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Introduction 

Let M be a compact  Riemannian manifold with a fixed conformal  structure. 
Then we introduce the concept  of conformal  volume of M in the following 
manner. For  each branched conformal immersion q9 of M into the unit sphere 
S n, we consider the set of all branched conformal immersions obtained by 
composi t ion of qo with the conformal  automorphisms of  S". We let Vc(n, qg) be 
the max imum volume of  these branched immersions. The conformal  volume of 
M is defined to be the infimum of V.(n, q0) where qo ranges over all branched 
conformal  immersions of M into the unit sphere S". 

In this paper, we study the case when M is a compact  surface and we call 
the conformal  volume of  M to be the conformal  area of  M. We demonst ra te  
that this conformal  invariant is non-trivial. In fact, we prove that if there exists 
a minimal immersion of  M into S" where coordinate functions are first eigen- 
functions, then the conformal  area of M is given by the area of M with respect 
to the induced metric. This enables us to compute  the conformal  area for 
several surfaces. For  example, the conformal  area of R P  z is 6n and the 
conformal  area of the square torus is 27c 2. We believe that the computa t ion  of 
the conformal  area for general surfaces will be very impor tant  in studying the 
geometry of compact  surfaces. We demonstrate  this claim by applying the 
concept  of  conformal  area to two different branches of  surface theory. 

The first application is to study the total curvature of a compact  surface in 
R". This problem has a long history. Fenchel and Fary [9] proved that for a 
closed curve o in R", Slk[>27c where k is its curvature. Then Milnor  [12] 

r~ 

proved that 5lk]>4~z if cr is knot ted in R 3. For  an account  of  these, one can 
r~ 

read the beautiful article of Chern  [7]. In 1957, Chern and Lashof  [8] studied 
the absolute total curvature of  a compact  manifold in R" where k is replaced 
by the Gauss -Kronecker  curvature and the lower bound  can be expressed in 
terms of  the sum of the Betti numbers of the manifold. Since then, topological  
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methods have been introduced in the study of the total curvature, and the 
concept of tight manifolds has been studied extensively by Kuiper, Pohl, 
Banchoff, and others. In fact, a whole book is needed to give a full account of 
this theory. On the other hand, in 1965 Willmore [16] proposed to study a 
different total curvature for surfaces M embedded in R 3. Instead of the Gauss 
curvature, he proposed to estimate the quantity ~H 2, where H is the mean 

M 

curvature of M. In [16] Willmore computed ~H 2 for all circular tori in R 3 and 
found that ~Ha>2~z 2 with equality only for the Clifford torus. Based on his 
computation, he conjectured that ~ H 2 > 2 ~  2 for all embedded surfaces in R 3 
which has genus one. For a long time the only known lower estimate for ~H 2 
came from the following argument. By using a simple arithmetic, one can 
estimate ~H 2 in terms of ~K + from below where K + is the positive part  of the 
curvature. Since ~K+>47r,  one obtains ~ H 2 > 4 m  Although there are deeper 
and more intricate arguments due to Wingten [17] and Rodriguez and Gua- 
dalope [14] for knotted compact surfaces in R ~, their basic ideas were of 
similar structure and special properties of ~H 2 were not utilized. (For more 
arguments of this type, we refer the reader to articles of B.Y. Chen [4] and 
Proposition 2 of w 

In this paper we prove that for any compact surface in R", ~ H 2 is not less 
M 

than the conformal area of M and equality holds iff M is the sterographic 
projected image of a minimal surface in S" whose coordinate functions are first 
eigenfunctions. As a corollary, we prove that ~ H 2 ~ 6 / c  2 for any branched 

Rp 2 

immersion of RP 2 into R n and that equality holds only if it is a sterographic 
projection of a minimal surface in S 4 to R 4. We also prove that if M is 
conformally equivalent to the square torus, then for any branched immersion 
of M into R", ~HZ=>2Tc 2. In fact the same inequality holds if M is conformally 
equivalent to elements in an open region in the modular  space of genus one. 
Equality holds only if M is the sterographic projected image of some embed- 
ded minimal torus of S 3 which is conformally equivalent to the square torus. 

For the purpose of estimating ~H 2, one can redefine the concept of confor- 
mal area so that it depends also on the topology of the immersion. In 
particular, we can prove that for any branched minimal immersion of M into 
R", if the self-intersection of M is non-trivial then ~H2> 8m 

The second application of the concept of conformal area is to give an 
upper estimate of the first eigenvalue of a compact surface M. We prove that 

the first eigenvalue is not greater than 2V,,(M) where V(M) is the area of m. 
V(M) 

Equality holds if and only if M is a minimal surface of the unit sphere whose 
coordinate functions are first eigenfunctions. This inequality is sharp if M is 
RP 2 or if M is the square torus. Since we can estimate Vc(M ) in terms of the 
genus of M, we can estimate 21 V(M) from above by a absolute constant 
depending only on the genus of M. This type of estimates originated from 
Szeg/3 [15], who was the first one to estimate 21 for a simply connected 
domain in R 2. His method was then used by Hersch [10] to give an upper 
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bound for the first eigenvalue of any metric on S 2. Then using a method of 
branched covering, Yang and Yau [18] gave an upper estimate of 21 V(M) for 
any Riemann surface in terms of its genus. Our method here has the advantage 
of being applicable to non-orientable surfaces and the estimates are sharp in 
many cases. We would also like to point out that in an article [1] of Berger, 
he raised some interesting questions concerning the above problem. 

Some other simple applications are that for a minimal surface M in the 
unit sphere S~: 

(i) if M is homeomorphic to RP 2, then V(M)>61t. 

(ii) if M is conformally equivalent to the square torus, then V(M)>__2~z 2. 

(iii) if V(M)<8=, then M must be embedded. 

Finally, we give upper estimate for the first eigenvalue of a KS, hler manifold 
in terms of its K~ihler class and some information of a meromorphic function 
on the manifold. 

We shall point out that J.P. Bourguignon has obtained upper estimate for 
the first eigenvalue of RP 2 by utilizing some special properties of the projective 
group. 

