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Einstein's theory of general
relativity is based on the desire
to merge the newly developed
theory of special relativity and
Newton's theory of gravity. He
accomplished this daunting task
in 1915. Most physicists consider
this to be the most creative
work in science in the history of
mankind. Let me now explain
some part of this theory to you.

Einstein
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A very important ingredient is the concept of
equivalence principle, the development of which had
a long history:

Fil
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Galileo used experiment to
show that the acceleration of a
test mass due to gravitation is
independent of the amount of
mass being accelerated.

Galileo
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Kepler once said “If two stones
were placed in any part of
the world near each other, and
beyond the sphere of a third
cognate body, those stones, like
two magnetic needles, would
come together in the intermediate
point, each approaching the other
by a space proportional to the
comparative mass of the other”.
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Then in 1907, Einstein said:

“We assume the complete physical equivalent of a
gravitational field and a corresponding acceleration
of the reference system. The gravitational motion of
a small test body depends only on its initial position
in spacetime and velocity, and not on its
constitution. The outcome of any local experiment
(gravitational or not) in a freely falling laboratory is
independent of the velocity of the laboratory and its
location in spacetime”.
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Hence Einstein realized that in the new theory of
gravity that he would like to develop, the laws of
gravity should be independent of the observers. But
he needed a framework to build such a theory of
gravity that can connect philosophy with
observations.
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Since gravity is equivalent to the acceleration of the
reference system and acceleration of a particle can
be described by the curvature of its trajectory,
Einstein speculated that the new theory of gravity
should have something to do with a new concept of
space. He knew that the static space (with one
fixed coordinate system) is not adequate.
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Einstein's great work benefited from the help of
many geometers. He, together with Grossmann, was
student of the great geometer and physicist
Minkowski. He also interacted with Levi-Civita, and
eventually Hilbert and Noether.

Grossmann Hilbert
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But most importantly, Einstein owed his
epoch-making contribution to the concept of space
by the great 19th century mathematician Riemann.

Riemann
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Before Riemann, there were only three types of
space: the Euclidean space, the sphere space, and
the hyperbolic space which were all described by a
single coordinate system.
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This was very similar to the time
of Newton where the universe
was supposed to be static.
Riemann,  however, radically
changed the notion of space
in his famous essay “On the
hypotheses which lie at the
foundations of geometry” in
1854.

Ueber

die Hypothesen,

welche der Geo_meh-iu zu Grunde liegen.
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His space was totally different from the three spaces
above, and it could exist without referring to a fixed
coordinate system. He also knew that when two
points are very close, we do not feel much
acceleration and so to first order effect, we do not
feel presence of curvature and therefore
infinitesimally, the space should look like the flat
Euclidean space. On the other hand, the second
order effect of gravity should come from
acceleration of the particles. Therefore our space
should show curvature if it is used to describe
dynamics of gravity.
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We do not really know what the space should look
like globally. On the other hand, our space should
be general enough to allow many different observers
without changing the essence of the physics of
gravity. Observers can propagate information from
one to another one.
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Hence Riemann demanded that we can use a variety
of different coordinate systems to observe the basic
properties of the space. However, the only
meaningful properties of space should be
independent of choice of the coordinate systems.
This point of view of space is very important
because it is the crucial principle of equivalence in
general relativity.
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Riemann defined the concept of
curvature in his introduction of
abstract space. In fact, later
development of gravitational
field in general relativity is
measured by the curvature,
while the material distribution
is represented by a part of the
curvature. The distribution of
matter changes over time and so
does the curvature.

Riemann
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The dynamics of curvature shows the effect of
vibration of spacetime. And because of that,
Einstein came to the conclusion that the
gravitational wave, though small, should exist. In
Einstein's equation, the gravitational field and the
geometry of spacetime are inseparable, as a unified
entity.
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It is remarkable that already in 1854 in his speech,
Riemann developed the new concept of space
because of the need to understand physical
phenomena. He even suggested that the smallest
and greatest parts of space should be described in
different ways. From a modern physical point of
view, Riemann is looking for the possible structure
of quantum space! Riemann once considered using
discrete space to explain this problem.

18 /93



Riemann started his scientific publication at the age
of 25 and died of lung disease at the age of 39.
Three years before his death, he went to Italy every
year to escape the cold, thus affecting a number of
Italian and Swiss geometers, including Christoffel,
Ricci and Levi-Civita.

