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ON COHOMOLOGY THEORY OF (DI)GRAPHS

AN HUANG, SHING-TUNG YAU

Abstract. To a digraph with a choice of certain integral basis, we construct a CW
complex, whose integral singular cohomology is canonically isomorphic to the path coho-
mology of the digraph as introduced in [9]. The homotopy type of the CW complex turns
out to be independent of the choice of basis. After a very brief discussion of functoriality,
this construction immediately implies some of the expected but perhaps combinatorially
subtle properties of the digraph cohomology and homotopy proved very recently [10].
Furthermore, one gets a very simple expected formula for the cup product of forms on
the digraph. On the other hand, we present an approach of using sheaf theory to re-
formulate (di)graph cohomologies. The investigation of the path cohomology from this
framework, leads to a subtle version of Poincare lemma for digraphs, which follows from
the construction of the CW complex.
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1. Introduction

In the past few years, there are rapidly increasing interests of developing geometric con-

cepts in the context of graphs, besides spectral graph theory. See e.g. [6] for a short exposi-

tion. In particular, there exist several attempts to define the homology and cohomology of

(di)graphs, e.g. via cliques [2], or via path algebra [9][3].

Our first purpose of this paper is to try to better understand the path cohomology of

digraphs [9]. This is an interesting theory which is expected to play the role of singular

cohomology or in some nice cases De Rham cohomology for digraphs. [9] discusses some

of its nice but perhaps subtle properties, and furthermore even nicer and expected basic

properties regarding homotopy are proved in [10], by applying ideas of traditional algebraic
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2 AN HUANG, SHING-TUNG YAU

topology to digraphs. In this paper, we construct a CW complex from a digraph with a given

choice of certain integral basis, whose integral singular cohomology is canonically isomorphic

to the path cohomology of digraphs. We will see that this construction gives rise to a functor

from the category of digraphs, to a skeleton of the homotopy category of CW complexes,

preserving products. Some immediate consequences of the existence of this functor include

that the path cohomology of digraphs is homotopy invariant, that the Kunneth formula

holds, and that there exists a functorial cup product on the path cohomology that can be

lifted to the level of forms, as [10][9] proved. Furthermore, one can then define arbitrary

higher homotopy groups for a digraph, to be that of the CW complex, where it is also

considered in [10] but in a possibly slightly different way. In addition, we get a very simple

formula for the cup product of forms on the digraph, which is actually implicitly contained in

[10], but here we understand the formula in a more geometric way. We hope these results are

the beginning of a systematic investigation of this construction, which we hope to provide a

useful bridge between digraph theory and topology. This construction may be thought of as

a generalization of associating a simplicial complex to a graph, but is much more subtle, and

has better categorial behavior. Intuitively, it may be viewed as, in some sense, a reversed

construction to a particular generalized concept of triangulation of a manifold, which we

hope to investigate in future works.

As the combinatorial Laplacian is a central object in (di)graph theory, one clear mo-

tivation for developing (di)graph cohomology theories is, in particular, to get interesting

(di)graph analogues of Laplacian acting on differential forms, as a foundation for later de-

velopments. Some known cohomology theories of (di)graphs are similar to the conventional

cohomologies for topological spaces, but at the same time also seem to exhibit some differ-

ent and perhaps puzzling features at first glance. The CW complex can help to understand

this issue better, however we also hope to understand it from different points of view. Also

one should ask how these different cohomology theories may be related or treatly in a uni-

form way. Our second purpose of this paper, starts from section 4, is to use sheaf theory

to study (di)graph cohomology theories, with the hope to treat different theories within a

single framework. It turns out that there is a Poincare lemma for the path cohomology of

digraphs, which follows from the construction of the CW complex mentioned in the previous

paragraph. Our approach here is partly inspired by some recent study of topologies on a

graph [7], and our motivation partly lies on the hope that the sheaf theory idea might even-

tually lead to a much-hoped cohomological proof of the Riemann-Roch theorem for graphs

[1].
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2. From digraph to CW complex

In this section, we follow notations in [9], with some modifications that we will mention.

Let G be a finite digraph. By a primitive allowed k-path, we mean an ordered sequence of

vertexes ioi1...ik, such that isis+1 is a directed edge in G, for s = 0, 1, ..., k− 1. We say this

primitive allowed path is regular, iff all these vertexes are different from each other. Note

that this regularity condition is more restrictive than the one used in [9]. There are several

reasons we prefer this regularity condition: e.g. with this new condition, the homology

groups are now obviously bounded above, and Lefschetz fixed point theorem holds, 1 both

of which are not true with the old regularity condition. On the other hand, we will make a

try to relax our regularity condition at the end of this section, to extend the applicability

of our construction. We Let Ak(G) denote the space of regular allowed k-paths, which by

definition, is the free Z-module generated by all regular primitive k-paths, and let Ωk(G)

denote the submodule of ∂-invariant regular allowed k-paths defined recursively, as in [9]:

recall this means the subspace of Ak(G) consisting of elements whose boundary is an element

of Ak−1(G). We also use Ω(G) to denote the direct sum of Ωk(G) for all k. When no

confusions arise, we omit G and write Ak and Ωk. We call k the length of the path. Note

that Ak(G) = 0 when k ≥ |G|.