This work was done while both authors were visiting the University of 
California at San Diego in 1980. We would like to thank them for their 
hospitality. 

w 1. Non-degenerate Conformal Maps from a Manifold Into the Unit Sphere 

Let M be a m-dimensional compact manifold which admits a conformal map ~) 
into the n-dimensional unit sphere S". Let d s  2 be the metric on M and ds 2 be 
the standard metric on S'. Then 

~* ds~=~:(x) ds 2 (1.1) 

where c~ is a non-degenerate function defined on M. 
If G denotes the group of conformal diffeomorphisms of S", then we define 

the n-conJormal volume oJ'~5 by 

V,,(n, qS)---sup 5 dVv=sup 5 IV(g o q0)12dVv, 0.2) 
geG M geG M 

where dV~ is the volume element (possibly degenerate) associated to the tensor 
(/~* g* d s 2. 

The n-conj'ormal volume of M is then defined to be 

V,,(n, M)=  inf V,.(n, c/)) (1.3) 

where q~ runs over all non-degenerate conformal mappings of M into S". 

Fact 1. I f  M admits a degree d conJormal map onto another manifold N, then 

V.(n, M) =< [dl V(n, N). (l.4) 
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Since any compac t  surface can be conformal ly  branched  o v e r  S 2 or RP 2, 
we can apply the above inequality to give an upper  est imate of  the conformal  
area of  any compac t  surface in terms of the degree of the conformal  m a p  and 
the conformal  area of  S 2 or RP 2. The conformal  area of  S 2 is easily seen to be 
4~ (see Fact  2). In w we shall prove  that  V,.(n, Rp2)=6rc  for n > 4 .  If 2; is an 
or ientable  surface wi thout  boundary ,  then by the theorem of R iemann-Roch ,  
we can choose a conformal  m a p  on to  S 2 with degree < ( g +  1) where g is the 
genus of  S. If I; is a non-or ientable  surface, then a double  cover  2 of  S is 
or ientable  and we can choose a conformal  map  from 2 onto  S 2 which com- 
mutes with the deck t rans format ion  of 2 and the ant ipodal  m a p  of S 2. For  
example,  let s be a m e r o m o r p h i c  one form on 2) and a be the deck transfor-  

mation.  Then s(cr) is also a m e r o m o r p h i c  one form and l / - l s  s(cr) 1 defines a 
meromorph ic  function from 2) onto  S 2. Since ant ipodal  map  of S 2 is given by 
z - - * - ~  -1,  we obtain  a conformal  m a p  onto  RP 2. The degree of this map  is 
2 (g (2 )+  1). In conclusion, if X is orientable,  Vc(n,X)<-_4(g(2)+ 1)7c for n > 2 .  If X 
is non-orientable ,  V,.(n,X)<=12(g(X)+l)rr for n > 4 .  Note  that  we do not com- 
pute V,.(3, Rp2). However ,  the a rguments  in w show that  Vc(3,Rp2)>8~.  

Fact  2. I f  M is of dimension m, then 

Vc(n, M) >__ VAn, S m) = V(Sm). (1.5) 

To see this, let 0 be a point  on S", and g0(t) be the one pa rame te r  
conformal  subgroup  of G generated by the gradient  of  the linear function of 
R "+1 in the direction 0. Then, for all t, g0(t) fixes the points  0 and - 0 .  
Moreove r  

lim go(t)(x) = 0 (1.6) 

for all x E S " - { - O } .  Notice  that  go corresponds  to the homothet ies  of  R" by 
s tereographic  project ion with poles at 0. Therefore,  if c~: M--,S" is a conformal  
map  whose differential has rank m at x, the volume of g _+l~(t)o q~(M) will tend 
to some  non-trivial  integral mult iple of  the volume of S m as t--,o-.) because 
g e(~l(t) has the same effect as blowing up the picture on the tangent  space of 
S" at ~b(x). F r o m  now on, we will denote  this procedure  as blowing up at the 

1 m point O(x). The identity Vc(~, S ) =  V(S") for all n will be discuss in w 

Fact  3. U" M is of dimension m, and qo: M-~S" is a con[brmal map with the 
property that there exists exactly k distinct points o17 M {xi}f= ~ such that (p(x~) 
=peS" for all l <<_i<-k, then Vc(n,~p)>kV(S" ). 

This follows from the same a rguments  as in Fact 2. One blows up at the 
point  p and obtains  k totally geodesic spheres through p in the limit, hence 
provide the lower bound.  In general, we will denote  such a point  p to be a k- 
point indicating its pre image set consists of  k points. 

F a c t 4 .  For an integer n such that a conJormal map ~): M-*S" exists, we have 
obviously the inequality 

Vc(n , M) >= Vc(n + 1, M). (1.7) 
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In view q]" this, we define the conformal volume of M to be 

~ ( M )  = lim V,(n, M). (1.8) 

Question 1. For  any compac t  manifold M, can one find a conformal  mapp ing  4) 
of M into some S" such that V(n, ~b)= V,(n, M). if  M is of d imension two, this is 
closely related to the quest ion of whether  the area of a minimal ly  embedded  
surface in S" is the same as its n-conformal  area. We shall prove  that  for 
compac t  minimal  surfaces (without boundary)  of S", and for minimal  sub- 
manifolds of d imension  m_>3 which are obta ined as orbits in S" under  the 
action of some subgroup of O(n+ 1), 

Vc(n, M)< V(M). (1.9) 

In fact, for a special class of minimal  surfaces in S", we shall also prove  that  

Vc(n, M)> V(M). (1.10) 

Question 2. If the n-conformal  volume of a m-dimensional  manifold is equal to 
the volume of S", is the manifold necessarily conformal  to S"? 

When the manifold has non-trivial  boundary,  we define V(n,M) in the 
same way as above. Then clearly we have the following 

Fac tS .  If  M is a subdomain of another manijbld N, then Jor all n, 
V~(n,M)< V~,(n, N). Hence to obtain an upper estimate of the conformal area .Jor 
any compact surface X with boundary, we can embed X conJbrmally into another 
compact smJhce 2  ̀without boundary so that each component of bE bounds a disk 
in 2,. The cor~lbrmal area of Z has already been estimated in Fact i. Therejore 
we have an upper estimate oj' the conformal area of any compact smJhee 
depending only on the topology oj" the su@lce. 

Finally, we remark  that we can refine the concept  of conformal  volume so 
that it is sensitive to the topology of the map  ~b: M ~ S ' .  This is very useful for 
the study of the Wil lmore conjecture in w This concept  can be described as 
follows. 

