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Nonuniqueness and nonlinear instability of Gaussons under
repulsive harmonic potential
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University, Beijing, China

ABSTRACT
We consider the Schr€odinger equation with a nondispersive logarith-
mic nonlinearity and a repulsive harmonic potential. For a suitable
range of the coefficients, there exist two positive stationary solutions,
each one generating a continuous family of solitary waves. These
solutions are Gaussian, and turn out to be orbitally unstable. We also
discuss the notion of ground state in this setting: for any natural def-
inition, the set of ground states is empty.
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1. Introduction

We consider the equation

i@tuþ 1
2
Du ¼ �x2 jxj2

2
uþ ku ln juj2

� �
, x 2 R

d, (1.1)

in the case x > 0 (repulsive harmonic potential) and k < 0: The logarithmic
Schr€odinger equation ((1.1) with x¼ 0) was introduced in [1], and has been considered
in various fields of physics since; see for example [2–9] and references therein. A special
feature of the logarithmic nonlinearity is that it leads to very special solitary waves,
called Gaussons in [1, 10]: if k < 0, for any � 2 R,

ei�te
kd��
2k ekjxj

2

is a solution to (1.1) (with x¼ 0). These solitary waves are orbitally stable, as proved in
[11] (radial case) and [12] (general case). In addition, still in the case x¼ 0, it is known
that for k < 0, no solution is dispersive ([11, Proposition 4.3]), while for k > 0, every
solution is dispersive, with an enhanced rate compared to the usual rate of the free
Schr€odinger equation ([13]).
The logarithmic Schr€odinger equation in the presence of a confining harmonic poten-

tial was considered in physics in [14],
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i@tuþ 1
2
Du ¼ x2 jxj2

2
uþ ku ln juj2

� �
, x 2 R

d: (1.2)

In the case k < 0 ([15]) as well as in the case k > 0 ([16]), generalized Gaussons
exist, and are orbitally stable, in the sense introduced in [17] (see Definition 1.1 below
for the definition in the case of (1.1), the notion being the same for (1.2)).
The case of an inverted, or repulsive harmonic potential as in (1.1), does not seem to

correspond to a realistic model, but constitutes an interesting mathematical toy. The
potential VðxÞ ¼ �x2 jxj2

2 is unbounded from below, and goes to �1 as fast as possible
in order to guarantee that the Hamiltonian � 1

2Dþ VðxÞ is essentially self-adjoint on
C1
0 ðRdÞ; see [18, 19]. In the linear case k¼ 0, classical trajectories go to infinity expo-

nentially fast in time, the solution disperses exponentially in time, and the Sobolev
norms grow exponentially in time (see e.g. [20]). Because of that, there are no long
range effects (scattering theory) when a power-like nonlinearity is added ([20]), and at
least in the case of an L2-critical focusing nonlinearity,

i@tuþ 1
2
Du ¼ �x2 jxj2

2
u� juj4=du, x 2 R

d,

there exists no nontrivial solitary wave uðt, xÞ ¼ ei�t/ðxÞ with / 2 L2ðRdÞ [21, 22].
In the case of (1.1), the mass and the energy are formally independent of time: they

are given by

MðuÞ ¼ jjujj2L2ðRdÞ,

EðuÞ ¼ 1
2
jjrujj2L2ðRdÞ �

x2

2
jjxujj2L2 þ k

ð
R

d
juj2 ln juj2 � 1
� �

dx:
(1.3)

The energy has no definite sign, for two reasons: the repulsive harmonic potential
has a negative contribution in E, and the logarithmic nonlinearity induces a potential
energy with indefinite sign (entropy). Introduce the space R defined by

R ¼ H1 \ FðH1Þ ¼ f 2 H1ðRdÞ, x 7!jxjf ðxÞ 2 L2ðRdÞ
� �

,

and equipped with the norm

jjf jj2R ¼ jjf jj2L2ðRdÞ þ jjrf jj2L2ðRdÞ þ
ð
R

d
jxj2jf ðxÞj2dx

¼ jjf jj2L2ðRdÞ þ h �Dþ jxj2
� �

f , f i:

It is proved in [16, Proposition 1.3] that for k 2 R and any u0 2 R, there exists a
unique solution u 2 L1locðR;RÞ \ CðR; L2ðRdÞÞ to (1.1), such that ujt¼0 ¼ u0: In addition,
the mass M and the energy E are independent of time. In [16], it is proved in addition
that in the case k > 0, every solution to (1.1) disperses exponentially fast: in particular,
there is no solitary wave in this case.
The situation is different in the case k < 0, and leads to features which appear to be

quite unique, in the context of the logarithmic Schr€odinger equation (with potential),
and more generally of nonlinear Schr€odinger equations. In [23], it was proven that (1.1)
admits at least one positive bound state, under some conditions on the coefficients,
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recalled below. Under suitable assumptions regarding the parameters k and x, we
exhibit two positive stationary solutions.
Due to the presence of the potential, (1.1) is not invariant by translation in space,

hence the definition below (as in [15]):

Definition 1.1. A standing wave uðt, xÞ ¼ /ðxÞei�t solution to (1.1) is orbitally stable in
the energy space if for any e > 0, there exists g > 0 such that if u0 2 R satisfies jju0 �
/jjR < g, then the solution u to (1.1) exists for all t 2 R, and

sup
t2R

inf
h2R

jjuðtÞ � eih/jjR < e:

Otherwise, the standing wave is said to be unstable.
The main result of this article is the following:

Theorem 1.2 (i) Let �k > x > 0. Then (1.1) possesses two positive stationary solutions,
which are Gaussons,

/k6ðxÞ ¼ e�
dk6
4k e�k6jxj2=2, where k6 ¼ �k6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

p
:

Each stationary solution generates a continuous family of solitary waves,

u6, �ðt, xÞ ¼ /k6, �ðxÞei�t , /k6, �ðxÞ ¼ e�
�
2k/k6ðxÞ, � 2 R:

Every such solitary wave is unstable in the sense of Definition 1.1.
ðiiÞ: In the limiting case �k ¼ x > 0, /k� ¼ /kþ ¼ /x ¼ ed=4e�xjxj2=2 also generates

a continuous family of solitary waves,

ux, �ðt, xÞ ¼ /x, �ðxÞei�t, /x, �ðxÞ ¼ e
�
2x/xðxÞ, � 2 R,

and every such solitary wave is unstable in the sense of Definition 1.1.

We note that /k� and /kþ are two positive solutions to the stationary equation

� 1
2
D/� x2 jxj2

2
/þ k/ ln j/j2

� �
¼ 0: (1.4)

As evoked above, it is shown in [23] that (1.1) has at least one positive solution,
under suitable assumptions on the coefficients of the equation. More precisely, in [23],
a semiclassical parameter e is present,

�e2Du� jxj2u ¼ u ln juj2:

A stationary, positive solution exists for sufficiently small values of the semiclassical
parameter e. Actually a rescaling argument shows that this corresponds to (1.4) in the
case k ¼ �2, with x ¼ e : for e small, we indeed have �k > x > 0: In [24], it is shown
that for the logarithmic Schr€odinger equation with a potential admitting a global min-
imum reached in ‘ � 2 points sufficiently far one from another, there exist at least ‘
positive stationary solutions, providing a situation where nonuniqueness holds, which is
quite different from ours.
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Linearizing (1.1) around /k, for k ¼ k� or kþ, leads to:

i@tuþ 1
2
Du ¼ �x2 jxj2

2
u� dk

2
u� kkjxj2u ¼ k2

jxj2
2

u� dk
2
u: (1.5)

The underlying Hamiltonian is the (shifted) harmonic oscillator,

Hk ¼ � 1
2
Dþ k2

jxj2
2

� dk
2
, (1.6)

whose point spectrum is kN: This implies linear and spectral stability of the stationary
states /k6 , like, for example, for the Gausson in the case of the logarithmic KdV equa-
tion [25–27]. From this perspective, the nonlinear instability stated in Theorem 1.2 can
appear surprising. We actually show several possible mechanisms leading to instability.
Ground states are often characterized as the unique positive solution to an elliptic

equation (typically when the nonlinearity is homogeneous, but not only, see e.g. [28,
29]): we discuss more into details the notion of ground state in Section 4, and show
that neither /k� nor /kþ can be considered as a ground state according to standard def-
initions. Note that the underlying operator �D� x2jxj2 is not elliptic, since its symbol
is jnj2 � x2jxj2: In particular, we do not obtain a variational characterization of the
Gaussons in the present case, unlike in the case without potential [12], or with a confin-
ing harmonic potential [15, 16]. This is consistent with the fact that these solutions are
unstable. Note however that in view of the global existence result [16, Proposition 1.3],
the instability mechanism is not related to finite time blow-up.
The rest of this article is organized as follows. In Section 2, we show some special

invariances and discuss more into details special Gaussian solutions to (1.1). In Section
3, we complete the proof of Theorem 1.2, by showing the instability of /k� and /kþ ;
several causes of instability are exhibited. Finally in Section 4, we discuss the notion of
ground state associated to (1.1), and show that it should be considered that (1.1) admits
no ground state.