For any P =
∑m

k=1 ckpk ∈ Ωk(G), where pk, k = 1, 2, ...,m are primitive regular allowed

paths, we define w(P ) =
∑m

k=1 |ck| to be the width of the path P . For each pk, we define

its support to be the subgraph it defines, namely, the minimal subgraph of G, such that

pk is an allowed path in the subgraph. We define the support of P to be the union of the

support of each pk where ck is nonzero, and denote by Supp(P ). We say P is minimal, iff

there do not exist integers dk, k = 1, 2, ...,m, such that |ck − dk| ≤ |ck| and |dk| ≤ |ck| for

each k = 1, 2, ...,m, and P ′ =
∑m

k=1 dkpk ∈ Ωk, and w(P ′) < w(P ). In this definition, if

such a P ′ exists, we say that P ′ is strictly smaller than P . Note that Supp(P ′) ⊂ Supp(P ),

and we have also P − P ′ ∈ Ωk is strictly smaller than P . Therefore, it is clear that, any

element in Ωk(G) is a linear combination of minimal elements.

Lemma 2.1. Any minimal path is a linear combination of primitive paths with the same

starting and ending vertexes.

Proof. Given any two primitive paths with different starting vertexes, that both show up in

a ∂-invariant path, if some of their boundary components cancel possibly through a string

of other primitive paths, at certain step one has to change the starting vertex, therefore the

cancellation is not useful in eliminating non ∂-invariant paths, in the sense that there exists

a strictly smaller ∂-invariant path consisting of primitive paths all starting with the same

vertex. The same argument applies to the ending vertex. �

1We will explain this briefly in section 5.
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Now we are going to construct cells from minimal paths, and a CW complex given a

choice of integral basis of Ω(G) consisting of minimal paths, whose existence is a corollary of

lemma 2.3 below, which we will prove together with lemma 2.2 simultaneously by induction.

Lemma 2.2. Any minimal path P , is a linear combination of primitive paths, with coeffi-

cients being either 1 or −1.

Lemma 2.3. Any minimal integral relation among minimal paths of a fixed length, is of

the form
∑m

i=1 λiPi = 0, where all the coefficients λi are either 1 or -1. Here the definition

of minimal integral relations are the same as that in the definition of minimal paths– in an

obvious sense that it can not be written as a sum of two strictly smaller relations.

Note that lemma 2.3 implies that any rational basis of Ω(G) consisting of minimal paths

is an integral basis, thus it implies the following.

Corollary 2.4. There exists an integral basis of Ω(G) consisting of minimal paths.

For path length k = 1, both lemmas are obviously true, and furthermore one associates

a k-cell to any minimal path of length k, by filling in a (k− 1)-sphere, corresponding to the

union of cells associated with boundary components of the path: meaning that the boundary

of the path decomposes uniquely as a sum of smaller minimal paths of length k − 1, each

of which we have associated a cell, and the cell association commutes with the boundary

operation. Now suppose all of these statements are true for path length up to k − 1, and

take P to be a minimal path of length k. As ∂P is a path, it can be decomposed into a sum

of minimal paths of length k − 1, where all the paths are smaller than or equal to ∂P , for

which there are associated k − 1 cells. The union of these cells, counting multiplicity, is a

sum of closed manifolds, as ∂∂P = 0. Note: the reader can convince himself/herself that,

each minimal path of length k − 2 that shows up as a boundary component of a boundary

component of P appears even times as expected, and in particular there are no singularities

on these manifolds. We construct a height function on it as follows: By lemma 2.1, the

starting and ending vertexes of any minimal path are unique. First of all, there is a height

function on edges, given by piecewise-linearly extending the integer valued length function

defined on vertexes, given by the position it sits in a primitive path component– note that

this position number is the same for any primitive path one chooses, as a consequence of the

obvious fact that any primitive path of maximal length in the support of a minimal path,

must be a component of the minimal path. We proceed by extending the height function

to disks and so on, as we can always extend the height function from a sphere to the ball it

bounds. Take any of these closed manifold and call it M , we can make a small perturbation

to make the height function become a Morse function on M . We single out a subset E1

of the set of vertexes in the support of P , consisting of vertexes such that any path in the
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support of P connecting the vertex to the ending vertex E is of length 1. We define another

subset S1 in the symmetric way, with respect to the starting vertex. It is clear that the

only possible critical points of this height function are the starting and ending vertexes, and

vertexes in E1 and S1, as aside from them, there is always a direction in which the function

is strictly monotonic. Now suppose a vertex W in E1 is a critical point, then E can not

lie on M . Take any primitive path component p of P , whose support after truncating E is

in M , that goes through W , 2and let us write it as p = SqWE. Then qW as a boundary

