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Abstract
This paper is devoted to developing and analysing a highly accurate conservative method for
solving the quantum Zakharov system. The scheme is based on a linearly-implicit compact
finite difference discretization and conserve the mass as well as energy in discrete level.
Detailed numerical analysis is presented which shows the method is fourth-order accurate in
space and second-order accurate in time. Several numerical examples are reported to confirm
the conservation properties and high accuracy of the proposed scheme. Finally the compact
scheme is applied to study the convergence rate of the quantum Zakharov system to its
limiting model in the semi-classical limit.

Keywords Quantum Zakharov system · Conservative properties · Compact finite difference
scheme · Convergence

Mathematics Subject Classification 35Q53 · 65M15 · 65M70

1 Introduction

The classical Zakharov system (ZS) was introduced by Zakharov [46] to describe the prop-
agation of Langmuir waves in plasma. It has also been widely applied to various physical
problems, such as the theory of molecular chains [9], hydrodynamics [10] and so on. Further-
more, many researchers have continuously improved the classical ZS and proposed various
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modified ZS which are more consistent with physical phenomena and experimental results.
We refer the readers to the book [25], and references therein.

Taking quantum effects into account, the quantum Zakharov system (QZS) has been
introduced by Garcia et al. [22] and Haas et al. [28] to describe the nonlinear interaction
between high-frequency quantum Langmuir waves and low-frequency quantum ionacoustic
waves,

⎧
⎪⎨

⎪⎩

i Et + ΔE − ε2Δ2E = NE,

Ntt − ΔN + ε2Δ2N = Δ|E |2, x ∈ R
d , t > 0,

E(x, 0) = E0(x), N (x, 0) = N0(x), Nt (x, 0) = N1(x),

(1.1)

where the complex function E(x, t) is the slowly varying envelope of the rapidly oscillatory
electric field, the real function N (x, t) is the deviation of the ion density from its equilibrium
value. It is known that ε = �ωi

κBTe
is the ratio of the ion plasma and electron thermal energies,

here � is Planck’s constant divided by 2π , ωi is the ion plasma frequency, Te is the electron
fluid temperature, and κB is the Boltzmann constant. Here the quantum effect is characterized
by a fourth-order perturbation with a quantum parameter ε > 0 non-negligible when either
the ion-plasma frequency is high or the temperature of electrons is low. For a more detailed
description of the physical background, we refer the readers to [27,36]. When the quantum
effect is absent, i.e., ε = 0, the QZS collapses to the classical ZS [17,26].

Similar to the classical ZS, the QZS (1.1) satisfies the mass conservation law
∫

Rd
|E(t)|2dx =

∫

Rd
|E(0)|2dx, (1.2)

and the energy conservation law

∫

Rd

(

|∇E |2+ 1

2

(
|∇u|2 + N2

)
+ε2 |ΔE |2+ ε2

2
|∇N |2+N |E |2

)

dx = constant, (1.3)

where Δu = Nt .
In recent years, the QZS (1.1) has been investigated extensively [7,18–20,26,28,30,34–

36,45]. For the well-posedness of QZS, we refer to [18,20,26] and references therein.
Specifically, the QZS is locally well-posed in L2(Rd) × L2(Rd) for 1 ≤ d ≤ 8 and globally
well-posed for dimension up to five [18], which is different from the classical ZS, where
the well-posedness for E0 ∈ L2(Rd) is known only for d = 1, 2, and the solution can blow
up in d = 2 [23]. This suggests that including some more physical effects in the equations
which results as amore complicated systemmaymake themathematical understandingmuch
easier. For the stability of the standing waves of QZS, we refer to [19]. For the hyperchaos
and temporal dynamics of the QZS, we refer to [34–36]. For the semi-classical limit of the
QZS, i.e., the QZS converges to the classical ZS as the quantum parameter ε goes to zero,
we refer to [7,17,26]. For the investigation of the QZS on periodic spatial domains, we refer
to a recent work [8].

For the numerical part, different numerical methods for the classical or generalized ZS
have been proposed and analyzed in the last decades (cf. [1–6,11–14,16,31,38]). However,
there are few results concerning the numerical methods for the QZS (1.1). Recently, Xiao
et. al. [43] proposed a conservative linearly-implicit difference scheme for the modified
Zakharov system with high-order space fractional quantum correction. The method con-
serves mass and energy, and converges at the second order in space and time. To improve the
accuracy in space, one choice is to apply the compact difference method, whose efficiency
has been widely verified in solving a large number of equations, e.g., Schrödinger equation

123



Journal of Scientific Computing (2021) 87 :71 Page 3 of 24 71

[29,41,44], Klein–Gordon equation [15,21], Klein–Gordon–Schrödinger equation [39], clas-
sical Zakharov system [38], Klein–Gordon–Zakharov equations [42], 2D Rayleigh–Stokes
problem [37], and Cahn–Hilliard equations [32,33]. The aim of this paper is to design a
high-accuracy conservative scheme, which is based on a linearly-implicit compact differ-
ence scheme, for solving the QZS (1.1). This scheme is highly accurate at the second order
in time and fourth order in space. It is efficient to solve since one only needs to solve two
independent linear systems at each time step. Moreover, the method conserves the mass and
energy which is of vital importance for stability and long-time dynamics.

The rest of the paper is organized as follows. In Sect. 2, we present a linearly-implicit
compact difference scheme for the QZS (1.1), with accuracy at O(h4 + τ 2). In Sect. 3, the
conservative properties of the scheme are given. A priori bounds and convergence of the
scheme are proven in Sect. 4. In Sect. 5, numerical experiments are given to confirm the
accuracy of the scheme, to verify the convergence of the QZS in the semi-classical limit, and
to investigate the dynamics of the QZS. Finally, a brief conclusion is drawn in Sect. 6. For
the sake of simplicity, the symbol C denotes a generic positive constant independent of the
mesh size, time step and the quantum parameter ε, which may represent different values in
distinct occurrences.

2 A Linearly-Implicit Compact Difference Scheme

Similar to most works for the simulation of the Zakharov system [1–5,31], we will consider
the QZS (1.1) in 1D and for numerical implementation we truncate (1.1) into a bounded
domain Ω = [a, b] with periodic boundary conditions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i Et + Exx − ε2∂4x E − NE = 0,

Ntt − Nxx + ε2∂4x N − ∂2x (|E |2) = 0, x ∈ (a, b), t > 0,

E(x, 0) = E0(x), N (x, 0) = N0(x), Nt (x, 0) = N1(x), x ∈ [a, b],
∂kx E(a, t) = ∂kx E(b, t), ∂kx N (a, t) = ∂kx N (b, t), k = 0, 1, 2, 3.

(2.1)

We suppose the periodic Cauchy problem (2.1) possesses a unique solution which is
smooth enough and the initial data N1 satisfies the compatibility condition [24]

∫ b

a
N1(x)dx = 0,

M∑

k=1

N1(a + kh) = 0, for h > 0 with Mh = b − a, M ∈ N.

(2.2)

To state the difference scheme, let h = b−a
M and τ = T

J be the spatial and temporal sizes
respectively, whereM and J are two given integers. DefineΩh = {xk | xk = a+kh, 0 ≤ k ≤
M}, Ωτ = {tn | tn = nτ, 0 ≤ n ≤ J }, Ωhτ = Ωh × Ωτ . Denote the numerical solutions En

k
and Nn

k as the approximation of the exact solution E(x, t) and N (x, t) at the point (xk, tn),
respectively. Denote Vh := {

v = (v1, v2, . . . , vM )T
} ⊆ C

M by the periodic grid function
space, i.e., v j = v j+M when involved. For any grid functions u, v ∈ Vh , define the inner
product and norms as

〈u, v〉 = h
M∑

k=1

ukvk, ‖v‖∞ = max
1≤k≤M

|vk |, ‖v‖p =
(

h
M∑

k=1

|vk |p
)1/p

(p ≥ 1),
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where vk represents the complex conjugate of vk . For simplicity of notation denote ‖u‖ =
‖u‖2. As usual, we use the standard difference operators as

δ+
x vnk = vnk+1 − vnk

h
, δ−

x vnk = vnk − vnk−1

h
, δ2xv

n
k = vnk+1 − 2vnk + vnk−1

h2
,

δ−
t vnk = vnk − vn−1

k

τ
, δ0t v

n
k = vn+1

k − vn−1
k

2τ
, δ2t v

n
k = vn+1

k − 2vnk + vn−1
k

τ 2
.

For simplicity of notation, we denote

v
n+ 1

2
k = vn+1

k + vnk

2
, vnk = vn+1

k + vn−1
k

2
.

