
Adiabatic Isometric Mapping Algorithm for
Embedding 2-Surfaces in Euclidean 3-Space

Shannon Ray1, Warner A Miller1,2, Paul M Alsing3, and
Shing-Tung Yau2

1Department of Physics, Florida Atlantic University, Boca Raton FL 33431, USA
2Department of Mathematics, Harvard University, Cambridge MA 02138, USA

3Information Directorate, Air Force Research Laboratory, Rome, NY 13441, USA

October 30, 2017

Abstract

Alexandrov proved that any simplicial complex homeomorphic to
a sphere with strictly non-negative Gaussian curvature at each vertex
can be isometrically embedded uniquely in R3 as a convex polyhe-
dron. Due to the nonconstructive nature of his proof, there have yet
to be any algorithms, that we know of, that realizes the Alexandrov
embedding in polynomial time. Following his proof, we developed the
adiabatic isometric mapping (AIM) algorithm. AIM uses a guided adi-
abatic pull-back procedure on a given polyhedral metric to produce
an embedding that approximates the unique Alexandrov polyhedron.
Tests of AIM applied to two different polyhedral metrics suggests that
its run time is sub cubic with respect to the number of vertices. Al-
though Alexandrov’s theorem specifically addresses the embedding of
convex polyhedral metrics, we tested AIM on a broader class of poly-
hedral metrics that included regions of negative Gaussian curvature.
One test was on a surface just outside the ergosphere of a Kerr black
hole.

1

ar
X

iv
:1

50
3.

07
55

6v
2

 [
gr

-q
c]

 2
6

O
ct

 2
01

7

1 Introduction

The problem of embedding surfaces homeomorphic to S2 with a metric of
positive Gaussian curvature into R3 was posed by Herman Weyl in 1916 [1].
A useful review and analysis of the isometric embedding of Riemannian man-
ifolds in Euclidean spaces can be found in [2]. The first attempt to prove the
existence of an embedding was given by Weyl himself. He was not able to
complete his proof, but he did make progress in outlining a solution. Follow-
ing Weyl’s approach, a proof was given by H. Lewy in 1938 though his solu-
tion required the components of the metric to be infinitely differentiable [3].
Requirements on differentiability of the metric were reduced to continuous
fourth derivatives by L. Nirenberg in 1953 [4]. They were further reduced
to continuous third derivatives by E. Heinz in 1962 [5]. In 1941, Alexandrov
gave an approach that relied on proving the existence of a convex polyhe-
dron given any convex polyhedral metric. He showed that in the limit as the
number of vertices in the polyhedral metric goes to infinity, one recovers the
metric in the continuum. This result can be found in a compendium of his
work published in 2006 [6].

Our interest in isometric embeddings stems from its application in general
relativity. Solutions to Einstein’s equations give a four dimensional spacetime
manifold. One can slice these manifolds in such a way to get interesting
two surfaces such as the event horizon or ergosphere. To visualize these
surfaces it may be best to embed them in three dimensional flat Euclidean
space. Another application of isometric embeddings include computing quasi-
local energy (QLE) in general relativity. Many definitions of quasi-local
energy, such as the Brown-York and Wang-Yau energies, require isometric
embeddings of convex S2 surfaces in R3 [7, 8]. A detailed review of the
development of QLE is given in [9].

Though the mathematics of global isometric embeddings of convex two-
surfaces homeomorphic to S2 was studied exhaustively for over 60 years,
its numerical implementation has proven formidable and has only been ap-
proached practically since the mid-1990’s. In 2006, Bondarescu et. al in-
troduced a numerical method using the components of the metric in the
continuum [10]. They expanded the embedding functions using spherical
harmonics and minimized the coefficients by optimizing the squared differ-
ence in metric components. Bondarescu et. al found that their search would
get stuck in local minimum while minimizing in the space of coefficients.
To reduce their residuals, they increased the number of coefficients for each

2

embedding function.
In 2011, M. Jasiulek and M. Korzyński introduced an algorithm that

closely followed the continuity method prescribed by Weyl [11]. First they
uniformized their surface using Ricci flow, which gave them conformal rela-
tions between their original metric, the round sphere metric and all inter-
mediate metrics. They then embedded the spherical metric into R3. This
allowed them to use the embedded sphere as a starting point for solving the
linearized embedding equations which gave them the deformation in coordi-
nates such that they move from the sphere to a sufficiently close conformally
related surface. Because they were working in the continuum, they dealt
with typical difficulties such as finding suitable coordinate charts, solving
non-linear elliptical PDE’s and computing integrals and derivatives of func-
tions on the surface. They were also restricted to only embedding surfaces
with strictly positive curvature due to the inversion of the extrinsic curvature
tensor in their procedure.

