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Abstract— We propose a deep learning-based method for object
detection in UAV-borne thermal images that have the capability
of observing scenes in both day and night. Compared with visible
images, thermal images have lower requirements for illumination
conditions, but they typically have blurred edges and low con-
trast. Using a boundary-aware salient object detection network,
we extract the saliency maps of the thermal images to improve
the distinguishability. Thermal images are augmented with the
corresponding saliency maps through channel replacement and
pixel-level weighted fusion methods. Considering the limited
computing power of UAV platforms, a lightweight combinational
neural network ComNet is used as the core object detection
method. The YOLOv3 model trained on the original images is
used as a benchmark and compared with the proposed method.
In the experiments, we analyze the detection performances of
the ComNet models with different image fusion schemes. The
experimental results show that the average precisions (APs) for
pedestrian and vehicle detection have been improved by 2%∼5%
compared with the benchmark without saliency map fusion and
MobileNetv2. The detection speed is increased by over 50%, while
the model size is reduced by 58%. The results demonstrate that
the proposed method provides a compromise model, which has
application potential in UAV-borne detection tasks.

Index Terms— Combinational neural networks, model com-
pression, saliency map, thermal image.

I. INTRODUCTION

THE images obtained by unmanned aerial vehicles (UAVs)
have great potential in a wide range of applications, such

as traffic monitoring, urban security, and emergency response.
Although image-based object detection techniques have been
extensively studied in the past, most of the previous works
focused on analyzing visible color images. One challenge
of using visible images is that they are sensitive to lighting
conditions, especially for images taken at night. Thermal
images, on the contrary, require less illumination intensity, as
they use infrared radiation emitted by objects. Hence, interests
have been drawn toward exploring the use of thermal images

to build intelligent systems for object detection in varying
lighting environments [1]–[4].

Given the complementary nature between thermal images
and visible images, researchers have explored constructing
new architectures that fuse visible images and thermal images
[5], [6]. However, generating registered visible–thermal image
pairs is still an open problem. Besides, most UAV plat-
forms have limited payload capacity and cannot load different
imaging devices at the same time. Aerial visible images are
susceptible to bad illumination, which makes object detection
unreliable at certain conditions. In this work, we use only
thermal images for object detection and focus on pedestrian
and vehicle detection.

Compared with visible images, thermal images typically
have blurred edges, low contrast, and high-levels of noise,
which imposes challenges for object detection. When temper-
atures are very close in range, thermal imaging can lead to
object confusion. Besides, UAV jitter might increase the level
of blur at object boundaries in the images. To address these
problems, we propose to augment thermal images with their
boundary-aware saliency maps through a fusion strategy. The
saliency map of an image represents a visual attention mech-
anism that highlights the pixel regions belonging to salient
objects in a given scene [7]–[10]. However, the saliency maps
discard texture information. Our work takes advantage of both
saliency maps and thermal images to improve the performance
of object detection. Especially, the proposed method uses a
deep saliency network consisting of a prediction module and
a refinement module to detect salient object regions with clear
boundaries.

Our basic model is established by training state-of-the-art
object detector YOLOv3 [11]. In YOLOv3, the detection is
done by applying detection kernels on feature maps of three
different sizes at three different places in the network. The
model has a good performance for small objects by using short
cut connections. Although the feature extraction capability
of convolutional neural networks (CNNs) is continuously
improved with the continuous deepening of the network layers,
the model size and prediction speed bring many challenges
in practical engineering. One the one hand, a deep CNN
might contain dozens or even hundreds of layers, which
leads to a large number of weight parameters. On the other
hand, the large sizes of models result in high demands in
device storage and computing resources. Thus, adjusting the
structure of deep neural networks to achieve the best balance
between accuracy and running time has become an urgent
task.
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Considering the limited computing capability of UAV plat-
forms, we trained a combinational neural network “ComNet”
model, which uses the lightweight network MobileNetv2 [12]
to replace the traditional feature extraction module in
YOLOv3. The proposed network can improve operation speed,
and meanwhile, it also reduces the model size. Besides, we use
the focal loss [13] to replace the original loss function in the
YOLOv3 network to solve the number imbalance problem
of negative samples. The experimental results show that,
compared with the traditional networks, the object detection
performance of the combined network improves in terms of
detection speed and model size.

The main contributions of this article are as follows.

1) To the best of our knowledge, the first approach is
augmenting UAV-borne thermal images with saliency
maps to improve object detection performance. The
method compensates for the defects of raw thermal
images by extracting and infusing the boundary-aware
saliency maps with thermal images.