2. Special solutions and invariances

2.1. Some invariances

(1.1) is invariant with respect to translation in time, but not with respect to translation
in space, due to the potential. It is gauge invariant: if u is a solution, then so is eihu for
any constant h 2 R:

2.1.1. Size effect
The following invariance is a feature of the logarithmic nonlinearity: If u solves (1.1),
then for all c 2 C, so does

ucðt, xÞ :¼ c uðt, xÞe�itk ln jcj2 : (2.1)

Typically, if we find a stationary solution, then the above transform generates a con-
tinuum of solitary waves, indexed by c 2 ð0,1Þ, or equivalently by

4 R. CARLES AND C. SU



� ¼ �k ln c2ð Þ 2 R:

Note that the size of these solitary waves is arbitrary, as c ranges ð0,1Þ:

2.1.2. Galilean invariance
Due to the repulsive harmonic potential, the Galilean invariance reads are follows. If
u(t, x) solves (1.1), then for any v 2 R

d, so does

u t, x � v
sinhðxtÞ

x

� �
exp icoshðxtÞv � x � ijvj2

4x
sinhð2xtÞ

� �
: (2.2)

At t¼ 0, the above transform is just a multiplication by eiv�x:

2.1.3. Space translation
The absence of invariance with respect to translation in space can be specified as fol-
lows. If u solves (1.1), then for any x0 2 R

d, so does

u t, x � x0coshðxtÞð Þ exp ix sinhðxtÞx0 � x � ixjx0j2
4

sinhð2xtÞ
� �

: (2.3)

At t¼ 0, the above transform corresponds to a shift in space.

2.1.4. Tensorization
The logarithmic nonlinearity was introduced in [1] to satisfy the following tensorization
property: as the external potential decouples space variables,

�x2 jxj2
2

¼ �x2

2

Xd
j¼1

x2j ,

if the initial datum is a tensor product,

u0ðxÞ ¼
Yd
j¼1

u0jðxjÞ,

then the solution to (1.1) is given by

uðt, xÞ ¼
Yd
j¼1

ujðt, xjÞ,

where each uj solves a one-dimensional equation,

i@tuj þ 1
2
@2
xjuj ¼ �x2

x2j
2
uj þ k ln jujj2

	 

uj, ujjt¼0 ¼ u0j:

2.2. Gaussons

As announced in the introduction, for �k > x > 0, the stationary Gaussons are given
by

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 5



/kðxÞ ¼ e�
dk
4ke�kjxj2=2,

where k is either of the solutions to

k2 þ 2kkþ x2 ¼ 0, i:e: k6 ¼ �k6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

p
: (2.4)

If �k ¼ x > 0, then k� ¼ kþ ¼ x, and we will see in the next subsection that when
x > �k > 0, there exists no Gausson. We compute

jj/kjj2L2ðRdÞ ¼ e�
dk
2k

p
k

� �d=2

:

We note that as x ! 0 with k < 0 fixed, k� ! 0, kþ ! �2k, hence

jj/k�jj2L2ðRdÞ ! 1, whereas jj/kþjj2L2ðRdÞ ! ed
p

�2k

� �d=2

:

We have more generally

Lemma 2.1. Let �k > x > 0. We have

jj/k�jjL2ðRdÞ > jj/kþjjL2ðRdÞ:

Proof. It suffices to prove that

e�k�=k

k�
>

e�kþ=k

kþ
() eðkþ�k�Þ=k >

k�
kþ

() e2
ffiffiffiffiffiffiffiffiffiffi
k2�x2

p
=k >

�k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

p

�kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

p :

We view the above inequality as depending on the unknown x 2 ð0, � kÞ, and
change the unknown as h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

p
=jkj 2 ð0, 1Þ, so the above inequality becomes

e�2h >
1� h
1þ h

() 1þ h > ð1� hÞe2h:

The map f ðhÞ ¼ 1þ h� ð1� hÞe2h, defined for h 2 ð0, 1Þ, satisfies
f 00ðhÞ ¼ 4e2h � 4ð1� hÞe2h > 0, hence f 0ðhÞ ¼ 1þ e2h � 2ð1� hÞe2h > 0,

and f ðhÞ > 0 for all 0 < h < 1: w

In view of (2.1), with � ¼ �k ln ðc2Þ, c> 0, we have a continuum of standing waves:

u6, �ðt, xÞ ¼ /k6, �ðxÞei�t , /k6, �ðxÞ ¼ e�
�
2k/k6ðxÞ, � 2 R:

Therefore, to understand the dynamical properties of u6, � (orbital stability or
instability), it is enough to consider the stationary solutions /k6 :

2.3. Gaussian solutions

By Gaussian solutions, we mean solutions which are Gaussian in the space variable,
with time-dependent coefficients. We adapt the computations presented in [13] in the
case x¼ 0. Suppose d¼ 1 (for d � 2, we may invoke the above tensorization property).

6 R. CARLES AND C. SU



We seek uðt, xÞ ¼ bðtÞe�aðtÞx2=2 (in particular u0 is Gaussian). We find:

i _b ¼ 1
2
abþ kb ln jbj2; i _a ¼ a2 þ 2kReaþ x2:

The function b is given explicitly in terms of a and its initial value b0,

bðtÞ ¼ b0 exp �ikt ln jb0j2
� �

� i
2
AðtÞ � ikIm

ðt
0
AðsÞds

 !
,

where we have denoted AðtÞ ¼ Ð t0 aðsÞds: We may write a under the form

a ¼ 1
s2

� i
_s
s
, s 2 R, (2.5)

and the equation for a leads to

€s ¼ 2k
s
þ 1
s3

þ x2s: (2.6)

We note that the form (2.5) implies that b(t) can be written as

bðtÞ ¼ b0e
ihðtÞ

ffiffiffiffiffiffiffiffiffi
sð0Þ
sðtÞ

s
, hðtÞ 2 R: (2.7)

Multiplying (2.6) by _s and integrating, we get

ð _sÞ2 þ VðsÞ ¼ C0, VðsÞ ¼ �4k ln jsj þ 1
s2

� x2s2, (2.8)

where C0 ¼ _sð0Þ2 � 4k ln jsð0Þj þ 1
sð0Þ2 � x2sð0Þ2 is related to the initial data. Noticing

that VðqÞ ! þ1 when q ! 0, this readily shows that s remains bounded away from
zero, and thus may be supposed positive in view of (2.5):

9d > 0, sðtÞ � d, 8t � 0:

Proposition 2.2. Let d¼ 1, k < 0 < x:

1. If �k > x > 0, then (2.6) has exactly two stationary solutions, s7 ¼ 1=
ffiffiffiffiffiffi
k6

p
. The

other solutions are either periodic, or unbounded, corresponding to time-periodic
and dispersive Gaussian solutions to (1.1), respectively.

2. If �k ¼ x > 0, then (2.6) has exactly one stationary solution, s0 ¼ 1=
ffiffiffiffi
x

p
. All the

other solutions are unbounded. In other words, any Gaussian solution to (1.1)
which is not of the form

eð2�þxÞ=ð4xÞei�te�xx2=2, � 2 R,

is dispersive.

3. If x > �k > 0, then every solution to (2.6) is unbounded. More precisely,

ext�sðtÞ�ext , tP 0,

and every Gaussian solution to (1.1) disperses exponentially fast.
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Proof. We remark that the righthand side of (2.6) can be rewritten as

€s ¼ P
1
s2

� �
s, PðXÞ ¼ X2 þ 2kX þ x2:

When �k > x > 0, P has exactly two roots, k� and kþ, so

€s ¼ 1
s2

� k�

� �
1
s2

� kþ

� �
s:

According to the initial data for s, the value of the constant C0 in (2.8) varies, leading
to bounded trajectories, in which case s is periodic, or to unbounded trajectories, in
which case sðtÞ ! 1 as t goes to infinity. This is illustrated by Figure 1, displaying the
phase portrait for the Equation (2.6) with x¼ 1 and k ¼ �2, where we find

s� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

3
pp � 0:518, sþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� ffiffiffi
3

pp � 1:932:

When �k ¼ x > 0, P has exactly one double root x, and

€s ¼ 1
s2

� x

� �2

s:

If s is not constant (equal to 1=
ffiffiffiffi
x

p
), then s is strictly convex. If sðt0Þ ¼ 1=

ffiffiffiffi
x

p
for

some t0P0, then _sðt0Þ 6¼ 0, for otherwise s would be constant, by uniqueness for (2.6):
s can’t remain close to 1=

ffiffiffiffi
x

p
, and assuming that s is bounded leads to a contradiction.

