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Curve Networks for Surface Reconstruction
Yuanhao Cao, Liangliang Nan∗, Peter Wonka

Abstract—Man-made objects usually exhibit descriptive curved features (i.e., curve networks). The curve network of an object conveys
its high-level geometric and topological structure. We present a framework for extracting feature curve networks from unstructured point
cloud data. Our framework first generates a set of initial curved segments fitting highly curved regions. We then optimize these curved
segments to respect both data fitting and structural regularities. Finally, the optimized curved segments are extended and connected
into curve networks using a clustering method. To facilitate effectiveness in case of severe missing data and to resolve ambiguities, we
develop a user interface for completing the curve networks. Experiments on various imperfect point cloud data validate the effectiveness
of our curve network extraction framework. We demonstrate the usefulness of the extracted curve networks for surface reconstruction
from incomplete point clouds.

Index Terms—Curve Network, Surface Reconstruction, Feature Curve, Point Cloud, Regularity
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1 INTRODUCTION

Man-made objects usually exhibit descriptive curved features.
These curved features, we call curve networks, convey the
structural characteristics of the objects. From the visual per-
ception perspective, they serve as high-level representation of
the objects. Various applications, such as non-photorealistic
rendering [2], product design [3], abstraction [4], segmen-
tation [5], reconstruction [6], and shape editing [7], have
exploited and benefited from the extracted curve networks.
In this work, we are interested in the problem of extracting
curve networks from noisy and incomplete point clouds and
using these extracted networks to guide surface reconstruction
from incomplete point clouds.

In the last decades, the prevalence of various laser scanners
and depth cameras (e.g., Kinect) enabled non-professional
users to obtain a 3D sampling of an object in a matter of
seconds. However, due to occlusions and specific material
properties (e.g., transparent, reflective), obtaining a point cloud
with reasonably coverage of an object remains a challenge. In
practice, it is quite common that significant portions of the
object are either under-sampled or completely missing in a
3D point cloud. This limits the applicability of the widely
available acquisition devices and hinders the application of
the large amount of existing point cloud data.

The main problem for reconstruction from partial point
cloud data comes from the lack of constraints in the missing
regions. Thus, the reconstruction is ill-posed as an infinite
number of valid surfaces may pass these regions. To compen-
sate for the lack of constraints, smoothness is usually exploited
to fill the holes in the reconstructed surface models. However,
the smoothness constraints are too local to fill holes occurring
near sharp features. High-level constraints, such as symmetry,
may provide an efficient completion tool [8]. However, when
symmetry is not applicable, or the data is highly incomplete, it
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is impossible to infer a faithful 3D completion and reconstruc-
tion. Given the descriptive characteristics of curve networks,
the motivation of this work is to extract such curve networks
from partial point cloud data and utilize them as geometric
and topological constraints to regularize the ill-posed surface
reconstruction problem. To this end, we present a hybrid
framework for extracting high quality curve networks from
unstructured point cloud data that may have severe missing
regions.

Our overall contributions are as follows:
• a novel framework that can effectively extract curve

networks form partial point clouds.
• an optimization algorithm exploiting structural regulari-

ties to enhance the extracted curve networks to be regular
and meanwhile respect the input point clouds.

• we demonstrate that the extracted curve networks can
significantly regularize surface reconstruction from in-
complete point clouds.

2 RELATED WORK

There exists a large volume of work related to surface re-
construction in literature. In this section, we mainly review
the work that are closely related to feature detection, curve
based modeling, surface reconstruction from curves, and curve
network extraction.

