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Abstract

We construct a family Kuranishi structure in the Fukaya-Ono format on the moduli space
M • (W/B,L | • ) of open stable J-holomorphic maps to the fibers of an almost-complex de-
generation family W/B that arises from a symplectic cut. The degenerate fiber of the family
Kuranishi structure defines a Kuranishi structure on the moduli space of open stable maps
to a singular symplectic space of the gluing form Y1 ∪D Y2 from a symplectic cut, with a
Lagrangian submanifold L contained in the smooth locus. The same discussion and construc-
tion apply also to relative open Gromov-Witten theory for a relative pair (Z,L;D), where
D is a codimension-2 symplectic submanifold of Z, disjoint from the Lagrangian submani-
fold L. We derive then the degeneration-gluing relations of these Kuranishi structures. The
good flat behavior of the family Kuranishi structure on M • (W/B,L | • ) motivates both a
degeneration axiom and a gluing axiom for open Gromov-Witten invariants of a symplectic
manifold X with a decorated Lagrangian submanifold Lα. When a symplectic cut at the
boundary of a tubular neighborhood of L exists, the construction of open Gromov-Witten
invariants of (X,Lα) can then be put in two steps: (1) use the degeneration axiom and the
gluing axiom to fix the ambiguity in the choice of fundamental chain class; (2) intersection
theory on the specific kind of singular Kuranishi space with the induced decoration on the
moduli space of relative maps to the relative pairs from the degenerate target. Step (1)
is analytical and is dealt with in this work. In the appendix we comment on the equiva-
lence of Li-Ruan/Li’s degeneration formula and Ionel-Parker’s degeneration formula in closed
Gromov-Witten theory.
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Professor Raoul Bott and mirror symmetry - a reminiscence of a curious mind, by C.-H.L..

In the fall 2000, after the semester-long lectures of Prof. Cumrun Vafa on string theory and stringy duality for
both mathematicians and physicists in the spring that year, Prof. Raoul Bott got intrigued in mirror symmetry
and had a conversation with Prof. Yau, the second author. It ended in a surprise e-mail from Prof. Yau to me
one day with an assignment: to teach Prof. Bott what mirror symmetry is about. To “teach” a then-78-year-old
legendary mathematician?! Unable to turn it away, I thus took the task as a new hand, expecting that my
“student” would get bored very soon and I could resume the full focus on real projects. Amazingly, the outlining
lecture for Prof. Bott was extended to weekly meetings for two intensive months in that semester.

Now, stringy duality, including mirror symmetry, is a very broad and technical subject. Its true/best expla-
nation as yet remains largely physical, rather than mathematical. Its foundation lies on quantum field theory
(QFT) and the rigidity of supersymmetric QFT’s, together with numerous other mathematical and physical no-
tions, objects, structures, and moduli problems that are incorporated into superstring theory along its continual
fast-paced developments. With such an origin from physics, statements from stringy duality are unavoidably
mysterious, shocking, and awe-inspiring to mathematicians. Anyone who ventures to lecture on such a subject
before a mathematics master like Prof. Bott should expect to face many legitimate-yet-hard-to-give-a-round-off-
answer questions, making him/her “hanging on the blackboard” forever. Although I focused only on the much
limited topic on toric mirror symmetry, such embarrassing moments still happened no matter how complete-in-
a-small-range I thought I had prepared. Yet, this is indeed how Prof. Bott in turn started to “teach” me what
mirror symmetry is about! He rejected assumptions without sound reasons. He liked to see things derived from
low/dirty scratches rather than from some high end. He constantly asked, “WHY?”. With that energetic mind,
he even attempted to provide his own pictures or explanations after listening to what I had presented. While
each great mind has his/her own way of functioning, which can only inspire and is almost always unlearnable, it
remains quite an experience to see how a great mind functions as he digests raw materials, thinks, polishes, and
comments on them. His questions become a guide toward a deeper understanding.

Prof. Bott impressed me that he is not inclined to read a lot of literatures. This is very different from those
from Yau’s school. Once I brought for the lecture a pile of related papers marked with red under-lines and margin
notes, he stared at them and asked me: “How much time have you left for thinking?” Actually, one reason string
theory is demanding is that no matter how many notions/techniques one has finally brought to his/her mastery
and employs them for fruitful results, there are always things that remain to be learned/understood when one
attempts to reach a fuller/more-comprehensive picture. As so many intelligent people are devoted diligently and
intensively to it, the growth and diversity and broadness of stringy literatures, including both mathematics and
physics, can be terrifying. That particular question of his reminds me of the necessary balance between reading
and independent thinking - a lesson I should keep in mind for good. He once said in a lecture at U.C. Berkeley:
“Doing mathematics should be like paddling a canoe downstream - natural and effortless.” Most of us who study
his works will never be able to reach such a Zen-like level of doing mathematics; yet perhaps this is part of what
he meant to teach us through the insight, beauty, and elegance of his works. Among his far-reaching influences
in mathematics, the orbifold/stack version of his joint work with Prof. Michael Atiyah that gives the Atiyah-Bott
Localization Formula has been used again and again in the exact computations of Gromov-Witten invariants,
a topic within mirror symmetry as well. The formula can be interpreted as a special mathematical version of
Feynman’s path-integral. Its format of localization can be generalized to other equivariant (co)homology theories,
including equivariant K-theory, that can be used for gauge instanton counting for d = 4, N = 2 super Yang-
Mills theory. Such theory (i.e. Seiberg-Witten theory) can be linked, too, to Gromov-Witten theory and mirror
symmetry picture, e.g. with the mirror geometry encoded in the complex geometry of a family of Seiberg-Witten
curves embeddable in a family of Calabi-Yau manifolds!

The news of Prof. Bott’s passing away came in December 2005 while this work was being written with full
vigor. These unforgettable hours with him on mirror symmetry are like a gift from him in his later years —
completely unexpected, yet marking my mind deep. We thus dedicate this work to the memory of Prof. Bott, an
inspiring and forever curious/learning mind.



Degeneration of Kuranishi Structure and Axioms for Open GW-Invariants

0. Introduction and outline.

The moduli space of prestable labelled-bordered Riemann surfaces is an Artin stack locally
modelled on a quotient of manifolds-with-corners. This leads to the singular real codimension-1
boundary in the Kuranishi structureK for the moduii spaceM • (X,L | • ) of open stable maps to
a symplectic manifoldX with boundary confined in a Lagrangian submanifold L. Such boundary
gives rise to an ambiguity in choosing the virtual fundamental chain on the Kuranishi structure
K for defining open Gromov-Witten invariants of (X,L). To fix the ambiguity, an extra data (i.e.
a “decoration”) α on L has to be added to the problem and the induced effect of the decoration
on L to the whole M • (X,L | • ) and K has to be understood. Examples of such decoration
α are a group action on L, a bundle map on the restriction T∗X|L, or a diffeomorphism on a
neighborhood of L in X that leaves L invariant. However, unless this decoration is extendable to
the whole X, there is no obvious way to go from “α on L” to “an associated extra structure on
M • (X,L | • ) and K” to help fix the choice of the virtual fundamental chain [M • (X,Lα) | • ]virt
on K. The main goal of this work is to propose and explain a degeneration axiom and a gluing
axiom under a symplectic cut for open Gromov-Witten invariants of a symplectic manifold with
a decorated Lagrangian submanifold (X,Lα) to take care of the above technical issue for an
important class of (X,Lα) that occurs in the compact version of conifold transitions of Calabi-
Yau 3-folds in open/closed string duality in string theory ([Va1]).

Technically, we construct a Kuranishi structure for moduli spaces in

(1) a family open Gromov-Witten theory for a symplectic/almost-complex degeneration asso-
ciated to a symplectic cut, and

(2) a relative open Gromov-Witten theory for a symplectic/almost-complex manifold X with
a Lagrangian/totally-real submanifold L relative to a codimension-2 symplectic/almost-
complex submanifold D that is disjoint from L.

Notions, constructions, and techniques developed by our predecessors in the various formats/
settings/categories are uniformized/merged into the present study. Such structure extends [F-O]
and [Liu(C)] to a degeneration-family open Gromov-Witten theory and a relative open Gromov-
Witten theory. In the case that L is empty, the study re-writes both the symplecto-analytic
[L-R], [I-P1], [I-P2] and the algebro-geometric [Li1], [Li2] in the symplecto-analytic Fukaya-Ono
format. For the technical step of constructing the transition data in the Kuranishi structure,
we bring in also [Sie1]. How these Kuranishi structures are relevant to the construction of open
Gromov-Witten invariants can be summarized by:

family Kuranishi structure on moduli space of stable maps to
fibers of a degeneration (W,B × L)/B from a symplectic cut

⇓
degeneration and gluing of Kuranishi structures

⇓
axioms for open Gromov-Witten invariants under a symplectic cut

⇓
virtual fundamental chain from specialization and decoration

Compared with closed Gromov-Witten theory, it may look at first surprising that in order
to understand absolute open Gromov-Witten theory one has to understand both degeneration
and relative open Gromov-Witten theory as well. It could be true that this is not the only
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way. However, from the viewpoint of algebraic geometry, the route we take in this project,
of which the current work is a part, is an elaborate adoption of the deformation-specialization
technique already long in use in enumerative (algebraic) geometry; (see, e.g. [Fu: Sec. 10.4] for
an introduction). Furthermore, the conjectural open/closed string duality on Calabi-Yau three-
folds that differ by an extremal transition ([Go-V], [O-V1], [O-V2], [Va1]) almost selects/specifies
for us this route uniquely among other possible candidate constructions. Particularly for the
motivation and the constant strong drive behind, we owe the credits of this work to enumerative
algebraic geometers and string theorists – especially, our teachers Joe Harris and Cumrun Vafa
and their respective school. The current work is a step toward a mathematical understanding
of the compact version of the open/closed string duality for Calabi-Yau 3-folds in [Go-V], [O-
V2], and [Va1] at the level of moduli spaces/stacks of stable maps, cf. the diagram in [L-Y2:
Introduction]. (See also [D-F] for related discussions.)

Convention. Standard notations, terminology, operations, facts in (1) symplectic geometry; (2)
algebraic geometry; (3) Sobolev theory; (4) topology can be found respectively in (1) [MD-S2],
[G-S], [Woo]; (2) [Hart], [G-H]; (3) [MD-S3: Appendix. B], [Au: Chap. 2 - Chap. 3]; (4) [Sp].

· All dimension, codimension, rank, index, ..., etc. are with respect to R unless otherwise
noted.

· | • | stands for the cardinality of • when • is a finite set or a finite group, for the absolute
value or norm of • when • is a real or complex number or a vector, for the sum of the
entries when • is a vector of integers referring to some combinatorial quantity (like number
of marked points or contact order).

· The complex projective space of complex dimension n is denoted by Pn.

· In denoting a stable map f : Σ → (X,L) to a symplectic space X with a Lagrangian
submanifold L, it is assumed that f(∂Σ) ⊂ L. Similarly, for a relative map f : Σ →
(Z,L;D). When L is empty, so is ∂Σ.

· Properties of a map from a nodal (bordered) curve Σ to another is imposed on its nor-
malization Σ̃; e.g. a C∞ map f from Σ to Y := Y1 ∪D Y2 is a continuous map f : Σ → Y
such that its lift to Σ̃0 is a C∞ map to either Y1 or Y2, where Σ0 runs over all irreducible
components of Σ.

· Almost-complex (resp. complex) structures on different target (resp. domains) spaces are
usually denoted by the same J (resp. j) unless the distinction is crucial to the discussion.

· The term “orbifolds” and “sub-orbifolds” are not restricted only to smooth ones.

· Omitted superscripts or subscripts are often denoted by · , • or · , • .

· Commonly used notations for different objects that have no chances of confusion:

– C and R : as the complex plane and the real line in differential geometry vs. as ground
fields in algebraic geometry;

– curve class β vs. isomorphism (α, β);

– isomorphism α of curves or graphs vs. decoration α on a Lagrangian/almost-complex
submanifold;

– universal curve C over different bases vs. category C;
– genus g vs. map g;

– index set I vs. gluing map I• that identifies subsets.
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Outline.

1. Symplectic cut and the direct system of expanded degenerations in the almost-
complex category.

1.1 Symplectic cut and the associated expanded degenerations.

1.2 Symplectic/almost-complex relative pairs and their expansions.

2. Prestable labelled-bordered Riemann surfaces.

3. The moduli spaceM(g,h),(n,~m)(W/B,L | [β], ~γ, µ) of stable maps.

3.1 Maslov index of a map to a singular space or a relative pair.

3.2 Monodromy effect and the choice of curve class data in H2.

3.3 The moduli spaceM(g,h),(n,~m)(W/B,L | [β], ~γ, µ) of stable maps to fibers of (Ŵ , L̂)/B̂.

4. The moduli space W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) of stable W̌ 1,p-maps.

4.1 The moduli space W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) of stable W̌ 1,p-maps to (W [k], L[k]),

its relative tangent and relative obstruction bundles.

4.2 The moduli space W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) of stable W̌ 1,p-maps to fibers of (Ŵ , L̂)/B̂,

the relative W̌ 1,p-tangent-obstruction fibration complex.

5. Construction of a Kuranishi structure forM(g,h),(n,~m)(W/B,L | [β], ~γ, µ).
5.1 Family Kuranishi structure modelled in the category Cspsccw/C.
5.2 Local transversality and locally regular almost-complex structures.

5.3 Construction of family Kuranishi neighborhoods.

5.4 Construction of a family Kuranishi structure.

6. The moduli spaceM(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s) of relative stable maps and
its Kuranishi structure.

6.1 The moduli spaceM(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s) of relative stable maps.

6.2 A Kuranishi structure forM(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s).

7. Degeneration and gluing of Kuranishi structures and axioms of open Gromov-Witten invariants
under a symplectic cut.

7.1 The degeneration-gluing relations of Kuranishi structures.

7.2 A degeneration axiom and a gluing axiom for open Gromov-Witten invariants under
a symplectic cut.

Appendix. The equivalence of Li-Ruan/Li’s degeneration formula and Ionel-Parker’s
degeneration formula.
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1 Symplectic cut and the direct system of expanded degenera-

tions in the almost-complex category.

A direct system of expanded degenerations of almost-complex spaces that merges the symplectic
construction (via multi- symplectic cut) in [I-P2: Sec. 2 and Sec. 12] and [L-R: Sec. 3] with the
algebro-geometric construction (via blow-ups and blow-downs) in [Li: Sec. 1] without using the
full language of stacks is given in this section. The fibers, up to a relative isomorphism, of the
families in the system will occur as the targets of open stable maps in the problem. The same
construction gives also a direct system of expanded relative pairs (cf. [I-P1: Remark 7.7], [L-R:
Sec. 4]; [Gr-V: Sec. 2], [Li1: Sec. 4.1]) needed for relative open Gromov-Witten theory.

1.1 Symplectic cut and the associated expanded degenerations.

1.1.1 Expanded degenerations from a symplectic cut.

Symplectic cut and a compatible almost-complex degeneration.

Symplectic cut was introduced in [Le] and used in [I-P1], [I-P2], and [L-R]. We review it here to
fix notations. Given a free Hamiltonian S1 action on a connected open set U of a symplectic
manifold X that separates X. Fix a Hamiltonian function h : U → (−l, l) of the S1-action
and let X − h−1(0) = X+

∐
X−. Then the manifold with boundary X+ := X+ ∪ h−1(0) (resp.

X− := X−∪h−1(0)) gives rise to a symplectic manifold Y1 (resp. Y2) by taking the quotient of the
S1-action on the boundary, and the boundary h−1(0) descends to a codimension-2 symplectic
submanifold D in Y1 (resp. Y2). Let Y be the singular symplectic space from gluing Y1 and
Y2 canonically along D. Then, there is a natural map ξ : X → Y that is modelled on a
symplectic reduction (and hence an S1-bundle) over the singular locus D := Y1 ∩ Y2 on Y and
is a symplectomorphism from X − ξ−1D to Y −D.

Definition 1.1.1.1 [symplectic cut]. With an abuse of language and a different naming than
the original work [Le] of Lerman, we will call both the map ξ : X → Y = Y1 ∪D Y2 and the
singular symplectic space Y a symplectic cut of X.

Given a symplectic cut ξ : X → Y = Y1 ∪D Y2, one can identify a small neighborhood of D
in Y1 (resp. Y2) with a neighborhood of the zero-section of a complex line bundle L (resp. the
dual complex line bundle L∗) over D and construct a complex 1-parameter family π : W → B
of symplectic spaces Wλ := π−1(λ), λ ∈ B, with a compatible almost-complex structure JWλ

such that W0 is symplecto-isomorphic to Y , with the restriction of JW0 to a neighborhood of
D almost-complex-isomorphic to the gluing of a neighborhood of the zero-section in L and a
neighborhood of the zero-section in L∗ along D, and Wλ, λ 6= 0, is symplecto-isomorphic to X.
Here B is a small neighborhood of 0 in C and the total space of L and L∗ are equipped with
an U(1)-invariant almost-complex structure that combines an almost-complex structure JD on
D and the complex structure on fiber C via a U(1)-connection on L and L∗. See [I-P2: Sec. 2]
(and also [Go] and [MC-W]) for an explicit construction. The total space W is equipped with a
symplectic structure ωW and a compatible almost-complex structure JW that gives (ωWλ

, JWλ
)

when restricted to Wλ. We will denote the family π : W → B also by W/B as in algebraic
geometry and call W/B a compatible almost-complex degeneration associated to the symplectic
cut ξ : X → Y .

Fix and denote a local fiber complex coordinate of L (resp. L∗) by w (resp. w′) and treat
both L and L∗ as a U(1)-bundle. Let 0 < ε < 1 be sufficiently small. Then, possibly after
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shrinking, we may assume that

B = {λ ∈ C : |λ| < ε2/2} .

The following defines a subset of L⊕ L∗

(L⊕ L∗)≤ε = {( · , w,w′) : |w| ≤ ε , |w′| ≤ ε , |ww′| ≤ ε2/2} .

It admits a fibration (L ⊕ L∗)≤ε → B defined by ( · , w,w′) 7→ ww′. With this fibration and an
adjustment in the construction of W , there is a decomposition

W = (B × U1) ∪ (L⊕ L∗)≤ε ∪ (B × U2)

over B, where B is taken to be {λ ∈ C : |λ| < ε2/2}, U1 = Y1−(ε-neighborhood of the zero-
section in L), U2 = Y2−(ε-neighborhood of the zero-section in L∗), and the gluing is along the
related boundary circle-bundle over B×D in a way that respects the fibration of and the U(1)-
action on these boundaries over B×D. This decomposition allows us to construct an expanded
almost-complex degeneration associated to W/B, which we explain in the next two themes.

Local expanded degenerations in the almost-complex category.

The expanded degeneration around D in the almost-complex category can be described by a
finite collection of almost-complex manifolds together with a collection of gluing isomorphisms
between open dense almost-complex submanifolds therein as follows.

Let L be a complex line bundle on the almost-complex manifold with the C×-structure
reduced to a U(1)-structure, and let α be a U(1)-connection on L. This induces a unique U(1)-
structure on the complex dual line bundle L∗ to L on D with a U(1)-connection α∗. Denote the
almost-complex structure on D be JD; then the pairs (JD, α) and (JD, α

∗), together with the
fiberwise complex structures, determines almost-complex structures JL, JL∗ on the total space
(still denoted by the same notation) of L and L∗ respectively. JL and JL∗ together induce an
almost-complex structure JL⊕L

∗ on (the total space of) L⊕ L∗.
Denote the zero-section of L or L∗ by 0 and the projection map L⊕L∗ → L (resp. L⊕L∗ →

L∗) by pr (resp. pr′). Fix a system of local trivializations and U(1)-valued transition functions
for L. They induce a system of local trivializations and U(1)-valued transition functions on L∗,
and then a system of local trivializations and transition functions on L ⊕ L∗. With respect to
this, the map π : L ⊕ L∗ → C given by (x;w,w′) 7→ ww′ is well-defined and compatible with
JL⊕L

∗ , where (x,w) (resp. (x,w′)) are local coordinates for L (resp. L∗) in the specified local
trivialization. Let Mλ ⊂ L ⊕ L∗ be the preimage π−1(λ) of λ ∈ C. For λ ∈ C − {0}, Mλ is
isomorphic to L − 0 (≃ L∗ − 0) as an almost-complex submanifold. For λ = 0, M0 = L ∨ L∗,
the union of L and L∗ with the zero-sections glued by the canonical isomorphism with D. Thus,
the family π : L⊕ L∗ → C is a smoothing of M0 over D in the almost-complex category.

Notation 1.1.1.2 [Mλ, λ 6= 0, from gluing ]. Associated to the U(1)-structure on L and L∗ is
a well-defined norm function | · | on fibers of L and L∗. Let L>δ = { |w| > δ } ⊂ L, L∗

>δ =
{ |w′| > δ } ⊂ L∗, and, similarly, for L≤δ, L[δ1 , δ2], L

∗
≤δ L∗

[δ1 , δ2]
, · · ·, etc.. These bundles over

D are equipped with the U(1)-connection (still denoted by α and α∗) from the restriction of
that on L and L∗ respectively. The local fiberwise maps (x,w′) 7→ (x,w) = (x, λ/w′), glue to a
bundle isomorphism

ϕλ : L∗
[|λ|/δ , δ]

∼−→ L[|λ|/δ , δ] , (x,w′) 7→ (x,w) = (x, λ/w′)

5



for 0 ≤ |λ| < δ2 such that ϕ∗
λ α = −α∗. Thus, ϕλ is an isomorphism in the category of almost-

complex manifolds as well. In terms of this,Mλ, λ 6= 0, is the almost-complex manifold obtained
from gluing L>|λ|/δ and L∗

>|λ|/δ, with |λ| < δ2, by ϕλ. The maps

θλ : L>0 −→ Mλ and θ′λ : L∗
>0 −→ Mλ

( · , w) 7−→ ( · , w, λ
w ) ( · , w′) 7−→ ( · , λ

w′ , w′)

are almost-complex isomorphisms. We will denote the restriction of θλ (resp. θ′λ, θλ ∪ θ′λ) to the
subsets L[δ1,δ2], ..., etc. of L>0 (resp. L∗

[δ′1,δ
′
2]
... of L∗

>0, L[δ1,δ2] ∪L∗
[δ′1,δ

′
2]
of L>0∪L∗

>0) by θλ ; [δ1,δ2]

(resp. θ′λ ; [δ′1,δ
′
2]
, θλ ; [δ1,δ2] ∪ θ′λ ; [δ′1,δ

′
2]
).

For k ∈ Z≥0, let B[k] = Ck+1, with coordinates (λ0, . . . , λk), and pri : B[k] → C be
the i-th coordinate projection map. Let (L ⊕ L∗)i = pr∗i (L ⊕ L∗), i = 0, . . . , k, be the
pulled-back of π : L ⊕ L∗ → C to B[k] via pri. The local coordinates of (L ⊕ L∗)i will
be denoted by (λ0, . . . , λi, . . . , λk;x,wi, w

′
i) with λi = wiw

′
i. Let (L ⊕ L∗)0i := (L ⊕ L∗)i −

pr∗iL
∗, which is {wi 6= 0} in local coordinates, and (L ⊕ L∗)∞i := (L ⊕ L∗)i − pr∗iL, which is

{w′
i 6= 0} in local coordinates. We will use coordinates (λ0, . . . , λi, . . . , λk; x, wi, λi/wi) and

(λ0, . . . , λi, . . . , λk; x, λi/w
′
i, w

′
i) respectively for these two open dense almost-complex sub-

manifolds of (L⊕ L∗)i. In terms of these, the following map

(L⊕ L
∗)∞i−1

ϕi−1,i

−→ (L⊕ L
∗)0i

(λ0, . . . , λi−1, λi, . . . , λk;x,
λi−1

w′
i−1

, w′
i−1) 7−→ (λ0, . . . , λi−1, λi, . . . , λk;x,

1
w′

i−1
, λiw

′
i−1)

is an isomorphism in the almost-complex category for i = 1, . . . , k. The system

(
{(L ⊕ L∗)i}ki=0 , {ϕ i−1, i}ki=1

)

of almost-complex manifolds and gluing data determines an almost-complex manifold (L⊕L∗)[k]
that fibers over B[k].

Definition 1.1.1.3 [expanded degeneration of (L⊕L∗)/C]. We will call the family of almost-
complex spaces as constructed above, π[k] : (L⊕L∗)[k]→ B[k] (in short hand: (L⊕L∗)[k]/B[k]),
the k-th expanded degeneration of the degeneration π : L⊕ L∗ → C.

We will use the above gluing construction of (L⊕ L∗)[k]/B[k] as the foundation for the rest
of the discussion on expanded degenerations.

The natural maps from pull-backs can be re-scaled to give maps p̃[k]i : (L ⊕ L∗)i → L⊕ L∗

defined by

(λ0, . . . , λi−1, λi, λi+1, . . . , λk;x, wi, w
′
i)

7−→ (λ0 · · · λk;x, (λ0 · · · λi−1)wi, (λi+1 · · · λk)w′
i)

with wiw
′
i = λi , for i = 0, . . . , k. These maps glue to a map p̃[k] : (L ⊕ L∗)[k] → L ⊕ L∗ over

p[k] : B[k]→ C in the almost-complex category.
All the gluing isomorphisms ϕ i−1, i, i = 1, . . . , k, are maps over B[k]. Thus, the fibers of

π[k] : (L ⊕ L∗)[k] → B[k] can be described by the corresponding gluing over a fixed values of
~λ = (λ0, . . . , λk), as follows. First, note that the ϕλ, λ ∈ C×, defined in Notation 1.1.1.2 gives
as well an isomorphism ϕλ : L∗

>0 → L>0 in the almost-complex category. The gluing of L and
L∗ by ϕλ gives a ruled (i.e. P1-fibered) manifold ∆ over D with a well-defined almost-complex
structure that contains L and L∗ as open almost-complex submanifolds. Different choices of λ
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give rise to isomorphic almost-complex manifolds over D with a such isomorphism provided by
the identity map on L (and hence on ∆). We will take ∆ as from the gluing ϕ1. Denote the
zero-section 0 of L (resp. L∗) by D0 (resp. D∞) in ∆. Let (L ∨ L∗)i := Li ∨ L∗

i , i = 0, . . . , k′,
be identical copies of L ∨ L∗ and (L ∨ L∗)[k′] be the gluing of (L ∨ L∗)i, i = 0, . . . , k′, by
ϕi;1 : L

∗
i−1 → Li, (x,w

′
i−1) 7→ (x,wi) = (x, 1/w′

i−1). Then, as an almost-complex space,

(L ∨ L∗)[k′] = L ∪ 0=D1,∞ ∆1 ∪D1,0=D2,∞ · · · ∪Dk′−1,0=Dk′,∞
∆k′ ∪Dk′,0=0 L∗ ,

where (∆i;Di,0,Di,∞) = (∆;D0,D∞). There is a natural map (L ∨ L∗)[k′] → L ∨ L∗ that

restricts to the identity map on L and L∗, and collapses all ∆i to D. The natural Gm := C×-
action on L extends to a Gm-action on ∆ as a group of automorphisms of ∆ over D in the
almost-complex category. For σ ∈ Gm, the induced action coincides with the composition
ϕσ ◦ ϕ1

−1 on ∆ − D0 ∪ D∞. It leaves D0 ∪ D∞ fixed. The relative automorphism group

Aut ((L ∨ L∗)[k′]/L ∨ L∗) in the almost-complex category is the product
∏ k′

i=1Aut (∆i/D) =

(C×) k
′
. Now let I = {i0, . . . , ik′} be a subset of {0, . . . , k} and ḢI be the locally closed

submanifold of B[k], whose points have coordinates λi = 0 exactly when i ∈ I. B[k] is the

disjoint union of ḢI , where I runs over all the subsets of {0, . . . , k}. Let ~λ = (λ0, . . . , λk) ∈ ḢI .

Then, π[k]−1(~λ) is the almost-complex space from the system

(
{Mλi

}ki=0 , {ϕ i−1, i ;~λ
}ki=1

)
,

where Mλi
= {wiw

′
i = λi} ⊂ Li ⊕ L∗

i and ϕ
i−1, i ;~λ

: Mλi−1
− Li−1 → Mλi

− L∗
i is given

by (λi−1/wi−1, w
′
i−1) 7→ (wi, λi/wi) = (1/w′

i−1, λiw
′
i−1). This system can be reduced to the

following system (
{Mλ ij

}k′+1
j=−1 , {ϕ̃ j−1, j ;~λ

}k′+1
j=0

)
,

whereMλ i−1
= L0−{0} andMλ ik′+1

= L∗
k−{0} by convention, and ϕ̃ j−1, j ;~λ :Mλ ij−1

−Lij−1 →
Mλ ij

−L∗
ij is the composition ϕij−1 , ij ◦ · · · ◦ ϕij−1+1 , ij−1+2 ◦ ϕij−1 , ij−1+1 with ϕi−1 ,0 and ϕk , k+1

being identity maps by convention.
In summary,

Lemma 1.1.1.4 [natural map and its fibers]. Let p[k] : B[k] → C be the product map
defined by (λ0, . . . , λk) 7→ λ0 · · · λk. Then there is a natural map p̃[k] : (L⊕ L∗)[k]→ (L⊕ L∗)
in the almost-complex category that covers p[k]. The fiber of π[k] at ~λ ∈ ḢI is isomorphic
to Mλ0 ···λk

, if I = ∅, and to (L ∨ L∗)[k′], if I = {i0, . . . , ik′} is non-empty. In particular,
p̃[k] is an isomorphism when restricted to the fiber over a point in the complement of complex
codimension-2 coordinate subspaces.

Expanded almost-complex degenerations associated to W/B.

Given a fibered almost-complex space W/B from a symplectic cut as constructed above, recall
the decomposition over B

W = (B × U1) ∪ (L ⊕ L∗)≤ε ∪ (B × U2) .

Let
U1[k] := pr∗0((B × U1)/B) ≃ B[k]× U1 ,

U2[k] := pr∗k((B × U2)/B) ≃ B[k]× U2 ,

and define the ε-truncation (L⊕ L∗)[k]≤ε of (L⊕ L∗)[k] as follows.
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· First consider the preliminary truncation of (L⊕ L∗)0 and (L ⊕ L∗)k defined respectively
by

U ′
0 := {|w0| ≤ ε} ⊂ (L⊕ L∗)0 and U ′

k := {|w′
k| ≤ ε} ⊂ (L⊕ L∗)k .

· Then the pair of gluing maps

(ϕi−1,i ◦ · · · ◦ ϕ0,1 , ϕi,i+1 ◦ ◦ · · · ◦ ϕ−1
k−1,k ) ,

from (U ′
0,U ′

k) to U ′
0, (L ⊕ L∗)i, i = 1, . . . , k − 1, and U ′

k respectively induces a truncation
thereon defined by

U0 = { (λ0, . . . , λk;x, w0, w
′
0) ∈ (L⊕ L∗)0 : |w0| ≤ ε , |w′

0| ≤ ε
|λ1 ···λk| } ,

Ui = { (λ0, . . . , λk;x, wi, w
′
i) ∈ (L ⊕ L∗)i : |wi| ≤ ε

|λ0 ···λi−1| , |w
′
i| ≤ ε

|λi+1 ···λk| } ,
i = 1 , . . . , k − 1 ,

Uk = { (λ0, . . . , λk;x, wk, w
′
k) ∈ (L ⊕ L∗)k : |wk| ≤ ε

|λ0 ···λk−1| , |w
′
k| ≤ ε } .

· The gluing map ϕi−1,i sends Ui−1 ∩ (L ⊕ L∗)∞i to Ui ∩ (L ⊕ L∗)0i . Thus the collection
{ϕi−1,i}ki=1 of gluing maps glue the collection {Ui}ki=0 of almost-complex manifolds to an
almost- complex manifold over B[k], which will be denoted (L ⊕ L∗)[k]≤ε and called the
ε-truncation of (L⊕ L∗)[k].

Then the gluing W = (B × U1) ∪ (L ⊕ L∗)≤ε ∪ (B × U2) induces via pr∗1 and pr∗k a canonical
gluing of

U1[k] ∪ (L⊕ L∗)[k]≤ε ∪ U2[k] =: W [k]

over B[k], that goes with a map π[k] : W [k]→ B[k]. Here we shrink and re-define B[k] to be

B[k] := {(λ0, . . . , λk) : |λi| < ε2/2 , i = 0 , . . . , k} .

The fiber of U1[k], (L⊕L∗)[k]≤ε, and U2[k] over the same point in B[k] glue to an almost-complex
space.

Definition 1.1.1.5 [expanded degeneration of W/B]. The family π[k] : W [k] → B[k], in
short W [k]/B[k], of almost-complex spaces is called an expanded almost-complex degeneration
of W/B.

Let I ⊂ {1, . . . , n} be non-empty. Then it follows from the construction that, for ~λ ∈
B[k] ∩ ḢI , the fiber almost-complex space W [k]~λ := π[k]−1(~λ) is almost-complex-isomorphic to

Y[k′] := Y1 ∪D=D1,∞ ∆1 ∪D1,0=D2,∞ · · · ∪Dk′−1,0=Dk′,∞
∆k′ ∪Dk′,0=D Y2

with k′ = |I|. By construction, there is an almost-complex morphism

p̃[k] : W [k]/B[k] −→ W/B ,

cf. Lemma 1.1.1.4.

Neck-trunk decompositions of W [k]/B[k] and re-forgings.
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We introduce here neck-trunk decompositions of W [k]/B[k] and re-forging morphisms for the
discussion of rigidification in Sec. 4.2 and the gluing construction of a Kuranishi neighborhood
in Sec. 5.3.

Recall 0 < ε < 1 and consider the decomposition over B :

(L⊕ L∗)≤1/ε = (L⊕ L∗)[ε,1/ε] ; 1 ∪ (L⊕ L∗)≤ε ∪ (L⊕ L∗)[ε,1/ε] ; 2 ,

where
(L⊕ L∗)[ε,1/ε] ; 1 = {( · , w,w′) : ε ≤ |w| ≤ 1/ε , |ww′| ≤ ε2/2} ,
(L⊕ L∗)[ε,1/ε] ; 2 = {( · , w,w′) : ε ≤ |w′| ≤ 1/ε , |ww′| ≤ ε2/2} ,

all three components fiber over B via ( · , w,w′) 7→ ww′, and the gluing is along their horizonal
boundary over B. Let

Neck [k]i = the image of pr∗i ((L ⊕ L∗)≤ε) in W [k] , i = 0 , . . . , k ,

Trunk [k]i;1 = the image of pr∗i ((L ⊕ L∗)[ε,1/ε] ; 1) in W [k] , i = 1 , . . . , k ,

Trunk [k]i;2 = the image of pr∗i ((L ⊕ L∗)[ε,1/ε] ; 2) in W [k] , i = 0 , . . . , k − 1 .

Then all these spaces fiber over B[k]. Furthermore, since 0 < ε < 1 and |λi| < ε2 for all
~λ = (λ0, . . . , λk) ∈ B[k], one has

Trunk [k]i−1;2 = Trunk [k]i;1 =: Trunk [k]i and

W [k]/B[k] =

(U1[k] ∪ Neck [k]0 ∪ Trunk [k]1 ∪ Neck [k]1 ∪ · · · ∪ Trunk [k]k ∪ Neck [k]k ∪ U2[k] )/B[k] ,

where the gluings are along the horizontal boundary of each component over B[k] and are all
induced by the gluing maps ϕi−1,i’s. We shall call this a (ε-)neck-trunk decomposition, Neck [k]i
a (ε-)neck region, and Trunk [k]i a (ε-)trunk region of W [k]/B[k]. When in need of expressing ε
explicitly, we will denote a neck (resp. trunk) by Neck ε[k]i (resp. Trunk ε[k]i).

Denote the fiber of Neck [k]i, Trunk [k]j , i = 0 , . . . , k, j = 1 , . . . , k, over ~λ ∈ B[k] by
Neck [k]

i , ~λ
, Trunk [k]

j , ~λ
respectively. Then W [k]~λ is divided to a gluing-along-boundary:

W [k]~λ =

U1 ∪ Neck [k]0 , ~λ ∪ Trunk [k]1 , λ ∪ Neck [k]1 , λ ∪ · · · ∪ Trunk [k]k , λ ∪ Neck [k]k , λ ∪ U2 .

Recall Notation 1.1.1.2 and that W [k]~0 = Y[k] and denote Di = ∆i ∩ ∆i+1, i = 0, . . . , k. Let
~λ ∈ B[k] and 0 ≤ i0 < · · · < ik′ ≤ k be the associated indices so that λij = 0. Then there are
canonical almost-complex morphisms built-in to the construction:

Neck [k]i ,~0 = Neck [k]i , ~λ , Trunk [k]j ,~0 = Trunk [k]j , ~λ , i , j ∈ {i0, . . . , ik′} ;
pr∗i (θλi ; [

√
|λi|,ε]

∪ θ′
λi , [
√

|λi|,ε]
) : Neck [k]i ,~0 −N√|λi|

(Di)→ Trunk [k]i , ~λ ,

pr∗i (θλi ; [|λi|/ε,ε] ∪ θ′λi , [|λi|/ε,ε]
) : Neck [k]i ,~0 −N|λi|/ε(Di)→ Trunk [k]i , ~λ , i /∈ {i0, . . . , ik′} ;

pr∗jθλj ; [ε,1/ε] = pr∗j−1θ
′
λj−1 ; [ε,1/ε] : Trunk [k]j ,~0

∼→ Trunk [k]j , ~λ , j /∈ {i0, . . . , ik′} .

Here N · (Di) is the (open) tubular neighborhood of Di in Y[k] = W [k]~0 of the specified radious
from the norm on L and L∗. The collection of these morphisms glue/descend to two almost-
complex morphisms

I~λ : Y[k] −∪ k
i=0N

√
|λi|(Di) −→ W [k]~λ ,

I~λ,ε : Y[k] −∪ k
i=0N|λi|/ε(Di) −→ W [k]~λ ,
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both of which shall be called a re-forging morphism from W [k]~0 to W [k]~λ. Note that I~λ glues

along the paired boundary of the connected components of Y[k]−∪ k
i=0N

√
|λi|(Di) while I~λ,ε glues

along the paired boundary of the connected components of Y[k] − ∪ k
i=0N|λi|/ε(Di) but along a

collar of non-paired boundary associated to i /∈ {i0 , . . . , ik′}.

Remark 1.1.1.6 [trunk region]. The discussion implies that Trunk [k]j ≃ B[k] × Trunk [k]j ,~0
canonically for j = 1 , . . . , k.

Remark 1.1.1.7 [gluing map]. With Notation 1.1.1.2,

I~λ,ε ◦ pr
∗
i

(
ϕλi

: L∗
[|λi|/ε , ε] −→ L[|λi|/ε , ε]

)
= IdNeck ε[k]i , ~λ

,

where both L and L∗ are regarded as canonically embedded in L⊕ L∗.

Remark 1.1.1.8 [neck-trunk decomposition of W [k]~λ]. Let 0 ≤ i0 < · · · < ik′ ≤ k be the

associated indices to a ~λ ∈ B[k] so that λij = 0. Then,
(
U1 ∪ Neck [k]0 , ~λ ∪ Trunk [k]1 , ~λ ∪ Neck [k]1 , ~λ ∪ · · · ∪ Trunk [k]i0 , ~λ

)

⋃
Neck [k]i0 , ~λ

⋃ (
Trunk [k]i0+1 , ~λ ∪ Neck [k]i0+1 , ~λ ∪ · · · ∪ Trunk [k]i1 , ~λ

)

⋃
Neck [k]i1 , ~λ

⋃ · · · ⋃ (
Trunk [k]ik′−1+1 , ~λ ∪ Neck [k]ik′−1+1 , ~λ ∪ · · · ∪ Trunk [k]ik′ , ~λ

)

⋃
Neck [k]ik′ , ~λ

⋃ (
Trunk [k]ik′+1 , ~λ ∪ Neck [k]ik′+1 , ~λ ∪ · · · ∪ Trunk [k]k , ~λ ∪ Neck [k]k , ~λ ∪ U2

)

defines a neck-trunk decomposition of W [k]~λ ≃ Y[k′].

1.1.2 The pseudo-Gm[k]-action on W [k]/B[k] in almost-complex category.

Let Gm[k] := C× × · · · × C× (k times) with coordinates (σ1, . . . , σk). It pseudo-acts1 on B[k]
by

(λ0, . . . , λi, . . . , λk) 7−→ (σ0σ
−1
1 λ0, . . . , σiσ

−1
i+1λi, . . . , σkσ

−1
k+1λk) ,

where σ0 = σk+1 = 1 by convention. It admits a lifting to a pseudo-action on W [k]/B[k] as
follows.

Consider first the lifting of this pseudo-action to (L ⊕ L∗)i, i = 0, . . . , k, over B[k] by

(λ0, . . . , λi, . . . , λk;x,wi, w
′
i)

7−→ (σ0σ
−1
1 λ0, . . . , σiσ

−1
i+1λi, . . . , σkσ

−1
k+1λk;x, σiwi, σ

−1
i+1w

′
i) .

This is well-defined since (σiwi)(σ
−1
i+1w

′
i) = σiσ

−1
i+1λi. This pseudo-action leaves both (L ⊕ L∗)0i

and (L⊕L∗)∞i invariant, and it follows from the explicit expression in Sec. 1.1.1 that the gluing
map ϕi−1,i : (L ⊕ L∗)∞i−1 → (L ⊕ L∗)0i is Gm[k]-equivariant, for i = 1, . . . , k. Consequently, the
pseudo-Gm[k]-actions on (L⊕L∗)i, i = 0, . . . , k, glue to a pseudo-Gm[k]-action on (L⊕L∗)[k] that
lifts the pseudo-Gm[k]-action on B[k]. This pseudo-action embeds Gm[k] into Aut ((L⊕L∗)[k]) in
the almost complex category; the isotropy group of ~λ ∈ B[k] under this pseudo-action coincides

with Aut (π[k]−1(~λ)/L ∨ L∗).
1For non-algebraic-geometers: here Gm means the multiplicative group of the ground field (e.g., C× in C in

our case) and is a standard notation from algebraic geometry. Also, given a group G with the identity e, a
pseudo-group action of G on a space M is a map from a neighborhood of e×M in G×M to M that satisfies all
the group-action axioms whenever items in the axioms are defined.
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By construction, the pseudo-Gm[k]-action on (L⊕L∗)[k]/B[k] descends to the trivial action
on (L ⊕ L∗)/C under (p̃[k],p[k]). It follows that Gm[k] leaves (L ⊕ L∗)[k]≤ε invariant and its
restriction to the horizontal boundary ∂/B[k](L⊕L∗)[k]≤ε = B[k]× (∂U1∐∂U2) of (L⊕L∗)[k]≤ε

over B[k] acts purely on the B[k]-factor. This together with the gluing form W [k]/B[k] =
(U1[k] ∪ (L ⊕ L∗)[k]≤ε ∪ U2[k])/B[k] of W [k]/B[k] implies that the pseudo-Gm[k]-action on
(L⊕L∗)[k]≤ε extends to a pseudo-Gm[k]-action onW [k]/B[k] such that its restriction on U1[k] =
B[k]× U1 and U2[k] = B[k]× U2 acts only on the B[k]-factor.

The following lemma follows immediately from the gluing construction of W [k]/B[k] in
Sec. 1.1.1.

Lemma 1.1.2.1 [Tk-action on W [k]/B[k]]. The restriction of the pseudo-Gm[k]-action on
W [k]/B[k] to its maximal compact subgroup Tk := U(1)k gives an honest Tk-action onW [k]/B[k].
This Tk-action leaves the neck-trunk decomposition of W [k]/B[k] invariant; the two re-forging
morphisms I~λ and I~λ,ε are equivariant with respect to the stabilizer of the fiber W [k]~λ under the

Tk-action on W [k].

1.1.3 The topological quotient space Ŵ/B̂ associated to W/B.

We now construct a topological space Ŵ/B̂ with charts that accommodates all the fibers
{Wλ}λ∈B ∪ {Y[k]}k∈Z>0

that occur in an expanded degeneration of W/B. For notation, given
fibered spaces W ′ over B′ and W ′′ over B′′, a map ϕ : W ′/B′ → W ′′/B′′ means a map
ϕ : W ′ → W ′′ that is descendable to a map ϕ : B′ → B′′ on the base. Similarly, for a

pseudo-map2 W ′/B′ →W ′′/B′′.
Recall the base B[k] with coordinates (λ0, . . . , λk) from the product Ck+1. To make the

discussion more specific/concrete, for a subset I = { i0, . . . , ik′ } of { 0, . . . , k } let B[k]
ε2/4
I be

the affine coordinate subspace of B[k], whose points have coordinates λi = ε2/4 for i /∈ I and

denote π[k]−1(B[k]
ε2/4
I ) by W [k]

B[k]
ε2/4
I

. Then one has a pseudo-embedding of almost-complex

spaces via the composition

ϕk′,k;I : W [k′]/B[k′]
∼−→ W [k]

B[k]
ε2/4
I

/B[k]
ε2/4
I →֒W [k]/B[k] ,

2Here a pseudo-map f : A1 → A2 means a map f from a subset of A1 to A2. Similarly, a pseudo-embedding
f : A1 → A2 means a pseudo-map f : A1 → A2 that is an embedding on where f is defined. For non-
algebraic-geometers: the reason for introducing such notion here is as follows. In the full construction of a
moduli stack via the Isom -functor, for two families of geometric objects in question (e.g. all the almost-complex
isomorphism classes of fibers that occur in expanded degenerations of W/B) π1 : W1/B1 and π2 : W2 → B2,
one constucts/defines a universal ”overlapping” family π : W → Isom (π1, π2). Encoded into the construction
of the family π are natural morphisms p1 : Isom (π1, π2) → B1 and p2 : Isom (π1, π2) → B2, and tautological
isomorphisms p∗1W1 ≃ W ≃ p∗2W2 over Isom (π1, π2). In Grothendieck’s picture, illuminated by Mumford, each
of π1 and π2 gives a local chart of the “moduli space” behind, and the data from the Isom -construction gives
the Grothendieck’s generalized notion of “gluing” local charts B1 and B2 of the “moduli space”. As we mean to
avoid the distraction of such formality, in our case it happens that one may relate B1 and B2 instead by directly
choosing (non-canonically and non-uniquely) a section to p1, which is only defined on Im p1 ⊂ B1, and then
post-compose it with p2. This gives then a substitute “transition” map ϕ : Im p1 → B2. Furthermore, as long as
the “quotient topology on the moduli space” is concerned, all that matters is that the domain Im p1 of ϕ contains
an open neighborhood of the point in B1 over which the central fiber in question sits; the precise tracking of
Im p1 is irrelevant. Thus we directly re-denote ϕ as a pseudo-map ϕ : B1 → B2. Via the canonical isomorphism
p∗1W1 ≃W ≃ p∗2W2, accompanying the construction of φ is also the pseudo-map ϕ :W1/B1 →W2/B2 that covers
ϕ. See [L-MB] for details on stacks and [L-L-Y: Sec. 1] for a literature guide. Similar use of “pseudo-” applies to
terms: pseudo-embedding, pseudo-isomorphisms, ..., etc., and their compositions.
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where W [k′]/B[k′]
∼−→ W [k]

B[k]
ε2/4
I

/B[k]
ε2/4
I is the almost-complex pseudo-isomorphism that

lifts the pseudo-isomorphism B[k′] → B[k]
ε2/4
I defined by (λ′0 , . . . , λ

′
k′) 7→ (λ0 , . . . , λk) with

λi = ( 4
ε2 )

k−k′λ′j, for i = ij ∈ I, and = ε2/4, for i /∈ I. The defining domain of ϕk′,k;I contains an

open neighborhood of the central fiber ≃ Y[k′] of W [k′]/B[k′]. ϕk′,k;I is equivariant with respect
to Gm[k′] →֒ Gm[k] with

(σ′1, · · · , σ′k′) 7−→ (σ′0, · · · , σ′0︸ ︷︷ ︸
i0

, σ′1, · · · , σ′1︸ ︷︷ ︸
i1−i0

, · · · , σ′k′ , · · · , σ′k′︸ ︷︷ ︸
ik′−ik′−1

, σ′k′+1, · · · , σ′k′+1︸ ︷︷ ︸
k−ik′

) ,

where σ′0 = σ′k′+1 = 1 by convention and the multiplicity of each repeated entry is indicated.
Let W(k)/B(k) be the quotient space of W [k]/B[k] by Gm[k] with the quotient topology. Then
(W −W0)/(B − {0}) embeds in W(k)/B(k) canonically for all k ∈ Z≥0 and ϕk′,k;I induces an
embedding

ϕ(k′,k;I) : W(k′)/B(k′) →֒ W(k)/B(k)

over W/B, for all k′ < k, that restricts to the identity map on (W −W0)/(B − {0}).
Let B̂ = B ∪ Z>0 with the topology generated by the open subsets of B and the subsets of

B̂ of the form U ∪ {1, . . . , k}, where U is an open neighborhood of 0 ∈ B and k ∈ Z>0. Define
the set

Ŵ/B̂ :=
(
∐k∈Z≥0

W(k)/B(k)

)/
∼ ,

where p ∈ W(k) and p′ ∈ W(k′) with k > k′ are defined to be equivalent (in notation, p ∼ p′)

if p is the image of p′ under some ϕ(k′,k;I) (this defines Ŵ ) and p ∈ B[k] and p′ ∈ B[k′] are

equivalent if p is the image of p′ under some ϕ(k′,k;I) (this reproduces B̂). As indicated, the

fibrations W(k)/B(k), k ∈ Z≥0, induce a fibration of Ŵ over B̂. By construction, there are
natural embeddings (of sets)

ϕ(k) : W(k)/B(k) →֒ Ŵ/B̂ , k ∈ Z≥0 .

