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The SYZ Proposal

Naichung Conan Leung*

1 Pre-SYZ

In the beginning of the nineties, there is a ground-breaking event in mathematics,
namely the birth of the mirror symmetry.

Greene, a postdoc of Yau, and Plesser proposed [7] that the super string
theory compactified on a Calabi-Yau threefold X should admit a dual theory
which is compactified on a different Calabi-Yau threefold Y. The equivalence of
these two theories is called mirror symmetry, and Y is the mirror manifold to X
and vice versa.

The simplest Calabi-Yau threefold is the zero locus of a degree five homoge-
neous polynomial f in CP*, the quintic Calabi-Yau threefold. For example if we
take

f (20,2150 24) =25 + 20+ + 25 + ¥ (2021 -+ - 24)

then X = {f = 0} is a smooth Calabi-Yau threefold, called the Fermat Calabi- Yau
threefold, provided that 1 is any complex number not equal to one.

Candelas et al [2] did a highly nontrivial calculation of this equivalence for the
Fermat Calabi-Yau threefold and showed physically that the number of rational
curves of any degree in X can be read off explicitly from the periods of Y. This
is an astonishing discovery as it relates two very different but equally important
subjects in algebraic geometry, namely the enumerative geometry of X and the
variation of complex structures of Y.

In string theory, each Calabi-Yau manifold X determines two twisted theo-
ries, called the A-model and B-model, and the mirror symmetry between X and
Y interchanges these two models between them. From the mathematical perspec-
tive, A-model is about the symplectic geometry and B-model is about the complex
geometry.

A-model on X ST ——— B-model on Y
(symplectic geometry) OR y (complex geometry)

In 1994 Kontsevich [16] proposed a much more precise conjecture on this
duality between symplectic and complex geometries, called the homological mirror
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symmetry (HMS): If X and Y are mirror manifolds to each other, then the Fukaya-
Floer category of Lagrangian intersections in X is equivalent to the bounded de-
rived category of coherent sheaves on Y. There are also generalizations of this
duality for Fano manifolds and general type manifolds.

2 The birth of SYZ

Ever since the work of Candelas et al, there had been much work on verifying
various surprising predictions coming out from -mirror symmetry. This includes
searching the right definitions of the Gromov-Witten invariants and the Fukaya-
Floer category; developing Bott localization techniques and use them to compute
Gromov-Witten invariants; using toric geometry to construct mirror manifolds
and so on. Nevertheless, it is still a complete mystery as to why such a powerful
duality exists.

In 1997, Strominger, Yau and Zaslow proposed a resolution in their ground-
breaking paper [24]. They conjectured that (i) both X and Y should admit special
Lagrangian torus fibrations with sections in the large volume/complex structure
limit;

T dual tori T

/ l
X Y
! !
B B*

(ii) they are dual torus fibrations to ecach other; (iii) a fiberwise Fourier-Mukai
transformation along fibers interchanges the symplectic (resp. complex) geometry
on X with the complex (resp. symplectic) geometry on Y.

This surprises everyone as it says that the mysterious duality is simply
a Fourier transformation! The quantum corrections, for instance the Gromov-
Witten invariants, come from the higher Fourier modes. The challenging task
is to understand the behavior of the Calabi-Yau metrics near the large complex
structure limit.

The SYZ is a very elegant conjecture. This is both very simple and very deep,
and its importances in the development of geometry is hard to be overstated. On
the one hand, the SYZ conjecture is the guiding light for all our effort in trying
to understand the mirror symmetry which transforms the symplectic geometry
to complex geometry and vice versa. This includes works of Gross, Kontsevich,
Siebert, Vafa, Yau, Zaslow and many others. On the other hand, it has led to
vivid developments of other branches of mathematics, including the calibrated
geometry of special Lagrangian submanifolds by Schoen’s school and the affine
geometry with singularities.

A brief reasoning behind SYZ is as follows: From physical considerations,
branes in B-model are complex submanifolds, or more precisely complex of co-
herent sheaves up to derived equivalences, and branes in A-model are special La-
grangian submanifolds coupled with unitary flat bundles. As mirror symmetry
interchanges the complex geometry of Y with the symplectic geometry of X, their
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moduli spaces of branes should be identified as well, at least at the large complex
structure limit where quantum corrections had been suppressed. Since Y can be
regarded as the moduli space of points which are complex submanifolds, ¥ should
also be the moduli space of certain A-branes in X. Furthermore the underlying
Lagrangian submanifolds of these A-branes should cover X everywhere once, just
like what points in Y did. Then we can argue via deformation theory to show that
X should admit a special Lagrangian torus fibration

T X5B,

When we consider the complex submanifold which is Y itself, the moduli space is
a single point and the corresponding A-brane in X would be a special Lagrangian
section to .