Feature detection. Quite a few techniques have been
proposed for detecting curved features on polygonal models
and point clouds. Lee et al. propose geometric snake [9], an
interactive tool for detecting curved features from triangular
meshes by extending the 2D active contour model (snakes)
to 3D surfaces. The user sketches initial feature curves on
the input surface, and the 3D snake iteratively snaps them to
the curved features in the surface. Ohtake et al. [10] exploit
implicit surface fitting to calculate extremal coefficients for
extracting ridges and valleys from mesh surfaces. Kim et
al. [11] utilize a variant of Moving-Least-Squares method to fit
local surface patches in the neighborhood of each vertex, and
then compute local curvatures based on the fitted local surface
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Fig. 1. Algorithm overview. (a) Input point cloud; (b) detected feature points; (c) initial curve segments; (d) improved
feature curves with user guidance; (e) optimized feature curves; (f) final curve networks after completion; (g) the
reconstructed surface model from the curve networks using the techniques of [1].

patches. Similarly, Yoshizawa et al. [12] extract crest lines
by estimating the curvature tensor and curvature derivatives
based on local polynomial fitting. In the work of Nomura and
Hamada [13], the authors detect feature curves by calculating
the skeleton of the feature region defined by the concavity and
convexity.

To handle random noise, outliers, and artifacts, Min et
al. [14] present a method based on the tensor voting to
extract sharp features from unstructured point clouds. Mark
et al. [15] extract feature lines from point-sampled geometry
by computing a minimum spanning graph of feature nodes that
have high probability belonging to a feature. By fitting spline
curves, Joel et al. [16] identify sharp features in a point-based
model and align the spline curves with the sharp edges of the
model.

Curve based modeling. There are also techniques and
systems that are able to transfer 2D sketches into 3D rep-
resentations. For example, ILoveSketch [17], a 3D curve
sketching system that captures some of the affordances of
pen and paper for professional designers, allows a designer
to iterate directly on conceptual 3D models. Other systems,
such as Teddy [18] and Fibermesh [19], provide simple user
interfaces for designing freeform surfaces from a collection
of 2D sketches. The user first creates a rough 3D model by
drawing 2D strokes. Then the 3D surface models can be further
edited by sketching directly on the models, where the 3D
curves serve as handles for controlling the geometry. Recently,
Baoxuan et al. [3] design a sketch-based modeling system (i.e.,
True2Form) that reconstructs 3D curve networks from typical
2D design sketches. Their strategy relies on prior knowledge
to enforce structural regularities of an object.

Surfaces reconstruction from curves. The motivation of
this task is to recover full geometry from a set of curves span-
ning in the surfaces. Orbay and Kara [20] propose a sketch-
based modeling interface for creating smooth surfaces from
curve networks. Based on a linear algebra representation of
suface patches, Abbasinejad et al. [6] introduce a system that
supports automatic generation of piecewise smooth surfaces
from curve networks. With similar motivation, Bessmeltsev et
al. [21] present a design-driven approach for quadrangulating
closed 3D curve networks. Zou et al. [22] present an algorithm
for triangulating 3D spatial polygons. To fill holes, an N-
sided hole filling technique proposed by Tamás et al. [23]
can interpolate the boundary curve of each hole. For partial

scans with large missing parts, Nan et al. [24] propose to lift
2D image boundaries into 3D space to constrain the ill-posed
surface reconstruction problem.

Curve network extraction. To extract closed curve net-
works, Demarsin et al. [25] propose an algorithm for extracting
closed sharp feature lines from point clouds. Based on first
order segmentation, they first extract candidate feature points
and then represent them as a graph to recover the sharp feature
lines. Then a minimum spanning tree is constructed to enclose
these curved lines. In the work of Cao et al. [26], the authors
extract curve networks by first detecting curved segments and
then extending them to closed curve loops on surfaces.

Following the work of [26] and [3], we extract curve net-
works from partial and noisy point clouds through optimiza-
tion. Our formulation enforces the detected curve networks
to respect both data fitting and structural regularities of the
objects.