2) Using ComNet, a balance between accuracy, network
size, and speed. This deep model trained on the fusion
images is lightweight and can be easily ported to a UAV-
borne platform in the future.

3) A data set of thermal images containing original
thermal images, pixel-level annotations for object
detection, and corresponding saliency maps. The
data set can be used for training and testing various
deep learning techniques for object detection and
segmentation. The data set is available at
https://drive.google.com/drive/
folders/1vCxXsKnK3dVB-bkT6XLbbQF7YTdS2CR0

II. RELATED WORK

A. Object Detection

Traditional pattern recognition methods (e.g., support vector
machines, conditional random fields, and maximum likelihood
estimation) are still popular for objection detection for air-
borne data [14], [15], where supervised feature extraction is
critical to the success of these methods. Recent advances in
deep learning-based approaches have achieved state-of-the-art
performances in various urban remote sensing tasks [16]–[18].

The first class of object detection deep networks is the
Region-based CNN (R-CNN) series. The R-CNN approach
[19] is first to get a manageable number of candidate object
regions [20], [21] and evaluate convolutional networks inde-
pendently on each region of interest (ROI). R-CNN was
extended to allow attending to ROIs on feature maps using
RoIPool, leading to fast speed and better accuracy. Faster
R-CNN [22] advanced this stream by learning the attention
mechanism with a region proposal network (RPN). Faster
R-CNN is flexible and robust to many follow-up improvements
and is the current leading framework in several benchmarks.
On this basis, Mask R-CNN [23] extends Faster R-CNN by
adding a branch for predicting an object mask in parallel with
the existing branch for bounding box recognition.

On the other hand, the YOLO network [24], [25] takes the
entire image in a single instance and predicts the bounding box

coordinates and class probabilities for these boxes. The biggest
advantage of using YOLO is its superb speed. YOLO also
understands generalized object representation. The updated
YOLOv3 network is a little bigger than the last version
YOLOv2 but more accurate. It has shown a comparatively
similar performance to the R-CNN algorithms. In our work,
our task focuses on object detection and localization, rather
than instance segmentation, so we use YOLOv3 as a baseline
method for pedestrian and vehicle detection.

B. Saliency Detection

Different from other dense-labeling tasks, e.g., semantic
segmentation and edge detection, the goal in salient object
detection is to identify the visually distinctive regions or
objects in an image and then extract the targets. Such process-
ing is usually served as a preprocessing for further computer
vision tasks.

Early research for saliency detection focused on handcrafted
features and heuristic priors, e.g., center priors [26] and
boundary background priors [27]. Along with the breakthrough
of deep learning approaches, fully CNNs (FCNs) have been
adopted for salient object detection [28], [29]. Zhang et al. [30]
developed a reformulated dropout and a hybrid upsampling
module with uncertain convolutional features (UCFs) to reduce
the check-board artifacts of deconvolution operators as well
as aggregating multilevel convolutional features in (Amulet)
[31] for saliency detection, in which the saliency is mainly
defined over the global contrast of the whole image rather
than local or pixelwise features. To achieve accurate results,
the methods must understand the semantic meaning of the
whole image, as well as the detailed structures of the objects.
Among these methods, U-shape-based structures [32], [33]
receive the most attention because of their ability to construct
enriched feature maps by building top–down pathways upon
classification networks.

An unresolved problem is that linking features from dif-
ferent layers loses accuracy in recovering the boundaries.
Although the features from deeper layers could help locate the
target, the loss of spatial details might obstruct the features
from shallower layers for recovering the object boundaries.
A more proper way is to employ the multiscale features
in a coarse-to-fine fashion and gradually predict the final
saliency map. Considering that simply concatenating features
from different scales may fail if disordered by the ambiguous
information, coarse-to-fine solutions are employed in recent
state-of-the-art methods, such as RefineNet [34], PiCANet
[35], and RAS [36]. These methods address this limitation
by introducing a recursive aggregation method that fuses the
coarse features to generate higher solution semantic features
stage-by-stage.

To get clear boundaries, BASNet [10] first makes a coarse
saliency prediction with a deeply supervised structure, and
then, it refines the residual of the saliency map with a bottom–
up module and a top–down module. Boundary accuracy is
improved by a hybrid loss implementation.

In this article, we adopt the BASNet structure to generate
saliency maps from thermal images. The network learns the
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transformation between the input image and the ground truth in
a three-level hierarchy, namely, pixel-, patch- and map-levels.
Using the hybrid fusing loss, the trained model can segment
the salient object regions with clear boundaries. The enhanced
boundary features can effectively compensate for the blurring
characteristics of thermal images.