As we know, the standard central difference operator δ2x approximates the second-order
derivative as

∂2x v(xk, tn) = δ2xv
n
k + O(h2).

Through a more detailed expansion, we obtain

δ2xv
n
k =

(

1 + h2

12
∂2x

)

∂2x v(xk, tn) + O(h4) =
(

1 + h2

12
δ2x

)

∂2x v(xk, tn) + O(h4),

which implies

∂2x v(xk, tn) = A−1δ2xv
n
k + O(h4), (2.3)

whereA = I + h2
12 δ2x with I being the identity. Based on the periodic condition, the operator

A can also be written by a matrix:

A = 1

12

⎛

⎜
⎜
⎜
⎜
⎜
⎝

10 1 0 · · · 0 1
1 10 1 · · · 0 0

. . .
. . .

. . .

0 0 · · · 1 10 1
1 0 · · · 0 1 10

⎞

⎟
⎟
⎟
⎟
⎟
⎠

M×M

.

Now, we present the linearly-implicit compact finite difference scheme for the problem
(2.1) as follows:

iδ−
t En

k + A−1δ2x E
n− 1

2
k − ε2A−2δ4x E

n− 1
2

k = N
n− 1

2
k E

n− 1
2

k , (2.4)

δ2t N
n
k − A−1δ2x N

n
k + ε2A−2δ4x N

n
k = A−1δ2x

∣
∣En

k

∣
∣2 , 1 ≤ k ≤ M, 1 ≤ n < J , (2.5)

where when involved, vk = vk+M for k ≤ 0 and vk = vk−M for k > M in view of the
periodic boundary conditions. Noticing that the real matrix A is symmetric positive definite,
there exists a real symmetric positive definitematrix H , such that H = A−1. Then (2.4)–(2.5)
can be rewritten as the vector form

iδ−
t En + Hδ2x E

n− 1
2 − ε2H2δ4x E

n− 1
2 − Nn− 1

2 En− 1
2 = 0, (2.6)

δ2t N
n − Hδ2x N

n + ε2H2δ4x N
n − Hδ2x

∣
∣En
∣
∣2 = 0, 1 ≤ n ≤ J − 1. (2.7)

To complete the scheme, we need to assign the value for N 1. Suppose (2.7) is also valid for
n = 0 and the “ghost” vector N−1 is given by

N 1
k − N−1

k = 2τN1 (xk) ,
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where N−1
k is an approximation of N (xk,−τ) which satisfies

N (xk, τ ) − N (xk,−τ) = 2τ∂t N (xk, 0) + O(τ 3),

then N 1 can be calculated by

2

τ 2

(
N 1 − τ Ñ1 − N 0)− Hδ2x

(
N 1 − τ Ñ1

)+ ε2H2δ4x
(
N 1 − τ Ñ1

)− Hδ2x

∣
∣E0
∣
∣2 = 0,

(2.8)

with

E0 = (E0(x1), . . . , E0(xM ))T , N 0 = (N0(x1), . . . , N0(xM ))T ,

Ñ1 = (N1(x1), . . . , N1(xM ))T . (2.9)

It is worth noticing that the QZS (2.1) is nonlinearly coupled, while the resulting discrete
scheme (2.6)–(2.9) is decoupled and solving the large-scale systems of nonlinear alge-
braic equations is successfully avoided, which makes the computational efficiency greatly
improved.

3 Conservative Properties

In this section, the conservation properties are obtained for the difference scheme (2.6)–(2.7),
which preserves the conservative properties (1.2)–(1.3) in discrete level. To do this, we need
some useful lemmas.

Lemma 3.1 For u, v ∈ Vh, we have
〈
δ2xu, v

〉 = − 〈δ+
x u, δ+

x v
〉
,
〈
δ4xu, v

〉 = 〈
δ2xu, δ2xv

〉
.

Lemma 3.2 [41] The operatorsA andA−1 (or equivalently the matrices A and H)are com-
mutative with δ+

x and δ−
x , i.e., for any grid function u ∈ Vh,

δ+
x Au = Aδ+

x u, δ−
x Au = Aδ−

x u; δ+
x Hu = Hδ+

x u, δ−
x Hu = Hδ−

x u.

Denote H = RT R by the Cholesky decomposition of H . Then by applying Lemmas 3.1
and 3.2, we get

〈
Hδ2x u, v

〉 = 〈δ2x Hu, v
〉 = − 〈δ+

x Hu, δ+
x v
〉 = − 〈RT Rδ+

x u, δ+
x v
〉 = − 〈Rδ+

x u, Rδ+
x v
〉
. (3.1)

Lemma 3.3 [21] For any u ∈ Vh, it holds that

C0‖u‖2 ≤ 〈Hu, u〉 = ‖Ru‖2 ≤ C1‖u‖2, C0‖u‖2 ≤ ‖Hu‖2 ≤ C1‖u‖2, (3.2)

where C0 and C1 are two positive constants independent of h.

With the aid of the preceding lemmas, we can now prove the conservation properties of
the difference scheme (2.6)–(2.7).

Theorem 3.1 Suppose the initial function N1 satisfies (2.2), then the difference scheme (2.6)–
(2.7) conserves the discrete mass and energy, i.e.,

∥
∥En

∥
∥ = ∥∥E0

∥
∥ , (3.3)

En = 2
∥
∥Rδ+

x En
∥
∥2 + ∥∥Rδ+

x U
n
∥
∥2 + 1

2

(∥
∥Nn+1

∥
∥2 + ∥∥Nn

∥
∥2
)

+ 2ε2
∥
∥Hδ2x E

n
∥
∥2

+ ε2

2

(∥
∥Rδ+

x Nn+1
∥
∥2 + ∥∥Rδ+

x Nn
∥
∥2
)

+ 〈|En |2, 2Nn+ 1
2
〉 = E0, (3.4)
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where Un ∈ Vh is defined by

Hδ2xU
n
k = δ−

t Nn+1
k , 1 ≤ k ≤ M, 0 ≤ n < J , (3.5)

with boundary condition Un
M = 0.

Proof Computing the inner product of (2.6) with En− 1
2 yields

〈
iδ−

t En, En− 1
2
〉+ 〈Hδ2x E

n− 1
2 , En− 1

2
〉− ε2

〈
H2δ4x E

n− 1
2 , En− 1

2
〉 = 〈Nn− 1

2 En− 1
2 , En− 1

2
〉
.

(3.6)

Noticing that

〈
iδ−

t En, En− 1
2
〉 = i

2τ

(
‖En‖2 − ‖En−1‖2

)
,
〈
Hδ2x E

n− 1
2 , En− 1

2
〉 = −∥∥Rδ+

x En− 1
2
∥
∥2,

〈
H2δ4x E

n− 1
2 , En− 1

2
〉 = ∥∥Hδ2x E

n− 1
2
∥
∥2,

〈
Nn− 1

2 En− 1
2 , En− 1

2
〉 = 〈Nn− 1

2 ,
∣
∣En− 1

2
∣
∣2
〉
,

thus by taking the imaginary part of (3.6), we obtain
∥
∥En

∥
∥ = ∥∥En−1

∥
∥ = · · · = ∥∥E0

∥
∥ .

Next computing the inner product of (2.6) with En − En−1, and taking its real part, we
have

Re
〈
Hδ2x E

n− 1
2 , En − En−1〉− ε2Re

〈
H2δ4x E

n− 1
2 , En − En−1〉

= 1

4

〈
Nn + Nn−1, |En |2 − |En−1|2〉.

According to (3.1), it holds that

Re
〈
Hδ2x E

n− 1
2 , En − En−1

〉
= −Re

〈
Rδ+

x En− 1
2 , Rδ+

x (En − En−1)
〉

= 1

2

(‖Rδ+
x En−1‖2 − ‖Rδ+

x En‖2) .

Noticing H is symmetric and commutative with δ2x , this together with Lemma 3.1 yields that

Re
〈
H2δ4x E

n− 1
2 , En − En−1

〉
= 1

2

(∥
∥Hδ2x E

n
∥
∥2 − ∥∥Hδ2x E

n−1
∥
∥2
)
.

Then, we can obtain

2
( ∥
∥Rδ+

x En
∥
∥2 − ∥∥Rδ+

x En−1
∥
∥2
)

+ 2ε2
(∥
∥Hδ2x E

n
∥
∥2 − ∥∥Hδ2x E

n−1
∥
∥2
)

= −2
〈
Nn− 1

2 , |En |2 − |En−1|2
〉
.

