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Weak interactions of solitary waves in the generalized nonlinear Schrödinger equations are stud-
ied. It is first shown that these interactions exhibit similar fractal dependence on initial conditions
for different nonlinearities. Then by using the Karpman-Solov’ev method, a universal system of
dynamical equations is derived for the velocities, amplitudes, positions and phases of interacting
solitary waves. These dynamical equations contain a single parameter, which accounts for the dif-
ferent forms of nonlinearity. When this parameter is zero, these dynamical equations are integrable,
and the exact analytical solutions are derived. When this parameter is non-zero, the dynamical
equations exhibit fractal structures which match those in the original wave equations both qualita-
tively and quantitatively. Thus the universal nature of fractal structures in the weak interaction of
solitary waves is analytically established. The origin of these fractal structures is also explored. It is
shown that these structures bifurcate from the initial conditions where the solutions of the integrable
dynamical equations develop finite-time singularities. Based on this observation, an analytical crite-
rion for the existence and locations of fractal structures is obtained. Lastly, these analytical results
are applied to the generalized nonlinear Schrödinger equations with various nonlinearities such as
the saturable nonlinearity, and predictions on their weak interactions of solitary waves are made.

PACS numbers: 42.65.Tg, 05.45.Yv, 42.81.Dp

I. INTRODUCTION

Solitary wave interactions are a fascinating and im-
portant phenomenon for both physical and mathemati-
cal reasons. Physically, such interactions have arisen in
a wide array of disciplines such as water waves [1], op-
tics [2, 3, 4, 5, 6, 7], and Josephson junctions [8]. For
instance, in soliton-based fiber communication systems,
optical pulses traveling in different frequency channels
pass through each other, giving rise to collisions (strong
interactions) of solitary waves. In the same frequency
channel, neighboring optical pulses interfere with each
other through overlapping tails, giving rise to weak in-
teractions of solitary waves. Motivated by these physical
applications, solitary wave interactions has been stud-
ied extensively in both the mathematical and physical
communities. If the system is integrable, collisions of
solitons are elastic [1], and weak interactions of solitons
exhibit interesting yet simple behaviors [2, 9, 10, 11, 12].
However, in non-integrable systems, solitary wave inter-
actions can be far more complex. The first sign of this
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complexity was reported by Ablowitz, et al. [13] for kink
and anti-kink collisions in the φ4 model where, inside the
trapping interval, a reflection window was found. Later
extensive numerical studies on this model by Campbell,
et al. [14, 15, 16, 17] revealed that in fact, sequences of
two- and more-bounce reflection windows exist, and the
physical mechanism for these refection windows is a res-
onant energy transfer between the translational motion
and internal modes of kinks/antikinks. Anninos, et al.
[18] pointed out further that there is a fractal structure
in kink-antikink collisions. Using a collective-coordinate
(i.e., variational) approach, they derived a set of fourth-
order ordinary differential equations (ODEs) for these
collisions, and these ODEs exhibit qualitatively similar
fractal structures as in the φ4 model (a comprehensive
review on kink-antikink collisions in φ4-type equations
can be found in [19]). These complex dynamics turn out
to be not restricted to kink-antikink collisions. Indeed,
similar phenomena have been reported on kink-defect col-
lisions in the sine-Gordon and φ4 models [20, 21, 22],
as well as vector-soliton collisions in the coupled nonlin-
ear Schrödinger (NLS) equations [23, 24, 25]. Further-
more, fractal scattering has also been reported on weak
interactions of breathers in a weakly discrete sine-Gordon
equation [26] and weak interactions of solitary waves in
a weakly discrete NLS equation [27]. Recently, Good-
man and Haberman [28, 29, 30] provided a deep analy-
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sis on the collective-coordinate models (ODEs) for kink-
antikink collisions in the φ4 model [18], kink-defect col-
lisions in the sine-Gordon model [20], and vector-soliton
collisions in the coupled NLS equations [25, 31], using so-
phisticated dynamical system techniques. They derived
analytical formulas for the locations of reflection-window
sequences, which agree qualitatively with numerical re-
sults on the original partial differential equations (PDEs).
Their results shed much light on the origins of these win-
dow sequences and fractal structures, especially from a
mathematical point of view.