As s is positive and convex, sðtÞ goes to infinity as t ! 1: This is illustrated in
Figure 2.
When x > �k > 0, P is uniformly bounded from below on R, PðXÞPd > 0: If s is

bounded, (2.6) would yield €s� 1, since s is bounded away from zero, hence a contra-
diction. As s is convex, sðtÞ goes to infinity as t ! 1, see Figure 3.

Figure 1. Phase portraits for the ODE (2.6) with x¼ 1 and k ¼ �2:

8 R. CARLES AND C. SU



As a consequence, for any e > 0, picking T sufficiently large,

€sðtÞPx2sðtÞ � e, 8tPT:

The solution to

€hðtÞ ¼ x2hðtÞ � e, hðTÞ ¼ sðTÞ, _hðTÞ ¼ _sðTÞ,
is given by

hðtÞ ¼ sðTÞcosh xðt � TÞð Þ þ _sðTÞ sinh xðt � TÞð Þ
x

� 2e
x2

sinh2
x
2
ðt � TÞ

� �
:

As sðTÞ and _sðTÞ go to infinity as T ! 1, we infer that sðtÞ� ext: The converse
estimate is a direct consequence of (2.8), again because for t sufficiently large, ln sðtÞ >
0, and k < 0: w

Figure 2. Phase portraits for the ODE (2.6) with x¼ 2 and k ¼ �2:

Figure 3. Phase portraits for the ODE (2.6) with x¼ 2 and k ¼ �1:
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Remark 2.3. In the linear case k ¼ 0 < x, there is no solitary wave, as every solution is
dispersive. This can be seen for instance via the vector field JðtÞ ¼ xxsinhðxtÞ þ
icoshðxtÞr : as observed in [20, Lemma 2.3], if u solves

i@tuþ 1
2
Du ¼ �x2 jxj2

2
u,

then so does Ju, and since J can be factorized as

JðtÞ ¼ icoshðxtÞeixjxj2
2 tanhðxtÞr e�ixjxj2

2 tanhðxtÞ�
	 


, (2.9)

Gagliardo–Nirenberg inequality yields, for 26 p < 2d
ðd�2Þþ ,

jjuðtÞjjLpðRdÞ 6
Cðp, dÞ

ðcoshðxtÞÞdðpÞ
jjuðtÞjj1�dðpÞ

L2 jjJðtÞujjdðpÞL2

¼ Cðp, dÞ
ðcoshðxtÞÞdðpÞ

jju0jj1�dðpÞ
L2 jjru0jjdðpÞL2 , dðpÞ ¼ d

1
2
� 1
p

� �
,

since the L2-norm is preserved by the flow. Therefore, if u0 2 R, the Lp-norm of u
decreases exponentially in time, and no solitary wave exists. The existence of solitary
waves when �kPx > 0 is thus due to the presence of the logarithmic nonlinearity,
which is sufficiently strong (due to the singularity of the logarithm at the origin) to
counterbalance the exponential linear dispersion.

3. Orbital instability

The instability result that we prove is slightly stronger than instability in the sense of
Definition 1.1:

Lemma 3.1. Let � 2 R:

1. Suppose �k > x > 0. The solitary waves /k�, �ðxÞei�t and /kþ, �ðxÞei�t are
unstable. More precisely, for any g > 0, there exists u0 2 R such that

jju0 � /kþ, �jjR < g,

and the solution to (1.1) such that ujt¼0 ¼ u0 satisfies

sup
tP 0

inf
h2R

kuðtÞ � eih/kþ, �kL2ðRdÞP
1
2
jj/kþ, �jjL2ðRdÞ:

The same holds when kþ is replaced by k�:

2. Suppose �k ¼ x > 0. The solitary wave /x, �ðxÞei�t is unstable in the same sense
as above.

Proof. We present the argument for /kþ , to shorten notations: considering /k6, � for
� 2 R goes along the same lines, and the argument includes the limiting case �k ¼
x > 0: For all g > 0, then exists d > 0 such that for jx0j < d,

10 R. CARLES AND C. SU



jju0 � /kþjjR < g, u0ðxÞ ¼ /kþðx � x0Þ:
In view of (2.3), the solution to (1.1) with initial datum u0 is given by

uðt, xÞ ¼ /kþ x� x0coshðxtÞð ÞeixsinhðxtÞx0�x�ixjx0 j2
4 sinhð2xtÞ

Therefore, for any t> 0,

inf
h2R

jjuðtÞ � eih/kþjj2L2ðRdÞ ¼
ð
R

d
/kþ x � x0coshðxtÞð Þ � /kþðxÞ
�� ��2dx:

Indeed, denote uðt, xÞ ¼ /kþðx� x0coshðxtÞÞeiaðx0, x, tÞ with aðx0, x, tÞ 2 R given by the
above formula. Then

jjuðtÞ � eih/kþjj2L2ðRdÞ ¼ jj/kþ x� x0coshðxtÞð Þ � eiðh�aðx0, x, tÞÞ/kþjj2L2ðRdÞ

¼ 2jj/kþjj2L2ðRdÞ � 2
ð
R

d
cos ðh� aðx0, x, tÞÞ/kþ x � x0coshðxtÞð Þ/kþðxÞdx,

which implies

inf
h2R

jjuðtÞ � eih/kþjj2L2ðRdÞ

¼ 2jj/kþjj2L2ðRdÞ � 2 sup
h2R

ð
R

d
cos ðh� aðx0, x, tÞÞ/kþ x� x0coshðxtÞð Þ/kþðxÞdx

P2jj/kþjj2L2ðRdÞ � 2
ð
R

d
/kþ x � x0coshðxtÞð Þ/kþðxÞdx

¼ k/kþ x� x0coshðxtÞð Þ � /kþðxÞk2L2ðRdÞ:

It becomes obvious that picking t sufficiently large (in terms of g) leads to

inf
h2R

jjuðtÞ � eih/kþjj2L2ðRdÞ P
1
2
jj/kþjj2L2ðRdÞ:

This rules out orbital stability, even in the L2-norm, for initial data close to /kþ in
the R-topology. w

Remark 3.2. We can adapt the above proof by using the Galilean invariance (2.2), and
consider instead

u0ðxÞ ¼ /kþðxÞeiv�x, jvj � 1:

Remark 3.3. It is clear from the argument that u0 is close to /kþ in R, but also in stron-
ger norms, while orbital stability is ruled out by measuring only the L2-norm.

Remark 3.4. (Linearization). The argument of the proof can be compared to the discus-
sion around linearization after the statement of Theorem 1.2. Differentiating (2.3) with
respect to x0, the trace at x0 ¼ 0 yields the infinitesimal generator iJ(t), where the vec-
tor-field J is defined in Remark 2.3. Using (2.9) to shorten computations, and the expli-
cit expression of /kþ , we find that vðt, xÞ :¼ iJðtÞ/kþðxÞ solves
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i@tvþ 1
2
Dv ¼ k2þ

jxj2
2

v� dkþ
2

vþ 2kkþ
coshðxtÞ

kþcoshðxtÞ þ ixsinhðxtÞ v:

So we see that the approach of the proof of Lemma 3.1 is different from the direct
linearization of (1.1) about /kþ , leading to (1.5).

The above arguments do not rule out orbital stability when the initial datum are
restricted to be radially symmetric. In [11], this restriction was considered essentially to
obtain compactness properties (the embedding of H1

radðRdÞ into LpðRdÞ for 26 p <
2d

ðd�2Þþ is compact). Note that R is compactly embedded into LpðRdÞ for 26 p < 2d
ðd�2Þþ :

The lemma below shows instability for /k� even at the radial level.

Lemma 3.5 . Let � 2 R:

1. Suppose �k > x > 0. The solitary wave /k�, �ðxÞei�t is unstable even if we restrict
Definition 1.1 to radial solutions.