Equip Ŵ with the topology that specifies a subset Û of Ŵ to be open if and only if Û = ∪αÛα

such that for each α there exists kα ∈ Z≥0 so that Ûα = ϕ(kα)(Uα) for some open subset Uα of

W(kα). We will call this topology the quotient topology on Ŵ . Note that this topology involves
all ϕ(k′,k;I) so that the information of how one Y[k′] orWλ degenerates to another Y[k] with k > k′

is all kept. By construction, both the natural map Ŵ → B̂ and the defining maps

ϕ[k] : W [k]/B[k] −→ Ŵ/B̂

from the composition W [k]/B[k] → W(k)/B(k) → Ŵ/B̂ are continuous. (W [k]/B[k], ϕ[k]) is

named a standard local chart on Ŵ/B̂ and the collection {(W [k]/B[k], ϕ[k]) : k ∈ Z≥0} the

standard atlas for Ŵ/B̂.
Finally, note that the collection of maps {p̃[k] : W [k]/B[k] → W/B}k∈Z≥0

descends to a
(continuous) tautological map

p̂ : Ŵ/B̂ −→ W/B .

Remark 1.1.3.1 [quotient topology versus stack ]. To identify consistently isomorphic fibers (as
almost-complex spaces) in the collection {W [k]/B[k]}k∈Z≥0

and make the final family universal,
one has to employ Grothendieck’s generalized notion in algebraic geometry of “gluing” via the
Isom-functor construction, of a “space” as a collection of local charts together with a gluing
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data in the generalized sense, and of a “global structure” as a descent datum. Following this,
the collection {W [k]/B[k]}k∈Z≥0

would be glued to an Artin stack B, together with a universal
expanded degeneration W over B. The set of geometric points of B would be B ∪ Z>0 with
the corresponding set of isomorphism class of fibers of W/B being {Wλ}λ∈B ∪ {Y[k]}k∈Z>0

. (Cf.
[Li1: Sec. 1]; see [L-L-Y: Sec. 1] for a brief tour on stacks). Since it is the stable maps, i.e.
triples (Σ,W [k]λ, f : Σ → W [k]~λ), that we want to study in this work, it turns out that what
we finally need most essentially is a structure that describes the “nearness” between a Wλ or

Y[k] and another Wλ′ or Y[k′]. For this reason, the space Ŵ/B̂ with the quotient topology and
the standard atlas as constructed above that accommodates all {Wλ}λ∈B ∪ {Y[k]}k∈Z>0

suffices.

1.2 Symplectic/almost-complex relative pairs and their expansions.

A symplectic (resp. almost-complex) relative pair (Z;D) is a symplectic (resp. almost-complex)
manifold Z together with a real codimension-2 symplectic (resp. almost-complex) submanifold
D. Given a symplectic relative pair (Z;D) with a Hamiltonian U(1)-action on a (open) tubular
neighborhood N(D) of D in Z that fixes D, define Z[1] to be the total space of a compatible
almost-complex degeneration of a symplectic cut on Z associated to the given local U(1)-action
around D. By construction, Z[1] fibers over A[1] := B = {λ ∈ C : |λ| < ε2/2}, 0 < ε < 1,
with the singular fiber Z[1]0 = Z ∪D=D1,∞ ∆1. Since the pinched locus of the symplectic cut is
disjoint from D and it separates D with Z − Nε(D), D[1] := A[1] × D embeds canonically in
Z[1] over A[1] with D[1]0 := {0} ×D identical to D1,0 in ∆1.

The construction in Sec. 1.1.1 applied to the almost-complex degeneration Z[1]/A[1] then
gives rise to an almost-complex expanded relative pair (Z[k];D[k])/A[k] with A[k] = B[k − 1]
and D[k] = A[k]×D, for k ∈ Z≥0. Its fiber, e.g., at ~0 ∈ A[k] is the almost-complex relative pair

(Z[k];D[k])~0 = (Z ∪D=D1,∞ ∆1 ∪D1,0=D2,∞ · · · ∪Dk−1,0=Dk,∞
∆k ; Dk,0)

=: (Z[k];D[k]) .

There is also the almost-complex morphism

p̃[k] : (Z[k];D[k])/A[k] −→ (Z;D)/pt

from the construction.
Let U = Z −Nε(D), where Nε(D) is the open ε-neighborhood of D in Z with respect to the

norm on L. Then (Z[k];D[k])/A[k] admits a neck-trunk decomposition:

Z[k]/A[k] =

(U [k] ∪ Neck [k]0 ∪ Trunk [k]1 ∪ Neck [k]1 ∪ · · · ∪ Trunk [k]k ∪ Nε(D)[k])/A[k] ,

where U [k], Neck [k]i, i = 0 , . . . , k − 1, Trunk [k]j , j = 1 , . . . , k, here are similar to their
counterpart: U1[k−1], Neck [k−1]i, and Trunk [k−1]j , in Sec. 1.1.1 andNε(D)[k] = A[k]×Nε(D),
which contains D[k]. This induces a neck-trunk decomposition to the fiber (Z[k];D[k])~λ of

(Z[k];D[k]) at ~λ ∈ A[k], cf. Remark 1.1.1.8. There are re-forging morphisms from Z[k]~0 = Z[k]

to Z[k]~λ constructed in the same way as earlier:

I~λ : Z[k] − ∪ k−1
i=0 N

√
|λi|(Di) −→ Z[k]~λ ,

I~λ,ε : Z[k] − ∪ k−1
i=0 N|λi|/ε(Di) −→ Z[k]~λ ,

~λ ∈ A[k] .

The group Gm[k] now pseudo-acts on A[k] by

(λ0, . . . , λi, . . . , λk−1) 7−→ (σ0σ
−1
1 λ0, . . . , σiσ

−1
i+1λi, . . . , σk−1σ

−1
k λk−1) ,

13



where σ0 = 1 by convention. Similar to Sec. 1.1.2, it lifts to a pseudo-Gm[k]-action on Z[k]
that leaves D[k] invariant in such a way that the pseudo-action on D[k] = A[k] × D acts
only on the A[k]-factor. As a parallel to Lemma 1.1.2.1, the restriction of the pseudo-Gm[k]-
action on (Z[k];D[k])/A[k] to its maximal compact subgroup Tk gives an honest Tk-action
on (Z[k];D[k])/A[k]. This Tk-action leaves the neck-trunk decomposition of (Z[k];D[k])/A[k]
invariant and the two re-forging morphisms I~λ and I~λ,ε are equivariant with respect to the

stabilizer of Z[k]~λ under the Tk-action on Z[k].
To connect the various expanded relative pairs, each I ′ = { i0, . . . , ik′−1 } ⊂ { 0, . . . , k − 1 }

is associated to a pseudo-embedding of almost-complex spaces

ϕ′
k′,k;I′ : (Z[k′];D[k′])/A[k′] →֒ (Z[k];D[k])/A[k] ,

which covers the pseudo-embedding A[k′]→ A[k], defined by (λ′0 , . . . , λ
′
k′−1) 7→ (λ0 , . . . , λk−1)

with λi = ( 4
ε2
)k−k′λ′j , for i = ij ∈ I ′, and = ε2/4, for i /∈ I ′. and is equivariant with respect to

the group homomorphism Gm[k′] →֒ Gm[k] defined by

(σ′1, · · · , σ′k′) 7−→ (1, · · · , 1︸ ︷︷ ︸
i0

, σ′1, · · · , σ′1︸ ︷︷ ︸
i1−i0

, · · · , σ′k′−1, · · · , σ′k′−1︸ ︷︷ ︸
ik′−1−ik′−2

, σ′k′ , · · · , σ′k′︸ ︷︷ ︸
k−ik′−1

) .

Let (Z(k);D(k))/A(k) be the quotient space of (Z[k];D[k])/A[k] by Gm[k] with the quotient
topology. Then (Z;D) embeds in (Z(k);D(k))/A(k) canonically for all k ∈ Z≥0 and ϕ′

k′,k;I′

induces an embedding

ϕ′
(k′,k;I) : (Z(k′);D(k′))/A(k′) →֒ (Z(k);D(k))/A(k) ,

for all k′ < k, that restricts to the identity map on (Z;D).

Let Â = Z≥0 with the topology generated by the defining open subsets {i ∈ Z≥0 : 0 ≤ i ≤
n}, n ∈ Z≥0. Then, the construction in Sec. 1.1.3 applied to {(Z[k];D[k])/A[k]}k∈Z≥0

, where

(Z[0];D[0])/A[0] = (Z;D) by convention, gives rise to a topological relative pair (Ẑ; D̂) over Â
with the quotient topology, the natural embeddings

ϕ(k) : (Z(k);D(k))/A(k) →֒ (Ẑ; D̂)/Â , k ∈ Z≥0 ,

the standard local charts

ϕ[k] : (Z[k];D[k])/A[k] −→ (Ẑ; D̂)/Â , k ∈ Z≥0 ,

and a (continuous) tautological map

p̂ : (Ẑ; D̂)/Â −→ (Z;D) .

The topological relative pair (Ẑ; D̂)/Â equipped with the standard local charts substitutes the
stack of expanded relative pairs obtained by gluing (Z[k];D[k])/A[k]’s via the Isom-functor
construction.

Readers are referred also to [I-P1: Sec. 3 and Sec. 6], [L-R: Sec. 3], and [Li1: Sec. 4] for
related discussions.
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2 Prestable labelled-bordered Riemann surfaces.

In this section we review/rephrase/modify definitions/facts of labelled-bordered Riemann sur-
faces with marked points to introduce and fix terminologies and notations that we will use. This
is a classical topic with long history. Readers are referred to [Sie1: Sec. 2], [F-O: Sec. 9 and
pp. 988 - 991], and [Liu(C): Sec. 2 - Sec. 4] for related discussions and guide to literatures. See
also [Ab], [A-G], [D-M], [H-M], [I-S2], [Kn], [Ma], [Se], [Sil], and [Wol].

Prestable labelled-bordered Riemann surfaces with marked points.

Definition 2.1 [prestable labelled-bordered Riemann surface]. A prestable labelled-
bordered Riemann surface of (combinatorial) type ((g, h), (n, ~m)) (with labelled boundary and
marked points)3, where ~m = (m1 , . . . , mh), consists of the following data:

· a compact connected nodal bordered Riemann surface Σ, whose points are locally modelled
at 0 or (0, 0) in the following holomorphic models:

(i) interior point :

(i1) {z ∈ C : |z| < 1} for a smooth interior point,

(i2) {(z1, z2) ∈ C2 : |z1| < 1 , |z2| < 1 , z1z2 = 0} for an interior node;

(b) boundary point :

(b1) {z ∈ C : |z| < 1 , Im (z) ≥ 0} for a smooth boundary point,

(b2) {(z1, z2) ∈ C2 : |z1| < 1 , |z2| < 1 , z1z2 = 0}/(z1, z2) ∼ (z2, z1)
for a boundary node of type E,

(b3) {(z1, z2) ∈ C2 : |z1| < 1 , |z2| < 1 , z1z2 = 0}/(z1, z2) ∼ (z1, z2)
for a boundary node of type H;

the number of interior (resp. boundary) node will be denoted ni.n. (resp. nb.n.).

· labelled boundary and h : a boundary component of Σ is either the image of an embedding
of S1 in ∂Σ or a boundary node of type E; Σ has h-many boundary components and they
are labelled from 1 to h; the labelled boundary of Σ will be denoted by ∂̇Σ (or simply
∂Σ when the labelling is understood); note that different boundary components of Σ may
intersect at a boundary node of type H.

· genus g : each boundary component of Σ can be capped by a 2-disc; let Σ̂ be the nodal
Riemann surface without boundary obtained by capping all the boundary components of
Σ by discs, then Σ̂ has arithmetic genus g.

· free marked points : an n-tuple ~p = (p1 , · · · , pn) of smooth interior points or double
boundary points4, on Σ; the support of the latter free points is required to be smooth
boundary points. The notation n

.
= n′+n′′ means that there are n′-many interior marked

points and n′′-many free marked points supported in ∂Σ, when the distinction is needed.
3The definition here is based on [Liu(C): Definition 3.9]. We phrase it to make it manifest that an interior

marked point on a nodal bordered Riemann surface is allowed to move and land on the boundary to become a
double boundary point. This freedom is required to obtain a compact moduli space of stable bordered Riemann
surfaces with marked points. We avoid the term marked bordered Riemann surface to reserve its more traditional
meaning in the Teichmüller theory of Riemann surfaces.

4For non-algebraic-geometers: in the affine R-scheme model a smooth interior point (resp. smooth boundary
point) on Σ is modelled on a complex closed point, (x2 − (c+ c̄)x+ cc̄), c ∈ C−R, (resp. real closed point (x− a),
a ∈ R) in SpecR[x]. A complex closed point in SpecR[x] can be deformed to a double real point, described by
an ideal (x − a)2 for some a ∈ R, in R[x]. While a real double point as above can be deformed to a complex
closed point, a closed real point can only be deformed to another closed real point. In other words, an interior
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· boundary marked points : an mi-tuple of smooth boundary points ~pi = (pi1 , · · · , pimi) on
the boundary component of Σ labelled by i for i = 1 , . . . , h; we require that the set of
boundary marked points is disjoint from the support of free marked points that land on
the boundary.

By definition, the set of nodes and the set of marked points on Σ are disjoint from each
other. Any point in the union of the two is called a special point on Σ.

A regular or smooth point on Σ is either a smooth interior point or a smooth boundary
point on Σ. The set of regular points on Σ with the induces topology and holomorphic/complex
structure is denoted by Σreg and called the regular or smooth locus of Σ.

From the local model of points on Σ, one can define the normalization Σ̃ of Σ as in algebraic
geometry. Topological, Σ̃ is obtained by first removing all the (interior as well as boundary) nodes
on Σ and then filling all the resulting (interior as well as boundary) punctures by distinct points.
Σ̃ is a possibly disconnected bordered Riemann surface (with neither interior nor boundary
nodes). Let ν : Σ̃ → Σ be the normalization of Σ and Σ̃ = ∐iΣ̃i be the disjoint union of
connected components; then each ν(Σ̃i) in Σ is called an irreducible component of Σ.

Let Σ be the nodal bordered Riemann surface with the same topology as Σ but with the
complex-conjugated holomorphic structure from that of Σ. Then ΣC := Σ ∪∂Σ=∂Σ Σ has a
canonically induced nodal Riemann surface structure without boundary. It is called the Schot-
tky/complex double of Σ. By construction, there is an involution τ that acts on ΣC by complex
conjugation.

An isomorphism h : (Σ, ∂̇Σ, ~p, ~p1, · · · , ~ph)→ (Σ′, ∂̇Σ′, ~p′, ~p′1, · · · , ~p′h) from a labelled-border-
ed Riemann surface to another of the same type is a bi-holomorphic map h : (Σ, ∂Σ)→ (Σ′, ∂Σ′)
that preserves the label of the boundary components and sends pi to p′i, qij to q′ij . An au-

tomorphism of (Σ, ∂̇Σ, ~p, ~p1, · · · , ~ph) is an isomorphism from (Σ, ∂̇Σ, ~p, ~p1, · · · , ~ph) to itself.
(Σ, ∂̇Σ, ~p, ~p1, · · · , ~ph) is called stable if its group Aut (Σ, ∂̇Σ, ~p, ~p1, · · · , ~ph) of automorphisms is
finite.

We will denote the data (Σ, ∂̇Σ, ~p, ~p1, · · · , ~ph) also by (Σ, ∂Σ) or Σ in short. The isomorphism
class of labelled-bordered Riemann surfaces isomorphic to Σ will be denoted [Σ]. When there
is no chance of confusion, we will call Σ also a curve and denote it by C, as a 1-dimensional
scheme over SpecC or SpecR in algebraic geometry with labelled irreducible components of R-
locus and marked points. The moduli space of isomorphism classes of stable (resp. prestable)
labelled-bordered Riemann surfaces of type ((g, h), (n, ~m)) will be denoted M(g,h),(n,~m) (resp.

M̃(g,h),(n,~m)).

Theorem 2.2 [M(g,h),(n,~m)]. The moduli spaceM(g,h),(n,~m) of stable labelled-bordered Riemann
surfaces with marked points of type ((g, h), (n, ~m)), with its topology defined via the dilatation
of quasi-conformal maps and their composition with circle/arc-with-ends-in-boundary pinching
maps or via the local Fenchel-Nielsen coordinates associated to pants-decompositions, is a com-
pact, Hausdorff, orientable orbifold-with-corners.

See [Liu(C): Theorem 4.9, Theorem 4.14] and the quoted references there.
The universal deformation C/Def(Σ) of Σ, canonically acted upon by Aut (Σ), provides a

local orbifold-chart ψ[Σ] : Def (Σ) →M(g,h),(n,~m) around [Σ] in M(g,h),(n,~m). Topologically this

marked point in Σ can be deformed to a double boundary point on ∂Σ and vice versa. Together, we name them
free marked points on Σ. Thus, a free marked point, whether in the interior or on boundary, always have real
2-dimensional family of deformations. In particular, fixing a complex point always contributes two real constraints
whether that point is in the interior or on the boundary. In contrast, a boundary marked point on Σ can move
around only in the boundary ∂Σ and contributes only one real condition.
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is a quotient of a neighborhood of the origin in the manifold-with-corners

Ext 1ΣC

(
ΩΣC

(
∑n

i=1(pi + pi) +
∑h

j=1

∑mj

k=1 pjk) , OΣC

)τ

≃ C3g−3+h+n′ ×H
n′′

× Rh−nbn+m1+ ···+mh × (R≥0)
nbn

by Aut (Σ), where •
τ is the fixed-point locus of the induced action of τ on • , H = the closed

upper half-plane {z ∈ C : Im (z) ≥ 0}, and n
.
= n′ + n′′. As an orbifold, M(g,h),(n,~m) goes

with a universal family, denotes also by C/M(g,h),(n,~m). We will call this C the universal curve

of type ((g, h), (n, ~m)). M(g,h),(n,~m) is naturally stratified by a finite collection of locally closed
sub-orbifolds-with-corners. The stratification is governed by the topological type (i.e. equivalence
up to homeomorphisms of the underlying topology of punctured bordered Riemann surfaces)
and the degeneration patterns of a labelled-bordered Riemann surface with marked points. See,
e.g., [Liu(C): Figures 1, 2, 3, 9, 10, 11] for illustrations of such stratifications.

Local chart on M̃(g,h),(n,~m).

There are 11 types of unstable (irreducible) components that can happen for a prestable labelled-
bordered Riemann surface: (1) closed component : (g = 0) P1 with 0, 1, or 2 special points;
(g = 1) torus without special points or nodal torus with one node and without marked points;
(2) bordered component : (all with g = 0) 2-disc D2 with 0 or 1 free marked point; or D2 with
1 or 2 boundary marked points; annulus without special point or nodal annulus with one node
and without marked points. These components contribute positive-dimensional subgroups to
Aut (Σ). The following discussion is an immediate generalization of [F-O: pp. 989 - 990] and

[Sie1: Sec. 2.2] to the case of labelled-bordered Riemann surfaces. The moduli space M̃(g,h),(n,~m)

of isomorphism classes of prestable labelled-bordered Riemann surfaces of type ((g, h), (n, ~m))
can be associated to an Artin stack. The discussion below gives a substitute quotient topology
structure.

A semi-universal deformation C/Def(Σ) of Σ, together with a specification of an approximate
pseudo-Aut (Σ)-action on C/Def(Σ), defines a local chart

ψ[Σ] : Def (Σ) −→ M̃(g,h),(n,~m)

of [Σ] ∈ M̃(g,h),(n,~m). Such a pair of data can be constructed as follows:

(1) the defining family C/Def (Σ) of the chart : Let Σ′ = (Σ, (p′· ) · ), where (p′· ) · is a minimal
tuple of rigidifying additional marked points on Σ that are disjoint from all the existing
special points of Σ. Take C/Def (Σ) to be the universal deformation C′/Def(Σ′) of Σ′ with
the sections s′· associated to p′· ’s removed.

(2) the approximate pseudo-Aut (Σ)-action : Let e be the identity element of Aut (Σ) and
recall that the central fiber C′0 of C′/Def (Σ′) is Σ′. Consider the product family (Aut (Σ)×
C′)/(Aut (Σ)×Def (Σ′)). First, extend the section s · over {e}×Def (Σ′) to over Aut (Σ)×
{0} by setting s′· (σ, 0) = σ · p′· . Then, further extend them to a collection of sections s′·
over a neighborhood (still denoted by Aut (Σ)×Def (Σ′), though in general it may not be
a product) of Aut (Σ)× {0} ⊂ Aut (Σ)×Def (Σ′) whose image in a fiber are disjoint from
each other and from the special points and the image of the existing sections associated
Σ on that fiber. This can always be done but is non-canonical/non-unique. Denote the
resulting family by ((Aut (Σ) × C)/(Aut (Σ)Def (Σ)) , (s′· ) · ) and the restriction of s′· to
over {σ} ×Def (Σ) by s′· ,σ.

17



· From the universal property of the family C′/Def (Σ′) the unique isomorphism from the
central fiber (Σ, (σ ·p′· ) · ) of the family (({σ}×C)/({σ}×Def (Σ)) , (s · , σ) · ) to the central
fiber Σ′ of C′/Def (Σ′) extends to a unique isomorphism

Φ′
σ : ({σ} × C)/({σ} ×Def (Σ)) −→ C′/Def(Σ′) ,

assuming that the neighborhood of Aut (Σ) × {0} in Aut (Σ) × Def (Σ) we chose is small
enough.

· Let
Fσ : (({σ} × C)/({σ} ×Def (Σ)) , (s′· ,σ) · ) −→ C/Def(Σ) ,

be the forgetful isomorphism that forgets the tuple (s′· ,σ) · of rigidifying section. The
morphism

Φ[Σ] : (Aut (Σ)× C)/(Aut (Σ)×Def (Σ)) −→ C/Def(Σ)
(σ, x) 7−→ σ · x := (Fσ ◦Φ′ −1

σ ◦ F−1
e )(x)

defines then an approximate5 pseudo-Aut (Σ)-action on C/Def(Σ).

(3) The coordinate map ψ[Σ] : The family C/Def (Σ) specifies a map ψ[Σ] : Def (Σ)→ M̃(g,h),(n,~m)

by sending b ∈ Def (Σ) to the isomorphism class [Cb] ∈ M̃(g,h),(n,~m) of the fiber Cb of C
over b.

Topologically, ψ[Σ] is a quotient of a neighborhood of the origin of the manifold-with-corners

Ext 1ΣC

(
ΩΣC

(
∑n

i=1(pi + pi) +
∑h

j=1

∑mj

k=1 pjk +Drigidifying) , OΣC

)τ

≃ C3g−3+h+n′+dc ×H
n′′

× Rh−nbn+m1+ ···+mh+db × (R≥0)
nbn

by the induced Aut (Σ)-action, where Drigidifying is a minimal τ -invariant rigidifying divisor on
ΣC whose support is disjoint from the existing special points on ΣC , n =

.
= n′+n′′, and dc (resp.

db) is the complex (resp. real) dimension of the product of the automorphism group of the closed
(resp. bordered) unstable components of Σ. The stacky (real) dimension of these charts, i.e.
dimDef (Σ)− dimAut(Σ), remains 6g − 6 + 3h + 2n +m1+ , · · · +mh.

Definition 2.3 [standard local chart of M̃(g,h),(n,~m)]. We will call the tuple (Def (Σ),Φ[Σ], ψ[Σ]),

in short Def (Σ), a standard local chart of [Σ] ∈ M̃(g,h),(n,~m) and the C that accompanies Def (Σ)
in the construction and is equipped with the approximate pseudo-Aut (Σ)-action the universal
curve over the chart Def (Σ).

Resemblance of the approximate pseudo-action with a pseudo-action.

Φ[Σ] defines a relation ∼ on Def (Σ) generated by b1 ∼ b2 if there exists a σ ∈ Aut (Σ) such that
b2 = σ · b1. As the major step of the construction is a morphism to the universal deformation
space of Σ with added rigidifying marked points, it remains true that two fibers Cb1 and Cb2 of
C/Def (Σ) are isomorphic if and only if b1 ∼ b2; and, in this case, an isomorphism Cb2 ≃ Cb1 can
be given by the composition σ1 · . . . · σk· for some σ1 , . . . , σk ∈ Aut (Σ). Furthermore, as long

5Here, the term “approximate” is referring to the fact that the composition law Φ[Σ](σ1,Φ[Σ](σ2, x)) =
Φ[Σ](σ1σ2, x) may not hold but, for Def (Σ) small enough, Φ[Σ](σ1,Φ[Σ](σ2, x)) is always in a small neighbor-
hood of Φ[Σ](σ1σ2, x).
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as Def (Σ) in the construction is small enough, the map σ : C/Def (Σ) → C/Def (Σ) is bijective
on the domain it is defined. These two properties make the approximate pseudo-Aut (Σ)-action
on C/Def (Σ) equally good as a genuine one.

Definition 2.4 [Aut (Σ)-orbit]. An equivalence class of ∼ in Def (Σ) is called an Aut (Σ)-orbit
on Def (Σ). Similarly for the approximate pseudo-Aut (Σ)-action on C.

Def (Σ) admits a stratification by locally closed subsets such that points in the same stratum
have the corresponding fibers in C of the same topological type. It follows that the approximate
pseudo-Aut (Σ)-action leaves each stratum invariant and points of Def (Σ) in the same fiber have
their Aut (Σ)-orbits of the same dimension. When not of the finitely many exceptional types,
a general point b ∈ Def (Σ) has the Aut (Σ)-orbit Aut (Σ) · b of the same dimension as Aut (Σ),
while 0 ∈ Def(Σ), which corresponds to the fiber Σ, is always a fixed point of Aut (Σ).

Remark 2.5 [abelian Aut (Σ)]. When Aut (Σ) is abelian, a similar construction as in Sec. 1.1.2
shows that Aut (Σ) does pseudo-acts on C/Def (Σ) in this case.

Lemma 2.6 [pseudo-Γ·Aut e(Σ)◦-action]. Let Γ be a finite subgroup of Aut (Σ), Aut e(Σ)
◦ be

a small enough neighborhood of the identity element e of Aut (Σ), and
Γ·Aut e(Σ) = ∪σ∈Γ σ ·Aut e(Σ)◦. Then, possibly after shrinking Def (Σ), the defining Γ·Aut e(Σ)◦-
action on the center fiber Σ of C/Def (Σ) extends to a pseudo-action on C/Def (Σ) by isomor-
phisms. This pseudo-Γ ·Aut e(Σ)◦-action extends to an approximate pseudo-Aut (Σ)-action on
C/Def (Σ) by isomorphisms.

Proof. Fix a rigidifying devisor
∑

· p
′
· on Σ away from the nodes and let Σ = (∪qiNi)∪(∪jVj) be

a neck-trunk decomposition of Σ (cf. the thick-thin decomposition of Σ when Σ is of hyperbolic
type), where Ni is a neck on Σ in a small neighborhood of node qi with qi running over the set
of nodes of Σ, and Vj be a connected component of Σ − ∪qiNi, such that Γ ·Aut e(Σ)◦(∪i∂Ni)
remains in a tubular neighborhood of ∪i∂Ni in Σ and the Γ·Aut e(Σ)◦-orbits of all marked points,
including the added regidifying ones p′· , are away from this tubular neighborhood. As Γ sends
nodes to nodes, this can be realized as long as Aut e(Σ)

◦ is small enough. Extend this neck-trunk
decomposition of Σ to a neck-trunk decomposition

C/Def (Σ) =
(
∪qi Neck (qi)

)⋃(
∪j Trunkj

)

of C/Def (Σ), where {qi}i is the set of nodes of Σ; Neck (qi) is a neck region in C associated
to qi; and {Trunk j/Def (Σ)}j is the set of connected components of C/Def (Σ) − Neck (qi),
equipped with a fixed product decomposition Trunk j = Def (Σ) × Vj . This can be realized
as long as Def (Σ) is small enough. Denote the section of C/Def (Σ) associated to p′· by s

′
· . The

specification of a neck-trunk decomposition of C/Def (Σ) specifies simultaneously how each fiber
of C/Def (Σ) is obtained from a cut-and-paste of Σ, (cf. the re-forging morphisms in Sec. 1.1.1).
This then induces a pseudo-Γ·Aut e(Σ)◦-action

Φ◦
[Σ] : (Γ·Aut e(Σ)◦)× (C/Def (Σ)) −→ C/Def (Σ)

on C/Def (Σ) as the cut-and-paste region remain near the neck region of Σ under the smallness
assumption of Aut e(Σ)

◦. This proves the first statement of the lemma.
To extend this to an approximate pseudo-Aut (Σ)-action on C/Def (Σ), consider the product

family (Aut (Σ)×C)/(Aut (Σ)×Def (Σ)). Recall s′· the sections of C/Def (Σ) that correspond to
the added rigidifying points p′· on Σ. Their image lies in the trunk region of C/Def (Σ). Extend
these sections first to over Γ ·Aut e(Σ)◦ × Def (Σ) by setting s′· , σ = σ · s′σ over {σ} × Def (Σ),
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where ({σ} × C)/({σ} × Def (Σ)) is canonically identified with C/Def (Σ). These sections again
have their image in the trunk region of ({σ}×C)/({σ}×Def (Σ)). Extend these sections next to
over Aut (Σ) × {0} as well by the Aut (Σ)-action on Σ. Finally extend the resulting sections to
over Aut (Σ) × Def (Σ). This then defines an approximate pseudo-Aut (Σ)-action on C/Def (Σ)
by isomorphisms that extends the pseudo-Γ ·Aut e(Σ)◦-action constructed. This concludes the
proof.

✷

The same argument gives also:

Lemma 2.7 [finite group]. Any finite group action on Σ by automorphisms extends to an
action on C/Def (Σ) by isomorphisms. This action extends to a pseudo- Γ·Aut e(Σ)◦-action on
C/Def (Σ) and then to an approximate pseudo-Aut (Σ) on C/Def (Σ), both by isomorphisms.

The quotient topology on M̃(g,h),(n,~m) and the stabilization morphism.

The quotient topology on M̃(g,h),(n,~m) is defined by setting a subset U ⊂ M̃(g,h),(n,~m) to be open if

U = ∪αUα such that there exist a collection of standard local charts (Vα,Φα, ψα) of M̃(g,h),(n,~m)

such that Uα ⊂ ψα(Vα) and that ψ−1
α (Uα) is open in Vα. This is similar to the construction in

Sec. 1.1.3 and Sec. 1.2 for the quotient topology on B̂ and Â.
For ((g, h), (n, ~m)) with 2(2g + h + n) + m1 + · · · + mh ≥ 5, stabilization of prestable

labelled-bordered Riemann surfaces by contracting the unstable components gives rise to a flat
local complete intersection morphism6 st : C/Def (Σ) → Cst/Def (Σst), together with a group

homomorphism Aut (Σ) → Aut (Σst) that makes st equivariant, for each [Σ] ∈ M̃(g,h),(n,~m).
The collection of these pairs of morphisms on local charts-with-structure-group descend to the

stabilization morphism s̃t : M̃(g,h),(n,~m) → M (g,h),(n,~m). We say that s̃t is a local complete
intersection morphism in the stacky sense. It is continuous with respect to the quotient topology

on M̃(g,h),(n,~m). The inclusionM (g,h),(n,~m) →֒ M̃(g,h,(n,~m) is a section to s̃t with open-dense image.

Remark 2.8 [local factorization of st ]. Assume that 2(2g + h + n) +m1 + · · · +mh ≥ 5. Let
Σ = Σs∪Σu, where the subcurve Σu consists of all the unstable irreducible components of Σ and
Σs is the union of the remaining irreducible components. Then a connected component of Σu

may intersect Σs at either 1 or 2 nodes of Σ; it is called a tree in the formal case and a chain in
the latter case, in which it can only be either a chain of P1 of the form P1

(1)∪ · · · ∪P1
(k) with 0 of

P1
(i) glued to∞ of P1

(i+1), or a chain of discs D2 = {z ∈ C : |z| ≤ 1} of the form D2
(1)∪ · · · ∪D2

(k)

with −
√
−1 of D2

(i) glued to
√
−1 of D2

(i+1). These are reflected to the stabilization map: locally

st can be factorized to a composition of a projection map of a product space, for no collapsing or
collapsing a tree of unstable components; a map of the form π[k] : B[k]→ B in Lemma 1.1.1.4,
for collapsing a chain of unstable P1 components; and a map of the form

(R≥0)
k+1 −→ R≥0 , (t0, . . . , tk) 7−→ t0 · · · tk ,

for collapsing a chain of unstable discs. Cf. [Sie1: end of Sec. 2.2].

6See [Fu] for a general definition of local complete intersection morphism. Such a morphism has a well-defined
Gysin map, and hence push-pull, on cycles.
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3 The moduli space M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) of stable maps.

In the previous two sections, we discuss respectively the targets and the domains of the maps
we want to study. However, as a lesson from the various standard moduli problems in algebraic
geometry, which can almost always be traced back to the complicated problem of Hilbert-
schemes, to render a reasonable moduli space of maps from bordered Riemann surfaces to fibers

of Ŵ/B̂, we need to fix some combinatorial quantities of such maps that are constant for a
continuous/flat family. The closed Gromov-Witten theory indicates a partial set of such data:
the combinatorial type of domain curves, the image curve class β ∈ H2(X,L;Z), and boundary
loop class ~γ from H1(L;Z). The study of [Liu(C)] implies that for open Gromov-Witten theory
the boundary effect is reflected also in the Maslov index µ ∈ Z, which is not fixed by β in general.
This quantity thus has to be generalized to our case and be included in the combinatorial data.
This is done in Sec. 3.1 and the generalized Maslov index does enter the operator index in
Sec. 5.3.1. However, this addition of data is not enough. While it turns out that the datum
~γ from H1(L;Z) is not influenced, the datum β ∈ H2(X,L;Z) is not the correct choice of the
image curve class datum in our case since in general it is not well-defined to all fibers in the
family W [k]/B[k], which contains X as a fiber, due to the monodromy effect. It thus has to
be enlarged to and replace by the minimal common monodromy-invariant curve-class subset
[β] ⊂ H2(X,L;Z), generated by β under the monodromy of W [k]/B[k], for all k ∈ Z≥0. This is
done in Sec. 3.2. Once these combinatorial data are identified, one can then define the related
moduli spaceM(g,h),(n,~m)(W/B,L | [β], ~γ, µ) of maps accordingly. This is done in Sec. 3.3.

3.1 Maslov index of a map to a singular space or a relative pair.

A generalization of the notion of Maslov index to a map from a bordered Riemann surface to a
relative pair or a singular space from a symplectic cut is given in this subsection. This quantity
is needed to select a reasonable (union of) component(s) of the moduli space of stable maps in
question.

Given a C∞ map f : (Σ, ∂Σ) → (X,L) from a prestable bordered Riemann surface Σ to a
smooth symplectic manifold X. Endow X with a compatible almost-complex structure J that
renders T∗X a complex vector bundle with T∗L →֒ (T∗X)|L as a totally real subbundle. Then
E := f∗(det(T∗X)) is a complex line bundle on Σ whose restriction to ∂Σ contains a real line
subbundle ER(L) associated to f∗(T∗L). The Maslov index of f in this case (cf. [K-L: Definition
3.7.2]) is defined by:

Definition 3.1.1 [Maslov index - smooth target]. The Maslov index µ(f) of the C∞ map
f above is twice the index of a general extension of ER(L) ⊂ E|∂Σ to a real-line subbundle with
isolated singularities in E, still denoted by ER(L), over the whole Σ. For convenience, we set
µ(f) = 2 deg (f∗ det(T∗X)) if either L or ∂Σ is empty.

Note that this definition is more in the almost-complex category than in the symplectic category.
However, µ(f) thus defined is independent of the choice of ω-compatible J on X and the general
extension ER on Σ. To turn the real line field language to the more convenient real vector
field language, one considers the complex line bundle E ⊗2 and rephrases µ(f) as the index of a
general global section s of E ⊗2 that extends the section sL in E ⊗2|∂Σ determined by f∗(T∗L).

In the complex Kähler category, the key object in the above description of µ(f), namely the
(complex) determinant line bundle K := detΩX = (detT∗X)−1, can be defined for a singular Y
from a symplectic cut. Once having this, the Maslov index of a C∞ map f : Σ→ (Y,L), with L
disjoint from the singular locus Ysing of Y , can be defined in exactly the same way as above: the

index of a global section s in f∗(K ⊗(−2)) that extends a global section sL in (f∗(K ⊗(−2)))|∂Σ
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determined by f∗(T∗L). Taking det of a coherent sheaf in algebraic geometry brings in a twisting
effect from a divisor whose support is contained in the non-locally-free locus of the coherent sheaf
(cf. [Kn-M]). For ΩY in Kähler category, such locus coincides with the singular locus of Y . One
can compute such effect explicitly and compare them with the contribution to µ(f) from each
individual smooth irreducible component of Y . The result can be stated in both the symplectic
and the almost-complex category. This gives rise to the following definitions.

Definition 3.1.2 [Maslov index - relative pair and symplectic gluing]. The Maslov
index of a C∞ map from a bordered Riemann surface Σ to a symplectic pair or a symplectic
space from a symplectic cut is defined as follows:

(1) Let (Z,L;D) be a smooth symplectic pair (Z;D) with a Lagrangian submanifold L disjoint
from D and f : (Σ, ∂Σ)→ (Z,L) be a C∞ map. Then, define the Maslov index of f relative
to D to be

µrel(f) = µ(f) − 2 f∗[Σ] ·D ,

where µ(f) is the usual Maslov index of f as defined in Definition 3.1.1. (If L is empty,

then set µ(f) = deg f∗(K⊗(−2)
Z ) = −2 f∗[Σ] ·KZ . Note that both L and D in the definition

can be disconnected.)

(2) Let (Y,L) = (Y1, L1) ∪D1≃D2 (Y2, L2) be the singular symplectic space from gluing of two
Lagrangian-decorated relative pairs (Y1, L1;D1) and (Y2, L2;D2) and f = f1 ⊔ f2 : Σ :=
Σ1 ∪ Σ2 → (Y1, L1) ∪D (Y2, L2) be a C∞ map to (Y,L). Then, define the Maslov index of
f to be

µ(f) = µrel(f1) + µrel(f2) = (µ(f1)− 2f1 ∗[Σ1] ·D1) + (µ(f2)− 2f2 ∗[Σ2] ·D2) .

(3) For a C∞ map f to a symplectic space from gluing a finite collection of Lagrangian-
decorated symplectic pairs, apply Item (1) and Item (2) above inductively to define the
Maslov index µ(f) or µrel(f).

The same definitions hold in the almost-complex category with L replaced by a totally real
submanifold and D replaced by a real-codimension-2 almost-complex submanifold.

Example 3.1.3 [relative Maslov index]. (Cf. Sec. 1.2.) Given (Z,L;D), let (Z[k], L[k];D[k])
be the central fiber of its k-th expanded relative pairs. For an open relative stable map f : Σ→
(Z[k], L[k];D[k]) with the corresponding decomposition f = f0⊔ f1⊔ · · · ⊔ fk, where f0 : Σ0 → Y
and fi : Σi → ∆i, i = 1, . . . , k, the Maslov index of f as a relative map is then

µrel(f) = (µ(f0)− 2f0 ∗[Σ0] ·D0) − 2

k∑

i=1

fi ∗[Σi] · (K∆i +Di,0 +Di,∞) ,

where µ(f0) is defined as in Definition 3.1.1 for smooth target.

We list as lemmas the basic invariance properties of the Maslov index of C∞ maps, as
defined above, that are part of the foundations of later discussions. The proof of these lemmas
are straightforward and hence omitted.

Lemma 3.1.4 [invariance under homotopy and deformation]. (1) Let Z be a smooth
manifold of even dimension, L be a smooth submanifold of Z of the middle dimension, and D
be a smooth codimension-2 submanifold of Z disjoint from L. Let ft : Σ → (Z,ωt), t ∈ [0, 1],
be a homotopy class of C∞ maps from a prestable bordered Riemann surface Σ to (Z;D) with
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ft(∂Σ) ⊂ L and ωt is a 1-parameter family of symplectic structures (say, of class C2) on Z
keeping L a Lagrangian submanifold and D a symplectic submanifold. Then µrel(f0) = µrel(f1) .
(2) Let Y = Y1∪D Y2 be a space from gluing smooth even-dimensional (manifold, codimension-2
submanifold )-pairs and L be a smooth submanifold of Y of the middle dimension disjoint from
D. Let ft : Σ → (Y, ωt), t ∈ [0, 1], be a homotopy class of C∞ maps from a prestable bordered
Riemann surface Σ to Y with ft(∂Σ) ⊂ L and ωt is a 1-parameter family of symplectic structures
(say, of class C2) on Y keeping L a Lagrangian submanifold and D a symplectic submanifold.
Then µ(f0) = µ(f1) .

Lemma 3.1.5 [invariance under domain degeneration]. Let (X,L) be either a smooth
symplectic manifold or a singular symplectic space from symplectic cut, with a Lagrangian sub-
manifold L disjoint from Xsing. Let p : Σ→ Σ be a pinching map that arise from a degeneration
of Σ that pinches a finite disjoint union of simple loops on Σ. Given a C∞ map f : Σ→ (X,L)
and a family of deformations of f to a g : Σ → (X,L), Then µ(f) = µ(g). Similarly for C∞

maps into (Z,L;D).

Lemma 3.1.6 [invariance under symplectic cut on target]. Let ξ : (X,L) → Y :=
(Y1, L1)∪D (Y2, L2) be a symplectic cut with L1 and L2 disjoint form D. (1) Let f : Σ→ (X,L)
be a C∞ map that intersects ξ−1(D) at a finite union of S1-orbits and g : Σ → Y be the
C∞ map descended from f , where Σ is obtained from Σ by pinching each connected component
of f−1(ξ−1(D)) to a nodal point. Then µ(g) = µ(f). (2) Conversely, let g : Σ → X be a
pre-deformable C∞ map (cf. Definition 3.3.1) and f : Σ → X be a lifting of g, where Σ is a
deformation of Σ that smoothes exactly the nodes g−1(D) in Σ. Then µ(f) = µ(g).

We remark that, if one associates the symplectic cut ξ to a symplectic deformation family as
constructed in [Go], [MC-W], and [I-P2], then Lemma 3.1.6 is a corollary of [I-P2: Lemma 2.2].
The same statements of these lemmas, with L replaced by a totally real submanifold and D
replaced by a real-codimension-2 almost-complex submanifold, in the almost-complex category
hold as well.

Remark 3.1.7 [homotopy vs. homology]. As in the absolute case in [Liu(C)], the Maslov index of
an open relative stable map f : Σ→ (Z,L;D) or the singular (Y,L) influences the deformation
properties of f . Though a homotopy invariant, it is not determined by the image class f∗[Σ] of
f in H2(Z,L;Z) or H2(Y,L;Z), cf. [K-L: Remark 4.2.2].

3.2 Monodromy effect and the choice of curve class data in H2.

Recall the symplectic cut ξ : X → Y = Y1 ∪D Y2 and the associated almost-complex degen-
eration W/B. Let L be an Lagrangian submanifold disjoint from the cutting locus ξ−1(D)
then it gives rise to (W,B × L)/B, where L is totally real in each fiber of W/B; and the
construction in Sec. 1.1 extends immediately to give expanded degenerations (W [k], L[k])/B[k]

with the equivariant pseudo-Gm[k]-action, the topological space (Ŵ , B̂ × L)/B̂, the standard

local charts ϕ[k] : (W [k], L[k])/B[k] → (Ŵ , L̂)/B̂ of (Ŵ , L̂)/B̂ with the product-induced map

p̃[k] : (W [k], L[k])/B[k] → (W,L)/B. Note that L̂ = B̂ × L. We remark that L[k] ≃ B[k] × L
is a coisotropic submanifold in W [k] and is fiberwise Lagrangian/totally-real over B[k]. We can
assume that L[k] is contained in the trunk region U1[k]∪U2[k] of W [k]/B[k]. p[k] sends the dis-
criminant locus {λ0 · · · λk = 0} ⊂ B[k] of W [k]/B[k] to the discriminant locus {0} ⊂ B of W/B
and the complement B[k]reg := B[k] − {λ0 · · · λk = 0} to the complement Breg := B − {0}.
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Note that π1(B[k]reg) ≃ Z⊕(k+1) is generated by the canonically-oriented meridian S1 of the
(k + 1)-many coordinate hyperplanes of B[k]. Fix topological trivializations

W [k]R≥0·(ε2/4 , ··· , ε2/4) ≃ (R≥0 · (ε2/4 , · · · , ε2/4)) ×X

along the diagonal ray of B[k]’s. This fixes an isomorphism

H2(W [k]•, L[k]•;Z) ≃ H2(X,L;Z) , for • ∈ R≥0 · (ε2/4 , · · · , ε2/4) .

Via these identifications, π1(B[k]reg) acts on H2(X,L;Z) by monodromy. Furthermore, since L
is contained in the truck region of X, one has:

Lemma 3.2.1 [trivial monodromy on H1(L;Z)]. As a fiber of (W [k], L[k])/B[k], the mon-
odromy π1(B[k]reg)-action on H1(L;Z) is well-defined and is trivial; and the connecting homo-
morphism ∂ : H2(X,L;Z)→ H1(L;Z) is equivariant with respect to the π1(B[k]reg)-action.