Christoffel Ricci Levi-Civita
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They generalized Riemann’s ideas, defined tensors
and connections rigorously, both of which were
indispensable for general relativity and gauge field
theory. Ricci introduced the Ricci curvature tensor,
and proved that this tensor can produce a tensor
that satisfies the conservation law. All of these
works, accomplished by geometers in the
mid-to-late 19th century, provided the most crucial
tools for general relativity.
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ALBERT EINSTEIN

Einstein wrote a paper in 1934  MEIN WELTBILD
entitled “Notes on the origin of

the general theory of relativity”

(see Mein Weltbild, Amsterdam:

Querido Verlag), in which he

reviews the development of

general relativity.

QUERIDO VERLAG AMSTERDAM
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The first stage, of course, is the special theory of
relativity. In addition to Einstein himself, the main
founders of this theory include Lorentz and Poincaré.

Lorentz Poincaré
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One of the most important results
is that the distance is affected
by time. But Einstein learned
that the action at a distance
between the special theory of
relativity and Newton's theory of
gravity is incompatible and must
be rectified!

Newton
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At first, physicists did not realize that the concept
of space had undergone fundamental changes after
the breakthrough of Riemann. They attempted to
correct Newton's gravitational theory in the
framework of three-dimensional space in line with
the special relativity just discovered. This idea led
Einstein to go astray three years!
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Einstein said in the essay “Notes of the origin of the
general theory of relativity” (pp. 286—287):

| was of course acquainted with Mach’s view,
according to which it appeared conceivable that
inertial resistance counteracts is not acceleration as
such but acceleration with respect to the masses of
the other bodies existing in the world. There was
something fascinating about this idea to me, but it
provided no workable basis for a new theory.
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The simplest thing was, of course, to retain the
Laplacian scalar potential of gravity, and to
complete the equation of Poisson in an obvious way
by a term differentiated with respect to time in such
a way that the special theory of relativity was
satisfied. The law of motion of the mass point in a
gravitational field had also to be adapted to the
special theory of relativity. The path was not so
unmistakably marked out here, since the inert mass
of a body might depend on the gravitational
potential. In fact, this was to be expected on
account of the principle of the inertia of energy.
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These investigations, however, led to a result which
raised my strong suspicions.

The principle of equality of inertial and gravitational
mass could now be formulated quite clearly as
follows: In a homogeneous gravitational field all
motions take place in the same way as in the
absence of a gravitational field in relation to a
uniformly accelerated coordinate system.
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If this principle held good for any events whatever
(The “principle of equivalence”), this was an
indication that the principle of relativity needed to
be extended to coordinate systems in non-uniform
motion with respect to each other, if we were to
reach a natural theory of the gravitational fields.

Such reflections kept me busy from 1908 to 1911. ..
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When Einstein was a student in Zurich, his
mathematical professor was Minkowski, who was a
great mathematician on a par with Hilbert and
Poincaré. Minkowski once said “There was a lazy
student in my class who had recently done an
important work which | had come up with a
geometric interpretation”.
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Minkowski learned physics from
Helmholtz, J.J. Thomson and
Heinrich Hertz. He held that
because of a "preestablished
harmony between mathematics
and nature”, geometry could be
used a key to physical insight.
He ascribes physical reality to the
geometry of spacetime.

Minkowski
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This lecture entitled “Space and Time" was
delivered by Minkowski in the eightieth meeting of
the Assembly of Natural Scientists and Physicians in
Cologne in Sep. 21, 1908.

The ideas of space and time developed here were
applied in a major work on the laws of
electrodynamics by Minkowski “The fundamental

equations for electromagnetic phenomena in moving
bodies” published in 1908. (Minkowski died in
1909.)
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This last paper gave the first relativistically correct
presentation of Maxwell equation in a ponderable
medium and its mathematical formalism in terms of
tensor calculus. Einstein actually wrote several
papers with Planck on this work of Minkowski.