3 OVERVIEW

Given a noisy and incomplete point cloud as input, our goal
is to extract complete curve networks from such an imperfect
input point cloud. Our framework consists of the following
three key steps (an overview of our approach is shown in
Fig. 1):

Curved segment generation. We first compute the surface
variation at each point and extract regions of high-level varia-
tion using simple thresholding. Then, initial curved segments
are generated by fitting curves to those feature points in the
point cloud. For partial point clouds, we develop a simple user
interface allowing a user to guide the curve fitting through
loosely sketching strokes on the 3D point clouds (Sec. 4.1).

Curved segment optimization. We introduce an energy
minimization formulation to optimize the feature curves. Our
objective function is designed to enforce data fitting and the
smoothness of the curved feature, and meanwhile to respect
the structural regularities of the point cloud (Sec. 4.2).

Curve network completion. After the curved segments
being optimized, we extend and connect these individual
feature curves to generate complete curve networks. We use
the algorithm proposed by Zhuang et al. [1] to detect cycles
of surface patches from the curve networks (Sec. 4.3).
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Fig. 2. Extracted feature points (left, in blue) and initial
curved segments (right, in red) extracted from the point
cloud.

4 METHOD

Given a noisy and incomplete point cloud as input, we first
identify feature points in the point cloud. Then, we extract
curved segments from these feature points via curve fitting.
We also allow users to guide the curve fitting through a simple
user interface for large missing regions in the point cloud.

4.1 Curved segment generation

We first detect feature points as those having high surface
variations in the point cloud. Specifically, we use the method
described in [15] to define the variation σ(p) at a point p as

σ(p) =
λ1

λ1 +λ2 +λ3
, (1)

where λi(1 ≤ i ≤ 3) denote the three eigenvalues (in an
ascending order) of the covariance matrix defined on the
neighborhood of p. For more details on the covariance matrix
setup, please refer to [15]. Since σ(p) is invariant under scales
at each point, so feature points can be identified by simply
thresholding surface variations at each point in the input point
cloud. Specifically, a point p is considered as a feature point
if σ(p) > σt , where σt is the threshold that is set to 0.04 in
our experiment.

Curve segment extraction. From the identified feature
points, we generate polylines using a modified version of [27]
to fit the points with high variations.

To handle noisy point clouds, we propose an additional
termination condition to prevent the polyline growing into
multiple feature regions at sharp corners. Given an endpoint
pk and it direct neighbor pk−1 in the polyline, we extend pk
to pk+1 if the angle between pk−1pk and pkpk+1 is smaller
than 30◦. In our implementation, we sort the feature points
according to their variations and choose the point with highest
variation as the seed point for propagating a polyline. After
one polyline propagation is terminated, all the feature points
within the neighborhoods Nsmax to the polyline are removed.
We then choose a new seed point from the remaining feature
points and propagate another polyline. We repeat this process
until no feature points are left. Fig. 2 illustrate the feature
points (left) and the extracted polylines (right) in the point
cloud.

User guidance and symmetry. For point clouds with large
missing regions, our automatic curve segment generation may
fail to extract good polylines. So we develop a user interface

Fig. 3. Two discontinuous feature curves (left column) are
smoothly connected by simple user strokes, yielding more
complete feature curves (right column). Feature curves
are in red and user strokes are in green.

Fig. 4. A missing feature curve in the region marked by
the yellow rectangle is generated from its mirror image
(the black curve in the upper right subfigure) using reflec-
tive symmetry information. Left: feature curves overlaid on
the point clouds. Right: feature curves only.

that allows users to guide the feature curve extraction process
by simple clicking and sketching directly on the partial 3D
point clouds (please refer to the accompanying video). Fig. 3
shows two examples of how users’ guidance can help to obtain
more complete and smooth feature curves.

Since reflective symmetry is common for man-made objects,
we allow the user to indicate if symmetry is applicable for the
objects represented by point clouds. For partial point clouds,
automatic symmetry detection is usually not reliable. Thus,
we rely on the extracted feature curves (even though they are
not complete) to determine the symmetry plane which in turn
completes the feature curves based on reflective symmetry.
Fig. 4 shows an example of completing the initial feature
curves by symmetry.