(3.7)

Taking the inner product of (2.7) with Un− 1
2 leads to

〈
δ2t N

n,Un− 1
2

〉
−
〈
Hδ2x N

n,Un− 1
2

〉
+ ε2

〈
H2δ4x N

n,Un− 1
2

〉
=
〈
Hδ2x

∣
∣En
∣
∣2 ,Un− 1

2

〉
.

(3.8)

In view of (2.7), (2.8) and the compatibility condition (2.2), we see that

M∑

k=1

δ−
t Nn+1

k = 0, n ≥ 0, (3.9)
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this enables (3.5) to be well-defined forUn ∈ Vh . For the details, we refer to [24]. It follows
from (3.5) that Hδ2xU

n− 1
2 = δ−

t Nn+ 1
2 = δ0t N

n . Then, we can easily prove that

〈
δ2t N

n,Un− 1
2
〉 = 1

τ

〈
Hδ2xU

n − Hδ2xU
n−1,Un− 1

2
〉 = − 1

2τ

(∥
∥Rδ+

x U
n
∥
∥2 − ∥∥Rδ+

x U
n−1
∥
∥2
)
,

〈
Hδ2x N

n,Un− 1
2
〉 = 〈Nn, Hδ2xU

n− 1
2
〉 = 1

4τ

(∥
∥Nn+1

∥
∥2 − ∥∥Nn−1

∥
∥2
)
,

〈
H2δ4x N

n,Un− 1
2
〉 = 〈Hδ2x N

n, Hδ2xU
n− 1

2
〉 = 1

4τ

(∥
∥Rδ+

x Nn−1
∥
∥2 − ∥∥Rδ+

x Nn+1
∥
∥2
)
,

〈
Hδ2x |En |2,Un− 1

2
〉 = 〈|En |2, Hδ2xU

n− 1
2
〉 = 〈δ0t Nn, |En |2〉.

(3.10)

Substituting (3.10) into (3.8), we get

∥
∥Rδ+

x U
n
∥
∥2 − ∥∥Rδ+

x U
n−1
∥
∥2 + 1

2

(∥
∥Nn+1

∥
∥2 − ∥∥Nn−1

∥
∥2
)

+ ε2

2

(∥
∥Rδ+

x Nn+1
∥
∥2 − ∥∥Rδ+

x Nn−1
∥
∥2
)

= −2τ
〈
δ0t N

n,
∣
∣En
∣
∣2
〉
. (3.11)

Summing (3.7) and (3.11), noticing that
〈
2Nn− 1

2 , |En |2 − |En−1|2
〉
+ 2τ

〈
δ0t N

n, |En |2〉 =
〈
|En |2, 2Nn+ 1

2

〉
−
〈
|En−1|2, 2Nn− 1

2

〉
.

(3.12)

hence (3.4) follows and the proof is completed. ��
Remark 3.1 Actually the conservation properties can be established for more generalized
QZS with the form as follows:

i Et + Exx − ε2∂4x E − N f (|E |2)E = 0,

Ntt − Nxx + ε2∂4x N − ∂2x (F(|E |2)) = 0, x ∈ (a, b), t > 0,

where f is a smooth, real function, F(s) = ∫ s0 f (θ)dθ . Correspondingly, the compact finite
difference scheme is given by

iδ−
t En

k + A−1δ2x E
n− 1

2
k − ε2A−2δ4x E

n− 1
2

k = N
n− 1

2
k E

n− 1
2

k

F(|En
k |2) − F(|En−1

k |2)
|En

k |2 − |En−1
k |2 ,

δ2t N
n
k − A−1δ2x N

n
k + ε2A−2δ4x N

n
k = A−1δ2x F(|En

k |2), 1 ≤ k ≤ M, 1 ≤ n < J ,

and the conserved energy is of the form

En = 2
∥
∥Rδ+

x En
∥
∥2 + ∥∥Rδ+

x U
n
∥
∥2 + 1

2

(∥
∥Nn+1

∥
∥2 + ∥∥Nn

∥
∥2
)

+ 2ε2
∥
∥Hδ2x E

n
∥
∥2

+ ε2

2

(∥
∥Rδ+

x Nn+1
∥
∥2 + ∥∥Rδ+

x Nn
∥
∥2
)

+ 〈F(|En |2), 2Nn+ 1
2
〉
.

4 Convergence

In this section, we first present an a priori bound result, and obtain the corresponding con-
vergence result of the scheme (2.6)–(2.9) for solving the QZS. We first give the following
Lemma.
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Lemma 4.1 [47] (Discrete Sobolev inequality) Suppose that v ∈ Vh. There exists a constant
C2 > 0 independent of v and h such that

‖v‖∞ ≤ C2
√‖v‖

√

‖δ+
x v‖ + ‖v‖.

Now, we will present an a priori bound of the difference solution for the scheme (2.6)–
(2.9).

Theorem 4.1 Suppose the initial data N1 satisfies the compatibility condition (2.2). Then the
difference solution of (2.6)–(2.9) satisfies the following estimates
∥
∥En

∥
∥+ ‖δ+

x En‖ + ∥∥En
∥
∥∞ ≤ C; ∥

∥Nn
∥
∥+ ε‖δ+

x Nn‖ ≤ C; ∥
∥δ+

x U
n
∥
∥+ ∥∥Un

∥
∥∞ ≤ C .

(4.1)

Proof It follows from (3.3) that ‖En‖ ≤ C . Using the discrete Cauchy–Schwarz inequality
and the Young’s inequality, we arrive at

∣
∣
∣

〈∣
∣En
∣
∣2 , Nn+1 + Nn

〉∣
∣
∣ ≤ 1

4

(‖Nn+1‖2 + ‖Nn‖2)+ 2‖En‖44. (4.2)

According to Lemma 4.1, the Young’s inequality and Lemma 3.3, we have

‖En‖44 ≤ ‖En‖2‖En‖2∞ ≤ C‖En‖2∞ ≤ C‖En‖ (‖En‖ + ‖δ+
x En‖)

≤ C0

2
‖δ+

x En‖2 + C‖En‖2 ≤ ‖Rδ+
x En‖2
2

+ C‖E0‖2.
(4.3)

This together with (3.4) and (4.2) gives

∥
∥Rδ+

x En
∥
∥2 + ∥∥Rδ+

x U
n
∥
∥2 + 1

4

(∥
∥Nn

∥
∥2 + ∥∥Nn+1

∥
∥2
)

+ 2ε2
∥
∥Hδ2x E

n
∥
∥2 + ε2

2

(∥
∥Rδ+

x Nn+1
∥
∥2 + ∥∥Rδ+

x Nn
∥
∥2
)

≤ E0 + C‖E0‖2,
(4.4)

which directly yields
∥
∥Nn

∥
∥ ≤ C,

∥
∥Rδ+

x En
∥
∥ ≤ C,

∥
∥Rδ+

x U
n
∥
∥ ≤ C, ε

∥
∥Rδ+

x Nn
∥
∥ ≤ C .

Hence by Lemma 3.3, we arrive at

‖δ+
x En‖ ≤ C, ε‖δ+

x Nn‖ ≤ C, ‖δ+
x U

n‖ ≤ C .

Applying the discrete Sobolev inequality (cf. Lemma 4.1) to En ∈ Vh , we get

‖En‖∞ ≤ C2
√‖En‖

√

‖En‖ + ‖δ+
x En‖ ≤ C .

Recalling Un
M = 0, using the discrete Cauchy–Schwarz inequality, we obtain

|Un
k | =

∣
∣
∣
∣
∣

M−1∑

s=k

(Un
s −Un

s+1) +Un
M

∣
∣
∣
∣
∣

= h

∣
∣
∣
∣
∣

M−1∑

s=k

δ+
x U

n
s

∣
∣
∣
∣
∣
≤ (b − a)1/2‖δ+

x U
n‖ ≤ C, 1 ≤ k < M, (4.5)

which completes the proof. ��
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Next, we turn to prove the convergence of the difference solution of the linearly-implicit
compact difference scheme (2.6)–(2.9). The pointwise errors are defined by

enk = E(xk, tn) − En
k , ηnk = N (xk, tn) − Nn

k .