component of SqW , has to be cancelled by a boundary component of a primitive path in a

minimal path associated with M , which all are consisting of primitive paths of length k− 1

that does not go through E. So the only such possible primitive path that has a boundary

component cancelling it is itself with a different orientation, which is a contradiction. For

the same reason, vertexes in S1 can not actually be critical points. Therefore, the only

possible critical points are S and E, which implies that M is a (k− 1)-sphere, and S, E are

in its support. Now take all length k primitive paths in the support of M , defined by the

union of the support of k−1 minimal paths associated with M , with orientation determined

by orientations of boundary components, we get a ∂-invariant k-path that is smaller than or

equal to P : recall that any maximal length primitive path in the support of P is a primitive

component of P . Also note that for any primitive path of length k, all of its boundary

components must have support in a single sphere, as otherwise there have to exist boundary

components that does not belong to any of the spheres, which is impossible. On the other

hand, any primitive (k − 1)-path associated with M must be a boundary component of a

primitive k-path with support in M , as a consequence of the fact that any longest primitive

path in the support of M must have length k. So the path we just constructed has to be

equal to P as P is minimal, and therefore ∂P corresponds to a single (k − 1)-sphere. This

implies lemma 2.2 for P , and that the decomposition of ∂P in to a sum of minimal elements

is unique. On the other hand, we can fill in the sphere to get a k-cell for P . This cell

association clearly commutes with the operation of taking boundary, by construction.

Let us choose an integral basis for each Ωj(G) consisting of minimal paths, for j up to

k−1, where lemma 2.3 is true by inductive hypothesis. We now construct a (k−1)-skeleton

together with some k-cells that we will later use in the induction, from G with our choice

of basis of Ω(G) up to length k − 1. For this purpose, we need to possibly exclude cells

associated with minimal paths that are not elements of the basis chosen, and some cells may

need to be modified accordingly.

Again, for any vertex, one associates a zero-cell. For any edge, one associates a one-cell

with boundary given by the boundary of the edge.

2Such a primitive path has to exist in the situation.
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Suppose again for all minimal paths in our basis of length up to i − 1, (i ≤ k) one has

associated cells of the corresponding dimension, by filling in a sphere that is associated with

the boundary of the path, so one has a CW complex with cell dimensions up to i− 1. Now

pick any designated minimal path P of length i, it must have a single starting vertex S

and a single ending vertex E by lemma 2.1. Again minimality of P and lemma 2.2 implies

that the boundary of P can be decomposed uniquely into an integral linear combination of

minimal paths, with all coefficients being 1 or -1. For any minimal path P ′ of length i − 1

that shows up in the linear combination, if it is in our chosen basis, we have already assigned

a (i − 1)-cell to it. Otherwise, it is a unique integral linear combination of basis elements,

with coefficients being 1 or -1 by lemma 2.3.

If we union the cells in the previous paragraph associated with basis elements in the

linear combination, one gets a manifold with boundary being a (i − 2)-sphere specified by

the union of all (i − 2)-dimensional cells associated with ∂P ′. 3For any such manifold, we

can again construct a Morse height function by gluing together individual such functions on

cells associated with each minimal element– note that the height function is constructed in

a way that enables one to glue. Then the same argument shows that it is a (i − 1)-disk:

e.g, one can attach another (i − 1)-cell with the (i − 2)-sphere, to get a manifold without

boundary, and then uses the same Morse theory argument.

Therefore, for each minimal path that shows up in the above decomposition of the bound-

ary of P , there corresponds a piece of the already existing CW complex homeomorphic to

a (i− 1)-disk, with boundary as we described. So again the boundary of these disks cancel,

and therefore the union of all of them is again a manifold of dimension i− 1. Note: one has

to show further that each (i− 1)-cell associated with basis elements that shows up has mul-

tiplicity 1 (or -1), when taking all the P ′ into account. This can be done by first restricting

our attention to all the P ′ that share the same starting and ending vertexes. Each of these

P ′ corresponds to a previously constructed (i−1)-cell. One sees that the union of these cells

is homeomorphic to a (i− 1)-disk, as a consequence of the fact that all these (i− 1)-cells of

different starting and ending vertexes union to form a manifold without singularity. Then,

if any of the (i − 1)-cell aformentioned has greater multiplicity, by an argument similar to

that in the inductive proof of lemma 2.3 below, a sphere must be present, resluting from

gluing together cells associated with certain basis elements that show up, so one creats a

nontrivial linear relation among basis elements, which is impossible. Now the same Morse

height function argument shows that this manifold is homeomorphic to a (i−1)-sphere, and

therefore one can fill it in with a i-cell.

The previous induction goes up to i = k. To continue, we have yet to finish our inductive

proof of lemma 2.3 for length k. Suppose we have a minimal integral relation among minimal

3Note that a choice of basis is important for this to be true.