4.2 Curved segment optimization

The initial curved segments extracted in the previous step
have two problems. On the one hand, they are extracted
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Fig. 5. Feature curve optimization without shape prior
constraints. Left: The initial curved segments extracted in
the previous step. Right: The optimized feature curves,
which are smooth and are aligned well with the feature
points (in blue).

from local sampled points, thus they are not accurate due to
noise and outliers. On the other hand, they are not smooth
enough for further reconstruction due to the nature of the
polyline growing process. Thus, we propose to exploit prior
knowledge and global structural regularities of the object to
optimize the entire feature curves altogether. Our optimization
encourages obtaining smooth, globally regular feature curves,
and meanwhile respecting the input point cloud.

Let B1,B2, ...,Bm be the m initial curved segments, and
each curve Bi is represented by ni sequential discrete points
bi,1,bi,2, ...,bi,ni . The optimized position of points bi, j is repre-
sented by bi, j. We define the following energy terms for curve
optimization:
• Data fitting. We use the data fitting term to ensure the

optimized curved segments stay as close as possible to
the 3D feature points detected from the point cloud.
Mathematically, this term is define as the sum of the
squared distance between a point bi, j in the feature curve
and the 3D point in the input point cloud:

Ealignment =
m

∑
i=1

ni

∑
j=1
‖bi, j−pi, j‖2, (2)

where pi, j is the variation weighted average of all the
neighboring points of bi, j.

• Smoothness. This term encourages the curved segments
to deform to be smooth. We define the non-smoothness
Fsmooth of the curved segments as following:

Esmooth =
m

∑
i=1

ni−1

∑
j=2
‖bi, j−1−2bi, j +bi, j+1‖2. (3)

• Fidelity. This term prevents the curved segments from
deviating too much from their initial locations. It is
defined as the sum of the squared distance of a point
in the feature and its initial position:

E f idelity =
m

∑
i=1

ni

∑
j=1
‖bi, j−bi, j‖2. (4)

Then our objective function E is defined as the weighted
sum of the above individual energy terms:

E = ω1 ·E f idelity +ω2 ·Ealignment +ω3 ·Esmooth. (5)

By minimizing the above energy function, the quality of
the initially detected curved segments are improved. Fig. 5
shows an example of the optimization result without structural
regularity constraints. As can be seen from this figure, the
curved segments have been smoothed and are now better
aligned with the detected 3D feature points in the point cloud.

We observe structural regularities (such as straight line
segments, co-planarity, and symmetry) are common features in
man-made objects. Thus, we exploit these high-level structural
regularities to further improve the quality of the feature curves.
In this work, the following structural regularities are detected
and enhanced:
• Linearity. To straighten feature curves representing s-

traight line segments, this term measures how well the
interior points of a curved segment can be represented
by the linear combination of its two endpoints:

Eline = ∑
i∈Sline

ni

∑
j=1
‖ti, j ·bi,1 +(1− ti, j) ·bi,ni −bi, j‖2, (6)

where Sline are the feature curves detected as straight
lines. Parameter ti, j is the weight that can be computed
by minimizing ‖ti, j · bi,1 + (1− ti, j) · bi,ni − bi, j‖2 in the
initial feature curves.

• Circularity. For a closed curve Bi representing a circle,
the circularity term is defined to measure how far the
closed curve is from being a perfect circle. We measure
the non-circularity as the sum of the difference between
the squared length of the circle’s diameter ri and the
squared length of the segment from a point in the feature
curve to the circle center ci:

Ecircle = ∑
i∈Scircle

ni

∑
j=1

(‖bi, j− ci‖2− r2
i ). (7)

where Scircle are the feature curves detected as circles.
• Co-planarity. For all the curved segments Scoplanar that

are supposed to be lying in the same plane, we first
compute a plane C by least-squares fitting of the feature
points. Then this term is defined as the sum of the squared
distance between a point in the feature point and the
plane:

Ecoplanar = ∑
i∈Scoplanar

ni

∑
j=1

(dist(bi, j,C))2, (8)

where dist(bi, j,C) measures the distance from a point bi, j
to the plane C.