Consider the exact solution of the system (2.1) on the grid points, then the error equations
are obtained as

iδ−
t e

n + Hδ2x e
n− 1

2 − ε2H2δ4x e
n− 1

2 = w̃n + ξn, (4.6)

δ2t η
n − Hδ2xη

n + ε2H2δ4xη
n = Hδ2x ŵ

n + σ n, n ≥ 1, (4.7)

where w̃n, ŵn represent the errors for the nonlinearity

w̃n
k = 1

4
(N (xk, tn) + N (xk, tn−1))(E(xk, tn) + E(xk, tn−1)) − N

n− 1
2

k E
n− 1

2
k

= 1

2
(N (xk, tn) + N (xk, tn−1))e

n− 1
2

k + η
n− 1

2
k E

n− 1
2

k ,

ŵn
k = |E(xk, tn)|2 − ∣∣En

k

∣
∣2 ,

and ξn , σ n ∈ Vh are the truncation errors

ξnk = iδ−
t E(xk, tn) + 1

2
Hδ2x (E(xk, tn) + E(xk, tn−1)) − ε2

2
H2δ4x (E(xk, tn) + E(xk, tn−1))

− 1

4
(N (xk, tn) + N (xk, tn−1))(E(xk, tn) + E(xk, tn−1)), (4.8)

σ n
k = δ2t N (xk, tn) − 1

2
Hδ2x (N (xk, tn+1) + N (xk, tn−1))

+ ε2

2
H2δ4x (N (xk, tn+1) + N (xk, tn−1)) − Hδ2x |E(xk, tn)|2 . (4.9)

Applying Taylor’s expansion, one easily finds when the solutions are smooth enough, the
location truncation errors satisfy

ξnk = O(τ 2 + h4), δ+
x ξnk = O(τ 2 + h4),

δ2xξ
n
k = O(τ 2 + h4), σ n

k = O(τ 2 + h4), n ≥ 1.

Theorem 4.2 Suppose ε ≤ 1 and the solutions E(x, t), N (x, t) are sufficiently smooth with
initial conditions satisfying the compatibility condition (2.2). Then the solution (En

k , Nn
k ) of

the scheme (2.6)–(2.9) converges to the solution (E(xk, tn), N (xk, tn)) of the QZS (2.1) with
order O(τ 2 + h4):

‖en‖ + ‖δ+
x e

n‖ + ε
∥
∥δ2x e

n
∥
∥ ≤ C

(
τ 2 + h4

)
, ‖ηn‖ + ε‖δ+

x ηn‖ ≤ C
(
τ 2 + h4

)
, (4.10)

where C is dependent of h, τ and ε.

Proof First of all, computing the inner product of (4.6) with en + en−1, and taking the
imaginary part yields

1

τ

(
‖en‖2 − ‖en−1‖2

)
= Im

〈
w̃n, en + en−1〉+ Im

〈
ξn, en + en−1〉. (4.11)

In view of Theorem 4.1, one easily gets
∣
∣w̃n

k

∣
∣ ≤ C

(
|enk | + |en−1

k | + |ηnk | + |ηn−1
k |

)
.
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Applying the discrete Cauchy–Schwarz inequality, we easily obtain the following estimates
∣
∣Im
〈
w̃n, en + en−1〉∣∣ ≤ C

(
‖ηn‖2 + ‖ηn−1‖2 + ‖en‖2 + ‖en−1‖2

)
, (4.12)

∣
∣Im
〈
ξn, en + en−1〉∣∣ ≤ C

(
τ 2 + h4

)2 + C
(
‖en‖2 + ‖en−1‖2

)
. (4.13)

Thus, substituting (4.12) and (4.13) into (4.11), we get

‖en‖2 − ‖en−1‖2 ≤ Cτ
(
‖en‖2 + ‖en−1‖2 + ‖ηn‖2 + ‖ηn−1‖2

)
+ Cτ

(
τ 2 + h4

)2
.

(4.14)

Secondly, computing the inner product of (4.6) with δ−
t e

n , and taking the real part, we
get

− 1

2τ

(
‖Rδ+

x e
n‖2 − ‖Rδ+

x e
n−1‖2

)
− ε2

2τ

(∥
∥Hδ2x e

n
∥
∥2 − ∥∥Hδ2x e

n−1
∥
∥2
)

= Re
〈
w̃n, δ−

t e
n 〉+ Re

〈
ξn, δ−

t e
n 〉. (4.15)

Based on (4.6), applying Lemma 3.3, we derive
∣
∣Re
〈
ξn, δ−

t e
n 〉∣∣ =

∣
∣
∣Re
〈
ξn, i Hδ2x e

n− 1
2 − iε2H2δ4x e

n− 1
2 − iw̃n − iξn

〉∣
∣
∣

≤
∣
∣
∣

〈
Rδ+

x ξn, Rδ+
x e

n− 1
2

〉∣
∣
∣+ ε2

∣
∣
∣
〈
Hδ2xξ

n, Hδ2x e
n− 1

2
〉∣∣
∣+ ∣∣〈ξn, w̃n 〉∣∣

≤ C
(∥
∥Rδ+

x e
n
∥
∥2 + ∥∥Rδ+

x e
n−1
∥
∥2 + ∥∥Rδ+

x ξn
∥
∥2 + ε2

∥
∥Hδ2xξ

n
∥
∥2

+ε2
∥
∥Hδ2x e

n
∥
∥2 + ε2

∥
∥Hδ2x e

n−1
∥
∥2 + ∥∥ξn∥∥2 + ∥∥w̃n

∥
∥2
)

≤ C(τ 2 + h4)2 + C
(∥
∥en
∥
∥2 + ∥∥en−1

∥
∥2 + ∥∥ηn∥∥2 + ∥∥ηn−1

∥
∥2

+∥∥Rδ+
x e

n
∥
∥2 + ∥∥Rδ+

x e
n−1
∥
∥2 + ε2

∥
∥Hδ2x e

n
∥
∥2 + ε2

∥
∥Hδ2x e

n−1
∥
∥2
)

.

(4.16)

To estimate Re
〈
w̃n, δ−

t e
n
〉
, we denote w̃n

k = w̃
1,n
k + w̃

2,n
k with

w̃
1,n
k = 1

2
(N (xk, tn) + N (xk, tn−1)) e

n− 1
2

k , w̃
2,n
k = η

n− 1
2

k E
n− 1

2
k .

Suppose N is smooth enough, then we have
∣
∣w̃

1,n
k

∣
∣ ≤ C

(
|enk | + ∣∣en−1

k

∣
∣
)

,

∣
∣δ+

x w̃
1,n
k

∣
∣ = 1

2

∣
∣
∣
∣(N (xk, tn)+N (xk, tn−1)) δ+

x e
n− 1

2
k + e

n− 1
2

k+1

(
δ+
x N (xk, tn)+δ+

x N (xk, tn−1)
)
∣
∣
∣
∣

≤ ‖N‖L∞
∣
∣δ+

x e
n− 1

2
k

∣
∣+ ‖Nx‖L∞

∣
∣e

n− 1
2

k+1

∣
∣

≤ C
(∣
∣enk+1

∣
∣+ ∣∣en−1

k+1

∣
∣+ ∣∣δ+

x e
n
k

∣
∣+ ∣∣δ+

x e
n−1
k

∣
∣
)

,

∣
∣δ2x w̃

1,n
k

∣
∣ = 1

2

∣
∣
∣ (N (xk+1, tn) + N (xk+1, tn−1)) δ2x e

n− 1
2

k + 2δ−
x e

n− 1
2

k δ+
x N (xk, tn)

+ 2δ−
x e

n− 1
2

k δ+
x N (xk, tn−1) + e

n− 1
2

k−1

(
δ2x N (xk, tn) + δ2x N (xk, tn−1)

) ∣∣
∣

≤ ‖N‖L∞
∣
∣δ2x e

n− 1
2

k

∣
∣+ 2‖Nx‖L∞

∣
∣δ−

x e
n− 1

2
k

∣
∣+ ‖Nxx‖L∞

∣
∣e

n− 1
2

k−1

∣
∣

≤ C
(∣
∣enk−1

∣
∣+ ∣∣en−1

k−1

∣
∣+ ∣∣δ+

x e
n
k−1

∣
∣+ ∣∣δ+

x e
n−1
k−1

∣
∣+ ∣∣δ2x enk

∣
∣+ ∣∣δ2x en−1

k

∣
∣
)

.
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Hence
∣
∣Re
〈
w̃1,n, δ−

t e
n 〉∣∣ =

∣
∣
∣Re
〈
w̃1,n, i Hδ2x e

n− 1
2 − iε2H2δ4x e

n− 1
2 − iw̃n − iξn

〉∣
∣
∣

≤
∣
∣
∣
〈
Rδ+

x w̃1,n, Rδ+
x e

n− 1
2
〉∣∣
∣+ ε2

∣
∣
∣
〈
Hδ2x w̃

1,n, Hδ2x e
n− 1

2
〉∣∣
∣

+ ∣∣〈w̃1,n, w̃n 〉∣∣+ ∣∣〈w̃1,n, ξn
〉∣
∣

≤ C
(∥
∥Rδ+

x e
n
∥
∥2 + ∥∥Rδ+

x e
n−1
∥
∥2 + ∥∥δ+

x w̃1,n
∥
∥2 + ε2

∥
∥Hδ2x e

n
∥
∥2

+ε2
∥
∥Hδ2x e

n−1
∥
∥2 + ε2

∥
∥δ2x w̃

1,n
∥
∥2 + ∥∥ξn∥∥2 + ∥∥w̃n

∥
∥2 + ∥∥w̃1,n

∥
∥2
)

≤ C(h4 + τ 2)2 + C
(∥
∥en
∥
∥2 + ∥∥en−1

∥
∥2 + ∥∥ηn∥∥2 + ∥∥ηn−1

∥
∥2

+∥∥Rδ+
x e

n
∥
∥2 + ∥∥Rδ+

x e
n−1
∥
∥2 + ε2

∥
∥Hδ2x e

n
∥
∥2 + ε2

∥
∥Hδ2x e

n−1
∥
∥2
)

.

