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Abstract. We present a regularized finite difference method for the logarithmic Schrödinger
equation (LogSE) and establish its error bound. Due to the blowup of the logarithmic nonlinearity,
i.e., ln ρ → −∞ when ρ → 0+ with ρ = |u|2 being the density and u being the complex-valued
wave function or order parameter, there are significant difficulties in designing numerical methods
and establishing their error bounds for the LogSE. In order to suppress the roundoff error and to
avoid blowup, a regularized LogSE (RLogSE) is proposed with a small regularization parameter
0 < ε � 1 and linear convergence is established between the solutions of RLogSE and LogSE in
term of ε. Then a semi-implicit finite difference method is presented for discretizing the RLogSE
and error estimates are established in terms of the mesh size h and time step τ as well as the small
regularization parameter ε. Finally numerical results are reported to illustrate our error bounds.
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1. Introduction. We consider the logarithmic Schrödinger equation (LogSE)
which arises in a model of nonlinear wave mechanics (cf. [7]),

(1.1)

{
i∂tu(x, t) + ∆u(x, t) = λu(x, t) ln(|u(x, t)|2), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where t is time, x ∈ Rd (d = 1, 2, 3) is the spatial coordinate, λ ∈ R\{0} measures
the force of the nonlinear interaction, u := u(x, t) ∈ C is the dimensionless wave
function or order parameter, and Ω = Rd or Ω ⊂ Rd is a bounded domain with homo-
geneous Dirichlet or periodic boundary condition1 fixed on the boundary. It admits
applications to quantum mechanics [7, 8], quantum optics [9, 21], nuclear physics [18],
transport and diffusion phenomena [16, 23], open quantum systems [19, 27], effective
quantum gravity [28], theory of superfluidity, and Bose–Einstein condensation [3].
The LogSE enjoys three conservation laws, mass, momentum, and energy [12, 13], like
in the case of the nonlinear Schrödinger equation with a power-like nonlinearity (e.g.,
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1Whenever we consider this case, it is assumed that the boundary is Lipschitz continuous.
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cubic):

M(t) : = ‖u(·, t)‖2L2(Ω) =

∫

Ω

|u(x, t)|2dx ≡
∫

Ω

|u0(x)|2dx = M(0),

P (t) : = Im

∫

Ω

u(x, t)∇u(x, t)dx ≡ Im

∫

Ω

u0(x)∇u0(x)dx = P (0), t ≥ 0,

E(t) : =

∫

Ω

[
|∇u(x, t)|2dx + λF (|u(x, t)|2)

]
dx

≡
∫

Ω

[
|∇u0(x)|2 + λF (|u0(x)|2)

]
dx = E(0),

(1.2)

where Im f and f denote the imaginary part and complex conjugate of f , respectively,
and

(1.3) F (ρ) =

∫ ρ

0

ln(s)ds = ρ ln ρ− ρ, ρ ≥ 0.

Note that the expression of F is the same as the usual entropy from gas dynamics
(up to the sign, according to the community).

On a mathematical level, the logarithmic nonlinearity possesses several features
that make it quite different from more standard nonlinear Schrödinger equations.
First, the nonlinearity is not locally Lipschitz continuous because of the behavior
of the logarithm function at the origin. Note that in view of numerical simulation,
this singularity of the “nonlinear potential” λ ln(|u(x, t)|2) makes the choice of a dis-
cretization quite delicate. The second aspect is that whichever the sign of λ, the
nonlinear potential energy in E has no definite sign. In fact, whether the nonlinearity
is repulsive/attractive (or defocusing/focusing) depends on both λ and the value of
the density ρ := ρ(x, t) = |u(x, t)|2. When λ > 0, then the nonlinearity λρ ln ρ is
repulsive when ρ > 1 and, respectively, it is attractive when 0 < ρ < 1. On the
other hand, when λ < 0, then the nonlinearity λρ ln ρ is attractive when ρ > 1 and,
respectively, it is repulsive when 0 < ρ < 1. Therefore, solving the Cauchy problem
for (1.1) is not a trivial issue, and constructing solutions which are defined for all time
requires some work; see [10, 13, 15]. Essentially, the outcome is that if u0 belongs
to (a subset of) H1(Ω), (1.1) has a unique, global solution, regardless of the space
dimension d (see also Theorem 2.2 below).

Next, the large time behavior reveals new phenomena. A first remark suggests
that nonlinear effects are weak. Indeed, unlike what happens in the case of a homoge-
neous nonlinearity (classically in the form λ|u|pu), replacing u with ku (k ∈ C \ {0})
in (1.1) has only little effect, since we have

i∂t(ku) + ∆(ku) = λku ln
(
|ku|2

)
− λ(ln |k|2)ku .

The scaling factor thus corresponds to a purely time-dependent gauge transform:

ku(x, t)e−itλ ln |k|2

solves (1.1) (with initial datum ku0). In particular, the size of the initial datum
does not influence the dynamics of the solution. In spite of this property which is
reminiscent of linear equations, nonlinear effects are stronger in (1.1) than in, say,
cubic Schrödinger equations in several respects. For Ω = Rd, it was established in [11]
that in the case λ < 0, no solution is dispersive (not even for small data, in view
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of the above remark), while if λ > 0, the results from [10] show that every solution
disperses, at a faster rate than for the linear equation.

In view of the gauge invariance of the nonlinearity, for Ω = Rd, (1.1) enjoys the
standard Galilean invariance: if u(x, t) solves (1.1), then, for any v ∈ Rd, so does

u(x− 2vt, t)eiv·x−i|v|
2t.

A remarkable feature of (1.1) is that it possesses a large set of explicit solutions. In
the case Ω = Rd: if u0 is Gaussian, u(·, t) is Gaussian for all time, and solving (1.1)
amounts to solving ordinary differential equations [7]. For simplicity of notation, we
take the one-dimensional case as an example. If the initial data in (1.1) with Ω = R
is taken as

u0(x) = b0e
− a02 x

2+ivx, x ∈ R,

where a0, b0 ∈ C and v ∈ R are given constants satisfying α0 := Re a0 > 0 with Re f
denoting the real part of f , then the solution of (1.1) is given by [2, 10]

(1.4) u(x, t) =
b0√
r(t)

ei(vx−v
2t)+Y (x−2vt,t), x ∈ R, t ≥ 0,

with

(1.5) Y (x, t) = −iφ(t)− α0
x2

2r(t)2
+ i

ṙ(t)

r(t)

x2

4
, x ∈ R, t ≥ 0,

where φ := φ(t) ∈ R and r := r(t) > 0 solve the ODEs [2, 10]

φ̇ =
α0

r2
+ λ ln |b0|2 − λ ln r, φ(0) = 0,

r̈ =
4α2

0

r3
+

4λα0

r
, r(0) = 1, ṙ(0) = −2 Im a0.

(1.6)

In the case λ < 0, the function r is (time) periodic (in agreement with the absence of
dispersive effects). In particular, if a0 = −λ > 0, it follows from (1.6) that r(t) ≡ 1
and φ(t) = φ0t with φ0 = λ

[
ln(|b0|2)− 1

]
, which generates the uniformly moving

Gausson as [2, 10]

(1.7) u(x, t) = b0e
λ
2 (x−2vt)2+i(vx−(φ0+v2)t), x ∈ R, t ≥ 0.

As a very special case with b0 = e1/2 such that φ0 = 0 and moreover v = 0, one can
get the static Gausson as

(1.8) u(x, t) = e1/2eλ|x|
2/2, x ∈ R, t ≥ 0.

This special solution is orbitally stable [11, 14]. On the other hand, in the case λ > 0,
it is proven in [10] that for general initial data (not necessarily Gaussian), there exists
a universal dynamics. For extensions to higher dimensions, we refer to [2, 10] and
references therein. Therefore, (1.1) possesses several specific features, which make it
quite different from the nonlinear Schrödinger equation.

Different numerical methods have been proposed and analyzed for the nonlinear
Schrödinger equation with smooth nonlinearity (e.g., cubic nonlinearity) in the lit-
erature, such as the finite difference methods [4, 5], finite element methods [1, 20],
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and the time-splitting pseudospectral methods [6, 25]. However, they cannot be ap-
plied to the LogSE (1.1) directly due to the blowup of the logarithmic nonlinearity,
i.e., ln ρ → −∞ when ρ → 0+. The main aim of this paper is to present a regular-
ized finite difference method for the LogSE (1.1) by introducing a proper regularized
LogSE (RLogSE) and then discretizing the RLogSE via a semi-implicit finite differ-
ence method. Error estimates will be established between the solutions of LogSE and
RLogSE as well as their numerical approximations.

The rest of the paper is organized as follows. In section 2, we propose a regularized
version of (1.1) with a small regularization parameter 0 < ε � 1, and analyze its
properties, as well as the convergence of its solution to the solution of (1.1). In
section 3, we introduce a semi-implicit finite difference method for discretizing the
RLogSE, and prove an error estimate, in which the dependence of the constants with
respect to the regularization parameter ε is tracked very explicitly. Finally, numerical
results are provided in section 4 to confirm our error bounds and to demonstrate the
efficiency and accuracy of the proposed numerical method.