Next, given any torus fiber 7" in X, its dual torus T* parametrizes flat U (1)-
bundles over T', namely A-branes in X with support 7. Under mirror symmetry,
this T also parametrizes corresponding B-branes in Y, which are points in Y.
Thus T* is a subspace in Y and therefore Y also has a torus fibration by such
T*’s.

T* Y 5. B*.

One can further argue that these two are dual special Lagrangian torus fibrations,
at least in the large complex structure limit where quantum corrections have been
suppressed.

Besides giving dual fibrations on mirror manifolds X and Y, we have a trans-
formation between special Lagrangian fibers in X with zero dimensional complex
submanifolds in Y, namely points. This is a special case of a fiberwise Fourier-
Mukai transformation. For more general special Lagrangian submanifolds in X,
say a section to the above fibration, then the intersection point of it with any fiber
T would determine a flat U (1) connection on T* because (7*)" = T'. By patching
them for various fibers T, we obtain a U (1) connection on the whole manifold
Y. One expects that this determines a holomorphic line bundle on Y which is
the mirror to the section in X. This was verified in [20] in the semiflat case. We
call this transformation between the symplectic geometry of X and the complex
geometry of Y the SYZ mirror transformation.

In order to complete the SYZ proposal, we still have much work to do. This
includes describing the Calabi-Yau metrics near the large complex structure limit
point; constructing special Lagrangian fibrations and understanding their singular-
ity structures; studying affine geometry with singularities; developing a geometric
theory of Fourier transformation with quantum corrections and so on.

3 The growing up of SYZ

The SYZ proposal has led to exciting developments of several branches of mathe-
matics. We are going to explain some of these aspects.
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3.1 Special Lagrangian geometry

Special Lagrangian submanifolds coupled with unitary flat bundles are branes
in A-model of string theory. They are mirror to coherent sheaves as branes in
B-model. Let us recall its definition. Let us denote the Kéhler form and the
holomorphic volume form on a complex n-dimensional (Calabi-Yau manifold X as
w € Q1 (X) and Q € Q™0 (X) respectively. A middle dimensional submanifold
L in X is Lagrangian if w|, = 0 and such an L is special if Im Q| = 0. This is
equivalent to Re Q|r, = volr, that is L is calibrated by Re Q|r,. From the calibration
theory developed by Harvey and Lawson, such manifolds are absolute minimum
for the volume functional, just like complex submanifolds in Kéhler manifolds.

These geometric objects becomes of central importance in mathematics be-
cause of the SYZ conjecture. Many examples were constructed using cohomogene-
ity one method by Joyce, using singular perturbation method by Butscher, Lee,
Haskins, Kapouleas and others, and using other methods by Bryant and Haskin.
There are also many investigations of their properties, including the studies of
their deformation theory by McLean and later by Schoen’s school, their moduli
spaces by Hitchin, their existence and regularity problem by Schoen and Wolf-
son using variational approach and many other aspects of the geometry of special
Lagrangian submanifolds.

The mirror symmetry conjecture predicts that (special) Lagrangian submani-
folds should behave like (Hermitian Yang-Mills) holomorphic vector bundles, mod-
ulo quantum effects. Thomas and Yau [25] formulated a very interesting conjec-
ture on the existence of special Lagrangian submanifolds which is the marror of
the important theorem of Donaldson, Uhlenbeck and Yau which says that there
is a unique Hermitian Yang-Mills connection on any stable holomorphic vector
bundle.

3.2 Special Lagrangian fibrations

SYZ conjecture predicts that mirror Calabi-Yau manifolds should admit dual torus
fibrations whose fibers are special Lagrangian submanifolds, possibly with singu-
larities.

Lagrangian fibrations is an important notion in symplectic geometry as real
polarizations, as well as in dynamical system as completely integrable systems.
Their smooth fibers admit canonical integral affine structures and therefore they
must be tori in the compact situation. Toric varietics P are examples of sym-
plectic manifolds with Lagrangian fibrations in which the fibers are orbits of an
Hamiltonian torus action and the base is a convex polytope A. The simplest
compact toric varieties are certainly complex projective spaces cprtt.

A complex hypersurface X = {f = 0} in CP"*! is Calabi-Yau if and only
if degf = n+ 2. The most singular ones is when X is a union of coordinate
hyperplanes in CP™! and this is called the large complex structure limit (LCSL).
At this most singular limit, X inherits a torus fibration from the toric structure on
CP™*!. Thus one can try to perturb this to obtain Lagrangian fibration structures
on nearby smooth Calabi-Yau manifolds. This approach was carried out by Gross,
Mikhalkin, Ruan and Zharkov.
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This approach can be generalized to Calabi-Yau hypersurfaces X in any Fano
toric variety Pa. Furthermore, their mirror manifolds Y are Calabi-Yau hypersur-
faces in another Fano toric variety Py whose defining polytope is the polar dual to
A. Thus we can see that the Lagrangian fibration structures on X and Y should
be given by dual tori, at least away from singular fibers.