ON COHOMOLOGY THEORY OF (DI)GRAPHS 7

paths of length k, then obviously we have unique starting and ending vertexes for all primitive

paths involved in this relation. So any such integral relation gives rise to a geometric fact

that, the union of all these cells that we have just constructed corresponding to the minimal

paths that show up in the relation, counting multiplicity, is a sum of manifolds without

boundary,4 For any such manifold, we can again construct a Morse height function by gluing

together individual such functions on cells associated with each minimal element, then the

same argument shows that it is a sphere, and therefore corresponds to a minimal relation as

one easily convinces oneself. So any minimal relation corresponds to a single sphere. Lemma

2.3 is thus evident for k-paths. Our induction is thus complete.

Therefore we can choose a basis for Ωk(G) consisting of minimal paths, and this inductive

procedure continues until one associates a cell to each basis element one has chosen, and

therefore ends up with a k-skeleton. Now one can simply take k to be the upper bound

where Ωk(G) is nonzero, and one ends up with a CW complex, associated with a choice of

integral basis of Ω(G) consisting of minimal paths. It is evident from the construction that,

the cell association still commutes with the boundary operator, and the integral singular

cohomology of the CW complex is canonically isomorphic to the digraph path cohomology.

Our next step is to construct a homotopy between any such CW complexes. For this

purpose, it suffices to show it for each k step by step, where k is the length of path, and the

change of basis can be done step by step, where for each step, only basis regarding length k

change.

Next, we let a1, ..., as be any other integral basis of Ωk(G) consisting of minimal elements.

Then the change of basis from b1, ..., bs to a1, ..., as can be done in a sequence of s steps,

where each step can be expressed as the form c1, c2, ..., cs → d1, c2, ..., cs, corresponds to a

change of a single basis element from c1 to d1 corresponding to a minimal integral relation

expressing d1 as an integral linear combination involving c1 of the basis elements c1, c2, ..., cs.

By lemma 2.3 and its proof, we see there is the following continuous map of topological spaces

that we can define:

c1 corresponds to a cell. Write it as the unique integral linear combination of d1, c2, ..., cs.

we ”collapse” this c1 cell onto the union of cells corresponding to this integral linear combi-

nation, which can be viewed as a refinement of the c1 cell prescribed by this linear relation.

This procedure does not affect cells of strictly lower dimensions, and it is clear that this ”col-

lapsing” can be extended to a continuous map of the two CW complexes corresponding to

these two different basis: i.e. one extends this map in an obvious way to higher dimensional

cells. There is of course a continuous map in the reversed direction by collapsing from the

4Again, a choice of basis that we have already done up to length k − 1 is important for this to be true
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second basis to the first basis. One checks directly that the composition of these two maps

is homotopic to the identity map, basically by ”slowly pulling the string back”.5 Therefore,

any such collapsing is a homotopy.

Therefore for each digraph G, one assigns a CW complex unique up to homotopy. We

next show that this assignment is functorial: meaning that it defines a functor from the

category of digraphs, where morphisms are defined in a particularly strict sense that we will

explain below, to a skeleton of the homotopy category of CW complexes: For this homotopy

category, we mean that the objects are CW complexes, while the morphisms are homotopy

classes of continuous maps of topological spaces. On the other hand, a skeleton may not

sound attractive, however, it can help to express things fast in a more formal way that

is useful to deduce some expected properties of digraph cohomology quickly. We will not

go any deep into these abstract nonsense in this paper, nor will we make serious effort to

find the best way to abstractly formulate this association of CW complexes to a digraph

with a choice of basis, as that may better be done later if it becomes necessary. Given any

map from G to another digraph G1, which means that vertex maps to vertex, and directed

edge maps to directed edge, that preserves the incidence relations among directed edges and

vertexes. For our first discussion below, we do not allow different vertexes to map to the

same vertex, and we only establish the functoriality below in this narrow sense. We will

see the discussion can probably be extended in a larger cartegory, where functorially in a

broader sense holds. It is clear that any minimal path is mapped to a linear combination

of allowed ∂-invariant paths of the same length, which is a sum of minimal paths. Pick any

integral basis of Ω(G) and Ω(G1) consisting of minimal paths, we construct a continuous

map from TG to TG1
inductively: first, vertexes and directed edges are mapped to their

images. Now suppose cells corresponding to minimal paths of length strictly less than k

are mapped, then for any minimal path P of length k in the chosen basis, the image can

be decomposed as a sum of minimal paths of G1 again with coefficients being 1 or -1,

which themselves then correspond to unions of k-cells in TG1
homeomorphic to k-disks with

boundary corresponding to the boundary of the minimal paths, and furthermore any basis

element that appears is with multiplicity 1 or -1. Thus one can homeomorphically map the

k-cell associated to P , to the union of these k-cells, in terms of a refinement (subdivision) of

the cell, which gives the desired map inductively. Note that this procedure does not affect

maps of cells of strictly lower dimensions that are already defined. It is then routine to check

the functorial properties, as refinements compose in a desired way.