Throughout the paper, we use Hm(Ω) and ‖ · ‖Hm(Ω) to denote the standard
Sobolev spaces and their norms, respectively. In particular, the norm and inner
product of L2(Ω) = H0(Ω) are denoted by ‖ · ‖L2(Ω) and (·, ·), respectively. Moreover,
we adopt A . B to mean that there exists a generic constant C > 0 independent
of the regularization parameter ε, the time step τ , and the mesh size h such that
A ≤ C B, and .c means the constant C depends on c.

2. A regularized logarithmic Schrödinger equation. It turns out that a
direct simulation of the solution of (1.1) is very delicate, due to the singularity of the
logarithm at the origin, as discussed in the introduction. Instead of working directly
with (1.1), we shall consider the following RLogSE with a small regularized parameter
0 < ε� 1 as

(2.1)

{
i∂tu

ε(x, t) + ∆uε(x, t) = λuε(x, t) ln (ε+ |uε(x, t)|)2
, x ∈ Ω, t > 0,

uε(x, 0) = u0(x), x ∈ Ω.

2.1. Conserved quantities. For the RLogSE (2.1), it can be similarly deduced
that the mass, momentum, and energy are conserved.

Proposition 2.1. The mass, momentum, and “regularized” energy are formally
conserved for the RLogSE (2.1):

Mε(t) :=

∫

Ω

|uε(x, t)|2dx ≡
∫

Ω

|u0(x)|2dx = M(0),

P ε(t) := Im

∫

Ω

uε(x, t)∇uε(x, t)dx ≡ Im

∫

Ω

u0(x)∇u0(x)dx = P (0), t ≥ 0,

Eε(t) :=

∫

Ω

[
|∇uε(x, t)|2 + λFε(|uε(x, t)|2)

]
dx

≡
∫

Ω

[
|∇u0(x)|2 + λFε(|u0(x)|2)

]
dx = Eε(0),

(2.2)

where

(2.3)
Fε(ρ) =

∫ ρ

0

ln(ε+
√
s)2ds

= ρ ln (ε+
√
ρ)

2 − ρ+ 2ε
√
ρ− ε2 ln (1 +

√
ρ/ε)

2
, ρ ≥ 0.
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Proof. The conservation for mass and momentum is standard, and relies on the
fact that the right-hand side of (2.1) involves uε multiplied by a real number. For the
energy Eε(t), we compute

d

dt
Eε(t) = 2 Re

∫

Ω

[
∇uε · ∇∂tuε + λuε∂tuε ln(ε+ |uε|)2 − λuε∂tuε

]
(x, t)dx

+ 2λ

∫

Ω

∂t|uε|
[
ε+
|uε|2 − ε2

ε+ |uε|
]
(x, t)dx

= 2 Re

∫

Ω

[
∂tuε

(
−∆uε + λuε ln(ε+ |uε|)2

)]
(x, t)dx

= 2 Re

∫

Ω

i|∂tuε(x, t)|2dx = 0, t ≥ 0,

which completes the proof.

Note however that since the above regularized energy involves the L1-norm of uε

for any ε > 0, Eε is obviously well-defined for u0 ∈ H1(Ω) when Ω has finite measure,
but not when Ω = Rd. This aspect is discussed in more detail in subsections 2.3.3
and 2.4.

2.2. The Cauchy problem. For α > 0 and Ω = Rd, denote by L2
α the weighted

L2 space

L2
α := {v ∈ L2(Rd), x 7−→ 〈x〉αv(x) ∈ L2(Rd)},

where 〈x〉 :=
√

1 + |x|2, with norm

‖v‖L2
α

:= ‖〈x〉αv(x)‖L2(Rd).

In the case where Ω is bounded, we simply set L2
α = L2(Ω). Regarding the Cauchy

problems (1.1) and (2.1), we have the following result.

Theorem 2.2. Let λ ∈ R and 0 < ε ≤ 1. Consider (1.1) and (2.1), with an
initial datum u0 ∈ H1

0 (Ω) ∩ L2
α for some 0 < α ≤ 1.

1. Suppose that Ω is bounded, and consider (1.1) and (2.1) with homogeneous
Dirichlet or periodic boundary condition:

• There exists a unique, global weak solution u ∈ L∞loc(R;H1
0 (Ω)) to (1.1) and

a unique, global solution uε ∈ L∞loc(R;H1
0 (Ω)) to (2.1).

• If in addition u0 ∈ H2(Ω), then u, uε ∈ L∞loc(R;H2(Ω)).
2. Suppose that Ω = Rd:
• There exists a unique, global weak solution u ∈ L∞loc(R;H1(Rd)∩L2

α) to (1.1)
and a unique, global solution uε ∈ L∞loc(R;H1(Rd) ∩ L2

α) to (2.1).
• If in addition u0 ∈ H2(Rd), then u, uε ∈ L∞loc(R;H2(Rd)).
• If u0 ∈ H2(Rd) ∩ L2

2, then u, uε ∈ L∞loc(R;H2(Rd) ∩ L2
2).

Remark 2.1. We emphasize that the solution to (1.1) thus constructed is a weak
solution, because we rely on compactness arguments, from the regularized equation
(2.1). It is rather surprising in these conditions that uniqueness is always granted.
This was noticed already in [13], as recalled in the course of our proof. Note that in
the recent paper [17], solutions to (1.1) are obtained in the case λ < 0 as strong limits
of approximating sequences, which are different from ours. The approach consists in
replacing the logarithmic (entropy) function F by its Taylor expansion at ε on the
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interval (0, ε), following the strategy from [13]. Note, however, that the arguments
there rely on energy estimates bound to the case λ < 0, and that this approximating
procedure is more delicate to implement numerically than the use of (2.1).

Proof. This result can be proved by using more or less directly the arguments in-
voked in [10]. First, for fixed ε > 0, the nonlinearity in (2.1) is locally Lipschitz, and
grows more slowly than any power for large |uε|. Therefore, the standard Cauchy
theory for nonlinear Schrödinger equations applies (see, in particular, [12, Corol-
lary 3.3.11 and Theorem 3.4.1]), and so if u0 ∈ H1

0 (Ω), then (2.1) has a unique
solution uε ∈ L∞loc(R;H1

0 (Ω)). Higher Sobolev regularity is propagated, with controls
depending on ε in general.

A solution u of (1.1) can be obtained by compactness arguments, by letting ε→ 0
in (2.1), provided that we have suitable bounds independent of ε > 0. We have

i∂t∇uε + ∆∇uε = 2λ ln (ε+ |uε|)∇uε + 2λ
uε

ε+ |uε|∇|u
ε|.

We first present the proof in the case where Ω is bounded, and then explain how to
modify the arguments in the case where Ω = Rd.

The standard energy estimate (multiply the above equation by∇uε, integrate over
Ω, and take the imaginary part) yields, in the case of a periodic boundary condition,

1

2

d

dt
‖∇uε‖2L2(Ω) ≤ 2|λ|

∫

Ω

|uε|
ε+ |uε| |∇|u

ε|| |∇uε|dx ≤ 2|λ|‖∇uε‖2L2(Ω).

Gronwall’s lemma yields a bound for uε in L∞(0, T ;H1(Ω)), uniformly in ε > 0, for
any given T > 0. Indeed, the above estimate uses the property

(2.4) Im

∫

Ω

∇uε ·∆∇uε dx = 0,

which needs not be true when uε satisfies homogeneous Dirichlet boundary conditions.
In that case, we use the conservation of the energy Eε (Proposition 2.1), and write

‖∇uε(t)‖2L2(Ω) ≤ Eε(u0) + 2|λ|
∫

Ω

|uε(x, t)|2 |ln (ε+ |uε(x, t)|)| dx

+ 2ε|λ|‖uε(t)‖L1(Ω) + 2|λ|ε2

∫

Ω

|ln (1 + |uε(x, t)|/ε)| dx

. 1 + ε|Ω|1/2‖uε(t)‖L2(Ω) +

∫

Ω

|uε(x, t)|2 |ln (ε+ |uε(x, t)|)| dx

. 1 +

∫

Ω

|uε(x, t)|2 |ln (ε+ |uε(x, t)|)| dx, t ≥ 0,

where we have used the Cauchy–Schwarz inequality and the conservation of the mass
Mε(t). Noticing that for 0 < η ≤ 1, we have

lnx ≤ xη

ηe
, x ≥ 1; (1 + x)η ≤ 1 + xη, x ≥ 0,
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which gives
∫

Ω

|uε|2 |ln (ε+ |uε|)| dx

≤ 1

ηe

∫

ε+|uε|>1

|uε|2 (ε+ |uε|)η dx +
1

ηe

∫

ε+|uε|<1

|uε|2 (ε+ |uε|)−η dx

≤ 1

ηe

∫

Ω

|uε|2 (1 + |uε|)η dx +
1

ηe

∫

Ω

|uε|2−ηdx

≤ 1

ηe

[
‖uε‖2L2(Ω) + ‖uε‖2+η

L2+η(Ω) + |Ω|η/2‖uε‖2−ηL2(Ω)

]
. 1 + ‖∇uε‖dη/2L2(Ω),

where for the last inequality we used the conservation of the mass, the fact that Ω is
bounded, and the interpolation inequality (see, e.g., [24] and here we take p = 2 + η)

‖u‖Lp(Ω) . ‖u‖1−αL2(Ω)‖∇u‖αL2(Ω) + ‖u‖L2(Ω) for
1

p
=

1

2
− α

d
, 0 ≤ α < 1.

