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We propose an approach for automatic generation of building models by assembling a
set of boxes using a Manhattan-world assumption. The method first aligns the point
cloud with a per-building local coordinate system, and then fits axis-aligned planes to
the point cloud through an iterative regularization process. The refined planes partition
the space of the data into a series of compact cubic cells (candidate boxes) spanning the
entire 3D space of the input data. We then choose to approximate the target building
by the assembly of a subset of these candidate boxes using a binary linear programming
formulation. The objective function is designed to maximize the point cloud coverage
and the compactness of the final model. Finally, all selected boxes are merged into
a lightweight polygonal mesh model, which is suitable for interactive visualization of
large scale urban scenes. Experimental results and a comparison with state-of-the-art
methods demonstrate the effectiveness of the proposed framework.
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1. Introduction

3D architectural models have significant value for various geo-referenced applica-
tions, such as urban planning, navigation, simulation, and virtual reality. However,
the automatic generation of 3D urban models is still a challenging problem (Gruen
2008; Musialski et al. 2013; Rottensteinera et al. 2014).

In the last decade, the development of various data acquisition technologies, such
as Light Detection and Ranging (LiDAR), RGB-D cameras, Structure from Motion
(SfM), and Multi-view Stereo (MVS), enables users to effectively obtain a 3D sam-
pling of an urban scene (i.e., a 3D point cloud). This technology opened up many
interesting research problems concerned with processing such data (Xiao et al.
2015; Li et al. 2016; Vanegas, Aliaga, and Benes 2012; Lin et al. 2013; Arikan et al.
2013; Nan et al. 2010; Zhou and Neumann 2010). Despite these recent efforts, the
fully automatic generation of building mass models from noisy, incomplete point
clouds still remains an open problem. In practice, the reconstruction process from
such noisy data often requires tedious manual work. This hinders the generation of
3D urban models for large scale environments. Besides, a recent trend is that the
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interest of urban modeling has shifted from LiDAR-based methods to MVS-based
methods (Verdie, Lafarge, and Alliez 2015; Nan et al. 2015; Wang et al. 2015; Li
et al. 2016; Furukawa et al. 2009). Although LiDAR has better accuracy, its cover-
age is limited to building roofs thus the details of the facade is not accessible; on
contrast, MVS has a better accessibility for the information of a building structure.
Because of this trend, there is a great need to deal with MVS data that suffers from
high level of noise, distorted structures and incomplete geometry due to imperfect
camera geometry and object occlusion. Thus primitive-based methods (boxes for
example) tend to be superior to data-driven methods.

In this work, we address the problem of automatic reconstruction of Manhattan
scenes, which contain structures with a predominance of three mutually orthogo-
nal directions, from imperfect point clouds. This method outputs lightweight 3D
polygonal mesh models of the buildings, which are especially suitable for web-based
visualization of large urban scenes in a framework of digital earth (Zhang et al.
2014). Our observation is that urban buildings usually exhibit large amount of
planar geometries and regularities (i.e., orthogonality and parallelism). Thus, the
underlining geometry of these buildings can be represented by an assembly of boxes.
This motivates us to fit boxes to the point cloud to approximate the structure of
each individual building.

Our strategy relies on choosing a minimum number of boxes from a large number
of candidates using a binary integer programming optimization. First, the input
point cloud is aligned with a local per-building coordinate system, and a large
amount of plane hypothesis are detected from the point cloud using a random sam-
ple consensus (RANSAC) method (Schnabel, Wahl, and Klein 2007). Then, these
planes are iteratively refined to best fit the input point cloud. Thus, they partition
the space of the input data into a grid. In this paper, we call each cell in the grid
a candidate box. Finally, we choose a subset of these candidate boxes based on
a linear integer programming optimization, and assemble them into a lightweight
polygonal mesh model. During the entire process, structural regularities of archi-
tectural models, such as orthogonality and parallelism, are taken into consideration
for both candidate box generation and the later optimization steps.

Our method offers the following advantages for Manhattan scene reconstruction:
1) it is remarkably robust to outliers and missing data, and 2) it automatically
produces clean, lightweight, and watertight models. Thus, it is quite suitable for
large scale urban reconstruction.

The key contributions of our work include:

• a novel framework for the automatic reconstruction of Manhattan scenes by
directly fitting boxes to imperfect point clouds.
• an iterative regularization process for candidate box generation from imperfect

point clouds.
• a linear integer programming formulation for selecting a subset of candidate

boxes so as to obtain a compact polygonal model that fits to the point cloud.