When directed edges are allowed to collapse, and in particular different vertexes are

allowed to map to the same vertex, a digraph may be mapped to a multidigraph, which

means multi-edges with arbitrary orientations and self-loops are allowed.6 In the larger

5The reader can convince himself/herself easily through a 1-dimensional example.
6It can also happen that a digraph still maps to a digraph, but our previous discussion may encounter

problems of degeneration.
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category of multidigraphs, a morphism is defined to be a map that takes vertex to vertex,

and directed edge to directed edge, that preserves the incidence relations among directed

edges and vertexes. No more restrictions will be put. To extend our discussion to this larger

category, we need to relax our definition of a path and the regularity condition, in a precise

way that we allow paths that result from various kinds of degenerations. We exhibit in the

following a candidate choice of such definitions.

Definition 2.1. A virtual primitive path is an ordered string of vertexes V0V1...Vs, to-

gether with the following data: for any pair of consequtive vertexes Vk, Vk+1 in the string

(k=0,1,...,s-1), either one specifies a directed edge connecting them, or VkVk+1 is not a

directed edge, and furthermore, for any consequtive pairs of vertexes in any string of ver-

texes that appear as a (formal) component of ∂(P ), or boundary components of boundary

components and so on, one either specifies a directed edge connecting them, or there is no

directed edge between them. These specifications have to be done in a way compatible with

all incidence relations among paths.

Definition 2.2. A primitive path is a virtual primitive path, such that for any pair of

consequtive vertexes Vk, Vk+1 in the string (k=0,1,...,s-1), either we specified a directed edge

connecting them, or VkVk+1 is not a directed edge, but Vk = Vk+1.

Definition 2.3. If a primitive path satisfies the additional condition that, any directed edge

appears at most once as a segment of the path, and any virtual primitive path of length one

less appears at most once in the formal components of ∂(P ) before any cancellation, then

we call it a regular primitive path.

Definition 2.4. A path is an integral linear combination of regular primitive paths, and a

∂-invariant path is a path, whose ∂ is a linear combination of primitive paths. The space of

∂-invariant paths is denoted by Ω.

Remark 2.1. This definition reflects the fact that, it is possible that, some boundary com-

ponents of a cell collapse, while the cell itself stays a cell. So we do not require all boundary

components to be regular.

From these definitions or perhaps some variants of them, we expect that the construction

of the CW complex generalizes to multidigraphs, and functoriality holds in the broad sense

stated. One needs to define the cohomology with a little more care similar to what is done

in [9], to account for the new regularity condition. We leave the details of this to a future

writing. The cells in this more general setting, should all be regared as obtained from various

contractions from the cells in the old setting. For functoriality, given two multidigraphs G,

G1, a morphism between them, and a minimal path P in G, one in general may need to

contract the cells associated with P in the way prescribed by the digraph morphism, and then

do the map described above to match the choice of integral basis of the second multidigraph.

Note that a cell may be mapped to lower dimensional cells in general.
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Remark 2.2. Note that, for the category of digraphs with morphism defined in our narrow

sense, the resulting CW complex has the property that any attaching map is an obvious

homeomorphism. However, things will be more complicated in the bigger category of mul-

tidigraphs.

Coming back to digraphs, by [9] it is evident that, given integral basis of two digraphs,

then their product is an integral basis of the product digraph, and furthermore taking

boundary of products of paths satisfies the Leibniz rule, which implies that our association

of a CW complex to a digraph preserves products.

Remark 2.3. As we have seen, one can associate a cell to any minimal path, and thus

actually construct a CW complex in a canonical way, from G without a choice of integral

basis as above, and the construction also probably have all these nice functorial properties.

However, the cohomology of this new CW complex will get additional contributions from

linear relations among minimal paths, which perhaps makes this construction less appealing.

3. Some immediate consequences

It then follows from simple abstract nonsense that, a homotopy between digraphs induces

isomorphisms of cohomology groups, and that the Kunneth formula holds for digraph co-

homology. Furthermore, one can define arbitrary higher homotopy groups of a digraph, in

terms of that of the CW complex. On the other hand, the cohomology of digraphs becomes

a functorial graded ring as that of the CW complex is such a graded ring under the cup

product. It turns out that this product can be lifted to the level of forms, which are defined

to be elements in Ωk, the dual of Ωk, and the lift still respects associativity and the Lebniz

rule, and is functorial. Most of these are first proved in [9][10]. We show below that a very

simple formula exists for this lifted product7, which may be relevant e.g. in studying some

gauge field theories on the digraph.

One sees from the construction of the CW complex that, for any minimal path in the

chosen basis P =
∑m

k=1 ckpk ∈ Ωk(G), where pk, k = 1, 2, ...,m are primitive regular allowed

paths, there exists a unique subdivision of cells, given by connecting all unconnnected edges

in every pk in the same direction of the path, so that each pk becomes a complete graph.