Working in the continuum has the added complication of requiring prior
knowledge about the sign of the Gaussian curvature of the surface. Whether
or not the embedding equations are elliptical or hyperbolic depends on the
sign of the curvature. Additionally one may need to provide numerical tech-
niques to deal with coordinate singularities. Difficulties in the continuum are
reasons that one might want to work in the discrete. In 1995, H-P. Nollert
and H. Herold developed the wire-frame method which was the first attempt
at finding a discrete numerical solution to the embedding problem [12]. Their
method used position vectors ~r(ξi(t)) where ξi are the internal parameters
of the surface. Given ~r(ξi(t)), they made a Taylor series expansion around
points on the surface allowing them to write distances in Euclidean space
in terms of components of the internal metric. Equating this distance with
the actual Euclidean distance gave them a function to minimize where the
variables are coordinates in R3. Because their optimization function only
restricted edge lengths, and in general polyhedrons are not uniquely deter-
mined by them, their method had no means of choosing what they called
smooth solutions.

In 2008, D. Kane et. al wrote a pseudopolynomial time algorithm to give
a numerical realization of Alexandrov’s embedding theorem [13]. Instead of
following the proof by Alexandrov, they modeled their algorithm using the
proof by A. Bobenko and I. Izmestiev [14]. Given a convex polyhedral met-
ric, this method uses the variation of three dimensional curvatures within
the interior of the polyhedron to slowly deform their surface to one that is

3

isometric. Alexandrov’s theorem says given a convex polyhedral metric there
exists a unique convex polyhedron in R3. Kane et. al showed that their algo-
rithm finds an approximate convex polyhedron where no edge has a dihedral
angle greater than π + ε. The time taken to reach this ε-convex polyhe-
dron depends on several intrinsic variables of the metric and user specified
tolerances. Their algorithm only works for convex polyhedral metrics.

In this paper we present the adiabatic isometric mapping (AIM) algo-
rithm which is a numerical approach for embedding polyhedral metrics. Like
D. Kane et. al’s, our algorithm produces approximately convex polyhedrons
given convex polyhedral metrics. For metrics that are not convex, AIM
produces smooth polyhedrons similar to those mention in [12]. The AIM al-
gorithm borrows techniques from several of the algorithms mentioned above.
The first step of AIM uniformizes the initial polyhedral metric under discrete
Ricci flow in an affine time parameter t. The second step embeds this con-
stant curvature surface near the surface of a sphere. We use this embedded
surface as the starting point for an embedding flow back to the original met-
ric. This is in a similar vein to M. Jasiulek and M. Korzyński’s algorithmm.
To step from one conformally related polyhedron to the next, we use New-
ton’s method to minimize an objective function that depends on the edge
lengths of the polyhedral metric and the coordinate distances in R3. We use
the coordinates of the constant curvature polyhedron as the initial guess for
Newton’s method to avoid the problem of local minima found in Bondarescu
et al. This puts us close enough to the solution so that we quickly converge
to the global minimum. We then use the newly embedded polyhedron as
the initial value data for our next step such that ∆t is small enough to re-
main near the global minimum. This is repeated until we reach the original
polyhedral metric. Taking ∆t small is not enough to ensure that we will
not produce non-smooth solutions as seen by Nollert and Herold. Because of
this, we introduce the convexity routine at each time step which guides our
solution toward smooth embeddings. Using our condition on ∆t and the con-
vexity routine, we introduce the guided adiabatic pull-back which is unique
to our algorithm. We found that AIM is capable of embedding with accuracy
in the edge lengths to any desired tolerance above machine precision.

4

2 Adiabatic Isometric Mapping (AIM)

Following the approach of Alexandrov, we begin by finding a continuous
family of polyhedral metrics ρt with t ∈ [0 ≤ t ≤ tf]. A polyhedral metric
ρ of a triangulated surface is a list of its triangles by vertices {vi, vj, vk}
together with an assignment of a length to each edge `ij = vivj. Here, ρ0
is the metric we wish to embed and ρtf is a metric with constant Gaussian
curvature at each vertex. Each polyhedral metric in the family ρt has N0

vertices, N1 = 3N0 − 6 edges and N2 = 2N0 − 4 flat triangular faces. The
squared edge lengths of ρt are given as,{

`2ab (t)
}

(1)

where the indices a and b label the vertices of ρt. It should be noted that
throughout our algorithm the structure of the triangulation of ρt always
remains the same. The structure is defined as a list of triangles by vertices.
After we obtain ρt, we find a polyhedron Ptf which is an isometric embedding
of ρtf in R3. For Ptf to be isometric to ρtf , the coordinates for the vertices
of Ptf ,

a −→ {xa (tf) , ya (tf) , za (tf)} , (2)

must satisfy each of the N1 distance relations,

`2ab (tf) = (xa (tf)− xb (tf))
2 + (ya (tf)− yb (tf))

2 + (za (tf)− zb (tf))
2. (3)

We specify freely 6 of the 3N0 coordinates in order to mod out the translations
and rotational degrees of freedom. This is often done by identifying one of
the triangles ∆abc of Ptf and fixing (1) the three coordinates of vertex a,
(2) two of the three coordinates of vertex b, and (3) one of the remaining
three coordinates of vertex c. The isometric embedding problem involves a
solution to a quadratic system of 3N0−6 equations and unknown coordinates.
There are many solutions that satisfy the quadratic equations; as a result,
one finds oneself in a “sea of solutions” that makes solving this system of
equations prohibitively difficult. Not only does one have to solve the non-
linear sparsely coupled system, they also have to find a solution with the
desired extrinsic curvature. Constrained optimization problems of this kind
are often costly to solve. To navigate through the “sea of solutions” without
resorting to constrained optimization, AIM uses a three step procedure: (1)
uniformization via Ricci flow that provides a dimensional reduction from 3