2. Related work

Given the large volume of related work in the literature, in this section we only
review the work that are most related to our proposed method. According to the
reconstruction strategies, we discuss related work with respect to model-driven and

2



March 20, 2016 International Journal of Digital Earth box˙IJDE

data-driven methods.
Model-driven methods. Urban buildings usually exhibit strong structural reg-

ularities, such as piecewise planar facades, orthogonality, and parallelism, etc. This
prior knowledge about the structure of buildings has been exploited extensively for
the urban reconstruction problem. To reconstruct detailed but lightweight archi-
tectural models, Nan et al.(Nan et al. 2015) propose to use image information to
assemble a set of predefined detailed facade elements onto coarse building mod-
els. By making a Manhattan-world assumption, Matei et al. (Matei et al. 2008)
and Venegas et al. (Vanegas, Aliaga, and Benes 2010) extract regular grammars
from LiDAR point clouds via different approaches. Then a volume description of
the building is extracted from the clusters of the classified points. Using a similar
assumption, Furukawa et al. (Furukawa et al. 2009) reconstruct indoor scenes by
arranging the samples of a scene to axis-aligned planes. With such structural prop-
erties as guidance or as high-level constraints, the reconstruction results from these
methods usually outperform those from other methods in terms of controllability
over both geometric and semantic complexity of the final models. However, these
methods require uniform distribution of the point cloud, so they were basically de-
signed for close-range LiDAR data. The airborne MVS points with uneven density
will hinder the performance of these mentioned methods.

Another group of model-driven methods, namely contour-based methods, first
perform a segmentation step to extract the contours of the buildings (usually fol-
lowed by a refinement step), and then assemble the 2.5D building model by ex-
ploiting the structural properties of urban buildings. Poullis and You (Poullis and
You 2009) create large scale city models from airborne LiDAR data by simplifying
and refining 2D boundaries of buildings, from which 3D models are extruded fit-
ting the segmented regions. Zhou and Neumann (Zhou and Neumann 2010) learn
a set of principal directions that align with roof boundaries of the buildings. These
roof boundaries are then used as footprint for extruding 2.5D models. In their fol-
low up work (Zhou and Neumann 2013), they optimize the 2D boundaries of roof
layers, which enables the reconstruction of buildings with arbitrarily shaped roofs.
This method work well for dealing with clean and accurate LiDAR data. Larfage et
al. (Lafarge et al. 2010) approximate the urban buildings by assembling 3D blocks
on a Digital Surface Model (DSM). They use a Bayesian decision to find the op-
timal configuration of the 3D-blocks. However, these contour-based reconstruction
approaches mainly exploit the roof information of the buildings, while the walls and
facades (though sparse and incomplete) are ignored during the processing.
Data-driven method. Delaunay-based methods and implicit surface reconstruc-

tion are quite common in this area. The basic idea behind the Delaunay-based meth-
ods is that the reconstructed triangulated surface is formed by a subcomplex of the
Delaunay triangulation. These methods place rather strong requirements on the
point cloud and are impractical for MVS data containing significant imperfections.
Poisson reconstruction approach (Kazhdan and Hoppe 2013) is a widely used im-
plicit surface reconstruction method. Depending on an indicator function, Poisson
reconstruction estimates a labeling to discriminate the interior from the exterior of a
solid shape and approaches a surface for the solid. However, Poisson reconstruction
requires the availability of oriented normals, which sometimes have poor accuracy
when existing high-level of noises and outliers.

Graph cut-based methods are widely used in many related works. Garcia et al.
(Garcia-Dorado, Demir, and Aliaga 2013) proposed a surface graph cuts approach
for architectural modeling based on a volumetric representation. Hiep et al. (Hiep
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et al. 2009) reconstructed the mesh models of different scales by extracting a vis-
ibility consistent mesh from the dense point cloud using a minimum s-t cut based
global optimization. Then the mesh models are further refined relying on image in-
formation. Verdie et al. (Verdie, Lafarge, and Alliez 2015) conduct an abstraction
operation on the dense meshes to obtain a level-of-detail representation of urban
scenes, and surface models are extracted by a min-cut formulation. However, the
optimization processes of these methods are computationally expensive since the
problems are defined in 3D space. This is especially true when the scene exhibits
complex structures. In addition, since these data-driven methods generally target
dense mesh models, the complexity of the reconstructed models limits the applica-
tion scope of these approaches.