Thus we obtain again that uε is bounded in L∞(0, T ;H1(Ω)), uniformly in ε > 0, for
any given T > 0.

Compactness arguments show that uε converges to a solution u to (1.1); see
[12, 13] for details (compactness in time follows from (2.1)). Uniqueness of such a
solution for (1.1) follows from the arguments of [13], involving a specific algebraic
inequality, generalized in Lemma 2.4 below. Note that at this stage, we know that uε

converges to u by compactness arguments, so we have no convergence estimate. Such
estimates are established in subsection 2.3.

To prove the propagation of the H2 regularity, we note that differentiating the
nonlinearity in (2.1) twice makes it unrealistic to expect direct bounds which are
uniform in ε. To overcome this difficulty, the argument proposed in [10] relies on
Kato’s idea: instead of differentiating the equation twice in space, differentiate it
once in time, and use the equation to infer H2 regularity. This yields the propagation
of the H2 regularity.

When Ω = Rd, we can resume the above arguments: the identity (2.4) is valid on
Rd, so the uniform bound for ∇uε follows like in the periodic case. On the other hand,
compactness in space is provided by multiplying (2.1) with 〈x〉2αuε and integrating
in space:

d

dt
‖uε‖2L2

α
= 4α Im

∫

Rd

x · ∇uε
〈x〉2−2α

uε(t) dx . ‖ 〈x〉2α−1
uε‖L2(Rd)‖∇uε‖L2(Rd),

where we have used the Cauchy–Schwarz inequality. Recalling that 0 < α ≤ 1,

‖ 〈x〉2α−1
uε‖L2(Rd) ≤ ‖ 〈x〉α uε‖L2(Rd) = ‖uε‖L2

α
,

and we obtain a bound for uε in L∞(0, T ;H1(Rd) ∩ L2
α) which is uniform in ε. The

propagation of the H2 regularity follows by using the same argument as in the case
when Ω is bounded. To establish the last part of the theorem, we prove that u ∈
L∞loc(R;L2

2) and the same approach applies to uε. It follows from (1.1) that

d

dt
‖u(t)‖2L2

2
= −2 Im

∫

Rd
〈x〉4u(x, t)∆u(x, t)dx

= 8 Im

∫

Rd
〈x〉2u(x, t) x · ∇u(x, t)dx ≤ 8 ‖u(t)‖L2

2
‖x · ∇u(t)‖L2(Rd).(2.5)
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664 W. BAO, R. CARLES, C. SU, AND Q. TANG

By the Cauchy–Schwarz inequality and integration by parts, we have

‖x · ∇u(t)‖2L2(Rd)

≤
d∑

j=1

d∑

k=1

∫

Rd
x2
j

∂u(x, t)

∂xk

∂u(x, t)

∂xk
dx

= −2

∫

Rd
u(x, t) x · ∇u(x, t)dx−

∫

Rd
|x|2u(x, t)∆u(x, t)dx

≤ 1

2
‖x · ∇u(t)‖2L2(Rd) + 2‖u(t)‖2L2(Rd) +

1

2
‖u(t)‖2L2

2
+

1

2
‖∆u(t)‖2L2(Rd),

which yields directly that

‖x · ∇u(t)‖L2(Rd) ≤ 2‖u(t)‖L2(Rd) + ‖u(t)‖L2
2

+ ‖∆u(t)‖L2(Rd).

This together with (2.5) gives that

d

dt
‖u(t)‖L2

2
≤ 4‖x · ∇u(t)‖L2(Rd) ≤ 4‖u(t)‖L2

2
+ 8‖u(t)‖L2(Rd) + 4‖∆u(t)‖L2(Rd).

Since we already know that u ∈ L∞loc(R;H2(Rd)), Gronwall’s lemma completes the
proof.

Remark 2.2. We emphasize that if u0 ∈ Hk(Rd), k ≥ 3, we cannot guarantee
in general that this higher regularity is propagated in (1.1), due to the singularities
stemming from the logarithm. Still, this property is fulfilled in the case where u0

is Gaussian, since then u remains Gaussian for all time. However, our numerical
tests, in the case where the initial datum is chosen as the dark soliton of the cubic
Schrödinger equation multiplied by a Gaussian, suggest that even the H3 regularity
is not propagated in general.

2.3. Convergence of the regularized model. In this subsection, we show the
approximation property of the regularized model (2.1) to (1.1).

2.3.1. A general estimate. We prove the following.

Lemma 2.3. Suppose the equation is set on Ω, where Ω = Rd, or Ω ⊂ Rd is a
bounded domain with homogeneous Dirichlet or periodic boundary condition, then we
have the general estimate

(2.6)
d

dt
‖uε(t)− u(t)‖2L2(Ω) ≤ 4|λ|

(
‖uε(t)− u(t)‖2L2(Ω) + ε‖uε(t)− u(t)‖L1(Ω)

)
.

Before giving the proof of Lemma 2.3, we introduce the following lemma, which
is a variant of [12, Lemma 9.3.5], established initially in [13, Lemma 1.1.1].

Lemma 2.4. Let ε ≥ 0 and denote fε(z) = z ln(ε+ |z|), then we have

|Im ((fε(z1)− fε(z2)) (z1 − z2))| ≤ |z1 − z2|2, z1, z2 ∈ C.

Proof. Notice that

Im [(fε(z1)− fε(z2)) (z1 − z2)] =
1

2
[ln(ε+ |z1|)− ln(ε+ |z2|)] Im(z1z2 − z1z2).

Supposing, for example, 0 < |z2| ≤ |z1|, we can obtain that

|ln(ε+ |z1|)− ln(ε+ |z2|)| = ln

(
1 +
|z1| − |z2|
ε+ |z2|

)
≤ |z1| − |z2|

ε+ |z2|
≤ |z1 − z2|

|z2|
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and
|Im(z1z2 − z1z2)| = |z2(z1 − z2) + z2(z2 − z1)| ≤ 2|z2| |z1 − z2|.

Otherwise the result follows by exchanging z1 and z2.

Proof of Lemma 2.3. Subtracting (1.1) from (2.1), we see that the error function
eε := uε − u satisfies

i∂te
ε + ∆eε = λ

[
uε ln(ε+ |uε|)2 − u ln(|u|2)

]
.

Multiplying the error equation by eε(t), integrating in space, and taking the imaginary
parts, we can get by using Lemma 2.4 that

1

2

d

dt
‖eε(t)‖2L2(Ω) = 2λ Im

∫

Ω

[uε ln(ε+ |uε|)− u ln(|u|)] (uε − u)(x, t)dx

≤ 2|λ|‖eε(t)‖2L2(Ω) + 2|λ|
∣∣∣∣
∫

Ω

eεu [ln(ε+ |u|)− ln(|u|)] (x, t)dx

∣∣∣∣
≤ 2|λ|‖eε(t)‖2L2(Ω) + 2ε|λ|‖eε(t)‖L1(Ω),

where we have used the general estimate 0 ≤ ln(1 + |x|) ≤ |x|.
2.3.2. Convergence for bounded domain. If Ω has finite measure, then we

can have the following convergence behavior.

Proposition 2.5. Assume that Ω has finite measure, and let u0 ∈ H2(Ω). For
any T > 0, we have

(2.7) ‖uε − u‖L∞(0,T ;L2(Ω)) ≤ C1ε, ‖uε − u‖L∞(0,T ;H1(Ω)) ≤ C2ε
1/2,

where C1 depends on |λ|, T , |Ω| and C2 depends on |λ|, T , |Ω|, and ‖u0‖H2(Ω).

Proof. Note that ‖eε(t)‖L1(Ω) ≤ |Ω|1/2‖eε(t)‖L2(Ω), then it follows from (2.6) that

d

dt
‖eε(t)‖L2(Ω) ≤ 2|λ|‖eε(t)‖L2(Ω) + 2ε|λ||Ω|1/2.

Applying Gronwall’s inequality, we immediately get that

‖eε(t)‖L2(Ω) ≤
(
‖eε(0)‖L2(Ω) + ε|Ω|1/2

)
e2|λ|t = ε|Ω|1/2e2|λ|t.

The convergence rate in H1 follows from the property uε, u ∈ L∞loc(R;H2(Ω)) and the
Gagliardo–Nirenberg inequality [22],

‖∇v‖L2(Ω) . ‖v‖1/2L2(Ω)‖∆v‖
1/2
L2(Ω),

which completes the proof.

Remark 2.3. The weaker rate in theH1 estimate is due to the fact that Lemma 2.3
is not easily adapted to H1 estimates, because of the presence of the logarithm.
Differentiating (1.1) and (2.1) makes it hard to obtain the analogue in Lemma 2.3.
This is why we bypass this difficulty by invoking boundedness in H2 and interpolating
with the error bound at the L2 level. If we have uε, u ∈ L∞loc(R;Hk(Ω)) for k > 2,
then the convergence rate in H1(Ω) can be improved as

‖eε‖L∞(0,T ;H1(Ω)) . ε
k−1
k ,

by using the inequality (see, e.g., [24])

‖v‖H1(Ω) . ‖v‖1−1/k
L2(Ω) ‖v‖

1/k

Hk(Ω)
.
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2.3.3. Convergence for the whole space. In order to prove the convergence
rate of the regularized model (2.1) to (1.1) for the whole space, we need the following
lemma.