Despite the above progress on solitary wave interac-
tions, our understanding on these phenomena is far from
satisfactory. On the collision of solitary waves, the anal-
ysis done so far were all based on approximate collective-
coordinate approaches, hence the reduced ODE models
can only provide qualitative results at best. Many fea-
tures reported in the ODE models can not be seen in
the PDE simulations, thus it is not possible to make a
reliable prediction on the collision dynamics based on
those ODE models and their analysis. In addition, the
ODE models obtained from the collective-coordinate ap-
proaches not only are complicated, but also differ sig-
nificantly from one PDE system to another. This forced
previous researchers to analyze each PDE and its reduced
ODE systems on an individual basis, which prevents an
overall understanding on collision processes of solitary
waves. On the weak interaction of solitary waves, the sit-
uation is even less satisfactory. The fractal nature of this
weak interaction was reported only for systems which are
weakly perturbed integrable systems (sine-Gordon and
NLS equations, to be more specific) [26, 27]. It is not
known yet whether similar phenomena arise in strongly
non-integrable equations. More seriously, the previous
work on this subject is largely numerical. No analysis has
been attempted yet (not even the approximate collective-
coordinate studies). Thus an analytical understanding on
weak interactions of solitary waves is a completely open
question.

In this paper, we study weak interactions of solitary
waves in a whole class of generalized NLS equations (with
arbitrary nonlinearities) both analytically and numeri-
cally. These generalized NLS equations are not weak
perturbations of the NLS equation in general. First we
show by direct PDE simulations that these weak inter-
actions for different nonlinearities exhibit similar fractal
structures on initial parameters of solitary waves. This
establishes that fractal scattering is a common feature of
weak interactions in this class of generalized NLS equa-
tions. Next, we rigorously derive a universal system of
dynamical equations (ODEs) for the velocities, ampli-
tudes, positions and phases of interacting solitary waves
in this class of PDEs by the Karpman-Solov’ev method.
This universal ODE system is remarkably simple, and it
contains only a single parameter which depends on the in-
dividual PDEs (after variable rescalings). When this pa-
rameter is zero, these dynamical equations are integrable,
and their exact analytical solutions are derived. When

this parameter is non-zero, the dynamical equations are
found to exhibit fractal structures for a wide range of ini-
tial conditions. These fractal structures match those in
the original PDEs both qualitatively and quantitatively,
thus the universal nature of fractal scattering in the weak
interaction of solitary waves is analytically established.
We further explore the origin of these fractal structures.
Our numerical studies on the ODE system show that
these fractal structures bifurcate from the initial con-
ditions where the solutions of the integrable dynamical
equations develop finite-time singularities. Based on this
observation, we present an analytical criterion for the
existence and locations of fractal structures. One corol-
lary from this criterion is that when the initial separation
velocity is above a certain threshold value, fractal struc-
tures should disappear — a prediction which agrees with
our PDE numerics as well as previous numerics on the
weakly discrete NLS equation (see Fig. 6 in Ref. [27]).
Lastly, we apply these analytical results to the general-
ized NLS equations with various nonlinearities such as
the cubic-quintic, exponential and saturable nonlineari-
ties, and make detailed predictions on the dynamics of
their weak interactions.
This paper is structured as follows. In Sec. 2, we de-

scribe individual solitary waves in the generalized NLS
equations. In Sec. 3, we present direct PDE simulation
results on weak interactions of solitary waves in the gen-
eralized NLS equations with two different nonlinearities,
and reveal the common (universal) fractal structures in
this class of PDEs. In Sec. 4, we analytically derive a
universal system of dynamical equations (ODEs) for pa-
rameters of interacting solitary waves using asymptotic
methods, and show that these ODEs accurately describe
the weak interactions in the PDEs. In Sec. 5, we solve
this ODE system analytically when the single parameter
in this system is equal to zero (which is the integrable
case). In addition, we derive explicit conditions for the
solutions of the integrable ODE system to develop finite-
time singularities. In Sec. 6, we show that fractal struc-
tures appear in this ODE system when its parameter is
non-zero, and explore the origin of these fractal struc-
tures. In Sec. 7, we apply the analytical results to the
generalized NLS equations with various nonlinearities. In
Sec. 8, we summarize the results of the paper and make
some further remarks.

II. PRELIMINARIES

The generalized NLS equation is

iUt + Uxx + F (|U |2)U = 0, (2.1)

where F (·) is a real-valued algebraic function with
F (0) = 0. Equation (2.1) supports solitary waves of the
form

U = Φ(x− V t− x0;β)e
1
2
iV (x−x0)− 1

4
iV 2t+iβt−iσ0 , (2.2)
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where Φ(θ) is a positive function which satisfies the fol-
lowing equation

Φθθ + F (|Φ|2)Φ− βΦ = 0,

Φ → 0, |θ| → ∞, (2.3)

and β (> 0), V, x0, σ0 are real constants. For convenience,
we introduce the notations