Let qS: M--*S" be a fixed non-degenerate  conformal  map. Then we define 
V.~(n, M) to be the inf imum of all V,(n, q)) where ~ is a conformal  map  so that  

= F  o 4) for some di f feomorphism of F of S". We see from Fact 3 that if q5 is 
an immersion,  V,,~(n, M) is not  less than the product  of the volume of S" with 
the number  of  times of its multiplicity at one point. 

w Relationship Between the First Eigenvalue 
and the Conformal Area for Surfaces 

Theorem 1. Let M be a compact surface (possibly with boundary). Let 21 > 0  be 
its first non-zero eigenvalue for the Laplacian (with Neumann boundary con- 
dition iJ" ~M 4=O). Then 

21. V(M) < 2 V(n, M) (2.1) 
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.lbr all n where V.(n,M) is defined (i.e., there exists a conformal mapping (/): 
M--+S"). Equality implies M must be a minimal surJace of S", moreover the 
immersion is given by a subspace of the .first eigenspace. Hence by a result of 
Cheng [5], we can assume that n is less than a constant depending only on the 
genus of M. 

ProoJl We shall utilize the var ia t ional  characteristic of 21 given by 

~lVf] 2 

21 = i n f  M (2.2) 
S f2  , 
M 

where inf is t aken  over  all Lipschitz functions with j ' . f=0 .  
M 

Let 0 be a conformal  map  of M into S" so that  

V~.(n, qS)__< V,,(n, M ) + c .  (2.3) 

Suppose X~'s are the coordinate  functions of  R "§ we claim that there exists 
an element g ~ G, the conformal  group of S ~ such that  

~X~ogoO=O, for all l _< i_<n+ l .  (2.4) 
M 

The act ion of G can be extended to the unit ball B "+~ bounded  by S" in 
R "§ The isotropic subgroup  at the origin is simply O ( n +  1). For  each point  
A~B ~+~ with A=#0, one obtains  a conformal  vector  field V A on S ~ by project-  
ing A/llAII on the tangent  space of each point  of S". The  conformal  vector  field 
extends to be a conformal  vector  field of  B "*~. It generates a one -pa ramete r  
family of conformal  a u t o m o r p h i s m  g(t) of B "+ ~ onto itself. In the group  g(t), 
there exists a unique conformal  a u t o m o r p h i s m  ga which maps  the origin to A. 
In this way, one obtains  an embedding  of B ''§ ~ into G. Call this embedding  F. 

We defined a m a p  from F(B "+l) to B"*I  in the following manner .  For  
g e F ( B , +  1), we associate the point  

H ( g )  = g-~v~) j" X o go  ~ e B  n+l (2.5) 
M 

H o F  maps  B "+l into itself, and  when prolonged by continuity to (~B"+ ~ =S"  is 
the identity map. By a s tandard  topological  a rgument ,  H o F  must  be sur- 
jective. Hence,  in part icular,  there exists g e F ( B  "+1) such that  H ( g ) = 0 .  This 
establishes our  claim (2.4). 

N o w  we may  use X i o g o 4) as trial functions in (2.2). One observes that  

S I vx i  ~ g ~ 4)j2 = .[ (g o qS)* [[ v x i  12 dV3 (2.6) 
g M 

for each 1 < i_< n + 1. Therefore  
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5 IvX;~176  2= 5(g~ lvx,I 2dv] 
i = l M  M i 

= 2 S {go ~)* d v 
M 

< 2 v(,~, 4,) 

< 2(V~(n, M) + 0. 

On the other hand, 

n 4  X 

E 
i = l M  M i 

= V{M) 

since ~ X 2 = I .  By (2.2), we find that 
i 

This implies 

) ~ I E  ~ ( X i ~ 1 7 6  5 IV(X;~176 2. 
i 3/1 i M 

275 

(2.7) 

{2.8) 

(2.9} 

lim j" (X i o 0k) 2 > 0 (2.15) 
k ~ \  M 

for 1 < i < N, and 
lim j" (X; o (~k) 2 = 0  (2.16) 

k - ~ " - M  

for N +  1 < i<n+ 1, with some N. Equations (2.2), (2.7), and (2.11) imply 

n + |  

i - l  M 

n + l  

> 2  2 s176 2- (2.17) 
i - 1  M 

21 V(M)< 2(V (n,M)+8). (2.10) 

Inequality (2.1) follows by letting ~:~0. 
We now assume that (2.1) holds with equality. By scaling, we may assume 

)-x =2, (2.11) 
hence 

V(M) = V,(n, m). (2.12) 

Suppose q~k: M~S" is a sequence of conformal mappings such that 

lira V(n, Oh) = V,(n, M) (2.13) 

and 
X,o 4}k = 0  (2.14) 

M 

for all i and k. Then by choosing coordinates appropriately, we may assume 
that 
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Taking the limit as k--* oc, this yields 

n + l  

V,.(n,M)>lim ~ ~ ( X i O ~ k ) 2 .  
k ~ o c  i =  1 M 

(2.18) 

On the other hand, the fact that 

implies 

n +  1 

X Y (X~ o qbk) 2 = V(M) (2.19) 
i= l  M 

n + l  

lim ~ ~ (X,o ~bk) 2 = V(M). (2.20) 
k ~  i = 1  M 

This together with (2.15) and (2.16) means 

N 

lim ~ y (X i o (/)k) 2 = V(M). (2.21) 
k~,~c, i = l  M 

The assumption (2.12) therefore implies that the inequalities in (2.17) become 
equalities when passed to the limit as k-~m. We can therefore assume that for 
each 1-<i -<n+l ,  the functions XioOk converges weakly in HI,2(M ) and 
strongly in Lz(M ) to some function 0i. Clearly 

n + l  

02 = 1 (2.22) 
i = 1  

almost everywhere, and 

Moreover, 
0 i = 0  for N+l<_i<n+l. 

lim ~ IVXiO~k[2=)~ 1 ~ 0 2 
k ~ , ~ M  M 

(2.23) 

for 1 < i N N .  Therefore the sequence {Xio4k} in fact converge to {0i} strongly 
in H~.2(M ) and 0i are first eigenfunctions of M. In particular, the map 
(01, ..., 0N) defines a smooth conformal mapping of M in S N- 1 

Taking the Laplacian of (2.22), we obtain 

N N 

I V O i l  2 = 2  ~ 0 i  2 = 2 = 2 1 .  ( 2 . 2 4 )  
i = 1  i = I  

Together with the fact that (01 . . . . .  0N) is conformal, we conclude that it 
must be an isometry. Hence M is therefore a minimal submanifold of S s 
given by (01,.. . ,  0N). 

