O(n+1), where h(d), of course, stands for the image of 0 under
the action of h. On the other hand, if we identify unit vectors in R*** with
points in S", then property (iii) implies that  can be written as

0=al,+bo, (3.11)

where a, b are constants, 0,e¢p(M)< S" and 8, 1 0,,. Since H acts transitively on
M, around 0, H(0,)={h(0,)lheH} can be parametrized by a piece of M and
clearly so is H(6) by (3.11). This together with Eq. (3.10) confirms our claim.

We shall now proceed to compute the second variational formula for the
volume at g,. We observe that the coordinate functions X, satisfy

|PX [P =sup XF - X?
=1-X} (3.12)
on S", for all 1 £i<n+1. Therefore substituting into (3.6), we obtain

2

Va0 6.8, O o =mltn 1) [ XP=Vingo O (Y
t Ro° ¢(M)

Summing this over all 1 iZ<n+1, we have

n+ 1 32

YV ongoe b8, 0l

P==1

n+ 1
:m[(m+l) | ZX?*(11+1)V(n,go°¢a0)]

goe (M) i=1

=m({m—n)V(n,gy°¢,0). (3.14)

On the other hand, since 4 contains a m-dimensional manifold through g,
which is a critical point, there are at least m directions such that
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2

i
7pW“mgoM@gA0n:o:Q (3.15)

say 1<i<m. Moreover, the fact that g, is a saddle point implies that there is
at least one more direction, say i=m+ 1, such that the second variation is non-
negative. Summing over 1<i<n+1, we now have

n+1 2
Elﬂngo¢g(UL0
n+ 1 2
y %Zdtz Vin,goo 9,8, (0),_o
—m[(m+1) "i | Xf—(n«m)xV(n,gOoqﬁ,O)]. (3.16)

i=m+ 2 goodp(M)
Combining with (3.14), this implies
n+ 1
0z ) X3 (3.17)

i=m+ 2 goop(M)

However this is impossible by virtue of (iii). This proves our claim that O is the
only local maximum.

To conclude the theorem, we first observe that any minimal submanifold
of dimension m in S" must have the property that

V(M)> V(S™. (3.18)

In fact, it was proved in [6] that there exists an ¢>0 which only depends on »n
and m, such that,

V(M)Z V(5™ +e. (3.19)

The fact that O is the absolute maximum for the volume function defined on
G/O(n+1) follows from Fact 2 in §1.

Corollary 4. Let M be a compact minimal surface immersed in S", then for any
metric ds? which is conformally equivalent to the original induced metric

L V(M)s2V(M)=2V,(n, $), (3.20)

where A, and V(M) stand for the first eigenvalue and the volume computed with
respect to ds®. Moreover, if the minimal immersion ¢ is given by a subspace of
the first eigenspace, i.e., A, =2, then

V(M) =V,(n, M)=V.(n, §) =V (M). (3.21)

Proof. This first part of the corollary simply follows from Theorem 1 and
Proposition 1. If 1, =2, then

2V(M) =2V (M)=2V,(n, M)
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by Theorem 1. However, by definition

Viin, M)V, (n, )
=V(M),
hence they must all be equal.
When M is a two dimensional sphere, S2, because it has unique conformal
structure the corollary implies that for any metric ds? on S?

AL V(SH)E8r=2V.(S?).
This was a theorem of Hersch [10].

Corollary 5. For any metric ds? on RP?,
/. VIRPH)S2V(RPH=12m.

Equality implies there exists a subspace of the first eigenspace of ds? which
gives an isometric minimal immersion of RP? info §*.

Proof. First we observe that RP? has unique conformal structure. Also the fact
that the first eigenspace of RP? with the standard metric gives, up to a
constant factor, an isometric minimal embedding of RP? into §* enable us to
apply Theorem 1 and Proposition 1. This minimal embedding is known as the
Veronese surface, which has volume 67, The corollary follows,

Using the fact that the flat square torus can be isometrically minimally
immersed into S? via its first eigenspace, we derive the following:

Corollary 6. Let M be a compact surface without boundary of genus I. Suppose
the Riemannian metric ds* on M is conformally equivalent to the square torus
with lattice generated by (1,0) and (0,1). Then £, V(M)<4n?. Equality implies M
can be isometrically minimally immersed via its first eigenspace into S*.

In dimension greater than 2, Corollary 3 and Theorem 2 imply the follow-
ing:
Corollary 7. Let M, be a fully equivariantly immersed minimal submanifold in S"
of dimension m (i.e., conditions (ii) and (iii) of Theorem 2 are satisfied). If M
is another manifold which is conformally equivalent to M, then

A (MY V(MY S(m(n+ D)2 V(M ).