Lemma/Definition 3.2.2 [(Ŵ , L̂)/B̂-monodromy orbit]. For each β ∈ H2(X,L;Z), all the

monodromy-orbits π1(B[k]reg) ·β, k ∈ Z≥0, coincide. We will name it the (Ŵ , L̂)/B̂-monodromy
orbit of β and denote it by [β].

Proof. Observe that the following diagram commutes

H2(X,L;Z)
p̃[k]∗−→ H2(X,L;Z)

a ↓ ↓ p[k]∗(a)

H2(X,L;Z)
p̃[k]∗−→ H2(X,L;Z)

for all a ∈ π1(B[k]reg); i.e. p̃[k]∗ is equivariant with respect to the monodromy actions. As p̃[k]∗
is the identity map under our identification and p[k]∗ : π1(B[k]reg)→ π1(Breg) is surjective, the
lemma follows immediately.

✷

Since the difference of two elements in a same [β] lies in the kernel of the map

ξ∗ : H2(X,L;Z) −→ H2(Y,L;Z) ,

each [β] determines a class, denoted by ξ∗[β], in H2(Y,L;Z). For simplicity of notation, we will
denote ξ∗[β] also by [β].

Comparison 3.2.3 [Li-Ruan and Ionel-Parker]. Though in different format, it should be noted

that (Ŵ , L̂)/B̂-monodromy orbits in H2(X,L;Z) coincides with ξ
−1
∗ (0)-cosets, where

ξ∗ : H2(X,L;Z) → H2(Y,L;Z) for the moment. Thus, the curve class considered here is of
the same kind as [L-R: Sec. 5] when L is empty. Furthermore, ξ−1

∗ (0) is generated precisely by
the “rim tori” of [I-P1: Sec. 5] since the monodromy of all W [k]/B[k] are generated exactly
by uniform simultaneous Dehn twists over D. As remarked in ibidem it is with respect to such
a collection in H2(X;Z) that one expects to have a degeneration-formula/gluing-theorem of
Gromov-Witten invariants. Thus the combinatorial data we use to restrict the moduli problem

of maps from bordered Riemann surfaces to fibers of (Ŵ , L̂)/B̂ is the same, when L is empty, as
those in [L-R], [I-P1], and [I-P2]. See Appendix for a further comparison of [L-R] versus [I-P1],
[I-P2].

Comparison 3.2.4 [refinement of [Li1] and [Li2]]. In the algebro-geometric setting ([Li1], [Li2])
without L, one assumes the existence of a relative ample line bundle H on W/B and considers
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a fixed H-degree curve class, which in general corresponds to a collection of curve classes in
H2(X;Z) (or A1(X)). Note that, since H|Wb

, b ∈ B, form a flat family of line bundles with
base B, the first Chern class of H|X , and hence the fixed H-degree class, must be monodromy

invariant. As the moduli space of maps to fibers of Ŵ/B̂ associated to different monodromy
orbits must be disjoint from each other, Jun Li’s degeneration formula in [Li1] and [Li2] indeed
always splits into a disjoint/independent collection7 of degeneration formulas, one for each mon-
odromy orbit in the fixed H-degree curve class. Since the discussion in this subsection produces
the same monodromy on H2(X;Z) (or A1(X)) as the one associated to the Artin stack W/B

of expanded degenerations associated to W/B, constructed in [Li1], the Ŵ/B̂-monodromy-orbit
refinement of [Li2] is the finest refinement of Jun Li’s formula (and is indeed implicitly already
in [Li2], had a discussion of monodromy at the level of the stack W/B been made. Further, it
has to be so for [Li1], [Li2] to be consistent with [L-R], [I-P1], [I-P2]. So this is also a consistency
check statement. See Comparison 3.2.3 above and Appendix). The examples studied in [L-Y1]
are [L-Y2] are both special cases of such refinement: there the W/B-monodromy on H2(X;Z)
(or A1(X)) is trivial and hence the degeneration formula of Jun Li refines to one associated to
each fixed curve class in H2(X;Z) (or A1(X)).

3.3 The moduli space M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) of stable maps to fibers of

(Ŵ , L̂)/B̂.

We now define the moduli space M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B of stable maps to fibers of

(Ŵ , L̂)/B̂ and highlight its basic properties.

Moduli space of stable maps to fibers of (Ŵ , L̂)/B̂ : its topology.

Definition 3.3.1 [stable map to fibers of (W [k], L[k])/B[k]]. Let [β] be the (Ŵ , L̂)/B̂-
monodromy orbit of β ∈ H2(X,L;Z), ~γ = (γ1 , . . . , γh) ∈ H1(L;Z)

⊕h such that ∂β = γ1+ · · · +
γh, and µ ∈ Z. A map f : (Σ, ∂Σ)/pt → (W [k], L[k])/B[k] from a bordered Riemann surface Σ
to a fiber8 of (W [k], L[k])/B[k] is called prestable of (combinatorial) type ((g, h), (n, ~m) | [β], ~γ, µ)
if the following conditions are satisfied:

· Σ is a prestable labelled-bordered Riemann surface of type ((g, h), (n, ~m));

· f is continuous and f̃ := ν ◦ f is J-holomorphic: J ◦ df̃ = df̃ ◦ j, where ν : Σ̃ → Σ is the
normalization of Σ;

· p̃[k]∗(f∗[Σ, ∂Σ]) ∈ [β] ; p̃[k]∗(f∗[∂̇Σ]) = ~γ ; µ(f) = µ;

· the automorphism group Aut rigid(f) of f as a map to (the rigid) W [k] is finite.

An isomorphism between two prestable maps f1 : Σ1/pt → W [k]/B[k], f2 : Σ2/pt →
W [k]/B[k] of the same type is a pair (α, β)9, where α : Σ1 → Σ2 is an isomorphism of prestable

7The moduli stacks involved for different monodromy orbits are disjoint from each other. They are substacks,
consisting of disjoint collections of connected components, of the moduli stack constructed in [Li1] and are equipped
with the tangent-obstruction complex and the virtual fundamental class from the restriction of those constructed
in [Li2] to related connected components. See [L-Y1] for an explicit example and discussion.

8When the fiber in question is almost-complex isomorphic to a Wλ with λ 6= 0, the existing definitions from
Gromov-Witten theory for smooth targets apply. Thus, all our focus here is on maps with singular targets. Such
focus of discussions to singular targets prevails the whole manuscript.

9The use of notation (α, β) here is so compelling. There should be no confusion of this β with the curve class
β. Similarly, for the occasional use of a map g, versus the genus g.
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labelled-bordered Riemann surfaces with marked points and β ∈ Gm[k] acts on W [k]/B[k] as in
Sec. 1.1.2 such that f1 ◦ β = f2 ◦α. The isomorphism class associated to a prestable map f will
be denoted by [f ]. The group of automorphisms Aut (f) of a prestable f : Σ/pt → W [k]/B[k]
consists then of elements (α, β) ∈ Aut (Σ)×Gm[k] such that β ◦ f = f ◦ α.

A prestable map f : Σ/pt → (W [k], L[k])/B[k], with image in fiber (W [k]~λ, L[k]~λ), is called
non-degenerate if no irreducible components of Σ are mapped into the singular locus W [k]~λ , sing

of W [k]~λ. For f non-degenerate, Λ := f−1(W [k]~λ , sing) consists of interior nodes on Σ. A node

q ∈ Λ is called a distinguished node on Σ under f .
Assume that the target fiber W [k]~λ ≃ Y[k′] for some k′. Decompose a non-degenerate

prestable f by
f = ∪k′i=0 fi : Σ = ∪k′i=0Σ(i) −→ Y[k′] = ∪k

′

i=0∆i

with f(i) = fΣ(i)
: Σ(i) → ∆i. Recall Di := ∆i ∩∆i+1. Let Λi := f−1(Di) and called it the i-th

subset of distinguished nodes. Associated to q · ∈ Λi are unique q · ,1 on Σ(i) and q · ,2 on Σ(i+1).
From the normal form of J-holomorphic map at a point ([Ye: Theorem 3.1] and [I-P1: Lemma
3.4]), f−1

i (Di) is a divisor of the form
∑

qij∈Λi
sij,1 qij,1 on Σ(i) and f

−1
i+1(Di) is a divisor of the

form
∑

qij∈Λi
sij,2 qij,2 on Σ(i+1). A prestable f is called pre-deformable if it is non-degenerate

and sij,1 = sij,2 (=: sij) for all qij ∈ Λi, i = 0 , . . . , k. We call sij the contact order of f at qij
along Di. Both the non-degeneracy condition and the pre-deformability condition are preserved
under isomorphisms between prestable maps.

Finally, a prestable f : Σ/pt → (W [k].L[k])/B[k] is called stable if f is pre-deformable
and its group Aut (f) of automorphisms is finite. The moduli space of isomorphism classes
of stable maps to fibers of (W [k], L[k])/B[k] of type ((g, h), (n, ~m) | [β], ~γ, µ) is denoted by

M non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ, µ).

We have assumed that the almost-complex structure on W [k] is C∞; thus, all maps parame-

terized byM non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ , µ) are C∞ as well when restricted/lifted to the

connected components of the normalization of the domains.

For [f : Σ/pt → W [k]/B[k]] ∈ M non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ, µ), fix a Hermitian

metric10 on C/Def (Σ) and on W [k]. Define the energy11 of f : Σ/pt→W [k]/B[k] to be

E(f) =
1

2

∫

Σ
|df |2 dµ ,

where |df |2 is the norm-squared of df with respect to the metric on W [k] and on Σ, and dµ
is the area-form on Σ with respect to the metric on Σ. Then one can define a topology on

M non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ, µ) similar to [Pa: Sec. 2.1] and [Ye: Definition 0.2]; see also

[Gr2], [P-W], [R-T1], [Sie1]; [Liu(C)]; [I-P1], [L-R]. A point [f ′] inM non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k]

| [β], ~γ, µ) is said to in the (ε1, ε2)-neighborhood Uε1,ε2([f ]) of [f ] if they have representatives
f : Σ/pt→W [k]/B[k] and f ′ : Σ′/pt→W [k]/B[k] so that

(1) there exists a surjective collapsing/pinching map c : Σ′ → Σ that is a diffeomorphism from
the complement of a collection of simple loops and simple arc with ends on ∂Σ′ on Σ′ to
the complement of the set of nodes on Σ′, and collapses/pinches each simple loop (resp.
arc) in the collection to an interior (resp. boundary) node of Σ such that

10A Hermitian metric on an almost-complex space is a (Riemannian) metric so that the almost-complex struc-
ture is an isometry. Different choices of such auxiliary metrics on domains and targets define the same topology.
Here for W [k] which is equipped with a compatible pair (J, ω) the metric is chosen to be the one associated to
the pair (J, ω).

11Note that E(f) is conformally invariant with respect to the metric on Σ. For J ω-tame and f J-holomorphic,
E(f) coincides with the symplectic area, and is determined by [β] ⊂ H2(X,L;Z).
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· (nearness of domain) Σ′ is isomorphic to a fiber of C/Def (Σ) with
‖j − c∗j‖C∞ < ε2 on Σ − Uε1 and c(p′·) in the ε2-
neighborhood of p·, where p·, p′· are marked points
on Σ, Σ′ that are paired by their label;

· (nearness of target and map) ‖f − f ′ ◦ c−1‖C∞ < ε2 on Σ− Uε1 , as maps to W [k];

(2) (nearness of energy)12 |E(f)− E(f ′)| < ε2 .

Here, Uε1 is the ε1-neighborhood of the set of nodes of Σ that is small enough so that it contains
no marked points. The system {Uε1,ε2([f ]) }f ; ε1, ε2 of subsets generates the C∞-topology13 on

M non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ, µ).
The pseudo-embedding ϕk′,k;I : (W [k′], L[k])/B[k′] →֒ (W [k], L[k])/B[k], k′ < k, I ⊂

{0 , . . . , k}, from Sec. 1.1.3 induces a pseudo-embedding

ϕk′,k;I : M non-rigid
(g,h),(n,~m)

((W [k′], L[k′])/B[k′] | [β], ~γ, µ)
→֒ M non-rigid

(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ , µ) .

Define the set of isomorphism classes of stable maps to fibers of (Ŵ , L̂)/B̂ :

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) :=
(
∐∞

k=0M non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ , µ)

)/
∼ ,

where the equivalence relation ∼ is generated by [f ] ∼ ϕk′,k;I([f
′]) for [f ] ∈ M non-rigid

(g,h),(n,~m)(

(W [k], L[k])/B[k] | [β], ~γ, µ) and [f ′] ∈ the defining domain of ϕk′,k;I onM non-rigid
(g,h),(n,~m)((W [k′],

L[k′])/B[k′] | [β], ~γ, µ). By construction, there are embeddings of sets

ϕ(k) : M non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ , µ) →֒ M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) , k ∈ Z≥0 .

A subset U of M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) is said to be open if U = ∪αUα such that Uα is

contained in the image of some ϕ(k) and ϕ
−1
(k)(Uα) is open inM non-rigid

(g,h),(n,~m)((W [k], L[k])/B[k] | [β],
~γ, µ). This defines the C∞-topology on the moduli space14 M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) of

stable maps to fibers of Ŵ/B̂. By construction,M(g,h),(n,~m)(W/B,L | [β], ~γ, µ). fibers naturally
over B; in notationM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B.

Definition 3.3.2 [tautological cover]. By construction,

{
M non-rigid

(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ, µ)
}
k∈Z≥0

12This condition is redundant here as E(f) = E(f ′) currently. We reserve it here to stress its importance to
Compactness Theorem.

13Let M be the moduli space of pre-deformable stable maps to fibers of ((W [k], L[k])/B[k]) rigid

with the C∞-topology from [Ye: Definition 0.2]. Then Gm[k] acts on M, and our moduli space
M non-rigid

· ((W [k], L[k])/B[k] | · · · ) is contained in M/Gm[k] with the quotient topology. The induced subset-
topology on M non-rigid

· ((W [k], L[k])/B[k] | · · · ) coincides with its C∞-topology.
14We could have used the notation M(h,h),(n,~m)((Ŵ , L̂)/B̂) | [β], ~γ, µ) for the moduli space

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ). Our choice of the latter reflects the intention to keep in mind that maps
to singular fibers are meant to be limited to those that are approachable from maps to smooth fibers, (reflected,
e.g. by the pre-deformability condition). As we will show that this is indeed so at the level of Kuranishi/virtual
neighborhoods on the moduli space.
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is an open cover of M(g,h),(n,~m)(W/B,L | [β], ~γ, µ). We will call it the tautological cover of

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ).

Indeed, there exists k0 depending (W/B,L) and ((g, h), (n, ~m)|[β], ~γ, µ) such that

M non-rigid
(g,h),(n,~m)

((W [k0], L[k0])/B[k0] | [β], ~γ, µ) ⊃ M non-rigid
(g,h),(n,~m)

((W [k0 + 1], L[k0 + 1])/B[k0 + 1] | [β], ~γ, µ)

⊃ M non-rigid
(g,h),(n,~m)

((W [k0 + 2], L[k0 + 2])/B[k0 + 2] | [β], ~γ, µ) ⊃ · · · .

Thus, the tautological cover ofM(g,h),(n,~m)(W/B,L | [β], ~γ, µ) is finite in effect, cf. Theorem 3.3.8.

The universal maps on the universal curve over eachM non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ , µ) are

glued to give the universal map (between spaces with charts)

F : C/M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) −→ (Ŵ , L̂)/B̂ .

Remark 3.3.3 [on Definition 3.3.1]. For the meaning/reason of the various conditions in Def-
inition 3.3.1: [Liu (C): Lemma 6.13], which is generalized to Lemma 5.3.1.1 in Sec. 5.3.1, ex-
plains the role of Maslov index µ on infinitesimal deformations of an open stable map; [L-R:
Lemma 3.11 (3)], [I-P1: Lemma 3.3], and [Li1: Proposition 2.2] give the reason to the important
pre-deformability condition, as we want to single out maps that contribute to the degenera-
tion formula; [I-P1: Sec. 6, Step 3] explains why morphisms of maps in question are defined
so that the singular targets become non-rigid on the ruled-manifold-components from expan-
sion, as it has to so that the choice of complex-scaling renormalizations in “stretching/pulling
out” a degenerate component that falls into W [k]λ , sing becomes irrelevant. Furthermore, we
will see in Sec. 5.3.5 that it is the combination of all three that renders the moduli space
M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B “virtually flat” over B. Only so can one hope for a degenera-
tion formula.

We now highlight three basic properties ofM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B in parallel to [L-
R: Sec.3.3] and [I-P1: Theorem 7.4] (and to the existing literature quoted earlier on non-family
case as well).

Hausdorffness.

LetM rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ, µ) be the moduli space of isomorphism classes of stable

maps to fibers of rigid (W [k], L[k])/B[k] of type ((g, h), (n, ~m) | [β], ~γ, µ). This is defined the
same as in Definition 3.3.1 except that a morphism between f1 : Σ1/pt → W [k]/B[k] and
f2 : Σ2/pt → W [k]/B[k] is taken to be an isomorphism α : Σ1 → Σ2 such that f1 = f2 ◦ α,
and the stability condition for f to the rigid W [k]/B[k] is that Aut rigid(f) is finite. Then
[Sie1: proof of Proposition 3.8] (see also [F-O: Lemma 10.4]) can be applied to show that

M rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ, µ) is Hausdorff. This space is indeed a singular subspace

of a manifold and hence is metrizable. The moduli spaceM non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ , µ)

is the quotient space of M rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ , µ) by the Gm[k]-action. Due to

the stability condition, all the Gm[k]-orbits onM rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ, µ) have the

same (real) dimension 2k. This implies that M non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ , µ) is also

Hausdorff, for k ∈ Z≥0.
Given now [f ], [f ′] ∈ M(g,h),(n,~m)(W/B,L | [β], ~γ, µ), assume, without loss of generality, that

the image fiber of f (resp. f ′) is Y[k] or Wλ, λ 6= 0 (resp. Y[k′] or Wλ′) with k ≥ k′. Then [f ],
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[f ′] ∈ M non-rigid
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ, µ). AsM non-rigid

(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ , µ) em-

beds inM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B, this implies, by the way we define the C∞-topology on

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B, that there are disjoint open subsets inM(g,h),(n,~m)(W/B,L | [β],
~γ, µ)/B that separate [f ] and [f ′]. It follows that:

Proposition 3.3.4 [Hausdorffness]. M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B with the C∞-topology
is Hausdorff.

This proposition can be regarded as a corollary of the stability condition on maps, in much
the same reason as in geometric-invariant-theory quotients in algebraic geometry.

Finite stratification.

We first generalize a simplified version of the constructions/operations of [B-M: Sec. 1] to incor-
porate both the boundary of bordered Riemann surfaces and the consideration in [I-P1: Sec. 7].
This defines a category G of graphs15 whose objects label the topological types of stable maps

to fibers of (Ŵ , L̂)/B̂.

Definition 3.3.5 [weighted layered (A2 → A1)-graph]. Let A2 → A1 be a pair of abelian
groups with a morphism. A weighted layered (A2 → A1)-graph τ consists of the following data:

(1) (graph with hands, bridges, legs, and fingers) a graph τ , whose set of vertices, edges,
legs, hands, bridges, and fingers are denoted by V (τ), E(τ), L(τ), H(τ), B(τ), and F (τ)
respectively; among them the sets H(τ), F (τ), L(τ) are ordered, with L(τ) also bi-colored
by (blue, red);

· the gluing of hands to vertices (resp. edges to vertices, bridges to hands, legs to vertices,
fingers to hands) defines the attaching map H(τ) → V (τ) (resp. E(τ) → Sym2(V (τ)),
B(τ) → Sym2(H(τ)), L(τ) → V (τ), F (τ) → H(τ), where Sym2( · ) is the symmetric
product of · ); the attaching map F (τ) → H(τ), together with the ordering on the sets
H(τ) and F (τ), groups elements of F (τ) into a tuple of tuples;

(2) (layer structure) a map layer : V (τ) → { 0 , · · · , k + 1 }, for a k ∈ Z≥0, such that
Im (layer ) is either {0}, {k + 1}, or the whole { 0 , · · · , k + 1 } and that, if v1, v2 ∈ V (τ)
is connected by an edge e ∈ E(τ), then either layer (v1) = layer (v2), in which case we call
e an ordinary edge, or |layer (v1)− layer (v2)| = 1, in which case we call e a distinguished
edge; the set of ordinary (resp. distinguished) edges is denoted by Eo(τ) (resp. E†(τ)); by
definition, E(τ) = Eo(τ) ∐ E†(τ);

· we require that a hand can be attached only to a vertex in layer−1({0 , k + 1}) and a red
leg can be attached only to a vertex to which there is a hand attached;

15In this simplified presentation, we directly identify a (plain) graph with its geometric realization, i.e. a
simplicial 1-complex consisting of a finite collection of points (i.e. vertices); a finite collection of (un-oriented) line
segments (i.e. edges), with both ends attached to vertices; a finite collection of (un-oriented) line segments (i.e.
legs, hands or roots) with only one end attached to vertices; a finite collection of (un-oriented) line segments (i.e.
bridges) with both ends attached to free ends of hands, and a finite collection of (un-oriented) line segments (i.e.
fingers) with only one end attached to free end of hands. We will denote a graph by τ (not to be confused with
the involution τ in Definition 2.1). The full formal language in [B-M: Sec. 1] can be recovered whenever needed.
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(3) (weight functions)

g : V (τ) −→ Z≥0 ;

b : V (τ)→ A2 , γ : H(τ)→ A1 such that the morphism A2 → A1

takes
∑

v∈V (τ) b(v) to
∑

h∈H(τ) γ(h) ;

ord : E†(τ)→ Z≥1 ;

(4) an assignment τ 7→ µ(τ) ∈ Z, called the index of τ .

An isomorphism α : τ1 → τ2 between two weighted layered (A2 → A1)-graphs is an isotopy
class of isomorphisms τ1 → τ2 as a simplicial complex that induces isomorphisms of sets, ordered
sets, or bi-colored ordered sets whichever applicable: V (τ1)

∼→ V (τ2), H(τ1)
∼→ H(τ2), E(τ1)

∼→
E(τ2), B(τ1)

∼→ B(τ2), L(τ1)
∼→ L(τ2), F (τ1)

∼→ F (τ2) and that preserves the layer layer ( · ),
weights g( · ), b( · ), γ( · ), ord ( · ), and the index µ( · ).

Denote by G(A2 → A1) (or simply G when A2 → A1 is understood) the category whose ob-
jects are weighted layered (A2 → A1)-graphs and whose morphisms are given by isomorphisms.

Define the core τ0 of a weighted layered (A2 → A1)-graph to be the (weighted layered) sub-
graph of τ by removing the hands, bridges, legs, and fingers from τ . For a connected weighted
layered (A2 → A1)-graph τ , define the genus of τ to be

g(τ) = 1− χ(τ0) +
∑

v∈V (τ)

g(v)

and the b-weight b(τ) of τ to be

b(τ) =
∑

v∈V (τ)

b(v) .

For general τ , define its genus and b-weight by summing genus and b-weight over its connected
components. Let τ1, τ2 be connected weighted layered (A2 → A1)-graphs of the same index. A
contraction from τ1 to τ2 is a homotopy class of surjective simplicial pseudo-maps c : τ1 → τ2
such that

· the defining domain of c contains τ1 −B(τ1);

· let layer : V (τ1) → {0 , . . . , k1 + 1} and layer : V (τ2) → {0 , . . . , k2 + 1} be the layer
structure of τ1 and τ2 respectively; then k1 ≥ k2 and there exists a non-decreasing map
I : {0 , . . . , k1+1} → {0 , . . . , k2+1} such that I◦layer (v) = layer (c(v)) for all v ∈ V (τ1);

· c is a deformation retract on its defining domain; the induced maps from H(τ1) to H(τ2),
L(τ1) to L(τ2), and F (τ1) to F (τ2) are bijective;

· let v ∈ V (τ2), then c
−1(v) is connected and g(v) = g(c−1(v)), b(v) = b(c−1(v));

· if e ∈ E†(τ1) is not mapped to a vertex of τ2 then c(e) ∈ E†(τ2) and ord (e) = ord (c(e)).

A (red-to-blue) color change rb : τ1 → τ2 is a change of the color of some red legs to blue,
leaving everything else the same. Both contractions and color-changes preserve g and b-weight
of weighted layered (A2 → A1)-graphs.

Associated to a point [f : Σ/pt → (Ŵ , L̂)/B̂] ∈ M(g,h),(n,~m)(W/B,L | [β], ~γ, µ), with target
isomorphic to (Y[k], L), is a weighted layered graph τ[f ] via the following correspondence
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f : Σ → (Y[k], L) (H2(Y,L;Z)
∂→ H1(L;Z))-graph τ

irreducible component Σv of Σ vertex v ∈ V (τ )
labelled boundary component (∂Σv)h of Σv hand h ∈ H(τ ) attached to v

(including boundary node qh of type E)
ordinary interior node q connecting Σv1 , Σv2 ordinary edge eq with ends attached to (v1, v2)
distinguished node q connecting Σv1 , Σv2 distinguished edge eq with ends attached to (v1, v2)
boundary node q of type H connecting (∂Σ)h1 bridge bq attached to the free ends of (h1, h2)

and (∂Σ)h2

free marked point p on Σv leg lp attached to vertex v
interior marked point blue leg
boundary free marked point red leg

boundary marked point p ∈ (∂Σ)h finger fp attached to the free end of hand h
———————————— ————————————————

Σv such that f(Σv) ⊂ ∆i layer (v) = i, v ∈ V (τ )
———————————— ————————————————

g(Σv) g(v), v ∈ V (τ )
f∗[Σv ] b(v), v ∈ V (τ )
f∗[(∂Σv)h] if ∂Σv 6= ∅ γ(h), h ∈ H(τ )
Maslov index µ(f) µ(τ )

distinguished node q of contact order s ord (eq) = s, eq ∈ E†(τ )

where it is understood that, when Σv1 = Σv2 , v1 = v2. It is clear that τ is defined to the
isomorphism class [f ] of f . We call τ[f ] the dual (weighted layered) graph of f or [f ]. Two stable
maps f1 : Σ1/pt→W [k1]/B[k1], f2 : Σ2/pt→ W [k2]/B[k2] are said to be of the same topological
type if τ[f1] is isomorphic to τ[f2] in the category G. Degenerations of stable maps to fibers of

(Ŵ , L̂)/B̂ are reflected contravariantly by compositions of contractions and color-changes of
their dual graphs.

The following fundamental lemma on J-holomorphic maps to fibers of (W [k], L[k])/B[k] is
a consequence of [Ye: Lemma 4.1, Lemma 4.3, Lemma 4.5] and [I-P2: the explicit construction
in Sec. 2], (see also [Gr2]; [MD-S1: Lemma 4.5.2], [F-O: Lemma 8.1], [Pa: Proposition 3.1.3],
[P-W]; and [I-P1: Lemma 1.5], [L-R: Lemma 3.8 and Lemma 3.9]):

Lemma 3.3.6 [energy lower bound]. One can fix Hermitian metrics on W [k], k ∈ Z≥0, so
that there exists a δ0 > 0 that depends only on (X,J, ω) such that, for all k ∈ Z≥0,

· any non-constant J-holomorphic map f : Σ/pt→ (W [k], L[k])/B[k] has E(f) ≥ δ0 ;

· for any sequence fi : Σ/pt → (W [k], L[k])/B[k] of J-holomorphic maps on Σ and any
blow-up point16 z ∈ Σ,

lim
r→0

lim sup
i→∞

E(f |Br(z)) ≥ δ0 .

The following lemma is parallel to [L-R: Lemma 3.15]. It follows from Lemma 3.3.6.

Lemma 3.3.7 [finite stratification]. The classification of stable maps by their topological
types gives rise to a finite stratification of M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B, with each stratum
Sτ labelled by a weighted layered (H2(Y,L;Z),H1(L;Z))-graph τ ∈ G.

Compactness.

16This is a point on Σ to which a positive energy of fi condenses/accumulates in the limit. This is where a
bubbling occurs. See, e.g. [MD-S1: Lemma 4.5.5], [P-W], [Ye: Sec. 4], and [L-R: Sec. 3.2].
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The following fundamental compactness result of Gromov-Witten theory in the current con-
tents is closely related to [L-R: Theorem 3.16, Corollary 3.17, Theorem 3.20, Theorem 3.21],
and [I-P1: Theorem 7.4]. It follows from Lemma 3.3.6, Lemma 3.3.7, the compactness tech-
nique/results in [Ye], the compactness techniques/results in [L-R: Sec. 3.2], and the compact-
ness technique/results in [I-P1, particularly Sec. 6, Step 3] and [I-P2], as the effect around the
boundary of domains that is mapped to L is taken care of in [Ye], the effect for degeneration of
domains due around the degeneration of the neck regions of targets is taken care of in [I-P1],
and these two regions are disjoint from each other in our situation. See also [Gr2], [F-O], [I-S1],
[Pa], [P-W], and [R-T1] for the non-family case.

Theorem 3.3.8 [compactness/B]. The moduli space M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B of

stable maps to fibers of (Ŵ , L̂)/B̂ of the specified type, with the C∞-topology, is compact over a
compact subset of B.

Remark 3.3.9 [finiteness of curve classes in [β]]. It should be noted that, while [β] corresponds
to an element in H2(Y,L : Z) under the map ξ∗ : H2(X,L;Z)→ H2(Y,L;Z) from the symplectic
cut ξ : X → Y , the (W,B×L)/B-monodromy orbit [β] could be an infinite subset inH2(X,L;Z).
However, only finitely manyM(g,h),(n,~m)(X,L |β′, ~γ, µ), β′ ∈ [β], can be non-empty since all the
related stable maps to X of the specified type have the same energy and one has the compactness
result of [Ye] in this case.

Before leaving this section, we should mention that the moduli problem of stable maps to

fibers of (Ŵ , L̂)/B̂ has non-trivial obstructions. The spaceM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B is

very singular in general. The construction of a family Kuranishi structure onM(g,h),(n,~m)(W/B,
L | [β], ~γ, µ)/B, to be done in Sec. 5.3 and Sec. 5.4, is meant to accommodate such singularities
due to obstructions.

4 The moduli space W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) of stable W̌ 1,p-

maps.

In this section we introduce the moduli space W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) of W̌ 1,p-maps to

fibers of (Ŵ , L̂)/B̂. This space fibers over B and is locally embeddable into a Banach orbifold-
with-corners; it contains M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) as a finite dimensional, compact-over-
B, singular sub-orbifold-with-corners. Members of the system of Kuranishi neighborhoods
for M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B, to be constructed in Sec. 5.3, are embedded in the lo-

cal singular-orbifold-charts of W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ)/B as finite dimensional, locally

closed, algebraic-type subsets that are flat over B. The related Banach relative tangent-space
fibration T 1

W̌1,p
• ((Ŵ ,L̂)/B̂ | •)/(M̃•×B̂)

and the related Banach relative obstruction-space fibration

T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/(M̃•×B̂)
on W̌1,p

(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) over M̃(g,h),(n,~m)× B̂ and their flat-

tening stratification are also given.
The foundation (Sec. 4.1) of the construction of these moduli spaces and fibrations are in

[Sie1: Sec. 4 - Sec. 6]; see also [Ru] and [L-R]. These spaces will be used to study the gluability
and the gluing of family Kuranishi neighborhoods in Sec. 5.4.

We assume throughout the work that 2 < p < ∞ to ensure the continuity of W 1,p- and
W̌ 1,p-maps (to be defined below) on a bordered Riemann surface.
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4.1 The moduli space W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) of stable W̌ 1,p-maps to

(W [k], L[k]), its relative tangent and relative obstruction bundles.

For a labelled-bordered Riemann surface Σ with marked points with a Kähler metric so that all
the boundary components are geodesics, let Uε be the ε-neighborhood of the set of nodes on Σ
with respect to the metric. Consider a measure µ on Σ defined as follows.

· on Σ− Uε, µ coincides with the area-form associated to the metric;

· around the ε/2-neighborhood of a node with local polar coordinates (r, θ), µ = drdθ, where
r is the distance function to the node and θ parameterizes the angular direction; θ runs
over [0, 2π] for an interior node or a boundary node of type E and over the disjoint union
of two finite closed intervals for a boundary node of type H;

· on Uε−Uε/2, µ is realized as a non-degenerate 2-form that interpolates smoothly the above
two 2-forms.

Define the Ľp- (resp. W k,p)-norm for a function f on Σ to be the Lp- (resp. W k,p-)norm of f
with respect to µ:

‖f‖Ľ =

(∫

Σ
|f |p µ

)1/p

, ‖f‖W̌ k,p =



∫

Σ

∑

|µ|≤k

|∂νf |p µ




1/p

.

The completion of C∞(Σ) with respect to the norm ‖ · ‖Ľp and ‖ · ‖W̌ k,p is denoted by Ľ(Σ)
and W̌ k,p(Σ) respectively. For 2 < p <∞,

C∞(Σ) ⊂ W̌ 1,p(Σ) ⊂W 1,p(Σ) ⊂ C0(Σ) .

The notion of bounded Ľ- or W̌ k,p-norm depends only on the complex structure on Σ, not the
Kähler metric, ε, or the smooth interpolation on Uε −Uε/2. In particular, though such measure

µ on Σ is not invariant under Aut (Σ) in general, the notion of functions of bounded Ľp- or
W̌ 1,p-norm on Σ is invariant Aut (Σ). The notion generalizes to maps to manifolds or sections
of a bundle. The choice of such Sobolev sections makes the local trivialization over a base S of
the space of Sobolev sections for vector bundles of a family CS/S of prestable labelled-bordered
Riemann surfaces with marked points over S that occurs in our problem possible; see [Sie1:
Sec. 4] for the technical details, which can be generalized to our case.

The symplectic cut ξ : X → Y extends to a strong deformation retract r : W/B → Y/{0}
such that the restriction rλ : Wλ → Y is also a symplectic cut. The post-composition of r with
p̃[k] : W [k]/B[k]→W/B defines a map r[k] :W [k]/B[k]→ Y/pt.

Definition 4.1.1 [stable W̌ 1,p-map to (W [k], L[k])]. A W̌ 1,p-map h : (Σ, ∂Σ)→ (W [k], L[k])
is said to be of (combinatorial) type ((g, h), (n, ~m) | [β], ~γ, µ) if Σ is a labelled-bordered Riemann
surface of type ((g, h), (n, ~m)), r[k]∗h∗([Σ]) = ξ∗([β]), r[k]∗(h∗[∂̇Σ]) = ~γ, and the relative
homotopy class of r[k] ◦ h contains a map of Maslov index µ. h is called stable if the restriction
of h to each unstable component of Σ is non-constant.

An isomorphism from h1 : Σ1 → W [k] to h2 : Σ2 → W [k] is an isomorphism α : Σ1 → Σ2

such that h1 = h2 ◦ α. The isomorphism class of h is denoted by [h]. The moduli space
of isomorphisms classes of stable W̌ 1,p-maps to (W [k], L[k]) of type ((g, h), (n, ~m) | [β], ~γ, µ) is

denoted by W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ).

Note that the stability condition implies that Aut (h) is finite for a stable W̌ 1,p-map h.
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As 2 < p <∞, a W̌ 1,p-map is continuous and one can define the C0-topology on W̌1,p
(g,h),(n,~m)(

W [k], L[k] | [β], ~γ, µ) by defining the (ε1, ε2)-neighborhood Uε1,ε2([h]) of [h] to consist of all [h′ :
(Σ′, ∂Σ′) → (W [k], L[k])] ∈ W̌1,p

(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) such that there exists a surjective

collapsing/pinching map c : Σ′ → Σ that is a diffeomorphism from the complement of a collection
of simple loops and simple arc with ends on ∂Σ′ on Σ′ to the complement of the set of nodes
on Σ′, and collapses/pinches each simple loop (resp. arc) in the collection to an interior (resp.
boundary) node of Σ so that

· (nearness of domain) Σ′ is isomorphic to a fiber of C/Def (Σ) with
‖j − c∗j‖C∞ < ε2 on Σ − Uε1 and c(p′·) in the ε2-
neighborhood of p·, where p·, p′· are marked points
on Σ, Σ′ that are paired by their label;

· (nearness of map) ‖h− h′ ◦ c−1‖C0 < ε2 on Σreg.

Here, Uε1 is the ε1-neighborhood of the set of nodes of Σ that is small enough so that it contains
no marked points. This topology is equivalent to the L∞-topology, [Sie1: Proposition 5.3].

A Banach space-with-corners is the direct product of a Banach space and a polyhedral cone
at the origin in a finite-dimensional (real) vector space. A Banach orbifold-with-corners is an
orbifold locally modelled on a finite quotient of a neighborhood of the origin of a Banach space-
with-corners. The same techniques for the proof of [Sie1: Proposition 3.8 and Theorem 5.1] can
be applied to prove the following theorem:

Theorem 4.1.2 [W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ)]. The C0-topology on the moduli space

W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) is Hausdorff. There exists a refinement of the C0-topology on

W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) so that it becomes a (Hausdorff) Banach orbifold-with-corners.

We shall call the refined topology in the above theorem the W̌ 1,p-topology on W̌1,p
(g,h),(n,~m)(

W [k], L[k] | [β], ~γ, µ). With this topology, a local orbifold-chart of [h] is modelled on the quotient
of the Banach space-with-corners from a rigidifying slice V ′′

[h] to the approximate pseudo-Aut (Σ)-

action onDef (Σ)×W 1,p(Σ, ∂Σ;h∗T∗W [k], (h|∂)∗T∗L[k]) byAut (h). HereW 1,p(Σ, ∂Σ;h∗T∗W [k],
(h|∂Σ)∗T∗L[k]) is the Banach space of W̌ 1,p-sections s of the vector bundle h∗T∗W [k] on Σ with
s|∂Σ taking values in (h|∂Σ)∗T∗L[k]. We call (V ′′

[h],Γ[h] := Aut ([h])), a Banach orbifold-with-

corners chart of [h] in W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ). (We will call [h] the center of the chart

for convenience.)
The system of the equivariant relative tangent bundle of the local Banach orbifold-with-

corners charts over the deformation space of the domain curve in the center glue to a Banach orbi-
bundle T 1

W̌1,p
• (W [k],L[k] | •)/M̃•

on W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ), whose fiber at [h : (Σ, ∂Σ) →

(W [k], L[k])] is given by the Banach Aut (h)-space W̌ 1,p(Σ, ∂Σ;h∗T∗W [k], (h|∂Σ)∗T∗(L[k])). We

call this orbi-bundle the relative tangent bundle of W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) over M̃(g,h),(n,~m).

The same construction in [Sie1: Sec. 6.1] gives a Banach orbi-bundle T 2
W̌1,p

• (W [k],L[k] | •)/M̃•

on W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ), whose fiber at [h : (Σ, ∂Σ) → (W [k], L[k])] is given by the

Banach Aut (h)-space Ľp(Σ;Λ0,1Σ⊗Jh
∗T∗W [k]) of Ľp-sections of Λ0,1Σ⊗Jh

∗T∗W [k]. We call this

orbi-bundle the relative obstruction bundle of W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) over M̃(g,h),(n,~m).

The nonlinear Cauchy-Riemann operator h 7→ ∂̄Jh := 1
2(dh+ J ◦ dh ◦ j) defines a section (in

the sense of orbi-bundle)

s∂̄J : W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) −→ T 2

W̌1,p
• (W [k],L[k] | •)/M̃•
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of the relative obstruction bundle T 2
W̌1,p

• (W [k],L[k] | •)/M̃•
.

A connection ∇ on T∗W [k] induces an partial connection on the orbi-bundle
T 2
W̌1,p

• (W [k],L[k] | •)/M̃•
, using the parallel transport on T∗W [k] associated to ∇. Denote this ∇-

induced partial connection on T 2
W̌1,p

• (W [k],L[k] | •)/M̃•
also by ∇; then its associated horizontal

distribution H∇ at a point ([h], η) over [h] projects isomorphically to the relative tangent space

T 1
W̌1,p

• (W [k],L[k] | •)/M̃• , [h]
of W̌1,p

(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) over M̃(g,h),(n,~m) at [h]. One thus

has a well-defined vertical projection πv to the tangent space T([h],η) T
2
W̌1,p

• (W [k],L[k] | •)/M̃• , [h]
for

a tangent vector at ([h], η) that projects into T 1
W̌1,p

• (W [k],L[k] | •)/M̃• , [h]
. Together with the vector

space translations on fibers of T 2
W̌1,p

• (W [k],L[k] | •)/M̃•
, the composition πv ◦ d s∂̄J defines an orbi-

bundle homomorphism

D∂̄J : T 1
W̌1,p

• (W [k],L[k] | •)/M̃•
−→ T 2

W̌1,p
• (W [k],L[k] | •)/M̃•

.

We shall call D∂̄J the ∇-induced linearization of the nonlinear Cauchy-Riemann operator ∂̄J .
The expression for D∂̄J can be computed explicitly. See, e.g., [MD-S1: Eq. (3.2), Remark 3.3.1],
[Liu(C): Proposition 6.12], and [Sie1: Sec. 6.3]. Note that, by definition, the J-holomorphy

locus in W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) is sent by s∂̄J to the image of the zero-section of

T 2
W̌1,p

• (W [k],L[k] | •)/M̃•
; the linearization Dh∂̄J for h J-holomorphic is thus independent of ∇.

Finally, we remark that, as L[k] is a coisotropic submanifold that contains properly a sym-
plectic submanifold (e.g. Re (B[k]) × L) in W [k], the restriction of the orbi-bundle homomor-
phism D∂̄J to each fiber is not Fredholm. Instead, D∂̄J , when restricted to fibers, has a finite-
dimensional cokernel but an infinite-dimensional kernel in general.

4.2 The moduli space W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) of stable W̌ 1,p-maps to fibers

of (Ŵ , L̂)/B̂, the relative W̌ 1,p-tangent-obstruction fibration complex.

Definition 4.2.1 [stable W̌ 1,p-map to (W [k], L[k])/B[k]]. A W̌ 1,p-map h : (Σ, ∂Σ)/pt →
(W [k], L[k])/B[k] from a bordered Riemann surface Σ to a fiber of (W [k], L[k])/B[k] is called
prestable of (combinatorial) type ((g, h), (n, ~m) | [β], ~γ, µ) if h is a stable W̌ 1,p-map from (Σ, ∂Σ)
to (W [k], L[k]) of type ((g, h), (n, ~m) | [β], ~γ, µ) such that the image of h lies in a fiber of
(W [k], L[k])/B[k]. An isomorphism between two prestable W̌ 1,p-maps h1 : Σ1/pt→W [k]/B[k],
h2 : Σ2/pt→W [k]/B[k] of the same type is a pair (α, β) where α : Σ1 → Σ2 is an isomorphism
of prestable labelled-bordered Riemann surfaces with marked points and β ∈ Gm[k] acts on
W [k]/B[k] as in Sec. 1.1.3 such that f1 ◦ β = f2 ◦ α. The isomorphism class associated to a
prestable W̌ 1,p-map h will be denoted by [h]. The group of automorphisms Aut (h) of a prestable
h : Σ/pt→W [k]/B[k] consists of elements (α, β) ∈ Aut (Σ)×Gm[k] such that β ◦ h = h ◦ α.

A prestable W̌ 1,p-map h : Σ/pt → (W [k].L[k])/B[k] is called stable if Aut (h) is finite. The
moduli space of isomorphism classes of stable W̌ 1,p-maps to fibers of (W [k], L[k])/B[k] of type

((g, h), (n, ~m) | [β], ~γ, µ) is denoted by W1,p
(g,h),(n,~m)((W [k], L[k])/B[k] | [β], ~γ, µ).

Once having the notion of stable W̌ 1,p-maps to the fibers of (W [k], L[k])/B[k], one can
apply the same procedure/routine of gluings as in Sec. 3.3 to define/obtain the moduli space

W̌1,p
(g,h),(n,~m)

((Ŵ , L̂)/B̂ | [β], ~γ, µ) of (isomorphism classes of) stable W̌ 1,p-maps to the fibers of

(Ŵ , L̂)/B̂.
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The W̌ 1,p-topology and the singular orbifold-with-corners structure on

W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ).

Let W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ)W [k]/B[k] be the singular (constructible) sub-orbifold-with-

corners of the Banach orbifold-with-corners W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) whose system of

local singular orbifold-with-corners charts consists of





(V ′,ΓV ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists a Banach orbifold-with-corners local chart (V ′′,ΓV ′′) of
W̌1,p

(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) such that

· V ′ is the subset of V ′′ parameterizing all those W̌ 1,p-maps to
(W [k], L[k]) parameterized by V ′′ whose image lies completely
in a fiber of (W [k], L[k])/B[k] and which are stable in the sense
of Definition 4.2.1;

· ΓV ′ = ΓV ′′ .





.

Note that V ′ is a locally closed subset of the corresponding V ′′. The gluing of the system of
local charts {(V ′,ΓV ′)}• for W̌1,p

(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ)W [k]/B[k] follows from the restric-

tion of the gluing of the subsystem {(V ′′,ΓV ′′)}• of charts for W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ).

The natural map from W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ)W [k]/B[k] to B[k] defines the notation

W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ)W [k]/B[k]/B[k]. A singular orbifold-with-corners structure on

W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) can be obtained by gluing a system of singular charts from fur-

ther orbifolding appropriate subsets of the singular local charts of W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ,

µ)W [k]/B[k], k ∈ Z≥0, as follows.

Let ρ ∈ W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) be represented by h : (Σ, ∂Σ)/pt→ (Y[k], L[k])/{0} ⊂

(W [k], L[k])/B[k]. (The case the target is a smooth Wλ, λ 6= 0, is immediate and will be omit-
ted.) For our final purpose of studyingM(g,h),(n,~m)(W/B,L | [β], ~γ, µ), we will assume that the
image of h has non-empty intersection with each irreducible component of Y[k]. The following
discussion can be adapted to the situation when this is not the case as well. As an element in
W̌1,p

(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ)W [k]/B[k], let (V ′,ΓV ′) be in the form of a singular local chart-

with-corners (V ′
h,Aut (h)

rigid) centered at h. The equivariant pseudo-Gm[k]-action onW [k]/B[k]

induces an equivariant pseudo-Gm[k]-action on W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ)W [k]/B[k]/B[k]

via post-composition with maps. Locally this is a (pseudo) Gm[k]-action on the singular lo-
cal chart-with-corners V ′ that commutes with the ΓV ′-action on V ′. A ΓV ′-invariant slice Vh
through h in V ′ to rigidify this Gm[k]-action can be constructed as follows.

Let C′/V ′ be the universal bordered Riemann surface with marked points over V ′ and F ′ :
C′/V ′ → W [k]/B[k] be the universal map. Both are built-in from the construction of Siebert.
Let UΣ ⊂ Σ be an Aut (h) rigid-invariant sub-surface of Σ by removing an appropriate small
neighborhood of all the nodes of Σ. Then, for V ′ small enough, the Aut (h) rigid-equivariant
embedding UΣ →֒ Σ extends to an Aut (h) rigid-equivariant embedding V ′ × UΣ →֒ C′ over V ′.
This implies that there exist global sections si, i = 1, . . . , k, of C′ → V ′ such that

· α∗si, α ∈ Aut (h) rigid, takes values in the image of V ′ × UΣ;

· the image of F ′ ◦ α∗si, α ∈ Aut (h) rigid, lies in a neighborhood Ui[k] of h ◦ si(0) in
Trunk [k]i ≃ B[k]× (∆i −Nε(Di−1 ∪Di)) of W [k], cf. Remark 1.1.1.6;
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· the finite set
{
π2,i ◦ F ◦ α∗si(0) : i = 1, . . . , k; α ∈ Aut (h) rigid

}
lies in C − R≤0, where

π2,i : Ui[k]→ C− {0} is the projection map to the fiber of L from a local trivialization of
L, as an embedded submanifold in ∆i, i = 1, . . . , k, cf. Sec. 1.1.1.