5

Figure 1: This figure illustrates the three steps of the AIM algorithm. Sec. 2.1 of our
paper, “Uniformization via Ricci Flow”, begins at ρ0 in the upper left corner and ends
at ρtf in the upper right corner. Sec. 2.2, “Uniform Surface Embedding” begins at ρtf
and ends at the bottom right of the figure. Finally Sec. 2.3, “Guided Adiabatic Pull-Back
(GAP)”, starts at Ptf in the lower right corner and ends at P0 in the lower left corner of
the figure.

to 2 dimensions, (2) uniform surface embedding, and (3) a guided adiabatic
pull-back of the coordinates from the uniformed surface ρtf to the original
surface. These three steps ameliorate many difficulties in solving the system
of equations and provide controllable criteria for obtaining a suitable solution.
We describe these steps in the the next three subections which are illustrated
in figure. 1. From now on when we mention the metric we are referring to a
polyhedral metric.

2.1 Uniformization via Ricci Flow

We use a discrete Ricci flow to find a conformal relationship between ρ0 and
ρtf . A conformal factor is assigned to each vertex a of ρ0 and is denoted by

6

the set {ua(t = 0) = 0}. The relationship between edge lengths of ρ0 and ρt
is given by,

`ab(t) = `ab(0)
eua(t) + eub(t)

2
, (4)

where a and b index the bounding vertices of edge `ab.
The discrete Ricci flow equations we use for the conformal factors are

given by,
dua
dt

= −(ka − k̄), (5)

where ka is the Gaussian curvature at vertex a and k̄ is the target curvature
of the surface. To keep the surface area constant, we choose k̄ to be the
average Gaussian curvature over the surface,

k :=
2πχ

A
, (6)

where χ is the Euler characteristic and A is the area of the simplicial surface.
A detailed description of Gaussian curvature can be seen in appendix A.

It was shown by Chow and Lou that combinatorial Ricci flow and discrete
Ricci flow are essentially equivalent and that they exponentially converge to a
surface of constant curvature [15]. Therefore given some ε� 1, it is assured
that for sufficiently long times tf we can Ricci flow the initial conformal
factors such that the Gaussian curvature at each vertex is close to k̄,

||ka(tf)− k̄||2 < ε. (7)

Once we have {ua(tf)}, we create a continuous family of conformal factors
between ρ0 and ρtf using the linear relation,

ua (t) = ua (tf)

(
t

tf

)
. (8)

We also considered using an exponential relationship between conformal fac-
tors and the set of conformal factors produced at each step during Ricci flow.
These alternate paths between conformal factors were shown to be computa-
tionally more demanding without any apparent benefit over the linear path.
We discuss this in more detail in Sec. 2.3.

7

2.2 Uniform Surface Embedding

The uniform surface Embedding is broken into four steps,

1. Embedding on a sphere

2. Anneal step A

3. Convexity Routine

4. Anneal step B.

We will now discuss each step in detail and explain their necessity beginning
with embedding on a sphere.

Ideally a constant Gaussian curvature surface will lie on a sphere centered
at the origin with radius,

r =
1√
k
. (9)

This gives an additional constraint, r2i = x2i + y2i + z2i , on the coordinates
of ρtf .We are free to specify the initial line segment `ab as {xa, ya, za} =
{ r
2
, r
2
, r√

2
} and

xb =
r(r2 − `2ab) +

√
`2abr

2(2r2 − `2ab)
2r2

, (10)

yb =
r(r2 − `2ab)−

√
`2abr

2(2r2 − `2ab)
2r2

, (11)

zb =
r√
2
. (12)

Given this embedded line segment, we embed vertex c by solving,

`2ac = (xa − xc)2 + (ya − yc)2 + (za − zc)2, (13)

`2bc = (xb − xc)2 + (yb − yc)2 + (zb − zc)2, (14)

r2 = x2c + y2c + z2c . (15)

There are ordinarily two solutions to these equations which correspond to
the reflection of vertex c about `ab. The translational and rotational degrees
of freedom are fixed once we embed the three vertices of ∆abc on the surface
of the sphere.

8

Figure 2: Triangles made of solid lines have already been embedded and are used as pivots
to solve for the next set of coordinates. Dotted lines represent edges that are used, in
conjunction with the radius, to compute the coordinates of the vertex represented by the
dots. The blue paint brush lines, or determined edges, are edges that are determined once
the coordinates of its vertices are found. They are not actually used to compute coordinates.