A theorem of Yang and the second author can be obtained as a corollary 
of Theorem 1. They proved that if M is a surface of genus g, then 

21 V(M) < 8=(1 +g). (2.25) 

According to Theorem 1, in order to prove this, we only need to estimate the 
conformal volume of M from above. By Riemann-Roch, we know there exist a 
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map qS: M--+S 2 which is a conformal branch covering of M over S 2 with 
]deg(0)[<(1 +g). Hence, by Fact 1 

2~(2,  M) < 2(1 +g) Vc(2, S 2) 

= 8re(1 +g), 

as to be proved. The theorem in [18] is however stronger than ours, because 
they have proved 

~ 1 > 3V(M)  

i : l ) , i  8~r(1 +g) 
which implied (2.25). 

Corollary 1. Let M be a compact smjace without boundary qf genus 1. I f  M is 
conlormally equivalent to a f la t  torus with lattice generated by {(1,0),(x,y)}, 

where 0 <_ x < �89 and ~1 - x 2 < y < 1, the,, 

2 ~z 2 < V,.(M). 

Proof  In view of Theorem 1, we only need to show that 

4n 2 =< 2~ (T 2 ) V(T 2) (2.26) 

where 2~(T 2) and V(T 2) are computed with respect to the flat metric. If (1,0) 
and (x,y) are the generators of the lattice corresponding to T 2, then the 
volume 

v ( r 2 ) = y .  (2.27) 

Moreover, by the computation in [1], ;2 
2~(T2)= , (2.28) 

when 1/1--X2<=y<= 1. Therefore 

~r 2 
2 , (T  2) V(T 2 ) = ' ~ - > 4 ~  2 

Y 
which was to be proved. 

Corollary2. Let  M be a compact smface. Let  0 < 2 1 < . . . < 2 n . . .  be the eigen- 
values o f  M. Then for  any n > k, 

~ >  V ( M ) V , . ( n - I , M )  1 (2.29) 
i=l A i - -n  

Proof  As in Theorem 1, we can find a conformal map X: M--+S" 1 so that 
5 X i = 0  for 1 <_i<_n. By making an orthonormal change of basis in R", we may 

?14 

assume that Xi is orthogonal to X i for i # j .  Therefore 
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L - 1 >  = E (fX,~)( y IVX,jl2) I (2.30) 
i = l  ) ' i  i l < i 2 < . . . < i k  M X ( M )  

where i I < i 2 < . . .  < i k is an arbi t rary  chosen subsequence of { 1 . . . . .  n}. 

Since r X { = 1, we can choose i I < . . .  < i k so that  
i - I  

Z J" X2 =k V(M). (2.31) 
i l < i 2 < , , . < i  k A'I n 

The corollary follows from the fact that  IVXi~J__< 1. 

Corollary 3. Let M be an m-dimensional compact manijold. Then 

2 2 

)~1 (M) < m(n + 1) V,.(n, M),n(V (M)) -"7 (2.32) 
Proof Since 

2 m 2 

j' I Ffl z < ( j  I Vf] ')- '  V(M) ,,, (2.33) 
M M 

and S IVf[ m is a conformal  invariant,  all the previous a rguments  apply. (The 
M 

numbe r  n + l  occurs because among  the functions X 1 . . . . .  X .+  1, we can choose 
X i so that  

1 
X~ > V(M). (2.34) 

M n + l  

Remark. In both  Corol lary  2 and Corol la ry  3, the constants  are not sharp. The 
reason is that we do not  have good control  on the quanti t ies j lVXil m in these 
situations. Therefore  we p ropose  in these cases, we should study the conformal 
moment of an m dimensional  manifold  M which is defined as follows. 

For  each non-degenerate  conformal  m a p  X: M ~ S  n, we define 

o~,.(n,X)=supsup j [V(goX, A)I m. (2.35) 
g~G A ~ S  n g ( X ( M ) )  

The n confi~rmal moment of M is defined to be 

.////,,(n, M ) =  inf,~r (n, X). 
X 

Then  in both  Corollar ies  2 and 3, the number  Ve(n, M) can be replaced by 
o////,.(n, M). However ,  at this moment ,  we do not have good c o m p u t a t i o n  of the 
conformal  m o m e n t  yet. 

w 3. Minimal Surfaces and Equivariant Minimal Submanifolds 
of the Unit Spheres 

In  this section, we shall compute  the conformal  vo lume  for minimal  surfaces of 
S", and for minimal  submanifotds  (of d imension  m > 3) in S" which are given as 
orbits of  some subgroups  of the isometry group O(n + 1) of S'. 
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Proposition 1. Let M 2 be a compact minimal surface of S n given by the isometric 
immersion O: Mz--~Sn. Then 

E(n, 4)= V(M). 

Proof Let ~: S"--+R" denote a stereographic projection. The composition =oq5 
is a conformal mapping of M into R". For each normal vector v = of M in R", 
let {I~7} be the principal curvatures associated to vL Then it is well-known that 
the quantity 

S 2 ( G - , 9  ~ 
~or 

is invariant under any confol'mal change of metric on R". Hence 

j' ~ (p ]_p~)2=  5 ~(fi~_fi~)2 (3.1) 
r~o r ~ gor 

where the fi~'s are the corresponding principal curvatures of g oO(M) in S", 
with geG. 

The Gauss curvature equation, on the other hand, enables us to write (3.1) 
in the form 

4 ~ ( I H I 2 - K ) = 4  ~ (I/7{2-/s (3.2) 
no~(M) go4~(M) 

for all geG. Gauss-Bonnet then gives 

j IUl2= ~ IHl2+g(goqS(M)). (3.3) 
7to ~blM) go(b(M) 

However the left hand side is independent of g, therefore by assumption that 
0(M) is minimal, 

V(q~(M))= j IHI 2 
~o~{M) 

= j" IHI2+V(goO(M)) 
gor 

> V(g o O(M)). (3.4) 
This shows that 

V,,(n, O) < V(M) 
as claimed. 