—
—

> “
RX
" ¥

Planck and Einstein
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Minkowski wrote:

“The views of space and time which | wish to lay
before you have sprung from the soil of
experimental physics, and therein lies their strength.
They are radical. Henceforth space by itself, and
time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will
preserve an independent reality.”
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It may be interested to note that Minkowski
acknowledged his concept of spacetime owes a great
deal to Poincaré's work in 1906, where Poincaré
noticed that by changing time to imaginary time,
Lorentz transformations become rotations.
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However, Poincaré did not think the
four-dimensional representation has much physical
significance. Even at 1908, Poincaré said that “The
language of three dimensions seems the better fitted
to our description of the world although this
description can be rigorously made in another
idiom.”
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This is very different from Minkowski's point of view
where he said directly “The world in space and time
in a certain sense is a four-dimensional,
non-Euclidean manifold. In truth, we are dealing
with more than merely a new conception of space
and time. The claim is that it is rather a quite
specific natural law, which, because of its
importance — since it alone deals with the primitive
concepts of all natural knowledge, namely space and
time — can claim to be called the first of all laws of
nature.”
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In his essay of 1908, Minkowski constructed a
four-dimensional space, introducing a metric tensor,
following Riemann, to give geometric meaning of
special relativity. The Lorenzian group, the
fundamental symmetric group of special relativity,
became the group of isometries of this spacetime of

Minkowski.
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For the first time in history, we learned from
Minkowski that we live in a four-dimensional
spacetime. Hence in 1908, Einstein got the most
important inspiration for general relativity from
Minkowski: that he has to construct his new theory
of gravity based of the fact that the space should be
four-dimensional.
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It is generally believed that the most important
thing Einstein did in the year is his thought
experiment. The thought experiment taught
Einstein the importance of equivalence principle and
the need of new geometry to exhibit gravity. He
knew that he need a new concept of space to
achieve this. The static space of Newtonian gravity
is not adequate any more.
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Why is Minkowski's article so important? Not only
that there is a conceptual breakthrough from
three-dimensional space to four-dimensional space,
but also that only within a four-dimensional
spacetime, gravity can have enough room to show
its dynamical nature! Newton's theory of gravity is
static, in that a function is sufficient to describe the
phenomenon of gravity.
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Minkowski spacetime gave the most important
concept that we need a tensor to describe gravity.
Tensor is a newly invented concept consisting of
many functions which together can transform
consistently so that the principle of equivalence is
obeyed. Minkowski's tensor perfectly describes the
special theory of relativity, but Einstein wanted to
further combine Newtonian mechanics with
Minkowski space, so his new theory of spacetime
should be equal to Minkowski spacetime
infinitesimally.
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Hence when two points are very close to each other,
up to first order, the gravity rule governing them
should be the one of Minkowski spacetime.
However, this is no more true when we count
second order effect of gravity, curvature becomes
important. At the time, physicists knew nothing
about the notion of tensors (in fact, only a few
geometers knew about tensor analysis.)
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Einstein knew from the principle of equivalence that
the new potential of gravity should depend on a
point and the tangent vector of space at that point
(velocity vector), but he has no idea what kind of
mathematical tool can be used. So he asked his
classmate Marcell Grossmann for help and finally
figured out that the gravitational field should be
described by a metric tensor. The tensor varies in
spacetime, but at every point it can be
approximated by a first-order Minkowski metric.
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Grossmann is a geometer, who helped Einstein to
do homeworks in geometry in Zurich. He went to
the library and found the ideas of tensor. However,
the idea of introducing metric tensor alone is not
enough to describe the gravitational field. We need
to know how to differentiate tensor in a curved
space. We would like the result of differentiation is
also independent of choice of coordinate system
(the requirement of equivalence principle). This is

the connection theory of Christoffel and Levi-Civita.
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Einstein said in his memoirs of general relativity
mentioned above that this was his first question,
and was found to have been solved by Levi-Civita
and Ricci. Einstein's second question was how to
generalize Newton's law of gravitation in this new
framework. Newton's equation is simple, that is, the
second derivative of the gravitational potential is
equal to matter density.
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At that time, neither Einstein nor Grossmann knew
how to differentiate metric tensors so that the result
is still a tensor which is independent of the choice of
coordinate. Grossmann, at Einstein's repeated
requests, managed to find Ricci's work in the library.
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It turned out that Ricci had already contracted
Riemann’s curvature tensor to a symmetric
second-order tensor. It has the same degree of
freedom as the metric tensor and can be regarded
as the second derivative of metric tensor. Einstein
immediately realized that it must be the left-hand
side of the field equation, while the right-hand side
is the tensor of the general matter distribution (in
flat space, this tensor has been well studied.)
Einstein and Grossmann proposed this equation in
two articles published in 1912 and 1913.
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However when Einstein tried to solve this equation
by an asymptotic approach, he did not recover the
astronomical phenomena (e.g., light deflection,
Mercury's anomalous perihelion shift) that he was
trying to explain. This made him very frustrated.