Define the average function Average for a finite subset S in C− R≤0 by

Average (S) = e
1
|S|

∑
w∈S(log(|w|)+

√
−1 arg(w)) ,

where arg(w) ∈ (−π, π). Let

s̄i := Average
(
π2,i ◦ F ◦ α∗si : α ∈ Aut (h) rigid

)
.

For V ′ small enough, this is a well-defined Aut (h) rigid-invariant function on V ′ for i = 1, . . . , k,
with values in C− R≤0. The k-tuple

R := (s̄1, . . . , s̄k) : V ′ −→ (C− {0})k

defines thus an Aut (h) rigid-invariant Gm[k]-equivariant map, where Gm[k] acts on (C−{0})k by
(w1, , . . . , wk) 7→ (σ1w1, . . . , σkwk), (σ1, . . . , σk) ∈ Gm[k] = (C×)k. Let Vh = R−1(R(0)). Then
Vh ⊂ V ′ is a rigidifying slice through h to the Gm[k]-action on V ′ and is invariant under the
ΓV ′-action.

By construction, the residual discrete subgroup ΓVh
of Aut (Σ)×Gm[k] that pseudo-acts on

Vh is an extension of Aut (h) rigid by a discrete subgroup of Gm[k] whose elements fix [h] when
they descend to pseudo-act on the quotient space Vh/Aut (h)

rigid. In other words, (α, β) ∈ ΓVh

if and only if β ◦ h = h ◦ α. By shrinking Vh if necessary, one can render the pseudo ΓVh
-

action to an honest group action. This shows that indeed ΓVh
= Aut (h). Stability of h says

that ΓVh
is finite. Thus, (Vh,ΓVh

) defines a singular orbifold local chart-with-corners at ρ =

[h] ∈ W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ). Re-write h above as hρ to manifest its representing ρ

and denote the map Vhρ → W̌1,p
(g,h),(n,~m)

((Ŵ , L̂)/B̂ | [β], ~γ, µ) that identifies Vhρ/Aut (hρ) with

a neighborhood of ρ in W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) by ψρ, then a system of singular local

charts-with-corners on W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) is given by {(Vhρ ,Aut (hρ), ψρ)}ρ. We

will identify each Vhρ/Aut (hρ) directly as a subset in W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ).

We next construct the transition data for the local charts. Given a pair (p, q) with p ∈
W̌1,p

(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) and q ∈ Vhp/ΓVhp
⊂ W̌1,p

(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ), there is a

ΓVhq
-invariant neighborhood Vqp of hq in Vhq such that ψq(Vqp) ⊂ Vhp/Γhp . The set of embed-

dings {hq} →֒ Vp is parameterized by a Γhp-orbit in Vhp . Fixing a such embedding determines
an embedding hqp : Vqp → Vhp up to a pre-composition with the Γhq -action on Vqp. The map hqp
determines then an embedding φqp : ΓVhq

→ ΓVhp
. The orbifold cocycle condition (cf. Definition

5.1.2 (2)) for a triple (p, q, r) with (p, q) as above and r ∈ Vq/Γhq follows immediately. Thus,
the system {(Vqp, hqp, φqp)}(p,q) gives a required orbifold transition data.

The two systems {(Vhρ ,Aut (hρ), ψρ)}ρ and {(Vqp, hqp, φqp)}(p,q) together give a singular

orbifold-with-corners structure on W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ). The induces topology on

W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) from these charts will be called the W̌ 1,p-topology on W̌1,p

(g,h),(n,~m)(

(Ŵ , L̂)/B̂ | [β], ~γ, µ). Theorem 4.1.2 together with the detail above implies:

Proposition 4.2.2 [Hausdorffness]. W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) with the W̌ 1,p-topology

is Hausdorff.
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Note that there is a natural morphism (as topological spaces with a system of local charts

and gluing data) from W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) to M̃(g,h),(n,~m)× B̂ that forgets the map,

keeping only the domain and the target in a stable-map data. It is with respect to this morphism

that we denote W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ)/(M̃(g,h),(n,~m) × B̂).

The relative W̌ 1,p-tangent-obstruction fibration complex on
M(g,h),(n,~m)(W/B,L | [β], ~γ, µ).

The total space of the Banach orbi-bundle T 1
W̌1,p

• (W [k],L[k] | •)/M̃•
on W̌1,p

(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ)
is itself a Banach orbifold-with-corners. The system of local trivializations of T 1

W̌1,p
• (W [k],L[k] | •)/M̃•

over the system17 {(V ′′,Γ′′)}• of local charts on W̌1,p
(g,h),(n,~m)

(W [k], L[k] | [β], ~γ, µ) provides the

Banach orbifold-with-corners charts for T 1
W̌1,p

• (W [k],L[k] | •)/M̃•
with the system of gluing data. Af-

ter a refinement if necessary, we may assume that all V ′′ are small enough, so that the collection
{(

T 1
V ′′ := T 1

W̌1,p
• (W [k],L[k] | •)/M̃•

∣∣
V ′′ , ΓV ′′

)}
•

gives the Banach-orbifold-with-corners local charts for T 1
W̌1,p

• (W [k],L[k] | •)/M̃•
.

Let {(V,ΓV )}• be a (fine enough) system of local charts on W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ)

as constructed in the previous theme, with each V admitting

V ⊂ V ′ ⊂ V ′′ ,

where, recall that, (V ′,ΓV ′) is a local chart on W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ)W [k]/B[k], and

(V ′′,ΓV ′′) is a local chart on W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ), for some k ∈ Z≥0 depending on

V . Consider the fiberwise-closed singular (constructible) subset T 1
V of T 1

V ′′ defined by

T 1
V :=

{
([h : (Σ, ∂Σ)→W [k]/B[k]], ξ) ∈ T 1

V ′′ |V
: ξ ∈ W̌ 1,p(Σ, ∂Σ;h∗TW [k]/B[k], (h|∂Σ)∗T∗L)

}
,

where W̌ 1,p(Σ, ∂Σ;h∗TW [k]/B[k], (h|∂Σ)∗T∗L) is the closed Banach subspace of

W̌ 1,p(Σ, ∂Σ;h∗T∗W [k], (h|∂Σ)∗T∗L[k]) that consists of W̌ 1,p-sections of (h∗T∗W [k], (h|∂Σ)∗T∗L[k])
that are projected to 0 under π[k]∗ : T∗W [k] → T∗B[k]. Then the ΓV -action on V canonically
lifts to an action on T 1

V . The gluing data of the system {T 1
V ′′}• extends to the lifting the gluing

data on the system {(V,ΓV )}• to on {(T 1
V ,ΓV )}•. This gives rise to a singular orbifold-with-

corners T 1
W̌1,p

• ((Ŵ ,L̂)/B̂|•)/M̃•
. The system of maps {(T 1

V → V )}• descends to a morphism of

orbifolds
T 1
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
−→ W̌1,p

(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) ,

whose fiber at ρ, represented by h : Σ→ Y[k], is given by the Banach Aut (ρ)-space

W̌ 1,p(Σ, ∂Σ;h∗T∗Y[k], (h|∂Σ)∗T∗L) (:= is the closed Banach subspace of

W̌ 1,p(Σ, ∂Σ;h∗T∗W [k], (h|∂Σ)∗T∗L[k]) that consists of W̌ 1,p-sections of (h∗T∗W [k], (h|∂Σ)∗T∗L[k])
that are projected to 0 under π[k]∗ : T∗W [k]→ T∗B[k]).

The same restrict-and-descend construction applied to the collection of orbi-bundles:
{
T 2
W̌1,p

• (W [k],L[k] | •)/M̃•
over W̌1,p

(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ)
}
k∈Z≥0

17The notation { · · · }• to indicate a system of objects of the form · · · will be used in many places of the work.
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gives rise to the singular orbifold-with-corners T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)M̃•
with a built-in orbifold mor-

phism

T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
−→ W̌1,p

(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) ,

whose fiber at ρ, represented by h : (Σ, ∂Σ) → (Y[k], L), is given by the Banach Aut (ρ)-space

Ľp(Σ, ∂Σ;Λ0,1Σ⊗J h
∗T∗Y[k]).

Let B̂ = (B−{0})∐Z≥0 be the stratification of B̂ by the homeomorphism type of the fibers

of Ŵ/B̂ (with the stratum B − {0} labelled by −1). It induces a stratification {Sk}k∈Z≥−1
on

W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) by taking the preimage under the forgetful morphism

W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) −→ B̂

of each stratum in B̂. The restriction of T 1
W̌1,p

• (W [k],L[k] | •)/M̃•
and T 2

W̌1,p
• (W [k],L[k] | •)/M̃•

to over Si
are orbi-bundles on Si. We say that {Si}i∈Z≥−1

gives a common flattening stratification for both

T 1
W̌1,p

• (W [k],L[k] | •)/M̃•
and T 2

W̌1,p
• (W [k],L[k] | •)/M̃•

, as for a coherent sheaf in algebraic geometry18.

The system of sections
{
s∂̄J : W̌1,p

(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ) −→ T 2
W̌1,p

• (W [k],L[k] | •)/M̃•

}
k∈Z≥0

restricts and descends to a section (as a morphism of orbifolds)

s∂̄J : W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) −→ T 2

W̌1,p
• ((Ŵ ,L̂)/B̂ | •)/M̃•

of T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
. In contrast, as the connection ∇ on W [k] that defines the orbi-bundle

homomorphism
D∂̄J : T 1

W̌1,p
• (W [k],L[k] | •)/M̃•

−→ T 2
W̌1,p

• (W [k],L[k] | •)/M̃•
.

is not Gm[k]-invariant, the system of these linearizations does not restrict and descend to a
linearization of ∂̄J from T 1

W̌1,p
• ((Ŵ ,L̂)/B̂ | •)/M̃•

to T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
. However, as the restriction

of the linearization D∂̄J over the J-holomorphy locus

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) ⊂ W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ)

is independent of ∇, one does have a morphism as an orbifold map between fibered orbifolds:

T 1
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•

∣∣
M•(W/B,L | •)

D∂̄J−→ T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•

∣∣
M•(W/B,L | •) .

We will call this the relative W̌ 1,p-tangent-obstruction fibration complex onM(g,h),(n,~m)(W/B,L |
[β], ~γ, µ).

This concludes our discussion for these auxiliary ∞-dimensional Banach-type orbifolds. To
give an orientation for next, we remark that to go from these spaces to a finite-dimensional
object that serves as local charts for M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) in a generalized sense and
is flat over B, there are three transversality issues one has to deal with:

18In the algebro-geometric setting, the parallel to the various T 1
• and T 2

• here will be constructed as a coherent
sheaf on a Deligne-Mumford moduli stack from the deformation-obstruction theory of the moduli problem in
question. See, e.g. [L-T1: Sec. 1] and [Li2: Sec. 1.2, Sec. 1.3]. In the analytic category that involves Banach
orbifolds, it is simpler to construct directly the associated total space, which are themselves (singular) orbifolds,
of the would-be sheaves rather than to construct these sheaves.
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· transversality of the operator ∂̄J , or equivalently the section s∂̄J ;

· transversality of matching conditions at distinguished nodes;

· transversality/S of the pre-deformability condition at distinguished nodes.

The construction of a Kuranishi structure onM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B is guided by the
attempt to achieve all three transversality conditions simultaneously and in a way that is flat over
B. This can be realized by a modification of ∂̄J and the take of a system of finite-dimensional
orbifold-structure-group-invariant subsets in the local charts of these auxiliary orbifolds.

5 Construction of a family Kuranishi structure on

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) over B.

In this rather long section, we construct a family Kuranishi structure over B for the moduli space

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B of stable maps to fibers of (Ŵ , L̂)/B̂. This answers incidentally
the simplest case, namely the degeneration from a symplectic cut, of the question posed in [F-O:
p. 962] on the family version of Kuranishi structure for a degeneration. The detail merges [F-O],
[Liu(C)] with [I-P2], [L-R], [Li1]; and the result gives an almost-complex/analytic/symplectic
parallel to the algebraic [Li1] and [Li2] when curves are closed.

5.1 Family Kuranishi structure modelled in the category Cspsccw/C.
We extend the notion of Kuranishi structure in [F-O: Sec. 5] (and also [F-O-O-O: Appendix
2] and [Liu(C): Sec. 6.1]) and define a Kuranishi structure modelled in a specific category of
topology/geometry that appears in our problem; see also [Sat: Sec. 1] and [Th: Chapter 13] for
related discussions on orbifolds.

Kuranishi structure modelled in a category of topology/geometry.

Let C be a category of topology/geometry – e.g. smooth manifolds with corners, complex spaces
of specified type of singularities, or fibrations over a fixed topological space – in which the notion
of morphisms, embeddings, isomorphisms, bundles, and groups actions make sense. Then, the
notion of orbifolds, orbi-bundles (see also [Th]), Kuranishi neighborhoods, equivalence of Ku-
ranishi neighborhoods, and Kuranishi structures in [F-O] can be generalized by replacing the
model topology/geometry in a local chart from domains in Rn to objects in C, with diffeomor-
phisms (resp. embeddings; bundle isomorphisms, bundle embeddings) that appear in the data of
gluing replaced by isomorphisms between (resp. embeddings of, isomorphisms of bundles over,
embeddings of bundles over) objects in C.

Definition 5.1.1 [Kuranishi neighborhood-in-C]. Let M be a Hausdorff topological space
and C be a category of topology/geometry. A Kuranishi neighborhood-in-C of p ∈M is a 5-tuple
(Vp,ΓVp , EVp ; sp, ψp) (collectively denoted also by Vp for simplicity of notation) such that

(1) [neighborhood model ] Vp is an object in C, ΓVp is a finite group that acts on Vp
(as isomorphisms in C) effectively; ΓVp is called the structure
group of the Kuranishi neighborhood;

(2) [ obstruction bundle ] EVp is a ΓVp-equivariant vector bundle over Vp;
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(3) [Kuranishi map ] sp : Vp → EVp is a ΓVp-equivariant continuous section of EVp ;

(4) [ local coordinate map ] ψp : s−1
p (0) → M is a continuous map which induces a home-

omorphism from s−1
p (0)/ΓVp to a neighborhood of p in M .

Two Kuranishi neighborhoods-in-C (V1,p,ΓV1,p , EV1,p ; s1,p, ψ1,p), (V2,p,ΓV2,p , EV2,p ; s2,p, ψ2,p)
of p ∈M are said to be equivalent, in notation
(V1,p,ΓV1,p , EV1,p ; s1,p, ψ1,p) ∼ (V2,p,ΓV2,p , EV2,p ; s2,p, ψ2,p), if

(1) dimV1,p − rankEV1,p = dimV2,p − rankEV2,p =: d ;

(2) their exists another Kuranishi neighborhood-in-C (Vp,ΓVp , EVp ; sp, ψp) of p such that

· dimVp − rankEVp = d,

· there exists a group homomorphism hi : ΓVi,p → ΓVp and an hi-equivariant vector-

bundle embedding φ̂i/φi : (EVi,p |V ♭
i,p
)/V ♭

i.p → EVp/Vp of the restriction of EVi,p to a

neighborhood V ♭
i,p of ψ−1

i,p (p) in Vi,p so that φ̂i ◦ si,p = sp ◦φi on V ♭
i,p and ψi,p = ψp ◦φi

on s−1
i,p (0) ∩ V ♭

i,p ; i = 1, 2.

(When this happens, we say that (Vp,ΓVp , EVp ; sp, ψp) dominates (Vi,p,ΓVi,p , EVi,p ; si,p, ψi,p)

or (Vi,p,ΓVi,p , EVi,p ; si,p, ψi,p) is subordinate to (Vp,ΓVp , EVp ; sp, ψp) via (hi, φi, φ̂i), i = 1, 2.)

The following definition of Kuranishi structure is modified from [F-O-O-O: A.2.1.5 - A.2.1.11],
[Liu(C): Definition 6.3], and [Th: Sec. 13.2]. It is based on the original definition of orbifolds
([Sat] and [Th]) and the notion of a “good coordinate system” ([F-O: Definition 6.1]) extracted
from a Kuranishi structure that is originally defined in a functorially-more-natural and closer-to-
stack way in [F-O: Definition 5.3] (if [F-O: Definition 5.2] is replaced by the equivalence relation
∼ in Definition 5.1.1 above).

Definition 5.1.2 [Kuranishi structure-in-C]. Let M be a Hausdorff topological space and
C be a category of topology/geometry. A Kuranishi structure-in-C K on M consists of the
following data/assignment:

(1) a system

N
(0) := {(Vp,ΓVp , EVp ; sp, ψp)}p∈M

of Kuranishi neighborhoods-in-C, one for each p ∈M ;

(2) a system

N
(1) := {(Vqp;hqp, φqp, φ̂qp)}p,q

of 4-tuple transition data (Vqp, hqp, φqp, φ̂qp), one each pair (p, q) with p ∈ M and q ∈
ψp(s

−1
p (0)), such that

· (transition function): Vqp is an open neighborhood of ψ−1
q (q) in Vq, hqp : ΓVq → ΓVp

is an injective group homomorphism, φ̂qp/φqp : (EVq |Vqp)/Vqp → EVp/Vp is an hqp-
equivariant vector-bundle embedding such that (Vp,ΓVp , EVp ; sp, ψp) dominates the

restriction of (Vq,ΓVq , EVq ; sq, ψq) to Vpq via (hqp, φqp, φ̂pq);

· (orbifold cocycle condition): if r ∈ ψq(s
−1
q (0) ∩ Vqp), then there exists a γ ∈ ΓVp such

that φqp ◦ φrq = γ φrp on a neighborhood Vrqp of ψ−1
r (r) in Vr, φ̂qp ◦ φ̂rq = γ φ̂rp over

Vrqp, and hqp ◦ hrq(g) = γ · hrp(g) · γ−1 for each g ∈ ΓVr .
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If furthermore C allows a well-defined notion of dimensions to its objects and we require that
dimVp − rankEVp be a constant d independent of p in the above data, then we say that the
Kuranishi structure-in-C K on M has virtual dimension d.

Two Kuranishi structures-in-C

K1 =
(
N

(0)
1 = {(V1,p,ΓV1,p , EV1,p ; s1,p, ψ1,p)}p∈M , N

(1)
1 = {(V1,qp;h1,qp, φ1,qp, φ̂1,qp)}p,q

)
,

K2 =
(
N

(0)
2 = {(V2,p,ΓV2,p , EV2,p ; s2,p, ψ2,p)}p∈M , N

(1)
2 = {(V2,qp;h2,qp, φ2,qp, φ̂2,qp)}p,q

)

on M are said to be equivalent, in notation K1 ∼ K2, if there exist another Kuranishi structure-
in-C on M

K =
(
N

(0) = {(Vp,ΓVp , EVp ; sp, ψp)}p∈M , N(1) = {(Vqp;hqp, φqp, φ̂qp)}p,q
)

and a system of triples of (group , space , bundle)-embedding

{(
hi,p : ΓVi,p → ΓVp , φi,p : V

♭
i,p → Vp , φ̂i,p : EVi,p |V ♭

i,p
→ EVp

)}
p∈M

,

where V ♭
i,p is a neighborhood of ψ−1

i,p (p) in Vi,p and φ̂i,p covers φi,p, such that

· (morphism between Kuranishi neighborhoods)

(Vp,ΓVp , EVp ; sp, ψp) dominates (Vi,p,ΓVi,p , EVi,p ; si,p, ψi,p) via (hi,p, φi,p, φ̂i,p) ;

· (compatibility with gluing) hi,p ◦ hi,qp = hqp ◦ hi,q , φi,p ◦ φi,qp = φqp ◦ φi,q on Vi,qp,

φ̂i,p ◦ φ̂i,qp = φ̂qp ◦ φ̂i,q over Vi,qp ;

i = 1, 2.

Remark 5.1.3 [orbifold cocycle condition]. Though we are not generally looking at a space locally
modelled on some Rn modulo faithful finite group actions as in the definition of an orbifold,
the fact that all the maps hqp on Kuranishi neighborhoods are regarded as being defined up
to composition with elements in the structure finite group ΓVp and the morphism hqp of the
structure groups are defined up to a conjugation in ΓVp remain to hold in the definition of
Kuranishi structure-in-C. The expression of the compatibility of gluings via the transitions
functions {(φqp, φ̂qp)}p,q in terms of the orbifold cocycle condition, rather than the ordinary
cocycle condition, reflects particularly this fact. It is in such form that the setting re-phrases
the gluing in a Deligne-Mumford stack.

We should remark that a Hausdorff topological space with a Kuranishi structure is a topo-
logical analogue to a Deligne-Mumford moduli stack with a perfect tangent-obstruction complex
([B-F] and [L-T1]) and a coarse moduli space.

Example/Definition 5.1.4 [Kuranishi structure with corners]. Let C be the category
of smooth manifolds with corners, locally modelled on open sets in some Rn1 × (R≥0)

n2 , or
more generally, Rn1 × ( cone in Rn2), (n1 and n2 are allowed to vary). This gives the notion of
Kuranishi structures with corners in [F-O-O-O: Sec. A.2] and [Liu(C): Sec. 6.1].

Example/Definition 5.1.5 [family Kuranishi structure]. LetM be a Hausdorff topological
space fibered over a base Hausdorff topological space B, in notation π : M → B or M/B, and
C be a category of topological spaces all of whose objects and morphisms are over B (as in the
category of schemes over a base scheme in algebraic geometry). A (family) Kuranishi structure-
in-C on M/B is a Kuranishi structure-in-C K on M , for which all the data in Definition 5.1.1
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and Definition 5.1.2 are over B. By construction, there is a natural morphism π̃ : K → B,
which restricts to the defining map Vp → B on each Kuranishi neighborhood Vp. The fiber
Kb := π̃−1(b) of K over b ∈ B gives a Kuranishi structure-in-Cb on the fiberMb := π−1(b), where
Cb is the category whose objects and morphisms are from taking the restriction of objects and
morphisms in C to over b. We will denote such K on M by K/B on M/B when the family
notion is emphasized. If, furthermore, there exists an open dense subset B0 of B and a category
C ′ of topology/geometry such that each Kb is a Kuranishi structure-in-C′ on Mb for b ∈ B0,
then we say that K/B has general fibers in C′ and M/B has general fibers with a Kuranishi
structure-in-C′.

Morphisms and fibered product.

In any category of geometry, once the geometric objects are defined, the notion of morphisms
and fibered products between them have to be defined accordingly/compatibly as well since these
two are the foundation of many other notions and constructions. We will postpone them until
Sec. 7.1, where we will define these two notions in a way that works for the specific type of
topological spaces-with-a-Kuranishi-structure from the current moduli problem. We won’t need
them until then.

The category Cspsccw.

We now describe the category Cspsccw over the complex line C in which our Kuranishi structure
will model. An object in Cspsccw is a specific kind of stratified piecewise-smooth-with-corners
topological space with complex CW-complex singularities and is fibered over C with smooth-
with-corner fibers except at 0, constructed as follows.

First, we introduce a complex stratified space Ξ(~s0, ..., ~sk) over the complex line C. Let ~si =

(si1, . . . , si,Ii) ∈ NIi , ~µi = (µi1, . . . , µi,Ii) ∈ CIi , for i = 0, . . . , k, and ~λ = (λ0, . . . , λk) ∈
B[k] := Ck+1. As an affine variety, Ξ(~s0, ..., ~sk) is defined as the subvariety in C (I0 + ···+Ik)+(k+1) :

Ξ(~s0, ..., ~sk) = {(~µ0, . . . , ~µk;~λ) : µij
sij = λi, i = 0, . . . , k, j = 1, . . . , Ii } .

It has complex dimension dim C(Ξ(~s0, ..., ~sk)) = k + 1. The projection

C (I0 + ···+Ik)+(k+1) −→ Ck+1 , (~µ0, . . . , ~µk;~λ) 7−→ ~λ ,

induces a finite flat morphism from Ξ(~s0, ..., ~sk) onto Ck+1 of degree
∏k

i=0

∏Ii
j=1 sij, and is étale

over the complement {~λ : λi 6= 0, i = 0, . . . , k} of coordinate subspaces in B[k]. After the

post-composition with the flat morphism p[k] : B[k] → C, ~λ 7→ λ0 · · · λk (cf. Sec. 1.1.1), one
has a flat morphism p : Ξ(~s0, ..., ~sk) → C that is smooth over C− {0}.

From the system of defining equations, Ξ(~s0, ..., ~sk) is the product
∏k

i=0 Ξ~si , where

Ξ~si = {(~µi;λi) : µij
sij = λi, j = 1, . . . , Ii } .

Ξ~si is the fibered product of the morphisms fj : C → C, z → zsij , j = 1, . . . , Ii. Its (C0-
)topology is thus the gluing ∨niC of ni copies of C’s at the origin, where ni is the number of
orbits in the group (Z/si1Z) ⊕ · · · ⊕ (Z/si,IiZ) under the action generated by the translation
(e1, . . . , eIi) 7→ (e1 + 1, . . . , eIi + 1). It follows that

· the (C0-)topology of Ξ(~s0, ..., ~sk) is the product
∏k

i=0 (∨niC), which is a gluing of n0 · · · nk
copies of Ck+1 along proper coordinate subspaces, and
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· p−1(t), t 6= 0, is a disjoint union of n0 · · · nk copies of (C×)k with each (C×)k étale over
p[k]−1(t) ⊂ B[k].

Denote byHI the coordinate subspace of B[k] whose points have coordinates λi = 0 for i ∈ I.
It follows from the topology of Ξ(~s0, ..., ~sk) that p

−1(0) = p[k]−1(H{0}) ∪ · · · ∪ p[k]−1(H{k}) has
n0 · · · nk ( 1

n0
+ · · · + 1

nk
) irreducible components, with n0 · · · ni−1 ni+1 · · · nk of them contained

in p[k]−1(H{i}). Each of these irreducible components has (C0-)topology isomorphic to Ck. Let

[p[k]−1(H{i})]0 be the formal sum of the subvarieties of Ξ(~s0, ..., ~sk) that appear as irreducible

components of p−1(0). It follows from the defining equation, λi = 0, of p[k]−1(H{i}) in Ξ(~s0, ..., ~sk)

that

[p−1(t)] , t 6= 0 , = [p−1(0)] =

k∑

i=0

(si1 · · · si,Ii) [p[k]−1(H{i})]0

in the Chow group Ak(Ξ(~s0, ..., ~sk)).
The composition of the projection map with p

Ξ(~s0, ..., ~sk) × Rn1 × (R≥0)
n2 −→ Ξ(~s0, ..., ~sk)

p−→ C

gives a flat19 fibration of Ξ(~s0, ..., ~sk) × Rn1 × (R≥0)
n2 over C. Let Cspsccw be the category

of Hausdorff topological spaces fibered over C that are locally modelled on an open set in
Ξ(~s0, ..., ~sk) × Rn1 × (R≥0)

n2 as stratified piecewise-smooth-with-corner spaces, with the gluing
maps isomorphisms over C. Here, k, (~s0, . . . , ~sk), n1, n2 are all allowed to vary.

We can now state the main theorem of the current work, which gives the foundation of the
degeneration axiom and the gluing axiom of open Gromov-Witten invariants. Its proof takes
Sec. 5.3 - Sec. 5.4.

Theorem 5.1.6 [family Kuranishi structure on M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)]. There is

a family Kuranishi structure K on M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) over B that is modelled in
Cspsccw/C, (recall that B ⊂ C). K/B is fiberwise of the same virtual dimension

vdim fiberM•(W/B,L | • )/B := µ+ (N − 3)(2 − 2g − h) + 2n+ (m1 + · · · +mh) ,

where 2N is the dimension of X (as a fiber of W/B). The family Kuranishi neighborhood-in-
Cspsccw (Vρ,ΓVρ , EVρ ; sρ, ψρ) at ρ = [f : (Σ, ∂Σ) → (Y[k], L[k])] has Vρ/B

20 isomorphic to a
neighborhood of the origin in the total space of the flat fibration

(
Ξ(~s0, ..., ~sk) × Rn1 × (R≥0)

n2
)/

C ,

where

· ~si is the contact order of f along Di at the ordered set of distinguished nodes in f−1(Di),
i = 0, . . . , k , (and recall that dimΞ(~s0, ..., ~sk) = 2k + 2);

· n1 = vdim fiberM•(W/B,L | • )/B + dimEρ − (2k + n2) ; and

· n2 = the total number of boundary nodes and free marked points that land on ∂Σ.

19For non-algebraic-geometers: the flatness of the fibration p : Ξ(~s0, ..., ~sk) → C is in the sense of morphisms of
schemes over the ground field C. The fiber subscheme p−1(0) over 0 ∈ C is non-reduced; each of the irreducible
components of p−1(0) carries a multiplicity in the sense of [Fu].

20Here we use Vρ/B to indicate that there is built-in map Vρ → B. The map is not necessarily surjective.
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The homeomorphism-type {Y[k′]}0≤k′≤k of the targets of maps gives a ΓVρ-invariant stratification
{Sk′}0≤k′≤k on the fiber Vρ;0 of Vρ/B over 0 ∈ B; each connected component of Sk′ is a manifold
of codimension 2k′ in Vρ;0. This stratification coincides with the induced stratification on Vρ;0
from the stratification21 of Ξ(~s0, ..., ~sk).

5.2 Local transversality and locally regular almost-complex structures.

There are three types of local transversality issues in our moduli problem that have to be
understood before one can choose a good obstruction space to work on: (for a fixed J)

(T1) local surjectivity of Df ∂̄J ,

(T2) local transversality of evaluation maps, and

(T3) local transversality of the contact order condition along D and local
transversality of the pre-deformability conditions at a distinguished
node with a specified contact order.

Global such issues have been discussed in related symplectic Gromov-Witten theories, e.g. [MD-
S1; MD-S3], [R-T1; R-T2], and [I-P1; I-P2] (particularly for Item (3)). In dealing with transver-
sality issues, it is a standard procedure by now that one first show the sought-for transversality
properties on the related universality moduli space UM of extended tuples (J, f : Σ → X) (or
(J, ν, f : Σ → X) where ν is an additional perturbation in [I-P1], [R-T1], [R-T2]) that contains
a choice of an almost-complex structure J and a J-holomorphic map f of a fixed class. One
shows that UM is a smooth Banach manifold and then apply the Sard-Smale Theorem to the
fibration of UM over the Banach manifold J of allowed almost-complex structures to obtain

the sought-for transversality property for the fiber moduli spaceMJ
over a regular value J ∈ J

of the fibration UM → J . A good feature for such a setting is that the moduli space MJ
for

J regular is a smooth orbifold of the correct dimension as expected from deformation theory.
However, it can happen that no regular J ’s are integrable.

In our current moduli problem, approached along [F-O], the effect of allowing J to vary to
obtain a sought-for transversality property is absorbed into a choice of a large enough subspace E
in Lp(Σ;Λ0,1Σ⊗J f

∗T∗X) so that its preimage (Df ∂̄J)
−1(E) in W 1,p(Σ, ∂Σ; f∗T∗X, (f |∂Σ)∗T∗L)

can fit into the related transversality statement. This is because the infinitesimal deformations
of J give rise to elements in Lp(Σ;Λ0,1Σ ⊗J f

∗T∗X) as well, after the pre-composition with
df ◦ j; and, similarly, for the additional ν in [I-P1], [R-T1], [R-T2]. The larger-than-expected

dimension and the possibly-worse singularities of MJ
for a fixed J that is not regular now

have to be compensated in the construction of Kuranishi structure. However, in doing so, we
may retain a good J to work on, The latter can be important for other parts in the theory, cf.
Example 5.2.3.

With these highlights in mind, we now give the precise respective statement of Conditions
(T1), (T2), and (T3) in the setting of Kuranishi structures. The domain unit disc or half
unit-disc in the following discussion is considered fixed.

(1) Local surjectivity of Df ∂̄J . This condition says that:

(T1) The map

Df ∂̄J : W 1,p(Σ, ∂Σ; f∗T∗X, (f |∂Σ)∗T∗L) −→ Lp(Σ;Λ0,1Σ⊗J f
∗T∗X)

21Recall the map Ξ(~s0, ..., ~sk) → Ck+1. The coordinate-subspace stratification of Ck+1 induces a stratification
on Ξ(~s0, ..., ~sk).

45



is surjective for any non-constant J-holomorphic maps on the unit disc f : D2 :=
{z ∈ C : |z| ≤ 1} → X or on a half unit disc f : (D2

+ , ∂0D
2
+) := ({z ∈ C : |z| ≤

1, Im (z) ≥ 0}, [−1, 1]) → (X,L).

Any almost-complex structure J that is C1 close to a complex structure has this property,
cf. Example 5.2.3.

(2) Local transversality of evaluation maps. This condition says that:

(T2) Given a J-holomorphic map on the marked disc f : (D2; 0) → X (resp.
on the marked half unit disc f : (D2

+ , ∂0D
2
+; 0) → (X,L)), there exists a (finite

dimensional) subspace E ⊂ Lp(Σ;Λ0,1Σ⊗J f
∗T∗X) such that the differential of the

evaluation map ev associated to the marked point

Dfev : (Df ∂̄J )
−1(E) −→ Tf(0)X

(resp. Dfev : (Df ∂̄J)
−1(E)→ Tf(0)L) is surjective.

This is the local Kuranishi statement for [MD-S1: Lemma 6.1.2]. Note that, in the above
expression, Dfev is defined on the whole W 1,p(Σ, ∂Σ; f∗T∗X, (f |∂Σ)∗T∗L) by (Dfev )(ξ) = ξ(0),
where Σ = (D2, 0) or (D2

+, 0).

(3) Local transversality of the contact order and the pre-deformability condition. To describe
these conditions in the Kuranishi setting, we have to introduce the objects from [I-P1] (with a
notation change: V there = D here):

· J D : the space of pairs (J ′, ν ′) where J ′ is an admissible almost complex structure
on the relative pair (X;D) and ν ′ is an element in Hom (π∗2T∗D

2, π∗1X) (of
the lifted bundles on X ×D2) that is anti-J ′-linear: ν ◦ j = −J ◦ ν, (the set
of all such ν will be denoted by Hom J(π∗2T∗D

2, π∗1T∗X));

· UM : the universal moduli space of (J ′, ν ′)-holomorphic maps (i.e. (f ′, φ′) : D2 →
X ×D2 such that ∂̄J ′f ′ = ν ′) for some (J ′, ν ′).

Let (J, 0) ∈ JD and f : D2 → (X,D) be a J-holomorphic disc in X with f−1(D) = s · (0). (we
set φ = IdD2 for such f by convention.) Then, [I-P1: Lemma 3.4] implies that there is a divisor
map div from a neighborhood of [f ] ∈ UM to the space Div s(D2) ⊂ Cs of degree s divisors

on the unit disc D2, defined by f ′ 7→ f ′−1(D). Let End J(T∗X) be the space of anti-J-linear
endomorphisms of T∗X. Then, there is a map

T(J,0)JD = End J(T∗X)⊕ Hom J(π∗2T∗D
2, π∗1T∗X) −→ Lp(D2; Λ0,1D2 ⊗J f

∗T∗X)

(δJ , δν) 7−→ 1
2
(δJ) ◦ df ◦ j − δν ,

where (δJ, δν) denotes an infinitesimal deformation of (J, 0). Denote the image of the above
map by H. Then Dfdiv is defined on the subspace (Df ∂̄J)

−1(H) of W 1,p(D2, f∗T∗X). Recall
the holomorphic coordinate z on D2 and fix a complex normal coordinate to D around f(0) in
D ⊂ X that is compatible with J |f(0). For ξ in the subspace V0 := (Dfdiv)

−1(0) of (Df ∂̄J)
−1(H),

let ξn be its normal component with respect to the normal coordinate to D. Then there is a
linear s(0)-jet-at-0 map

jet
s(0)
0 : V0 −→ C

ξ 7−→ d s(0)ξn(0)/dzs(0) .

With these preparations, the local transversality of contact order condition says that:
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(T3.1) Given a J-holomorphic map f : D2 → (X;D) such that f−1(D) is a divisor
s ·(0) on D2, there exists a (finite dimensional) subspace E ⊂ H ⊂ Lp(D2; Λ0,1D2⊗J

f∗T∗X) such that

· Dfdiv : (Df ∂̄J)
−1(E)→ Ts·(0)Div s(D2) ≃ T0Cs is surjective;

· jet s(0)0 on the subspace (Dfdiv)
−1(0) of (Df ∂̄J)

−1(E) is also surjective.

This is the local Kuranishi statement for the combination of the related part of [I-P1: proof
of Lemma 4.2] and [I-P1: Lemma 3.4].

For the local transversality of the pre-deformability condition, consider first the fixed unit
disc D2 with the marked point 0 and restrict the above discussion to maps with 0 sent to D in X.
Denote the related universal moduli space by UM0(X;D) and let f : (D2, 0)→ (X,D) be a J-
holomorphic map with f−1(D) = s·(0). Then there are the evaluation map ev 0 : UM0(X;D)→
D associated to the marked point 0 and the divisor map div0 from a neighborhood of [f ] ∈
UM0(X;D) to the space Div s−1(D2) ⊂ Cs−1, defined by f ′ 7→ f ′−1(D)− (0). Their differential,
Dfev 0 and Dfdiv0, are both defined on the subspace (Df ∂̄J)

−1(H) of W 1,p(D2, f∗T∗X), where
H is from the previous discussion. Again, for the complex coordinate z on D2 and a fixed

normal coordinate to D in X, has the s(0)-jet-at-0 map jet
s(0)
0 from the subspace (Dfdiv0)

−1(0)
of (Df ∂̄J)

−1(H) to C.
Next consider a pre-deformable J-holomorphic map

f = f1 ∪ f2 : Σ := D2
1 ∪0 D2

2 −→ Y = Y1 ∪D Y2

of contact order s along D at the distinguished node 0. Define

W 1,p(Σ; f∗T∗Y )

:= { (ξ1, ξ2) ∈W 1,p(D2
1 ; f

∗
1T∗Y1)⊕W 1,p(D2

2 ; f
∗
2T∗Y2) : ξ1(0) = ξ2(0) }

and

Lp(Σ;Λ0,1Σ⊗J f
∗T∗Y ) := Lp(D2

1 ; Λ
0,1D2

1 ⊗J f
∗
1T∗Y1)⊕ Lp(D2

2; Λ
0,1D2

2 ⊗J f
∗
2T∗Y2) .

Gluing of evaluation maps and their differential defines

Dfev 0 : W 1,p(Σ; f∗T∗Y ) −→ Tf(0)D .

Let Hi ⊂ Lp(D2
i ; Λ

0,1D2
i ⊗J f

∗
i T∗Yi) be the subspace that encodes the infinitesimal deformation

of (J, ν) as in the previous discussion and set H := H1 ⊕ H2 ⊂ Lp(Σ;Λ0,1Σ ⊗J f
∗T∗Y ). Then,

gluing of the divisor map div0,i, i = 1, 2, and their differential gives Dfdiv0 : (Df ∂̄J )
−1(H) →

T(s−1)·(0)Div s−1(D2
1)⊕T(s−1)·(0)Div s−1(D2

2). Again, recall the complex coordinates z1 and z2 on

D2
1 and D2

2 and fixed normal coordinates on (Y1,D) and (Y2,D). that is compatible with J |f(0).
Then, for ξ = (ξ1, ξ2) in the subspace V pd := (Dfdiv)

−1(0) of (Df ∂̄J)
−1(H), let ξn = (ξn1 , ξ

n
2 )

be its normal component with respect to the normal coordinate to D. Then there is a linear
s(0)-jet-at-0 map

jet
s(0)
0 : V pd −→ C 2

ξ 7−→
(
d s(0)ξn1 (0)/dz

s(0)
1 , d s(0)ξn2 (0)/dz

s(q)
2

)
.

In terms of these, the local transversality of the pre-deformability condition says that:
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(T3.2) Given a pre-deformable J-holomorphic map f = f1 ∪ f2 : Σ := D2
1 ∪0

D2
2 → Y = Y1 ∪D Y2 of contact order s along D at the distinguished node 0, let
H := H1 ⊕ H2 be the subspace of Lp(Σ;Λ0,1Σ ⊗J f

∗T∗Y ) := Lp(D2
1 ; Λ

0,1D2
1 ⊗J

f∗1T∗Y1)⊕Lp(D2
2 ; Λ

0,1D2
2⊗J f

∗
2T∗Y2) from the previous discussion on which Ddiv0 :=

Ddiv0,1⊕Ddiv0,2 is defined. Then, there exists a (finite dimensional) subspace E ⊂ H
such that

· Dfdiv0 : (Df ∂̄J)
−1(E)→ T(s−1)·(0)Div s−1(D2)⊕T(s−1)·(0)Div s−1(D2) is surjec-

tive;

· denote the subspace (Dfdiv0)
−1(0) of (Df ∂̄J)

−1(E) by (Df ∂̄J )
−1(E)pd, then

Dfev 0 ⊕ jet
s(0)
0 : (Df ∂̄J)

−1(E)pd → Tf(0)D ⊕C2 is surjective.

This is the local Kuranishi statement for the combination of [I-P2: Lemma 3.5] and [I-P1:
Lemma 4.2].

Note that, in both (T3.1) and (T3.2), though the map jet
s(0)
0 depends on the choice of a

local coordinate around 0 in the domain and a local normal coordinate to D around f(0) in the
target, the surjectivity condition stated is independent of the choices. of such coordinates.

Definition 5.2.1 [(strongly) locally regular almost-complex structure]. An almost-
complex structure J on (X,L) with L a maximal totally real submanifold (resp. on (X,L;D)
with D a codim R-2 almost-complex submanifold) is called locally regular if the transversality
conditions (T1), (T2) (resp. in addition, (T3)) hold for sufficiently small holomorphic discs and
half-discs in X. Such J is called strongly locally regular if, in addition, E in Condition (T2) and
Condition (T3), can be chosen to be supported in a compact set away from the marked point
and the distinguished node respectively.

Remark 5.2.2. Condition (T1) is said to be true for all smooth J in [F-O: (12.7.3)] and [Liu(C):
proof of Lemma 6.18]. The proof of [MD-S1: Lemma 6.1.2] can be adapted to show that
Condition (T2) always holds and E can be chosen to be supported in a compact set away from
the marked point. The proof of [I-P1: Lemma 4.2] can be adapted to show that Condition
(T3.1) also always holds. Since the domain D2 is unstable, the perturbation ν in [I-P1: proof
of Lemma 4.2] can be set to be 0. The argument in the proof of [I-P1: Lemma 4.2] implies then
that the E in Condition (T3.1) can be chosen to be 0. Similarly for the case of Y = Y1 ∪D Y2
and Condition (T3.2).

Example 5.2.3 [complex structure]. Let (X,L;D) be a complex manifold (X,J) with a
maximal totally real submanifold L and a smooth divisor D. Then the local study of [Sie1], [Sik],
[Ve] implies that Condition (T1) is satisfied and a right inverse Q of Df ∂̄J is given as an singular
integral operator. Conditions (T2) and (T3) can be directly checked by constructing a family of
local holomorphic discs or half-discs whose associated deformation vectors map surjectively to
Tf(0)X, Tf(0)L, and Ts(0)Div s(D2) respectively, e.g. using the local pseudo-automorphism group
action on X around f(0). One can also choose E in Conditions (T2) and (T3) to be 0 as long
as the holomorphic disc or half-disc is small enough. This shows directly that the complex X is
strongly locally regular. Similarly for a complex manifold-divisor relative pair (Y ;D) and the
singular complex space Y = Y1 ∪D Y2.

Assumption. From now on, we assume that the fixed smooth (C∞) almost-complex structure
on targets of types X, W [k]/B[k], (Y [k];D[k]), k ∈ Z≥0, are all strongly locally regular.
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5.3 Construction of family Kuranishi neighborhoods.

The foundation of the construction is the following two facts, applied in a continuous way to
Banach-space fibers of a family over a finite dimensional base.

Proposition 5.3.0.1 [Newton-Picard iteration]. ([MD-S3: Proposition A.3.4].) Let X and
Y be Banach spaces, U ⊂ X be an open set, and f : U → Y be a continuous differentiable map.
Let x0 ∈ U be such that D := df(x0) : X → Y is surjective and has a bounded linear right
inverse Q : Y → X. Choose positive constants δ and c such that ‖Q‖ ≤ c, Bδ(x0;X) ⊂ U , and

‖x− x0‖ < δ =⇒ ‖df(x)−D‖ ≤ 1

2c
.

Suppose that x1 ∈ X satisfies

‖f(x1)‖ <
δ

4c
, ‖x1 − x0‖ ≤

δ

8
.

Then there exists a unique x ∈ X such that

f(x) = 0 , x− x1 ∈ ImQ , ‖x− x0‖ ≤ δ .

Moreover, ‖x− x1‖ ≤ 2c ‖f(x1)‖.

Theorem 5.3.0.2 [implicit function theorem]. ([MD-S3: Theorem A.3.3].) Let X and Y
be Banach spaces, U ⊂ X be an open set, and l be a positive integer. If f : U → Y is of class
C l and y is a regular value of f (i.e. df(x) surjective with a right inverse for every x ∈ f−1(y)).
then M := f−1(y) ⊂ X is a C l Banach manifold and TxM = Ker df(x) for every x ∈ M.

With notations therein, Proposition 5.3.0.1 and Theorem 5.3.0.2 together imply that, for
x0 ∈ M, there is a homeomorphism from a neighborhood of 0 ∈ Tx0M to a neighborhood of
x0 ∈M. We now resume our study and notations.

The construction of a Kuranishi neighborhood involves the construction of a (continuous)
family of objects and maps that fit into Proposition 5.3.0.1 and Theorem 5.3.0.2. Relevant tech-
niques and results in (closed) [MD-S1: Sec. 3.3, Appendix A], [MD-S3: Sec. 3.5, Chapter 10], [F-
O: Sec. 12 - Sec. 14]; (closed relative and closed degeneration) [I-P1: Sec.3, Sec. 4, Sec. 6, Sec. 7],
[I-P2: Sec. 5 - Sec. 9], [L-R: Sec. 4]; and (open) [Liu(C): Sec. 6.4] for various related symplectic
Gromov-Witten theories will be adapted and used to construct a family Kuranishi neighborhood-
in-Cspsccw Vρ at each ρ = [f : (Σ, ∂Σ) → (Y [k], L)] ∈ M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) for an open
Gromov-Witten theory of the degeneration family W/B. The following diagram/flow-chart
outlines the construction:

◦ step (1)

choice of a saturated obstruction space Eρ at ρ

◦ step (2)
⇓ • linearized (J,Eρ)-stability condition

Ker (πEρ ◦Df ∂̄J )
pd in W 1,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k])

⇓ • upper semi-continuity of index (D∂̄J ) w.r.t. B[k]

the product space Def (Σ)×B[k]×Ker (πEρ ◦Df ∂̄J)
pd is large enough
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⇓ • system of algebraic equations for

target-deformation-driven deformations of Σ

algebraic subset Ṽρ of Def (Σ)×B[k]×Ker (πEρ ◦Df ∂̄J )
pd ,

which projects to a constructible subset π•(Ṽρ) in Def (Σ)×B[k]

◦ step (3)

⇓

• piecewise-continuous section π•(Ṽρ) → Ṽρ with image closure Θρ

• gluing construction around three types - ordinary interior,

boundary, and distinguished interior - of nodes on Σ

• exponential-map construction

piecewise-continuous-π•(Ṽρ)-family, which extends to a continuous-Ṽρ-family, of pre-
deformable approximate-J-stable C∞ maps h approx ,· from Σ· to fibers of W [k]/B[k]

◦ step (4)

⇓

• Eρ induces a trivialized obstruction bundle EṼρ
over Ṽρ

with fiber E· ⊂ Lp(Σ·; Λ0,1Σ· ⊗J h
∗·T∗(W [k]·))

• construction of a π•(Ṽρ)-family of uniformly bounded

right inverse Q· to πE
.