The volume function corresponding to an immersion 0: M ~ S "  is defined 
on G given by 

V(n, ~b, g) = ~ d Vg, (3.5) 
M 

where dV is the volume element associated to the tensor ~b*g*ds 2. Clearly 

V(n, O, g)= V(n, O, hg), 
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if heO(n+l)c_G.  Hence, the volume function can be viewed as a function 
defined on the cosets space G/O(n+ 1). For simplicity, we will denote gO(n+ 1) 
by g. Then 

V(n,q~)= sup V(n, (/),g). 
geG/O(n+ 1) 

Theorem 2. Let M be a homogeneous Riemannian manifold of dimension m. 
Suppose ~b: M ~ S "  is an immersion of M into S" which sati,sl~es the properties: 

( i) 0 is an isometric minimal immersion 

(ii) The transitive subgroup H of the isometry group of M is induced by a 
subgroup, also denoted by H, of O(n+ 1) (i.e., 0 is equivariant). 

(iii) 4)(M) does not lie on any hyperplane of R "+t, i.e., 0 is a 'i['ull" 
immersion. Then 

V (n, 4))= V(M). 

In fact, the identity element OeG/O(n+ 1) is the only local maximum for the 
volume function defined on G/O(n + 1). 

Proof We begin by observing that O is a local maximum for the volume 
function on G/O(n + 1). indeed, the minimality condition (i) implies that O (i.e., 
qS(M)) is a critical point. If {e 1 . . . . .  e,+ 1} form an orthonormal basis for R "+ 1, 
then ge,(t) form a one-parameter subgroup of G for each i. The second varia- 
tional formula (see [11]) for the volume in the direction e i is given by 

d 2 

d t  2 V(n, ~, ge~(t)],= 0 =m[m S X2 - S ]VXi ]2], (3.6) 
M M 

where Xi is the coordinate function of R "+1 in the direction of ei, and P 
denotes the gradient computed on S". However (i) implies 

A X i = - m X ~  for all l_<i_<n+l.  
Therefore 

mS x2--  S I VX, I 2< S I VX,t 2 (3.7) 
M M M 

for all l < i < n + l ,  where the strict inequality follows from assumption (iii). 
Substituting (3.7) into (3.6), we conclude that 

d 2 

d t 2 V(n, q~, ge, (t)l, _.. 0 < 0 (3 .8 )  

for all 1 < i N n +  1. Together with the fact that {ep.. . ,e, ,+l} spans the tangent 
space at O of G/O(n+ 1), we deduce that O is a local maximum. 

Suppose O is not the only local maximum, then by the minimax method we 
conclude that there exists another critical point goeG/O(n+l)  which is a 
saddle point. The existence of go follows from a rather standard construction 
argument, and we will only give its outline as follows: 
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We consider the number  
sup inf V(n, (~, g), 

where inf is taken over all g on the path 7 joining the two local m a x i m u m  in 
G/O(n+l), and sup is taken over all such paths. The point  go on some 7~p 
which achieves this number  is then the saddle point which we seek for. 

Let A be the level set of the volume function which contains go- We claim 
that  locally through go, A contains a m-dimensional  submanifold.  To  see this, 
we write 

go =g0(to) (3.9) 

for some unit vector  0 in R "+1, the tangent space of G/O(n+l) at O. The  
equivariant  proper ty  of q~, (ii), implies that 

V(n, O, g0(to)) = V(n, q~, ghi0,(to)) (3.10) 

for all heH~_O(n+l), where h(O), of course, stands for the image of 0 under  
the act ion of h. On the other  hand, if we identify unit vectors in R "+~ with 
points in S", then proper ty  (iii) implies that 0 can be writ ten as 

O=aOo+bO 1 (3.11) 

where a, b are constants,  Oo~(M)c_S" and 01 LO w Since H acts transitively on 
M, a round  0o, H(Oo)={h(Oo)lheH } can be parametr ized  by a piece of M and 
clearly so is H(O) by (3.11). This together with Eq. (3.10) confirms our claim. 

We shall now proceed to compute  the second variat ional  formula  for the 
volume at go- We observe that the coordinate  functions X~ satisfy 

I~X,IZ=supX2-X 2 

= 1 - X ff ( 3 . 1 2 )  

on S', for all l -< i_< n + 1. Therefore  substituting into (3.6), we obtain 

d 2 
dt 2 v(n,gooO,g,,(t)[,=o=m[(m+l) .[ XZ-V(n ,  gooO, O)]. (3.13) 

goo(ib(M) 

Summing  this over  all 1 _<i_<n+ 1, we have 

n~l d 2 
i--~ ~ yV(n'g~176176 

[ +' ] =m (re+l) j" 2X?- (n+ l )V(n ,  go~ 
goo(aIM} i= 1 

= m(m-  n) V(n, go ~ q~, O). (3.14) 

On the other hand,  since A contains a m-dimensional  manifold  through go 
which is a critical point, there are at least m directions such that  
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d 2 
d t 2 V(n, go ~ q~, g< (t))[, = o = 0, (3.15) 

say 1 <i<_m. Moreover ,  the fact that  go is a saddle point  implies that  there is 
at least one more  direction, say i =  m § l, such that  the second var ia t ion is non- 
negative. Summing  over  1 < i-< n + 1, we now have 

n~l d 2 

i=1 dt2-V(n'g~ ~ 0 'g<( t ) ) l '=~  

n+ i d 2 
>= Z dt~V(n, go~ g<(t))[,=o 

i = m + 2  

[ ] = m  ( r e + l )  2 S X ? - ( n - m )  xV(n,  go~ O) �9 (3.16) 
i=m+ 2 goo4)(MI 

Combin ing  with (3.14), this implies 
n + l  

0 >  Z J~ X~ a. (3.17) 
i = m +  2 goo4(M) 

However  this is impossible by virtue of  (iii). This proves  our claim that  O is the 
only local max imum.  