After this subdivision, the cell associated with P is divided into a sum of simplexes, each

associated with a pk with the newly connected edges. One can do this subdivision to all

cells associated with basis elements in a consistent way, and then the CW complex becomes

a simplicial complex, whose simplicial cohomology is canonically isomorphic to the singular

7The formula is actually implicitly contained in [10], or should be at least expected in any case, but here
we provide a more geometric understanding of it.
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cohomology of the CW complex. The cup product in this simplicial complex has the well-

known simple formula in terms of simplexes, which then translates into the corresponding

formula for the cup product in the CW complex restricted to the cells we are considering.

Unravelling the definitions, one sees that this restriction actually gives rise to the formula

for the functorial cup product of forms on digraphs. Let α ∈ Ωp(G), and β ∈ Ωq(G), and

k = p + q. Suppose pk = V0...Vp+q . We let pk|0...p and pk|p...p+q denote the allowed paths

V0...Vp and Vp...Vp+q, respectively, resulted from truncating pk in the way described. Then

we have the formula for the cup product α ∪ β on P as follows:

(3.1) α ∪ β(P ) =

m∑

k=1

ckα(pk|0...p)β(pk|p...p+q)

Note that, the above formula does not make sense in a first glance, as each individual

truncation may not be in Ω, however, the formula is understood in the sense that one needs

to first merge together all terms with the same truncation in the argument8, in the above

sum. Then it is an easy exercise to show that it indeed makes sense after the merging. One

sees also from this formula that it is independent of our choice of basis.

Here we also explain a few words regarding the homotopy invariance property: a homo-

topy of two maps of digraphs is defined in direct analogy with the corresponding concept in

topology [10], and applying our functor, any such homotopy gives rise to a homotopy be-

tween two continuous maps of the CW complexes associated with the two digraphs, therefore

inducing isomorphic maps on cohomology groups. Furthermore, since homotopy of digraphs

becomes homotopy of the CW complexes, our functor provides a tool to study homotopy

properties of digraphs, stronger than just the cohomology.

Furthermore, we expect all these to generalize to multidigraphs (quivers), as the previous

section briefly discussed.

4. Clique cohomology

From this section, we start to use sheaf theory to reformulate some know (di)graph

cohomology theories. This is a preliminary work, and only some very basic things will be

presented below. We first illustrate the ideas with the example of clique cohomology, and

here we try to follow notations in [6].

8Namely, the same α(pk|0...p) or β(pk|p...p+q).
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Let G be a finite graph.9 Let Gk denote the set of all Kk+1 subgraphs of G, and G =

∪∞
k=0Gk. By a topology T on a graph G, we actually mean a topology T on the set G.

Take any topology, one can consider the category of sheaves of abelian groups on G. Sheaf

cohomology is well-defined, as any such category has enough injectives. However, it is crucial

that one chooses a suitable topology for all applications that follow. To mimic the case of

usual continuous geometry, here we consider the unit ball topology, which is defined by a

topology subbasis as the set of all unit balls, whose definition we state below:10

For any vertex v ∈ G, we define its unit ball subgraph Bv, as the subgraph of G, generated

by v and all of its neighbors. In other words, it is the largest subgraph of G containing only

these vertexes. For each Bv, we canonically associate a subset Bv of G as follows: x ∈ G

lives in Bv if and only if x is a subgraph of Bv.

It is clear from definition, that these Bv give a subbasis of topology. Note that Bv is a

cone, therefore one has Hi(Bv) = 0, for all i > 0, here Hi is the graph cohomology functor

defined by the clique complex. For any x ∈ G, let us denote by Ux the smallest open subset

containing x, which always exists as there are finitely many such open sets. By our choice of

topology, Ux corresponds uniquely to a subgraph Ux in the same sense that Bv corresponds

to Bv: y ∈ G lives in Ux if and only if y is a subgraph of Ux. We have the following

characterization of Ux:

Lemma 4.1. Ux is the intersection of maximal complete subgraphs containing x.

Proof. Suppose a vertex v does not belong to some maximal complete subgraphK containing

x. Then there exists a vertex w in K, such that w is not connected to v by an edge. Then

Bw contains Ux, but on the other hand, v is not in Bw. So v is not in Ux, which implies

that Ux ⊂ K, so Ux is contained in the intersection of maximal complete subgraphs ∩K

containing x. Conversely, if v1 is a vertex such that Bv1 contains x, then the complete graph

K1 containing both v1 and x is a subgraph of G. Consider the maximal complete subgraph

K2 of G containing K1: we have that K2 ⊂ Bv1 by the definition of the unit ball subgraph.

So ∩K ⊂ K2 ⊂ Bv1 , which proves the inclusion in the other direction. �

As a consequence, we have

Corollary 4.2. Ux is a complete subgraph, and in particular, Hi(Ux) = 0 for any i > 0.

9More generally, the following theory also works for an infinite graph all of whose vertexes have finite
degree.

10Note there probably exist other good choices of topology for our purpose here.
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Take A to be any abelian group, next we construct a flasque resolution of the constant

sheaf A on G with values in A.