(4.17)

On the other hand,

Re
〈
w̃2,n, δ−

t e
n 〉 = 1

τ
Re
〈
ηn− 1

2 En− 1
2 , en − en−1〉

= 1

τ
Re
〈
ηn− 1

2 En− 1
2 , E(·, tn) − E(·, tn−1)

〉− 1

τ
Re
〈
ηn− 1

2 En− 1
2 , En − En−1〉

= 1

τ
Re
〈
ηn− 1

2

( E(·, tn) + E(·, tn−1)

2
− en− 1

2

)
, E(·, tn) − E(·, tn−1)

〉

− 1

2τ

〈
ηn− 1

2 , |En |2 − |En−1|2
〉

= 1

2τ

〈
ηn− 1

2 , |E(·, tn)|2 − |E(·, tn−1)|2 − |En |2 + |En−1|2
〉

− 1

τ
Re
〈
ηn− 1

2 en− 1
2 , E(·, tn) − E(·, tn−1)

〉

= 1

2τ

〈
ηn− 1

2 , ŵn − ŵn−1〉− 1

τ
Re
〈
ηn− 1

2 en− 1
2 , E(·, tn) − E(·, tn−1)

〉
,

which implies
∣
∣
∣Re
〈
w̃2,n, δ−

t e
n 〉− 1

2τ

〈
ηn− 1

2 , ŵn − ŵn−1〉
∣
∣
∣ ≤ 1

2
‖Et‖L∞

(∥
∥ηn− 1

2
∥
∥2 + ∥∥en− 1

2
∥
∥2
)

≤ C
(∥
∥ηn
∥
∥2 + ∥∥ηn−1

∥
∥2 + ∥∥en∥∥2 + ∥∥en−1

∥
∥2
)
. (4.18)

Combining (4.15)–(4.18), we arrive at
∥
∥Rδ+

x e
n
∥
∥2 − ∥∥Rδ+

x e
n−1
∥
∥2 + ε2

∥
∥Hδ2x e

n
∥
∥2 − ε2

∥
∥Hδ2x e

n−1
∥
∥2 + 〈ηn− 1

2 , ŵn − ŵn−1〉

≤ Cτ(h4 + τ 2)2 + Cτ
(∥
∥en
∥
∥2 + ∥∥en−1

∥
∥2 + ∥∥ηn∥∥2 + ∥∥ηn−1

∥
∥2

+∥∥Rδ+
x e

n
∥
∥2 + ∥∥Rδ+

x e
n−1
∥
∥2 + ε2

∥
∥Hδ2x e

n
∥
∥2 + ε2

∥
∥Hδ2x e

n−1
∥
∥2
)

. (4.19)

In view of the compatibility condition (2.2), the second equation in (2.1) and the periodic
boundary conditions, one can derive that (cf. [24])

M∑

k=1

(N (xk, tn+1) − N (xk, tn)) = 0, n ≥ 0,

123
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which together with (3.9) yields
∑M

k=1 δ−
t ηn+1

k = 0 for n ≥ 0. Hence following (3.5), we
are able to define θn ∈ Vh for 0 ≤ n < J by

Hδ2xθ
n
k = δ−

t ηn+1
k , k = 1, 2, . . . , M; θnM = 0. (4.20)

Taking the inner product of (4.7) with θn− 1
2 gives

〈
δ2t η

n, θn− 1
2
〉− 〈Hδ2xη

n, θn− 1
2
〉+ ε2

〈
H2δ4xη

n, θn− 1
2
〉 = 〈Hδ2x ŵ

n, θn− 1
2
〉+ 〈σ n, θn− 1

2
〉
.

(4.21)

Applying Lemma 3.1, (3.1), one easily obtains

〈
δ2t η

n, θn− 1
2
〉 = − 1

2τ

(∥
∥Rδ+

x θn
∥
∥2 − ∥∥Rδ+

x θn−1
∥
∥2
)
,

〈
Hδ2xη

n, θn− 1
2
〉 = 1

4τ

(∥
∥ηn+1

∥
∥2 − ∥∥ηn−1

∥
∥2
)
,

〈
H2δ4xη

n, θn− 1
2
〉 = − 1

4τ

(∥
∥Rδ+

x ηn+1
∥
∥2 − ∥∥Rδ+

x ηn−1
∥
∥2
)
.

(4.22)

It follows from Lemmas 3.1 and 3.2 that

〈
Hδ2x ŵ

n, θn− 1
2
〉 = 〈ŵn, Hδ2xθ

n− 1
2
〉 = 〈ŵn, δ0t η

n 〉. (4.23)

In view of the homogeneous boundary condition of θn , similar to (4.5), it can be seen that
‖θn‖ ≤ C‖δ+

x θn‖, this yields
∣
∣
∣
〈
σ n, θn− 1

2
〉∣∣
∣ ≤ C

(∥
∥θn
∥
∥2 + ∥∥θn−1

∥
∥2
)

+ C
∥
∥σ n

∥
∥2

≤ C
(
τ 2 + h4

)2 + C
(∥
∥Rδ+

x θn
∥
∥2 + ∥∥Rδ+

x θn−1
∥
∥2
)
. (4.24)

Thus, plugging (4.22), (4.23) and (4.24) into (4.21), we obtain

‖Rδ+
x θn‖2 − ‖Rδ+

x θn−1‖2 + 1

2

(‖ηn+1‖2 − ‖ηn−1‖2)

+ ε2

2

(‖Rδ+
x ηn+1‖2 − ‖Rδ+

x ηn−1‖2)+ 〈ŵn, 2τδ0t η
n 〉

≤ Cτ
(∥
∥Rδ+

x θn
∥
∥2 + ∥∥Rδ+

x θn−1
∥
∥2
)

+ Cτ
(
τ 2 + h4

)2
. (4.25)

Based on Theorem 4.1, ‖En‖∞ is bounded. Suppose

‖En‖∞ ≤ CE , 0 ≤ n ≤ J ,

where CE is independent of h, τ and ε. Denote

ME := CE + ‖E‖L∞([0,T ];L∞(Ω)).

Noticing that

〈
2ηn− 1

2 , ŵn − ŵn−1〉+ 〈ŵn, 2τδ0t η
n 〉 = 〈ŵn, 2ηn+ 1

2
〉− 〈ŵn−1, 2ηn− 1

2
〉
,
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combining 4M2
E · (4.14)+2 · (4.19)+(4.25), we are led to

4M2
E

(∥
∥en
∥
∥2 − ∥∥en−1

∥
∥2
)

+ 1

2

(∥
∥ηn+1

∥
∥2 − ∥∥ηn−1

∥
∥2
)

+ 2
(∥
∥Rδ+

x e
n
∥
∥2 − ∥∥Rδ+

x e
n−1
∥
∥2
)

+ ∥∥Rδ+
x θn

∥
∥2 − ∥∥Rδ+

x θn−1
∥
∥2 + ε2

2

(∥
∥Rδ+

x ηn+1
∥
∥2 − ∥∥Rδ+

x ηn−1
∥
∥2
)

+ 2ε2
(∥
∥Hδ2x e

n
∥
∥2 − ∥∥Hδ2x e

n−1
∥
∥2
)

+ 〈ŵn, 2ηn+ 1
2
〉− 〈ŵn−1, 2ηn− 1

2
〉

≤ Cτ(h4 + τ 2)2 + Cτ
(∥
∥en
∥
∥2 + ∥∥en−1

∥
∥2 + ∥∥ηn∥∥2 + ∥∥ηn−1

∥
∥2 + ∥∥Rδ+

x e
n
∥
∥2 + ∥∥Rδ+

x e
n−1
∥
∥2

+∥∥Rδ+
x θn

∥
∥2 + ∥∥Rδ+

x θn−1
∥
∥2 + ε2

∥
∥Hδ2x e

n
∥
∥2 + ε2

∥
∥Hδ2x e

n−1
∥
∥2
)

. (4.26)

Denote

Fn = 4M2
E

∥
∥en
∥
∥2 + 1

2

(∥
∥ηn
∥
∥2 + ∥∥ηn+1

∥
∥2
)

+ 2
∥
∥Rδ+

x e
n
∥
∥2 + ∥∥Rδ+

x θn
∥
∥2

+ ε2

2

(∥
∥Rδ+

x ηn
∥
∥2 + ∥∥Rδ+

x ηn+1
∥
∥2
)

+ 2ε2
∥
∥Hδ2x e

n
∥
∥2, n ≥ 0.