Starting with this single embedded triangle ∆abc we can embed each of
the three triangles sharing bounding edges. This procedure is illustrated in
figure. 2. In fact given a triangle with a single embedded edge, we embed its
opposite vertex by solving (13) - (15). This allows us to generate a growing
network of embedded triangles on the surface of the sphere one triangle at a
time. The dimensional reduction afforded to us by the Ricci flow essentially
block-diagonalizes the original sparsely-coupled matrix from the quadratic
distance equations (3) into many 3× 3 matrices. By looking at shared edges
between embedded and non-embedded triangles, we can successively embed
each vertex individually until all vertices a ∈ ρtf lie on the sphere. We choose
the solution to these quadratic systems such that the dihedral angle between
edge `ab is maximal and less than π. This solution yields two “unfolded”
triangles embedded on the surface and is illustrated in figure. 3.

Here we explain the necessity and logistics behind anneal step A. The
embedding-tree procedure will ordinarily lead to inconsistencies with the
isometric embedding equations (3). The vertices of a constant curvature
polyhedron ordinarily will not lie on a sphere of constant radius unless the
number of vertices N0 is sufficiently large. Inconsistencies occur on the “de-
termined edges”, as illustrated in figure. 2, whose edge lengths do not agree
with those in ρtf . We correct this disagreement by annealing the coordinates
on the sphere to the edge lengths of ρtf . Annealing is done using Newton’s

9

Figure 3: Similar to figure 2, the dotted lines represent the edges used to compute the
coordinates of vertex k. The vertices of the solid triangle have already been embedded in
R3. Lastly, the correct solution is selected by maximizing the distance īk. This is equivalent
to maximizing θab such that it is less than π.

method to minimize the L2 norm of (3) at time t = tf ,∑
ab

(
l2ab (tf)− [xa (tf)− xb (tf)]

2 − [ya (tf)− yb (tf)]
2 − [za (tf)− zb (tf)]

2
)2

= 0,

(16)
with the coordinates on the sphere as our initial guess. The surface after
annealing is uniform in the intrinsic sense but extrinsically it may have neg-
ative curvature in some places. Before we move on to fix this issue, we must
discuss the isometric variations of polyhedra.

It is well known that polyhedra are not uniquely determined by their
edge lengths since this restriction says nothing about their extrinsic curva-
ture. For example, figure 4 shows two polyhedra with identical edge lengths
and Gaussian curvatures but different extrinsic curvatures. If all the edges
emanating from a vertex have negative extrinsic curvature, that vertex is
identified as an inverted vertex. This is seen in figure 6a. On average there
are six edges emanating from a vertex of an arbitrary triangulated polyhe-
dron. A vertex is identified as partially inverted if more than seventy percent
of the edges emanating from it have negative extrinsic curvature. Identify-
ing these vertices allows us to guide our embedding toward the most convex
polyhedron possible during the guided adiabatic pull-back procedure. The
identification of partially inverted vertices was chosen empirically based on
experiments with AIM for a variety of surfaces. We expect that this choice is
most effective when dealing with triangulations that contain mostly regular
triangles. For example, all of our triangulated surfaces had internal angles
strictly between π

6
and π

2
.

An inverted vertex can be “popped out” such that the edges maintain
their lengths but their extrinsic curvatures are no longer negative. This

10

(a) (b)

Figure 4: This is an example of two polyhedron with identical edge lengths and Gaussian
curvatures but different extrinsic curvatures.

process is local meaning all other vertices maintain their coordinates and all
other edge lengths remain the same. We show this in figure 6b. On the other
hand, a partially inverted vertex can not be removed locally and it is not clear
what it means for them to be inverted. That is why we need the convexity
routine during the uniform embedding and GAP procedures to apply a sort
of outward pressure that makes the embedding as convex as possible. The
convexity routine is described as follows: first compute the average vector
~vavg of the vertices sharing an edge with the inverted or partially inverted
vertex, second compute the difference vector defined as ~vdiff = ~v− ~vavg, and
third define the new position vector of vertex v by ~vnew = ~v + 2~vdiff . For
an inverted vertex this will get one close to the ”popped out” solution were
edge-lengths are invariant. For a partially inverted vertex the edge-lengths
are no longer the same, but when annealing, i.e. minimizing in the space
of coordinates, our initial guess is now closer to a more convex solution. In
both cases annealing after the convexity routine returns the edge lengths to
their original values within some set tolerance, this is the purpose of anneal
step B. The convexity routine may not work for an abritrary triangulation,
but should be sufficient for triangulations where the internal angles of all
triangles are greater than π

6
and less than 2π

3
.

11

2.3 Guided Adiabatic Pull-Back (GAP)

In the final step of the AIM algorithm we pull-back from Ptf to P0 by finding
coordinates of Pt for all steps tj ∈ [0, tf]. These coordinates are found by
minimizing (16) at each tf−j. For tf−1 we used the uniform embedding found
in the previous section as our initial guess. If j = 2, 3, we use the coordinates
at time tf−j+1 as the initial guess for embedding surface ρt. For j > 3 we
extrapolate the coordinates at tf−j using the previous three coordinate sets.
This extrapolation procedure has two purposes: first it brings our initial
guess closer to the global minimum which decreases the convergence time for
Newton’s method, second it allows us to take larger steps from tf−j to tf−j−1
while keeping us within an open ball of the global minimum. This better
initial guess further decreases the run time of GAP.