Perihelion of mercury
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In the following years, in order to explain
astronomical phenomena, he tried to choose special
coordinates, essentially giving up the preciously
simple principle of equivalence. The many
communications between him and Levi-Civita could
not help either.
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| would like to support what | said in the above by
the essay of Einstein’s own word in: Notes of the
origin of the general theory of relativity (1934, pp.
288-289).

| soon saw that the inclusion of non-linear
transformations, as the principle of equivalence
demanded, was inevitably fatal to the simple
physical interpretation of the coordinates - i.e. that
it could no longer be required that coordinate
differences should signify direct results of
measurement with ideal scales or clocks.
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| was much bothered by this piece of knowledge, for
it took me a long time to see what coordinates at
all meant in physics. | did not find the way out of
this dilemma until 1912, and then it came to me as
a result of the following consideration:
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A new formulation of the law of inertia had to be
found which in case of the absence of a “real
gravitational field” passed over into Galileo’s
formulation for the principle of inertia if an inertial
system was used as coordinate system. Galileo'’s
formulation amounts to this: A material point,
which is acted on by no force, will be represented in
four-dimensional space by a straight line, that is to
say, by a shortest line, or more correctly, an
extremal line.
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This concept presupposes that of the length of a
line element, that is to say, a metric. In the special
theory of relativity, as Minkowski had shown, this
metric was a quasi-Euclidean one, i.e., the square of
the “length” ds of a line element was a certain
quadratic function of the differentials of the
coordinates.
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If other coordinates are introduced by means of a
non-linear transformation, ds® remains a
homogeneous function of the differentials of the
coordinates, but the coefficients of this function
(guv) cease to be constant and become certain
functions of the coordinates. In mathematical terms
this means that physical (four-dimensional) space
has a Riemannian metric.
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The timelike extremal lines of this metric furnish
that law of motion of a material point which is acted
on by no force apart from the forces of gravity. The
coefficients (gyuv) of this metric at the same time
describe the gravitational field with reference to the
coordinate system selected. A natural formulation
of the principle of equivalence had thus been found,
the extension of which to any gravitational field
whatever formed a perfectly natural hypothesis.
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The solution of the above-mentioned dilemma was
therefore as follows: A physical significance attaches
not to the differentials of the coordinates but only
to the Riemannian metric corresponding to them. A
workable basis had now been found for the general
theory of relativity. Two further problems remained
to be solved, however.
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1. If a field-law is expressed in terms of the special
theory of relativity, how can it be transferred to the
case of a Riemannian metric?

2. What are the differential laws which determine
the Riemannian metric (i.e., gyv) itself?
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As for problem 2, its solution obviously required the
construction (from the gyy) of the differential
invariants of the second order. We soon saw that
these had already been established by Riemann (the
tensor of curvature). We had already considered the
right field-equation for gravitation two years before
the publication of the general theory of relativity,
but we were unable to see how they could be used
in physics.
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Einstein struggled from 1913
to 1915. It is amusing that
the equation that Einstein and
Grossmann wrote down was
actually correct if there is no
matter. Indeed, Schwarzschild
was able to solve Einstein
equation for a spherical star in
1916, right after Einstein and
Hilbert wrote down the right field
equation.

Schwarzschild
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Schwarzschild solution assumed that there is no
matter. And it was enough to calculate light
bending due to the gravity of the sun. Therefore
Einstein and Grossmann could have made the
observation in 1913, if they found the exact
spherical symmetric solution. Apparently Einstein
got discouraged when his approximate solution did
not give him the right answer compatible with the
physical observation. He was very depressed and
was attempting to use special coordinate and hence
gave up the principle of equivalence. The following
writing of him shows his frustration:
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On the contrary, | felt sure that they could not do
Justice to experience. Moreover | believed that |
could show on general considerations that a law of
gravitation invariant with respect to arbitrary
transformations of coordinates was inconsistent with
the principle of causality. These were errors of
thought which cost me two years of excessively hard
work, until | finally recognized them as such at the
end of 1915, and after having ruefully returned to
the Riemannian curvature, succeeded in linking the
theory with the facts of astronomical experience.
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In the light of knowledge attained, the happy
achievement seems almost a matter of course, and
any intelligent student can grasp it without too
much trouble. But the years of anxious searching in
the dark, with their intense longing, their
alternations of confidence and exhaustion and the
final emergence into light - only those who have
experienced it can understand that.
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Let us now go back to what happened in the final
stage of Einstein's work on general relativity. In the
spring of 1915, he visited the great mathematician
David Hilbert in Gottingen. Hilbert certainly knows
geometry well, but above all, he is the founder of
modern geometric invariant theory. He also
gathered a large group of outstanding
mathematicians in Gottingen. Some of them can be
described in the following:
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Felix Klein was a pioneer in classifying geometries
by using symmetry groups, Hilbert's student
Herman Weyl was the founder of gauge field theory,
along with Emmy Noether, the greatest female
mathematician in history.