However the question of whether one can make the Lagrangian fibrations on
X specialis a much more delicate question as we do not understand the behavior of
the Calabi-Yau metrics, whose existences are asserted by the celebrated theorem
of Yau [26]. It is possible that only approzimate special Lagrangian fibrations
exists for Calabi-Yau threefolds near the large complex structure limit as it was
indicated by Joyce in his work on special Lagrangian fibrations on generic almost
Calabi-Yau threefolds.

The situation is quite different for Calabi-Yau twofolds, namely K3 surfaces,
or more generally for hyperkéhler manifolds. In this case, the Calabi-Yau metric on
X is Kihler with respect to three complex structures I,Jand K. When X admits
a J-holomorphic Lagrangian fibration, then this fibration is a special Lagrangian
fibration with respect to the Kahler metric wr, as well as wg. Furthermore, SYZ
also predicts that mirror symmetry is merely a twistor rotation from I to K
in this case. For K3 surfaces, there are plenty of elliptic fibrations and they
are automatically complex Lagrangian fibrations because of their low dimension.
Furthermore Gross and Wilson [13] described the Calabi-Yau metrics for generic
elliptic K3 surfaces by using the singular perturbation method. They used model
metrics which were constructed by Greene, Shapere, Vafa and Yau [6] away from
singular fibers and by Ooguri and Vafa [21] near singular fibers.

The topology and geometry of special Lagrangian fibrations are studied by
Gross [8]9][10] and Goldstein [5].

3.3 Affine geometry

A well-known fact from integrable system says that given any compact Lagrangian
fibration

T 5X5 B,

its base space B admits a canonical integral affine structure, possibly with singu-
larities. This affine structure will dictate the Calabi-Yau geometry at the large
complex structure limit.

Outside the preimage of the singular set of B, the total space X is given by
the quotient of the cotangent bundle T*B by a lattice subbundle symplectically.
In order to understand the A-model on X, we need to be able to describe rational
curves and holomorphic disks on X in terms of the affine structure on B. There
has been much progress on this by the work of Fukaya, Kontsevich-Soibelman,
Siebert and Gross and others. Here tropical geometry plays an important role.

The tangent bundle T B of any affine manifold B admits a canonical complex
structure away from its singularities. Kontsevich and Soibelman [17], Gross and
Siebert [12] described how to deform this complex structure at the large complex
structure limit to nearby complex structures. Recall that the physical calculations



138 Naichung Conan Leung

of Candelas et al [2] showed that the variation of their Hodge structures should
determine the Gromov-Witten invariants of rational curves of the mirror mani-
fold. This important formula was later proven by Givental, Lian, Liu and Yau
via a clever computation of Gromov-Witten invariants using localization method.
The above program will eventually give a mathematical explanation of this phe-
nomenon.

The first step in understanding the behavior of Calabi-Yau metrics on Calabi-
Yau threefolds near large complex structure limits is to construct affine analogs
of Calabi-Yau metrics on the affine manifold B. Notice that the affine structure
on B is singular and the nontrivial part of the singular set Sing (B) is locally
given by a planar Y-vertex in R3. Therefore, such an affine Calabi-Yau metric
on B should also be singular along Sing (B) with appropriate monodromy around
it. Using the scaling symmetry of the Y-vertex, Loftin, Yau and Zaslow [21] had
constructed an affine Calabi-Yau metric around it by using PDE methods in two
dimension. However we are still pursuing one with monodromy predicted by the
mirror symmetry.

3.4 SYZ transformation

Recall that the SYZ conjecture says that the duality between mirror manifolds
is a Fourier-Mukai transformation along dual special Lagrangian torus fibrations.
Soon we realized that we also need to couple the fiberwise Fourier transformation
with a Legendre transformation on the affine manifolds which are the bases for the
dual fibrations. This SYZ transformation was generalized to the mirror symmetry
for local Calabi-Yau manifolds by Leung and Vafa in [19]. In [15], Hori and Vafa
gave a physical proof of the mirror symmetry using the SYZ proposal.

On the mathematical side, Leung, Yau and Zaslow [20], [18] used the SYZ
transformation to verify various correspondences between symplectic geometry and
complex geometry between semi-flat Calabi-Yau manifolds. In this situation, there
is no quantum corrections from instantons, namely rational curves or holomorphic
disks. To include quantum corrections in the SYZ transformation for Calabi-Yau
manifolds is a much more difficult problem. However in the Fano case, there are
recent results on applying the SYZ transformation with quantum corrections by
Auroux [1], Chan and Leung (3] and Fang [4].

4 Future of SYZ

SYZ has generated a huge amount of research activities in mathematics, as well as
in physics. This includes geometry of special Lagrangain submanifolds, and more
generally calibrated submanifolds, Lagrangian fibrations, SYZ Fourier transfor-
mations, tropical geometry, affine geometry and so on. Such an elegant proposal
will continue to be the driving force for the rapid development in geometry and
physics. And it will eventually lead to a satisfactory solution to the mirror sym-
metry conjecture.
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