Then (4.26) can be rewritten as

Fn − Fn−1 + 〈ŵn, 2ηn+ 1
2
〉− 〈ŵn−1, 2ηn− 1

2
〉 ≤ Cτ(h4 + τ 2)2 + Cτ

(Fn + Fn−1).

Summing the above equation for n = 1, 2, . . . ,m ≤ J − 1, we get

Fm − F0 + 〈ŵm, 2ηm+ 1
2
〉− 〈ŵ0, 2η

1
2
〉 ≤ C(τ 2 + h4)2 + Cτ

m∑

n=0

Fn .

Noticing that
∣
∣
∣
〈
ŵm, 2ηm+ 1

2
〉∣∣
∣ ≤ 2

∥
∥ŵm

∥
∥2 + 1

8

∥
∥ηm + ηm+1

∥
∥2

≤ 2M2
E‖em‖2 + 1

4

(
‖ηm‖2 + ‖ηm+1‖2

)
≤ 1

2
Fm,

which implies

Fm ≤ 2F0 + C(τ 2 + h4)2 + Cτ

m∑

n=0

Fn,

by recalling that ŵ0 = 0. Noticing that e0 = η0 = 0, it remains to estimate η1 and δ+
x θ0.

Denote

σ 0
k = δ2t N (xk, 0) − 1

2
Hδ2x (N (xk, τ ) + N (xk,−τ)) + ε2

2
H2δ4x (N (xk, τ )

+N (xk,−τ)) − Hδ2x |E(xk, 0)|2 ,

which represents the truncation error at t = 0. It can be clearly seen that
∣
∣σ 0

k

∣
∣ = O(τ 2 + h4),

when the solutions are smooth enough. Denote sk = N (xk ,τ )+N (xk ,−τ)
2 − (N 1

k − τN1(xk)),
thus by definition (2.8), we have

2

τ 2
s − Hδ2x s + ε2H2δ4x s = σ 0.
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Taking the inner product of this equation with s yields

‖s‖2 + τ 2

2

(‖Rδ+
x s‖2 + ε2‖Hδ2x s‖2

) = τ 2

2
〈σ 0, s〉

≤ τ 4‖σ 0‖2 + 1

2
‖s‖2 ≤ Cτ 4(τ 2 + h4)2 + 1

2
‖s‖2,

which implies

‖s‖ ≤ Cτ 2(τ 2 + h4), ‖Rδ+
x s‖ ≤ Cτ(τ 2 + h4).

Noticing that N (xk,−τ) = N (xk, τ ) − 2τN1(xk) + O(τ 3), this means

sk = η1k + O(τ 3), δ+
x sk = δ+

x η1k + O(τ 3),

thus we get

‖η1‖ ≤ Cτ
(
τ 2 + h4

)
, ‖Rδ+

x η1‖ ≤ Cτ(τ 2 + h4).

Applying definition (4.20), the Young’s inequality and ‖θ0‖ ≤ C‖δ+
x θ0‖, one easily finds

‖Rδ+
x θ0‖2 = −〈Hδ2xθ

0, θ0
〉 = − 1

τ

〈
η1, θ0

〉 ≤ 1

2
‖Rδ+

x θ0‖2 + C

τ 2
‖η1‖2,

which immediately yields

‖Rδ+
x θ0‖ ≤ C

τ
‖η1‖ ≤ C(τ 2 + h4).

Now we can conclude that F0 ≤ C(τ 2 + h4)2. Applying the Gronwall’s inequality, there
exists τ0 > 0 such that

Fm ≤ C(τ 2 + h4)2, m ≥ 1,

when τ < τ0. According to the definition of Fn , it follows that
∥
∥en
∥
∥+ ∥∥Rδ+

x e
n
∥
∥+ ε

∥
∥Hδ2x e

n
∥
∥ ≤ C

(
τ 2 + h4

)
,
∥
∥ηn
∥
∥+ ε

∥
∥Rδ+

x ηn
∥
∥ ≤ C

(
τ 2 + h4

)
.

This together with Lemma 3.3 yields (4.10) and the proof is completed. ��
Remark 4.1 It is easy to verify that the compact finite difference schemeand the corresponding
convergence can be established for theQZSwith homogeneousDirichlet boundary condition

E(a, t) = E(b, t) = N (a, t) = N (b, t) = 0,

∂2x E(a, t) = ∂2x E(b, t) = ∂2x N (a, t) = ∂2x N (b, t) = 0.

Remark 4.2 Noticing the proof of Theorem 4.2 relies strongly on the a prior bound ‖En‖∞ ≤
C withC independent of ε. For higher dimensions, e.g., d = 2, applying theDiscrete Sobolev
inequality [47]

‖En‖∞ ≤ C
√‖En‖

√

‖En‖ + ‖δ2x En‖,
one gets

‖En‖44 ≤ ‖En‖2∞‖En‖2 ≤ C‖En‖3(‖En‖ + ‖δ2x En‖) ≤ ε2‖Hδ2x E
n‖2 + C/ε2.

This together with the conservative energy implies an a prior bound ‖En‖∞ ≤ C/ε. Thus
repeating the similar argument will lead to the same convergencewith the constant depending
on ε, which suggests that the convergence is not uniform for ε ∈ (0, 1]. To overcome this
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problem and get a uniform convergence, another idea is to use the cut-off technique [1,5]
by truncating the nonlinearity to a global Lipschitz function with a compact support and the
ε-independent bound of the difference solution can be derived by the triangle inequality

‖En‖∞ ≤ ‖en‖∞ + ‖E‖L∞([0,T ];L∞(Ω)),

and the inverse inequality [5,40]

‖en‖∞ ≤ C

Cd(h)

(‖en‖ + ‖δ+
x e

n‖) , Cd(h) =
{
1/| ln(h)|, d = 2,
h1/2, d = 3,

under the constraint that τ ≤ C
√
Cd(h). Finally the uniform ε-independent error bound of

‖en‖ + ‖δ+
x e

n‖ + ‖ηn‖ can be established under the constraint condition τ ≤ C
√
Cd(h) for

higher dimension problem.

5 Numerical Results

In this section, we report some numerical results to demonstrate the accuracy of the proposed
compact difference scheme (2.6)–(2.9) for solving the QZS (2.1). Furthermore, we apply the
method to numerically study the convergence of the QZS to ZS in the semiclassical limit.

5.1 Accuracy Test

Several examples are presented to verify the spatial and temporal accuracy of the scheme.
For 1D problem, we solve the QZS by the scheme (2.6)–(2.9) on a bounded interval Ω =
[−32, 32] with periodic boundary conditions. In order to quantify the numerical errors, we
introduce the following error functions:

eε(tn) = ‖eε,n‖ + ‖δ+
x e

ε,n‖ + ε‖δ2x eε,n‖, ηε(tn) = ‖ηε,n‖ + ε‖δ+
x ηε,n‖,

where

eε,n
j = Eε(x j , tn) − Eε,n

j , η
ε,n
j = N ε(x j , tn) − N ε,n

j

are the numerical errors with (Eε(x j , tn), N ε(x j , tn)) and (Eε,n
j , N ε,n

j ) being the exact and
numerical solutions of the QZS with quantum parameter ε, respectively. Furthermore, to
testify the conservation properties, we define the discrete mass and energy errors as

Error‖En‖ = ∣∣‖En‖ − ‖E0‖∣∣ , ErrorEn = |En − E0|.