To  conclude the theorem,  we first observe that  any  minimal  submanifo ld  
of d imension  m in S" must  have the proper ty  that  

V(M) > V(Sm). (3.18) 

In fact, it was proved  in [6] that  there exists an e > 0  which only depends on n 
and m, such that, 

V(M)> V(Sm)+e. (3.19) 

The fact that  O is the absolute  m a x i m u m  for the vo lume function defined on 
G/O(n+l)  follows from Fact  2 in w 

Corol lary 4. Let M be a compact minimal surjace immersed in S", then for any 
metric ds 2 which is confi~rmally equivalent to the original induced metric 

2~ v ( m ) < 2 v ( m ) = 2 V c ( n , ~ ) ,  (3.20) 

where 21 and V(M) stand jbr the first eigenvalue and the volume computed with 
respect to ds 2. Moreover, !f the minimal immersion d? is given by a subspace of 
the first eigenspace, i.e., 21 = 2, then 

V~(M) = V~(n, M) = V~(n, ~b) = V(M). (3.21) 

Proof This first par t  of  the corol lary s imply follows from Theo rem 1 and 
Propos i t ion  1. If  21 = 2 ,  then  

2 V ( M ) <  2V~(M)< 2 V,:(n,M) 
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by The o rem 1. However,  by definition 

V,,(n, M) < V (n, 4)) 

= V ( M ) ,  
hence they must  all be equal. 

When  M is a two dimensional  sphere, S 2, because it has unique conformal  
structure the corollary implies that for any metric ds 2 on S 2 

)~1 ~'($2)~87~=2V,.(S2) �9 

This was a theorem of Hersch [10]. 

Corollary 5. For any metric d s  2 0tl R P  2, 

).1 V(Rp2)< 2V,.(Rp2) = 12~. 

Equality implies there exists a subspace of the first eigenspace of  d s  2 which 
gives an isometric minimal immersion of  RP  2 into S 4. 

Proof First we observe that  RP 2 has unique conformal  structure. Also the fact 
that  the first eigenspace of RP 2 with the s tandard metric gives, up to a 
constant  factor, an isometric minimal  embedding of RP  2 into S 4 enable us to 
apply Theorem 1 and Proposi t ion 1. This minimal  embedding is known as the 
Veronese surface, which has volume 67c. The corollary follows. 

Using the fact that the flat square torus can be isometrically minimal ly  
immersed into S 3 via its first eigenspace, we derive the following: 

Corollary 6. Let M be a compact suffhce without boundary of genus 1. Suppose 
the Riemannian metric ds 2 on M is co~fformally equi~;alent to the square torus 
with lattice generated by (l ,0) and (0, 1). Then 2~ V(M)<47z 2. Equality implies M 
can be isometrically minimally immersed via its first eigenspace into S 3. 

In d imension greater  than 2, Corol lary  3 and Theorem 2 imply the follow- 
ing: 

Corollary 7. Let M o be a jidly equivariantly immersed minimal subman!lbld in S" 
q]" dimension m (i.e., conditions ( ii ) and ( iii ) o/  Theorem 2 are satisfied), f f  M 
is another man!fold which is conjormally equivalent to Mo, then 

)-1 (M) "/2 V(M) < (m(n + 1 ))m/2 V(M o). 

In part icular,  when M is conformally  equivalent to an irreducible homo-  
geneous manifold M o, a theorem of Takahashi  (see [11]) says that  one can 
minimally  immerse  M o isometrically into S"_~R "+1 by its first eigenspace in an 
equivar iant  manner .  Hence if n +  1 is the dimension of the first eigenspace of 
M 0, then 

')~l (M) "/2 V(M) <(m(n + 1)) "/2 V(Mo). 

For  example,  when M o = S  m, we recover a theorem of Berger [1]. 
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w 4. The First Eigenvalue of a Compact K~ihler Manifold 

Let M be a m-dimensional compact K~ihler manifold which admits a mero- 
morphic map onto CP 1. Let f2 be the K~ihler form of M. Then we define V~2(M ) 
to be inf{~f2" 1AJ'*c0: u) is the standard K~ihler form of CP 1 and f is a 

f M 

meromorphic map from M onto CP1}. 

Theorem 3. Let M be a m-dimensional compact Kiihler maniJold with Kiihler 
form f2. Then 21(M)< 2 Ve(M) VoI(M ) 1. 

Proof. Let f be a meromorphic map from M onto CP ~ so that 
f2m i A J*~o < Ve(M)+e where e is an arbitrary preassigned positive number. 

M 
By resolving the singularity of f,  we may assume that f is holomorphic. (By 
the theorem of Hironaka,  we may find M - * M  so that the lifting of f to M is 
holomorphic. Then we lift (2 to M and perturb f2 to be a K~ihler form.) 

Let X1, X2, and X 3 be the first eigenfunctions of CW.  Then by composing 
f with an automorphism of CP ~, we may assume that 

X i " f = 0  ( 4 . 1 )  
M 

for i= 1, 2, 3. (See the argument  of Theorem 1.) 
As in Theorem 1, we need only to prove 

3 

~ l~7X, of lZ<2(Vo(M)+c) .  (4.2) 
i - l M  

This follows by the observation that 

4 E ~ ,~(X,of) A ?7(X, o f )  A f2" ' =4  Z ~ J*(?X,  A ?-X,) A f2" ' 
i M i M 

= 2 ~ f * ( v ) ) A f 2  " 1 
M 

__< 2 (V~(M) + ~). (4.3) 

This completes the proof  of Theorem 3. 

w 5. Wilimore Conjecture and the Conformal Area 

Let M be a compact  surface without boundary in R". Suppose H denotes its 
mean curvature vector and K its Gaussian curvature with respect to the 
induced metric. An interesting question is whether one can obtain a lower 
estimate of the quantity ~ [HI 2. In [16] Willmore conjectured that 

M 

IH12>_-27t 2 
T 2 

for any immersed torus, T 2, in R 3. 
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When the torus, T 2, is the boundary of a circular tubular neighborhood of 
the unit circle in R 3, the conjecture was verified in [-16]. 

In this section, we shall use the concept of conformal area to study the 
Willmore conjecture. We allow the surface to be immersed in any higher 
dimensional Euclidean space R ~. The basis observation is the following: 

Lemma 1. Let M be a compact surface without boundary in R". Then 

j I/-/I 2 ~ VAn, M). 
M 

Furthermore, equality implies M is the image of  some minimal surface in S ~ 
under some stereographic projection. 

P r o @  By using the inverse of stereographic projection, we form a conformal 
immersion 0 of M into S". Compositing with a Mobius transformation, we 
may assume that the area of ~b(M) is equal to the n-conformal area of 
q~, VAn, 0). 