C. Model Compression and Acceleration

Most deep learning algorithms are computationally inten-
sive and memory-intensive, making them difficult to deploy
on embedded systems with limited hardware resources.
To achieve the best balance between accuracy and runtime,
many lightweight network structures have been proposed by
adjusting the structure of networks. Compression without
losing accuracy means that there is significant redundancy in
the trained model, which shows the inadequacy of the current
training methods.

SqueezeNet [37] introduces a fire module that consists of
a squeeze layer and expand layers. The squeeze layer uses a
1 × 1 kernel to limit the input channel of the large kernel,
so it effectively reduces model parameters and calculation
costs. SqueezeNet can achieve a compression ratio of 50 times
without losing model accuracy. ShuffleNet [38] makes full
use of grouping convolution and channel shuffling to further
improve the model efficiency. ShuffleNet solves the problem of
information flow between groups while reducing the amount
of calculation.

The MobileNet [39] and its variants [12], [40] are
designed for lightweight mobile and embedded devices.
MobileNetv1 uses depthwise separable convolutions
to improve the computation efficiency. On this basis,
MobileNetv2 adds a linear bottleneck and an inverted
residual structure to form a more efficient basic module.
MobileNetv3 uses a new nonlinear activation layer h-swish
and a complementary network search method to search for a
lightweight network. Compared with the previous versions,
MobileNetv3 has the smallest size, but its structure is complex
and is more difficult to train.

To tradeoff, our method uses MobileNetv2 to combine
with the YOLOv3 model. Compared with the traditional
YOLOv3 model, the proposed model runs faster and has
a smaller model size, which can meet the requirement of
lightweight platforms.

III. METHOD

A. Saliency Map Generation

We explore a deep network to extract saliency maps from
thermal images. Since the backgrounds in UAV-derived images
are complex, the saliency maps can highlight pedestrians
and vehicles from the background. However, the saliency
images discard all available texture information, which may
cause missing detection. To address this problem, we fuse
the thermal images with its corresponding saliency maps to
improve the distinguishability of objects in the images. Since
a grayscale raw thermal image is obtained by digitizing the
thermal radiation, we convert the data to a pseudocolor image
to fit the detector. As the first step, we map the grayscale image

to a color image with R-G-B channels by the iron palette,
where blue and purple are for slightly cold areas, and then,
the higher temperatures are red, orange, and yellow. In the
following steps, we use the RBG image for further processing.

Existing deep learning-based saliency detection methods
focus on the accuracy of areas, instead of the quality
of boundaries. As thermal images suffer from seriously
blurred boundaries, we assume that the quality of the salient
object boundaries has a large impact on the performance of
object detection. Following the spirit of the UCF network
[30] and BASNet [10], we use a boundary-aware method to
generate saliency maps.

As shown in Fig. 1, the proposed architecture consists
of a supervised prediction module and a residual refinement
module. The prediction module is in charge of predicting a
coarse map, and the residual refinement module is to refine
the saliency map. The weights of the ResNet-34 model [41]
are used to initialize the parameters of the feature extraction
network.

The prediction module is a densely supervised encoder–
decoder network incorporated with U-Net [32]. The encoder
part extracts features from images, and a pooling method is
used to obtain the high-level semantic features with progres-
sively smaller resolution. The latter decoder part is responsible
for the gradual reduction and amplification of high-level
semantic information to gradually obtain the feature map with
a large resolution. Subsequently, the decoder part outputs a
coarse saliency map with the same size as the original one.
The encoder and the decoder are directly connected, which add
feature maps with the same resolution. This makes it possible
for the final output feature map to take into account features
from different levels.

The refinement module is designed as a residual block that
refines the predicted coarse saliency maps Scoarse by learning
the residuals Sresidual between the saliency maps and the ground
truth

Srefined = Scoarse + Sresidual. (1)

The output of this refinement module is the saliency map with
better boundaries.

We adopt the loss function used in BASNet, which com-
bines the loss of BINARY CROSS-ENTROPY (Lbce), struc-
tural similarity (SSIM, Lssim), and Intersection-over-Union
(L iou). BASNet is deeply supervised with eight outputs,
including seven outputs from the prediction model and one
output from the refinement module. The loss is defined as

L = Lbce + Lssim + L iou (2)

where Lbce corresponds to pixel-level supervision that is the
most widely used loss in binary classification and segmenta-
tion

−
∑

(r,c)

[G(r, c) log(S(r, c)) + (1 − G(r, c)) log(1 − S(r, c))]

where G(r, c) ∈ {0, 1} is the ground-truth label of the pixel
(r, c) and S(r, c) is the predicted probability of being a
salient object. It does not take into account the labels of the
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Fig. 1. Architecture of the boundary-aware saliency map detection network.

neighborhood. The weights of the foreground and background
pixels are equal.