Lemma 2.6. For d = 1, 2, 3, if v ∈ L2(Rd) ∩ L2
2, then we have

(2.8) ‖v‖L1(Rd) ≤ Cd‖v‖1−d/4L2(Rd)
‖v‖d/4

L2
2
,

where Cd > 0 depends on d.

Proof. Applying the Cauchy–Schwarz inequality, we can get for fixed r > 0,

‖v‖L1(Rd) =

∫

|x|≤r
|v(x)|dx +

∫

|x|≥r

|x|2|v(x)|
|x|2 dx

. rd/2

(∫

|x|≤r
|v(x)|2dx

) 1
2

+

(∫

|x|≥r
|x|4|v(x)|2dx

) 1
2
(∫

|x|≥r

1

|x|4 dx
) 1

2

. rd/2‖v‖L2(Rd) + rd/2−2‖v‖L2
2
.

Then (2.8) can be obtained by setting r =
(
‖v‖L2

2
/‖v‖L2(Rd)

)1/2

.

Proposition 2.7. Assume that Ω = Rd, 1 ≤ d ≤ 3, and let u0 ∈ H2(Rd) ∩ L2
2.

For any T > 0, we have

‖uε − u‖L∞(0,T ;L2(Rd)) ≤ C1ε
4

4+d , ‖uε − u‖L∞(0,T ;H1(Rd))) ≤ C2ε
2

4+d ,

where C1 depends on d, |λ|, T , ‖u0‖L2
2

and C2 depends on ‖u0‖H2(Rd) additionally.

Proof. Applying (2.8) and Young’s inequality, we deduce that

ε‖eε(t)‖L1(Rd) ≤ εCd‖eε(t)‖1−d/4L2(Rd)
‖eε(t)‖d/4

L2
2
≤ Cd

(
‖eε(t)‖2L2(Rd) + ε

8
4+d ‖eε(t)‖

2d
4+d

L2
2

)
,

which together with (2.6) gives that

d

dt
‖eε(t)‖2L2(Rd) ≤ 4|λ|(1 + Cd)‖eε(t)‖2L2(Rd) + 4Cd|λ|ε

8
4+d ‖eε(t)‖

2d
4+d

L2
2
.

Gronwall’s lemma yields

‖eε(t)‖L2(Rd) ≤ ε
4

4+d ‖eε(t)‖
d

4+d

L2
2
etCd,|λ| .

The proposition follows by recalling that uε, u ∈ L∞loc(R;H2(Rd) ∩ L2
2).

Remark 2.4. If we have uε, u ∈ L∞loc(R;L2
m) for m > 2, then by applying the

inequality

ε‖v‖L1(Rd) . ε‖v‖1−
d

2m

L2(Rd)
‖v‖

d
2m

L2
m
. ‖v‖2L2(Rd) + ε

4m
2m+d ‖v‖

2d
2m+d

L2
m

,

which can be proved like (2.8), the convergence rate can be improved as

‖uε − u‖L∞(0,T ;L2(Rd)) . ε
2m

2m+d .
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Remark 2.5. If, in addition, uε, u ∈ L∞loc(R;Hs(Rd)) for s > 2, then the conver-
gence rate in H1(Rd) can be improved as

‖eε‖L∞(0,T ;H1(Rd)) ≤ Cε
2m

2m+d
s−1
s

by using the Gagliardo–Nirenberg inequality:

‖∇v‖L2(Rd) ≤ C‖v‖1−1/s

L2(Rd)
‖∇sv‖1/s

L2(Rd)
.

The previous two remarks apply typically in the case of Gaussian initial data.

2.4. Convergence of the energy. In this subsection we will show the conver-
gence of the energy Eε(u0)→ E(u0).

Proposition 2.8. For u0 ∈ H1(Ω)∩L1(Ω), the energy Eε(u0) converges to E(u0)
with

|Eε(u0)− E(u0)| ≤ 4 ε|λ|‖u0‖L1(Ω).

Proof. It can be deduced from the definition that

|Eε(u0)− E(u0)| = 2|λ|
∣∣∣∣ε‖u0‖L1(Ω) +

∫

Ω

|u0(x)|2 [ln(ε+ |u0(x)| − ln(|u0(x)|)] dx

− ε2

∫

Ω

ln (1 + |u0(x)|/ε) dx
∣∣∣∣

≤ 4 ε|λ|‖u0‖L1(Ω),

which completes the proof.

Remark 2.6. If Ω is bounded, then H1(Ω) ⊆ L1(Ω). If Ω = Rd, then Lemma 2.6
(and its natural generalizations) shows that H1(R) ∩ L2

1 ⊆ L1(R), and if d = 2, 3,
H1(Rd) ∩ L2

2 ⊆ L1(Rd).

Remark 2.7. This regularization is reminiscent of the one considered in [10] in
order to prove (by compactness arguments) that (1.1) has a solution,

(2.9) i∂tu
ε(x, t) + ∆uε(x, t) = λuε(x, t) ln

(
ε+ |uε(x, t)|2

)
, x ∈ Ω, t > 0.

With that regularization, it is easy to adapt the error estimates established above
for (2.1). Essentially, ε must be replaced by

√
ε (in Lemma 2.3 and, hence, in its

corollaries).

3. A regularized semi-implicit finite difference method. In this section,
we study the approximation properties of a finite difference method for solving the
regularized model (2.1). For simplicity of notation, we set λ = 1 and only present
the numerical method for the RLogSE (2.1) in one dimension, as extensions to higher
dimensions are straightforward. When d = 1, we truncate the RLogSE on a bounded
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computational interval Ω = (a, b) with homogeneous Dirichlet boundary condition
(here |a| and b are chosen large enough such that the truncation error is negligible):

(3.1)

{
i∂tu

ε(x, t) + ∂xxu
ε(x, t) = uε(x, t) ln(ε+ |uε(x, t)|)2, x ∈ Ω, t > 0,

uε(x, 0) = u0(x), x ∈ Ω; uε(a, t) = uε(b, t) = 0, t ≥ 0,

3.1. A finite difference scheme and main results on error bounds. Choose
a mesh size h := ∆x = (b − a)/M with M being a positive integer and a time step
τ := ∆t > 0 and denote the grid points and time steps as

xj := a+ jh, j = 0, 1, . . . ,M ; tk := kτ, k = 0, 1, 2, . . . .

Define the index sets

TM = {j | j = 1, 2, . . . ,M − 1}, T 0
M = {j | j = 0, 1, . . . ,M}.

Let uε,kj be the approximation of uε(xj , tk), and denote uε,k = (uε,k0 , uε,k1 , . . . , uε,kM )T ∈
CM+1 as the numerical solution vector at t = tk. Define the standard finite difference
operators

δctu
k
j =

uk+1
j − uk−1

j

2τ
, δ+

x u
k
j =

ukj+1 − ukj
h

, δ2
xu

k
j =

ukj+1 − 2ukj + ukj−1

h2
.

Denote
XM =

{
v = (v0, v1, . . . , vM )

T | v0 = vM = 0
}
⊆ CM+1,

equipped with inner products and norms defined as (recall that u0 = v0 = uM =
vM = 0 by the Dirichlet boundary condition)

(u, v) = h

M−1∑

j=1

ujvj , 〈u, v〉 = h

M−1∑

j=0

ujvj , ‖u‖∞ = sup
j∈T 0

M

|uj |,

‖u‖2 = (u, u), |u|2H1 =
〈
δ+
x u, δ

+
x u
〉
, ‖u‖2H1 = ‖u‖2 + |u|2H1 .

(3.2)

Then we have for u, v ∈ XM ,

(3.3) (−δ2
xu, v) =

〈
δ+
x u, δ

+
x v
〉

= (u,−δ2
xv).

Consider a semi-implicit finite difference (SIFD) discretization of (3.1) as following

(3.4) iδctu
ε,k
j = −1

2
δ2
x(uε,k+1

j + uε,k−1
j ) + uε,kj ln(ε+ |uε,kj |)2, j ∈ TM , k ≥ 1.

The boundary and initial conditions are discretized as

(3.5) uε,k0 = uε,kM = 0, k ≥ 0, uε,0j = u0(xj), j ∈ T 0
M .

In addition, the first step uε,1j can be obtained via the Taylor expansion as

(3.6) uε,1j = uε,0j + τu1(xj), j ∈ T 0
M ,

where

u1(x) := ∂tu
ε(x, 0) = i

[
u′′0(x)− u0(x) ln(ε+ |u0(x)|)2

]
, a ≤ x ≤ b.
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Let 0 < T < Tmax with Tmax the maximum existence time of the solution uε to
the problem (3.1) for a fixed 0 ≤ ε� 1. Similarly to the stability analysis of the SIFD
method for the nonlinear Schrödinger equation by using the standard von Neumann
analysis via a frozen coefficients technique [4, 5], we can show that the discretization
(3.4) is conditionally stable under the stability condition

(3.7) 0 < τ ≤ 1

2 max{| ln ε|, ln(ε+ max
j∈TM

|uε,kj |)}
, 0 ≤ k ≤ T

τ
.