Using the same argument as in Proposition 1, we conclude that 

j IHI 2= .[ I/~I2+V(0(M)),  (5.1) 
M ~b(M) 

where / t  is the mean curvature vector of 0 (m)  in S". Since V(O(M)) = V(n, qS), 
we arrive with the inequality 

j' [HI2> V(n, (h) (5.2) 
M 

as to be shown. 

An immediate consequence of Lemma 1 and Theorem 1 is: 

Lemma 2. Let  M be a compact sur[ace in R". Then 

S I/-/ff > �89  sup {;~1 ' V(M)} 
M 

where sup is taken over any metric which is c(mJbrmally equivalent to the induced 
metric from R". 

The following theorems are direct consequences of Corollaries I and 5. 

Theorem 4. Let M be a compact sur]'ace in R" homeomorphic to RP  2. Then 

j [HlZ>6~z. 
M 

Equality implies M is the image ~?[ a stereographic projection (?]" some minimal 
smface in S 4 with )~1 = 2. 

Theorem 5. Let M be a surface of  genus 1 in R". Suppose M is eon]brmally 
equivalent to one of  the flat tori described in Corollary I. Then 

1H[2>2~ 2. 
M 



286 P. Li and S.-T. Yau 

Equality implies M must be conjormally equivalent to the square torus and is the 
image of  a stereographic projection of a minimal torus in S 3. 

Proof. The first part  of the theorem is a direct consequence of Corollary 1 and 
Lemma 1. When equality holds, the proof  of Corollary 1 implies M is confor- 
mally equivalent to a flat torus with lattice generated by (1,0) and (x, 1). 
However by Theorem 1, we conclude that x must be 0 because otherwise one 
checks easily that the first eigenspace do not give an isometric minimal 
immersion into S 3. The rest of the conclusion then follows from the last part of 
Lemma 1. 

We have now transform the question of extimating the quantity ~ ]HI 2 
M 

from below to the problem of estimating the n-conformal area of M. Based on 
the indication of Theorem 2, we conjecture that if M can be conformally 
embedded as a minimal surface in S 3, then ~ till 2 is not less than the area of 

M 
this minimal surface. 

While we cannot prove this conjecture, we shall give a lower bound of 
j" Igl z depending on the topological configuration of the surface M. The 
M 

following theorem is a direct consequence of Fact 3 and (5.2). 

Theorem 6. Let 0: M--,R" be an immersion of a compact surface. Suppose there 
is a point p e R  n such that ~ l (p )={x  1 . . . .  ,Xk} where xi's are all distinct points 
in M. Then ~ Igl2=>4kTz. 

M 

In particular, this proves that if an immersion ~b: M ~ R "  has the property 

that ~ IHIZ<87r, then ~ must be an embedding. 
M 

The following corollaries are trivial consequences of Theorems 4-6, to- 
gether with (5.1). 

Corollary 8. Let M is a compact surface homeomorphic to RP 2. I f  M is a 
minimal surface in some unit sphere S", then 

V ( M) > 67z = volume of  the Veronese surface. 

Corollary 9. Let M be a compact surface of genus 1. Suppose M is conJbrmally 
equivalent to one of  the tori described in Corollary 1. I f  M is a minimal su@tce 
in some unit sphere S", then 

V(M) > 27t 2. 

Equality implies M is conformally equivalent to the fiat torus. 

Corollary 10. Let c~: M--*S" be a minimal immersion of a compact surface M into 
some unit sphere S". I f  there exists a point p eS" such that its preimage set 
qS- l(p) consists of  k distinct points in M, Then 

v ( m ) > 4 k ~ .  

In particular, if V(M)< 87r, then q5 must be a minimal embedding. 
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Remark. Let (p: M~S ~ be an isometric immersion of an m-manifold M into S" 
_ _  . y ~n+  1 c R  "+1 If {~..i=~ are the coordinate functions of R "+1, then a standard 
elementary computation shows that 

n+ 1 

m2 ~ I H I  2 =  E J" {AXi) 2" (5.3)  
M i=l M 

By translation, one can assume that the center of gravity of M is at the origin 
of R "+ 1 i.e., 

~Xi=O for all l__i_<n+l .  
M 

Expanding the X/s in terms of the eigenfunctions {~b~} of M, say 

X i =  ~ Aial/l~, 
l 

the condition (5.4) simply means A~o=O for all i. However 

E 2= S 
i=1 i = l  a--1 

t I (• 
i=1 a l 

~ - 2  2 ~2 Ai:~/~, 
i,a 

{5.4) 

{5.5} 

(5.6) 

since ,f~b~b~ =(5~e. Combining with (5.3), we obtain 

�9 ~ 2 - -  "Q 1 n ~ l  
~ IHIZ>/U (~ Ai~&)=~U i=l ~XiAXi 
m = m 2  

"Q1 n+ 1 

-m2  'X'12 

= 2~ V(M), 
m (5.7) 

where the last equality follows from the fact that (p is an isometric immersion, 
n~-I 

hence ~, IVXi[2=m. Using H61der inequality, one derives theorems of 
i = l  

Bleecker-Weiner [3], Reilly [13], and Chen [4]. 
The above observation together with some elementary algebraic manipu- 

lation, we see that the Willmore conjecture for isometrically immersed fiat tori 
follows directly. 

Proposition 2. Let M be a two dimensional fiat torus in R". Up to a homothety 
M must be R 2 divided out by a lattice generated by two vectors of the form 

{(1, 0), (x, y)} where 0=<x__<�89 and ] / 1 - -xZ~y .  Then 
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M Y 

Proof. In view of the above remark,  it suffices to est imate the quant i ty  in (5.3) 
under  the assumpt ion  (5.4). On the other  hand, it is known that  [2] the 
eigenfunctions on M when lifted to R 2 are functions of  the form 

cos(2r t (v ,  w)) and s in (2~(v ,  w))  (5.8) 

where v is an element in the dual lattice F* and w e R  2. Moreover ,  the 
eigenvalues are {4~21v]2}, tbr veF*, where each has multiplicity 2 unless v 
= 0 e R  z. The dual lattice F* clearly is generated by the pair  of vectors {(0, l/y), 

(1,-x/y)},hence, allelementsinF*areoftheform{(q, p-qx]y ! p, qe71}. 