SSIM is originally proposed for image quality assessment.
It captures the structural information of an image. Hence,
BASNet integrated it into the training loss to learn the
structural information of the salient object ground truth. Lssim

denotes the supervision at the patch level

(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)

where x = {x j : j = 1, . . . , N2 and y = {y j : j = 1, . . . , N2

are the pixel values of two corresponding patches (size N × N)
cropped from the predicted probability map S and the binary
ground-truth mask G, respectively. (μx , μy) and (σx , σy) are
the mean and standard deviations of x and y, and σxy is their
covariance. C1 = 0.012 and C2 = 0.032 are used to avoid
dividing by zero. Lssim considers a local neighborhood of each
pixel, and it assigns higher weights to the boundary, i.e., the
loss is higher around the boundary.

L iou denotes IoU loss, corresponding to the supervision at
the level of the map

∑H
r=1

∑W
c=1 S(r, c)G(r, c)

∑H
r=1

∑W
c=1 [S(r, c) + G(r, c) − S(r, c)G(r, c)]

where S(r, c) and G(r, c) are consistent with those represented
in Lbce.

When combining these three losses, BASNet uses BCE to
maintain a smooth gradient for all pixels, while using IoU to
give more focus on the foreground. SSIM encourages respect-
ing the structure of the original image, by a larger loss near
the boundary. Equipped with this hybrid loss, the architecture
of salient object detection can effectively segment the object
regions and accurately generate clear boundaries.

B. Fusion of Thermal Images With the Saliency Maps

After obtaining saliency maps, we test two different strate-
gies for image fusion: 1) we replace one of the three channels
of the thermal images with the saliency map to generate the

Fig. 2. Different methods for fusing the thermal image and the saliency map.

fusion image and 2) we duplicate the saliency map three times
and fuse them with the three channels of the thermal image by
pixel-level addition, which uses an average weight ratio of 0.5.
We expect that such a system would perform well especially
in bad lighting conditions when objects are more indiscernible
from their surroundings in thermal images.

A brief view of the fusion schemes is shown in Fig. 2.
We observed that the fusion images are capable of high-
lighting pixel regions of objects of interest, and meanwhile,
they preserve texture information in the images. To test the
performance of different fusion strategies, we train a series of
object detection models on the following four types of data:

1) original thermal images R-G-B;
2) saliency maps of thermal images indicated by “S”;
3) fusion images with channel replacement, namely, R-G-S,

R-B-S, and B-G-S;
4) Fusion images with pixel-level weighted fusion, namely,

0.5S+0.5 (R-G-B).

C. Detection Models Based on YOLOv3 and Mask R-CNN

We use the network YOLOv3 [11] to complete the basic
task of pedestrian and vehicle detection. The model trained on
original thermal images is used as the evaluation benchmark.
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Fig. 3. Architecture of ComNet.

YOLOv3 divides an image into regularized grids. Each
grid is only responsible for detecting the object whose center
falls in the grid. Each grid needs to predict the boundary
box (BBox) and category information in three scales. The
method predicts BBox, object confidence, and category proba-
bility contained in all regions simultaneously using regression
methods. As the network uses a multiscale detection structure,
it has a good effect on the detection of small objects that are
crucial for UAV-derived data.

We fine-tune the YOLOv3 model that is pretrained on
the COCO data set [42] to generate our detection model.
The benchmark method automatically starts training from
DarkNet53 [43] rather than from scratch. It is equivalent to
using the first few layers of the given model to extract shallow
features and then falling into our classification at last.

The advantage of fine-tuning is that it does not need to
retrain the model completely, thus improving efficiency. Gen-
erally, the accuracy of the new training model will gradually
increase from very low values. The fine-tuning step enables
us to quickly achieve high accuracy after a relatively small
number of iterations. Using fine-tuning, better performance
can be expected even if the data sets are small.

We also use Mask R-CNN to build a model that takes
original thermal images as input. The pretrained weights for
MS COCO [42] are used as a starting point to train our
variation on the network. As our task is to classify individual
objects from UAV-borne thermal images and localize them,
using the bounding box can meet our needs. In this work,
the Mask R-CNN model is used as a reference for algorithm
comparison. The performance of the model is given in the
following experimental part.