In this work, we tackle the reconstruction problem using another strategy, i.e.,
transforming the reconstruction problem as assembling a set of boxes directly into
the point clouds.

3. Overview

The goal of this work is to directly fit boxes to 3D point clouds for urban recon-
struction. Our method takes as input a 3D point cloud of a scene (either from laser
scanner or extracted from images using MVS), and outputs a 3D polygonal mesh
model of the scene. In this work, we are particularly interested in fitting a set of
boxes directly into the point cloud. Our method consists of two core steps.
Candidate box generation. We first extract a large number of planar segments

from the input point cloud using RANSAC (Schnabel, Wahl, and Klein 2007). S-
ince the point cloud may have noises, outliers, and missing data, the detected planar
segments unavoidably contain undesired elements. Thus, we refine these planar seg-
ments by iteratively merging plane pairs and fitting new planes. After these planes
are adjusted to better fit to the point cloud, we use these planes to partition the
space of the input point cloud into regular cells. These cells can be considered as
the input candidate boxes for the later binary optimization.
Box selection. In this step, we optimally choose a subset of the candidate boxes

to build a valid 3D model of the scene. To do so, we formulate the boxes selection
as a linear integer programming problem. Our objective function is designed to
encourage the final model to cover more of the points and meanwhile be compact
(i.e., minimum volume). For efficiency, we run a step of candidate box pruning before
the optimization so as to filter out large amount of invalidate candidate boxes.

An overview of the proposed approach is shown in Figure 1.

4. Candidate Box Generation

With the Manhattan-world assumption, the walls and roofs of the buildings in a
scene can be abstracted as axis-aligned planes. Thus, we first identify the three
dominant orientations of the scene, as well as a set of plane hypothesis on which
most of the geometry lies in. Then we iteratively refined these planar segments and
generate candidate boxes from the refined planar segments.
Dominant orientations. To determine the three dominant directions of the

scene, we identify the three strongest peaks from the histogram of the normal dis-
tribution of the point cloud (Furukawa et al. 2009). Then the corresponding normal
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Figure 1. An overview of the proposed approach. Starting from an imperfect point cloud (a) of a building,
we first extract and refine planar segments (b) from the point cloud, and build a dense mesh model using

existing techniques. Then, we use the extracted planar segments to partition the space of the input point
cloud into axis-aligned cells (i.e., candidate boxes). (d) shows the overlay of the candidate boxes on the

dense mesh model. After that, appropriate boxes (e) are selected based on binary linear programming

optimization. Finally, a lightweight 3D model (f) is assembled from the chosen boxes.

direction for each peak can be regarded as one of the dominant directions. With
these dominant directions, it is trivial to transform the point cloud to be axis-aligned
with the dominant directions.
Plane detection. As demonstrated in previous work, the RANSAC-based primi-

tive detection method proposed by Schnabel et al. (Schnabel, Wahl, and Klein 2007)
has proven to be effective and efficient for extracting several types of geometric prim-
itives from noisy point clouds. We use it to detect a set of initial planar segments
from the point cloud. However, due to the high-level of noise and the significant
amount of outliers, the orientations of detected planar primitives do not always co-
incide with the three dominant directions. To tackle this problem, we propose an
algorithm that iteratively refines the initial planar primitives.

4.1. Plane refinement

Considering the RANSAC primitive detection algorithm is designed based on inves-
tigating the number of points within a distance threshold to the primitives. We first
run the RANSAC algorithm multiple times to generate a large number of initial
plane hypothesis. This is to make sure appropriate plane segments that describe
the structure of the scene exist among them.

We discard planar segments if either their orientations are far away from the
three dominant directions, or they have a small number (20 minimum) of support-
ing points. In the next iterative refinement stage, we score each planar segment
according to the number of its supporting points. Then starting from the pair of
planar segments with lowest average score, we merge them if the following two con-
ditions are satisfied: 1) the angle between the two planes is less than a threshold θt,
and 2) the distance from the mass center of the set of points associated with one
primitive to the other is less than a threshold dt. After that, a new planar primitive
is suggested by performing a least-squares fitting of the merged points. We repeat
this process until no more pairs of planar segments can be merged. As a result, the
planar segments are refined such that they are more coinciding with the dominant
orientations, and meanwhile the number of planar segments is significantly reduced.