Following the same a rgument  as above,  if we express X i in terms of the 
non-cons tan t  eigenfunctions 

Xi=EAipqCOS (2re I(q,P---qx],'I) 
p,q Y ] 

+~B~pqsin(2~zl(q,P~-qx),.)),  (5.9) 
p,q Y 

then 
.+1 [ 
E ~(AX,) z>16rc4 

i = 1  

E Affpq (q2+(p-qxt2t2 
i,p,q \ ~ 7 ~ ]  ] 

(p,q) & (0, 0) 

i,p,q ( p - q X t 2 t 2 ]  -k E B2pq (q2 + ~ - - 1  / J 
(p, q) t (0, 0) 

~16/Z4[ i,p, (A2pq+B2pq) (q2+(p-qxt2 ~ ) ] "  
(p,q)• (0, O) 

Here we have used the algebraic inequalities 

[q2+ (p~)212>=q2+ [2q2+ (~-)2] (p-qx ]2\~/ 

(5.10) 

>=q2 q-l2- (P--qxt2\~ ! 

for (p, q ) e Z  x 77 where (p, q)+(O, 0), O< x< �89 and 1 -x2< y 2. 
On the other  hand, the assumpt ion  that  the flat metric is the induced 

metric  means  
n +  1 n +  1 

5 IVXi[ 2=2 E ~ (e, Xi) 2 
i = 1  M i = 1  M 

n + 1  

=2 E I{e2Xf 
i= lM 

= 2 V(M) (5.11) 

for any o r thonorma l  f rame {el, e2} on M. in part icular,  if we pick e 1 and e 2 to 
be the canonical  directions corresponding to the coordinates  in R e , then 
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n + l  
E ~(e lXi )  2=47z2 E (AZpq+B{po)q 2 

i I M i , p , q  
( p , q ) *  0 

and 
,+1 ( p _ q x ]  2 
E J'(ezX,) 2=4~z2 Z ( A Z p q + B Z p q ) \ ~  l . 

i= 1 M i , p , q  
( p , q ) +  0 

Therefore, (5.10) becomes 

n4 1 ( 
2 ~(AX,)2>=4~2V(M) 1 

i=1  

which proves the assertion. 

+]2)=4rc2(Y+ 1) 
\ Y ' 
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(5J2) 

Remark. The inequality ~ I H I 2 > ~  2 ( y + l  t is sharp, and is achieved by the 
= \ Y /  

isometric embedding of the torus with lattice generated by {(1, 0), (0, y)} via the 

eigenfunctions {cos(2~2), sin(2~2), cos (2~-.~,),3 sin (2y~ ~,)} into R 4 w i t h 2  

and y the coordinates in R 2. We shall point out that in Chen's most  recent 
article [4, V], he proved the inequality ~]S{ 2__>27r 2 under the same assumption 

1 
in our  Proposi t ion 2. Clearly, since - + y > 2 ,  one derives Chen's theorem as a 

Y 
corollary of the above. 

In  dimensions greater than 2, since all compact  flat manifolds are covered 
by some flat torus, and the fact that  all eigenvalues and eigenfunctions of flat 
tori are explicitly computed  as above, it is obvious that a similar argument  will 
yield lower estimates for .[ IUl 2 when M is isometrically embedded in R". 

M 

Appendix 

The firsl eigenvalue of a compact surface with boundary and a generalization of a result of Szeg6 
I[15]. 

If we apply Theorem 1 to a compact surface diffeomorphic to the disk, we find that the first 
eigenvalue (with Neumann condition) is bounded by 8~ • V(M) ~. However, Szeg6's result says 
that for a compact simply connected domain in R 2, the above value can be improved to 
pZrcV(M) 1, where p~1.8412 is the first positive zero of the Bessel function J](r). Both these 
results are sharp. In the first case, we can illustrate the sharpness by taking the domain to be the 
sphere minus a small cap. In the second case, the value is achieved by the circular disk. We offer 
an explanation by generalizing Szeg6's theorem in a more intrinsic manner. 

Theorem. Let M be a compact simply connected smJace with non-positive curvature. Then the first 
eigenvalue of M (with the Neumann condition) is not greater than p2r~ V(M) 1 

Proof. We follow the argument of Szeg6's. By the uniformization theorem, we can assume that our 
surface M is parametrized by the unit disk with metric tensor e 2~'ldzl 2. By the argument of Szeg6, 
we may also assume that ~eZPulrdrdO=~e2;'ujdrdO=O where u 1 and u 2 form an orthonormal 
basis for the first eigenspace of the disk. 

By the mini-max principle, we have therefore 

2~(m)<Ej.((VuO~ +lVu~l~)]E~ (u~ +u~)] , (A.I) 
M M 



290 P. Li and S.-T. Yau 

As the Dirichlet integral is invariant under conformal change, 

(1Vtq 12 + ) Vu2] z) = ~ (I Vu, 12 +lVuzl 2) 
M D 

=p2 5 (u~ + u22). (1.2) 
O 

On the other hand, as u~ + u~ depends only on r, 

I 2 =  

.I (~,~+@=5 S (.~+.~) e2~ 
M 0 0 

0 ~ 0  

I 2 ~  1 r 2 ~  

=(u~+u~)(1)!  ~ dO dr-i)[ (near (u2 +u~) (iti" !" e2"tdOdt) dr. (A.3) 

We claim that 

i Z~e2ptdOdt<=rZ i ~e2ptdOdt. 
0 0 0 0 

In fact, 

d e2ptdOdt r 2 =r 1 ~ e2p.dO_2r 3 ~ e2PtdOdt 
d r o o 0 0 

o dt e2PdO dt. 

Our claim will be a consequence of 

d 2~ 
! d 0 > 0. (1.4) 

d 2 2 ~  

This follows from the fact that M has non-positive curvature which implies dr 2 ! e2*'dO>O. 
t l  

Note that by regularity, dr e2"dOl~:o=O. Hence we have proved our claim and inequality 

(1.3) implies that 

~(uZl+u~) > f e2prdOdr ( u ~ + u 2 ) ( l ) - ~ 7  (u~+u~)r2drl 
. 0 C r  J 

=~ ' e2~ ~(u~+u~). 
O 

Putting this inequality into (A.I) and (A.2) we conclude that 2~(M)<p2~ V(M) 1 
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