D. Model Compression Using MobileNetv2

To reduce model parameters and calculation costs, we pro-
pose a combinational network based on MobileNetv2 to slim
YOLOv3 and call it ComNet. The architecture of ComNet is
shown in Fig. 3.

YOLOv3 outputs three feature maps of different scales,
where the lengths are 13, 26, and 52. This characteristic is one
of the few improvements mentioned in the version v3 model:
predictions across scales. Objects are detected in multiscales
of different sizes. The finer the grid cell, the finer the objects
can be detected. Using our different fusion images, the models
are trained according to the object category (pedestrian and
vehicle) and the size of the prior box.

Especially, we first remove the average pooling layer and
the last convolutional layer in MobileNetv2. Then, the mod-
ified MobileNetv2 is used to replace the DarkNet53 in the
YOLOv3 network. In MobileNetV2, there are two types of
blocks. One is a residual block with a stride of 1. Another
one is a block with a stride of 2 for downsizing. The ComNet
retains the connection rule of DarkNet53 used in YOLOv3.
That is, the last layers of the feature maps whose resolutions
are of 8× downsampling and 16× downsampling of the
input image are used as fine-grained features. These feature
layers are fused with the high-level semantic features after
upsampling in the detection network to enhance the object
recognition ability of the network. Besides, the 3 × 3 convo-
lution operation that occupies a large number of parameters in
the network is replaced with depthwise convolutions.

There are two possible problems with the training data.
First, the proportion of positive and negative samples is quite
unbalanced. Especially, the number of positive samples is
much smaller than that of negative samples. The second issue
is that the gradient of the energy model is dominated by easily
divided samples. Although the loss value of the easily divided
samples is very low, they have a large number. Thus, they make
a great contribution to the loss, resulting in poor convergence.
Therefore, we use focal loss [13] to improve the original loss
function as

Fl(pt) = −k(1 − pt)
α log(pt) (3)

where pt is the predicted probability and α and k are adjustable
hyperparameters. In this article, we set β = 0.5 and α = 2.
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Fig. 4. Two thermal images from our data set with object annotated using
Labelme [44] tool.

The purpose of the focal loss is to attenuate the intensity from
the perspective of predictive confidence.

IV. EXPERIMENTS

A. Data Sets and Experiment Setup

To train a deep detection model, a large number of samples
are needed. To the best of our knowledge, there are few
publicly available data sets of UAV-borne thermal images for
detecting pedestrian and vehicle. Training the saliency map
network from thermal images requires pixel-level annotations,
which is a very tedious manual task.

In this work, we provide about 3000 thermal images with
the corresponding annotations. A UAV was used to carry the
thermal infrared camera to collect images at different periods.
The images in the data set capture various scenes, such as
the sports ground, expressway, campus, the entrance of the
canteen with dense pedestrians at noon, and the corridor with
sparse pedestrians at night. To ensure the validity of the model,
the training set and the test set use the thermal images collected
under different scenes. The training set and validation set
are divided in the proportion of 80% and 20% during the
network training. The original image size is 640 × 512. A total
of 2434 training images are used including 3555 pedestrian
instances and 3189 vehicle instances.

To generate the annotated data set, as shown in Fig. 4,
we use the Labelme [44] tool to annotate the object pixels in
images. The annotation here includes the borders of objects,
categories, and the annotation for salient object detection.
On the other hand, we created 541 images with similar
annotations for testing our deep saliency detection network and
the ComNet. The test data include 1213 pedestrian instances
and 667 vehicle instances. The distribution of pedestrians and
vehicles in each frame of the training set and test set is shown
in Fig. 5. More than 75% of the images contain two to six
instances.

We implement our network based on the publicly available
framework: TensorFlow [45]. The deep models are trained and
tested using an NVIDIA 1080ti GPU with 12-GB memory.
Besides, our ComNet model has been transplanted to run on
a personal laptop with an i5-8300 CPU with 4-GB memory
and an NVIDIA Jetson Nano Board. The Nano Board has an
integrated 128-core Tegra GPU, quad-core ARM A57 64-bit
CPU, and 4-GB memory. The inference models have been
tested on different machines.