Figure 2 shows an example of the plane refinement process. Empirically, we set θt
to 10◦ and dt to 0.1m. In our experiments, we observe that stable planar primitives
can be obtained after a few iterations of the merging operation. A visual comparison
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Figure 2. Plane refinement. Two planes π0 and π1 are merged if the angle between them is smaller than a
threshold (i.e., θ < θt), and the distance from the mass center of the set of points associated with one plane

to the other is less than another threshold (i.e., d01 < dt and d10 < dt). Then a new plane π is proposed

using a least-squares fitting of the union of the points.

Figure 3. The arrangement of the planar primitives before (left) and after (right) the refinement step.

of the planar primitives for a building before and after the iterative refinement is
shown in Figure 3. As can be seen from Figure 3 (right), the arrangement of the
planar primitives has been significantly regularized and the number of primitives is
reduced.

4.2. Candidate boxes generation

According to the orientations, the refined planar segments from the previous step
can be separated into three groups, i.e. Gx, Gy, and Gz, which are aligned with the
three dominant directions. The supporting planes of these planar segments partition
the space of the data into a set of axis-aligned cuboid cells. AssumingNx,Ny, andNz

are the numbers of the planes along the three dominant directions (i.e., |Gx| = Nx,
|Gy| = Ny, and |Gz| = Nz), the total number of candidate boxes is given by

N = (Nx − 1) · (Ny − 1) · (Nz − 1). (1)

In the next step, we will optimally choose a subset of these candidate boxes so
as to approximate the building geometry and to obtain a compact polygonal mesh
model.

5. Box Selection

In order to choose a subset of the candidate boxes that best describe the underlining
geometry of the buildings, we propose a binary optimization approach based on a
linear integer programming formulation. For efficiency reason, we conduct a pruning
step that filters out a significant number of candidate boxes that are not likely to
contribute to the building geometry.
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5.1. Candidate box pruning

The number of the candidate boxes generated from the arrangement of the pla-
nar segments is usually large (see Equation 1). For example, a scene consists of 50
candidate parallel walls in each dominant direction will result in (50 − 1)3 candi-
date boxes, and a linear integer programming optimization problem with the same
number (117, 649, to be specific) of variables. Obviously, solving this optimization
problem is computationally inefficient. Thus, it is necessary to filter out those can-
didates that clearly do not contribute to the final reconstruction.

One possible way to discard redundant candidate boxes is by performing a
valid/invalid check for each candidate box. We observe that a large portion of the
candidate boxes resides either inside or outside the surface of the building, and so
these boxes do not contribute to the building’s surface representation. This observa-
tion motivates us to identify and remove these candidate boxes. To this end, we first
obtain an approximate reconstruction of the surface model of the scene using the
Poisson reconstruction algorithm (Kazhdan and Hoppe 2013). Although the surface
model reconstructed from (Kazhdan and Hoppe 2013) is not precise in terms of
both geometry and topology due to noise and missing data, it provides sufficient
information for identification of the unwanted candidate boxes.

Figure 4. Categorize candidate boxes into three different status.

The status of a candidate box is determined similarly to determining the location
of a 3D point with respect to a polyhedron. Specifically for each box, we cast rays
from the 8 corners of that box to the corresponding corners of the bounding box
of the scene. Then the candidate boxes can be classified into the following three
categories by counting the number of intersections of the casted rays against the
surface model:

• Outside, if all rays have even numbers (including zero) of intersections against
the surface model.
• Inside, if all rays intersect the surface model with odd numbers and there is

no point resided on the facets of the box.
• Intersecting, if some rays have odd numbers and others have even numbers of

intersections against the surface model, or the box facets contain points.

During the judgment, a point is determined to reside on one of 6 facets of a box
only when it meet the following criteria: 1) its distance to the facet is less than 40
cm; and 2) the angle between the point normal vector and the facet normal vector
is less than 30 degree.

Among the above three categories (see Figure 4), candidate boxes with outside
status are obviously unwanted and are first discarded. The inside boxes are tem-
porarily set aside, as they will be used at the end to merge for the final complete
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model. Hence, only these boxes with status intersecting will be taken as input in
the later optimization step.

5.2. Optimization

Figure 5. The optimization result of a quasi Manhattan building.