Example 5.1 Taking ε = 0 in (2.1), this corresponds to the classical ZS
{
i Et + Exx = NE,

Ntt − Nxx = ∂2x
(|E |2). (5.1)

The Langmuir solitary solution of the classical ZS is given by (cf. e.g., [24])

E(x, t) = i
√

2B2
(
1 − v2

)
sech (B (x − x0 − vt)) ei

(
v(x−x0)/2−

(
v2/4−B2)t

)

,

N (x, t) = −2B2 sech2 (B (x − x0 − vt)) ,

(5.2)
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Table 1 Temporal accuracy of
the scheme at T = 1 for (5.1),
h = 1/25

τ e0(1) Order η0(1) Order

1/20 4.9718e−04 – 1.7612e−03 –

1/40 1.2445e−04 1.9982 4.4115e−04 1.9972

1/80 3.1128e−05 1.9993 1.1044e−04 1.9981

1/160 7.7872e−06 1.9990 2.7714e−05 1.9945

1/320 1.9521e−06 1.9961 7.0309e−06 1.9788

Table 2 Spatial accuracy of the
scheme at T = 1 for (5.1),
τ = 1/10,000

h e0(1) Order η0(1) Order

1/2 4.1929e−03 – 1.1281e−02 –

1/4 2.4118e−04 4.1198 6.5459e−04 4.1072

1/8 1.4814e−05 4.0250 3.9861e−05 4.0375

1/16 9.2259e−07 4.0052 2.4818e−06 4.0056

1/32 5.8620e−08 3.9762 1.6128e−07 3.9438

0 2 4 6 8 10
0

1

2

x 10 −15

t
0 2 4 6 8 10

0

0.5

1

1.5

2
x 10−12

t

Fig. 1 Conservation of mass (left) and energy (right) of the compact finite difference scheme for the classical
ZS (5.1)

where B is a constant, x0 represents the initial displacement, and v represents the propagation
velocity of the soliton. Set B = 1, v = 1

2 , x0 = 0. The initial and boundary conditions E0(x),
N0(x) and N1(x) are obtained from (5.2) by setting t = 0, i.e.,

E0(x) = i
√
1.5 sech(x)eix/4, N0(x) = −2 sech2(x), N1(x) = −2 sech2(x) tanh(x).

(5.3)

Tables 1 and 2 list the temporal and spatial errors of the compact finite difference method
(2.6)–(2.9) for the classical ZS at T = 1 under different choices of τ and h. To testify the
spatial accuracy, we take a tiny time step τ = 1/10,000 such that the temporal error is
negligible; for temporal error analysis, we set the mesh size h = 1/32 such that the spatial
error can be ignorable. It can be clearly observed that the scheme converges quartically and
quadratically in space and time, respectively, which agrees with the theoretical estimate in
Theorem 4.2. Figures 1 and 2 display the conservation and the numerical error with respect
to time, respectively, where the computation was performed with h = 1/8, τ = 1/50 until
T = 10. We observe that the numerical scheme preserves the discrete mass and energy of
the ZS very well. Furthermore, Fig. 2 suggests that the scheme keeps stable well, too.
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Fig. 2 Errors e0(t) (left) and η0(t) (right) of the compact finite difference scheme for the classical ZS (5.1)

Table 3 Comparison of maximum norm error at T = 1 for (5.1), τ = 1/1000

h 1/2 1/4 1/8 1/16

CFDM (2.6)–(2.9) ‖e0,n‖∞ 3.6589e−03 2.0592e−04 1.2646e−05 8.5976e−07

‖η0,n‖∞ 1.0453e−02 6.5363e−04 4.4865e−05 3.5011e−06

LIFDM in [43] ‖e0,n‖∞ 4.6583e−02 1.0849e−02 2.6985e−03 6.7317e−04

‖η0,n‖∞ 8.5400e−02 2.5568e−02 6.1770e−03 1.5321e−03

To verify the accuracy and efficiency, we compare the compact finite difference scheme
(2.6)–(2.9) (CFDM) with another conservative linearly-implicit finite difference method
(LIFDM) proposed by [43] in Table 3, where we employ the maximum norm error. It should
be pointed out that the LIFDM [43] converges at the second order in space while (2.6)–(2.9)
converges at the fourth order in space.

Example 5.2 Consider the QZS (2.1) with initial conditions (5.3) and different ε > 0. Since
the exact solution is not known, we take the numerical solution obtained by the proposed
compact difference scheme with h = 1/26, τ = 1/1600 as the reference solution.

The errors at T = 1 of the numerical solutions under various h and τ are listed in Tables 4
and 5. It is observed that the CFDM (2.6)–(2.9) gives second- and fourth-order accuracies
in time and space, respectively, which confirms the error estimate in Theorem 4.2. The time
evolution, conservation properties, the errors eε(t) and ηε(t) of the solution for the QZS with
ε = 0.01 are shown in Figs. 3, 4 and 5, respectively, where the computation was performed
with h = 1/8, τ = 1/50. It can be observed that the difference scheme preserves the
conservation laws very well and the dynamics of the soliton for the QZS coincides with that
for the classical ZS (5.2) when ε is small. Comparison between the CFDM (2.6)–(2.9) and
the LIFDM [43] is listed in Table 6, which shows the superiority in spatial accuracy of the
CFDM.

Example 5.3 We test the accuracy of the scheme for two-dimensional problem. The initial
conditions are selected as

E0(x, y) = sin(πx + π y), N0(x, y) = 0, N1(x, y) = 0, (5.4)

We confine this problem on a periodical cell Ω = [−4, 4] × [−4, 4]. Since the exact
solution is not known, we take the numerical solution obtained by the compact difference
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Table 4 Temporal errors of the
scheme at T = 1 for QZS (2.1)
with h = 1

128 and different ε

ε τ eε(1) Order ηε(1) Order

ε = 1
24

1/20 7.6010e−04 – 1.8798e−03 –

1/40 2.4811e−04 1.6152 4.7066e−04 1.9978

1/80 7.3944e−05 1.7464 1.1750e−04 2.0020

1/160 1.9867e−05 1.8960 2.9158e−05 2.0107

1/320 4.9326e−06 2.0100 7.0689e−06 2.0443

ε = 1
26

1/20 4.9894e−04 – 1.7676e−03 –

1/40 1.2511e−04 1.9957 4.4245e−04 1.9982

1/80 3.1280e−05 1.9998 1.1045e−04 2.0021

1/160 7.7669e−06 2.0099 2.7408e−05 2.0107

1/320 1.8831e−06 2.0442 6.6445e−06 2.0444

ε = 1
28

1/20 4.9714e−04 – 1.7612e−03 –

1/40 1.2438e−04 1.9989 4.4084e−04 1.9983

1/80 3.1047e−05 2.0023 1.1005e−04 2.0021

1/160 7.7040e−06 2.0108 2.7309e−05 2.0107

1/320 1.8677e−06 2.0444 6.6204e−06 2.0444

Table 5 Spatial errors of the
scheme at T = 1 for QZS (2.1)
with τ = 1/1600 and different ε

ε h eε(1) Order ηε(1) Order

ε = 1
24

1/2 5.1113e−03 – 1.2114e−02 –

1/4 3.3262e−04 3.9417 6.6569e−04 4.1857

1/8 2.2289e−05 3.8995 4.0535e−05 4.0376

1/16 1.5114e−06 3.8824 2.5169e−06 4.0094

1/32 1.0576e−07 3.8370 1.5648e−07 4.0076

ε = 1
26

1/2 4.4290e−03 – 1.1345e−02 –

1/4 2.6348e−04 4.0712 6.5521e−04 4.1139

1/8 1.6524e−05 3.9951 3.9892e−05 4.0378

1/16 1.0346e−06 3.9974 2.4771e−06 4.0094

1/32 6.4518e−08 4.0033 1.5404e−07 4.0073

ε = 1
28

1/2 4.2529e−03 – 1.1285e−02 –

1/4 2.4683e−04 4.1069 6.5462e−04 4.1076

1/8 1.5244e−05 4.0172 3.9856e−05 4.0378

1/16 9.5014e−07 4.0040 2.4749e−06 4.0094

1/32 5.9164e−08 4.0054 1.5390e−07 4.0073

scheme with h1 = h2 = 1/26, τ = 1/3200 as the reference solution. The errors at T = 0.5
of the numerical solutions under various h and τ are listed on Tables 7 and 8. It can be clearly
seen that the CFDM (2.6)–(2.9) gives second- and fourth-order accuracies in time and space,
respectively, for 2D problem. Similarly, comparison between the CFDM (2.6)–(2.9) and the
LIFDM [43] is displayed in Table 9, which confirms the superior accuracy of the CFDM.
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Fig. 3 Time evolution of the solitary wave for the QZS (2.1) with ε = 0.01: |E | (left) and N (right)
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Fig. 4 Conservation of mass (left) and energy (right) of the compact finite difference scheme for QZS (2.1)
with ε = 0.01
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Fig. 5 Errors eε(t) (left) and ηε(t) (right) of the compact finite difference scheme for the QZS (2.1) with
ε = 0.01