Define the error functions eε,k ∈ XM as

(3.8) eε,kj = uε(xj , tk)− uε,kj , j ∈ T 0
M , 0 ≤ k ≤ T

τ
,

where uε is the solution of (3.1). Then we have the following error estimates for (3.4)
with (3.5) and (3.6).

Theorem 3.1 (main result). Assume that the solution uε is smooth enough over
ΩT := Ω× [0, T ], i.e.,

(A) uε ∈ C
(
[0, T ];H5(Ω)

)
∩ C2

(
[0, T ];H4(Ω)

)
∩ C3

(
[0, T ];H2(Ω)

)
,

and there exist ε0 > 0 and C0 > 0 independent of ε such that

‖uε‖L∞(0,T ;H5(Ω)) + ‖∂2
t u

ε‖L∞(0,T ;H4(Ω)) + ‖∂3
t u

ε‖L∞(0,T ;H2(Ω)) ≤ C0,

uniformly in 0 ≤ ε ≤ ε0. Then there exist h0 > 0 and τ0 > 0 sufficiently small with
h2

0 ∼ εe−CT | ln(ε)|2 and τ2
0 ∼ εe−CT | ln(ε)|2 such that, when 0 < h ≤ h0 and 0 < τ ≤ τ0

satisfying the stability condition (3.7), we have the following error estimates

‖eε,k‖ ≤ C3(ε, T )(h2 + τ2), 0 ≤ k ≤ T

τ
,

‖eε,k‖H1 ≤ C4(ε, T )(h2 + τ2), ‖uε,k‖∞ ≤ Λ + 1,
(3.9)

where Λ = ‖uε‖L∞(ΩT ), C3(ε, T ) ∼ eCT | ln(ε)|2 , C4(ε, T ) ∼ 1
εe
CT | ln(ε)|2 , and C de-

pends on C0.

Remark 3.1. Note that the regularity assumptions made in the above statement
supercede the regularity that we could establish in a theoretical level as in Theo-
rem 2.2, where the exact solution u is not known to be better than H2. This implies
that in general, to apply the above result, we have to check (numerically) that the
above bound for uε is indeed uniform with respect to ε. Note that in the Gaussian
case, we already know that the above assumption is satisfied.

The error bounds in this theorem show not only the quadratical convergence in
terms of the mesh size h and time step τ but also the explicit dependence on the
regularization parameter ε. Here we remark that assumption (A) is valid at least in
the case of taking the Gaussian as the initial datum.

Define the error functions ẽε,k ∈ XM as

(3.10) ẽε,kj = u(xj , tk)− uε,kj , j ∈ T 0
M , 0 ≤ k ≤ T

τ
,

where uε is the solution of the LogSE (1.1) with Ω = (a, b). Combining Proposition 2.5
and Theorem 3.1, we immediately obtain the following corollary (see an illustration
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in the following diagram)

uε,k
O(h2+τ2)

//

O(ε)+O(h2+τ2)
**

uε(·, tk)

O(ε)

��

u(·, tk)

Corollary 3.2. Under the assumptions of Proposition 2.5 and Theorem 3.1, we
have the following error estimates:

‖ẽε,k‖ ≤ C1ε+ C3(ε, T )(h2 + τ2),

‖ẽε,k‖H1 ≤ C2ε
1/2 + C4(ε, T )(h2 + τ2), 0 ≤ k ≤ T

τ
,

(3.11)

where C1 and C2 are presented as in Proposition 2.5, and C3(ε, T ) and C4(ε, T ) are
given in Theorem 3.1.

Remark 3.2. If the goal of a simulation is to study LogSE by using the scheme
(3.4) with (3.5) and (3.6), then the error bound in Corollary 3.2 formally suggests
the following choice of h and τ versus ε in order to balance the errors introduced
by the regularization and spatial/temporal discretization: h2 ∼ εe−CT | ln(ε)|2 and

τ2 ∼ εe−CT | ln(ε)|2 . In fact, our numerical results also suggest the errors will be
saturated when h2 ∼ ε and τ2 ∼ ε, i.e., the errors will no longer decrease further as
long as h2 ∼ ε and τ2 ∼ ε for any fixed 0 < ε� 1 (cf. upper triangle in Table 4.1).

3.2. Error estimates. Define the local truncation error ξε,kj ∈ XM for k ≥ 1 as

ξε,kj = iδctu
ε(xj , tk) +

1

2

(
δ2
xu

ε(xj , tk+1) + δ2
xu

ε(xj , tk−1)
)

− uε(xj , tk) ln(ε+ |uε(xj , tk)|)2, j ∈ TM , 1 ≤ k < T

τ
,

(3.12)

then we have the following bounds for the local truncation error.

Lemma 3.3 (local truncation error). Under assumption (A), we have

‖ξε,k‖H1 . h2 + τ2, 1 ≤ k < T

τ
.

Proof. By the Taylor expansion, we have

(3.13) ξε,kj =
iτ2

4
αε,kj +

τ2

2
βε,kj +

h2

12
γε,kj ,

where

αε,kj =

∫ 1

−1

(1− |s|)2∂3
t u

ε(xj , tk + sτ)ds, βε,kj =

∫ 1

−1

(1− |s|)∂2
t u

ε
xx(xj , tk + sτ)ds,

γε,kj =

∫ 1

−1

(1− |s|)3
(
∂4
xu

ε(xj + sh, tk+1) + ∂4
xu

ε(xj + sh, tk−1)
)
ds.
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By the Cauchy–Schwarz inequality, we can get that

‖αε,k‖2 = h

M−1∑

j=1

|αε,kj |2 ≤ h
∫ 1

−1

(1− |s|)4ds

M−1∑

j=1

∫ 1

−1

∣∣∂3
t u

ε(xj , tk + sτ)
∣∣2 ds

=
2

5

[ ∫ 1

−1

‖∂3
t u

ε(·, tk + sτ)‖2L2(Ω)ds

−
∫ 1

−1

M−1∑

j=0

∫ xj+1

xj

(|∂3
t u

ε(x, tk + sτ)|2 − |∂3
t u

ε(xj , tk + sτ)|2)dxds
]

=
2

5

[ ∫ 1

−1

‖∂3
t u

ε(·, tk + sτ)‖2L2(Ω)ds

−
∫ 1

−1

M−1∑

j=0

∫ xj+1

xj

∫ ω

xj

∂x|∂3
t u

ε(x′, tk + sτ)|2dx′dωds
]

≤ 2

5

∫ 1

−1

[
‖∂3
t u

ε(·, tk + sτ)‖2L2(Ω)

+ 2h‖∂3
t u

ε
x(·, tk + sτ)‖L2(Ω)‖∂3

t u
ε(·, tk + sτ)‖L2(Ω)

]
ds

≤ max
0≤t≤T

(
‖∂3
t u

ε‖L2(Ω) + h‖∂3
t u

ε
x‖L2(Ω)

)2
,

which yields that when h ≤ 1,

‖αε,k‖ ≤ ‖∂3
t u

ε‖L∞(0,T ;H1(Ω)).

Applying a similar approach, it can be established that

‖βε,k‖ ≤ 2‖∂2
t u

ε‖L∞(0,T ;H3(Ω)).

On the other hand, we can obtain that

‖γε,k‖2 ≤ h
∫ 1

−1

(1− |s|)6ds

M−1∑

j=1

∫ 1

−1

∣∣∂4
xu

ε(xj + sh, tk+1) + ∂4
xu

ε(xj + sh, tk−1)
∣∣2 ds

≤ 4h

7

M−1∑

j=1

∫ 1

−1

(∣∣∂4
xu

ε(xj + sh, tk+1)
∣∣2 +

∣∣∂4
xu

ε(xj + sh, tk−1)
∣∣2
)
ds

≤ 8

7

(
‖∂4
xu

ε(·, tk−1)‖2L2(Ω) + ‖∂4
xu

ε(·, tk+1)‖2L2(Ω)

)

≤ 4‖uε‖2L∞(0,T ;H4(Ω)),

which implies that ‖γε,k‖ ≤ 2‖uε‖L∞(0,T ;H4(Ω)). Hence by assumption (A), we get

‖ξε,k‖ . τ2
(
‖∂3
t u

ε‖L∞(0,T ;H1(Ω)) + ‖∂2
t u

ε‖L∞(0,T ;H3(Ω))

)
+ h2‖uε‖L∞(0,T ;H4(Ω))

.C0
τ2 + h2.

Applying δ+
x to ξε,k and using the same approach, we can get that

|ξε,k|H1 . τ2
(
‖∂3
t u

ε‖L∞(0,T ;H2(Ω)) + ‖∂2
t u

ε‖L∞(0,T ;H4(Ω))

)
+ h2‖uε‖L∞(0,T ;H5(Ω))

.C0
τ2 + h2,

which completes the proof.
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For the first step, we have the following estimates.