Take any U ⊂ G an open subset. Let Uk denote Gk ∩ U . Define Ck(U) to be the abelian

group of continuous functions, from Uk to A, where Uk is equipped with the subset topology

(which actually does not matter), and A the trivial topology. It is easy to check from

definition, that the assignment U → Ck(U) defines a flasque sheaf Ck on G. The differential

of the clique complex gives rise to a differential mapping Ck to Ck+1, and making it into a

complex of sheaves. Furthermore, any section of the constant sheaf A on U is a function

that is constant on every connected component of U , thus can be mapped to a section of

C0(U), by associating the vertexes in each connected component the corresponding constant

value in A. We have the following

Lemma 4.3. Ck gives a flasque resolution of the constant sheaf.

Proof. The exactness at A and C0 is obvious. At general Ck, we look at each stalk. Unrav-

eling the definition, the exactness after taking stalks reduces to corollary 4.2. �

Taking global sections, we therefore have the following

Theorem 4.4. There is a canonical isomorphism Hi(G,A) ∼= Hi(G,A).

where Hi(G,A) denotes the graph cohomology defined by cliques, taking values in A.

Next, we consider Čech cohomology. Take a finite open cover Ui, i = 1, 2, ..., s of G, one

forms the Čech complex for any sheaf F of abelian groups. As will be expected, we have

Lemma 4.5. For each i, there is a natural map Ȟi(G,F) → Hi(G,F), functorial in F .

Proof. See [5], III.4. �

Take F = A. Take a finite open cover Ui, i = 1, 2, ..., s of G such that any intersection

has trivial higher cohomology. We as usual have the following

Theorem 4.6. The natural map above gives an isomorphism Ȟi(G,A) ∼= Hi(G,A).

Proof. See proof of theorem 4.5 on page 222 of [5].

�
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Remark 4.1. Note that such an open covering always exists, and 4.1 provides a canonical

one as such, by 4.2 and 4.4, and the evident fact that the subset topology on any open set

corresponding to a subgraph, coincides with the unit ball topology of the subgraph.

Remark 4.2. Let us look at a case how the graph cohomology may be glued from smaller

pieces at least in principle. Let U be any open subset of G corresponding to a subgraph U .

Let us denote the closed subset Y = G − U . Then all statements of exercises 2.3 and 2.4 on

page 212 of [5] apply. In particular, take F = k, we get the following long exact sequence

(4.1) 0 → H0
Y(G, k) → H0(G, k) → H0(U , k) → H1

Y(G, k) → ...

Where Hi(G, k) and Hi(U , k) are naturally isomorphic to the usual graph cohomology, as we

have seen. The additional pieceHi
Y(G, k) may be analyzed by the same flasque resolution 4.3.

Furthermore, this cohomology with support in Y satisfies the excision and Mayer-Vietoris

sequence. A tricky thing is that the combinatorial translation of such statements may not

be nice or very useful in general.

5. Some comments

If one regards a graph G simply as a one-dimensional simplicial complex, and considers

its simplicial cohomology, the procedure can again be discretized in the same way: one takes

the set G′ = G0 ∪ G1, and take all the star graphs [7] as the subbases of topology, then in

the same way, one can show that the cohomology of the constant sheaf realizes this trivial

version of graph cohomology.

Let us take a look at a simple version of the Lefschetz fixed point theorem for graphs [8],
11which states that for any automorphism f of a graph G, one defines its Lefschetz number

as

(5.1) Λ(f) =

∞∑

i=0

(−1)iTr(f∗ : Hi(G, k) → Hi(G, k))

Then if Λ(f) is nonzero, f has at least one fixed simplex, where k is any ground field, and

Hi(G, k) is graph cohomology taking values in k. The proof of this can be reduced to the

familiar case of simplicial complexes, or one shows as usual that it is a consequence of linear

algebra.

From our framework, for any injective graph homomorphism φ : G1 → G2, since it maps

cliques to cliques, one has an induced continuous map of topological spaces G1 → G2, which

we still denote by φ if no confusion arises. In particular, if φ = f is an automorphism of

G, f is continuous as a map from G to itself. On the other hand, by 4.4, the definition of

11One can also consider more elaborated versions, but here we take the simplest version for the purpose
of illustration.
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Λ(f) can also be stated using Hi(G, k). Therefore, the above Lefschetz theorem for graphs is

equivalent to a Lefschetz theorem for f and the topological space G with Lefschetz number

defined by the sheaf cohomology. It looks to be an interesting question to elaborate on this

observation, from the point of view of finite set topology.

Also one notes that the same theorem holds for digraphs: with regard to lemma 2.1, a

morphism of digraphs that has no fixed vertexes has to have zero trace in Ωk, and thus its

Lefschetz number has to be zero.