There are several paths that relate conformal factors {ua (tf)} to {ua (0)}.
We chose the linear path given by (8). This path is optimal because the
rate of change of Gaussian curvature is constant at each time step tf−j to

tf−j−1, which allows one’s step size ∆t =
tf

Tsteps
to be constant throughout

GAP. Here Tsteps is the number of steps taken. If the path was not linear,
we would need adaptive time stepping to account for the variable change
in Gaussian curvature. For example, one of the alternative paths that we
considered was given by the conformal factors produce at each step of Ricci
flow. Since Ricci flow exponentially uniformizes curvature, there is a greater
change in curvature near t = 0. Therefore it is necessary to decrease ∆t to
maintain adiabaticity near this region of rapid change. We also considered

an exponential path given by the time interval, tj =
(
e−αTsteps−e−αj
e−αTsteps−1

)
tf where

α is the parameter that controls the rate of convergence. The exponential
paths suffers the same problem in adaptive stepping as the Ricci flow path.
Neither of these paths yielded improved results over the linear path and both
are computationally more demanding.

As we mentioned in the previous section, minimization techniques can
not determine extrinsic curvature. Even after applying annealings and the
convexity routine to Ptf , it is still possible to begin with an initial surface at tf
that has many clustered and isolated partial inverted vertices. If nothing was
done GAP would produce an undesired crumpled surface surface. We apply
the convexity routine at each step to avoid caved in crumpled polyhedra.
Within the space of coordinates, this perturbs our initial guess such that we
begin near solutions without partially inverted vertices. Although this does
not immediately remove the problem vertices, it gradually reduces them at

12

each step until they are eliminated. We illustrate this gradual evolution away
from crumpled embeddings in figure 5 keeping in mind that (16) is nonlinear
thus having several global minima whose residuals are zero. Using all of these

Figure 5: This is a overly simplified visual representation of minimization in coordinate
space. Each application of the convexity routine perturbs us away from undesirable global
minima. After many time steps we eventually reach a global minimum without any inverted
or partially inverted vertices.

elements, we defined our evolution as adiabatic if ∆t is small enough such
that we transition to and remain near a global minimum with no inverted
or partially inverted vertices. This gradual nudging during GAP and its
ability to move toward a more convex polyhedra is the main result of this
manuscript.

3 Numerical Tests

We present three numerical examples of the AIM algorithm. The first two
example meshes were made using the distmesh program [16]. As input,
distmesh is given z (x, y) to produce coordinates and a list of triangles, by
vertices, for surfaces in R3. We use these coordinates to get edge lengths
by calculating the Euclidean distance between vertices. We then use the

13

extracted edge lengths together with the list of triangles as the original poly-
hedral metric for which we apply AIM. Once AIM is complete, we check how
well AIM reproduces intrinsic curvature by comparing edge lengths of the
distmesh surface to those produced AIM. We compare extrinsic curvature by
looking at the convergence of integrated mean curvature produced by AIM
to the continuum value.

Our third example is a surface just outside the ergosphere of a Kerr
black hole that is right below maximal rotation. We could not use distmesh
to triangulate this surface since its embedding equations are quasi-analytic,
which makes them incompatible with distmesh’s input format. Because of
this, we triangulated the ergosphere ourselves.

3.1 Distmesh surfaces

The first two surfaces we chose as our test cases are given by,

x2

a2
+
y2

b2
+
z2

c2
= 1, (Ellipsoid) (17)

x2

d2
+
y2

e2
+
z4

f 4
= 1 (Drum) (18)

where a = 3, b = 2, c = 1, d = 2, e = 1 and f =
√

1.5. Both surfaces
have strictly positive point wise Gaussian and mean curvatures. We will
refer to the surfaces described by (17) and (18) as the ellipsoid and drum,
respectively.

The following work was programmed using matlab. This preliminary ap-
plication of AIM does not attempt to optimize our algorithm. The goal is to
verify our approach and test how accurately it preserves distances and curva-
ture quantities. Run times can be significantly improved by parallelizing the
code and using preconditioning for our optimization routines. When using
AIM, one is allowed to choose the accuracy of their embedding by manipulat-
ing the tolerances during the annealing and GAP procedures. Tolerances are
set using the value of the residuals and the magnitude of the steps in coordi-
nate space for each iteration of the quasi-Newton method. These tolerances
are set to 10−6 and 10−8, respectively. This means the Newton’s method will
stop if the edge lengths are within 10−6 accuracy or if the distance between
points in coordinate space from one iteration to another is on the order of
10−8. Given these settings, we determine the number of steps necessary for

14

Figure 6: On the left we have the embedding using the continuum equations. In the center
we have the smooth embeddings produced by AIM. On the right we have a non-smooth
embeddings which are produced when we do not pull-back adiabatically and we do not use
the convexity routine. The color coding indicates the mean curvature associated to each
triangle. The ellipsoid has a resolution of 3226 vertices while the drum’s resolution is
3246.