5.2 Convergence of the QZS to the Classical ZS in the Semi-classical Limit (" → 0)

Here we apply the proposed CFDM (2.6)–(2.9) to study the convergence of the QZS (2.1) to
its limiting model, i.e., the classical ZS (5.1). In order to do so, we choose the same initial
conditions as (5.3), and define the error functions as

ηE (t) := ‖Eε(·, t) − E(·, t)‖H2 , ηN (t) := ‖N ε(·, t) − N (·, t)‖H1 ,

where (Eε, N ε) and (E, N ) are the solution of the QZS (2.1) and the classical ZS (5.1),
respectively, and (Eε, N ε) are obtained by the proposed scheme (2.6)–(2.9) with h = 1/16,
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Table 6 Comparison of maximum norm error at T = 1 for QZS (2.1) with ε = 1/64, τ = 1/1600

h 1/2 1/4 1/8 1/16

CFDM (2.6)–(2.9) ‖eε,n‖∞ 3.6639e−03 2.0543e−04 1.2528e−05 7.9014e−07

‖ηε,n‖∞ 1.0515e−02 6.4443e−04 4.3821e−05 2.7082e−06

LIFDM in [43] ‖eε,n‖∞ 4.6561e−02 1.0844e−02 2.6952e−03 6.7252e−04

‖ηε,n‖∞ 8.5063e−02 2.5505e−02 6.1594e−03 1.5276e−03

Table 7 Temporal errors of the scheme at T = 0.5 for 2D QZS (5.4) with h = 1/64

ε τ eε(0.5) Order ηε(0.5) Order

ε = 1
24

1/160 6.7516e−01 – 1.5365e−02 –

1/320 1.6785e−01 2.0081 3.8138e−03 2.0104

1/640 4.0712e−02 2.0436 9.2463e−04 2.0443

1/1280 8.9071e−03 2.1924 2.0226e−04 2.1926

ε = 1
26

1/160 5.0774e−01 – 9.4749e−03 –

1/320 1.2620e−01 2.0084 2.3533e−03 2.0094

1/640 3.0608e−02 2.0437 5.7060e−04 2.0441

1/1280 6.6962e−03 2.1925 1.2483e−04 2.1926

ε = 1
28

1/160 4.9249e−01 – 8.1508e−03 –

1/320 1.2240e−01 2.0085 2.0244e−03 2.0094

1/640 2.9686e−02 2.0438 4.9094e−04 2.0439

1/1280 6.4945e−03 2.1925 1.0740e−04 2.1925

τ = 1/400. Figure 6 displays the errors between the solutions of the QZS (2.1) and the
classical ZS (5.1), which indicates that the QZS converges to the ZS quadratically in terms
of ε. This is consistent with the analytical result in [17]:
∥
∥Eε(·, t) − E(·, t)∥∥Hk + ∥∥N ε(·, t) − N (·, t)∥∥Hk−1 ≤ Cε2, k ≥ 2, 0 ≤ t ≤ T ,

where C is a positive constant which is independent of ε ∈ (0, 1].

5.3 Collision Between Two Solitons

In this section, we apply the finite difference scheme to investigate the interaction between
two solitary waves traveling in the opposite directions.

Example 5.4 The initial data is chosen as (cf. [43])

E0(x) = i
2∑

k=1

√

2
(
1 − v2k

)
sech (x − xk) e

ivk (x−xk )/2,

N0(x) = −2
2∑

k=1

sech2 (x − xk) , N1(x) = −4
2∑

k=1

vk sech
2 (x − xk) tanh (x − xk) ,

(5.5)

which represents two solitary waves located initially at the positions x = x1 and x = x2,
respectively,moving to the right or left depending on the sign of the velocity vk . Computations
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Table 8 Spatial errors of the
scheme at T = 0.5 for 2D QZS
(5.4) with τ = 1/3200

ε h eε(0.5) Order ηε(0.5) Order

ε = 1
24

1/4 8.4035e−01 – 3.2288e−01 –

1/8 5.2705e−02 3.9950 1.9339e−02 4.0614

1/16 3.2818e−03 4.0054 1.1920e−03 4.0201

1/32 1.9303e−04 4.0876 6.9942e−05 4.0910

ε = 1
26

1/4 6.6577e−01 – 2.0825e−01 –

1/8 4.1687e−02 3.9973 1.2402e−02 4.0697

1/16 2.5956e−03 4.0054 7.6107e−04 4.0264

1/32 1.5267e−04 4.0876 4.4598e−05 4.0930

ε = 1
28

1/4 6.5012e−01 – 1.8005e−01 –

1/8 4.0642e−02 3.9997 1.0623e−02 4.0831

1/16 2.5294e−03 4.0061 6.5044e−04 4.0297

1/32 1.4877e−04 4.0876 3.8093e−05 4.0938

Table 9 Comparison of maximum norm error at T = 0.5 for 2D QZS (5.4) with ε = 1/64, τ = 1/1600

h 1/4 1/8 1/16 1/32

CFDM (2.6)–(2.9) ‖eε,n‖∞ 1.6344e−02 1.0073e−03 6.2363e−05 3.6638e−06

‖ηε,n‖∞ 3.3086e−02 1.8682e−03 1.1402e−04 6.6750e−06

LIFDM in [43] ‖eε,n‖∞ 4.9596e−01 1.2758e−01 3.2077e−02 8.0287e−03

‖ηε,n‖∞ 2.1163e−01 5.6904e−02 1.4405e−02 3.6113e−03

0 1 2 3 4 5
0

20

40

60

t

η E
(t
)/

ε2

ε =1 /24

ε =1 /26

ε =1 /28

0 1 2 3 4 5
0

10

20

30

40

50

t

η N
(t
)/

ε2

ε =1 /24

ε =1 /26

ε =1 /28

Fig. 6 Convergence between the QZS and classical ZS under initial data (5.3)

are done with h = 1/16 and τ = 1/500 on the interval Ω = [−400, 400] which is large
enough that the truncation error to the original whole space problem (1.1) can be negligible
due to the periodic boundary condition. We consider the following cases:

(i) x2 = −x1 = 30, v1 = −v2 = 1/2;
(ii) x2 = −x1 = 30, v1 = 3/4, v2 = −1/2;
(iii) x2 = −x1 = 5, v1 = 3/4, v2 = −1/2.

Figures 7 and 8 display the interaction of two solitary waves for the ZS (ε = 0) and QZS
(ε = 1/24) under cases (i)–(iii), respectively. It can be clearly seen that the interactions are
not elastic under all cases. For the dynamics of the ZS, when two initially well-separated
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Fig. 7 Inelastic collision between two solitons for the ZS (5.1) under cases (i)–(iii) (from left to right)

Fig. 8 Inelastic collision between two solitons for the QZS (2.1) with ε = 1/24 under cases (i)–(iii) (from left
to right)

solitons move towards each other at the same velocity (cf. case (i) in Fig. 7), they collide
and split after collision as two amplitude-weakened solitons with velocities changed. At the
same time, a static pulse with strengthened amplitude and some small radiation are generated
during the collision. When the velocities are different (cf. case (ii) in Fig. 7), the static soliton
is replaced by a moving solitary wave. The dynamics is much more complicated when the
two solitons are not initially well separated (cf. case (iii) in Fig. 7). Unlike the former cases
where the soliton remains as a soliton with constant density and velocity after collision, here
there is a periodic perturbation on the position of some localized pulse. From Fig. 8, we find
that the collision between two solitons for the QZS differs from the ZS in two aspects: (1)
there are small outgoing waves emitting before collision; (2) the quantum effect makes the
chaos more obvious after collision.

6 Conclusion

We proposed a conservative linearly-implicit compact finite difference scheme to solve the
quantum Zakharov system (QZS). The method is decoupled and only two linear systems
are solved at each time step, which is very efficient in implementation. The convergence of
the scheme was established at O(τ 2 + h4), which was confirmed by the reported numerical
examples. By adopting our numerical method, we observed numerically that the QZS con-
verges to the classical Zakharov system (ZS) quadratically in the semi-classical limit. Finally
some examples are provided to show the distinction between the dynamics of the QZS and
the classical ZS.
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