Noether
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During the period of 1915 to 1918, Noether was
developing her theory of current where one can use
group of continuous symmetries to deduce
equations of motions. (In general relativity, the
continuous group of symmetry is the group of
coordinate transformations.)
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Einstein’s visit was just at the right time! Hilbert
discovered the Hilbert action in November of the
same year, and deriving the correct gravitational
equation quickly from this action. Upon hearing the
news and receiving Hilbert's postcard on the
equation, Einstein quickly got his equation, and
based on this equation, deduced astronomical
phenomena he had been trying to solve.
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In the beginning, Einstein was unhappy with
Hilbert's priority. But Hilbert quickly declared that
the work should belong entirely to Einstein, and
that turned Einstein happy. This is an
epoch-making work. Later generations of physicists
and mathematicians should all pay their highest
tribute to Einstein. But | shall hope history will
remember the group of Geometers who helped
Einstein achieved his great theory of gravity. Much
of what | discussed here is written by Einstein
himself. It is unfortunate that in that article, he did
not mention the contribution of Hilbert.
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Looking backward, the correct equation of motion
derived by Hilbert and Einstein could have been
found by Grossmann and Einstein in 1913. The
left-hand side of the equation in 1913 consists of
Ricci tensor while the right-hand side is the matter
tensor. The right-hand side is familiar and it
satisfies conservation law. But the left-hand side of
the 1913 equation is only the Ricci tensor which
does not satisfy the conservation law. Hence they
cannot be equal.
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The left-hand side should therefore be replaced by
some form of curvature tensor that satisfies
conservation law. This was actually found by Ricci
using Bianchi identity. One simply subtracts the
Ricci tensor by some multiple of the metric tensor
by the trace of the Ricci tensor. If Einstein and
Grossmann trust the beauty of geometry and tried
to complete the equations based on its internal
consistency, Einstein would not have to wait until
1915 to write down the right equations.
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After completing the general theory of relativity,
Einstein believed that the most basic part of physics
should be guided by thought experiment and the
elegance of mathematics. At the end of the article,
he said that after finding the equation of general
relativity, everything came so natural and so simple
that it was a breeze for a capable scholar. However,
before finding the truth, he tried his best, after
years of hard work, suffered pains day and night,
which was hard to tell. Einstein’'s work can be said
to be the greatest scientific work ever undertaken by
mankind.
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The success of general relativity left us another
daunting task to explain natural phenomena of
gravity. The task is difficult because the system of
equation is truly nonlinear and the background
spacetime is changing dynamically. Physics of
gravity does not give a precise description of the
initial data or the boundary conditions of the
complicated nonlinear system.
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There is no global symmetry of the dynamical
changing spacetime. Nonexistence of global time, or
nonexistence of timelike translation symmetry, gave
great difficulty to define many important physical
quantities that we learned in Newtonian mechanics.
Noether's theory of current allows us to define mass
and linear momentum four-vector if we have
timelike translation that preserves the system. But
for a generic system in general relativity, continuous
group of symmetry does not exist!
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Nonexistence of continuous symmetries caused
difficulties to define classical concepts such as mass,
linear momentum and angular momentum that are
fundamental in understanding physics of gravity.
When we watch two neutron stars interacting with
each other, we need to know the mass of each star
and the binding energy of the whole system
counting contributions from matter and gravity
together. This problem arises in general relativity
because the concept of energy density is not
possible in this theory of gravity.
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The reason is that if the density exists, it will
depend only on the first order information of the
potential of the gravity which is the metric tensor.
Yet we can always find a coordinate system so that
the first order differentiation of the metric tensor is
zero at one point. This will mean that the energy
density is zero.
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Einstein already realized such questions one hundred
years ago. He proposed a definition of energy based
on a concept of pseudo-tensor drawing analog with
the definition of Newtonian mechanics. This
definition was clarified more precisely by the work of
Arnowitt, Deser, and Misner in 1962. Nowadays it is
called ADM mass.
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This definition works well for isolated physical
system of gravity where the total mass of the whole
system is defined. From the point of view of
Noether, this is natural because for an isolated
physical system, we expect existence of asymptotic
symmetry at infinity and the time translation at
infinity captures the total energy of the system.
This is a good definition of total energy. However, it
captures the total energy only and there are detailed
information of partial energy we need to explore.
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The very important question went back to Einstein
again. He proposed the concept of gravitation
radiation: the vibration of spacetime will radiate
wave which gives energy. The energy comes from
the binding energy of the gravity of the system.
This concept was clarified by Bondi-van der
Burg-Metzner and Trautman where they defined a
mass along some null hypersurface. Such a mass is
called Bondi mass and it has a pleasant property
that it decreases when the null hypersurface moves
to the future.
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The decreases of the Bondi mass is interpreted as
the energy carried away by the gravitational
radiation. The definition of Bondi mass is important
as it describes the dynamics of spacetime. However,
the definition presumes some structure of spacetime
that depends on the dynamics of the Einstein
equation.
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Both ADM and Bondi mass are total mass in
nature. |t cannot capture mass of bodies that are
interacting with some other bodies. An important
case is how to define binding energy of two neutron
stars interacting with each other. Hence we need a
concept of quasilocal mass: Given a closed
two-dimensional (spacelike) surface S in spacetime,
what is the total energy it encloses?
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If S is the boundary of a three-dimensional spacelike
three-manifold M in spacetime, we like to measure
the total mass enclosed by S within M. Since we
like to make sure the energy to be conserved, the
quantity that we want should depend only on the
information of S in spacetime and independent of
the choice of M. This is the conservation law for
quasilocal mass.
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The existence of such quantity has been a serious
problem for a long time. The very first thing that
Einstein and later workers in general relativity was
interested in whether the total ADM mass for an
isolated physical system is positive?
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In fact, in 1957, Bondi and other well known
physicists had a meeting and discussed the
possibility of negative mass in general relativity.
Einstein’s theory could not tell whether this is
possible or not. But if the total mass is negative,
the system may collapse and it will mean Einstein's
theory of gravity may create a rather undesirable
effect of unstable system.
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The positivity of ADM mass was proved by Schoen
and myself in 1979, the full proof published in 1981.
Our proof is more geometric in nature.
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Subsequently, Witten  gave
a proof depending on Dirac
operator  which IS more
transparent to physicists. Shortly
afterwards, Bondi mass was also
proved to be positive and the
state of affair for total mass of
an isolated physical system in
gravity is pretty satisfactory.