15

maintaining adiabaticity when performing GAP. We also present our analy-
sis on how each portion of the code scales with increased vertices, as well as
the scaling for the number of time steps necessary for adiabaticity. For each
surface tested, we recovered an average difference in the edge length between
the original metric and AIM within our prescribed tolerance. The standard
deviation in the difference between edge lengths are also on the order of our
prescribed tolerance. This result was tested with tolerances in accuracy set
to 10−6 and 10−9. Our reported scaling analysis corresponds to a tolerance
of 10−6.

We test whether or not the extrinsic curvature is recovered by first looking
at a qualitative comparison between continuum and AIM embeddings as seen
in figure 6. These surfaces are color coded as a function of mean curvature.
The mean curvature of the continuum surfaces were computed using the
continuum equations while the triangulated mean curvatures were computed
using discrete methods [17]. Figure 7 gives a quantitative comparison, and
convergence properties, of the mean curvature between the continuum and
AIM by plotting the percent error in integrated mean curvature as a function
of resolution. According to our results, the convergence of the integrated
mean curvature to the continuum is of first order.

We made log-log plots of run time verses number of vertices for each of
the three sub routines and the AIM algorithm as a whole to understand the
scaling behavior of our code. The same plots were made for analyzing the
number of steps necessary for adaibaticity as a function of resolution. The
plots are given in figure 8. It is observed that the highest order contribution
to the scaling of AIM comes from the Ricci flow procedure. Our overall
results suggest that AIM scales sub cubically.

3.2 Modified Ergosphere of Kerr spacetime

In 1973 Larry Smarr analytically embedded an axisymmetric 2-surfaces of a
rotating black hole geometry [18]. Following this we use the Boyer-Lindquist
coordinates for the metric representation of the rotating black hole spacetime,

ds2 = gttdt
2 + 2gtφdtdφ+ grrdr

2 + gθθdθ
2 + gφφdφ

2, (19)

16

5 5.5 6 6.5 7 7.5 8 8.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

� slope = −0.96 A

@ k slope = −0.93

Log(N
0
)

L
o
g
(
p
e
r
c
e
n
t

e
r
r
o
r
)

percent error of integrated mean curvature

Drum
ellipse

Figure 7: Convergence of integrated mean curvature as a function of resolution

where

gtt = −
(

1− 2Mr +Q2

Σ

)
, (20)

gtφ = −2Mr −Q2

Σ
a sin2 θ, (21)

grr =
Σ

∆
, (22)

gθθ = Σ, (23)

gφφ =

(
r2 + a2 +

(2Mr −Q2) a2 sin2 θ

Σ

)
sin2 θ. (24)

Here we used the usual definitions where

Σ := r2 + a2 cos2 θ, (25)

∆ := r2 − 2Mr + a2 +Q2. (26)

For our third example of the AIM algorithm we embedded a distorted ergo-
sphere of a nearly maximally rotating black hole geometry with zero charge.

17

Drum
ellipse

5 6 7 8
2

4

6

8

10

12

Log(N
0
)

L
o
g
(
T
i
m
e
(
s
)
)

Ricci Flow

slope=2.5
slope=2.5

5 6 7 8
1

2

3

4

5

6

7

8

Log(N
0
)

L
o
g
(
T
i
m
e
(
s
)
)

Uniform Surface Embedding

slope = 1.1
slope = 1.3

5 6 7 8
2

4

6

8

10

12

Log(N
0
)

L
o
g
(
T
i
m
e
(
s
)
)

GAP

slope = 2.3
slope = 2.3

5 6 7 8
2

4

6

8

10

12

Log(N
0
)

L
o
g
(
T
i
m
e
(
s
)
)

AIM

slope = 2.3
slope = 2.3

5 6 7 8
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Log(N
0
)

L
o
g
(
t
o
t
a
l

s
t
e
p
s
)

number of steps

slope = 1.4
slope = 1.3

Figure 8: These are log-log plots of each section of AIM and the algorithm as a whole. The
slopes indicate scaling behavior of our algorithm as a function of N0. Our overall results
suggest that AIM scales sub cubically with time. Time is in units of seconds.

This surface is defined on a t = const hypersurface thus making dt = 0.
We have a/M = 0.975 with a = 0.975 and M = 1 where a/M = 1 gives a
maximally rotating surface. Given that the surface is axial symmetric, we
can write r = R (θ) which implies that dr = R,θdθ. Inserting this into (19)
we get the two metric,

ds2 = Σ

(
1 +

R2
,θ

∆

)
︸ ︷︷ ︸

hθθ

dθ2 +

(
R (θ)2 + a2 +

2a2MR (θ) sin2 θ

Σ

)
sin2 θ︸ ︷︷ ︸

hφφ

dφ2. (27)

18

The ergosphere is defined by the radius in which gtt = 0 in (19). At this
point the surface is elongated at the poles which makes it an extreme surface
to embed. To make the poles more smooth we distort the surface by adding
a small parameter ε that gives us a surface slightly outside the ergosphere.
The radius as a function of θ is given as,

r = R (θ) = M

(
1 +

√
1−

(a
M

)2
cos2 θ

)
︸ ︷︷ ︸

rergo

+εM. (28)