• Symmetry and parallelism. Given pairs of curves that
are detected to be symmetric or parallel, for simple for-
mulation and computation, we first perform a resampling
step to ensure that the two curves are represented by the
same number of points. Then, the symmetry constraint is
defined as:

Esymmetry = ∑
k
((

bi,k +b j,k

2
−Ci, j) ·n)2, (9)

where Ci, j = ∑k(bi,k + b j,k)/2 and n is the normalized
vector of ∑k(bi,k−b j,k).
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Fig. 6. Two types of feature curve completion. Top row:
extending several feature curves to be connected at their
endpoints. Bottom row: extending a feature curve to the
interior of another one. Left column shows the initial
curved segments, and right column are the extended
feature curves.

Similarly, the parallelism constraint is given by:

Eparallel = ∑
k
‖bi,k−b j,k +di, j‖2, (10)

where di, j = ∑k(b j,k−bi,k).
In our implementation, we formulate the above structural

regularities as soft constraints, and use Lagrange multipliers
to enhance these regularities by minimizing the augmented
energy function using the L-BFGS algorithm [28].

4.3 Curve network completion
After optimizing the curve segments, we now have regularized
feature curves. Unfortunately, they are disconnected and can
not be used for surface reconstruction. In this step, we propose
a method to extend and close these feature curves to obtain
well connected curve networks. This step is important for two
purposes: 1) sharp corners of an object can be recovered after
connecting several endpoints of the feature curves; 2) only
closed curve networks can be used to detect surface patches
for surface reconstruction.

Actually, it is not a difficult task to connect several endpoints
of different feature curves if their endpoints are close to each
other. Given several endpoints p1,p2, ...,pk with corresponding
tangent direction t1, t2, ..., tk, the connecting point (corner) p
can determined by minimizing the following function,

i=k

∑
i=1

(p−pi) · ti. (11)

The top row of Fig. 6 shows an example for automatically
connecting several endpoints of different feature curves. In
order to connect an endpoint p1 of a feature curve to the
interior of another curve Bi, let t1 denote the tangent direction
at p1, we extend p1 to the point p on curve Bi minimizing
(p−p1) · t1. The bottom row of Fig. 6 shows such an example.

For endpoints that are far away from each other (this is
typically true for point clouds with significant missing region-
s), the main task for the feature curve completion problem

Fig. 7. Result of connecting several endpoints of curves

is to determine which curves can be connected together. We
solve this problem based on a clustering method with a cost
function defined as below. For each endpoint pi of a feature
curve, we define the cost of connecting it with other point qi
from another curved segment as:

F(pi,qi) =
dist(pi,qi)/smax
2+cos(θ(pi,qi))

, (12)

where dist(pi,qi) is the distance between points pi and qi.
If the point qi is also an endpoint, then θ(pi,qi) is the angle
between the tangent directions at these two points. If the point
qi is a sample point in the interior of another feature curve,
then θ(pi,qi) is the angle between the tangent direction of pi
and direction of the vector qi−pi.

For each endpoint pi, a point p j with minimum cost
F(pi,p j) < λ from other feature curves are progressively
clustered together. The threshold λ is set to 0.9 in our
experiment. By clustering each endpoint with the best points
on other curves, we get initial clusters K1,K2, ...,Km, where
Ki is composed of points pi,1,pi,2, ...,pi,ni . We define another
cost to merge two clusters such that two endpoints pi,s in Ki
and p j,t in K j are merged:

E(Ki,Ki) = min
pi,s∈Ki,p j,t∈K j

F(pi,s,p j,t). (13)

We iteratively merge the closest clusters as long as the cost
defined by Equation 13 is smaller than the threshold λ .
We continue this process until no more cluster pairs can be
merged. Fig. 7 shows one of the feature curve completion
results using the proposed clustering method.