Lemma 3.4 (error bounds for k = 1). Under assumption (A), the first step
errors of the discretization (3.6) satisfy

eε,0 = 0, ‖eε,1‖H1 . τ2.

Proof. By the definition of uε,1j in (3.6), we have

eε,1j = τ2

∫ 1

0

(1− s)uεtt(xj , sτ)ds,

which implies that

‖eε,1‖ . τ2‖∂2
t u

ε‖L∞(0,T ;H1(Ω)) . τ2, |eε,1|H1 . τ2‖∂2
t u

ε‖L∞(0,T ;H2(Ω)) . τ2,

and the proof is completed.

Proof of Theorem 3.1. We prove (3.9) by induction. It follows from Lemma 3.4
that (3.9) is true for k = 0, 1.

Assume (3.9) is valid for k ≤ n ≤ T
τ − 1. Next we need to show that (3.9) still

holds for k = n+ 1. Subtracting (3.4) from (3.12), we get the error equations

(3.14) iδct e
ε,m
j = −1

2
(δ2
xe
ε,m+1
j +δ2

xe
ε,m−1
j )+rε,mj +ξε,mj , j ∈ TM , 1 ≤ m ≤ T

τ
−1,

where rε,m ∈ XM represents the difference between the logarithmic nonlinearities

(3.15) rε,mj = uε(xj , tm) ln(ε+ |uε(xj , tm)|)2−uε,mj ln(ε+ |uε,mj |)2, 1 ≤ m ≤ T

τ
−1.

Multiplying both sides of (3.14) by 2τ (eε,m+1
j + eε,m−1

j ), summing together for j ∈
TM , and taking the imaginary parts, we obtain for 1 ≤ m < T/τ ,

(3.16)
‖eε,m+1‖2 − ‖eε,m−1‖2 = 2τ Im(rε,m + ξε,m, eε,m+1 + eε,m−1)

≤ 2τ
(
‖rε,m‖2 + ‖ξε,m‖2 + ‖eε,m+1‖2 + ‖eε,m−1‖2

)
.

Summing (3.16) for m = 1, 2, . . . , n (n ≤ T
τ − 1), we obtain

‖eε,n+1‖2 + ‖eε,n‖2 ≤ ‖eε,0‖2 + ‖eε,1‖2 + 2τ‖eε,n+1‖2 + 2τ

n−1∑

m=0

(‖eε,m‖2 + ‖eε,m+1‖2)

+ 2τ

n∑

m=1

(
‖rε,m‖2 + ‖ξε,m‖2

)
.(3.17)

For m ≤ n, when |uε,mj | ≤ |uε(xj , tm)|, we write rε,mj as

|rε,mj | =
∣∣∣eε,mj ln(ε+ |uε(xj , tm)|)2 + 2uε,mj ln

(ε+ |uε(xj , tm)|
ε+ |uε,mj |

)∣∣∣

≤ 2 max{ln(ε−1), | ln(ε+ Λ)|}|eε,mj |+ 2|uε,mj | ln
(

1 +
|uε(xj , tm)| − |uε,mj |

ε+ |uε,mj |
)

≤ 2|eε,mj |(1 + max{ln(ε−1), | ln(ε+ Λ)|}).
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On the other hand, when |uε(xj , tm)| ≤ |uε,mj |, we write rε,mj as

|rε,mj | =
∣∣∣eε,mj ln(ε+ |uε,mj |)2 + 2uε(xj , tm) ln

(ε+ |uε(xj , tm)|
ε+ |uε,mj |

)∣∣∣

≤ 2 max{ln(ε−1), | ln(ε+ 1 + Λ)|}|eε,mj |

+ 2|uε(xj , tm)| ln
(

1 +
|uε,mj | − |uε(xj , tm)|
ε+ |uε(xj , tm)|

)

≤ 2|eε,mj |(1 + max{ln(ε−1), | ln(ε+ 1 + Λ)|}),
where we use the assumption that ‖uε,m‖∞ ≤ Λ + 1 for m ≤ n. Thus it follows that

‖rε,m‖2 . | ln(ε)|2‖eε,m‖2,
when ε is sufficiently small. Thus when τ ≤ 1

2 , by using Lemmas 3.3 and 3.4 and
(3.17), we have

‖eε,n+1‖2 + ‖eε,n‖2 . ‖eε,0‖2 + ‖eε,1‖2 + τ

n−1∑

m=0

(‖eε,m‖2 + ‖eε,m+1‖2)

+ τ

n∑

m=1

(
‖rε,m‖2 + ‖ξε,m‖2

)

. (h2 + τ2)2 + τ | ln(ε)|2
n−1∑

m=0

(‖eε,m‖2 + ‖eε,m+1‖2).

We emphasize here that the implicit multiplicative constant in this inequality depends
only on C0, but not on n. Applying the discrete Gronwall inequality, we can conclude
that

‖eε,n+1‖2 . eCT | ln(ε)|2(h2 + τ2)2

for some C depending on C0, which gives the error bound for ‖eε,k‖ with k = n + 1
in (3.9) immediately.

To estimate |eε,n+1|H1 , multiplying both sides of (3.14) by 2(eε,m+1
j − eε,m−1

j ) for
m ≤ n, summing together for j ∈ TM , and taking the real parts, we obtain

|eε,m+1|2H1 − |eε,m−1|2H1

= −2 Re
(
rε,m + ξε,m, eε,m+1 − eε,m−1

)

= 2τ Im
(
rε,m + ξε,m,−δ2

x(eε,m+1 + eε,m−1)
)

= 2τ Im
〈
δ+
x (rε,m + ξε,m), δ+

x (eε,m+1 + eε,m−1)
〉

≤ 2τ
(
|rε,m|2H1 + |ξε,m|2H1 + |eε,m+1|2H1 + |eε,m−1|2H1

)
.(3.18)

To give the bound for δ+
x r

ε,m, for simplicity of notation, denote

uε,mj,θ = θuε(xj+1, tm) + (1− θ)uε(xj , tm), vε,mj,θ = θuε,mj+1 + (1− θ)uε,mj
for j ∈ TM and θ ∈ [0, 1]. Then we have

δ+
x r

ε,m
j = 2δ+

x (uε(xj , tm) ln(ε+ |uε(xj , tm)|))− 2δ+
x (uε,mj ln(ε+ |uε,mj |))

=
2

h

∫ 1

0

[uε,mj,θ ln(ε+ |uε,mj,θ |)]′(θ)dθ −
2

h

∫ 1

0

[vε,mj,θ ln(ε+ |vε,mj,θ |)]′(θ)dθ

= I1 + I2 + I3,
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where

I1 := 2δ+
x u

ε(xj , tm)

∫ 1

0

ln(ε+ |uε,mj,θ |)dθ − 2δ+
x u

ε,m
j

∫ 1

0

ln(ε+ |vε,mj,θ |)dθ,

I2 := δ+
x u

ε(xj , tm)

∫ 1

0

|uε,mj,θ |
ε+ |uε,mj,θ |

dθ − δ+
x u

ε,m
j

∫ 1

0

|vε,mj,θ |
ε+ |vε,mj,θ |

dθ,

I3 := δ+
x u

ε(xj , tm)

∫ 1

0

(uε,mj,θ )2

|uε,mj,θ |(ε+ |uε,mj,θ |)
dθ − δ+

x u
ε,m
j

∫ 1

0

(vε,mj,θ )2

|vε,mj,θ |(ε+ |vε,mj,θ |)
dθ.

Then we estimate I1, I2, and I3, separately. Similarly as before, we have

|I1| ≤ 2|δ+
x u

ε(xj , tm)|
∫ 1

0

∣∣∣ ln
(ε+ |uε,mj,θ |
ε+ |vε,mj,θ |

)∣∣∣dθ + 2
∣∣δ+
x e

ε,m
j

∣∣
∫ 1

0

∣∣∣ ln(ε+ |vε,mj,θ |)
∣∣∣dθ

= 2|δ+
x u

ε(xj , tm)|
∫ 1

0

ln
(

1 +

∣∣∣|uε,mj,θ | − |v
ε,m
j,θ |

∣∣∣
ε+ min{|uε,mj,θ |, |v

ε,m
j,θ |}

)
dθ

+ 2
∣∣δ+
x e

ε,m
j

∣∣
∫ 1

0

∣∣ ln(ε+ |vε,mj,θ |)
∣∣dθ

≤ 2

ε
|δ+
x u

ε(xj , tm)|
(
|eε,mj |+ |eε,mj+1|

)
+ 2

∣∣δ+
x e

ε,m
j

∣∣max{ln(ε−1), | ln(ε+ 1 + Λ)|}

. 1

ε

(
|eε,mj |+ |eε,mj+1|

)
+ ln(ε−1)

∣∣δ+
x e

ε,m
j

∣∣

and

|I2| =
∣∣∣δ+
x u

ε(xj , tm)

∫ 1

0

( |uε,mj,θ |
ε+ |uε,mj,θ |

−
|vε,mj,θ |

ε+ |vε,mj,θ |
)
dθ + δ+

x e
ε,m
j

∫ 1

0

|vε,mj,θ |
ε+ |vε,mj |dθ

∣∣∣

≤ |δ+
x e

ε,m
j |+ |δ+

x u
ε(xj , tm)|

∫ 1

0

ε|uε,mj,θ − v
ε,m
j,θ |

(ε+ |uε,mj,θ |)(ε+ |vε,mj,θ |)
dθ

≤ |δ+
x e

ε,m
j |+

|δ+
x u

ε(xj , tm)|
ε

∫ 1

0

|uε,mj,θ − v
ε,m
j,θ |dθ

. |δ+
x e

ε,m
j |+

1

ε

(
|eε,mj |+ |eε,mj+1|

)
.