◦Dh
.

∂̄J

• Proposition 5.3.0.1 + Theorem 5.3.0.2 :

Newton’s iteration method to deform approximate solutions

to exact solutions to the (J,E)-holomorphy equation

Ṽρ-family of (exact) (J,E)-stable maps f· from Σ· to fibers of W [k]/B[k]

◦ step (5) [rigidification]

⇓ • the J-holomorphy of the Aut (Σ)×Gm[k]-action

a maximal subset Vρ in Ṽρ through ρ , transverse to the Aut (Σ)×Gm[k]-orbit of ρ

(This converts ‘maps to fibers of W [k]/B[k] ’ to ‘maps to fibers of Ŵ/B̂ ’.)

⇓
• Kursnishi map sρ : Vρ → EVρ from the ∂̄J -operator

• stability of ρ , ΓVρ = Aut (ρ)

• ψ : s−1
ρ (0) → Uρ : orbifold quotient map to a neighborhood of ρ

Vρ/B : a Kuranishi neighborhood-in-Cspsccw of ρ on M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) /B

Step (4) is the analytical core in the construction. The algebraic system in Step (2), the distin-
guished nodes in Step (3), and the conversion in Step (5) from ‘maps to fibers ofW [k]/B[k]’ back
to ‘maps to fibers of W+/B+’ are the main substeps for which the singularity of the degenerate
fiber W0 = Y1 ∪D Y2 plays a role.

Throughout this subsection, we let ρ = (Σ, ∂̇Σ; ~p, ~p1, . . . , ~ph; f) be a stable map to the
central fiber (Y[k], L[k]) ofW [k]/B[k], and ρ(i) := (Σ(i), (∂̇Σ)(i); ~p(i), ~p1,(i), . . . , ~ph,(i); f(i)) be the
associated submap to the irreducible component ∆i of Y[k], for i = 0, . . . , k+1. (By construction,
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(∂̇Σ)(i), ~pj,(i) can be non-empty only for i = 0 and k + 1.) We denote the labelled-bordered

Riemann surface with marked points (Σ, ∂̇Σ; ~p, ~p1, . . . , ~ph) also simply by Σ. The corresponding
point of ρ in M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) will also be denoted by ρ. Let Λi = f−1(Di) and

Λ =
∐ k

i=0Λi be the set of distinguished nodes on Σ under f . Let s = (~s0, · · · , ~sk) be the tuple
of contact orders of f at Λ. Both Aut (ρ) and Aut (f) mean the same. Denote by Aut (ρ)domain

(resp. Aut (ρ)target) the subgroup of Aut (Σ) (resp. Gm[k]) that consists of α (resp. β) such that
there is an (α, β) in Aut (f). These groups are all finite. With a re-adjustment, we assume
that the auxiliary Kähler metric on C/Def (Σ) is Aut (ρ)domain-invariant and the symplectic and,
hence, the metric structure on W [k] are Aut (ρ)target-invariant.

5.3.1 Choice of obstruction space Eρ of M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) at ρ.

The index of the linearized operator Df ∂̄J of ∂̄J at f .

The fiber of the W̌ 1,p-tangent-obstruction fibration complex

T 1
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•

∣∣
M•(W/B,L | •)

D∂̄J−→ T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•

∣∣
M•(W/B,L | •)

at ρ has a C l-, C∞-, and W 1,p-parallel as follows: (by convention, ∂Σ(i) = ∅ = L[k](i)
for

i = 1, . . . , k)

C l(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k])

:=
{
(ξ(i))

k+1
i=0 ∈ ⊕k+1

i=0 C
l(Σ(i), ∂Σ(i); f

∗
(i)T∗∆(i), (f(i)|∂Σ(i)

)∗T∗L[k](i)
)

: ξ(j)|Λj = ξ(j+1)|Λj ∈ (f |Λj)
∗T∗Dj , j = 0, . . . , k

}
,

C l(Σ;Λ0,1Σ⊗J f
∗T∗Y[k]) := ⊕k+1

i=0 C
l(Σ(i) , Λ

0,1Σ(i) ⊗J f
∗
(i)T∗∆(i)) ,

and
Df ∂̄J : C∞(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) −→ C∞(Σ;Λ0,1Σ⊗J f

∗T∗Y[k]) ,

Df ∂̄J : W 1,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) −→ Lp(Σ;Λ0,1Σ⊗J f
∗T∗Y[k]) .

For ∇ the Levi-Civita connection of the metric on Y[k] induced by (ω, J), the linearization D∂̄J
of ∂̄J is given by

(Df ∂̄J)(ξ) =
1

2

(
∇ξ ◦ df + J ◦ ∇ξ ◦ df ◦ j + ∇ξJ ◦ df ◦ j

)
,

on the irreducible components of Σ for which f is not constant, cf. [Liu(C): Proposition 6.12];
see also [MD-S1: Eq. (3.2) and Remark 3.3.1]. For an irreducible component of Σ on which f
is a constant map. the related bundles, (f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) and Λ0,1Σ⊗J f

∗T∗Y[k], on that

component are of the respective forms, OΣ ⊗C Cm and Λ0,1Σ ⊗C Cm, and have the canonical
holomorphic structure from the complex structure on Σ. Df ∂̄J for such component is the
restriction to that component of the operator ∂̄ : C∞(Σ,OΣ ⊗C Cm) → C∞(Σ,Λ0,1Σ ⊗C Cm)
associated to the canonical holomorphic structure. The following lemma should be compared to
[I-P2: Lemma 7.2] and [L-R: Theorem 5.1].

Lemma 5.3.1.1 [index of Df ∂̄J for rigid target]. Let f : (Σ, ∂Σ) → (Y[k], L[k]) be a stable
map to the specified expanded target space as above. Then the restriction

Df ∂̄J : C∞(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) −→ C∞(Σ;Λ0,1Σ⊗J f
∗T∗Y[k])
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is a Fredholm operator of index

ind (Df ∂̄J) = µ(f) + dimY · (1− g̃) − 2
k∑

i=0

l(~si) + 4
k∑

i=0

deg~si ,

where g̃ is the arithmetic genus of ΣC.

Proof. Let f = ∪k+1
i=0 f(i) : Σ = ∪k+1

i=0 Σ(i) → Y[k] = ∪k+1
i=0∆i be the decomposition of f into

submaps. Then, it follows from the Riemann-Roch Theorem (e.g. [F-O: Lemma 12.2], [Liu(C):
Lemma 6.13], and [MD-S3: Appendix C]) that each of

Df(i) ∂̄J : C∞(Σ(i), ∂Σ(i); f
∗
(i)T∆i, (f(i)|∂Σ)∗TL) −→ C∞(Σ(i); Λ

0,1Σ(i) ⊗J f
∗
(i)T∆i) ,

for i = 0, k + 1, and

Df(i) ∂̄J : C∞(Σ(i); f
∗
(i)T∆i) −→ C∞(Σ(i); Λ

0,1Σ(i) ⊗J f
∗
(i)T∆i) ,

for i = 1, . . . , k, is a Fredholm operator of index

ind (Df(i) ∂̄J) = µ(f(i)) + dimY χ̃i/2 , for i = 0, k + 1 ,

and
ind (Df(i) ∂̄J) = −2K∆i · βi + dimY χi/2 , for i = 1, . . . , k .

This implies, in particular, that Df ∂̄J is Fredholm.
The matching condition along TDi at each distinguished node of Σ imply that

C∞(Σ, ∂Σ; f∗TY[k], (f |∂Σ)∗TL[k])

→֒ ⊕i=0,k+1C
∞(Σ(i), ∂Σ(i); f

∗
(i)T∆i, (f(i)|∂Σ)∗TL)

⊕
⊕k

i=1C
∞(Σ(i); f

∗
(i)T∆i)

has codimension
k∑

i=0

l(~si) (dimY + 2) .

Denote the quotient vector space of this inclusion by V , then one has the following short exact
sequence of 2-term complexes:

0 −→ C0 −→ ⊕k+1
i=0 C

0
(i) −→ V −→ 0

Df ∂̄J ↓ ⊕iDf(i)
∂̄J ↓ ↓

0 −→ C1 −→ ⊕k+1
i=0 C

1
(i) −→ 0 −→ 0 ,

where
C0 = C∞(Σ, ∂Σ; f∗TY[k], (f |∂Σ)∗TL[k]) ,

C1 = C∞(Σ;Λ0,1Σ⊗J f
∗TY[k]) ,

C0
(i) =

{
C∞(Σ(i), ∂Σ(i); f

∗
(i)T∆i, (f(i)|∂Σ)∗TL) , for i = 0, k + 1 ,

C∞(Σ(i); f
∗
(i)T∆i) , for i = 1, . . . , k ,

C1
(i) = C∞(Σ(i); Λ

0,1Σ(i) ⊗J f
∗
(i)T∆i) .
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The Snake Lemma, together with the additivity property of (relative) Maslov index under joining
of submaps (Definition 3.1.2) and of the Euler characteristic of Riemann surfaces under gluing
along boundaries from removing small discs around distinguished nodes, implies then

ind (Df ∂̄J) = µ(f) + dimY · (1− g̃) − 2

k∑

i=0

l(~si) + 4

k∑

i=0

deg~si .

✷

Remark 5.3.1.2 [class independence]. ([MD-S1: Remark. 3.2.3].) Lemma 5.3.1.1 holds also for

Df ∂̄J : W l,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) −→ W l−1,p(Σ,Λ0,1Σ⊗J f
∗T∗Y[k]) ,

Df ∂̄J : W̌ l,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) −→ W̌ l−1,p(Σ,Λ0,1Σ⊗J f
∗T∗Y[k]) ,

and
Df ∂̄J : C l(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) −→ C l−1(Σ,Λ0,1Σ⊗J f

∗T∗Y[k]) .

We have taken J to be of class C∞ on each irreducible component of Y[k]. Thus, elliptic regularity

implies that Ker (Df ∂̄J) always lies in C∞(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]), independent of the

choice of the space on which Df ∂̄J is defined.

Existence of a saturated obstruction space Eρ at ρ.

For a small enough neighborhood UΛ+ = (∐q∈ΛUq) ∐ (∐piUpi) ∐
(
∐qijUqij

)
of the set Λ+ :=

Λ ∪ p ∪ ∪ h
j=1qj of the distinguished nodes and the marked points on Σ, recall from Sec. 5.2

(with 0 there replaced by q here) the associated subspace Hq in Lp(Σ;Λ0,1Σ ⊗J f
∗T∗Y[k])|Uq ,

q ∈ Λ, such that Dfdivq is defined on (Df ∂̄J )
−1(Hq) with values in T(s(q)−1)·(q)Div s(q)−1(Uq,1)⊕

T(s(q)−1)·(q)Div s(q)−1(Uq,2), where s(q) is the contact order of f along the singular locus of Y[k]
at q.

Definition 5.3.1.3 [admissible subspace]. A subspace V inW 1,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k])

is called admissible if there exists such an UΛ+ so that V |Uq ⊂ (Df ∂̄J)
−1(Hq) for all q ∈ Λ.

As all the maps Dfdivq, jet
s(q)
q , Dfev q, Dfev pi , and Dfev qij depend only on a jet at

the specified point in Λ+, they extend canonically to maps on an admissible subspace of
W 1,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) by pre-composition with the restriction-to-UΛ+ map.

Definition 5.3.1.4 [saturated/pre-deformable subspace]. A subspace V in W 1,p(Σ, ∂Σ;
f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) is said to be saturated if

(1) V is admissible;

(2) the map

(⊕q∈ΛDfdivq)
⊕

(⊕piDfev pi)
⊕(
⊕qijDfev qij

)
: V −→

(⊕
q∈Λ

(
T(s(q)−1)·(q)Div s(q)−1(Uq,1)⊕ T(s(q)−1)·(q)Div s(q)−1(Uq,2)

))

⊕(
⊕piTf(pi)Y[k]

)⊕(
⊕qijTf(qij )L

)

is surjective;
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(3) let V pd be the subspace (⊕q∈ΛDfdivq)
−1(0) in V , then the linear map

⊕q∈Λ (Dfev q ⊕ jet s(q)q ) : V pd −→ ⊕q∈Λ (Tf(q)D ⊕ C2)

is surjective, where we have identified Di, i = 0, . . . , k, canonically with D.

In the above statement, V pd is called the pre-deformable subspace of V .
A subspaceE of Lp(Σ;Λ0,1Σ⊗Jf

∗T∗Y[k]) is said to be saturated if (Df ∂̄J)
−1(E) ⊂W 1,p(Σ, ∂Σ;

f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) is saturated.

Definition/Lemma 5.3.1.5 [saturated obstruction space]. Denote by Im (Df ∂̄J) the image
of Df ∂̄J , (Df ∂̄J)(W

1, p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k])), in L
p(Σ;Λ0,1Σ⊗J f

∗T∗Y[k]). Then there

exists a subspace Eρ of Lp(Σ;Λ0,1Σ⊗J f
∗T∗Y[k]) such that

(1) Im (Df ∂̄J) + Eρ = Lp(Σ;Λ0,1Σ⊗J f
∗T∗Y[k]),

(2) Eρ is finite-dimensional, complex linear, and Aut (ρ)-invariant,

(3) Eρ consists of smooth sections supported in a compact subset of Σ disjoint from the set of
all (three types of ) nodes on Σ,

(4) (Df ∂̄J )
−1(Eρ) is a saturated subspace of W 1,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k])).

Eρ is called a saturated obstruction space of M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) at ρ .

Proof. Since J is strongly locally regular and the vector spaces above is constructed from a
gluing of the ordinary case for smooth target spaces, the existence of E′

ρ with Properties (1),
(2), and (3) follows the same argument as in [F-O: 12.7] and [Liu(C): Lemma 6.18]. It remains
now to enlarge E′

ρ to incorporate Property (4).
As J is locally strongly regular, there exist finite-dimensional subspaces VUq (resp. VUpi

,

VUqij
) in (Df |Uq

◦ ∂̄J )−1(Hq) (resp. C
∞(Up, (f |Up)

∗T∗Y[k]), C
∞(Uqij∂0Uij; (f |Uqij

)∗T∗Y[k],

(f |∂0Uqij
)∗T∗L)) such that, for all q, pi, qij ∈ Λ+, (a) the restriction of Dfdivq (resp. Dfev pi ,

Dfev qij ) thereon is surjective; (b) the restriction of Dfev q ⊕ jet
s(q)
q on the local pre-deformable

subspace VUq
pd is surjective, and (c) Df |Uq

(VUq) (resp. Df |Upi
(VUpi

), Df |Uqij
(VUqij

)) is supported

in the complement of a small neighborhood of q (resp. pi, qij). One can extend VUq , VUpi
, VUqij

to subspaces Vq, Vpi , Vqij in C∞(Σ, ∂Σ; f∗T∗Y[k],
(f |∂Σ)∗T∗L[k]) so that the summation V := (

∑
q∈Λ Vq) + (

∑
pi
Vpi) + (

∑
qij
Vqij) in C

∞(Σ, ∂Σ;

f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) is a direct sum. Then the image (Df ∂̄J)(V ) is a finite-dimensional sat-

urated subspace of Lp(Σ;Λ0,1Σ ⊗J f
∗T∗Y[k]) that satisfies Condition (3). Let Eρ be the span

of E′
ρ + Df ∂̄J(V ) and its image under the complex rotation and the Aut (ρ)-action. Then Eρ

satisfies Properties (1), (2), (3), (4).
✷

Let Eρ be a such obstruction space at ρ. Property (4) of Eρ implies that (Df ∂̄J)
−1(Eρ)

pd

has (real) codimension 4
∑k

i=0 (deg~si − l(~si)) in (Df ∂̄J )
−1(Eρ). It follows thus from Lemma

5.3.1.1 that:

Corollary 5.3.1.6 [pre-deformable subspace of (Df ∂̄J)
−1(Eρ)].

dim (Df ∂̄J)
−1(Eρ)

pd = µ(f) + dimY · (1− g̃) + 2
∑k

i=0 l(~si) + dimEρ

= µ(f) + dimY · (1− g̃) + 2 |Λ| + dimEρ .
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Definition 5.3.1.7 [pre-deformable index]. We define the pre-deformable index of Df ∂̄J to
be

ind pd(Df ∂̄J) := µ(f) + dimY · (1− g̃) + 2 |Λ| .

Remark 5.3.1.8 [ fixed vs. non-fixed (domain, target) ]. While there is no local obstruction to
extending stable map f from a fixed nodal curve Σ to a fixed transverse nodal target Y[k],
there remain obstructions when extending such maps to a partial smoothing of Y[k], enforcing a
deformation of the domain as well. In algebro-geometric/holomorphic setting, such obstructions
are encoded in the cohomology H0(Σ, f∗Ext 1(ΩY[k]

,OY[k]
)). The existence of such obstructions

is reflected in the dropping of ind pd(D·∂̄J ) when f is deformed to a nearby stable map to Y[k−1]

that smoothes Di, cf. Definition 5.3.1.7,

Definition 5.3.1.9 [(J,Eρ)-stable map]. Given Eρ in Definition/Lemma 5.3.1.5, a map h :
(Σ, ∂Σ) → (Y[k], L) is called (J,Eρ)-stable if it satisfies the perturbed J-holomorphy equations

∂̄J h ∈ Eρ, is pre-deformable at the distinguished nodes, and has a finite Aut (h).

For later use, we introduce the quotient map

πEρ : Lp(Σ;Λ0,1Σ⊗J f
∗T∗Y[k]) −→ Lp(Σ;Λ0,1Σ⊗J f

∗T∗Y[k])/Eρ

and denote (Df ∂̄J)
−1(Eρ)

pd also as Ker (πEρ◦Df ∂̄J)
pd. With respect to the holomorphic coordi-

nates around Λ in Σ and normal coordinates to ∪ki=0Di around f(Λ) in Y[k] that defines jet
s(q)
q ,

q ∈ Λ, one thus has the linear map

jet sΛ : Ker (πEρ◦Df ∂̄J)
pd −→ C 2 |Λ|

ξ 7−→
(
jet

s(q)
q

(
(ξ|Uq )

n
) )

q∈Λ
.

For q ∈ Λ, suppose that with respect to the fixed local coordinates f |Uq is given by

f(zq,i) =
(
f(q) +O (|zq,i|) , aq,izs(q)q,i +O

(
|zq,i|s(q)+1

))
, i = 1, 2 .

Define the shift-product map spq : C
2 → C, ( ·1 , ·2) 7→ ( aq,1+ ·1)( aq,2+ ·2). Then, the image of

a small enough neighborhood of 0 in Ker (πEρ◦Df ∂̄J)
pd under the composition spq ◦ jet sq lies in

a simply-connected neighborhood of aq,1aq,2 in C−{0}. For f(q) ∈ Di, spq ◦ jet s(q)q is a (nonlin-

ear) map from Ker (πEρ◦Df ∂̄J)
pd to

(
(T ∗

q Σ(i))
⊗s(q) ⊗ Tf(q)∆i

)⊗(
(T ∗

q Σ(i+1))
⊗s(q) ⊗ Tf(q)∆i+1

)
.

Define the nonlinear map

spΛ ◦ jet sΛ : Ker (πEρ◦Df ∂̄J)
pd −→ C |Λ|

ξ 7−→
(
spq ◦ jet s(q)q

(
(ξ|Uq )

n
) )

q∈Λ
.

Property (4) of Eρ in Definition/Lemma 5.3.1.5 implies that the map spΛ ◦ jet sΛ is a bundle map

over a small enough neighborhood of spΛ ◦ jet sΛ(0) in (C−{0})|Λ| with fiber of (real) dimension
µ(f) + dimY · (1− g̃) + dimEρ.
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5.3.2 The algebraic subset Ṽρ in Def (Σ)×B[k]×Ker (πEρ ◦Df ∂̄J)
pd .

A family Kuranishi neighborhood Vρ of ρ = [f ] ∈ M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) over B is to
be obtained from an enlarged deformation theory of the underlying moduli problem. Corollary
5.3.1.6 implies that ind pdDh∂̄J is piecewise-constant and upper semi-continuous with respect
to the stratification of B[k] when h runs over J-stable maps of the given combinatorial type
from deformed Σ to fibers of W [k]/B[k]. This hints that the product space Def (Σ) × B[k] ×
Ker (πEρ ◦Df ∂̄J)

pd is large enough to accommodate all the new maps to appear in a candidate

Kuranishi neighborhood Vρ of ρ. We describe in this subsubsection an algebraic subset Ṽρ in
Def (Σ) × B[k] × Ker (πEρ ◦ Df ∂̄J)

pd, characterized by the deformation theory of maps at the
distinguished nodes, that will finally give Vρ.

As observed in [I-P2] (see also [Li1] and [Gr-V] in algebro-geometric category), when Y[k] is
partially smoothed to some Y[k′] with Di being smoothed, all the nodes in Σi in Σ have to be
simultaneously smoothed in order for there to exist a J-holomorphic map f ′ from the new Σ′

to Y[k′] that is close to f . Thus, Vρ should only come from a subset of a locus Ṽρ in Def (Σ) ×
B[k]×Ker (πEρ ◦Df ∂̄J)

pd that is characterized by such target-space-driven deformations of the
domain. With the higher-order terms omitted, the germ of a target-space-driven deformation of
Σ at a distinguished node is modelled on the family of maps from C2/C to C2/C given by

C2 −→ C2

(z1, z2) (w1, w2) = (a1 z1
s , a2 z2

s)

↓ ↓
C −→ C

µ = z1z2 λ = w1w2 = a1a2 µ
s ,

a1, a2 ∈ C− {0} ,

where the local target (resp. domain) deformations are parameterized by λ (resp. µ ). Such

constraints from deformation theory at distinguished nodes select a subset Ṽρ in Def (Σ) ×
B[k]×Ker (πEρ ◦Df ∂̄J)

pd described as follows.
Fix a factorization

Def (Σ) = Def (Σ;Λ) × H
(smooth,Λ)
ρ,domain ,

where H
(smooth,Λ)
ρ,domain is the space of local smoothing of distinguished nodes in Λ and Def (Σ;Λ)

consists of deformations of Σ that keep Λ as nodes. H
(smooth,Λ)
ρ,domain is a neighborhood of 0 ∈ C |Λ|,

with coordinates (~λ0, · · · , ~λk) with 0 corresponding to no smoothing of nodes in Λ. LetH
(loc,Λ)
ρ,map ⊂

C |Λ| be a neighborhood of spΛ ◦ jet sΛ(0) in (C−{0})|Λ|, with coordinates ~a = (~a0, · · · , ~ak), over
which the map spΛ ◦ jet sΛ : Ker (πEρ ◦ Df ∂̄J)

pd → C |Λ| is a bundle map (of fiber dimension
µ(f) + dimY · (1− g̃) + dimEρ).

[Choice]. From now on in the construction, we will assume that the local chart
around q ∈ Λ is chosen so that aq,1 = aq.2 in the normal form expression of fρ

around q, cf. Sec. 5.2. Fix a section from H
(loc,Λ)
ρ,map to Ker (πEρ ◦Df ∂̄J)

pd so that the

condition aq,1 = aq.2 is preserved for all q ∈ Λ. The value in Ker (πEρ ◦Df ∂̄J)
pd of

this section for ~a ∈ H(loc,Λ)
ρ,map will be denoted ξ~a.

This gives a trivialization

Ker (πEρ ◦Df ∂̄J )
pd
Λ := (spΛ ◦ jet sΛ)−1(H(loc,Λ)

ρ,map ) ≃ H(loc,Λ)
ρ,map ×H (0,Λ)

ρ,map .

(By convention we fix coordinates on H
(0,Λ)
ρ,map so that the afore-mentioned section has image

H
(loc,Λ)
ρ,map ×{0} in H(loc,Λ)

ρ,map ×H (0,Λ)
ρ,map .) Combining the two, one has a decomposition of the relevant

56



open neighborhood of the origin of Def (Σ)×B[k]×Ker (πEρ ◦Df ∂̄J )
pd :

Def (Σ)×B[k]×Ker (πEρ ◦Df ∂̄J)
pd
Λ

≃ Def (Σ;Λ) ×
(
H

(smooth,Λ)
ρ,domain × B[k] × H(loc,Λ)

ρ,map

)
× H (0,Λ)

ρ,map

⊂ Def (Σ;Λ) ×
(
C |Λ| × C k+1 × C |Λ|

)
× H (0,Λ)

ρ,map .

The product C |Λ| × C k+1 × C |Λ| has coordinates ( ~µ0, · · · , ~µk ; ~λ ; ~a0, · · · , ~ak ) with

~µi = (µi1, · · · , µi,|Λi|) ,
~λ = (λ0, · · · , λk) , and ~ai = (ai1, · · · , ai,|Λi|)

that correspond to the deformations of domain, target, and maps respectively around Λ.
Compare this with the basic deformation model above, one concludes that in terms of these

coordinates, the subset Ṽρ of Def (Σ) × B[k] × Ker (πEρ ◦Df ∂̄J)
pd
Λ is described by a system of

algebraic equations on the
(
H

(smooth,Λ)
ρ,domain × B[k] × H

(loc,Λ)
ρ,map

)
-factor :

Ṽρ =

{
( · · · ; ~µ0, · · · , ~µk ; ~λ ; ~a0, · · · , ~ak ; · · · )

∣∣∣∣∣
µij

sij = λ i/aij ,

i = 0, . . . , k ; j = 1, . . . , |Λi|

}

=: Def (Σ;Λ) × V ρ × H
(0,Λ)
ρ,map .

As each aij takes values in a simply-connected domain in C− {0},

Ṽρ ≃ Def (Σ;Λ)× Ξs ×H(loc,Λ)
ρ,map ×H (0,Λ)

ρ,map = Def (Σ;Λ)× Ξs ×Ker (πEρ ◦Df ∂̄J)
pd
Λ

in the category of piecewise-smooth stratified spaces, where Ξs is defined in Sec. 5.1.
The projection map from Def (Σ)×B[k]×Ker (πEρ ◦Df ∂̄J)

pd to B[k] restricts to a morphism

πB[k] : Ṽρ → B[k] of constant fiber dimension µ(f) + dimY · (1 − g̃) + dimDef (Σ) + dimEρ.

The restriction of Ṽρ over each stratum of B[k] can be made a trivial bundle under πB[k]. On

the other hand, the projection map from Def (Σ)×B[k]×Ker (πEρ ◦Df ∂̄J)
pd to Def (Σ)×B[k]

restricts to a morphism πDef (Σ)×B[k] : Ṽρ → Def (Σ) ×B[k] whose image is only a constructible
subset in a neighborhood of 0 ∈ Def(Σ)×B[k] and whose fiber dimensions is given by the upper
semi-continuous function ind pd(D•∂̄J) + dimEρ.

Definition/Convention 5.3.2.1 [linear/nonlinear coordinates on Ker (πEρ ◦ Df ∂̄J )
pd].

Coordinates of Ker (πEρ◦Df ∂̄J)
pd as a subset of a vector space will be called linear coordinates on

Ker (πEρ◦Df ∂̄J)
pd. Those from the isomorphism with H

(loc,Λ)
ρ,map ×H (0,Λ)

ρ,map will be called nonlinear
coordinates. Unless otherwise mentioned, we adopt by convention the nonlinear coordinates for
Ker (πEρ◦Df ∂̄J)

pd (particularly when written as coordinates from the factorization) except the

origin 0 ∈ Ker (πEρ◦Df ∂̄J)
pd.

Finally, Aut (ρ) acts on Def (Σ)×B[k]×Ker (πEρ ◦Df ∂̄J)
pd. Shrinking if necessary, we take

Ṽρ to be Aut (ρ)-invariant in the above construction.
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5.3.3 A Ṽρ -family of approximate-J-stable C∞ maps to fibers of W [k]/B[k].

We construct in this subsubsection an Aut (ρ)-invariant Ṽρ-family of approximate-J-holomorphic
C∞ maps happrox, · from deformed Σ to fibers of W [k]/B[k] by gluing maps around nodes of
Σ. Such construction is given in [MD-S1: Appendix A] and in [F-O], [Liu(C)], [Liu(G)], [R-T1],
[R-T2], [Sal], and [I-P2], [L-R] for various extensions.

To separate the effect from various types of deformations involved, the factorization Def (Σ) =

Def (Σ;Λ) ×H(smooth,Λ)
ρ,domain is refined to

Def (Σ) (=: Hρ,domain )

=
(
H

(deform,Σ)
ρ,domain ×H(smooth,o.i.n)

ρ,domain ×H(smooth,b.n.)
ρ,domain

)
×H(smooth,Λ)

ρ,domain ,

whereH
(deform,Σ)
ρ,domain consists of deformations of the complex structure on Σ (as a bordered Riemann

surface with marked points) without changing the topology of Σ, H
(smooth,o.i.n)
ρ,domain consists of local

deformations of Σ that smooth some ordinary interior nodes of Σ, and H
(smooth,b.n.)
ρ,domain consists

of local deformations of Σ that smooth some boundary nodes of Σ. For Σ of genus g, h holes,
noin ordinary interior nodes, |Λ| distinguished interior nodes, nbn boundary nodes, n ordinary
marked points, and |~m| boundary marked points, Hρ,domain is parameterized by a neighborhood

of 0 in the 4-factor product space (with coordinates (ζ,~t, ~t′, ~µ))

(C3g−3+h−noin−|Λ|+n′+dc ×H
n′′

× Rh−nbn+|~m|+db )× Cnoin × R≥0
nbn × C|Λ| , n

.
= n′ + n′′ ,

with respect to the above decomposition. Let C/Def (Σ) be the universal curve over Def (Σ),
with the fiber labelled-bordered Riemann surface-with-marked-points over (ζ,~t,~t′, ~µ) ∈ Def (Σ)
denoted by Σ(ζ,~t,~t′,~µ). With a fixed local model chart at each node of Σ, cf. Definiton 2.1, a fixed

ε > 0 small, and the assumption that ‖(~t,~t′, ~µ)‖ ≪ ε, following the same construction as in the
case of W [k]/B[k], there is a ε-neck-trunk decomposition22 of C/Def (Σ) and gluing maps23:

I(0,~t,~t′,~µ) : Σ− ∪q: nodeN√|tq |(q) −→ Σ(0,~t,~t′,~µ) ,

I(0,~t,~t′,~µ),ε : Σ− ∪q: nodeN|tq |/ε(q) −→ Σ(0,~t,~t′,~µ) ,

where tq is the entry of (~t,~t′, ~µ) associated to the node q, and N(···)(q) is the (· · ·)-neighborhood
of q in the local model of node q. We also have a fixed family of diffeomorphisms Σ(ζ,~t,~t′,~µ) ≃
Σ(0,~t,~t′,~µ). The combination of the two defines the gluing maps

I(ζ,~t,~t′,~µ) : Σ− ∪q: nodeN√|tq |(q) −→ Σ(ζ,~t,~t′,~µ) ,

I(ζ,~t,~t′,~µ),ε : Σ− ∪q: nodeN|tq |/ε(q) −→ Σ(ζ,~t,~t′,~µ) .

These maps satisfy the Aut (ρ)-conjugation property that

α ◦ I(ζ,~t,~t′,~µ) ◦ α−1 = Iα·(ζ,~t,~t′,~µ) ,

α ◦ I(ζ,~t,~t′,~µ),ε ◦ α−1 = Iα·(ζ,~t,~t′,~µ),ε

for α ∈ Aut (ρ)domain acting on C/Def (Σ). The ε-neck region of the fiber Σ(ζ,~t,~t′,~µ) of C/Def (Σ)

will be denoted by Neck ε , (ζ,~t,~t′,~µ). It is a disjoint union of annuli/strips, of the form

{(z1, z2) ∈ C2 : z1z2 = tq , |z1| < ε , |z2| < ε}
22Cf. the thick-thin decompsoition in terms of hyperbolic geometry.
23Cf. the maps I~λ : Y[k] − ∪k

i=0N√
|λi|

(Di) → W [k]~λ and I~λ,ε : Y[k] − ∪k
i=0N|λi|/ε(Di) → W [k]~λ defined in

Sec. 1.1.1 by cut-and-glue.
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(resp.
{(z1, z2) : z1z2 = tq , |z1| < ε , |z2| < ε}/(z1, z2) ∼ (z2, z1) ,

{(z1, z2) : z1z2 = tq , |z1| < ε , |z2| < ε}/(z1, z2) ∼ (z1, z2) )

in Σ(ζ,~t,~t′,~µ), associated to smoothed interior (resp. type-E boundary, type-H boundary) nodes q

of Σ.
To homogenize the notation, we write interchangeably Hρ,target := B[k] for the deformations

of the target Y[k], and Hρ,map := Ker (πEρ ◦ Df ∂̄J)
pd
Λ as the deformation space of f with the

fixed domain Σ and rigid target Y[k]. The coordinates for Hρ,target ×Hρ,map will be denoted by

(~λ,~a, ξ) with respect to its decomposition as B[k]×H(loc,Λ)
ρ,map ×H(0,Λ)

ρ,map , (cf. Definition/Convention
5.3.2.1). Recall then

Ṽρ ⊂ Hρ := Hρ,domain ×Hρ,target ×Hρ,map

πDef(Σ) × B[k] ↓ ↓ πDef(Σ) × B[k]

πDef (Σ)×B[k](Ṽρ) ⊂ Def (Σ)×B[k] .

We will use the product coordinates (ζ,~t, ~t′, ~µ,~λ,~a, ξ) of Hρ for the algebraic subset Ṽρ, with ~λ
being the redundant coordinates expressible in terms of (~µ,~a), (cf. Sec. 5.3.2).

The intersections

Θρ,0 := (Hρ,domain ×Hρ,target × {spΛ ◦ jet sΛ(0)} × {0}) ∩ Ṽρ ,

Θρ :=
(
Hρ,domain ×Hρ,target ×H(loc,Λ)

ρ,map × {0}
)
∩ Ṽρ

≃ Def (Σ;Λ)× V ρ

in Hρ are both connected constructible subsets of Hρ. Θρ,0 is a deformation retract of Θρ

and, hence, πDef (Σ)×B[k](Θρ,0) is a deformation retract of πDef (Σ)×B[k](Ṽρ). The restriction of
πDef (Σ)×B[k] to Θρ,0 is one-to-one. Its inverse defines a (continuous) section

S0 : πDef (Σ)×B[k](Θρ,0) −→ Ṽρ|πDef (Σ)×B[k](Θρ,0)

with image Θρ,0. The restriction of πDef (Σ)×B[k] on Θρ is one-to-one only on an open dense
subset (i.e. the subset described by λi 6= 0, i = 0, . . . , k). It follows that S0 extends uniquely to
a piecewise-continuous section

S : πDef (Σ)×B[k](Ṽρ) −→ Ṽρ ,

whose image has closure Θρ in Ṽρ. Both S0 and S are Aut (ρ)-equivariant. As Ṽρ is a bundle

over Θρ with fiber H
(0,Λ)
ρ,map , this says in particular that, while it is not possible to make all

the ingredients in the relative construction (of Ṽρ-family of maps) continuous with respect to

πDef (Σ)×B[k](Ṽρ) in Def (Σ)×B[k], we have to ensure their extendibility and continuity over Θρ.

We now proceed to construct a piecewise-continuous-πDef (Σ)×B[k](Ṽρ)-family of approximate-J-
holomorphic maps that extends to a continuous-Θρ-family of approximate-J-holomorphic maps.

Fix a rotation-invariant smooth cutoff function β1 : C→ [0, 1] such that

β1(z) =

{
1 if |z| ≥ 2 ,

0 if |z| ≤ 1 ,
and |∇β1 | ≤ 2 ,

([MD-S1: Lemma A.1.1]). Then the local model of our approximate-J-stable maps around a
smoothed node is given as follows for a fixed ε > 0 small and |t|, |t′|, |µ|, |λ| ≪ ε. (Cf. [MD-S:
Sec. A.2], [F-O: (12.13)], [Liu(C): Sec. 6.4.1], and [L-R: Sec. 4.1].)
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(a) H
(smooth,o.i.n)
ρ,domain : The local model of the deformation/smoothing of an ordinary interior node

q of Σ is given by

Bε := {(z1, z2) ∈ C2 | |z1|, |z2| ≤ ε} −→ C

(z1, z2) 7−→ z1z2 .

Let At be the fiber over t ∈ C and fρ|A0 = f1 ∪ f2; then, for t 6= 0, define ht : At → Y[k] by

ht(z,
t

z
) = expf(q)

(
β1

(
z

|t|1/4
)
exp−1

f(q)(f1(z)) + β1

(
|t|3/4
z

)
exp−1

f(q)

(
f2

(
t

z

)))
.

(b) H
(smooth,b.n.)
ρ,domain : The local model of the deformation/smoothing of the two types of boundary

node q of Σ is given respectively by

(type E)
Bε/∼E := {(z1, z2) ∈ C2 | |z1|, |z2| ≤ ε}/(z1, z2) ∼ (z2, z1) −→ R≥0

(z1, z2) 7−→ z1z2 ,

(type H)
Bε/∼H := {(z1, z2) ∈ C2 | |z1|, |z2| ≤ ε}/(z1, z2) ∼ (z1, z2) −→ R≥0

(z1, z2) 7−→ z1z2 .

For q of type E, let A′
t′ be the fiber over t′ ∈ R≥0 and fρ|A′

0
= f ; then, for t′ > 0, define

ht′ : A
′
t′ → Y[k] by

ht′(z,
t′

z
) = expf(q)

(
β1

(
z

|t′|1/4
)
exp−1

f(q)(f(z))

)
.

For q of type H, let A′
t′ be the fiber over t

′ ∈ R≥0 and fρ|A′
0
= f1∪ f2; then, for t′ > 0, define

ht′ : A
′
t′ → Y[k] by

ht′(z,
t′

z
) = expf(q)

(
β1

(
z

|t′|1/4
)
exp−1

f(q)(f1(z)) + β1

(
|t′|3/4
z

)
exp−1

f(q)

(
f2

(
t′

z

)))
.

(c) V ρ ⊂ H
(smooth,Λ)
ρ,domain ×Hρ,target ×H(loc,Λ)

ρ,map : Let q ∈ Λ be a distinguished node of contact order

s. Recall the fixed local coordinates around f(q). Denote by (fD1 , f
N
1 )∪ (fD2 , fN2 ) the restriction

of f around q with the expression in terms of the coordinates on D and the normal coordinate
to D around f(q). Recall also the local model in Sec. 5.3.2 (cf. [I-P2])

Bε −→ C2

(z1, z2) (w1, w2) = (a1 z1
s , a2 z2

s)

↓ ↓
C −→ C

µ = z1z2 λ = w1w2 = a1a2 µ
s = a µs ,

a1, a2 ∈ C− {0} ,

that links the deformation/smoothing (here parameterized by µ) of the node q, the deformation
(here parameterized by λ) of Y[k] along the Di that contains f(q), and the product (here param-
eterized by a) of the lowest-order pre-deformable deformations of the normal-to-D component
of the germ of f on the two branches of Σ at q.

Let (µ, λ, a) be the relevant coordinates in the coordinates of H
(smooth,Λ)
ρ,domain ×Hρ,target×H(loc,Λ)

ρ,map

with λ = aµs. Define h(µ,λ,a) = (hD(µ,λ,a), h
N
(µ,λ,a)) as follows:
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· For λ = 0 : recall the ξa in Ker (πEρ ◦Df ∂̄J)
pd associated to a and define

h(0,0,a)( · ) = expf( · )(ξa( · )) .

· For λ 6= 0 : express ha := h(0,0,a) above as ha,1 ∪ ha,2 = (hDa,1, h
N
a,1) ∪ (hDa,2, h

N
a,2) and define

hD(µ,λ,a)(z,
µ
z ) = expha(q)

(
β1

(
z

|µ|1/4
)
exp−1

ha(q)
(hDa,1(z)) + β1

(
|µ|3/4

z

)
exp−1

ha(q)

(
hDa,2

(µ
z

)))
,

hN(µ,λ,a)(z,
µ
z ) =





β1

(
z

|µ|1/4
)
hNa,1(z) + β1

(
|µ|3/4

z

) √
a zs for |µ|1/2 ≤ |z| ≤ ε ,

β1

(
z

|µ|1/4
) √

a
(µ
z

)s
+ β1

(
|µ|3/4

z

)
hNa,2(

µ
z ) for |µ|1/2 ≤ |µ/z| ≤ ε ,

where
√
a is chosen so that

√
af fits the normal-form expression of f at q.

This describes what happens on a smoothed neighborhood of q with all irrelevant indices of the

coordinates of H
(smooth,Λ)
ρ,domain ×Hρ,target ×H(loc,Λ)

ρ,map suppressed. The substitutions µ→ µij, s→ sij,

λ→ λi, a→ aij , for i = 0, . . . , k, j = 1, . . . , |Λi| to the above expression recover the complete
V ρ-family of maps from Λ0,~t,~t′ to the fiber W [k]~λ of W [k]/B[k] .

By construction, these maps are defined on disjoint subsets of Σ(0,~t,~t′,~µ) and coincide with f

on their intersection with a compact subsetKεε−
of Σ by removing a small ε−-neighborhood of all

the nodes, with ε− slightly less than ε. AsW [k]~λ are obtained from gluing truncated Y[k] around
~λ-specified Di’s (cf. Sec. 1.1.1), they can be combined with and extended by f |Kε−

to a map from

Σ(0,~t,~t′,~µ) to W [k]~λ. In this way, one obtains a (continuous-)H
(smooth,o.i.n)
ρ,domain ×H(smooth,b.n.)

ρ,domain × V ρ-

family of maps
h
approx,(0,~t,~t′,~µ,~λ,~a,~0)

: Σ(0,~t,~t′,~µ) −→ W [k]~λ .

For ζ ∈ H(deform,Σ)
ρ,domain , one defines h

approx,(ζ,~t,~t′,~µ,~λ,~a,~0)
: Σ(ζ,~t,~t′,~µ) →W [k]~λ by setting

h
approx,(ζ,~t,~t′,~µ,~λ,~a,~0)

= h
approx,(0,~t,~t′,~µ,~λ,~a,~0)

.

(In all the discussion, though the ~λ-label is determined uniquely by (~µ,~a), we keep it in the
notation to remind us of the change of the target.) To summarize:

Lemma 5.3.3.1 [pre-deformable Θρ-family]. happrox,(ζ,~t,~t′,~µ,~λ,~a,~0), (ζ,
~t,~t′, ~µ,~λ,~a) ∈ Θρ, de-

fines a (continuous-)Θρ-family of C∞ maps of the same contact order and pre-deformability
behavior as f at un-smoothed distinguished nodes of Σ.

To keep the relative-to-(domain, target)-construction picture manifest, one should think
of this Θρ-family of maps as an extension/completion-at-[f ] of the corresponding (piecewise-

continuous-)πDef (Σ)×B[k](Ṽρ)-family of maps via the open-dense embedding S : πDef (Σ)×B[k](Ṽρ) →֒
Θρ. The Θρ-family of maps can be extended further to a (continuous-)Ṽρ-family of maps by
defining first

h
approx,(0,~0,~0′,~0,~0,~a,~b)

( · ) = expf( · ) ξ(~a,~b)( · ) .

This is a Hρ,map -family of C∞ maps from Σ to Y[k] for which pre-deformability at each dis-
tinguished node remains hold with the same order. Repeating then the above construction
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that deforms the map at the three types of nodes with f replaced by h
approx,(0,~0,~0′,~0,~0,~a,~b)

. For

(ζ,~t,~t′, ~µ,~λ,~a,~0) ∈ Θρ this gives h
approx,(ζ,~t,~t′,~µ,~λ,~a,~0))

as constructed above.

Lemma 5.3.3.2 [Ṽρ-family of pre-deformable approximate-J-holomorphic maps]. As-

sume that ‖ζ‖, ‖~t‖, ‖~t′‖, ‖~µ‖, ‖~a − ~af‖, ‖~b‖ are all sufficiently small (say, bounded above
uniformly by an ε≪ 1), then

∥∥∥ ∂̄Jhapprox,(ζ,~t,~t′,~µ,~λ,~a,~b)
∥∥∥
Lp(Σ(ζ,~t,~t′,~µ))

≤ C
(
‖ζ‖+ ‖~t‖+ ‖~t′‖+ ‖~µ‖+ ‖~a− ~af‖+ ‖~b‖

) 1
2p
,

where C is a constant that depends only on ε, f , ∇f , J , ∇J , the norm of the differential
of spΛ ◦ jet sΛ, and the norm of the differential of the exponential map and its inverse along f .

Thus, happrox,( · ) gives a (continuous) Aut (ρ)-invariant Ṽρ-family of pre-deformable approximate-
J-holomorphic maps.

Proof. The approximate J-holomorphy property follows from [MD-S1: Lemma A.4.3], [F-O:
Lemma 12.14, Lemma 12.15], [Liu(C): Lemma 6.22], and [L-R: Lemma 4.6]. Here we have

assumed that ‖ζ‖, ‖~t‖, ‖~t′‖, ‖~µ‖, ‖~a−~af‖, ‖~b‖ are all sufficiently small so that the combination
of all the estimates in ibidem is bounded above by the right-hand side of the inequality above.
The Aut (ρ)domain-invariance of the domain decomposition involved, the Aut (ρ)target-invariance
of the metric on W [k], and the cutoff function chosen imply that the gluing construction is

Aut (ρ)-invariant. This implies that the Ṽρ-family of maps as constructed is Aut (ρ)-invariant.
✷

Notation 5.3.3.3. We will assume that ‖ζ‖, ‖~t‖, ‖~t′‖, ‖~µ‖, ‖~a − ~af‖, ‖~b‖ are all sufficiently
small so that h

approx,(ζ,~t,~t′,~µ,~λ,~a,~b)
(·) = exph

approx,S(ζ,~t,~t′,~µ,~λ)
( · ) ξ(ζ,~t,~t′,~µ,~λ,~a,~b)( · ) for a unique

ξ(ζ,~t,~t′,~µ,~λ,~a,~b)

∈ W 1,p
(
Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ);h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ), (happrox,S(ζ,~t,~t′,~µ,~λ)|∂Σ(ζ,~t,~t′,~µ)
)∗T∗L

)
.

This expression renders the Ṽρ-family of maps a continuous extension of the Θρ-family of

maps by the exponential-map construction along theH
(0,Λ)
ρ,map -factor directions; this helps making

the later relative construction over πDef (Σ)×B[k](Ṽρ) manifest.