2. The same holds for /x, �ðxÞei�t in the case �k ¼ x > 0:

Proof. Assume �k > x > 0: We show that uk�, � is unstable even as a Gaussian solution
centered at the origin, by linearizing (2.6) about s� ¼ 1=

ffiffiffiffiffiffi
k�

p
: we compute the linear-

ization as

€h ¼ x2h� 2kk�h� 3k2�h ¼ Xeffh,

where

Xeff ¼ x2 � 2kk� � 3k2� ¼ �4k2� � 4kk� ¼ �4k�ðk� þ kÞ:
Since k� þ k < 0, the linearized operator is such that Xeff > 0, so h grows exponen-
tially. Of course linearizing makes sense only for sufficiently small h, but this is enough
to contradict the definition of orbital stability. Indeed, there exists d > 0 such that as
long as jhðtÞj6 d, we can write the solution s to (2.6) with sð0Þ ¼ s� þ hð0Þ and
_sð0Þ ¼ 0 as

sðtÞ ¼ s� þ hðtÞ þ rðtÞ, with jrðtÞj6 jhðtÞj
2

:

For 0 < e < d, let h solve

€h ¼ Xeffh, hð0Þ ¼ e, _hð0Þ ¼ 0:

As hðtÞ ¼ ecosh t
ffiffiffiffiffiffiffiffi
Xeff

p� �
grows exponentially, there exists t0 > 0 such that hðt0Þ ¼ d,

and the triangle inequality yields

jsðt0Þ � s�jP d
2
:

Now if u denotes the Gaussian solution associated with s, we see that for all g > 0,
picking e > 0 sufficiently small ensures

jjuð0Þ � /k�jjR < g,

while, in view of (2.7), setting kðtÞ ¼ 1=sðtÞ2,
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sup
tP0

inf
h2R

jjuðtÞ � eih/k�jjL2ðRdÞP inf
h2R

jjuðt0Þ � eih/k�jjL2ðRdÞ

Pe�dk�=ð4kÞ
���� s�

sðt0Þ
� �d=2

e�kðt0Þjxj2=2 � e�k�jxj2=2
����
L2ðRdÞ

PCðdÞ > 0,

where CðdÞ is independent of e, hence independent of g. Thus, we have the same
instability results as in Lemma 3.1, at the level of radial Gaussian solutions.
In the case �k ¼ x > 0, we find Xeff ¼ 0, hence hðtÞ ¼ _hð0Þt þ hð0Þ: We now pick

_hð0Þ ¼ e, hð0Þ ¼ 0, so h is still unbounded as time grows. We thus consider the solu-
tion s to (2.6) with sð0Þ ¼ s� ¼ 1=

ffiffiffiffi
x

p� �
and _sð0Þ ¼ e, and the above argument can be

repeated. w

Remark 3.6. For �k > x > 0, the same argument is not conclusive in the case of kþ,
since we then have

Xeff ¼ �4kþðkþ þ kÞ < 0:

The trajectories of the linearized operator are bounded (periodic). This is consistent
with the phase portrait corresponding to the Gaussian case, see Figure 1 (recalling that
kþ corresponds to the smaller value s�). It is an open question to decide whether
/kþ, �ðxÞei�t is stable or not under radial perturbations.

4. On the notion of ground state

The most standard notions of ground state seem to be the following:

� Minimizer of the action Eþ mM:

� Minimizer of the energy E for a given mass M.
� Positive solution of dEþ mdM ¼ 0:

In the case of an homogeneous nonlinearity, the three notions coincide, and the
ground state is unique, up to the invariants of the equation; see, for example, [30,
Chapter 8]. In the absence of potential (x¼ 0), the Gausson is the only positive station-
ary solution to (1.1) [31]. In the present case, we have seen already that for k > x > 0,
there are two distinct solutions to the stationary equation dE¼ 0, namely /k� and /kþ :
the last notion cannot be relevant. On the other hand, because the potential is
unbounded from below, the first two notions are not relevant either: given u 2 R,

Eðux0Þ !
jx0j!1

�1, ux0ðxÞ :¼ uðx� x0Þ:

In [32], the second notion is adapted, by requiring in addition that the ground state
is a critical point of the energy on the set of function with a given mass M, which is
meaningful even when the energy is unbounded from below on this set. The case of the
logarithmic nonlinearity turns out to be rather specific: a solitary wave ei�t/ðxÞ solves
(1.1) if and only if / solves
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� 1
2
D/þ �/� x2 jxj2

2
/þ k/ ln j/j2 ¼ 0:

Multiplying this equation by �/ and integrating shows that / must solve

jjr/jj2L2 � x2jjx/jj2L2 þ 2k
ð
R

d
j/j2 ln j/j2dx þ 2�jj/jj2L2 ¼ 0:

This Pohozaev identity defines the Nehari manifold. But we see that the above left
hand side differs from twice the energy

EðuÞ ¼ 1
2
jjrujj2L2 �

x2

2
jjxujj2L2 þ k

ð
R

d
juj2 ln juj2 � 1
� �

dx

only by the term 2ðkþ �ÞM: Following [12, 15] (see also [33, 34]), we thus introduce
the action and the Nehari functional,

S�ðuÞ :¼ EðuÞ þ �jjujj2L2 ,
I�ðuÞ :¼ jjrujj2L2 � x2jjxujj2L2 þ 2k

ð
R

d
juj2 ln juj2dxþ 2�jjujj2L2 ¼ 2S�ðuÞ þ 2kjjujj2L2 ,

and consider the minimization problem

dð�Þ :¼ inffS�ðuÞ j u 2 R n f0g, I�ðuÞ ¼ 0g
¼ �kinffjjujj2L2 j u 2 R n f0g, I�ðuÞ ¼ 0g:

The set of ground states is defined by

G� :¼ f/ 2 R n f0g j I�ðuÞ ¼ 0, S�ð/Þ ¼ dð�Þg:
We check that

I0ð/k6Þ ¼ 0 ðhence I�ð/k6, �Þ ¼ 0Þ:
In view of Lemma 2.1, /k� does not belong to G0, and should thus not be considered

as a ground state, even though it is a positive solution to (1.4).
It turns out that /kþ is not a ground state either:

Proposition 4.1. Let k < 0 < x. For any � 2 R, dð�Þ ¼ 0, and G� ¼ ;:
Proof. Consider the two-parameter family of Gaussians

ce, x0ðxÞ ¼ e e�jx�x0j2=2:

Naturally, the parameter e > 0 is aimed at being arbitrarily small, and we use the cen-
ter x0 to adjust the size of the momentum so that ce, x0 belongs to the Nehari manifold.
The choice of a variance equal to one is arbitrary, for the following computation would
lead to the same conclusion for any fixed variance. We compute:

jjce, x0 jj2L2ðRdÞ ¼ e2pd=2, jjrce, x0 jj2L2ðRdÞ ¼
de2

2
pd=2,

jjxce, x0 jj2L2ðRdÞ ¼ e2
ð
R

d
jyþ x0j2e�jyj2dy ¼ e2

d
2
pd=2 þ e2jx0j2pd=2,ð

R
d
c2e, x0 ln c2e, x0

	 

¼ ln ðe2Þjjce, x0 jj2L2ðRdÞ � jjrce, x0 jj2L2ðRdÞ ¼ e2pd=2 ln ðe2Þ � d

2

� �
,
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hence:

I� ce, x0ð Þ ¼ e2pd=2 ð1� 2kÞ d
2
� x2 d

2
� x2jx0j2 þ 2k ln ðe2Þ þ 2�

� �
:

For e > 0 sufficiently small, 2k ln ðe2Þ þ ð1� 2kÞ d2 � x2 d
2 þ 2� > 0 (recall that k < 0),

and we can find x0 2 R
d (with jx0j of order

ffiffiffiffiffiffiffiffiffiffiffiffi� ln e
p

=x) such that I�ðce, x0Þ ¼ 0: But of
course jjce, x0 jjL2ðRdÞ is arbitrarily small, hence dð�Þ ¼ 0: The second line in the definition
of dð�Þ obviously implies that G� ¼ ;: w

The next natural question to complete the picture is then to ask whether /kþ is a
local minimum or a saddle point of S0ðuÞ at I0ðuÞ ¼ 0: Recalling (2.4), we compute, for
w ¼ uþ iv (u and v real-valued), hS000ð/kþÞw,wi ¼ hL1u, ui þ hL2v, vi, where

L1u ¼ �Duþ k2þjxj2u� dkþuþ 4ku ¼ 2Hkþuþ 4ku, L2v ¼ 2Hkþv,

where the shifted harmonic operator Hk is defined in (1.6). Its spectrum is kN, and its
eigenfunctions are Hermite functions. Since k < 0, we infer that /kþ is a saddle point.
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