6. Path cohomology

For all k, choose any integral basis of Ωk(G) consisting of minimal elements, and let us

call it Bk. Let XG denote the union of these basis as a set. For any path P ∈ XG of length

k, we denote by GP the smallest subgraph of G, such that P ∈ Ωk(GP ). For each P , we

define UP inductively to be the union of {P}, and UQ, where Q is any element in XG, that

appears as a direct summand of an element in Ωk(GP ). We define a topology T on XG by

claiming all UP to form a subbasis of topology. We have

Lemma 6.1. UP is the smallest open subset containing P , and UP1
∩UP2

= ∪x∈UP1
∩UP2

Ux.

Proof. Check by the definitions. �

Thus we have

Corollary 6.2. UP form a basis of topology.

Remark 6.1. The definition of XG and UP is carefully chosen, so as to take into account the

subtle issues involved in the definition of the path cohomology.

For any k, we define a sheaf Ck of abelian groups on the topological space XG as follows:

for any open set U , one assigns the abelian group of integer valued Z-linear functions on the

Z-module spanned by the set of length k elements in U . It is obvious that Ck is a flasque

sheaf. It is straightforward to check that the sheaves Ck form a complex of sheaves via the

natural differential. Therefore, taking global sections, the cohomology of this complex of

sheaves computes the path cohomology of digraphs. We have the following lemma

Lemma 6.3 (Poincare lemma). Ck is a flasque resolution of the constant sheaf.

And a simpler version
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Lemma 6.4 (Poincare lemma: baby version). For any P ∈ XG, we have Hi(GP ) = 0 for

all i > 0.

Proof. The combinatorics of both lemmas are subtle, and the authors only know a combi-

natorial proof of the baby version lemma. On the other hand, unravelling the definitions,

they evidently follow from the construction of the CW complex in section 2, namely it fol-

lows from the proof that in the inductive process of constructing the CW complex, or in

associating a cell to any minimal path, ∂P gives rise to a (k − 1)-sphere, for P a minimal

k-path. �

Thus we have

Theorem 6.5. The cohomology of the constant sheaf on XG is naturally isomorphic to the

path cohomology of G.

7. Computation: a first discussion

In this section, we are concerned with the computation of the CW complex and the coho-

mology, and try to get some first understanding of the complexity. We have the following:

Theorem 7.1. For digraphs with a uniform bound on the vertex degree, if one fixes k, then

the time complexity of computing a basis of Ωk consisting of minimal paths, and thus the k

skeleton of the CW complex, is quadratic.

Proof. Let D denote the uniform bound of vertex degree, and n be the number of vertexes

of the digraph. By lemma 2.1, any minimal path has unique starting and ending vertexes.

There are at most n(n− 1) choices of these ordered pairs of vertexes. For each such choice,

there are at most Dk−1 many primitive paths of length k with the given starting and ending

vertexes, and once all these primitive paths are enumerated, one is left with another finite

calculation to determine a rational basis of minimal paths with given starting and ending

vertexes. (think of lemma 2.2) These basis elements combine to give a desired basis of Ωk

consisting of minimal paths. �

Remark 7.1. The proof that the homotopy type of the CW complex is determined by the

digraph, obviously also shows that the same is true for any k skeleton.

In the following, we present a recursive scheme for computing a basis of Ωk consisting of

minimal paths.
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Take any minimal path P of length k, and with starting vertex S and ending vertex E.

As before, we single out a subset E1 of the set of vertexes in the support of P , consisting of

vertexes such that any path in the support of P connecting the vertex to E is of length 1.

It is then clear that, for any vertex W1 in E1, if one groups together all primitive paths in

P going through W1 taking signs into account, and truncates E from them, then one gets

a path P ′ of length k − 1, and furthermore P ′ is ∂-invariant: the proof of this is essentially

the same as that of lemma 2.1. So P ′ can be written uniquely as a sum of basis elements of

length k − 1 that has already been computed, again with all the coefficients being either 1

or −1, and furthermore the union of these (k − 1)-cells corresponding to the basis elements

that show up, is homeomorphic to a (k − 1)-disk. (see previous arguments in constructing

the CW complex) For P ′, one again defines a set E2 to be the subset of vertexes in the

support of P ′, such that any path connecting the vetex to W1 is of length 1. One then sees

that in order for P to be ∂-invariant, it is necessary and sufficient that, for any vertex W2

in E2 that is not connected to E by a directed edge, and any primitive path P ′′ in P ′ that

goes through W2, there exists another vertex W in E1 such that, once one expresses the

same truncation of (signed) summation of all primitive paths of P that goes through W in

terms of the unique linear combination of k− 1 basis elements chosen, there exists one basis

element in the linear combination, that contains a primitive path given by swithcing the

ending vertex of P ′′ from W1 to W , with appropriate sign, so that boundary components of

these two primitive paths given by deleting W1 and W cancel as desired. In this way, one

finds all ∂-invariant paths of length k between S and E, then one goes on to find the minimal

ones, and a rational thus integral basis, for which efficient and straightforward algorithms

exist.

Remark 7.2. It is clear that, the above recursive scheme will be more efficient than a basic

brute force algorithm following from the proof of theorem 7.1. It is a problem to carefully

study the complexity of such an algorithm in more general situations.
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