Let the isometric embedding functions be defined as,

x (θ, φ) = ρ (θ) cosφ, (29)

y (θ, φ) = ρ (θ) sinφ, (30)

z (θ) = f (θ) . (31)

Equating the line elements between spaces gives the relation,

ds2 = dx2 + dy2 + dz2 =
(
ρ2,θ + f 2

,θ

)
dθ2 + ρ2dφ2. (32)

Using (27) and (32) to solve for ρ and f we have,

ρ (θ) =
√
hφφ (θ), (33)

f (θ) =

∫ θ

0

√
hθθ −

h2φφ,θ
4hφφ

. (34)

These equations give us our continuum embedding in R3. The function f (θ)
is a real valued function on the domain θ ∈ [0, π]. We construct the polyhe-
dral metric for the ergosphere by first building a list of θ’s and φ’s for the
vertices. Next we construct a list of triangles by vertices and assign edge
lengths by isometrically embedding the vertices of edges and computing the
Euclidean distance. After assigning edge lengths, we discard the coordinates
and apply AIM to our new polyhedral metric. Figure 9 illustrates the contin-
uum embedding, the smooth embedding given by AIM and the non-smooth
embedding. The continuum embedding is a parametric plot, in Euclidean
space, using (29)-(31) with ρ and f defined by (33) and (34), respectively.
The percent error of the integrated mean curvature between the continuum

19

Figure 9: On the left we have the original embedding made using the continuum embedding
equations. The middle is the smooth embedding given by AIM. On the right we have the
non-smooth embedding that is produce when one does not take small enough time steps
and does not use the convexity routine.

and AIM embeddings is 0.62 percent, which is comparable to the percent
error for the drum at the same resolution. Although we did not analyze the
convergence of integrated mean curvature for this surface, we expect its con-
vergence to be similar to the ellipsoid and drum surfaces. Our main obstacle
in completing this convergence analysis is producing consistent high quality
triangulations for increasing resolution. The edge lengths are recovered up
to the set accuracy of 10−6.

4 Conclusion

The AIM algorithm was developed using several techniques from previous
isometric embedding algorithms. Our tests of AIM included non-axial sym-
metric surfaces with strictly positive Gaussian curvature. We also tested
a surface just above the ergosphere of a Kerr black hole, which is axial-
symmetric with regions of negative Gaussian curvature.

The main innovation of the AIM algorithm comes from the guided adia-
batic pull-back. Although we used triangulated surfaces, similar to the wire
mesh of Nollert and Herold, GAP allows us to distinguish between the global
minima of smooth and non-smooth polyhedra. GAP also prevents the prob-
lem of getting trapped in local minima, as seen by Bondarescu, Alcubierre

20

and Seidel, during Newton’s method . For the surfaces tested, we were ca-
pable of reaching residuals on the order of our prescribed tolerance. AIM
also uses an embedding flow similar to Jasiulek and Korzyński’s, but is not
restricted to strictly positive scalar curvature surfaces.

Although AIM does not necessarily produce the convex polyhedron given
a convex polyhedral metric, we do produce embeddings that recover much
of the extrinsic behavior see in the continuum embedding. Although there
are many approximate polyhedral representations of the convex Alexandrov
polyhedron that our algorithm can produce, we observe that they do not vary
significantly between each other. We find that this is especially true at higher
resolutions. Our future plan is to provide an upper bound on the deviation
in extrinsic curvature between these essentially equivalent embeddings.

It was not our goal or intention to optimize the AIM algorithm. Its run
time and scaling may be significantly improved by using preconditioning for
the optimization routines and parallelization. We would also like to develop
an algorithm that produces well posed triangulation, similar to those made
by distmesh, given any compact two metric. Since our original interest in
isometric embeddings stemmed from computing quasi-local energy in general
relativity, we plan to use AIM for this purpose. It is also noted that given
a suitable triangulation algorithm, AIM should be readily applicable to two
surfaces identified within numerical relativity codes that use finite differenc-
ing grids. One can interpolate to obtain the proper distances of the edges for
the triangulation using the grid’s metric and coordinates. This polyhedral
metric can then be embedded into R3 using AIM.

Acknowledgements

This work was supported from Air Force Research Laboratory (AFRL/RITA)
Grant # FA8750-11-2-0089 and # FA5750-15-2-0047. WAM, and SR ac-
knowledge support from Air Force Office of Scientific Research through the
American Society for Engineering Educations 2012 Summer Faculty Fellow-
ship Program, and from AFRL/RITA and the Griffiss Institutes 2013 Visiting
Faculty Research Program. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the AFRL.

21

A Intrinsic Curvature Calculations

In Sec. 2.1 we used simplicial Ricci flow to obtain a triangular mesh with con-
stant Gaussian curvature at each vertex. This procedure relied on curvature
values defined on the surface of our lattice. The purpose of this appendix is
to inform the reader about the nature of curvature on simplicial geometries
and provide the exact equation used to compute Gaussian curvature.