In view of the inequality that

∣∣∣
(uε,mj,θ )2

|uε,mj,θ |(ε+ |uε,mj,θ |)
−

(vε,mj,θ )2

|vε,mj,θ |(ε+ |vε,mj,θ |)
∣∣∣

=
∣∣∣
(uε,mj,θ )2 − uε,mj,θ v

ε,m
j,θ

|uε,mj,θ |(ε+ |uε,mj,θ |)
+

uε,mj,θ v
ε,m
j,θ

|uε,mj,θ |(ε+ |uε,mj,θ |)
−

(vε,mj,θ )2

|vε,mj,θ |(ε+ |vε,mj,θ |)
∣∣∣

≤
|uε,mj,θ − v

ε,m
j,θ |

ε
+

∣∣∣uε,mj,θ (vε,mj,θ )2(uε,mj,θ − v
ε,m
j,θ ) + εvε,mj,θ (uε,mj,θ |v

ε,m
j,θ | − |u

ε,m
j,θ |v

ε,m
j,θ )

∣∣∣
|uε,mj,θ ||v

ε,m
j,θ |(ε+ |uε,mj,θ |)(ε+ |vε,mj,θ |)

≤
4|uε,mj,θ − v

ε,m
j,θ |

ε
,

we can obtain that

I3 . |δ+
x e

ε,m
j |+

1

ε

(
|eε,mj |+ |eε,mj+1|

)
.
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Thus we can conclude that

|δ+
x r

ε,m
j | . 1

ε

(
|eε,mj |+ |eε,mj+1|

)
+ ln(ε−1)

∣∣δ+
x e

ε,m
j

∣∣ .

Summing (3.18) for m = 1, 2, . . . , n (n ≤ T
τ − 1), we obtain

|eε,n+1|2H1 + |eε,n|2H1 ≤ |eε,0|2H1 + |eε,1|2H1 + τ

n∑

m=1

(
|rε,m|2H1 + |ξε,m|2H1

)

+ τ |eε,n+1|2H1 + τ

n−1∑

m=0

(|eε,m|2H1 + |eε,m+1|2H1).

Thus when τ ≤ 1/2, by using Lemmas 3.3 and 3.4, we have

|eε,n+1|2H1 + |eε,n|2H1 . |eε,0|2H1 + |eε,1|2H1 + τ

n∑

m=1

(
1

ε2
‖eε,m‖2 + |ξε,m|2H1

)

+ τ | ln(ε)|2
n−1∑

m=0

(
|eε,m|2H1 + |eε,m+1|2H1

)

. eCT | ln(ε)|2

ε2
(h2 + τ2)2 + τ | ln(ε)|2

n−1∑

m=0

(|eε,m|2H1 + |eε,m+1|2H1).

Applying the discrete Gronwall’s inequality, we can get that

|eε,n+1|2H1 . eCT | ln(ε)|2(h2 + τ2)2/ε2,

which establishes the error estimate for ‖eε,k‖H1 for k = n+ 1. Finally the bounded-
ness for the solution uε,k can be obtained by the triangle inequality

‖uε,k‖∞ ≤ ‖uε(·, tk)‖L∞(Ω) + ‖eε,k‖∞,

and the inverse Sobolev inequality [26]

‖eε,k‖∞ . ‖eε,k‖H1 ,

which completes the proof of Theorem 3.1.

4. Numerical results. In this section, we test the convergence rate of the reg-
ularized model (2.1) and the SIFD (3.4). To this end, we take d = 1, Ω = R, and
λ = −1 in the LogSE (1.1) and consider two different initial data:

Case I: A Gaussian initial data, i.e., u0 in (1.1) is chosen as

(4.1) u0(x) = 4
√
−λ/πeivx+λ

2 x
2

, x ∈ R,

with v = 1. In this case, the LogSE (1.1) admits the moving Gausson solution (1.7)
with v = 1 and b0 = 4

√
−λ/π as the exact solution.

Case II: A general initial data, i.e., u0 in (1.1) is chosen as

(4.2) u0(x) = tanh(x)e−x
2

, x ∈ R,

which is the multiplication of a dark soliton of the cubic nonlinear Schrödinger equa-
tion and a Gaussian. Notice that in this case, the logarithmic term ln |u0|2 is singular
at x = 0.
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||êε||
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||êε||
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Fig. 4.1: Convergence of the RLogSE (2.1) to the LogSE (1.1), i.e. the error êε(0.5) in
different norms vs the regularization parameter ε for Case I (left) and Case II (right).
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Fig. 4.2: Convergence of the RLogSE (2.1) to the LogSE (1.1): (a) error in energy
eεE(0.5) vs ε for Cases I & II, and (b) time evolution of ‖êε(t)‖ vs time t under different
ε for Case I.

4.2. Convergence rate of the finite difference method. Here we test the
convergence rate of the SIFD (3.4) to the RLogSE (2.1) or the LogSE (1.1) in terms
of mesh size h and time step τ under any fixed 0 < ε ≪ 1 for Case I. Fig. 4.4 shows
the errors ‖eε(0.5)‖ vs. time step τ (with a fixed ratio between mesh size h and time
step τ at h = 75τ/64) under different ε. In addition, Table 4.1 displays ‖ẽε(1)‖ for
varying ε and τ & h.

From Fig. 4.4, we can see that the SIFD (3.4) converges quadratically at O(τ2 +
h2) to the RLogSE (2.1) for any fixed ε > 0, which confirms our error estimates in

Fig. 4.1. Convergence of the RLogSE (2.1) to the LogSE (1.1), i.e., the error êε(0.5) in different
norms versus the regularization parameter ε for Case I (left) and Case II (right).

The RLogSE (2.1) is solved numerically by the SIFD (3.4) on domains Ω =
[−12, 12] and Ω = [−16, 16] for Cases I and II, respectively. To quantify the numerical
errors, we introduce the following error functions:

êε(tk) := u(·, tk)− uε(·, tk), eε(tk) := uε(·, tk)− uε,k,

ẽε(tk) := u(·, tk)− uε,k, eεE := |E(u)− Eε(uε)|.
(4.3)

Here u and uε are the exact solutions of the LogSE (1.1) and RLogSE (2.1), respec-
tively, while uε,k is the numerical solution of the RLogSE (2.1) obtained by the SIFD
(3.4). The exact solution uε is obtained numerically by the SIFD (3.4) with a very
small time step, e.g., τ = 0.01/29 and a very fine mesh size, e.g., h = 1/215. Simi-
larly, the exact solution u in Case II is obtained numerically by the SIFD (3.4) with
a very small time step and a very fine mesh size as well as a very small regularization
parameter ε, e.g., ε = 10−14. The energy is obtained by the trapezoidal rule for
approximating the integrals in the energy (1.2) and (2.2).

4.1. Convergence rate of the regularized model. Here we consider the error
between the solutions of the RLogSE (2.1) and the LogSE (1.1). Figure 4.1 shows
‖êε‖, ‖êε‖H1 , ‖êε‖∞ (the definition of the norms is given in (3.2)) at time t = 0.5 for
Cases I and II, while Figure 4.2 depicts eεE(0.5) for Cases I and II and time evolution
of êε(t) with different ε for Case I. For comparison, similarly to Figure 4.1, Figure 4.3
displays the convergent results from (2.9) to (1.1).

From Figures 4.1, 4.2, and 4.3 and additional numerical results not shown here for
brevity, we can draw the following conclusions: (i) The solution of the RLogSE (2.1)
converges linearly to that of the LogSE (1.1) in terms of the regularization parameter
ε in both the L2-norm and L∞-norm, and, respectively, the convergence rate becomes
O(
√
ε) in the H1-norm for Case II. (ii) The regularized energy Eε(uε) converges

linearly to the energy E(u) in terms of ε. (iii) The constant C in (2.7) may grow
linearly with time T and it is independent of ε. (iv) The solution of (2.9) converges
at O(

√
ε) to that of (1.1) in both the L2-norm and L∞-norm, and, respectively, the

convergence rate becomes O(ε1/4) in the H1-norm for Case II. Thus (2.1) is much

D
ow

nl
oa

de
d 

05
/1

9/
22

 to
 1

83
.1

73
.1

70
.1

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATES OF A REGULARIZED FDM FOR THE LOGSE 677

21

10-8 10-6 10-4 10-2
ε

10-7

10-5

10-3

10-1
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Fig. 4.1: Convergence of the RLogSE (2.1) to the LogSE (1.1), i.e. the error êε(0.5) in
different norms vs the regularization parameter ε for Case I (left) and Case II (right).
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Fig. 4.2: Convergence of the RLogSE (2.1) to the LogSE (1.1): (a) error in energy
eεE(0.5) vs ε for Cases I & II, and (b) time evolution of ‖êε(t)‖ vs time t under different
ε for Case I.