To evaluate the detection models, we used the average
precisions (APs) and frame per second (FPS) as the evaluation
metrics for accuracy and speed, respectively. Besides, mean

absolute error (MAE) and F-measure (Fβ) are used to evaluate
the performance of salient object detection. MAE computes
the average absolute difference per pixel between predicted
saliency maps and corresponding ground-truth annotations

MAE = 1

W × H

W∑

x=1

H∑

y=1

|S̄(x, y) − Ḡ(x, y)| (4)

where W and H are the width and height of the image; S̄(x, y)
and Ḡ(x, y) are the pixel values of the output saliency map and
its corresponding ground truth. The F-measure Fβ represents
the weighted harmonic mean of precision and recall under the
condition of a nonnegative weighted degree β. The higher Fβ

is, the better the model is. Fβ is defined as

Fβ = (1 + β2)Precision × Recall

β2Precision + Recall
(5)

where β2 is set to 0.3 in our work. We set this value by
learning from some existing literature [9], [46]. β2 has an
effect of raising the importance of precision. Thermal images,
sometimes, have very confusing backgrounds. We do not want
these regions to be detected as false positives and cause errors
in subsequent target detections.

B. Salient Region Detection Results

We used thermal images to train the boundary-aware
saliency network described in Section III-A. In the training
phase, the size of each image in the training set is first adjusted
to 256 × 256, and the training images are augmented by
random flipping and cropping. The decoding network is trained
from scratch with a learning rate of 0.01. The loss function
converges after 60 000 iterations by using a batch size of 8.
The entire training process took 7 h.

In the test phase, the input image size is also adjusted to
256 × 256 in the network to obtain predicted saliency maps.
Then, the downsampled saliency map is reconstructed to the
size of the original input image. Both adjustments are based
on bilinear interpolation.

Fig. 6(a) shows two example thermal images of pedestrians
and vehicles detected using our method. We tested the salient
object detection model on original thermal images. The exam-
ple saliency region masks generated by the proposed model are
shown in Fig. 6(b). We observed that the distinguishability of
vehicles is better than that of pedestrians in original thermal
images, as there is a higher contrast between vehicles and
the background road. The mask images do reflect the salient
regions with clear boundaries. We also experimented with
different strategies for generating fusion images. Especially,
we replaced one of the RGB channels of the thermal images
with the saliency maps, and another strategy was pixel-level
weighted fusion. From Fig. 6(c)–(f), we can see that the com-
binations of saliency maps with thermal images all succeeded
in illuminating the salient parts of the images while retaining
the textural information in the images.

Referencing the manually annotated test data, the evaluation
results of the salient object detection model show that Fβ is
0.767 and c is 0.008. The inference speed of the saliency
network is 39 FPS. The saliency detection and fusion of the

6



Fig. 5. Distribution of pedestrians and vehicles in the training images and test images.

Fig. 6. Saliency map detection results and the fusion images. (a) Original thermal images. (b) Predicted Saliency maps. From (c)–(e), the fusion images
generated by using saliency maps to replace R, G, and B channels of the thermal images. (f) Images generated by pixel-level weighted fusion.

images can be carried out in parallel, providing input data
directly to ComNet.

To further illustrate the performance of the saliency detec-
tion method, Fig. 7 shows the qualitative comparison of the
results with U-Net [32]. We can see that the U-Net result might
merge adjacent people and distorts the shape of the objects.
The salient regions that we detected have fine structures.
Notice that the contours of annotations are polygons generated
by Labelme [44] tool, with obviously broken line shapes.
In contrast, the detected boundary is smoother and more
consistent with the real shape of the object.

C. Object Detection Results of Different Methods

We trained the YOLOv3 model and the ComNet on different
training images, i.e., on thermal images, saliency maps, and
fusion images enhanced by different fusion methods. The
image size is adjusted to 416 × 416 by bilinear interpola-
tion. Both YOLOv3’s and ComNet’s backbone networks are
pretrained on the Microsoft COCO data set [41], and fine-
tuning with 100 epochs is conducted on the thermal images.
The batch size is set to 8, and the initial learning rate is 0.001.
We used Adam optimizer [47] to adaptively adjust the learning
rate. The IoU threshold is set to 0.5, and the final prediction
result is output after the nonmaximum suppression (NMS)
operation.

After training models, the performance of detection results
is evaluated in different settings using all methods: 1) thermal

images + YOLOv3; 2) thermal images + ComNet; 3) saliency
maps + ComNet; 4) replacing red channel of thermal images
with saliency maps + ComNet; 5) replacing green channel of
thermal images with saliency maps + ComNet; 6) replacing
blue channel of thermal images with saliency maps +
ComNet; and 7) weighted fusion of saliency maps and
thermal images + ComNet. The inference performance of the
methods on a GTX1080Ti machine is summarized in Table I.
We observed that the saliency maps have an impact on the
improvement of pedestrian and vehicle detection accuracy.
Besides, the combination with MobileNetv2 improves the
detection speed of the model.