It was established by Alexandrov, and utilized by Tullio Regge [19], that
the intrinsic curvature of a simplicial geometry, of arbitrary dimensions, is
concentrated at co-dimension 2 simplices called hinges. The curvature at
these hinges is a conic singularity whose value goes to infinity as the area of
the loop of parallel transport enclosing the hinge goes to zero. Later it was
determined by W. Miller et. al. [20,21] that given a Daulanay lattice S with
a circumcentric Voronoi dual lattice S∗, it was possible to define a unique
path of parallel transport such that the sectional and Gaussian curvatures
are defined. The area h∗ of this loop is the Voronoi area perpendicular to a
hinge in the Daulanay lattice. The Voronoi area h∗ is constructed using dual
edges λ ∈ S∗ whose vertices are defined as the circumcenters of d-simplices.
If one were to parallel transport a vector around this loop, they would find
their vector rotated by the deficit angle at the hinge. The deficit angle is
defined as εh = 2π −

∑n
i ηi, where the sum is over the interior angles of

d-simplicies that share the hinge h. Using the deficit angle and the dual area
associated with h, the Gaussian curvature is defined as,

kh =
εh
|h∗|

(35)

Everything mentioned in this appendix is applicable for arbitrary dimen-
sions. Since we are embedding an S2 surface, we are only concerned with
two dimensions. This means the curvature is concentrated on vertices.

References

[1] H Weyl. über die bestimmheit einer geschlossenen konvex fläche
durch ihr linienelement. Vierteljahresschrift der nat.-Forschenden Ges.,
Zürich, 61:40–72, 1916.

22

[2] J-X Hong and Q Han. Isometric Embedding of Riemannian Manifolds
in Euclidean Spaces. (Providence, RI: American Mathematical Society),
2006.

[3] H Lewy. On the existence of a closed convex surface realizing a given
Riemannian metric. Proceedings of the National Academy of Sciences of
the United States of America, 24:104, 1938.

[4] L Nirenberg. The Weyl and Minkowski problems in differential geometry
in the large. Comm. Pure Appl. Math, 6:337–394, 1953.

[5] E Heinz. On Weyl’s embedding problem. Applied Mathematics and
Mechanics, 11:421–454, 1962.

[6] A D Alexandrov. Intrinsic Geometry of Convex Surfaces. (Boca Raton,
FL: CRC Press), 2006.

[7] J D Brown and J W York. Quasilocal energy and conserved charges
derived from the gravitational action. Phys Rev D, 47:1407–1419, 1993.

[8] M-T Wang and S-T Yau. Quasilocal mass in general relativity. Phys
Rev Letts, 102:021101, 2009.

[9] László B Szabados. Quasi-local energy-momentum and angular momen-
tum in general relativity. Living Rev. Relativ., 12, 2009.

[10] M Bondarescu, M Alcubierre, and E Seidel. Isometric embeddings of
black-hole horizons in three-dimensional flat space. Class. Quantum
Grav., 19:375, 2002.

[11] M Jasiulek and M Korzyński. Isometric embeddings of 2-spheres by
embedding flow for applications in numerical relativity. Class. Quantum
Grav., 29:14, 2012.

[12] H Nollert and H Herold. Visualization in curved spacetimes: II. visual-
ization of surfaces via embedding. In Relativity and scientific comput-
ing. Computer algebra, numerics, visualization, pages 330–351. (Berlin:
Springer), 1996.

[13] Daniel Kane, Gregory Nathan Price, and Erik D Demaine. A pseu-
dopolynomial algorithm for Alexandrov’s theorem. Lecture Notes in
Computer Science, 5664:435–446, 2009.

23

[14] Alexander I Bobenko and Ivan Izmestiev. Alexandrov’s theorem,
weighted delaunay triangulations, and mixed volumes. Annales de
I’institut Fourier, 58:447–505, 2008.

[15] B Chow and F Luo. Combinatorial Ricci flows on surfaces. Journal of
Differential Geometry, 63:97–129, 2003.

[16] Per-Olof Persson. Mesh generation for implicit geometries. PhD thesis,
Massachusetts Institute of Technology, 2005.

[17] Rory Conboye, Warner A Miller, and Shannon Ray. Distributed mean
curvature on a discrete manifold for Regge calculus. (arXiv:1502.07782),
2015.

[18] Larry Smarr. Surface geometry of charged rotating black holes. Physical
Review D, 7, 1973.

[19] T Regge. General relativity without coordinates. Il Nuovo Cimento,
19:558–571, 1961.

[20] W A Miller. The Hilbert action in Regge calculus. Class. Quantum
Grav., 14:L199 – L204, 1997.

[21] W A Miller, R Jonathan McDonald, M Paul Alsing, X David Gu, and
Shing-Tung Yau. Simplicial Ricci flow. Comm. Mathematical Phys.,
329:579–608, 2014.

24

	1 Introduction
	2 Adiabatic Isometric Mapping (AIM)
	2.1 Uniformization via Ricci Flow
	2.2 Uniform Surface Embedding
	2.3 Guided Adiabatic Pull-Back (GAP)

	3 Numerical Tests
	3.1 Distmesh surfaces
	3.2 Modified Ergosphere of Kerr spacetime

	4 Conclusion
	A Intrinsic Curvature Calculations