Witten
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Schoen and | also used our method to prove in an
effective way that when matter density is large
enough, black hole will form. It is probably the first
rigorous statement that black hole forms when
matter density is large.
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The demonstration of existence of a good definition
of quasilocal mass took a long time, after works of
many people including Penrose, Hawking,

Brown-York, Geroch, Bartnik, Horowitz and
Shi-Tam.

Penrose Hawking
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Since it is supposed to be trivial for any closed
surface in the flat Minkowski spacetime and yet
nonnegative for general spacetime, it is a miracle
that such a definition can exist which is compatible
with the previous works of ADM and Bondi. Two
important definitions were proposed: one is due to
Robert Bartnik and the other due to Mu-Tao Wang
and myself.
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The quasilocal mass allows us to define binding
energy related to binary black holes and is related to
the energy of the gravitational radiation. The
approach of Wang-Yau allows them to define
quasilocal angular momentum with Po-Ning Chen.
It helps to clarify the former definitions of total
angular momentum.
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By the works of Richard Schoen and his coauthors,
we know the Bartnik mass is different from
Wang-Yau mass. It would be interesting to know
which one is more useful to describe physical

dynamics of gravity.
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Many other important classical concepts in gravity
has their counterparts in general relativity. But the
nonlinear nature of general relativity makes it
difficult to define. But | think the recent progress
made by many geometric analysts has been very
important.
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The concept of quasilocal mass and angular
momentum has opened a window on studying the
physics and geometry of spacetime. A great deal
more efforts need to be spent in their study.

The definitions are most successful for objects
within an isolated physical system. It would still be
useful to understand a more general situation
including higher dimensional analogue. Rather
intricate geometry are involved in the study of such
concepts.
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Einstein's theory of gravitation has initiated a deep
understanding of geometry through physical insight
and vice versa, in the last century. We expect this
to continue in this century. The very interesting
activities in this conference in Stony Brook
demonstrate the exciting future of this interplay
between geometry, analysis and physics.
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Thank you!