1) Training YOLOv3 and Mask R-CNN: First, we trained
YOLOv3 and Mask R-CNN on only the original thermal
images. The YOLOv3 model size is 235 MB. The Mask
R-CNN model size is 265 MB. Experimental results show
that the APs of pedestrians and vehicles are 83.6% and
87.3%, respectively, for the YOLOv3 model, and the APs of
pedestrians and vehicles are 87.1% and 91.5%, respectively,
for the Mask R-CNN model. The YOLOv3 detection speed
is 20 FPS, and the Mask R-CNN detection speed is 5 FPS.
Mask R-CNN performs both object detection and instance
segmentation at the same time, as shown in Fig. 8.

Though the detection accuracy of Mask R-CNN is higher
than YOLOv3, its detection speed is far lower than YOLOv3.
As our goal is to build applications where the efficiency
of detection is an important factor, we choose YOLOv3 as
the benchmark network. It can be seen from Fig. 8(c) that
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Fig. 7. Comparison of the proposed salient detection method with U-Net [32]. (a) Input images. (b) Manual annotations. (c) U-Net [32]. (d) Ours.

Fig. 8. Sample results of pedestrians and cars on Mask R-CNN. (a) Pedestrian detection. (b) Vehicle detection. (c) Incorrect results.

a pedestrian was missed, and the benches were incorrectly
classified as vehicles. False positives indicate the necessity of
using saliency maps to augment images to improve recognition
performance. Given the comparison results, we agree that, for
applications where efficiency is not a core consideration or the
instance segmentation is advantageous, Mask R-CNN could be
used for better accuracy.

b) Using only saliency maps: Using the model trained on
only the saliency maps for detection, the APs are 77.1% and
82.0%, respectively. The results are 6.5% and 5.3% lower than
that of the benchmark, and the detection speed is 21 FPS.
We found that this method caused a large number of false
detections and missing detections. Although the saliency map
has certain application potential, as a binary image, it only
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TABLE I

COMPARISON OF DIFFERENT TECHNIQUES (1080TI GPU)

highlights salient regions in images and does not have any
texture features. Therefore, the model using only the saliency
map often fails.

c) Using the different fusion images: We have designed
four methods to fuse thermal images with the saliency
maps, by replacing one of the RGB channels of the thermal
images with the saliency maps S and by weighted fusion.
Experimental results show that after using saliency maps to
replace the different channels of thermal images, the APs
are higher than that of the benchmark, with increase rates
between 5.9% and 10.2%.

Using the model trained on the weighted fusion images,
the APs of pedestrian- and vehicle-detectors are 94.4% and
97.8%, which is an even better improvement of 10.8% and
10.5% over the benchmark, respectively. In general, the result
of the model trained on the weighted fusion images is better
than that of the model trained on the images replacing one
channel of the thermal images.

These enhancements can be explained by the visual exam-
ples in Fig. 9. The fusion images highlight pedestrians and
vehicles in the scene, enabling the detector to identify objects
in a low-contrast context. It is also apparent to observe that
the scheme using weighted fusion outperforms the scheme
of the image channel replacement. That is because useful
pixel information is lost during the image channel replacement
process, and the replacement does not maintain the original
structure of the image. The weighted fusion takes advantage
of the complementary information from both thermal images
and saliency maps, and thus, it is more discriminative.

Comparing the object detectors trained separately on ther-
mal images, saliency maps, and the fusion images revealed
that the saliency maps indeed contributed to improving per-
formance. Since the input image size has not changed for all
data, the detection speed in different schemes is almost the
same as the benchmark, i.e., about 20 FPS.

2) Using ComNet as the Detection Network: Using the
same data, the ComNet models show improvement in detection
speed. Especially, the inference speed increased from 20 to

TABLE II

COMPARISON OF RUNNING TIME

32 FPS on the GTX1080Ti machine, speeding up more than
50%. Meanwhile, the model size changed from 235 to 97 MB,
decreased by 58%.

It is worth noting that the AP values did not change much,
while the size of the model has been reduced. Compared with
the traditional YOLOv3 models, the detection accuracy of the
ComNet model decreased by about 5% on the same data. More
specifically, using the weighted fusion strategy, the APs of
the proposed pedestrian- and vehicle-detectors are 90.3% and
93.0%. Compared with the YOLOv3 benchmark trained on
original thermal images, the APs of the proposed combina-
tional network model trained on fusion images increased by
6.7% and 5.7%, respectively. This indicates that the proposed
neural network based on saliency map fusion images, indeed,
improves the performance of objection detection.