4.2. Convergence rate of the finite difference method. Here we test the
convergence rate of the SIFD (3.4) to the RLogSE (2.1) or the LogSE (1.1) in terms
of mesh size h and time step τ under any fixed 0 < ε ≪ 1 for Case I. Fig. 4.4 shows
the errors ‖eε(0.5)‖ vs. time step τ (with a fixed ratio between mesh size h and time
step τ at h = 75τ/64) under different ε. In addition, Table 4.1 displays ‖ẽε(1)‖ for
varying ε and τ & h.

From Fig. 4.4, we can see that the SIFD (3.4) converges quadratically at O(τ2 +
h2) to the RLogSE (2.1) for any fixed ε > 0, which confirms our error estimates in

Fig. 4.2. Convergence of the RLogSE (2.1) to the LogSE (1.1): (a) error in energy eεE(0.5)
versus ε for Cases I and II, and (b) time evolution of ‖êε(t)‖ versus time t under different ε for
Case I.22
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||êε||
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Fig. 4.3: Convergence of the RLogSE (2.9) to the LogSE (1.1), i.e. the error êε(0.5) in
different norms vs the regularization parameter ε for Case I (left) and Case II (right).
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Fig. 4.4: Convergence of the SIFD (3.4) to the RLogSE (2.1), i.e. errors ‖eε(0.5)‖ vs
τ (with h = 75τ/64) under different ε for Case I initial data.

Theorem 3.1. From Tab. 4.1, we can observe that: (i) the SIFD (3.4) converges
quadratically at O(τ2 + h2) to the LogSE (1.1) only when ε is sufficiently small, e.g.
ε . h2 and ε . τ2 (cf. lower triangle below the diagonal in bold letter in Tab. 4.1),
and (ii) when τ & h is sufficiently small, i.e., τ2 . ε & h2 . ε, the RLogSE (2.1)
converge linearly at O(ε) to the LogSE (1.1) (cf. each column in the right most of
Table 4.1), which confirms the error bounds in Corollary 3.2.

5. Conclusion. In order to overcome the singularity of the log-nonlinearity in
the logarithmic Schrödinger equation (LogSE), we proposed a regularized logarithmic
Schrödinger equation (RLogSE) with a regularization parameter 0 < ε ≪ 1 and
established linear convergence between RLogSE and LogSE in terms of the small
regularization parameter. Then we presented a semi-implicit finite difference method

Fig. 4.3. Convergence of the RLogSE (2.9) to the LogSE (1.1), i.e., the error êε(0.5) in different
norms versus the regularization parameter ε for Case I (left) and Case II (right).

more accurate than (2.9) for the regularization of the LogSE (1.1). (v) The numerical
results agree and confirm our analytical results in section 2.

4.2. Convergence rate of the finite difference method. Here we test the
convergence rate of the SIFD (3.4) to the RLogSE (2.1) or the LogSE (1.1) in terms
of mesh size h and time step τ under any fixed 0 < ε� 1 for Case I. Figure 4.4 shows
the errors ‖eε(0.5)‖ versus time step τ (with a fixed ratio between mesh size h and
time step τ at h = 75τ/64) under different ε. In addition, Table 4.1 displays ‖ẽε(1)‖
for varying ε, τ , and h.

From Figure 4.4, we can see that the SIFD (3.4) converges quadratically at
O(τ2 + h2) to the RLogSE (2.1) for any fixed ε > 0, which confirms our error es-
timates in Theorem 3.1. From Table 4.1, we can observe that (i) the SIFD (3.4)
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Fig. 4.3: Convergence of the RLogSE (2.9) to the LogSE (1.1), i.e. the error êε(0.5) in
different norms vs the regularization parameter ε for Case I (left) and Case II (right).
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Fig. 4.4: Convergence of the SIFD (3.4) to the RLogSE (2.1), i.e. errors ‖eε(0.5)‖ vs
τ (with h = 75τ/64) under different ε for Case I initial data.

Theorem 3.1. From Tab. 4.1, we can observe that: (i) the SIFD (3.4) converges
quadratically at O(τ2 + h2) to the LogSE (1.1) only when ε is sufficiently small, e.g.
ε . h2 and ε . τ2 (cf. lower triangle below the diagonal in bold letter in Tab. 4.1),
and (ii) when τ & h is sufficiently small, i.e., τ2 . ε & h2 . ε, the RLogSE (2.1)
converge linearly at O(ε) to the LogSE (1.1) (cf. each column in the right most of
Table 4.1), which confirms the error bounds in Corollary 3.2.

5. Conclusion. In order to overcome the singularity of the log-nonlinearity in
the logarithmic Schrödinger equation (LogSE), we proposed a regularized logarithmic
Schrödinger equation (RLogSE) with a regularization parameter 0 < ε ≪ 1 and
established linear convergence between RLogSE and LogSE in terms of the small
regularization parameter. Then we presented a semi-implicit finite difference method

Fig. 4.4. Convergence of the SIFD (3.4) to the RLogSE (2.1), i.e., errors ‖eε(0.5)‖ versus τ
(with h = 75τ/64) under different ε for Case I initial data.

Table 4.1
Convergence of the SIFD (3.4) to the LogSE (1.1), i.e., ‖ẽε(1)‖ for different ε, τ , and h for

Case I.

h = 0.1 h/2 h/22 h/23 h/24 h/25 h/26 h/27 h/28 h/29

τ = 0.1 τ/2 τ/22 τ/23 τ/24 τ/25 τ/26 τ/27 τ/28 τ/29

ε=0.001 1.84E-1 4.84E-2 1.34E-2 5.96E-3 4.79E-3 4.62E-3 4.58E-3 4.57E-3 4.57E-3 4.57E-3

rate – 1.93 1.85 1.17 0.31 0.05 0.01 0.00 0.00 0.00

ε/4 1.84E-1 4.75E-2 1.19E-2 3.36E-3 1.49E-3 1.20E-3 1.16E-3 1.15E-3 1.15E-3 1.15E-3

rate – 1.96 1.99 1.83 1.17 0.31 0.05 0.01 0.00 0.00

ε/42 1.84E-1 4.73E-2 1.17E-2 2.97E-3 8.39E-4 3.74E-4 3.01E-4 2.90E-4 2.88E-4 2.88E-4

rate – 1.96 2.01 1.98 1.83 1.17 0.31 0.05 0.01 0.00

ε/43 1.84E-1 4.72E-2 1.16E-2 2.91E-3 7.43E-4 2.10E-4 9.35E-5 7.54E-5 7.27E-5 7.21E-5

rate – 1.96 2.02 2.00 1.97 1.83 1.16 0.31 0.05 0.01

ε/44 1.84E-1 4.72E-2 1.16E-2 2.90E-3 7.27E-4 1.86E-4 5.24E-5 2.34E-5 1.89E-5 1.82E-5

rate – 1.96 2.02 2.00 2.00 1.97 1.83 1.16 0.31 0.05

ε/45 1.84E-1 4.72E-2 1.16E-2 2.90E-3 7.24E-4 1.82E-4 4.64E-5 1.31E-5 5.85E-6 4.72E-6

rate – 1.96 2.02 2.01 2.00 1.99 1.97 1.83 1.16 0.31

ε0/46 1.84E-1 4.72E-2 1.16E-2 2.90E-3 7.23E-4 1.81E-4 4.54E-5 1.16E-5 3.28E-6 1.47E-6

rate – 1.96 2.02 2.01 2.00 2.00 1.99 1.97 1.83 1.16

ε0/47 1.84E-1 4.72E-2 1.16E-2 2.89E-3 7.23E-4 1.81E-4 4.52E-5 1.14E-5 2.90E-6 8.22E-7

rate – 1.96 2.02 2.01 2.00 2.00 2.00 2.00 1.97 1.82

converges quadratically at O(τ2 + h2) to the LogSE (1.1) only when ε is sufficiently
small, e.g., ε . h2 and ε . τ2 (cf. lower triangle below the diagonal in bold letter in
Table 4.1), and (ii) when τ and h are sufficiently small, i.e., τ2 . ε & h2 . ε, the
RLogSE (2.1) converge linearly at O(ε) to the LogSE (1.1) (cf. each column in the
right most of Table 4.1), which confirms the error bounds in Corollary 3.2.

5. Conclusion. In order to overcome the singularity of the log-nonlinearity in
the LogSE, we proposed an RLogSE with a regularization parameter 0 < ε � 1 and

D
ow

nl
oa

de
d 

05
/1

9/
22

 to
 1

83
.1

73
.1

70
.1

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATES OF A REGULARIZED FDM FOR THE LOGSE 679

established linear convergence between RLogSE and LogSE in terms of the small reg-
ularization parameter. Then we presented an SIFD method for discretizing RLogSE
and proved second-order convergence rates in terms of mesh size h and time step τ .
Finally, we established error bounds of the semi-implicit finite difference method to
LogSE, which depend explicitly on the mesh size h and time step τ as well as the
small regularization parameter ε. Our numerical results confirmed our error bounds.
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