The goal of the optimization step is to choose an optimal subset of the candidate
boxes to assemble a compact 3D polygonal model for the scene described by the
point cloud. We formulate the candidate box selection as a zero-one (binary) linear
programming problem.

Given N valid candidate boxes bi(1 ≤ i ≤ N), let X denote the binary labels for
all the candidate boxes and let xi correspond to the i th box’s binary option, the
solution to box selection problem is a subset of the candidate boxes that minimizes
an energy balancing between two terms: point coverage and compactness.

• Point coverage. Since we are reconstructing 3D models from point clouds,
we prefer that the final model covers more of the sampled points. Thus, a
score function S(bi) is defined to measure how much a candidate box bi is
supported by the point cloud. Specifically, the score function S(bi) is defined
as below

S(bi) =

∑6
j=1 num(fj)∑6

j=1 ρ ·A(fi) · 1(fj)
, (2)

where num(fj) denotes the number of points that reside on the jth face fj
of box bi; ρ has a uniform value that is set to the sampling density of the
face with highest confidence (i.e., highest point density); A(fi) is the area
of the face fj ; 1(fj) is an indicator function that has value 1 if there exists
points lying on face fj , otherwise it has value 0. In other words, we only count
faces that have supporting points into the scoring function. Thus, the point
coverage term is defined as

Ec(X) = 1−
N∑
i=1

xi · S(bi)/N. (3)

• Compactness. This term encourages representing the final model by a com-
pact assembly of the boxes. Let V (bi) denote the volume of box bi, then the
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compactness term is defined as

Ev(X) =
N∑
i=1

xi · V (bi)/Vbbox, (4)

where Vbbox denotes the volume of the bounding box of the scene.

Intuitively, the point cloud coverage term Ec encourages to choose boxes that
are supported by dense points, and the compactness term favors smaller boxes. By
putting these two terms together, our objective function is given as below

E(X) = Ec(X) + λ · Ev(X), (5)

where λ is a weight parameter that balances between the point coverage term and
the compactness term. In our experiments, λ is set to 0.1 for all the examples shown
in this paper.

Minimizing the above energy (see Equation 5) results in a zero-one (binary) linear
programming problem. We solve it using the conventional Gurobi solver (Gurobi
2015). After the energy being minimized, the variables with value 1 suggest the
subset of candidate boxes that approximate the underlining structure of the scene.

We observe walls of a building can be completely missing from the point cloud
due to occlusions. In such case, it results in some holes in the final 3D models.
As a compensation, the inside boxes are employed to fill the holes and to present
a complete solid entity. Specifically, we merge together both the inside boxes and
those suggested by the optimization, and then extract their boundary faces as the
final polygonal model.

To better depict the proposed framework, an illustration of the optimization pro-
cedure is shown in Figure 5, where (a) indicates an image of a quasi Manhattan
building, (b) and (c) are the candidate boxes before and after optimization, and (d)
presents a rendered view.

6. Results and Discussion

Figure 6. Two example scenes reconstructed using our method. Our approach can automatically reconstruct

a Manhattan scene by fitting boxes into the noisy point cloud (left) of the scene. The final 3D model is
shown on the right.

We have applied our approach on several datasets of real-world buildings and
conducted both qualitative and quantitative evaluations of the proposed method.
Datasets. The point clouds used to test our algorithms are generated using MVS

method from a series of images captured by a Sony QX100 camera (20M pixels)
and 24mm (equivalent lens) mounted on a unmanned aerial vehicle (UAV). The
combination of the technologies of the MVS and UAV provides a flexible avenue for
downtown modeling with low cost and medium accuracy. Unfortunately, since MVS
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(a)

(b)

(c)

(d)

Figure 7. Reconstruction results. Each row (from left to right) shows the representative photograph cap-
tured by the UAV camera, initial point cloud extracted from MVS, detected planar segments, Poisson

surface overlaid on the selected boxes, and the final 3D model, respectively.

Figure 8. Reconstruction errors of two buildings. The left column shows the point clouds overlaid on the
final 3D models, and the right column shows the reconstruction errors.

is based on local image features, the extracted point clouds are noisy, incomplete,
and with uneven densities.
Reconstruction results. Results show that our method is able to generate faith-

ful and compact polygonal models from the point clouds of complex scenes (see
Figure 6) and individual buildings (see Figure 7).