The processing times of different models (YOLOv3,
SSD-MobileNetv2, and ComNet) on different machines are
compared. The mean AP (mAP) values for these models
and running time are given in Table II. We see that the
YOLOv3 model has the highest mAP but the lowest speed.
The SSD-MobileNetv2 model is just the opposite. The
ComNet model is faster than the Yolo model although the
accuracy is slightly reduced. The current ComNet model
cannot achieve real-time performance, but we can use the
method of frame extraction to processing onboard. In terms
of accuracy and efficiency, the proposed method has its
advantages over other methods. It can be used as a reference
for further research in this field.

As shown in Fig. 9, using saliency maps (c)-(I) and
(c)-(IV) for augmentation is helpful to discover the missing
pedestrians and vehicles in the original images (b)-(I) and
(b)-(IV). In the saliency map (c)-(II), the detector mixes two
overlapping pedestrians in the left area into one. Using the
fusion images, the two pedestrians are correctly detected in
(d)-(II), (e)-(II), (f)-(II), and (g)-(II). Similarly, using fusion
images, the missing vehicle in (c)-(VI) is successfully found
in (e)-(VI), (f)-(VI), and (g)-(VI). Note that the method of
replacing one channel of the original thermal image with
the saliency map may fail to detect the object, such as the
small vehicle in (d)-(VI), indicating that the performance of
channel fusion is worse than that of weighted fusion. This
phenomenon is consistent with the statistics in Table I.
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Fig. 9. Sample results from pedestrian detection on images and vehicle detection on image using different data and methods. (a) Thermal R-G-B + YOLOv3.
(b) Thermal R-G-B + ComNet. (c) Saliency maps S + ComNet. (d) Fusion B-G-S + ComNet. (e) Fusion R-B-S + ComNet. (f) Fusion R-G-S + ComNet.
(g) Pixel-level fusion + ComNet.

Fig. 9(b)-(III) shows an interesting example. Due to
the similar shapes, the grass on the right was mistakenly
detected as a vehicle. In Fig. 9(c)-(III), the street lamp on
the upper left corner was detected as a vehicle because the
temperature was higher than the surrounding environment.
By combining thermal images with their corresponding
saliency maps, the detector can eliminate these errors as seen
in Fig. 9(d)-(III), (e)-(III), (f)-(III), and (g)-(III). The vehicle
detected in Fig. 9(a)-(V) is missing in Fig. 9(b)-(V), showing
the difference performance between YOLOv3 and ComNet.

The abovementioned results demonstrated the complemen-
tarity between thermal images and saliency maps, which
confirms our expectation that the fusion of saliency maps can
improve object detection accuracy. Besides, the combination
of thermal images and saliency maps can be crucial to the
detection performance of overlapping objects.

D. Influence of Data Source
The quality of the models is generally constrained by the

quality of the training data. Thermal images captured from
different devices do have different radiation sensing ranges,
which may affect coloring results. As our images are captured
by a single device, the characteristics of the images are
similar. We have invented more images by randomly shifting
and rotating existing images. Nevertheless, we know that
increasing the richness of data sets from different devices can
prevent the models from overfitting.

As we first use the iron palette to convert the grayscale
thermal image to an RGB image, the converted color images
will be different if the devices are different. Referring to
[48], we assume that color has an impact on the test results
but is not critical. To test the applicability of the models to
different data, we retrieved some airborne thermal images from
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Fig. 10. Detection results on different images retrieved from the Internet.
Left: detection results of the YOLOv3 model. Right: results of the ComNet
model.

the Internet. These thermal images are captured by different
devices with unknown conditions, and the ComNet model
can get good detection results compared with the traditional
YOLOv3 model, as shown in Fig. 10. A limitation lies in the
lack of statistical analysis of large samples of different data
types. We would enrich our data set continuously.

V. CONCLUSION

In this article, we use a UAV platform to collect the thermal
images for object detection. To train and test the models,
we prepared annotations for all images. Using deep learning,
saliency maps of thermal images are extracted. Fusing
thermal images with the extracted saliency maps, thermal
images are augmented before they are put into the detection
network. We compared different image fusion schemes,
including channel replacement methods and the weighted
fusion method. The fusion image provides complementary
information for pedestrian and vehicle detections, which
improves the performance of object detection. Besides,
we proposed a combinational lightweight network ComNet,
which is more efficient and has lightweight compared with
the original YOLOv3 detection network. The experiments
demonstrated that the ComNet model trained on fusion
images has the potential for the detection of pedestrians and
vehicles in the context of UAV-based applications.
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