5.3.4 The Ṽρ -family of (exact) (J,E·)-stable maps f· to fibers of W [k]/B[k].

In this subsubsection, we extend the Aut (ρ)-invariant obstruction space Eρ at ρ step by step to
trivialized Aut (ρ)-equivariant auxiliary obstruction bundles E aux

S(πDef (Σ)×B[k](Ṽρ))
over

S(πDef (Σ)×B[k](Ṽρ)), EΘρ over Θρ, and EṼρ
over Ṽρ. We then deform the Aut (ρ)-invariant

Ṽρ-family of approximate-J-stable C∞ maps in Sec. 5.3.3 to a (continuous) Aut (ρ)-invariant

Ṽρ-family of (J,E•)-stable maps. The major step is a construction of a πDef (Σ)×B[k](Ṽρ)-family

of right inverses (of πE aux
·
◦Dhapprox, · ∂̄J )

Q(ζ,~t,~t′,~µ,~λ) : Lp
(
Σ(ζ,~t,~t′,~µ); Λ

0,1Σ(ζ,~t,~t′,~µ) ⊗J h
∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗W [k]~λ

)/
E aux

S(ζ,~t,~t′,~µ,~λ)
−→

W 1,p
(
Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ);h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗W [k]~λ, (happrox,S(ζ,~t,~t′,~µ,~λ)|∂Σ(ζ,~t,~t′,~µ)
)∗T∗L

)
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to deform the Ṽρ-family of approximate-J-stable C∞ maps

happrox,(ζ,~t,~t′,~µ,~λ,~a,~b) : (Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ)) −→ (W [k]~λ, L)

recursively to a Ṽρ-family of (J,E•)-stable maps

f
(ζ,~t,~t′,~µ,~λ,~a,~b)

: (Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ)) → (W [k]~λ, L) .

Such construction is provided by [MD-S1: Sec. 3.3 and A.4] and its extensions to various sit-
uations in [F-O], [Liu(C)], and [L-R]. The discussion below follows these four works with mild
necessary modifications to fit our overall presentation and notations.

Throughout the discussion, we assume that ‖ζ‖, ‖~t‖, ‖~t′‖, ‖~µ‖, ‖~a − ~af‖, ‖~b‖, and, hence,
Ṽρ are all sufficiently small so that statements in the construction hold.

The Aut (ρ)-equivariant auxiliary bundle E aux
S(πDef (Σ)×B[k](Ṽρ))

over S(πDef (Σ)×B[k](Ṽρ)).

Introduce first the following operations. Let P•,•′ be the parallel transport from point • to
point •′ along the minimal geodesic on a W [k]~λ for •, •′ ∈ W [k]~λ of distance < the injec-

tive radius of W [k]~λ and P ′
•,•′ be its J-linear part. For η ∈ Lp(Σ(ζ,~t,~t′,~µ); Λ

0,1Σ(ζ,~t,~t′,~µ) ⊗J

h∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ)), define

P ′
(ζ,~t,~t′,~µ,~λ,~a,~b)

η ∈ Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(0,~t,~t′,~µ) ⊗J h

∗
approx,(ζ,~t,~t′,~µ,~λ,~a,~b)

T∗(W [k]~λ))

by

(P ′
(ζ,~t,~t′,~µ,~λ,~a,~b)

η)(x) = P ′
h
approx,S(ζ,~t,~t′,~µ,~λ)

(x) , h
approx,(ζ,~t,~t′,~µ,~λ,~a,~b)

(x) η(x) , x ∈ Σ(ζ,~t,~t′,~µ) .

This is the J-linear parallel transport along the geodesic determined by ξ
(ζ,~t,~t′,~µ,~λ,~a,~b)

(x) in No-

tation 5.3.3.3. Recall also the gluing maps for domain curves and targets spaces: (with ε > 0

small and fixed, and ‖(~t,~t′, ~λ)‖ ≪ ε)

I(ζ,~t,~t′,~µ) : Σ− ∪q: nodeN√|tq |(q) −→ Σ(ζ,~t,~t′,~µ) ,

I(ζ,~t,~t′,~µ),ε : Σ− ∪q: nodeN|tq |/ε(q) −→ Σ(ζ,~t,~t′,~µ) ,

I~λ : Y[k] − ∪ k
i=0N

√
|λi|(Di) −→ W [k]~λ ,

I~λ,ε : Y[k] − ∪ki=0N|λi|/ε(Di) −→ W [k]~λ

and conjugation properties:

α ◦ I(ζ,~t,~t′,~µ) ◦ α−1 = Iα·(ζ,~t,~t′,~µ) ,

α ◦ I(ζ,~t,~t′,~µ),ε ◦ α−1 = Iα·(ζ,~t,~t′,~µ),ε ,

β ◦ I~λ ◦ β−1 = I
β·~λ ,

β ◦ I~λ,ε ◦ β−1 = Iβ·~λ,ε

for α ∈ Aut (ρ)domain acting on C/Def (Σ) and β ∈ Aut (ρ)target action on W [k]/B[k].
Since Eρ is supported in a compact subset in the complement of all three types of nodes of Σ,

it can be canonically realized as a subspace in Lp(Σ(0,~t,~t′,~µ); Λ
0,1Σ(0,~t,~t′,~µ)⊗J h

∗
approx,S(0,~t,~t′,~µ,~λ)

T∗(
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W [k]~λ)) via the composition I~λ ∗◦I
−1 ∗
(0,~t,~t′,~µ)

◦P ′
(0,~t,~t′,~µ,~λ,~a,~b)

on Eρ. Define E aux
S(0,~t,~t′,~µ,~λ)

to be this sub-

space in Lp(Σ(0,~t,~t′,~µ); Λ
0,1Σ(0,~t,~t′,~µ)⊗Jh

∗
approx,S(0,~t,~t′,~µ,~λ)

T∗(W [k]~λ)). To extend the above along the

H
(deform,Σ)
ρ,domain -factor, note that E aux

S(0,~t,~t′,~µ,~λ)
is canonically a subspace of Lp(Σ(ζ,~t,~t′,~µ); Ω

1
C
Σ(ζ,~t,~t′,~µ)⊗J

h∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ)) via the composition Λ0,1Σ(0,~t,~t′,~µ) →֒ Ω1
C
Σ(0,~t,~t′,~µ)

∼→ Ω1
C
Σ(ζ,~t,~t′,~µ) of

the canonical inclusion and the fixed isomorphism from the fixed Σ(0,~t,~t′,~µ) ≃ Σ(ζ,~t,~t′,~µ). The

restriction to E aux
S(0,~t,~t′,~µ,~λ)

of the following projection map

P 0,1
ζ : Lp(Σ(ζ,~t,~t′,~µ); Ω

1
C
Σ(ζ,~t,~t′,~µ) ⊗J h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ))

−→ Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ))

induced by the projection map Ω1
C
Σ(ζ,~t,~t′,~µ) → Λ0,1Σ(ζ,~t,~t′,~µ) is injective for ‖ζ‖ sufficiently small.

DefineE aux
S(ζ,~t,~t′,~µ,~λ)

to be the image of E aux
S(0,~t,~t′,~µ,~λ)

in Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ)⊗Jh

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ)) under this projection. This gives a trivialized vector bundle E aux
S(πDef (Σ)×B[k](Ṽρ))

over

S(πDef (Σ)×B[k](Ṽρ)). One can further define

E aux
(ζ,~t,~t′,~µ,~λ,~a,~b)

:=
{
P ′
(ζ,~t,~t′,~µ,~λ,~a,~b)

η : η ∈ E aux
S(ζ,~t,~t′,~µ,~λ)

}

to extend E aux
S(πDef (Σ)×B[k](Ṽρ))

to a trivialized vector bundle E aux
Ṽρ

over Ṽρ, with specified isomor-

phisms of fibers to Eρ. In particular, E aux
S(πDef (Σ)×B[k](Ṽρ))

extends to EΘρ := E aux
Ṽρ
|Θρ over Θρ.

The various group-invariance and conjugation properties of the objects and maps used in the
construction implies that these trivialized bundles are Aut (ρ)-equivariant.

Definition 5.3.4.1 [auxiliary obstruction bundle]. We will call the Aut (ρ)-equivariant
trivialized bundle E aux

S(πDef (Σ)×B[k](Ṽρ))
(resp. E aux

Θρ
, E aux

Ṽρ
) as constructed above the auxiliary ob-

struction bundle over S(πDef (Σ)×B[k](Ṽρ)) (resp. Θρ, Ṽρ) induced by Eρ at ρ.

πDef (Σ)×B[k](Ṽρ)-family of right inverse Q• of πE aux
·
◦D•∂̄J from approximate one.

Let Ker (πEρ◦Df ∂̄J)
⊥ be the L2-orthogonal complement of Ker (πEρ◦Df ∂̄J) in W

1,p(Σ, ∂Σ;
f∗T∗Y[k], (f |∂Σ)∗T∗L). This space is Aut (ρ)-invariant, as the metric on Σ and W [k] are respec-

tively Aut (ρ)domain- and Aut (ρ)target-invariant. Then

πEρ ◦Df ∂̄J : Ker (πEρ◦Df ∂̄J)
⊥ −→ Lp(Σ;Λ0,1Σ⊗J f

∗T∗Y[k])
/
Eρ

is an isomorphism and its inverse

Qρ : Lp(Σ;Λ0,1Σ⊗J f
∗T∗Y[k])

/
Eρ
−→ Ker (πEρ◦Df ∂̄J )

⊥

is a bounded operator. This defines Qρ as a right inverse of

πEρ ◦Df ∂̄J : W 1,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) −→ Lp(Σ;Λ0,1Σ⊗J f
∗T∗Y[k])

/
Eρ

.

64



We now proceed to construct first a suitable πDef (Σ)×B[k](Ṽρ)-family of approximate right inverse
Q′

S(ζ,~t,~t′,~µ,~λ)
of

πE aux
S(ζ,~t,~t′,~µ,~λ)

◦Dh
approx,S(ζ,~t,~t′,~µ,~λ)

∂̄J :

W 1,p(Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ);h
∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ), (happrox,S(ζ,~t,~t′,~µ,~λ)|∂Σ(ζ,~t,~t′,~µ)
)∗T∗L)

−→ Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ))
/
E aux

S(ζ,~t,~t′,~µ,~λ)

by passing to Qρ at ρ.
The combination of I(0,~t,~t′,~µ) and I~λ on domains and targets induces a map

I∗
(0,~t,~t′,~µ,~λ)

: Lp(Σ(0,~t,~t′,~µ); Λ
0,1Σ(0,~t,~t′,~µ) ⊗J h

∗
approx,S(0,~t,~t′,~µ,~λ)

T∗(W [k]~λ))

−→ Lp(Σ;Λ0,1Σ⊗J f
∗T∗Y[k])

by first using I~λ to turn an

η ∈ Lp(Σ(0,~t,~t′,~µ); Λ
0,1Σ(0,~t,~t′,~µ) ⊗J h

∗
approx,S(0,~t,~t′,~µ,~λ)

T∗(W [k]~λ))

to an element

η′ = I∗~λ η ∈ Lp(Σ(0,~t,~t′,~µ); Λ
0,1Σ(0,~t,~t′,~µ) ⊗J (I−1

~λ
◦ h

approx,S(0,~t,~t′,~µ,~λ)
)∗T∗Y[k])

and then using parallel transport P(I−1
~λ

◦h
approx,S(0,~t,~t′,~µ,~λ)

)(I(0,~t,~t′,~µ)(x)) , f(x)
on Y[k] for

x ∈ I−1
(0,~t,~t′,~µ)

(Σ(0,~t,~t′,~µ)) ⊂ Σ to move η′ to an element

η′′ = P•,•(η
′) =: I∗

(0,~t,~t′,~µ,~λ)
(η) ∈ Lp(Σ;Λ0,1Σ⊗J f

∗T∗Y[k]) .

The composition of

Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ))

P 0,1
0−→ Lp(Σ(0,~t,~t′,~µ); Λ

0,1Σ(0,~t,~t′,~µ) ⊗J h
∗
approx,S(0,~t,~t′,~µ,~λ)

T∗(W [k]~λ))

I∗
(0,~t,~t′,~µ,~λ)−→ Lp(Σ;Λ0,1Σ⊗J f

∗T∗Y[k])

gives the map

IP S(ζ,~t,~t′,~µ,~λ) : Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ))

−→ Lp(Σ;Λ0,1Σ⊗J f
∗T∗Y[k]) .

Fix a C∞ rotation-invariant cutoff function βδ : C → R as in [MD-S1: Lemma A.1.1] with
the following properties: (mixed with the presentation of [F-O])

βδ(z) =





1 if |z| ≤ δ (< 1)

0 if |z| ≥ 1− o
for some 0 < o≪ 1− δ

and

∫

|z|≤1
|∇βδ(z)|2 ≤

4π

| log δ| ;

and recall that ε > 0 is small and fixed, and ‖(~t,~t′, ~µ,~λ)‖ ≪ ε. Define the map.
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Glue S(ζ,~t,~t′,~µ,~λ) :W 1,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L) −→

W 1,p(Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ);h
∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ), (happrox,S(ζ,~t,~t′,~µ,~λ)|∂Σ(ζ,~t,~t′,~µ)
)∗T∗L)

by gluing locally defined bundle-valued fields to a continuous field as follows. Let
ξ ∈ W 1,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L) and recall the gluing construction of the maps happrox, •
in Sec. 5.3.3.

(o) For x in Σ(ζ,~t,~t′,~µ) − Neck ε , (ζ,~t,~t′,~µ), define

(Glue S(ζ,~t,~t′,~µ,~λ)(ξ))(x) =
(
I~λ∗
◦ Pf(I−1

(ζ,~t,~t′,~µ)
(x)) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ(I(ζ,~t,~t′,~µ)

−1(x)) .

(a) For x in the annulus At from a smoothed ordinary interior node q, let x = (z, tz ) ∈ C2

in the local model in Sec. 5.3.3, where t is an entry of ~t involved and ξ = ξ1 ∪ ξ2 on the
two irreducible components the neighborhood of q = (0, 0) in {(z1, z2) : z1z2 = 0, |z1| <
ε, |z2| < ε} ⊂ Σ, with ξ1 = ξ1(z1) and ξ2 = ξ2(z2). Define

(Glue S(ζ,~t,~t′,~µ,~λ)(ξ))(x)

=





(
I~λ∗
◦ Pf1(I

−1

(ζ,~t,~t′,~µ)
(x)) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ1(z)

+
(
1− βδ( |t|

1/2

z )
)((

I~λ∗
◦ Pf2(I

−1

(ζ,~t,~t′,~µ)
(x)) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)(x))

)
ξ2(

t
z )

−
(
I~λ∗
◦ Pf(q) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ(q)

)

for |t|1/2 ≤ |z| ≤ ε ,
(
I~λ∗
◦ Pf2(I

−1

(ζ,~t,~t′,~µ)
(x)) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ2(

t
z )

+
(
1− βδ( z

|t|1/2
)
)((

I~λ∗
◦ Pf1(I

−1

(ζ,~t,~t′,~µ)
(x)) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ1(z)

−
(
I~λ∗
◦ Pf(q) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ(q)

)

for |t|1/2 ≤ |t/z| ≤ ε .

(b) For x in the annulus A′
t′ , t

′ > 0, from smoothing a type E boundary node q, let x = (z, t
′

z )

in the local model in Sec. 5.3.3, where t′ is an entry of ~t′ involved, and define

(Glue S(ζ,~t,~t′,~µ,~λ)(ξ))(x)

=
(
I~λ∗
◦ Pf(I−1

(ζ,~t,~t′,~µ)
(x)) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ(z)

−
(
1− βδ(

|t′|1/2
z

)

) (
I~λ∗
◦ Pf(q) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ(q)

for |t′|1/2 ≤ |z| ≤ ε .
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For x in the band A′
t′ , t

′ > 0, from smoothing a type H boundary node q, let x = (z, t
′

z )

in the local model in Sec. 5.3.3, where t′ is an entry of ~t′ involved, ξ = ξ1 ∪ ξ2 on the
two irreducible components the neighborhood of q = (0, 0) in {(z1, z2) : z1z2 = 0, |z1| <
ε, |z2| < ε}/(z1, z2) ∼ (z1, z2) ⊂ Σ, with ξ1 = ξ1(z1) and ξ2 = ξ2(z2), and define

(Glue S(ζ,~t,~t′,~µ,~λ)(ξ))(x)

=





(
I~λ∗
◦ Pf1(I

−1

(ζ,~t,~t′,~µ)
(x)) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ1(z)

+
(
1− βδ( |t

′|1/2

z )
)((

I~λ∗
◦ Pf2(I

−1

(ζ,~t,~t′,~µ)
(x)) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ2(

t′

z )

−
(
I~λ∗
◦ Pf(q) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ(q)

)

for |t′|1/2 ≤ |z| ≤ ε ,
(
I~λ∗
◦ Pf2(I

−1

(ζ,~t,~t′,~µ)
(x)) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ2(

t′

z )

+
(
1− βδ( z

|t′|1/2
)
)((

I~λ∗
◦ Pf1(I

−1

(ζ,~t,~t′,~µ)
(z)) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ1(z)

−
(
I~λ∗
◦ Pf(q) , I−1

~λ
(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ(q)

)

for |t′|1/2 ≤ |t/z| ≤ ε .

(c) For x in the annulus Aµ from a smoothed distinguished interior node q, let x = (z, µz )
in the local model in Sec. 5.3.3, where µ is an entry of ~µ involved. Suppose that f(q) ∈
Di ⊂ Y[k],sing; then denote the restriction of I~λ,ε to ∆i (resp. ∆i+1) by I

f(q),1
~λ,ε

(resp. I
f(q),2
~λ,ε

).

Define

(Glue S(ζ,~t,~t′,~µ,~λ)(ξ))(x)

=





(
I
f(q),1
~λ,ε ∗

◦ P
f1(I

−1

( ~ζ,ε,~t,~t′,~µ)
(x)) , (I

f(q),1

~λ,ε
)−1(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ1(z)

+
(
1− βδ( |µ|

1/2

z )
)(
− 1

2

(
I
f(q),1
~λ,ε ∗

◦ P
f(q) , (I

f(q),1

~λ,ε
)−1(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ(q)

+
(
I
f(q),2
~λ,ε ∗

◦ P
f2(I

−1

(~ζ,~t,~t′,~µ)
(x)) , (I

f(q),2
~λ,ε

)−1(happrox,S(ζ,~t,~t′,~µ,~λ)
(x))

)
ξ2(

µ
z )

− 1
2

(
I
f(q),2
~λ,ε ∗

◦ P 2
f(q) , (I2

~λ,ε
)−1(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ(q)

)

for |µ|1/2 ≤ |z| ≤ ε1 ,
(
I
f(q),2
~λ,ε ∗

◦ P
f2(I

−1

(~ζ,~t,~t′,~µ)
(x)) , (I

f(q),2

~λ,ε
)−1(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ2(

µ
z )

+
(
1− βδ( z

|µ|1/2
)
)(
− 1

2

(
I
f(q),2
~λ,ε ∗

◦ P
f(q) , (I

f(q),2

~λ,ε
)−1(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ(q)

+
(
I
f(q),1
~λ,ε ∗

◦ P
f1(I

−1

(~ζ,~t,~t′,~µ)
(x)) , (I

f(q),1

~λ,ε
)−1(happrox,S(ζ,~t,~t′,~µ,~λ)

(x))

)
ξ1(z)

− 1
2

(
I
f(q),1
~λ,ε ∗

◦ P
f(q) , (I

f(q),1
~λ,ε

)−1(happrox,S(ζ,~t,~t′,~µ,~λ)
(x))

)
ξ(q)

)

for |µ|1/2 ≤ |µ/z| ≤ ε1 .

Then the composition

67



Q′
S(ζ,~t,~t′,~µ,~λ)

:= Glue S(ζ,~t,~t′,~µ,~λ) ◦ Qρ ◦ IP S(ζ,~t,~t′,~µ,~λ)

: Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ))
/
E aux

S(ζ,~t,~t′,~µ,~λ)
−→

W 1,p(Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ);h
∗
approx,S(ζ,~t,~t′,~µ,~λ)

(T∗W [k]~λ), (happrox,S(ζ,~t,~t′,~µ,~λ)|∂Σ(ζ,~t,~t′,~µ
)∗T∗L) ,

where we regard Qρ as a linear map on Lp(Σ;Λ0,1Σ⊗J f
∗T∗Y[k]) that is 0 on Eρ, has the following

property:

Lemma 5.3.4.2 [approximate right inverse]. Q′
S(ζ,~t,~t′,~µ,~λ)

is an approximate right inverse

of πE aux
S(ζ,~t,~t′,~µ,~λ)

◦Dh
approx,S(ζ,~t,~t′,~µ,~λ)

∂̄J in the sense that

∥∥∥
(
πE aux

S(ζ,~t,~t′,~µ,~λ)
◦Dh

approx,S(ζ,~t,~t′,~µ,~λ)
∂̄J

)
◦ Q′

S(ζ,~t,~t′,~µ,~λ)
(η) − η

∥∥∥
Lp
≤ 1

2
‖η‖Lp

for ‖ζ‖, ‖~t‖, ‖~t′‖, ‖~µ‖ small enough.

Proof. See [MD-S1: Lemma A.4.2], [F-O: Lemma 13.11], [Liu(C): Proposition 6.30], [L-R: proof
of Lemma 4.8].

✷

Recall the universal approximate-J-holomorphic map happrox : C/Θρ → W [k]/B[k] associ-

ated to the family h
approx,(ζ,~t,~t′,~µ,~λ,~a,~0)

, (ζ,~t,~t′, ~µ,~λ,~a,~0) ∈ Θρ. The following definition is inspired

by the built-in family-treatment in the study of moduli problems in algebraic geometry and the
fact that a W k,p Sobolev space is the completion of the related C∞ space with the W k,p norm:

Definition 5.3.4.3 [continuous-πDef (Σ)×B[k](Ṽρ)-family of operators]. A collection of linear
operators

OS(ζ,~t,~t′,~µ,~λ) : Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ))
/
E aux

S(ζ,~t,~t′,~µ,~λ)
−→

W 1,p(Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ);h
∗
approx,S(ζ,~t,~t′,~µ,~λ)

(T∗W [k]~λ), (happrox,S(ζ,~t,~t′,~µ,~λ)|∂Σ(ζ,~t,~t′,~µ
)∗T∗L) ,

over πDef (Σ)×B[k](Ṽρ) are said to form a continuous-πDef (Σ)×B[k](Ṽρ)-family of operators if the
collection can be enlarged to a collection of linear operators

O(ζ,~t,~t′,~µ,~λ,~a,~0) : Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J h

∗
approx,(ζ,~t,~t′,~µ,~λ,~a,~0)

T∗(W [k]~λ))
/
E aux

(ζ,~t,~t′,~µ,~λ,~a,~0)
−→

W 1,p(Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ);h
∗
approx,(ζ,~t,~t′,~µ,~λ,~a,~0)

(T∗W [k]~λ), (happrox,(ζ,~t,~t′,~µ,~λ,~a,~0)|∂Σ(ζ,~t,~t′,~µ
)∗T∗L) ,

over Θρ such that, for all η ∈ C∞(C; Λ0,1
C/Θρ

⊗ h∗approxTW [k]/B[k]/C
∞(E aux

Θρ
) with η|C

(ζ,~t,~t′,~µ,~λ,~a,~0)

∈ C∞(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J h

∗
approx,(ζ,~t,~t′,~µ,~λ,~a,~0)

T∗(W [k]~λ))
/
E aux

(ζ,~t,~t′,~µ,~λ,~a,~0)
, there exists a ξ ∈

C0(C;h∗approxTW [k]/B[k]) such that ξ|C
(ζ,~t,~t′,~µ,~λ,~a,~0)

= O
(ζ,~t,~t′,~µ,~λ,~a,~0)

(η|C
(ζ,~t,~t′,~µ,~λ,~a,~0)

).

Proposition 5.3.4.4 [continuous-πDef (Σ)×B[k](Ṽρ)-family of right inverse]. For ‖ζ‖, ‖~t‖,
‖~t′‖, ‖~µ‖ small enough, there exist a constant c and right inverses Q

S(ζ,~t,~t′,~µ,~λ)
of πE aux

S(ζ,~t,~t′,~µ,~λ)
◦
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Dh
approx,S(ζ,~t,~t′,~µ,~λ)

∂̄J such that their operator norm is uniformly bounded by c and that they form

a continuous-πDef (Σ)×B[k](Ṽρ)-family of linear operators in the sense of Definition 5.3.4.3.

Proof. Lemma 5.3.4.2 implies that
(
πE aux

S(ζ,~t,~t′,~µ,~λ)
◦Dh

approx,S(ζ,~t,~t′,~µ,~λ)
∂̄J
)
◦Q′

S(ζ,~t,~t′,~µ,~λ)
is invertible.

A right inverse of πE aux
S(ζ,~t,~t′,~µ,~λ)

◦Dh
approx,S(ζ,~t,~t′,~µ,~λ)

∂̄J is thus given by

Q
S(ζ,~t,~t′,~µ,~λ)

= Q′
S(ζ,~t,~t′,~µ,~λ)

◦
((

πE aux
S(ζ,~t,~t′,~µ,~λ)

◦Dh
approx,S(ζ,~t,~t′,~µ,~λ)

∂̄J
)
◦ Q′

S(ζ,~t,~t′,~µ,~λ)

)−1
,

(cf. [MD-S1: Sec. 3.3], [F-O: (13.2)], [Liu(C): Corollary 6.31], and [L-R: (4.31)]).

To see that they form a continuous-πDef (Σ)×B[k](Ṽρ)-family, recall from Notation 5.3.3.3 that
h
approx,(ζ,~t,~t′,~µ,~λ,~a,~b)

(·) = exph
approx,S(ζ,~t,~t′,~µ,~λ)

( · ) ξ(ζ,~t,~t′,~µ,~λ,~a,~b)( · ) for a unique

ξ(ζ,~t,~t′,~µ,~λ,~a,~b)

∈ W 1,p
(
Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ);h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ), (happrox,S(ζ,~t,~t′,~µ,~λ)|∂Σ(ζ,~t,~t′,~µ)
)∗T∗L

)
.

Using the parallel transport along the geodesic determined by ξ
(ζ,~t,~t′,~µ,~λ,~a,~b)

(x), one can ex-

tend the collections of operators IP
S(ζ,~t,~t′,~µ,~λ)

, Glue
S(ζ,~t,~t′,~µ,~λ)

to the collections of operators

IP (ζ,~t,~t′,~µ,~λ,~a,~b), Glue (ζ,~t,~t′,~µ,~λ,~a,~b) over Ṽρ, and, hence, in particular over Θρ. The collections of
operators

Q′
(ζ,~t,~t′,~µ,~λ,~a,~0)

:= Glue (ζ,~t,~t′,~µ,~λ,~a,~0) ◦Qρ ◦ IP (ζ,~t,~t′,~µ,~λ,~a,~0) ,

Q(ζ,~t,~t′,~µ,~λ,~a,~0) := Q′
(ζ,~t,~t′,~µ,~λ,~a,~0)

◦
((

πE aux
(ζ,~t,~t′,~µ,~λ,~a,~0)

◦Dhapprox,(ζ,~t,~t′,~µ,~λ,~a,~0)
∂̄J
)
◦ Q′

(ζ,~t,~t′,~µ,~λ,~a,~0)

)−1

extend the collections Q′
S(ζ,~t,~t′,~µ,~λ)

, Q
S(ζ,~t,~t′,~µ,~λ)

. The explicit expressions of IP • and Glue •

imply that these operators over Θρ together satisfy the continuous-family behavior required in
Definition 5.3.4.3.

✷

Newton-Picard iteration: deforming happrox,• to a (J,E•)-holomorphic map f•.

Once one realized that the continuity of the relative construction has to be made over Θρ, not

directly over πDef (Σ)×B[k](Ṽρ) ⊂ Def (Σ)×B[k], and has constructed the ingredients accordingly,
the rest of the discussion is similar to those in [MD-S1: proof of Theorem 3.3.4], [F-O: pp. 987-
988] (directly on the maps), and [Liu(C): proof of Proposition 6.32]; see also [I-P2: Sec. 9] and
[L-R: proof of Proposition 4.10]. We give a sketch below to conclude the discussion.

Beginning with the Ṽρ-family of maps h
approx,(ζ,~t,~t′,~µ,~λ,~a,~b)

, define a sequence of Ṽρ-family of

maps as follows:

· Set

h1,(ζ,~t,~t′,~µ,~λ,~a,~b) = happrox,(ζ,~t,~t′,~µ,~λ,~a,~b) = exph
approx,S(ζ,~t,~t′,~µ,~λ)

ξ(ζ,~t,~t′,~µ,~λ,~a,~b) ,

ξ
1,(ζ,~t,~t′,~µ,~λ,~a,~b)

= ξ
(ζ,~t,~t′,~µ,~λ,~a,~b)

.
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· Suppose that h
n,(ζ,~t,~t′,~µ,~λ,~a,~b)

= exph
approx,S(ζ,~t,~t′,~µ,~λ)

ξ
n,(ζ,~t,~t′,~µ,~λ,~a,~b)

is defined, let

ξ
n+1,(ζ,~t,~t′,~µ,~λ,~a,~b)

= ξ
n,(ζ,~t,~t′,~µ~λ,~a,~b)

− Q
S(ζ,~t,~t′,~µ,~λ)

◦ πE aux
S(ζ,~t,~t′,~µ,~λ)

◦ Pn ◦ (∂̄Jhn,(ζ,~t,~t′,~µ,~λ,~a,~b)) ,

where

Pn : Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J h

∗
n,(ζ,~t,~t′,~µ,~λ,~a,~b)

T∗(W [k]~λ))

−→ Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ))

is the map induced by the parallel transport along the geodesics determined by ξn,(ζ,~t,~t′,~µ~λ,~a,~b),

and define
h
n+1,(ζ,~t,~t′,~µ,~λ,~a,~b)

= exph
approx,S(ζ,~t,~t′,~µ,~λ)

ξ
n+1,(ζ,~t,~t′,~µ,~λ,~a,~b)

.

The series

−
∞∑

n=1

πE aux
S(ζ,~t,~t′,~µ,~λ)

◦ Pn ◦ (∂̄Jhn,(ζ,~t,~t′,~µ,~λ,~a,~b))

converges to an

η
(ζ,~t,~t′,~µ,~λ,~a,~b)

∈ Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J h

∗
approx,S(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ))
/
E aux

S(ζ,~t,~t′,~µ,~λ)

and the sequence of maps h
n,(ζ,~t,~t′,~µ,~λ,~a,~b)

, n = 1, . . . , ∞, converge both uniformly and with

respect to the W 1,p-topology (as the W 1,p-norm dominates the C0-norm for p≫ 0) to

f
(ζ,~t,~t′,~µ,~λ,~a,~b)

= exp h
approx,S(ζ,~t,~t′,~µ,~λ)

(
ξ
(ζ,~t,~t′,~µ,~λ,~a,~b)

+ Q
S(ζ,~t,~t′,~µ,~λ)

η
(ζ,~t,~t′,~µ,~λ,~a,~b)

)
.

This gives rise to a continuous-Ṽρ-family of maps.

Define the trivialized obstruction bundle E
Ṽρ

over Ṽρ by setting its fiber

E
(ζ,~t,~t′,~µ,~λ,~a,~b)

⊂ Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J f

∗
(ζ,~t,~t′,~µ,~λ)

T∗(W [k]~λ))

at (ζ,~t,~t′, ~µ,~λ,~a,~b) to be the parallel transport of E aux
S(ζ,~t,~t′,~µ,~λ)

along the geodesics determined

by ξ
(ζ,~t,~t′,~µ,~λ,~a,~b)

+ Q
S(ζ,~t,~t′,~µ,~λ)

η
(ζ,~t,~t′,~µ,~λ,~a,~b)

. Let

πE
(ζ,~t,~t′,~µ,~λ,~a,~b)

: Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J f

∗
(ζ,~t,~t′,~µ,~λ,~a,~b)

T∗W [k]~λ)

−→ Lp(Σ(ζ,~t,~t′,~µ); Λ
0,1Σ(ζ,~t,~t′,~µ) ⊗J f

∗
(ζ,~t,~t′,~µ,~λ,~a,~b)

T∗W [k]~λ)
/
E(ζ,~t,~t′,~µ,~λ,~a,~b)

be the quotient map; then, by construction,

πE
(ζ,~t,~t′,~µ,~λ,~a,~b)

◦ ∂̄J fζ,~t,~t′,~µ,~λ,~a,~b = 0 .

In other words, the collection of maps f
(ζ,~t,~t′,~µ,~λ,~a,~b)

form a continuous-Ṽρ-family of (J,E•)-

holomorphic maps.

Proposition 5.3.4.5 [Aut (ρ)-equivariant pre-deformable family]. The bundle Ẽ
Ṽρ

is

Aut (ρ)-equivariant over Ṽρ and the collection of maps f(ζ,~t,~t′,~µ,~λ,~a,~b) form a Aut (ρ)-equivariant

continuous-Ṽρ-family of pre-deformable (J,E•)-holomorphic maps.
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Proof. The Aut (ρ)-equivariance of the family f
(ζ,~t,~t′,~µ,~λ,~a,~b)

follows from the Aut (ρ)-invariance of

the family of maps h
approx,(ζ,~t,~t′,~µ,~λ,~a,~0)

, the bundle E aux
S(πDef (Σ)×B[k](Ṽρ))

, and the family of operators

Q
approx,(ζ,~t,~t′,~µ,~λ,~a,~0)

. The Aut (ρ)-equivariance of EṼρ
follows then from the Aut (ρ)-equivariant

of the family of maps f(ζ,~t,~t′,~µ,~λ,~a,~b). It remains to prove the pre-deformability of f(ζ,~t,~t′,~µ,~λ,~a,~b).

Note first that, by construction, elements of E(ζ,~t,~t′,~µ,~λ,~a,~b) are supported in a compact subset

in the complement of the union of ε-neighborhood of nodes and the annuli or bands on Σ(ζ,~t,~t′,~µ)

from smoothing related nodes of Σ. This implies in particular that f
(ζ,~t,~t′,~µ,~λ,~a,~b)

is J-holomorphic

in the ε-neighborhood of nodes and hence it makes sense to talk about pre-deformability of
f
(ζ,~t,~t′,~µ,~λ,~a,~b)

at distinguished nodes. Furthermore, as the universal map F : C/Ṽρ → W [k]/B[k]

associated to the family of maps f(ζ,~t,~t′,~µ,~λ,~a,~b) is continuous with the central f pre-deformable,

there can be no mass falling into the locus (W [k]/B[k])sing of singularities of the fibers of
W [k]/B[k]. In other words, F is a family of flat maps in the sense of [I-P2: Definition 3.1]

as long as (ζ,~t,~t′, ~µ,~λ,~a − ~af ,~b) is sufficiently small, a condition that is already incorporated

implicitly into the definition of Ṽρ. As the fibers of F over an open-dense subset of Ṽρ are maps
from smooth domains(-with-boundary) to smooth fibers of W [k]/B[k], it follows from [I-P2:

Lemma 3.3] that this above flatness property implies that the fibers f
(ζ,~t,~t′,~µ,~λ,~a,~b)

of F over Ṽρ

must be all pre-deformable for (ζ,~t,~t′, ~µ,~λ,~a− ~af ,~b) ∈ Ṽρ). This concludes the proof.
✷

5.3.5 Rigidification: a Kuranishi neighborhood-in-Cspsccw Vρ/B of ρ on
M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) /B.

How the Ṽρ-family of (J,E•)-holomorphic maps f
(ζ,~t,~t′,~µ,~λ,~a,~b)

gives rise to a Kuranishi neighbor-

hood Vρ/B of ρ on M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) /B is explained in this subsubsection.

A stratified subset Vρ/B of Ṽρ/B from the rigidification of Aut (Σ)×Gm[k].

(Ṽρ, EṼρ
) and the associated Ṽρ-family of (J,E•)-holomorphic maps from deformed Σ to fibers of

W [k]/B[k] are only Aut (ρ)-equivariant. However, the equivariant approximate product pseudo-
action of Aut (Σ)×Gm[k] on (C/Def (Σ))×W [k]/B[k] remains to induce an equivalence relation

on Ṽρ, defined by setting (ζ1,~t1,~t
′
1, ~µ1,

~λ1,~a1,~b1) ∼ (ζ2,~t2,~t
′
2, ~µ2,

~λ2,~a2,~b2) if there exists a pair
(α, β) ∈ Aut (Σ)×Gm[k] such that β ◦ f

(ζ1,~t1,~t′1,~µ1,~λ1,~a1,~b1)
◦α−1 = f

(ζ2,~t2,~t′2,~µ2,~λ2,~a2,~b2)
. Denote the

∼-equivalence class of ρ by Oρ; then one has:

Lemma 5.3.5.1 [Oρ maximal]. Oρ is a maximal equivalence class at ρ in the sense that a
small enough neighborhood of ρ in Oρ is homeomorphic to a neighborhood of the identity element
in Aut (Σ)×Gm[k].

Proof. This is a consequence of transversality at ρ. The fiber Ṽ0 of Ṽρ/(Def (Σ)×B[k]) over (~0,~0)
is embedded in the Banach manifold W 1,p(Σ, Y[k]) of W

1,p-maps from Σ to (the rigid) Y[k]. The
latter is (approximate-pseudo-)acted upon by Aut (Σ) × Gm[k]. Under this embedding, E

Ṽ0
:=

ẼṼρ
|Ṽ0

is embedded in the Lp -obstruction bundle T 2
W 1,p(Σ,Y[k])

of W 1,p(Σ, Y[k]), whose fiber at

ρ is precisely Lp(Σ;Λ0,1Σ ⊗J f
∗T∗Y[k]). The operator ∂̄J defines a section s∂̄J of T 2

W 1,p(Σ,Y[k])
,

whose linearization at ρ gives precisely the map

Df ∂̄J : W l,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) −→ W l−1,p(Σ,Λ0,1Σ⊗J f
∗T∗Y[k]) ,
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where W l,p(Σ, ∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) is now regarded as the fiber of the tangent bundle

T 1
W 1,p(Σ,Y[k])

of W 1,p(Σ, Y[k]) at ρ. Extend E
Ṽ0

to a subbundle EU of T 2
W 1,p(Σ,Y[k])

over a neigh-

borhood U of ρ in W 1,p(Σ, Y[k]) and let πEU
be the quotient map πEU

: T 2
U → T 2

U/EU over
U . Then the saturatedness of Eρ, Lemma 5.3.1.1, Corollary 5.3.1.6, and the Implicit Function
Theorem (Theorem 5.3.0.2) together imply that the pre-deformability condition on (J,EU )-
holomorphic W 1,p-maps is a transverse condition on (πE• ◦ s∂̄J )−1(0) at ρ and that the space of

pre-deformable (J,EU )-holomorphicW 1,p-maps near ρ coincides with a neighborhood of ρ in Ṽ0.

The equivalence relation ∼ on Ṽρ is the restriction of the equivalence relation on W 1,p(Σ, Y[k])

defined by the (Aut (Σ) × Gm[k])-orbits on W 1,p(Σ, Y[k]). All these together imply that the in-

tersection ((Aut (Σ) × Gm[k]) · ρ) ∩ Ṽ0 in W 1,p(Σ, Y[k]) coincides with Oρ ⊂ Ṽ0 around ρ. This
concludes the lemma.

✷

With respect to the embedding Ṽρ ⊂ Def (Σ)×B[k]×Ker (πEρ ◦Df ∂̄J)
pd in Sec. 5.3.2, TfOρ

lies in the subspace {0}×{0}×
(
Ker (Df ∂̄J) ∩Ker (πEρ ◦Df ∂̄J )

pd
)
. We will denote the quotient

space Ker (πEρ ◦Df ∂̄J)
pd/TfOρ by Hrigidified

ρ,map .
By a combination of the same center-of-mass construction in [Sie1: Sec. 5.3] that rigidifies

the approximate pseudo-Aut (Σ)-action and the same construction in Sec. 4.2 that rigidifies the
Gm[k]-action, there exists a Aut (ρ)-equivariant rigidifying map

Rρ : Ṽρ −→ Ra+a′ × Cb+b′+k ,

where a (resp. b) is the total number of unstable disc-components (resp. sphere-components) of
Σ and a′ (resp. b′) is the total number of unstable disc-components (resp. sphere-components)
of Σ that has only one special point. Let

Vρ = a small enough Aut (ρ)-invariant open neighborhood of ρ in R−1
ρ (Rρ(0)) ,

then Aut (ρ) acts on Vρ effectively. The composition of the standard fibrations Ṽρ/B[k] and
B[k]/B induces a standard fibration Vρ/B. The stratified space Ξs induces a stratification on

Ṽρ via the projection map Ṽρ → Ξs. The latter stratification restricts to a stratification on Vρ.

Lemma 5.3.5.2 [piecewise-transverse slice at ρ]. As a fibered stratified space, Vρ/B is

isomorphic to (Def (Σ;Λ)× Ξs ×Hrigidified
ρ,map ;Λ)/B.

Proof. Embed Ṽρ in a singular un-rigidified chart Ṽ ′ ♯
ρ in Siebert’s construction (cf. [Sie1: Sec. 5.2,

Sec. 5.3]) for ρ regarded as a point in W̌1,p
(g,h),(n,~m)(W [k], L[k] | [β], ~γ, µ)W [k]/B[k]; then Aut (Σ) ×

Gm[k] now does approximate-pseudo-act on Ṽ ′ ♯
ρ . The rigidifying map Rρ : Ṽρ → Ra+a′×Cb+b′+k

extends canonically to R′
ρ : Ṽ ′

ρ → Ra+a′ × Cb+b′+k since the average-weight functions in [Sie1:

Sec. 5.3] and Sec. 4.2 that constitutes Rρ are well-defined for W̌ 1,p-maps from deformed Σ to

fibers of W [k]/B[k]. In particular, after shrinking Ṽρ if necessary, Vρ = Ṽρ∩R′
ρ
−1(Rρ(0)). Recall

the stratification of Ṽρ/B[k] and Ṽ ′ ♯
ρ /B[k] induced from the coordinate-subspace stratification

of B[k]. It follows from the three facts: (1) Rρ, R
′
ρ are continuous, and are continuously

differentiable when restricted to each stratum, (2) the pseudo-action on Ṽ ′♯
ρ of a small enough

neighborhood of the identity element of Aut (Σ)×Gm[k] is free, and (3) Ṽρ contains a whole orbit

Oρ (cf. Lemma 5.3.5.1), that, for Ṽρ small enough, Vρ can be interpreted as a stratified space
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through 0 (i.e. ρ) in Ṽρ that, in each strata, is transverse to the span of the (a+a′+2b+2b′+2k)-
many gradient-flow directions from the component weight functions that constitute Rρ. The
lemma then follows.

✷

Vρ/B as a Kuranishi neighborhood of ρ ∈ M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B.

To recapitulate, we have constructed

· CVρ/Vρ : an Aut (ρ)-equivariant family CVρ/Vρ of labelled-bordered Riemann
surfaces with marked points over Vρ;

· FVρ : (CVρ , ∂̇CVρ)/Vρ → (W [k], L[k])/B[k] :

a map over Vρ → B[k] that satisfies β ◦ f
(ζ,~t,~t′,~µ,~λ,~a,~b)

◦ α−1 = f
(α,β)·(ζ,~t,~t′,~µ,~λ,~a,~b).

Here CVρ/Vρ is the pull-back of the family C/Def (Σ) to Vρ via Vρ → Def (Σ) from the construc-

tion, ∂̇CVρ is the labelled boundary of CVρ relative to Vρ, and FVρ |(ζ,~t,~t′,~µ,~λ,~a,~b) = f
(ζ,~t,~t′,~µ,~λ,~a,~b)

.

Through the construction, Vρ is equipped with the following data:

· ΓVρ = Aut (ρ) that acts on Vρ,

· EVρ , the ΓVρ-equivariant bundle on (Vρ,ΓVρ) from the restriction of EṼρ
to Vρ,

· sρ : Vρ → Eρ from the operator ∂̄J , and

· ψρ : s−1
ρ (0) → M(g,h),(n,~m)(W/B,L | [β], ~γ, µ), the map over B that sends each pre-

deformable J-holomorphic map f(ζ,~t,~t′,~µ,~λ,~a,~b), (ζ,
~t,~t′, ~µ,~λ,~a,~b) ∈ s−1

ρ (0) ⊂ Vρ, to its iso-

morphism class [f(ζ,~t,~t′,~µ,~λ,~a,~b)] inM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B.

Proposition 5.3.5.3 [Vρ Kuranishi neighborhood]. The 5-tuple (Vρ,ΓVρ , EVρ ; sρ, ψρ) forms

a Kuranishi neighborhood-in-Cspsccw of ρ ∈M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B.

Proof. That Vρ/B is an object in the category Cspsccw follows from Lemma 5.3.5.2. Injectivity of
the ψρ-induced map s−1

ρ (0)/ΓVρ →M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) follows from rigidification. To

show that the image of ψρ contains a neighborhood of ρ inM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B, let

s̃ρ be the section of EṼρ
associated to the operator ∂̄J . By construction, s

−1
ρ (0) is the rigidification

of s̃−1
ρ (0) by Rρ with respect to the approximate pseudo-(Aut (Σ) × Gm[k])-action on s̃−1(0),

and there is a (continuous) map ψ̃ρ : s̃−1
ρ (0)→M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) over B that sends

each f(ζ,~t,~t′,~µ,~λ,~a,~b), (ζ,~t,~t′, ~µ,~λ,~a,~b) ∈ s̃−1
ρ (0) ⊂ Ṽρ, to its isomorphism class [f(ζ,~t,~t′,~µ,~λ,~a,~b] in

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ). We will show that the image of ψ̃ρ contains a neighborhood of

ρ inM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B. This then implies the same for ψρ.

Recall the standard piecewise-continuous section S : πDef (Σ)×B[k](Ṽρ) → Ṽρ of the fibration

πDef (Σ)×B[k] : Ṽρ → Def (Σ)×B[k]. For a fixed (ζ,~t,~t′, ~µ;~λ) ∈ πDef (Σ)×B[k](Ṽρ) ⊂ Def (Σ)×B[k],
let

W 1,p
(
(Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ)) , (W [k]~λ, L)

)

be the Banach manifold ofW 1,p-maps from (Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ)) to (the rigid) (W [k]~λ, L). Then

the same transversality argument as in the proof of Lemma 5.3.5.1 implies that Ṽρ contains all
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pre-deformable (J,E•)-holomorphic W 1,p-maps from (Σ(ζ,~t,~t′,~µ), ∂Σ(ζ,~t,~t′,~µ)) to (W [k]~λ, L) that

are close to f
S(ζ,~t,~t′,~µ;~λ)

.

Let (ζ,~t,~t′, ~µ;~λ) now vary in πDef (Σ)×B[k](Ṽρ) ⊂ Def (Σ)×B[k]. Note that the fiber-dimension

of Ṽρ over πDef (Σ)×B[k](Ṽρ) is upper semi-continuous and that there is a well-defined flattening

stratification on πDef (Σ)×B[k](Ṽρ) so that the restriction of the fibration Ṽρ/πDef (Σ)×B[k](Ṽρ)
to each stratum is a bundle whose fibers do not shrink or get pinched when moving toward
the boundary of the stratum. Together with the conclusion of the previous paragraph, these
imply that Ṽρ contains all pre-deformable (J,E•)-holomorphic W 1,p-maps that are close to some

f
S(ζ,~t,~t′,~µ;~λ)

, (ζ,~t,~t′, ~µ;~λ) ∈ (πDef (Σ)×B[k](Ṽρ)). In particular, Ṽρ contains all (J-holomorphic,

pre-deformable) stable maps near f . This concludes the proof.
✷

Remark 5.3.5.4 [Eρ-dependence of Vρ]. Different choices of Eρ in Definition/Lemma 5.3.1.5 give
rise to different but equivalent family Kuranishi neighborhoods of ρ in the sense of Definition
5.1.1. E.g. taking E1,ρ+E2,ρ creates a third family Kuranishi neighborhood of ρ that dominates
both V1,ρ and V2,ρ, as in [Liu(C): Remark 6.34].