5 RESULTS AND DISCUSSION

We tested our algorithm on a large set of noisy point clouds
(both real laser scans and synthetic data) with large missing
regions in the neighborhood of the feature curves.

Curve network results. Fig. 8 shows the curve network
extraction and completion results for three free-form surface
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Fig. 9. A mechanical part reconstructed from the curve network extracted from its noisy laser scan. From left to right:
input point cloud, extracted curve network, the curve network overlaid on the point cloud, reconstructed surface model
from the curve networks using the algorithm proposed by Zhuang et al. [1], and the surface model reconstructed using
the Screened Poisson method [29].

Fig. 8. Curve networks extracted from point clouds of
objects with free-form surfaces.

objects. As can be seen from this figure, although large holes
occur at the feature regions of the point clouds, our method
can still produce satisfactory curve networks.

Fig. 9 shows the processing of a mechanical part. Despite
the noise in the input laser scan, our method successfully
extracts the curve network from the point cloud. We can
also see that the sharp features are faithfully preserved in the
reconstructed surface model using our curve network as input.

In Fig. 10, we demonstrate a collection of curve networks
and the corresponding surface models reconstructed from these
curve networks. Similar to Figures 8 and 9, the examples
shown here are all partial point clouds, but are mechanical
parts. The first column are noisy point clouds with missing
data near the feature regions. The second column are the curve
networks extracted from the point clouds by our approach. The
third column are the point clouds overlaid on the extracted
curve networks. It can be seen clearly from this column,
the extracted curve networks coincide well with the curved

features of the point clouds. The fourth column shows the
reconstructed surface models from the curve networks using
the algorithm proposed by Zhuang et al. [1]. Although some
regions in the point clouds are missing (especially those
at/near the feature regions), the surface models are faithfully
reconstructed from the extracted curve networks.

As a comparison, we show the reconstruction results from
these point clouds using the Screened Poisson reconstruction
method [29] in the last column. It is obvious that the Poisson
method can not reconstruct faithful surface models to fill large
holes in the point clouds, and sharp features in the objects
are usually smoothed. In contrast, the reconstruction from
our extracted curve networks successfully recover these sharp
features.

Limitations. One limitation of our method is that it is
difficult to extract very small features from the point clouds.
It is also difficult to extract the feature curves that are very
close to each other. In such a case, our method may not be
able to separate these feature curves.

Another limitation is that we still can not handle very
large missing regions. Although we developed a simple user
interface to guide the feature curve completion for the regions
with missing data. We found that it is still too difficult to
characterize such curve features by a simple interpolation of
the points.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a framework for extracting curve
networks from noisy and partial point cloud data. Our method
can automatically extract and complete most of the feature
curves. We exploited structural regularities to enhance the
extracted curve networks to be regular and meanwhile respect
the input point clouds. To resolve ambiguities for point clouds
with large missing regions, we developed a simple user inter-
face that allows the user to guide the feature extraction and
completion. Experiments on various imperfect point clouds
validated the effectiveness of our curve networks extraction
framework. The reconstructed surface models from our curve
networks confirmed that the problem of reconstruction from
partial point clouds can be significantly regularized by using
the curve networks extracted using our method.

In the future, we plan to exploit the extracted curve networks
for further editing of the reconstructed surface models.
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Fig. 10. Curve network extraction and surface reconstruction from a set of synthetic data. From left to right: input point
clouds, extracted curve networks, curve networks overlaid on the point clouds, reconstructed surface models from the
curve networks using the algorithm proposed by Zhuang et al. [1], surface models reconstructed using the Screened
Poisson method [29].
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