In particular, when M is conformally equivalent to an irreducible homo-
geneous manifold M, a theorem of Takahashi (see [11]) says that one can
minimally immerse M, isometrically into S"<R"* ' by its first eigenspace in an
equivariant manner. Hence if n+1 is the dimension of the first eigenspace of
M, then

A{(M)"P V(M) S (m(n+1D)y"2 V(M).

For example, when M ,=S", we recover a theorem of Berger [1].
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§4. The First Eigenvalue of a Compact Kihler Manifold

Let M be a m-dimensional compact Kidhler manifold which admits a mero-

morphic map onto CP?. Let Q be the Kihler form of M. Then we define V,(M)

to be inf{{ Q" 'A f*w: w is the standard Kihler form of CP' and f is a
SoM

meromorphic map from M onto CP'}.

Theorem 3. Let M be a m-dimensional compact Kahler manifold with Kdhler
Sorm Q. Then A, (M)<2V,(M)Vol(M)~ 1,

Proof. Let f be a meromorphic map from M onto CP' so that
j Q"' A f*w =V, (M)+¢ where ¢ is an arbitrary preassigned positive number.

By resolving the singularity of f, we may assume that / 1s holomorphic. (By
the theorem of Hironaka, we may find M—M so that the lifting of f to M is
holomorphic. Then we lift Q to M and perturb © to be a Kiéhler form.)

Let X,, X,, and X be the first eigenfunctions of CP'. Then by composing
f with an antomorphism of CP', we may assume that

A&Xi-fzo (4.1

fori=1, 2, 3. (See the argument of Theorem 1.)
As in Theorem 1, we need only to prove

N w

FIPX o fI2S2(Vo(M) + o). (4.2)
M

i=1

This follows by the observation that
4Zj XpofYAHX o fYnQm 1= Zj"f (OX;ACX)nQm !
i M
2[ fHwyaQr!
M

S2(Vy(M) +9). (4.3)

This completes the proof of Theorem 3.

§5. Willmore Conjecture and the Conformal Area
Let M be a compact surface without boundary in R". Suppose H denotes its
mean curvature vector and K its Gaussian curvature with respect to the

induced metric. An interesting question is whether one can obtain a lower
estimate of the quantity | |[H|*. In [16] Willmore conjectured that
M

[1H|*z2n?
T2

for any immersed torus, T2, in R>,
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When the torus, T2, is the boundary of a circular tubular neighborhood of
the unit circle in R, the conjecture was verified in [16].

In this section, we shall use the concept of conformal area to study the
Willmore conjecture. We allow the surface to be immersed in any higher
dimensional Euclidean space R". The basis observation is the following:

Lemma 1. Let M be a compact surface without boundary in R". Then
VIHI?ZV,(n, M).
M

Furthermore, equality implies M is the image of some minimal surface in S"

under some stereographic projection.

Proof. By using the inverse of stereographic projection, we form a conformal
immersion ¢ of M into §". Compositing with a Mobius transformation, we
may assume that the areca of ¢(M) is equal to the n-conformal area of
¢, V.(n, ).

Using the same argument as in Proposition 1, we conclude that

JIHP= | |H?+V($(M)). (5.1)

M G (M)

where H is the mean curvature vector of ¢(M) in S™. Since V(p(M))=V.(n, ¢),
we arrive with the inequality

VIHPZV (n, ¢) (5.2)
M
as to be shown.
An immediate consequence of Lemma 1 and Theorem 1 is:

Lemma 2. Let M be a compact surface in R". Then
JiHPPZ 3sup {4, - V(M)}
M
where sup is taken over any metric which is conformally equivalent to the induced
metric from R".
The following theorems are direct consequences of Corollaries 1 and 5.

Theorem 4. Let M be a compact surface in R" homeomorphic to RP?*. Then

[ IHI*z6x.

M
Equality implies M is the image of a stereographic projection of some minimal
surface in S* with 1, =2.

Theorem 5. Let M be a surface of genus 1 in R". Suppose M is conformally
equivalent to one of the flat tori described in Corollary 1. Then

[IH]Pz272,
M
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Equality implies M must be conformally equivalent to the square torus and is the
image of a stereographic projection of a minimal torus in S*.

Proof. The first part of the theorem is a direct consequence of Corollary 1 and
Lemma 1. When equality holds, the proof of Corollary 1 implies M is confor-
mally equivalent to a flat torus with lattice generated by (1,0) and (x, 1).
However by Theorem 1, we conclude that x must be 0 because otherwise one
checks easily that the first eigenspace do not give an isometric minimal
immersion into S3. The rest of the conclusion then follows from the last part of
Lemma 1.