5.4 Construction of a family Kuranishi structure.

We now proceed to construct a family Kuranishi structure onM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B
by relating Kuranishi neighborhoods on M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B with sub-fibrations

of the Ľp-obstruction-space fibration T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
. The construction connects Fukaya-

Ono’s construction in [F-O: Sec. 15] with Siebert’s construction in [Sie1: Sec. 5 - Sec. 6].
The following remark should be kept in mind as it is everywhere behind the discussion.

Remark 5.4.1 [isomorphism class vs. representative]. A point ρ in the moduli spaceM(g,h),(n,~m)(
W/B,L | [β], ~γ, µ)/B represents an isomorphism class of maps while a family Kuranishi neigh-
borhood (Vρ,ΓVρ , EVρ ; sρ, ψρ) of ρ, as constructed in Sec. 5.3, parameterizes a collection of maps

that contains a sub-collection, namely s−1
ρ (0), of representatives f

(ζ,~t,~t′,~µ,~λ,~a,~b)
, (ζ,~t,~t′, ~µ,~λ,~a,~b) ∈

s−1
ρ (0), as in Sec. 5.3.5, whose corresponding set of isomorphism classes covers a neighbor-

hood, namely Uρ := ψρ(s
−1
ρ (0)), of ρ in M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B via ψρ. In partic-

ular, every p ∈ Vρ goes with a unique representative hp : Σp/pt → W [kρ]/B[kρ]. The set
of isomorphisms from a representative f1 to another representative f2 of ρ (which may come
from two different Kuranishi neighborhoods Vρ1 and Vρ2 that cover ρ) is parameterized by
Aut (f1) up to a right multiplication and by Aut (f2) up to a left multiplication. By definition,
Aut (f1) ≃ Aut (f2) ≃ Aut (ρ) = Γρ. The same distinction holds between points on the moduli

space W̌ 1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) and points on its (singular) orbifold local charts.

Kuranishi neighborhoods in terms of T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
.

Note that the same construction in Sec. 5.3 works also with W 1,p replaced by W̌ 1,p and Lp

replaced by Ľp. Let ρ ∈ M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) be represented by f : Σ → (Y[k], L[k]),

Then, in terms of the fibration T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
, the construction of a Kuranishi neighbor-

hood (Vρ,ΓVρ , EVρ ; sρ, ψρ) of ρ in Sec. 5.3 can be deformed and rephrased as follows:
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(1) Choose a saturated obstruction space Eρ ⊂ C∞(Σ;Λ0,1Σ⊗J f
∗T∗Y[k]) at ρ. Regard ρ as a

point in W̌ 1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) that is represented also by f gives an embedding

Eρ →֒ Ľp(Σ;Λ0,1Σ⊗J f
∗T∗Y[k]).

· Extend Eρ at ρ to a trivialized Aut (ρ)-equivariant trivial bundle EV̌ρ
over a sufficiently

small orbifold local chart V̌ρ of ρ in W̌
1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) such that, for all p ∈ V̌ρ

with its corresponding representative hp is J-holomorphic, the fiber EV̌ρ
|p is a saturated

obstruction space ⊂ C∞(Σp; Λ
0,1Σp ⊗J h

∗T∗W [kρ]~λp
). By construction there is a map

EV̌ρ
−→ T 2

W̌1,p
• ((Ŵ ,L̂)/B̂ | •)/M̃•

as an orbifold sub-fibration; we shall think of (EV̌ρ
,Aut (ρ)) equally as a sub-orbifold of

T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
.

(2) Recall the global section

s∂̄J : W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) −→ T 2

W̌1,p
• ((Ŵ ,L̂)/B̂ | •)/M̃•

of T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
as a morphism of orbifolds. Denote its image sub-orbifold in

T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
by Im (s∂̄J ). Let

π2 : T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
−→ W̌ 1,p

(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ)

be the fibration orbifold-map. Then, on the orbifold local chart V̌ρ,

Vρ := π2
(
Im (s∂̄J ) ∩ EV̌ρ

)

is Aut (ρ)-invariant. Furthermore, Vρ defines a Kuranishi neighborhood-in-Cspsccw of ρ ∈
M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) with EVρ = EV̌ρ

|Vρ , ΓVρ = Aut (ρ) now acting on EVρ/Vρ

equivariantly, sρ = s∂̄J |Vρ , and ψρ : s−1
ρ (0) → M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) by sending

p ∈ s−1
ρ (0) to [hp].

· On V̌ρ it follows by construction that ∂̄Jhp ∈ EVρ |p if and only if p ∈ Vρ. Thus, Vρ
parameterizes all the (J,E)-holomorphic W̌ 1,p-maps near ρ. Indeed it parameterizes also
all the (J,E)-holomorphic W 1,p-maps near ρ.

Deformations of the bundle EV̌ρ
in T 2

W̌1,p
• ((Ŵ ,L̂)/B̂ | •)/M̃•

as orbifold sub-fibrations without

violating the C∞-class and the saturatedness condition on the locus (s∂̄)
−1(0) give rise to Ku-

ranishi neighborhoods-in-Cspsccw of ρ, all of the same actual dimension and the same virtual
dimension.24

24This deformation freedom is crucial in the construction of a Kuranishi structure on
M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B. In Sec. 5.3, EV̌ρ

is constructed via parallel transport from the trivial-
ized trivial bundle on S0(πDef (Σ)×B[k](Θρ,0)). Such parallel transport construction depends on the metric
on the fibers of W [kρ]/B[kρ]. The curvature of the metric makes the bundle EV̌ρ′

constructed from nearby

ρ′ ∈ M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) distinct on Im (ψρ) ∩ Im (ψρ′). The corresponding Vρ and V ′
ρ for such

EV̌ρ
and EV̌ρ′

cannot be glued at the level of the universal map on the universal curve. Furthermore, while

the almost-complex structure on fibers of Ŵ/B̂ is well-defined, the metric is not. So a deformation to the
construction in Sec. 5.3 that preserves the C∞-class and the saturatedness condition is indispensable.
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Definition 5.4.2 [saturated obstruction local bundle]. The Aut (ρ)-equivariant bun-
dle EV̌ρ

on V̌ρ in the above rephrasing, with the prescribed properties and the orbifold sub-

fibration map EV̌ρ
→ T 2

W̌1,p
• ((Ŵ ,L̂)/B̂ | •)/M̃•

, is called a saturated obstruction local bundle on

W̌ 1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ). The local orbifold chart V̌ρ is called the support of EV̌ρ

. The

tuple
Vρ(EV̌ρ

) := (Vρ,ΓVρ , EVρ ; sρ, ψρ) ,

(also denoted by Vρ in shorthand), in the rephrasing is called the Kuranishi neighborhood of
ρ ∈M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) determined by EV̌ρ

.

Kuranishi structures associated to a fine system of local bundles.

Definition 5.4.3 [direct-sum/fine system of local bundles]. A collection {EV̌ρi
}i∈I , ρi ∈

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ), of saturated obstruction local bundles is said to form a direct-sum

system forM(g,h),(n,~m)(W/B,L | [β], ~γ, µ) if the following two conditions are satisfied:

(1) {Im (ψρi)}i∈I is a locally finite (open) cover of M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B that is
finite over a compact subset of B, (here ψρi is from the Kuranishi neighborhood data
associated to EV̌ρ

);

(2) the span of {EV̌ρi
}i∈I in each vector-space fiber of a fibration local chart of

T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
is a direct sum of the related fibers of EV̌ρi

’s.

{EV̌ρi
}i∈I is said to be fine if, in addition,

(3) there exists an open cover {U ♭
ρi}i∈I of M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) such that U ♭

ρi is an

open neighborhood of ρi with the closure U ♭
ρi a compact subset of Im (ψρi).

Lemma 5.4.4 [existence of fine system]. A fine system of saturated obstruction local bundles
forM(g,h),(n,~m)(W/B,L | [β], ~γ, µ) exists.

Proof. Let E′
ρ̌ be a saturated obstruction local bundle at ρ ∈ M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)

and U ♭
ρ be an open neighborhood of ρ with the closure U ♭

ρ a compact subset of Im (ψ′
ρ). Since

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B is compact over a compact subset of B, one can choose a
subcover {Uρi}i∈I of {Uρ}ρ that is locally finite and is finite over a compact subset of B. We
may assume that each E′

V̌ρ
, and hence E′

V̌ρi

, is constructed as in Sec. 5.3 so that elements in the

fiber of E′
V̌ρ

are sections of sheaves supported away from the nodes of bordered Riemann surfaces.

As this is a locally finite system of trivial bundles, the direct-sum condition can be achieved by
deforming E′

V̌ρi

inductively to another equivariant EV̌ρi
that satisfies also the C∞-class and the

saturatedness conditions, and with the same support, as sub-fibrations in T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
.

This makes the ψρi from EV̌ρi
coincides with the ψ′

ρi from E′
V̌ρ
. Thus the cover {Im (ψρi)}i∈I of

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) from the new system {EV̌ρi
}i∈I coincides with {Im (ψ′

ρi)}i∈I and,

hence, Condition (2) and Condition (3) in Definition 5.4.3 are also satisfied.
✷
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Recall the canonical orbifold-embedding

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) →֒ W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) .

Let E := {EV̌ρi
}i∈I be a fine system of saturated obstruction local bundles forM(g,h),(n,~m)(W/B,

L | [β], ~γ, µ). Let F(E) be the fiberwise linear span of the union of the image set of
Eρi → T 2

W̌1,p
• ((Ŵ ,L̂)/B̂ | •)/M̃•

with the induced subset topology. The orbifold structure on

T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
induces an orbifold structure on F(E) that fibers over

W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂| [β], ~γ, µ). This realizes F(E) as an orbifold sub-fibration of

T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
that is mapped to a neighborhood of M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) in

W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) under

π2 : T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
−→ W̌ 1,p

(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) .

The map

W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) −→ Z≥0 , p 7−→ dim (F(E)|p)

defines the flattening stratification of F(E) on W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) by its preimage

subsets. Over each stratum, F(E)|M•(W/B,L | •) is an orbi-bundle. For any I ′ ⊂ I, the same con-

struction applied to EI′ = {EV̌ρi
}i∈I′ gives an orbifold sub-fibrationF(EI′) in T 2

W̌1,p
• ((Ŵ ,L̂)/B̂ | •)/M̃•

.

The flattening stratification of F(EI′) is defined similarly. By construction, F(EI′) is an orbifold
sub-fibration of F(E).

Recall the locally finite cover {U ♭
ρi}i∈I ofM(g,h),(n,~m)(W/B,L | [β], ~γ, µ) /B. This induces a

stratification S := {SI′}I′⊂I ofM(g,h),(n,~m)(W/B,L | [β], ~γ, µ) /B by setting

SI′ = (∩i∈I′ U ♭
ρi) − (∪i∈I−I′ U ♭

ρi) .

Define also the subset S′
I′ = (∩i∈I′ Im (ψρi) − (∪i∈I−I′ U ♭

ρi), I
′ ⊂ I. For ρ ∈ SI′ , let V̌ρ be an

orbifold local chart of ρ in W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) such that

· the image of V̌ρ in W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂| [β], ~γ, µ) is covered by the union of the image of

V̌ρi , i ∈ I ′,

· the J-holomorphy locus of V̌ρ is mapped to S′
I′ .

Denote the image of V̌ρ in W̌1,p
(g,h),(n,~m)((Ŵ , L̂)/B̂ | [β], ~γ, µ) by V̌ρ. Then, F(EI′) is an orbi-bundle

when restricted to V̌ρ. Let EV̌ρ
be the associated orbi-bundle local chart of F(EI′)|V̌ρ

; then, by

construction, EV̌ρ
is a saturated obstruction local bundle on W̌1,p

(g,h),(n,~m)
((Ŵ , L̂)/B̂ | [β], ~γ, µ) in

the sense of Definition 5.4.2.
In this way, one recovers a family {EV̌ρ

}ρ∈M•(W/B,L | •) of saturated obstruction local bundles

from the orbifold sub-fibration F(E) of T 2
W̌1,p

• ((Ŵ ,L̂)/B̂ | •)/M̃•
. Define

N
(0)
Kuranishi(E) :=

{
Vρ(EV̌ρ

) = (Vρ,Γρ, Eρ; sρ, ψρ)
}
ρ∈M•(W/B,L | • )
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from Definition 5.4.2. This gives the set of family Kuranishi neighborhoods-in-Cspsccw on
M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B. The orbifold fibration transition data of T 2

W̌1,p
• ((Ŵ ,L̂)/B̂ | •)/M̃•

,

or of F(E), induces a collection of 4-tuples

N
(1)
Kuranishi(E) :=
{
(Vρ, hρ′ρ, φρ′ρ, φ̂ρ′ρ) : ρ ∈M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) /B , ρ′ ∈ ψρ

(
s−1
ρ (0)

)}

that gives the set of transition functions between elements in N
(0)
Kuranishi(E) in the sense of

Definition 5.1.2. We shall call the pair

K(E) =
(
N

(0)
Kuranishi(E) , N

(1)
Kuranishi(E)

)

a Kuranishi structure associated to the fine system E of saturated obstruction local bundles. We
remark that the gluing thus constructed is at the level of the universal map on the universal
curve and that different choices of {U ♭

ρi}i∈I give equivalent Kuranishi structures.
To summarize:

Proposition 5.4.5 [Kuranishi structure from fine system]. A fine system of saturated
obstruction local bundles for M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B determine a unique equivalence

class of Kuranishi structures-in-Cspsccw on M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B.

6 The moduli space M(g,h),(n+l(~s),~m)(Z, L;D | β ′, ~γ, µ′;~s) of relative

stable maps and its Kuranishi structure.

We apply and extend the construction in Sec. 1 - Sec. 3 to a relative pair (Z,L;D) and its
expansions to define the moduli spaceM(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s) of relative stable maps
of type ((g, h), (n + l(~s), ~m) |β′, ~γ, µ′;~s), from labelled-bordered Riemann surfaces with marked

points to the fibers of the expanded relative pairs (Ẑ, L̂; D̂)/Â associated to (Z,L;D); (Sec. 6.1).
The same technique in Sec. 4 and Sec. 5 is used to construct a Kuranishi structure thereupon;
(Sec. 6.2). See also [I-P1], [L-R] for the symplecto-analytic setting in different formats and [Li1:
Sec. 4], [Li2: Sec. 2], [Gr-V] for the algebro-geometric setting.

6.1 The moduli spaceM(g,h),(n+l(~s), ~m)(Z, L;D | β ′, ~γ, µ′;~s) of relative stable maps.

Let (Z,L;D) be a symplectic pair (Z;D), with a compatible almost-complex structure, to-
gether with a Lagrangian/almost-complex submanifold L that is disjoint from D. Recall the

space (Ẑ; D̂)/Â of expanded relative pairs associated to (Z;D) with the quotient topology, its

standard local charts ϕ[k] : (Z[k];D[k])/A[k] → (Ẑ; D̂)/Â with k ∈ Z≥0, and the equivariant
pseudo-Gm[k]-action on (Z[k];D[k])/A[k] from Sec. 1.2. Let L[k] be the submanifold p̃[k]−1(L)
of Z[k] from the map p̃[k] : (Z[k];D[k])/A[k] → (Z;D)/pt. Over A[k], L[k] = A[k] × L.

Sec. 1.2 can be made to incorporate L[k]. This gives the space (Ẑ, L̂; D̂)/Â. The central fiber of
(Z[k], L[k];D[k])/A[k] is almost-complex isomorphic to the pair-with-a-totally-real-submanifold
(Z[k], L[k];D[k]).

Recall the definition of the relative Maslov index µrel(h) of a smooth map h : (Σ, ∂Σ) →
(Z[k], L[k];D[k]) from Sec. 3.1. Note also that the monodromies of (Z[k], L[k];D[k])/A[k], k ∈
Z≥0, on a smooth fiber, which is almost-complex isomorphic to (Z,L;D), are relatively isotopic

78



to the identity map with respect to (L;D); thus, the monodromy (Ẑ[k], L̂[k]; D̂)/Â-action on
H1(L;Z), H2(Z,L;Z), and H2(Z,L ∪D;Z) are all trivial.

Moduli space of relative stable maps to fibers of (Ẑ, L̂; D̂)/Â.

Definition 6.1.1 [relative stable map to fibers of (Z[k], L[k];D[k])/A[k]]. Let β′ ∈
H2(Z,L;Z), ~γ = (γ1 , . . . , γh) ∈ H1(L;Z)

⊕h such that ∂β = γ1 + · · · γh, µ′ ∈ Z, and ~s =
(s1, . . . , sl) ∈ (Z≥0)

l.25 A relative map f : (Σ, ∂Σ)/pt → (Z[k], L[k];D[k])/A[k] from a bor-
dered Riemann surface Σ to a fiber of (Z[k], L[k];D[k])/A[k] is called prestable of (combinatorial)
type ((g, h), (n + l(~s), ~m) |β′, ~γ, µ′;~s) if
· f is prestable of type ((g, h), (n + l(~s), ~m) |β′, ~γ, µ′ + 2 deg (~s)) as a map to a fiber of
(Z[k], L[k])/A[k], cf. Definition 3.3.1 (with [β] = {β′}); the last l(~s) free marked points on
Σ shall be called the distinguished marked points;

· (f is non-degenerate with respect to D[k];) f−1(D[k]) = s1 pn+1 + · · · + sl pn+l(~s), where

pn+1 , . . . , pn+l(~s) are the distinguished marked points on Σ; (in particular, µrel(f) = µ′

and all distinguished marked points are smooth interior points on Σ).

An isomorphism between two relative prestable maps f1 : Σ1/pt → (Z[k], L[k];D[k])/A[k],
f2 : Σ2/pt → (Z[k], L[k];D[k])/A[k] of the same type is a pair (α, β), where α : Σ1 → Σ2 is an
isomorphism of prestable labelled-bordered Riemann surfaces with marked points and β ∈ Gm[k]
such that f1 ◦ β = f2 ◦ α. The isomorphism class of f is denoted by [f ]. The notion of non-
degenerate (resp. pre-deformable ) relative prestable maps, distinguished nodes q, and the contact
order at q are defined exactly the same as in Definition 3.3.1.

A relative prestable map f : Σ/pt → (Z[k].L[k];D[k])/A[k] is called stable if f is pre-
deformable and its group Aut (f) of automorphisms is finite. The moduli space of isomorphism
classes of stable maps to fibers of (Z[k], L[k];D[k])/A[k] of type ((g, h), (n+ l(~s), ~m) |β′, ~γ, µ′;~s)
is denoted by M non-rigid

(g,h),(n+l(~s), ~m)((Z[k], L[k];D[k])/A[k] |β′ , ~γ, µ′;~s); it is equipped with the C∞-

topology, defined similarly as in Sec. 3.3.

The pseudo-embedding ϕ′
k′,k;I : (Z[k′], L[k];D[k])/A[k′ ] →֒ (Z[k], L[k];D[k])/A[k], k′ < k

and I ⊂ {0 , . . . , k − 1}, from Sec. 1.2 induces a pseudo-embedding

ϕ′
k′,k;I : M non-rigid

(g,h),(n+l(~s), ~m)((Z[k
′], L[k′];D[k′])/A[k′] |β′, ~γ, µ′;~s)

→֒ M non-rigid
(g,h),(n+l(~s), ~m)((Z[k], L[k];D[k])/A[k] |β′ , ~γ, µ′;~s) .

Define the set of isomorphism classes of relative stable maps to fibers of (Ẑ, L̂; D̂)/Â :

M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s)

:=
(
∐∞

k=0M non-rigid
(g,h),(n,~m)((Z[k], L[k];D[k])/A[k] |β′ , ~γ, µ′;~s)

)/
∼ ,

where the equivalence relation ∼ is generated by [f ] ∼ ϕ′
k′,k;I([f

′]) for

[f ] ∈ M non-rigid
(g,h),(n+l(~s), ~m)((Z[k], L[k];D[k])/A[k] |β′ , ~γ, µ′;~s) and [f ′] ∈ the defining domain of ϕk′,k;I

onM non-rigid
(g,h),(n+l(~s), ~m)((Z[k

′], L[k′];D[k′])/A[k′] |β′, ~γ, µ′;~s). By construction, there are embeddings

of sets

ϕ′
(k) : M non-rigid

(g,h),(n+l(~s), ~m)((Z[k], L[k];D[k])/A[k] |β′ , ~γ, µ′;~s)

→֒ M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s) , k ∈ Z≥0 .
25For ~s, we define its length l(~s) := l , degree deg (~s) := s1 + · · · + sl , and multiplicity m(~s) := s1 · · · sl .
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A subset U ofM(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s) is said to be open if U = ∪αUα such that Uα

is contained in the image of some ϕ′
(k) and ϕ

′
(k)

−1(Uα) is open in

M non-rigid
(g,h),(n+l(~s), ~m)((Z[k], L[k];D[k])/A[k] |β′ , ~γ, µ′;~s). This defines the C∞-topology on the moduli

spaceM(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s) of relative stable maps to fibers of (Ẑ, L̂; D̂)/Â.

Definition 6.1.2 [tautological cover]. By construction,

{
M non-rigid

(g,h),(n+l(~s), ~m)((Z[k], L[k];D[k])/A[k] |β′ , ~γ, µ′;~s)
}
k∈Z≥0

is an open cover of M(g,h),(n+l(~s), ~m;~s)(Z,L;D |β′, ~γ, µ′;~s). We will call it the tautological cover

ofM(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s).

Indeed, there exists k0 depending (Z,L;D) and ((g, h), (n + l(~s), ~m)|β′, ~γ, µ′;~s) such that

M non-rigid
(g,h),(n+l(~s),~m)

((Z[k0], L[k0];D[k0])/A[k0] | β′, ~γ, µ′, ~s)

⊃ M non-rigid
(g,h),(n+l(~s),~m)

((Z[k0 + 1], L[k0 + 1];D[k0 + 1])/A[k0 + 1] |β′, ~γ, µ′, ~s)

⊃ M non-rigid
(g,h),(n+l(~s),~m)

((Z[k0 + 2], L[k0 + 2];D[k0 + 2])/A[k0 + 2] |β′, ~γ, µ′, ~s) ⊃ · · · .

Thus, the tautological cover ofM(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s) is finite in effect, cf. Theorem

6.1.3. The universal maps on the universal curve over eachM non-rigid
(g,h),(n+l(~s), ~m)((Z[k], L[k];D[k])/A[k] |

β′, ~γ, µ′;~s) are glued to give the universal map (between spaces with charts)

F : C/M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s) −→ (Ẑ, L̂; D̂)/Â .

Hausdorffness, finite stratification, and compactness.

Recall the notion of weighted layered (A2 → A1)-graphs from Definition 3.3.5, the category
G(A2 → A1) of graphs, and how a stable map f to fibers of (W [k − 1], L[k − 1])/B[k − 1] (now
= (Z[k], L[k])/A[k]) corresponds a such graph τ[f ]. To encode the contact-order data ~s of relative
maps with D[k], we add to the objects τ in G(A2 → A1) the following data:

· an ordered set R(τ) of l-many roots ri, i = 1, . . . , l, that are attached to vertices of the
largest layer-value;

· an additional weight function ord ′ : R(τ)→ Z≥0, ri 7→ si;

· replace µ(τ) in Definition 3.3.5 by µ′(τ), called the relative index of τ .26

Denote a such graph still by τ with the same name: weighted layered (A1 → A1)-graph. An
isomorphism α : τ1 → τ2 between two such graphs is defined the same as in Definition 3.3.5
with the index replaced by relative index and the additional requirement that α induces an
isomorphism R(τ1)

∼→ R(τ2) as ordered weighted sets. The corresponding new category of
graphs enlarges the previous one and will be denoted still by G(A2 → A1) (or simply G when
(A2 → A1) is understood).

The notion of genus, b-weight, contraction, and (red-to-blue) color change of weighted layered
(A2 → A1)-graphs extend to the new G(A2 → A1). The correspondence of a point [f : Σ/pt →

26Let ~s = (ord ′(r1) , · · · , ord ′(rl)). Then, we will call the quantity µ′ + 2 deg (~s) the (absolute) index of τ and
denote it by µ(τ ). When l = 0, µ′(τ ) = µ(τ ).
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(Ẑ, L̂; D̂)/Â] ∈ M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ;~s), with target isomorphic to (Z[k], L[k];D[k]), to
an element τ[f ] ∈ G(A2 → A1) is the same as in Sec. 3.3 with the following addition/modification:

f : Σ → (Z[k], L;D[k]) (H2(Z,L;Z)
∂→ H1(L;Z))-graph τ

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
i-th distinguished marked point pn+i root ri ∈ R(τ ) attached to v ∈ V (τ ) with layer (v) = k
contact order si of f with D[k] at pn+i ord ′(ri), ri ∈ R(τ )

relative Maslov index µrel(f) relative index µ′ .

Two relative stable maps fi : Σi/pt → (Z[ki], L[ki];D[ki])/A[ki], i = 1, 2, are said to be of the
same topological type if τ[f1] is isomorphic to τ[f2] in the category G. Degenerations of relative

stable maps to fibers of (Ẑ, L̂; D̂)/Â are reflected contravariantly by compositions of contractions
and color-changes of their dual graphs.

Same reasons that give Proposition 3.3.4, Lemma 3.3.7, and Theorem 3.3.8 now imply:

Theorem 6.1.3 [Hausdorffness and compactness]. The classification of relative stable maps
by their topological types gives rise to a finite stratification ofM(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ;~s),
with each stratum Sτ labelled by a weighted layered (H2(Y,L;Z),H1(L;Z))-graph τ ∈ G. The

moduli spaceM(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ;~s) of relative stable maps to fibers of (Ẑ, L̂; D̂)/Â
of combinatorial type ((g, h), (n + l(~s), ~m) |β′, ~γ, µ′;~s), with the C∞-topology, is Hausdorff and
compact.

Cf. [L-R: Sec. 3.3], [I-P1: Theorem 7.4]; [Li1: Theorem 4.10].

6.2 A Kuranishi structure for M(g,h),(n+l(~s), ~m)(Z, L;D | β ′, ~γ, µ′;~s).

Introduce first the following category of topological spaces, which is closely related to Cspsccw:

Definition 6.2.1 [category C ′
spsccw]. We define C ′

spsccw to be the category that has the same
objects as Cspsccw but with the fibrations over the complex line C removed. A morphism in
C ′
spsccw is a continuous map as stratified spaces.

The same construction in Sec. 4 - Sec. 5 gives a Kuranishi structure onM(g,h),(n+l(~s), ~m)(Z,L;
D |β′, ~γ, µ′;~s) that is modelled in the category C ′

spsccw. There are only two major modifications
in the discussion:

· (the non-rigidity of target) : while treating (Z[k], L[k];D[k])/A[k] as the
(k−1)-th expanded degeneration of the degeneration (Z[1], L[1];D[1])/A[1],
it is Gm[k] – rather than Gm[k − 1] – that acts equivariantly on
(Z[k], L[k];D[k])/A[k] and that corresponds to choices of the renormal-
ization in removing degeneracy/falling-into-D;

(T4) (additional transversality) : local transversality of the contact-order-
si condition along D[k] at the distinguished marked point pn+i, for i =
1 , . . . , l; cf. Conditions (T1) - (T3) in Sec. 5.2.

Let (Σ, ∂̇Σ; ~p, ~p1, . . . , ~ph; f) be a relative stable map to the central fiber (Z[k], L[k];D[k])

of (Z[k], L[k];D[k])/A[k] that represents ρ ∈ M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ;~s). Recall that
Z[k] = Z ∪D=D1,∞ ∆1 ∪D1,0=D2,∞ · · · ∪Dk−1,0=Dk,∞

∆k and Di := ∆i ∩ ∆i+1 in Z[k] for i =

1, . . . , k − 1. Here we set ∆0 = Z by convention. Let Λi = f−1(Di) and Λ =
∐ k−1

i=0 Λi be
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the set of distinguished nodes on Σ under f . Let s = (~s0, · · · , ~sk−1 ; ~sk), with ~sk = ~s, be the
tuple of contact orders of f at Λ ∪ {pn+1 , · · · , pn+l(~s)}. Recall the discussion and notations

in Sec. 5.2. The notion of a saturated subspace in W 1,p(Σ, ∂Σ; f∗T∗Z[k], (f |∂Σ)∗T∗L[k]) from
Definition 5.3.1.4 now has to be revised to incorporate Condition (T4) as well:

Definition 6.2.2 [saturated/relative pre-deformable subspace]. A subspace V inW 1,p(Σ,
∂Σ; f∗T∗Z[k], (f |∂Σ)∗T∗L[k]) is said to be saturated if

(1) V is admissible;

(2) the map

(⊕q∈ΛDfdivq)
⊕(
⊕n+l(~s)

i=1 Dfev pi

)⊕(
⊕qijDfev qij

)⊕(
⊕l(~s)

i=1Dfdivpn+i

)
: V −→

(⊕
q∈Λ

(
T(s(q)−1)·(q)Div s(q)−1(Uq,1)⊕ T(s(q)−1)·(q)Div s(q)−1(Uq,2)

))

⊕(
⊕piTf(pi)Y[k]

)⊕(
⊕qijTf(qij)L

)⊕l(~s)
i=1 T(si−1)·(pn+i)Div si−1(Upn+i)

is surjective;

(3) let V rel-pd be the subspace ((⊕q∈ΛDfdivq)⊕(⊕q∈ΛDfdivq))
−1(0) in V , then the linear map

(
⊕q∈Λ (Dfev q ⊕ jet s(q)q )

)⊕(
⊕l(~s)

i=1 (Dfev pn+i ⊕ jet sipn+i
)
)

:

V rel-pd −→
(
⊕q∈Λ (Tf(q)D ⊕ C2)

)⊕(
⊕l(~s)

i=1(Tf(pn+i)D ⊕ C)
)

is surjective, where we have identified Di, i = 0, . . . , k − 1, canonically with D.

In the above statement, V rel-pd is called the relative pre-deformable subspace of V .
A subspace E of Lp(Σ;Λ0,1Σ⊗J f

∗T∗Y[k]) is said to be saturated if (Df ∂̄J)
−1(E) ⊂W 1,p(Σ,

∂Σ; f∗T∗Y[k], (f |∂Σ)∗T∗L[k]) is saturated.

The notion of a saturated obstruction space Eρ in Lp(Σ;Λ0,1Σ ⊗J f
∗T∗Z[k]) for ρ = [f ] ∈

M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s) from Definition/Lemma 5.3.1.5 is converted accordingly:

Definition/Lemma 6.2.3 [saturated obstruction space]. Denote by Im (Df ∂̄J ) the image
of Df ∂̄J , (Df ∂̄J)(W

1, p(Σ, ∂Σ; f∗T∗Z[k], (f |∂Σ)∗T∗L[k])), in L
p(Σ;Λ0,1Σ⊗J f

∗T∗Z[k]). Then there

exists a subspace Eρ of Lp(Σ;Λ0,1Σ⊗J f
∗T∗Z[k]) such that

(1) Im (Df ∂̄J) + Eρ = Lp(Σ;Λ0,1Σ⊗J f
∗T∗Z[k]),

(2) Eρ is finite-dimensional, complex linear, and Aut (ρ)-invariant,

(3) Eρ consists of smooth sections supported in a compact subset of Σ disjoint from the union
of the set of all (three types of ) nodes and the set {pn+1 , · · · , pn+l(~s)} of all distinguished
marked points on Σ,

(4) (Df ∂̄J )
−1(Eρ) is a saturated subspace of W 1,p(Σ, ∂Σ; f∗T∗Z[k], (f |∂Σ)∗T∗L[k])).

Eρ is called a saturated obstruction space of M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ;~s) at ρ .

The index of

Df ∂̄J : W 1,p(Σ, ∂Σ; f∗T∗Z[k], (f |∂Σ)∗T∗L[k]) −→ Lp(Σ,Λ0,1Σ⊗J f
∗T∗Z[k])
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is given by

ind (Df ∂̄J ) = µ(f) + dimZ · (1− g̃) − 2
∑k−1

i=0 l(~si) + 4
∑k−1

i=0 deg~si

= µrel(f) + dimZ · (1− g̃) − 2
∑k−1

i=0 l(~si) + 4
∑k−1

i=0 deg~si + 2 deg~s ,

where g̃ is the arithmetic genus of ΣC.

Definition 6.2.4 [relative pre-deformable index]. We define the relative pre-deformable
index of Df ∂̄J to be

ind rel-pd(Df ∂̄J) := µrel(f) + dimZ · (1− g̃) + 2 |Λ| .

Note that

dim (Df ∂̄J)
−1(Eρ)

rel-pd = µrel(f) + dimZ · (1− g̃) + 2 |Λ| + dimEρ .

The same routine of Sec. 5.3 - Sec. 5.4 now proves that:

Theorem 6.2.5 [Kuranishi structure onM•(Z,L;D | • )]. The moduli spaceM(g,h),(n+l(~s), ~m)(

Z,L;D |β′, ~γ, µ′;~s) of relative stable maps to fibers of (Ẑ, L̂; D̂)/Â admits a Kuranishi structure
K′ modelled in C ′

spsccw. K′ has the expected dimension

vdimM•(Z,L;D | • ) := µ′ + (N − 3)(2 − 2g − h) + 2 (n + l(~s)) + (m1 + · · · +mh) ,

where 2N is the dimension of Z. The Kuranishi neighborhood-in-C ′
spsccw (Vρ,ΓVρ , EVρ ; sρ, ψρ) at

ρ = [f : (Σ, ∂Σ)→ (Z[k], L[k];D[k])] has Vρ isomorphic to a neighborhood of the origin of

Ξ(~s0, ..., ~sk−1) × Rn1 × (R≥0)
n2

where

· ~si is the contact order of f along Di at the ordered set of distinguished nodes in f−1(Di),
i = 0, . . . , k − 1 , (and recall that dimΞ(~s0, ..., ~sk−1) = 2k);

· n1 = vdimM•(Z,L;D | • ) + dimEρ − (2k + n2) ; and

· n2 = the total number of boundary nodes and free marked points that land on ∂Σ.

The homeomorphism-type {Z[k′]}0≤k′≤k of the targets of maps gives a ΓVρ-invariant stratification
{Sk′}0≤k′≤k on Vρ; each connected component of Sk′ is a manifold of codimension 2k′ in Vρ.
This stratification coincides with the induced stratification on Vρ from the stratification27 of
Ξ(~s0, ..., ~sk−1).

27Which, recall that, is induced by the map Ξ(~s0, ..., ~sk−1) → Ck and the stratification of Ck by the coordinate
subspaces.
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7 Degeneration and gluing of Kuranishi structures and axioms

of open Gromov-Witten invariants under a symplectic cut.

In this last section of the current work, we derive a degeneration-gluing relation of the Ku-
ranishi structure of the moduli space of stable maps to (X,L) with the Kuranishi structure
of the moduli spaces of relative stable maps to (Y1, L1;D), (Y2, L2;D) that occur in a sym-
plectic cut ξ : (X,L) → (Y,L) = (Y1, L1) ∪D (Y2, L2). This degeneration-gluing relation is
insensitive to the real codimension-1 boundary of the Kuranishi structures involved when L
is non-empty. Taking this formula as the foundation, together with (a) its reduction to the
degeneration/gluing formula of virtual fundamental classes and Gromov-Witten invariants in
closed Gromov-Witten theory when L is empty and (b) the deformation-invariance requirement
of Gromov-Witten invariants, we propose a degeneration axiom and a gluing axiom under a
symplectic cut for open Gromov-Witten invariants of a symplectic/almost-complex manifold
with a decorated Lagrangian/totally-real submanifold.

7.1 The degeneration-gluing relations of Kuranishi structures.

Central fiber, layer-structure stratification, and descendent Kuranishi structure.

Definition 7.1.1 [category Cspsccw,0 and its descendants C (i)
spsccw,0]. We define Cspsccw,0 to

be the category of weighted stratified spaces Q0 that occur in the central fiber of objects Q/C in
Cspsccw. Here the weight to an irreducible component of Q0 is given by the multiplicity of that
component in terms of the associated flat affine fibrations Ξs/SpecC[t] of schemes, cf. footnote

19. Define also the depth-i descendant C (i)
spsccw,0 of Cspsccw,0 to be the category of stratified spaces

locally modelled on the central fiber of the fibration (Ξ(~s0, ..., ~si) ×Rn1 × (R≥0)
n2)/Ci+1 for some

n1 , n2. Note that C (0)
spsccw,0 = Cspsccw,0.

Definition 7.1.2 [descendants C ′, (i)
spsccw of C ′

spsccw]. We define the depth-i descendants C ′, (i)
spsccw

of C ′
spsccw to be the category of stratified spaces locally modelled on the central fiber of the fibration

(Ξ(~s0, ..., ~si−1) × Rn1 × (R≥0)
n2)/Ci for some n1 , n2. Note that C ′, (0)

spsccw = C ′
spsccw.

Definition 7.1.3 [standard Kuranishi structure]. We will call a Kuranishi structure K on
a moduli spaceM of stable maps standard if K is constructed via the routine in Sec. 4 - Sec. 5.

In particular, a standard Kuranishi structure-in-Cspsccw K/B onM(g,h),(n,~m)(W/B,L | [β], ~γ,
µ)/B is flat over B in the sense that each λ ∈ B has a neighborhood Uλ over which K is

equivalent to a standard Kuranishi structure K̂/B with the Kuranishi neighborhoods and ob-

struction bundles from K̂/B flat over Uλ. Indeed, a standard K/B constructed through Sec. 4
- Sec. 5 is already flat over a neighborhood of 0 ∈ B. This motivates/implies the following
definiton/theorem, which is a corollary of Proposition 3.3.4, Theorem 3.3.8, and Theorem 5.1.6:

Definition/Theorem 7.1.4 [stable maps to (Y,L)]. Recall the symplectic cut ξ : X → Y
and let β = ξ∗([β]) ∈ H2(Y,L;Z). Define the moduli space M(g,h),(n,~m)(Y,L |β,~γ, µ) of stable
maps of type ((g, h), (n, ~m) |β,~γ, µ) from labelled-bordered Riemann surfaces to (Y,L) to be

the central fiber ofM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B over 0 ∈ B, with the induced C∞-topology.

ThenM(g,h),(n,~m)(Y,L |β,~γ, µ) is Hausdorff and compact. The correspondence

M(g,h),(n,~m)(Y,L |β,~γ, µ) −→ G(H2(Y,L;Z)
∂→ H1(L;Z)) , [f ] 7−→ τ[f ]
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gives a finite stratification ofM(g,h),(n,~m)(Y,L |β,~γ, µ) by the topological type of maps. The cen-

tral fiber K0 of a standard Kuranishi structure-in-Cspsccw K/B onM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)
/B gives a Kuranishi structure-in-Cspsccw,0 on M(g,h),(n,~m)(Y,L |β,~γ, µ). We will call a Ku-

ranishi structure onM(g,h),(n,~m)(Y,L |β,~γ, µ) thus obtained a standard Kuranishi structure on

M(g,h),(n,~m)(Y,L |β,~γ, µ). The virtual dimension of K0 is the same as the virtual dimension of

M(g,h),(n,~m)(X,L | [β], ~γ, µ).

For a τ ∈ G := G(H2(Y,L;Z)
∂→ H1(L;Z)), denote the layer map V (τ) → Z≥0 by layer τ .

Then the composition

[f ] 7−→ τ[f ] 7−→ max{ 0 , |Im (layer τ[f ])| − 2 }

gives a correspondence
M(g,h),(n,~m)(Y,L |β,~γ, µ) −→ Z≥0 .

Definition 7.1.5 [layer-structure stratification]. The (finite) collection of the pre-image of
the elements of Z≥0 under the above correspondence gives, by definition, the layer-structure strat-

ification of M(g,h),(n,~m)(Y,L |β,~γ, µ). The stratum M(i)
(g,h),(n,~m)(Y,L |β,~γ, µ) associated to i ∈

Z≥0 is called the stratum of depth i. A standard Kuranishi structure K0 onM(g,h),(n,~m)(Y,L |β,
~γ, µ) restricts to a Kuranishi structure-in-C(i)spsccw,0 K

(i)
0 onM(i)

(g,h),(n,~m)(Y,L |β,~γ, µ) as follows:

· Let K/B be a standard Kuranishi structure-in-Cspsccw onM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B
that gives the Kuranishi structure-in-Cspsccw,0 K0, ρ ∈ M(i)

(g,h),(n,~m)(Y,L |β,~γ, µ),
(Vρ, EVρ ,ΓVρ ; sVρ , ψVρ)/B be a Kuranishi neighborhood of ρ from K with ρ treated as a

point inM(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B. Then, by definition, the Kuranishi neighborhood-
in-Cspsccw,0 of ρ from K0 is given by

(Vρ,0,ΓVρ,0 = ΓVρ , EVρ,0 = EVρ |Vρ,0 ; sVρ,0 = sVρ |Vρ,0 , ψVρ,0 = ψVρ |Vρ,0) ,

where Vρ,0 is the central fiber of Vρ/B, which is invariant under ΓVρ , and ΓVρ,0 is ΓVρ that
acts on Vρ,0.

· By construction Vρ also fibers over B[i]. Let V
(i)
ρ,0 be the central fiber of Vρ/B[i]; then V

(i)
ρ,0

is ΓVρ-invariant and the restriction

(V
(i)
ρ,0 , ΓV

(i)
ρ,0

= ΓVρ , EV
(i)
ρ,0

= EVρ |V (i)
ρ,0

; s
V

(i)
ρ,0

= sVρ |V (i)
ρ,0

, ψ
V

(i)
ρ,0

= ψVρ |V (i)
ρ

) .

define a Kuranishi neighborhood-in-C (i)spsccw,0 of ρ ∈M(i)
(g,h),(n,~m)(Y,L |β,~γ, µ). The system

of transition data in K restricts to a system of transition data for such system of Kuranishi

neighborhoods-in-C (i)spsccw,0 forM(i)
(g,h),(n,~m)(Y,L |β,~γ, µ). This defines K

(i)
0 .

We shall call such K(i)
0 a standard Kuranishi structure on M(i)

(g,h),(n,~m)(Y,L |β,~γ, µ). Note that

in the above description, V
(i)
ρ has codimension 2i in Vρ,0; thus vdimK(i)

0 = vdimK0 − 2i.

We say that the stratum M(i)
(g,h),(n,~m)(Y,L |β,~γ, µ) has virtual codimension 2i (everywhere) in

M(g,h),(n,~m)(Y,L |β,~γ, µ) Note also that K(0)
0 = K0.
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Similarly, the composition

[f ] 7−→ τ[f ] 7−→ |Im (layer τ[f ])|
gives a correspondence

M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ;~s) −→ Z≥0 .

This defines a layer-structure stratification
{
M(i)

(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s)
}
i∈Z≥0

of M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s). Given a standard Kuranishi structure-in-C ′
spsccw K′ for

M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s), the same take-central-fiber-then-restrict construction in Def-

inition 7.1.5 gives a standard Kuranishi structure-in-C ′, (i)
spsccw K′,(i) onM(i)

(g,h),(n+l(~s), ~m)(Z,L;D |β′,
~γ, µ′;~s). The depth-i stratumM(i)

(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s) has virtual codimension 2i in

M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s).

Lemma 7.1.6 [unique equivalence class]. Any two standard Kuranishi structures onM are
equivalent, where M is any of the following moduli spaces:

M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B , M(g,h),(n,~m)(Wλ, L | [β], ~γ, µ) , λ ∈ B − {0} ,
M(g,h),(n,~m)(Y,L |β,~γ, µ) , M(i)

(g,h),(n,~m)(Y,L |β,~γ, µ) ,
M(g,h),(n+l(~s), ~m)(Z,L;D |β′, ~γ, µ′;~s) , M(i′)

(g,h),(n+l(~s), ~m)
(Z,L;D |β′, ~γ, µ′;~s) .

Proof. ForM =M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B, let Ki be the Kuranishi structure associated
to a fine system of saturated obstruction local bundles Ei i = 1, 2; cf. Sec. 5.4. Then there exists
another fine system E3 of saturated obstruction local bundles so that both F(E1) and F(E2) are
orbifold sub-fibrations of F(E3). The lemma forM =M(g,h),(n,~m)(W/B,L | [β], ~γ, µ)/B follows
then from the construction in Sec. 5.4. Similarly for all other choices ofM in the list.

✷

Topological spaces with a Kuranishi structure: morphisms and fibered products.28

We digress here to define two fundamental notions that we did not truly need until now: mor-
phisms and fibered products of topological spaces with a Kuranishi structure. These two notions
are fundamental in any category of spaces/geometries.

Definition 7.1.7 [Kuranishi structure: morphism]. Let Xi be a topological space with a
Kuranishi structure Ki,0 modelled in a category C, i = 1, 2. A morphisms from (X1,K1,0) to
(X2,K2,0) is a continuous map ϕ : X1 → X2 together with a tuple of systems of morphisms
ϕ♯ := (ϕV· , ϕΓ· , ϕE·) : K1 → K2 , where K1 ∼ K1,0 and K2 ∼ K2,0, consisting of a system
of continuous maps ϕV· : Vx1 → Vϕ(x1), group homomorphisms ϕΓ· : ΓVx1

→ ΓVϕ(x1)
, and ϕΓ· -

equivariant bundle maps ϕE· : EVx1
→ EVϕ(x1)

that covers ϕV· , such that29

28Our definitions here are tailored to what we have explicitly, what we are allowed to do in these cases, and
what we are aiming for. There is still room for further polishments/generalizations of these notions/definitions.

29The necessity of passing to equivalent Kuranishi structures to define morphisms is enforced on us when one
considers the simplest case: the notion of embeddings of a topological space-with-Kuranishi-structure to another.
This also makes the definition ring more compatibly with its parallel in algebraic geometry. There one has
the notion of two-term locally-free resolutions of a perfect tangent-obstruction complex on the moduli stack in
question. Morphisms between such complexes are at the level of derived categories of coherent sheaves on the
moduli stacks. In particular, they have to pass to quasi-isomorphisms of chain complexes, rather than directly on
the two chain complexes one wants to compare.
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(1) [compatibility on each Kuranishi neighborhood] :

ϕE· ◦ sp = sϕ(p) ◦ ϕV· on Vp , ϕ ◦ ψp = ψϕ(p) ◦ ϕV· on s−1
p (0) ⊂ Vp for p ∈ X1;

(2) [gluability: compatibility with transition data] :

ϕV·(Vqp) ⊂ Vϕ(q)ϕ(p) , ϕΓ· ◦ hqp = hϕ(q)ϕ(p) ◦ ϕΓ· ,

ϕV· ◦ φqp = φϕ(q)ϕ(p) ◦ ϕV· , ϕE· ◦ φ̂qp = φ̂ϕ(q)ϕ(p) ◦ ϕE· .

For convenience, we will denote a morphism as (ϕ,ϕ♯) : (X1,K1,0) → (X2,K2,0) with it under-
stood that ϕ♯ is defined subject to passing to an equivalent Kuranishi structure.

Definition/Example 7.1.8 [embedding]. A morphism (ϕ,ϕ♯) : (X1,K1)→ (X2,K2) is called
an embedding if both ϕ and ϕ♯ are embeddings.

Definition/Example 7.1.9 [covering map]. A morphism (ϕ,ϕ♯) : (X1,K1) → (X2,K2) is
called a covering map if ϕ is a covering map and ϕ♯ is an isomorphism30. In this case,
vdimK1 = vdimK2.