As can be seen from Figure 6 and Figure 7, the final polygonal models are compact
and meanwhile are faithful to the input point clouds. Note, although the point cloud
is extremely noisy, sparse, and has a large amount of outliers and missing parts, our
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method can still produce faithful reconstruction results.
Since ground truth of real world buildings are usually not available, we overlay the

point clouds on the final 3D models and evaluate the quality of the reconstruction
results by measuring the average distance from the points to their nearest faces in
the polygonal model. Figure 8 shows two such examples. To be specific, our method
has an average reconstruction error of 0.15m for all the examples shown in this
paper.
Comparisons. We also conduct both qualitative and quantitative comparisons

with state-of-the-art methods, namely the Screen Poisson surface reconstruction al-
gorithm (Kazhdan and Hoppe 2013) and the 2.5D dual contouring method proposed
by (Zhou and Neumann 2010).

Figure 9. Comparison of our method with Screened Poisson reconstruction(Kazhdan and Hoppe 2013) and

2.5D dual contouring(Zhou and Neumann 2013) methods on a single building. (a) A photograph of the
buildings. (b) Input point cloud. (c) Dense mesh model reconstructed using the Screened Poisson algorith-

m(Kazhdan and Hoppe 2013). (d) Reconstruction result using the 2.5D dual contouring method(Zhou and

Neumann 2010). (e) Our result.

From Figure 9, we can see that the Screened Poisson reconstruction method can
generate isotropic dense surface models. This method, however, may fail if there
exists large amounts of outliers or large portion of the facades are occluded (i.e.,
holes in the point clouds). In such a case, it usually produces some undesired surfaces
passing through the outliers and the missing regions. Besides, the sharp features of
the buildings are usually smoothed, and it’s rather difficult to recover them as a
post-processing step. These defects can also be observed from the fourth column
in Figure 7. The 2.5D dual contouring method was initially designed to deal with
aerial LiDAR point clouds with higher density and accuracy. Thus, it mainly relies
on roof information and it is quite sensitive to noise and uneven point distribution.
We can see from Figure 9 (d), the result from this method contains large areas
of small bumps. Compared with these approaches, our method can generate more
compact and visually pleasing reconstruction results.

Table 1. Comparison of our method with Screened Poisson reconstruction (SP)(Kazhdan and Hoppe 2013)

and 2.5D dual contouring(Zhou and Neumann 2013) methods in terms of running times (in seconds), mesh
sizes (measured as face number), and reconstruction errors (in meters).

2.5D(Zhou and Neumann 2013) SP(Kazhdan and Hoppe 2013) Ours

Time 0.38 2.2 24
# Faces 2, 492 10, 806 212

Error 0.13 0.09 0.15

Table 1 shows a quantitative comparison of our approach with the aforementioned
two methods on the building shown in Figure 9. We can see that the Screened
Poisson reconstruction method wins in terms of accuracy, but the final surface
model is more fluctuating. This can be seen from Figure 9 (c). Our method is
a bit slow and has similar accuracy with the 2.5D dual contouring method, but
the reconstruction results are more compact than the other two approaches. All
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experiments are conducted on a laptop with an Intel i5-3210M CPU and a 4.0 GB
RAM.
Limitations. In the candidate box pruning step, a surface approximation from

Poisson reconstruction method is used to filter out a large number of irrelevant
candidate boxes. For point clouds that have high-level of noise, outliers, and large
missing regions, the Poisson reconstruction method are likely to produce undesired
surfaces. So good boxes could be filtered out and thus our method will generate
results with holes (see Figure 7 (b)).

Another limitation is that since our method is based on the Manhattan World
assumption, it cannot handle some residential buildings with tilted planes, e.g., gable
or hipped roofs. A possible avenues for the future work is to separating non-MW
geometries from point cloud and expending other shape types.

7. Conclusions and future work

This paper presented a box fitting algorithm for reconstructing Manhattan scenes.
Unlike previous work, we fit boxes directly into the noise and sparse point clouds.
Our method is based on a generate and select strategy, i.e., we choose an optimal set
of boxes from a large number of candidates to assemble a compact polygonal mesh
model, and formulate the box selection as a binary linear programming problem.
Our formulation favors to represent the scene with a compact assembly of boxes and
meanwhile respects the input point cloud. The approach is designed to provide a
tradeoff between data fitting and compactness of the final model. Thus, the results
of our method are polygonal models with simplified geometric structures, which can
be broadly applied in visualization, 3D mapping, geographic information system,
and digital earth.
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