We have now transform the question of extimating the quantity [ [H|?
M

from below to the problem of estimating the n-conformal area of M. Based on
the indication of Theorem 2, we conjecture that if M can be conformally

embedded as a minimal surface in $°, then [|{H|* is not less than the area of
M
this minimal surface.

While we cannot prove this conjecture, we shall give a lower bound of
| [H* depending on the topological configuration of the surface M. The
M

following theorem is a direct consequence of Fact 3 and (5.2).

Theorem 6. Let y: M—R" be an immersion of a compact surface. Suppose there
is a point peR" such that Yy~ '{p)={x,, ..., x,} where xs are all distinct points
in M. Then | |H|*24km.

M

In particular, this proves that if an immersion y: M —>R" has the property

that | |H|* <87, then y must be an embedding.
M

The following corollaries are trivial consequences of Theorems 4-6, to-
gether with (5.1).

Corollary 8. Let M is a compact surface homeomorphic to RP>. If M is a
minimal surface in some unit sphere S", then

V(M)=6r=uvolume of the Veronese surface.

Corollary 9. Let M be a compact surface of genus 1. Suppose M is conformally
equivalent to one of the tori described in Corollary 1. If M is a minimal surface
in some unit sphere S", then

V(M)=2n?.
Equality implies M is conformally equivalent to the flat torus.

Corollary 10. Let ¢: M—S" be a minimal immersion of a compact surface M into
some unit sphere S". If there exists a point peS" such that its preimage set
¢~ Yp) consists of k distinct points in M, Then

V(M)=4kn.

In particular, if V(M) <8r, then ¢ must be a minimal embedding.
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Remark. Let ¢: M—S" be an isometric immersion of an m-manifold M into S§"
R L If {X}'r)} are the coordinate functions of R"*! then a standard
elementary computation shows that

n+ 1

m? j JHI?= ) [(4X)* (5.3)

i=1 M

By translation, one can assume that the center of gravity of M is at the origin
of R"*! ie.,

[X,=0 forall ISign+1. (5.4)
M

Expanding the X /s in terms of the eigenfunctions {y,} of M, say

X.=

I
X

AWy, (5.5)

1

I e

the condition (5.4) simply means A4,;,=0 for all i. However

T ixy =7 (4% a,0.)

i=1

(3 Avh)
“ZAu Les (5.6)

since {1, =4,,. Combining with (5.3), we obtain

n+1

(T AL —,}1 ¥ [X,4X,

/"1

[1H]Pz~
M

Z fvx,?

V(M). (5.7)

where the last equality follows from the fact that ¢ is an isometric immersion,
ntl

hence ) |FX,*=m. Using Holder inequality, one derives theorems of
i=1
Bleecker-Weiner [3], Reilly [13], and Chen [4].
The above observation together with some elementary algebraic manipu-
lation, we see that the Willmore conjecture for isometrically immersed flat tori

follows directly.

Proposition 2. Let M be a two dimensional flat torus in R". Up to a homothety
M must be R? divided out by a lattice generated by two vectors of the form

{(1, 0), (x, y)} where 0=x<{ and }/1—x?=<y. Then
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jiarzs ()

Proof. In view of the above remark, it suffices to estimate the quantity in (5.3)
under the assumption (5.4). On the other hand, it is known that {2] the
eigenfunctions on M when lifted to R? are functions of the form

cos(2nv,w)) and sin(2nlv, w)) (5.8)

where v is an element in the dual lattice I'* and weR? Moreover, the
eigenvalues are {4n?|v|?}, for vel™, where each has multiplicity 2 unless v
=0eR? The dual lattice I'* clearly is generated by the pair of vectors {(0, 1/y),

(1, —x/y)}, hence, all elements in I'* are of the form {(q, p;yq—)i) p, qel}.

Following the same argument as above, if we express X, in terms of the
non-constant eigenfunctions

Xl:gAipq cos (27'c <(q,p‘y‘1x>, >>
t2 By Sm( <(qp—yqx)>) (5.9)

then
n+1 2\2
p—gqx
i:ZI j(AXl)2§16n4[ Z Alpq (q2+ (T) )
(pq)*(() 0)
p—gx
* »Z B‘Z"q(qu( y ))]
Lp.q
(p.q)+(0,0)
— 2 1
2167:4[ Y (42,+B2,) (q2+(p qx) 7)} (5.10)
i,p.gq y y
(p,q9)# (0, 0)