Definition/Example 7.1.10 [virtual bundle map]. Given a topological space S, we shall
regard it also as a topological space with the trivial Kuranishi structure Ktrivial that consists
of exactly one Kuranishi neighborhood (S, {e},0S := S × {0}; 0, Id S). A morphism (ϕ,ϕ♯) :
(X,K) → S = (S,Ktrivial ), is called a virtual bundle map if ϕ : X → S is continuous and
ϕ♯ : K → Ktrivial is a bundle map31. Note that, in this case, the ΓVp-action on Vp leaves each
fiber of Vp → S invariant.

Definition 7.1.11 [Kuranishi structure: fibered product]. Let S be a topological space
with the trivial Kuranishi structure Ktrivial . Given two virtual bundle maps

(X1,K1)
(ϕ1,ϕ

♯
1)−→ S

(ϕ2,ϕ
♯
2)←− (X2,K2) ,

define the fibered product (X1 ×S X2,K1 ×S K2) of (X1,K1) and (X2,K) over S to be the
topological space

X1 ×S X2 := (ϕ1 × ϕ2)
−1(∆S) ⊂ X1 ×X2 ,

where ϕ1 ×ϕ2 : X1×X2 → S ×S and ∆S ⊂ S × S is the diagonal, equipped with the following
Kuranishi structure:

(1) [the induced Kuranishi neighborhood at (p1, p2) ∈ X1 ×S X2] :

· define V(p1,p2) := Vp1 ×S Vp2 and let Vp1
π1← Vp1 ×S Vp2

π2→ Vp2 be the projection maps;

· the diagonal action of ΓVp1
× ΓVp2

on Vp1 × Vp2 leaves V(p1,p2) = Vp1 ×S Vp2 invariant,
define ΓV(p1,p2)

= ΓVp1
× ΓVp2

now acting on V(p1,p2);

· let EV(p1,p2)
:= π∗1EVp1

⊕ π∗2EVp2
on V(p1,p2), then the induced ΓV(p1,p2)

-action on
EV(p1,p2)

is equivariant;

· let s(p1,p2) = (π∗1sp1 , π
∗
2sp2), then s(p1,p2) is a ΓV(p1,p2)

-invariant section of EV(p1,p2)
;

30By this we mean that all maps in ϕ♯ are isomorphisms. Note that ϕ♯ alone sees only the local properties of
the topology. That maps in ϕ♯ are all isomorphisms implies only that ϕ : X1 → X2 is a local isomorphism.

31By this we mean that each ϕV· : Vp → S, p ∈ X, in ϕ♯ is a bundle map (i.e. locally trivial fibration) over a
non-empty open subset of S.
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· let ψ(p1,p2) = (ψp1 × ψp2 : s−1
p1 (0) × s−1

p2 (0) → X1 × X2 )|Vp1×SVp2
, then ψ(p1,p2) is a

map from s−1
(p1,p2)

(0) to X1 ×S X2.

The 5-tuple (V(p1,p2) , ΓV(p1,p2)
, EV(p1,p2)

; s(p1,p2) , ψ(p1,p2)) defined above is called the in-

duced Kuranishi neighborhood of (p1, p2) ∈ X1 ×S X2 from K1 and K2. Define N
(0) to be

the system of Kuranishi neighborhoods of X1 ×S X2 thus constructed.

(2) [transition data] :

· the diagonal product construction defines a canonical Kuranishi structure K1 × K2

on X1 × X2; the Kuranishi neighborhoods for X1 ×S X2, as constructed above, are
embedded in the Kuranishi neighborhoods in K1 ×K2; the canonical transition data
in K1 ×K2 restricts to a system N

(1) of transition data for N(0).

Define K1×S K2 = (N(0) , N(1)). When S = {pt}, we call (X1×X2,K1×K2) the direct product,
or simply the product, of (X1,K1) and (X2,K2).

By construction, there are a tautological virtual bundle map

(ϕ1 ×S ϕ2 , ϕ
♯
1 ×S ϕ

♯
2) : (X1 ×S X2 , K1 ×S K2) −→ S ,

an embedding morphism (X1×SX2,K1×SK2)→ (X1×X2,K1×K2), and projection morphisms

(X1,K1)
(π1,π

♯
1)←− (X1 ×S X2,K1 ×S K2)

(π2,π
♯
2)−→ (X2,K2) .

Note that vdim (K1 ×S K2) = vdimK1 + vdimK2 − dimS when S is a manifold and both K1

and K2 are modelled on the category of CW-complexes.

The degeneration-gluing relations of Kuranishi structures.

We are now ready to give the degeneration-gluing relations of Kuranishi structures of the several
moduli spaces that occur in the study.

The following bookkeeping graphs are adapted from [Li1: Sec. 4.2]:

Definition 7.1.12 [admissible weighted graph]. Given a relative pair (Z,L;D) with a
symplectic/totally-real submanifold, an admissible weighted graph Γ for (Z,L;D) is a graph
without edges together with the following data:

(1) an ordered collection of hands, fingers32, and legs; an ordered collection of weighted roots;
a relative index function and two weight functions on the vertex set µ′ : V (Γ) → Z,
g : V (Γ) → Z≥0, and b : V (Γ) → H2(Z,L;Z); a weight function on the ordered set of
hands γ : H(Γ) → H1(L;Z) such that ∂b(v) =

∑
•
hv,•, where v ∈ V (Γ) and the sum is

over the ordered subset of hands that are attached to v;

(2) Γ is relatively connected in the sense that either |V (Γ)| = 1 or each vertex in V (Γ) has at
least one root attached to it.

32The order of fingers is lexicographic: first by the order of the hands they are attached to and then by the
order within each group that are attached to the same hand.
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Definition 7.1.13 [admissible quadruple]. Given a gluing (Y,L) = (Y1, L1) ∪D (Y2, L2) of
relative pairs from a symplectic cut, let Γ1 and Γ2 be a pair of admissible weighted graphs for
(Y1, L1;D) and (Y2, L2;D) respectively. Suppose that Γ1 and Γ2 have identical number l of
roots, h1-many and h2-many hands, n1-many and n2-many legs respectively. Let h = h1 + h2,
n = n1 + n2, Ihand ⊂ {1, . . . , h} be a set of h1 elements, and Ileg ⊂ {1, . . . , n} be a set of n1
elements. Then (Γ1,Γ2, Ihand , Ileg ) is called an admissible quadruple if the following conditions
hold:

(1) the weights on the roots of Γ1 and Γ2 coincide: r1,i = r2,i, i = 1, . . . , l ;

(2) after connecting the i-th root of Γ1 and the i-th root of Γ2 for all i, the resulting new
graph with h hands, (accompanying fingers), n legs and no roots is connected.

Re-ordering of roots defines an equivalence relation ∼ on the set Ω of admissible quadruples.
Define Ω̄ := Ω/ ∼. Given an admissible quadruple η = (Γ1,Γ2, Ihand , Ileg ), denote by Per r(η)
the set of permutations of the roots in Γ1 that leaves η unchanged.

Note that Ihand determines the order of the hands on the graph from gluing paired roots by
the unique bijection {1, · · · , h1} ∐ {1, · · · , h2} → {1, · · · , h} such that it preserves the orders
of both {1, · · · , h1} and {1, · · · , h2} and that the image of {1, · · · , h1} is Ihand . The order of
fingers on the glued graph is then determined lexicographically. Similarly, Ileg determines the
order of legs on the glued graph.

Given an admissible quadruple η = (Γ1,Γ2, Ihand , Ileg ) as above with (Y,L) = (Y1, L1) ∪D
(Y2, L2) = the degenerate fiber W0 of W/B, one has

· the genus function

g(η) := l + 1− |V (Γ1
∐
Γ2)|+

∑
v∈V (Γ1)∪V (Γ2)

g(v) ∈ Z≥0 ,

· the curve-class function

b(η) := ι1,∗
(∑

v∈V (Γ1)
bΓ1(v)

)
+ ι2,∗

(∑
v∈V (Γ2)

bΓ2(v)
)
∈ H2(Y,L;Z) ,

where ιi : (Yi, Li) →֒ (Y,L), i = 1, 2 , are the inclusion maps,

· the total index µ(η) =
∑

v∈V (Γ1)
µ′(v) +

∑
v∈V (Γ2)

µ′(v) .

Let ~m(η) := (m1, · · · , mh) be the tuple of numbers of fingers attached to hands ∈ H(Γ1)∪H(Γ2)
and ~γ(η) be the tuple of values of γ1 ∪ γ2 : H(Γ1)∪H(Γ2)→ H1(L;Z), both with respect to the
order on H(Γ1) ∪H(Γ2) specified by Ihand . Define the type of η to be

|η| := ((g(η), h1 + h2), (n1 + n2, ~m(η)) | b(η), ~γ(η), µ(η)) .
For each η = (Γ1,Γ2, Ihand , Ileg ), with l-many roots, such that |η| = ((g, h), (n, ~m) |β,~γ, µ),

there are five moduli spaces of stable map associated to it:

M(Y1, L1;D |Γ1) , M(Y2, L2;D |Γ2) , M(Y1, L1;D |Γ1)×Dl M(Y2, L2;D |Γ2) ,

sub-orbifolds M((Y1, L1;D) ∐ (Y2, L2;D) | η) and M(Y, L | η) of M(g,h),(n,~m)(Y, L |β,~γ, µ) .

We explain each of these spaces and their standard Kuranishi structures below.
Let Γ be an admissible weighted graph for (Z,L;D)., The restriction of the data encoded by

Γ to each vertex v ∈ |Γ| specifies a unique type data ((gv , hv), (nv , ~mv) |βv
, ~γv , µ

′
v;~sv). Define

the moduli space by the direct product:

M(Z,L;D |Γ) :=
∏

v∈|Γ|
M(gv,hv),(nv , ~mv)(Z,L;D |βv, ~γv , µ′v;~sv) .

89



A standard Kuranishi structure K′
(Z,L;D |Γ) onM(Z,L;D |Γ) is by definition the direct product

of a standard Kuranishi structure on each moduli-space componentM(gv,hv),(nv, ~mv)(Z,L;D |βv ,
~γv, µ

′
v;~sv). Let l be the number of roots of Γ. Then the saturatedness of the obstruction-

space local bundles for eachM(gv,hv),(nv, ~mv)(Z,L;D |βv , ~γv, µ′v;~sv) implies that there is a virtual
bundle map

(q , q♯) : (M(Z,L;D |Γ) , K′
(Z,L;D |Γ)) −→ (Dl,Ktrivial ) .

Apply the above to Γ1 and Γ2 from the admissible quadruple with l-many roots, one ob-
tains the fibered-product moduli spaceM(Y1, L1;D |Γ1)×DlM(Y2, L2;D |Γ2) with a standard
Kuranishi structure defined to be the fibered product K′

(Y1,L1;D |Γ1)
×Dl K′

(Y2,L2;D2 |Γ2)
.

Let

Φη :M(Y1, L1;D |Γ1)×DlM(Y2, L2;D |Γ2) −→ M(g,h),(n,~m)(Y,L |β,~γ, µ)

be the gluing orbifold map, whose corresponding map at the underlying topological space is
given by

( f1 : Σ1 → (Y1,[k1], L1,[k1];D[k1]) , f2 : Σ2 → (Y2,[k2], L2,[k2];D[k2]) )

7−→ f = f1 ∪ f2 : Σ→ (Y[k], L[k]) , k = k1 + k2 ,

where Σ is the gluing Σ1 ∪ Σ2 of Σ1 and Σ2 along their paired distinguished marked points;
Y[k1+k2] is the gluing of (Y1,[k1], L1,[k1];D[k1]) and (Y2,[k2], L2,[k2];D[k2]) by D[k1] ≃ D ≃ D[k2].
Denote the image by

M((Y1, L1;D)∐ (Y2, L2;D) | η)
with the induced sub-orbifold structure and the C∞-topology from M(g,h),(n,~m)(Y,L |β,~γ, µ);
then Φη is an orbifold covering map of pure degree |Perr(η)| toM((Y1, L1;D)∐ (Y2, L2;D) | η).
A standard Kuranishi structure on M((Y1, L1;D) ∐ (Y2, L2;D) | η) can be constructed as fol-
lows. Since Φη is a covering map, a Kuranishi neighborhood (Vρ,ΓVρ , EVρ ; sρ, ψρ) of ρ ∈
M((Y1, L1;D)∐(Y2, L2;D) | η) can be taken to be a Kuranishi neighborhood of a ρ′ ∈ Φ−1

η (ρ); i.e.

via the fibered-product construction. In this way one obtains a system N
(0)
((Y1,L1;D)∐(Y2,L2;D) | η)

of Kuranishi neighborhoods onM((Y1, L1;D)∐ (Y2, L2;D) | η). Assume that all these neighbor-
hoods are small, then the system {ι(k1,k2)}k1+k2=k of almost-complex pseudo-embeddings

ι(k1,k2) :(
((Y1[k1], L1[k1];D[k1])× A[k2]) ∪D[k1]×A[k2]≃A[k1]×D[k2] (A[k1]× (Y2[k2], L[k2];D[2]))

)
/(A[k1]×A[k2])

−→ W [k]/B[k]

induces a natural embedding of N
(0)
((Y1,L1;D)∐(Y2,L2;D) | η) into a standard Kuranishi structure K

onM(g,h),(n,~m)(Y,L |β,~γ, µ). Here, D[k1]×A[k2] and A[k1]×D[k2] are glued via their canonical
isomorphisms with D × A[k1] × A[k2] = D × A[k], and the pseudo-embedding A[k] = A[k1] ×
A[k2]→ B[k] is given by (~λ,~λ′) 7→ (~λ , 0 , ~λ′). The transition data from K then restricts33 to an

transition data on N
(0)
((Y1,L1;D)∐(Y2,L2;D) | η). By construction, one has an embedding morphism

(
M((Y1, L1;D) ∐ (Y2, L2;D) | η) , K((Y1,L1;D)∐(Y2,L2;D) | η)

)

−→ (M(g,h),(n,~m)(Y,L |β,~γ, µ) , K) .
33Note that in general one has to pass to an equivalence to make a system of Kuranishi neighborhoods gluable.

However, here the system N
(0)
((Y1,L1;D)∐(Y2,L2;D) | η) is descended from a covering morphism of a Kuranishi structure.

We only need to know whether the transition data also descends in our case. The latter is implied by the existence
of a natural embedding of N

(0)
((Y1,L1;D)∐(Y2,L2;D) | η) into K, (i.e. an embedding at the level of universal maps on

universal curves).

90



With respect to K((Y1,L1;D)∐(Y2,L2;D) | η), the covering map Φη lifts to a covering morphism

(Φη,Φ
♯
η) :

(
M(Y1, L1;D |Γ1)×DlM(Y2, L2;D |Γ2) , K′

(Y1,L1;D |Γ1)
×Dl K′

(Y2,L2;D |Γ2)

)

−→
(
M((Y1, L1;D) ∐ (Y2, L2;D) | η) , K((Y1,L1;D)∐(Y2,L2;D) | η)

)
.

One can check that, with these standard Kuranishi structures,

vdim
(
M(Y1, L1;D |Γ1)×DlM(Y2, L2;D |Γ2)

)

= vdimM(Y1, L1;D |Γ1) + vdimM(Y1, L1;D |Γ1) − 2 l (N − 1)

= vdimM(g,h),(n,~m)(Y,L |β,~γ, µ) ,

where, recall that, dimY = 2N . This implies that

vdimM((Y1, L1;D) ∐ (Y2, L2;D) | η) = vdimM(g,h),(n,~m)(Y,L |β,~γ, µ) .

Finally, let
M(Y,L | η)

be the same suborbifoldM((Y1, L1;D)∐ (Y2, L2;D) | η) ofM(g,h),(n,~m)(Y,L |β,~γ, µ) but with a
Kuranishi structure constructed as follows. Consider the defining embedding morphism

(M(g,h),(n,~m)(Y,L |β,~γ, µ) , K0) −→ (M(g,h),(n,~m)(W/B,L | [β], ~γ, µ) , K) .

Let K = (N(0),N(1). For ρ ∈ M(Y,L | η) from gluing f1 : Σ1 → (Y1,[k1], L1,[k1];D[k1]) and

f2 : Σ2 → (Y2,[k2], L2,[k2];D[k2]), one has that Vρ ∈ N
(0) fibers over B[k],where k = k1 + k2.

Let Vρ,η ⊂ Vρ be the preimage of the hyperplane {~λ = (λ0, · · · , λk) : λk1 = 0} ⊂ B[k] under
this fibration with the multiplicity of the irreducible components of fibers encoded. Then Vρ,η
is ΓVρ-invariant. Define ΓVρ,η = ΓVρ , now action on Vρ,η; EVρ,η = EVρ |Vρ,η ; sρ,η = sρ|Vρ,η ; and

ψρ,η = ψρ|Vρ,η . Then the system N
(0)
η of 5-tuples (Vρ,η,ΓVρ,η , EVρ,η ; sρ,η, ψρ,η) thus constructed

defines a system of Kuranishi neighborhood onM(Y,L | η). The system N
(1) of transition data

in K restricts to give a system N
(1)
η of transition data for N

(0)
η . The pair Kη := (N

(0)
η ,N

(1)
η ) thus

defines a Kuranishi structure onM(Y,L | η). Kuranishi structures onM(Y,L | η) thus obtained
will be called standard Kuranishi structures onM(Y,L | η). By construction, one also has:

vdimM(Y,L | η) = vdimM(g,h),(n,~m)(Y,L |β,~γ, µ) .

The following theorem that relates these moduli spaces and their standard Kuranishi struc-
tures should be compared to [Li2: Corollary 3.13. Lemma 3.14, Theorem 3.15]. It is in effect a
re-phrasing of [Li2] in terms of the Fukaya-Ono setting and at the level of Kuranishi structures,
rather than of virtual fundamental classes or chains:

Theorem 7.1.14 [degeneration-gluing : Kuranishi structure]. Regard X as a fiber Wλ0

of W/B over λ0 ∈ B − {0}. Recall the symplectic cut ξ : (X,L) → (Y,L) = (Y1, L1) ∪D
(Y2, L2) Given a type ((g, h), (n, ~m) | [β], ~γ, µ) of stable maps to (X,L), let β = ξ∗([β]) ∈
H2(Y,L;Z) and Ω̄((g,h),(n,~m) |β,~γ,µ) be the equivalence of admissible quadruples η such that |η| =
((g, h), (n, ~m) |β,~γ, µ). Then, the following statements hold, up to an equivalence of Kuranishi
structures:

(1) A standard Kuranishi structure Kλ0 onM(g,h),(n,~m)(X,L | [β], ~γ, µ) and a standard Kuran-

ishi structure-in-Cspsccw,0 K0 onM(g,h),(n,~m)(Y,L |β,~γ, µ) are related as fibers of a standard
Kuranishi structure-in-Cspsccw K/B, flat over B.

91



(2) There is a decomposition of moduli space

M(g,h),(n,~m)(Y,L |β,~γ, µ) = ∪η∈Ω̄((g,h),(n,~m) | β,~γ,µ)
M(Y,L | η) .

The two sub-orbifolds M((Y1, L1;D) ∐ (Y2, L2;D) | η) and
M(Y,L | η) of M(g,h),(n,~m)(Y,L |β,~γ, µ) are identical in M(g,h),(n,~m)(Y,L |β,~γ, µ).

(3) The restriction K0,η of the Kuranishi structure K0 on M(g,h),(n,~m)(Y,L |β,~γ, µ) to the

component M(Y,L | η) is equivalent to the Kuranishi structure Kη on
M((Y1, L1;D) ∐ (Y2, L2;D) | η), except that K0,η carries a multiplicity m(η). Let ~s =
(s1, · · · , sl) be the weights of the ordered roots in η; then m(η) = m(~s) := s1 · · · sl. In
notation K0,η = m(η)Kη.

(4) Let η = (Γ1,Γ2, Ihand , Ileg ) with l-many roots. Then, the Kuranishi structure Kη on

M((Y1, L1;D) ∐ (Y2, L2;D) | η) is locally equivalent to the Kuranishi structure K′
1 ×Dl K′

2
on M(Y1, L1;D |Γ1)×DlM(Y2, L2;D |Γ2) under the |Per r(η)|-fold covering map Φη.

We use the following “formula” to summarize/encapsulate (1), (2), (3), and (4):

[Kλ] ↔ [K0] = ∪η∈Ω̄((g,h),(n,~m) | β,~γ,µ)
[K0,η ] = ∪η∈Ω̄((g,h),(n,~m) |β,~γ,µ)

m(η) [Kη ]

= ∪η∈Ω̄((g,h),(n,~m) | β,~γ,µ)

m(η)

|Per r(η)| Φη ∗ [K′
1 ×Dl K′

2] .

Proof. We give only a sketch here and omit the tedious details. Statement (1) is by the definition
of K0. Statement (2) follows by considering the topological types of maps. The multiplicity m(η)
in Statement (3) arise from the scheme structure of the centra fiber of Ξ~s → C. Statement (4)
requires a comparison of the fibered product of Kuranishi structures and that from a restriction.
Here, as well as whenever we need to justify the equivalence of two standardly constructed
Kuranishi structures on a same moduli space in question, is where Siebert’s work [Sie1] plays
roles again and again. Associated to a Kuranishi structure K is a fine system EK of saturated
obstructed local bundles as sub-fibrations in the related Ľp-obstruction space fibration T 2

W̌1,p( ··· )
as in Sec. 5.4; and vice versa. To construct the equivalence of two given two Kuranishi structures
K1 and K2, one constructs an appropriate fine system E of local bundles that contains both EKi

as sub-fibrations.
✷

We emphasize that, at the level of Kuranishi structures, the above degeneration-gluing re-
lations under a symplectic cut hold for both closed Gromov-Witten theory and open Gromov-
Witten theory and by the same reason.

Example: Li-Ruan/Li degeneration formula of closed Gromov-Witten invariants.

When L is empty, the domain of maps are closed nodal Riemann surfaces and we resume the
moduli space

Mg,n(Wλ, [β]) := M(g,0),(n,0)(Wλ | [β]) = ∐β′′∈[β]Mg,n(Wλ, β
′′)

in closed Gromov-Witten theory. The notion of admissible quadruples in Definition 7.1.13 is
reduced to the notion of admissible triples η = (Γ1,Γ2, I = Ileg ) (cf. [Li1: Definition 4.11]) and
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its type is now a triple of the form (ĝ, n̂; β̂). Denote by Ω̄(g,n,β) the set of equivalence classes of

admissible triples η such that |η| = (g, n;β). Then, Theorem 7.1.14 reduces to

Mg,n(Y, β) = ∪η∈Ω̄(g,n;β)
M(Y | η) .

and, in the encapsulated form,

[Kλ] ↔ [K0] = ∪η∈Ω̄(g,n;β)
[K0,η] = ∪η∈Ω̄(g,n;β)

m(η) [Kη ]

= ∪η∈Ω̄(g,n;β)

m(η)

|Per r(η)| Φη ∗ [K′
1 ×Dl K′

2] .

A virtual fundamental class [Mg,n(Wλ, [β])]
virt of the expected dimension and supported in

s−1
ρ,λ(0) on each Kuranishi neighborhood Vρ;λ, ρ ∈ M(g,0),(n,0)(Wλ, [β]) can be constructed34 via
Kuranishi structures Kλ. Similarly, for

[Mg,n(W/B, [β])/B]virt , [Mg,n(Y, β)]
virt , [M(Y | η)]virt , [M(Y1;D |Γ1)]

virt ,

[M(Y2;D |Γ2)]
virt , [M(Y1;D |Γ1)×DlM(Y2;D |Γ2)]

virt , [M((Y1;D)∐ (Y2;D) | η)]virt

that are constructed from Kuranishi structures

K/B , K0 , K0,η , K′
1 , K′

2 , K′
1 ×Dl K′

2 , Kη

respectively. Since equivalent Kuranishi structures give identical virtual fundamental class, the
above degeneration-gluing formula of Kuranishi structures can be reduced35 to the degenera-
tion/gluing formulas of Li-Ruan [L-R] and Li [Li2]36:

34This step is not trivial. It includes a re-doing of [L-T3] and [Sie2] in the Fukaya-Ono family setting. Readers
who are not familiar with ibidem may think of a Kuranishi neighborhood (V,Γ, EV ; s, ψ) directly as a “virtual
cycle” of the expected dimension in the (usually singular) orbifold local chart s−1(0) ⊂ V of the moduli space,
weighted by 1/|Γ|. Equivalent Kuranishi neighborhoods give equivalent local virtual cycles. Transition data of a
Kuranishi structure gives the patching data of these local cycles and defines a virtual fundamental cycle on the
(usual singular) moduli orbifold space. Equivalent Kuranishi structures define the same virtual fundamental class
on the moduli orbifold space.

35In the Fukaya-Ono setting, the degeneration formulas of any form in Gromov-Witten theory should be re-
garded as the consequence of the more fundamental degeneration-gluing relations of Kuranishi structures and an
assignment to each moduli space with a Kuranishi structure a virtual fundamental class or chain that is functorial,
particularly with respect to restrictions to sub-moduli spaces, fibered product, and covering maps. Recall the
layer-structure decompositions of the moduli spaces of stable or relative stable maps and the virtual co-dimension
of each stratum. These notions extends to the fiber-products that occur in the problem. The functorial property
of a virtual fundamental class [M]virt implies that [M]virt is determined by its restriction to the depth-0 (i.e.
virtual codimension-0) stratum in the moduli space. As the depth-0 strata that occur in right-hand side of the
decomposition Mg,n(Y, β) = ∪η∈Ω̄(g,n;β)

M(Y | η) are disjoint from each other, the union becomes a disjoint

union when restricted to depth-0 strata of the moduli spaces in the identity. This disjoint union is then turned
into a summation of virtual fundamental classes on these strata when the degeneration-gluing relations of Kuran-
ishi structures are applied. As recovering the whole moduli space by adding in strata of positive depth will extend
the virtual fundamental class by only lower-dimensional classes in the strata of positive depth, the summation is
not influenced. This gives thus the degeneration/gluing formula at the level of virtual fundamental classes. It is
with this aspect that we state, as an example, the result of [L-R] and [Li2] as a corollary.

36Note that the degeneration formulas of Li-Ruan and Li are equivalent. Here we use the expression in [Li2];
see [L-R] for the expression in terms of integrals over virtual neighborhoods [Ru] with Thom forms. See also the
Appendix of the current work for a discussion on the equivalence of the degeneration formulas of Li-Ruan [L-R],
Li [Li2], and the formally different Ionel-Parker [I-P2].
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Corollary 7.1.15 [degeneration-gluing : virtual fundamental class]. [Mg,n(X, [β])]
virt

and [Mg,n(Y, β)]
virt can be realized as the fibers of the flat class [Mg,n(Wλ, [β])]

virt/B over B.

[Mg,n(Y, β)]
virt =

∑
η∈Ω̄(g,n;β)

[M(Y | η)]virt

=
∑

η∈Ω̄(g,n;β)
m(η) [M((Y1;D) ∐ (Y2;D) | η)]virt

=
∑

η=(Γ1,Γ2,I)∈Ω̄(g,n;β)

m(η)

|Per r(η)| Φη ∗ [M(Y1;D |Γ1)×DlM(Y2;D |Γ2)]
virt

=
∑

η=(Γ1,Γ2,I)∈Ω̄(g,n;β)

m(η)

|Per r(η)| Φη ∗ ∆!
η([M(Y1;D |Γ1)]

virt × [M(Y2;D |Γ2)]
virt) ,

where, for η with l-many roots, ∆η : Dl →֒ Dl ×Dl is the diagonal map and

∆!
η : A∗(M(Y1;D |Γ1)×M(Y2;D |Γ2)) −→ A∗(M(Y1;D |Γ1)×DlM(Y2;D |Γ2))

is the Gysin homomorphism under

M(Y1;D |Γ1)×DlM(Y2;D |Γ2) −→ M(Y1;D |Γ1)×M(Y2;D |Γ2)

↓ ↓
Dl ∆η−→ Dl ×Dl .

The Gromov-Witten invariants of X associated to (g, n; [β]) are defined by37:

ΨX
(g,n;[β]) : H∗(X)×n ×H∗(Mg,n) −→ Q

(κ , ς ) 7−→
[
ev ∗(κ) ∪ π∗(g,n)(ς) [Mg,n(X, [β])]

virt
]
0
,

where ev :Mg,n(X, [β])→ Xn is the evaluation map associated to the ordered set of n marked
points, π(g,n) : Mg,n(X, [β]) → Mg,n is the domain-curve stabilization map38, and [ · ]0 means
the degree-0 component of · .

Given an admissible weighted graph Γ with n legs and l roots, letMΓ be the moduli space of
stables curves with |V (Γ)|-many connected components in one-one correspondence with V (Γ), n
ordinary marked points corresponding to legs and l distinguished marked points.corresponding
to roots accordingly. The relative Gromov-Witten invariants of the pair (Z,D) associated to an
admissible weighted graph Γ with n legs and l roots are defined by

Ψ
(Z,D)
Γ : H∗(Z)×n ×H∗(MΓ) −→ H∗(Dl)

(κ , ς ) 7−→ q∗
(
ev ∗(κ) ∪ π∗Γ(ς) [M(Z;D |Γ)]virt

)
,

where ev :Mg,n(X, [β]) → Xn is the evaluation map associated to the ordered set of ordinary
n marked points, πΓ :M(Z;D |Γ)→MΓ is the domain-curve stabilization map, and
q :M(Z;D |Γ) → Dl is the evaluation map associated to the ordered set of l distinct marked
points.

For an admissible triple η = (Γ1,Γ2, I) with (n1, n2)-many legs and l-many roots, gluing at
the paired distinguished marked points defines an orbifold map Gη :MΓ1×MΓ2 →Mg,n, where
g = g(η) and n = n1 + n2. For ς ∈ H∗(Mg,n;Q), we assume that the Künneth decomposition

37All cohomologies in the definition of Gromov-Witten and relative Gromov-Witten invariants are over Q.
38For X smooth, π(g,n) is a local complete intersection morphism when extended to a map on Kuranishi

neighborhoods.
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G∗
η(ς) =

∑
j∈Nη

ςη,1,j✷× ςη,2,j exists. Then the degeneration-gluing formula of Gromov-Witten

invariants with respect to X/B is given by: ([Li2])

Corollary 7.1.16 [degeneration-gluing : invariant]. Let κ ∈ H0
c (R

•π∗QW )⊕n, ς ∈ H∗(Mg,n),
and ji : Yi →֒ Y =W0, i = 1, 2. Then

ΨWλ

(g,n;[β])(κ(λ), ς)

=
∑

η∈Ω̄(g,n;β)

m(η)

|Per r(η)|
∑

j∈Nη

[
Ψ

(Y1,D)
Γ1

(j∗1κ(0), ςη,1,j) • Ψ
(Y2,D)
Γ2

(j∗2κ(0), ςη,2,j)
]
0
,

where κ(λ) is the restriction of κ to the fiber Wλ of W/B, • is the intersection product on
H∗(Dl), [ · ]0 is the degree-0 component of · .

7.2 A degeneration axiom and a gluing axiom for open Gromov-Witten in-
variants under a symplectic cut.

When L is non-empty, the (real) codimension-1 boundary on the moduli space M̃(g,h),(n,~m) of
prestable labelled-bordered Riemann surfaces gives rise to the codimension-1 boundary ∂K(X,L)

on the Kuranishi structure K(X,L) on the moduli spaceM(g,h),(n,~m)(X,L |β,~γ, µ) of stable maps
to (X,L). As a Gromov-Witten theory/invariant so far constructed is based on the intersection
theory with the functorially constructed virtual fundamental class/chain on the moduli space, the
birth-’n-death of chain components along the codimension-1 boundary ∂K(X,L) of K(X,L) makes
such construction not well-defined unless one has a way to fix the ambiguity. Furthermore, it has
been noticed ([K-L]) that to define meaningful open Gromov-Witten invariants and to match
with the physicists’ computation of open string instantons (e.g. [A-K-V]), a decoration α has to
be imposed to the Lagrangian submanifold L, to which boundaries of Riemann surfaces/open
string world-sheets are mapped. Basic examples of decorations are a group action on L, a
framing on T∗L, and an involution on T∗X|L that leave T∗L fixed, if any of these structures on
L exists. Denote a Lagrangian submanifold L with a decoration α by Lα. Thus:

Problem : To define open Gromov-Witten invariants for (X,Lα).

Note that in general α on L does not extend to a decoration on X.
With the above problem in mind, the degeneration and gluing of Kuranishi structures studied

in this work and the deformation-invariance requirement of open Gromov-Witten invariants
propel us to impose the following two axioms on open Gromov-Witten invariants.

The Gromov-Witten invariants of (X,Lα) associated to ((g, h), (n, ~m) |β,~γ, µ) are meant to
be the evaluation of a map

Ψ
(X,Lα)
((g,h),(n,~m) |β,~γ,µ) : H∗(X)×n ×H∗(L)×|~m| ×H∗(M(g,h),(n,~m)) −→ Q ,

where |~m| = m1+ · · · +mh, that satisfies a set of properties39, e.g. the list in [Ko-M]. The same
holds with X replaced by the singular Y . Define also

Ψ
(X,Lα)
((g,h),(n,~m) | [β],~γ,µ) :=

∑

β′′∈[β]
Ψ

(X,Lα)
((g,h),(n,~m) | β′′,~γ,µ) .

39Besides the interest in its own right, open Gromov-Witten theory gives a mathematical formulation for the
problem of open string world-sheet instantons and their enumeration in superstring theory; it is closely related also
to conformal field theory with boundary and D-branes. Some of the properties Ψ•

•( · · · ) has to satisfy come from
these subjects in superstring theory. The following incomplete/intentionally-limited additional stringy literatures
only mean to give unfamiliar readers a glimpse of these diverse yet linked topics: [B-C-O-V: Sec’s 4, 5.5, 8.2],
[H-I-V], [K-K-L-MG], and reviews [Dou], [Ga], [S-F-W], and [T-Z].
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Similarly, given an admissible weighted graph Γ with n legs, m fingers, and l roots, the relative
Gromov-Witten invariants of the relative pair (Z,Lα;D) associated to Γ are meant to be the
evaluation of a map

Ψ
(Z,Lα;D)
Γ : H∗(Z)×n ×H∗(L)×m ×H∗(MΓ) −→ H∗(D

l) ,

whereMΓ is the moduli space of (not necessarily connected) labelled-bordered Riemann surfaces
with marked points of combinatorial type specified by Γ. For an admissible quadruple η =
(Γ1,Γ2, Ihand , Ileg ) with (h1, h2)-many hands, (n1, n2)-many legs, l-many roots, and type |η| =
((g, h), (n, ~m) |β,~γ, µ) gluing at the paired distinguished marked points defines an orbifold map

Gη : MΓ1 ×MΓ2 → M(g,h),(n,~m). For ς ∈ H∗(M(g,h),(n,~m);Q), we assume that the Künneth
decomposition G∗

η(ς) =
∑

j∈Nη
ςη,1,j✷× ςη,2,j exists.

Axiom OGW-degeneration. Let W/B be a degeneration of X associated to a symplectic cut
ξ : X → Y = Y1 ∪D Y2 = W0 and Lα be a decorated Lagrangian submanifold of X disjoint
from the cutting locus. The submanifold in Wλ associated to L is denoted also by L. Let
κ ∈ H0

c (R
•π∗QW )⊕n, υ ∈ H∗(L)|~m|, and ς ∈ H∗(Mg,n). Then

Ψ
(Wλ,L

α)
((g,h),(n,~m) | [β],~γ,µ)(κ(λ), υ, ς) = Ψ

(Y,Lα)
((g,h),(n,~m) | β,~γ,µ)(κ(0), υ, ς) ,

where β = ξ∗([β]) and κ(λ) is the restriction of κ to Wλ.

Axiom OGW-gluing. Gromov-Witten invariants of (Y,Lα) = (Y1, L
α
1 ) ∪D (Y2, L

α
2 ) can be

expressed in terms of relative Gromov-Witten invariants of (Yi, L
α
i ;D), i = 1, 2, by the identity:

Ψ
(Y,Lα)
((g,h),(n,~m) | β,~γ,µ)(κ, υ, ς)

=
∑

η∈Ω̄((g,h),(n, ~m) | β,~γ,µ)

m(η)

|Per r(η)|

∑
j∈Nη

[
Ψ

(Y1,L
α
1 ;D)

Γ1
(j∗1κ, j

∗
1υ, ςη,1,j) • Ψ

(Y2,L
α
2 ;D)

Γ2
(j∗2κ, j

∗
2υ, ςη,2,j)

]
0
,

where • is the intersection product on H∗(Dl), and [ · ]0 is the degree-0 component of · .

Remark 7.2.1 [selection of fundamental chains adapted to α – specialization]. Concerning the
ambiguity mentioned in the beginning of this subsection on the choices of virtual fundamental
chains, below is how these two axioms are applied to this issue. For simplicity of presentation,
we assume that ξ : (X,Lα)→ (Y,Lα) = (Y1, L

α) ∪D (Y2, ∅). Suppose that
[ assumption ] the decoration α is full enough to select in a standard way a class of
virtual fundamental chains [M(Y1, L

α;D |Γ1)]
virt inM(Y1, L

α;D |Γ1) associated to
a standard Kuranishi structure K′

(Y1,Lα;D |Γ1)
for all Γ1 in an η ∈ Ω̄((g,h),(n,~m) |β,~γ,µ),

then it induces a class of virtual fundamental chains onM(g,h),(n,~m)(Wλ, L
α | [β], ~γ, µ) as follows:

· the push-forward of the fibered product of [M(Y1, L
α;D |Γ1)]

virt with [M(Y2;D |Γ2)]
virt

over Dl weighted by m(η)/|Per r(η)| gives rise to a class of virtual fundamental subchains
[M(Y,Lα | η)]virt inM(g,h),(n,~m)(Y,L

α |β,~γ, µ);

· their summation over η ∈ Ω̄((g,h),(n,~m) | β,~m,µ) gives a class of virtual fundamental chains

[M(g,h),(n,~m)(Y,L
α |β,~γ, µ)]virt inM(g,h),(n,~m)(Y,L

α |β,~γ, µ);

· deform the chains [M(g,h),(n,~m)(Y,L
α |β,~γ, µ)]virt to over λ 6= 0 by a 2-dimension-higher

chain c inM(g,h),(n,~m)(W/B,Lα | [β], ~γ, µ) such that both c and its restriction to

∂M(g,h),(n,~m)(W/B,Lα | [β], ~γ, µ)/B are flat over B; this then defines a class of virtual

fundamental chains [M(g,h),(n,~m)(W/B,Lα | [β], ~γ, µ)]virt inM(g,h),(n,~m)(Wλ, L
α | [β], ~γ, µ).
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In this prescription, ∂M(g,h),(n,~m)(W/B,Lα | [β], ~γ, µ)/B consists of stable maps to the fibers

of (Ŵ , L̂)/B̂ of the given type such that the domain Σ has either boundary nodes or free
marked points landing on ∂Σ. The requirement of the flatness of the deformation of chains
also on the restriction to ∂M(g,h),(n,~m)(W/B,Lα | [β], ~γ, µ)/B suppresses the birth-’n-death of
chains from the codimension-1 boundary Kuranishi structure of the Kuranishi structure on
M(g,h),(n,~m)(X,L

α | [β], ~γ, µ)/B. Here, we identify X as some fiber Wλ0 of W/B with λ0 6= 0.
This process is similar to the specialization technique in algebraic geometry.

Definition 7.2.2 [L-isolatable]. We call (X,Lα) L-isolatable if there exists a symplectic cut

X −→ (Y0 ; ∐iDi) ∪∪i Di ∐i(Zi, Li;Di) ,

where Li’s are the finitely many connected components of L, such that Zi is the symplectic
manifold determined by Li with the property that Zi−Di is symplecto-isomorphic to a tubular
neighborhood of the 0-section of T ∗Li. Here, T ∗L is equipped with the canonical symplectic
structure.

Under Axiom OGW-degeneration and Axiom OGW-gluing, the problem of the construction
of open Gromov-Witten invariants of L-isolatable (X,Lα) is reduced to

Step (2) : the construction of relative open Gromov-Witten invariants of (Z,Lα;D)
determined by Lα.

Such class of (X,Lα)’s includes those that have occurred in the open/closed string duality.

Appendix. The equivalence of Li-Ruan/Li’s degeneration formula and

Ionel-Parker’s degeneration formula.

The details of [L-R] and [Li1], [Li2], together with Comparison 3.2.4 in Sec. 3.2, imply that the
degeneration formula of the (closed) Gromov-Witten invariants derived by A.-M. Li and Y. Ruan
in [L-R] and J. Li in [Li1], [Li2] are the same. The Degeneration Axiom and the Gluing Axiom
of open Gromov-Witten invariants we propose in Sec. 7.2 are of the Li-Ruan/Li form. This
form are formally different40 from that derived by E.-N. Ionel and T.H. Parker in [I-P1], [I-P2].
Indeed, we can also adopt the discussion of [I-P2: Sec. 12] to give degeneration-gluing axioms
of open Gromov-Witten invariants in the Ionel-Parker form, though algebro-geometrically (cf.
[Fu: Chap. 10]) it is the Li-Ruan/Li form that we would choose, as it comes from a flat family
construction. This leads to the following question:

Q. Do Li-Ruan/Li and Ionel-Parker give different/independent sets of gluing/degeneration
axioms for open Gromov-Witten invariants for a symplectic cut?

In this appendix, as a not-completely-irrelevant issue to our project, we explain the following
conjecture, whose justification will answer the above question negatively41:

40See [L-R: p. 159], [I-P1: p. 48], and [Li1: Sec. 0] for a light comparison by these authors themselves.
41Indeed, from the algebro-geometric point of view, any degeneration/gluing formula for intersection-theoretic

type invariants that are constant under flat deformations must be re-derivable from a flat family construction
and any gluing/degeneration formula of Gromov-Witten invariants different from the one derived by a flat family
construction (i.e. the Li-Ruan/Li formula in the case of symplectic cut) must be convertible to the latter unless
they are indeed dealing with different invariants or different kinds of degenerations.
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Conjecture A.1 [Li-Ruan/Li = Ionel-Parker]. Li-Ruan/Li’s degeneration formula and
Ionel-Parker’s degeneration formula for closed Gromov-Witten invariants are equivalent/convert-
ible to each other. Furthermore, the conversion is induced by

Li-Ruan /Li formula

un-rigidifying Y[k]’s
———————−→←−———————

rigidifying Y[k]’s

Ionel-Parker formula .

Explanation. Though, in format,

· [L-R] uses symplectic stretching similar to that in Floer homology theory and the notion
of virtual neighborhoods construction in [Ru],

· [I-P2] uses the moduli space of (J, ν)-holomorphic maps from the beginning and are thus
dealing with a different moduli space from both [I-R] and [Li2],

· [Li2] uses the construction of virtual fundamental class from a perfect obstruction theory
associated to the moduli problem of maps to fibers of a degeneration and is in the pure
algebro-geometric setting in terms of Artin stacks and Deligne-Mumford stacks,

these differences should be only superficial as long as the explicit form of the degeneration/gluing
formula is concerned. The latter depends more on how objects in the moduli problem degenerate,
i.e. on how maps in question break and how the target degenerates accordingly to keep the
maps remain what we want. For this, what happens in the three are the same, subject to the
superficial difference of symplectic stretching in [L-R] versus the expansion of targets by a ruled
manifold/variety in [I-P] and [Li2].

The true cause of the difference of the formula of [L-R] and [Li2] versus [I-P2] is at [I-P2:
Sec. 12]. There, maps about to degenerate are pre-grouped by how many expansions it is going
to take to remove degeneracy of maps in the limit. This gives rise to a covering of the moduli
space of maps in question ([I-P2: Lemma 12.2]) and it is shown that the inclusion-exclusion
principle way of counting does no harm (Identity (12.4) in [I-P2: Lemma 12.2]). It is this
inclusion-exclusion identity of moduli spaces that leads to the form of the degeneration/gluing
formula of [I-P2]. Thus, to relate [I-P2] to [L-R] and [Li2], we should ask:

Q. Is there an inclusion-exclusion identity in the setting of [L-R] and [Li2] as well?

To investigate this, recall the layer-structure stratification {M(i)
(g,h),(n,~m)(Y,L |β,~γ, µ)}i∈Z≥0

ofM(g,h),(n,~m)(Y,L |β,~γ, µ) from Sec. 7.1. Stable maps in the depth-i stratumM(i)
(g,h),(n,~m)(Y,L |

β,~γ, µ) is characterized by that their targets are all Y[i]. The virtual codimension ofM(i)
(g,h),(n,~m)(

Y,L |β,~γ, µ) is 2i. This is precisely dimGm[i]. Indeed the occurrence of this virtual codi-
mension comes exactly from the rigidification of the Gm[i]-action on W [i]/B[i] when we con-
struct a standard Kuranishi neighborhood of an f ∈ M(g,h),(n,~m)(Y,L |β,~γ, µ) that lies in

M(i)
(g,h),(n,~m)(Y,L |β,~γ, µ). The situation is indeed analogous to what happens in [MD-S1: Re-

mark A.5.3].

In particular, if we take the depth-i descendant Kuranishi structureK(i)
0 onM(i)

(g,h),(n,~m)(Y,L |
β,~γ, µ) from the Kuranishi structure K0 on M(g,h),(n,~m)(Y,L |β,~γ, µ) and consider the corre-

sponding Kuranishi structure K̃(i)
0 before rigidification, i.e. Kuranishi structure for maps to the

rigid Y[i], then we expect to have an open pseudo-embedding

ι̃(i) : K̃(i)
0 −→ K0 ,
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defined around s−1(0) on each Kuranishi neighborhood from K̃(i)
0 . (Recall a Kuranishi neighbor-

hood data (V,ΓV , EV ; s, ψ).) We expect also that a resemble to [I-P2: Identity (12.4) in Lemma
12.1]

K0 = ι̃(1)(K(1)
0 ) − ι̃(2)(K(2)

0 ) + ι̃(3)(K(3)
0 ) − · · ·

holds around s−1(0) on each Kuranishi neighborhood from K0. This should then reproduce the
degeneration/gluing formula in the form of [I-P2].

Since all the difference in [L-R], [Li2] versus [I-P2] that are related to the expression of the
degeneration/gluing formula is whether or not and when and where to apply rigidification of
targets of maps, we thus make the conjecture.

✷
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[I-P1] E.-N. Ionel and T.H. Parker, Relative Gromov-Witten invariants, Ann. Math. 157 (2003), pp. 45 - 96.

[I-P2] ——–, The symplectic sum formula for Gromov-Witten invariants, math.SG/0010217.

[I-S1] S. Ivashkovich and V. Shevchishin, Gromov compactness theorem for J-complex curves with boundary,
Internat. Math. Res. Notices, (2000), no. 22, pp. 1167 - 1206.

[I-S2] ——–, Holomorphic structure on the space of Riemann surfaces with marked boundary, Proc. Steklov
Inst. Math. 235 (2001), pp. 91 - 102.

[Kn] F.F. Knudsen, The projectivity of the moduli space of stable curves II: The stacks Mg,n, Math. Scand.

52 (1983), pp. 161 - 199.

[Ko] M. Kontsevich, Enumeration of rational curves via torus action, in The moduli space of curves,
pp. 335 - 368, R. Dijkgraaf, C. Faber, G. van der Geer eds., Prog. Math. 129, Birkhäuser, 1995.
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