Here we have used the algebraic inequalities

2, (PaxV]. 2y (P2AXV] (PZ4XY 5 2y L (P4
2+ 2 oo 22+
[ y K K y y T\

for (p, q)€Z x Z where (p, 9)*(0,0), 0 x<1, and 1 —x2<y%
On the other hand, the assumption that the flat metric is the induced
metric means

n+ 1 n+1
Z j I7X|2 22 j(eX
i=1 M i=1 M
n+ 1
=23 [(eX;
i=1 M
=2V(M) (5.11)

for any orthonormal frame {e, e,} on M. In particular, if we pick e, and e, to
be the canonical directions corresponding to the coordinates in R?, then
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n+ 1
L leX)i=dn 3 (AL, +BL)q’

d . (pl.,qp)’*qo

an
B p—gxy
S jexp-in ¥ (Aqu+prq)( : ) (5.12)
I= LD 4
(P, q)*0

Therefore, (5.10) becomes

1 1 1

Y f(4X)?z4n? V(M) (1 +7> =4n? (y+f) ,

i=1 y y
which proves the assertion.

. . 1y . .
Remark. The inequality ||H|*=n’ (er,) is sharp, and is achieved by the
M y

isometric embedding of the torus with lattice generated by {(1,0), (0, y)} via the
. . . 2 . {2 . .
eigenfunctions {003(27[5(), sin(2n X), cos (i V), sin (l}ﬂ into R* with %

y - ;

and § the coordinates in R?% We shall point out that in Chen’s most recent
article [4, V], he proved the inequality {|H|*>27” under the same assumption

. .. . L .
in our Proposition 2. Clearly, since —+y=2, one derives Chen’s theorem as a
)7

corollary of the above.

In dimensions greater than 2, since all compact flat manifolds are covered
by some flat torus, and the fact that all eigenvalues and eigenfunctions of flat
tori are explicitly computed as above, it is obvious that a similar argument will

yield lower estimates for | |[H|* when M is isometrically embedded in R™
M

Appendix

The first eigenvalue of a compact surface with boundary and a generalization of a result of Szegd
[15].

If we apply Theorem 1 to a compact surface diffeomorphic to the disk, we find that the first
eigenvalue (with Neumann condition) is bounded by 8z x V(M) '. However, Szegd’s result says
that for a compact simply connected domain in R? the above value can be improved to
p*r V(M) ', where p~1.8412 is the first positive zero of the Bessel function J'(r). Both these
results are sharp. In the first case, we can illustrate the sharpness by taking the domain to be the
sphere minus a small cap. In the second case, the value is achieved by the circular disk. We offer
an explanation by generalizing Szegd's theorem in a more intrinsic manner.

Theorem. Let M be a compact simply connected surface with non-positive curvature. Then the first
eigenvalue of M (with the Neumann condition) is not greater than p*n V(M) .

Proof. We follow the argument of Szegd's. By the uniformization theorem, we can assume that our
surface M is parametrized by the unit disk with metric tensor e2”|dz|?. By the argument of Szegd,
we may also assume that [e*?u rdrd@={e’"u,rdrd0=0 where u, and u, form an orthonormal
basis for the first eigenspace of the disk.

By the mini-max principle, we have therefore

A M) ST, + PP 3 4+u3)] (A1)
M M
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As the Dirichlet integral 1s invariant under conformal change,
JUPu P+ 17uy 2= [ (Vu 2+ Pu, )
M D

=p? [(u} +ud) (A.2)
b

On the other hand, as u +u?% depends only on r,

1 2n
[(u +ud)={ | (uj+ud)ye*erdgdr

00

1 2n
={(u?+ud) (j e”rd(?) dr

0 [

2 1 il r2n
a0 jezﬂrdodr—fT ud +ud) (\‘ | ezf’[d()dt) dr. (A3)
oo (4]

00

We claim that
r 2n 1 2=

[ [eeedodi<r®| [ errdodt.
00 o o

In fact,
d r2n r 2n
[(j jelﬂzd()dr) r- ] 1je2ﬂ d0—2r-3] | e21d0d:
dr L\ 3 0 0
2n
=r 3{¢? (f— 'ez"d()> dr.
G ]
Our claim will be a consequence of
d 2n
d0=0. (A.4)
dr ;f)

2 2=
This follows from the fact that M has non-positive curvature which implies i [ e’rdi=0.
ar 0

2
(Note that by regularity, o § ezﬂd()l,;o=0.> Hence we have proved our claim and inequality
o
(A.3) implies that

1 2np al

Lg
“Mfﬁ—u ;(f f gZprdOdr) [(u%+uz) (H-— fz: (u +u§)r2dr]
M 0

p
1 2n

! ([ | ezf’rd()dr) fa?+u3)
00 D

Putting this inequality into (A.1) and (A.2) we conclude that A, (M)<p*z V(M) .
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