ξ = V t+ x0, θ = x− ξ,

σ = (β +
1

4
V 2)t− σ0, φ =

1

2
V θ + σ. (2.4)

Physically, β is the propagation constant which is related
to the solitary-wave amplitude (henceforth, we call β an
amplitude parameter), φ is the phase of the solitary wave,
σ0 is its initial phase, ξ is its center position, V is its ve-
locity, and x0 is its initial position. The solitary wave
is characterized uniquely by its four parameters: V, β, σ0
and x0. The asymptotic behavior of this solution at in-
finity is

Φ(θ) → c e−
√
β|θ|, |θ| → ∞, (2.5)

where c is the tail coefficient which is determined by the
nonlinear function F and propagation constant β. We
define the power of the solitary wave as

P (β) =

∫ ∞

−∞
Φ2(θ;β)dθ, (2.6)

which plays an important role in the linear stability of
the solitary wave. For general functions F , the analytical
formulas for Φ, P and c are not available. But for some
special nonlinearities, one can find the analytical solu-
tions. For instance, for the cubic-quintic nonlinearity

F (|U |2) = α|U |2 + γ|U |4, (2.7)

the analytical formulas for Φ, P and c are [6, 32]

Φ(θ;β) =

√

4Bβ/α

B + cosh 2
√
βθ
, (2.8)

P =
4B

√
β(π/2− arctan B√

1−B2
)

α
√
1−B2

, (2.9)

c =
√

8Bβ/α, (2.10)

where

B = sgn(α)(1 +
16βγ

3α2
)−1/2. (2.11)

For special values of α = 1, γ = 0, Eq.(2.1) becomes the
integrable NLS equation, and then

B = 1, Φ(θ;β) =
√

2βsech(
√

βθ),

P = 4
√

β, c =
√

8β. (2.12)

III. UNIVERSAL FRACTAL STRUCTURES IN

WEAK INTERACTIONS OF SOLITARY-WAVES

When two solitary waves are placed adjacent to each
other, they would interfere through tail overlapping. In
this case, the initial condition is

U(x, 0) = U1(x, 0) + U2(x, 0),

Uk(x, 0) = Φ(x− x0,k;β0,k)e
iφ0,k ,

φ0,k =
1

2
V0,k(x− x0,k)− σ0,k, (3.1)

where Φ satisfies Eq.(2.3). Here ”0” in the subscript rep-
resents the initial value of the underlying parameter. For
convenience, we assign the left solitary wave with index
k = 1, and the right solitary wave with index k = 2.
To study the weak interaction between these two soli-
tary waves, we require that the two solitary waves are
both stable, well separated, and having almost the same
velocities and amplitudes. Introducing notations

β =
1

2
(β1 + β2), V =

1

2
(V1 + V2), ξ =

1

2
(ξ1 + ξ2),(3.2)

and

∆β = β2 − β1, ∆V = V2 − V1, ∆ξ = ξ2 − ξ1, (3.3)

the above requirements then amount to

Pβ > 0, |∆β| ≪ β, |∆V | ≪ 1, β∆ξ ≫ 1 ≫ |∆β∆ξ|.(3.4)

Here, Pβ ≡ dP/dβ > 0 corresponds to the Vakhitov-
Kolokolov criterion for the linear stability of solitary
waves in Eq. (2.1) [6, 33].
Below, we numerically study the weak interaction of

solitary waves in Eq. (2.1). This equation is numeri-
cally integrated by the pseudo-spectral method coupled
with the fourth-order Runge-Kutta integration along the
time direction. Since each solitary wave has four param-
eters, we have eight parameters in the initial conditions.
Due to the phase, translation and Galilean invariances
of Eq. (2.1), we can fix σ0,1 = 0, x0,1 + x0,2 = 0 and
V0 ≡ (V0,1 + V0,2)/2 = 0 without any loss of generality.
Also, for simplicity, we take ∆V0 = V0,2 − V0,1 = 0 in all
our simulations of this section, i.e. the two solitary waves
are initially at rest. This leaves four free parameters in
the initial conditions (3.1): ∆x0 ≡ x0,2 − x0,1,∆φ0 ≡
φ0,2 − φ0,1 = −σ0,2, β0 ≡ (β0,1 + β0,2)/2, and ∆β0 ≡
β0,2−β0,1. We define the exit velocity ∆V∞ ≡ lim

t→+∞
∆V .

We also define the collision time t̃ as the time when the
two solitary waves are the closest (i.e. the separation dis-
tance between peaks of the two solitary waves the small-
est) during interactions. The life time of interaction is
defined as the time length from the beginning (t = 0) to
the collision time t̃, which is equal to the collision time
in value. Thus t̃ will be used to denote the life time as
well. Of the four parameters in initial conditions, we will
fix β0,∆β0 and ∆x0, and use ∆φ0 as the control param-
eter and vary it continuously between 0 and 2π. At each
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FIG. 1: The graph of exit velocity ∆V∞ versus the initial
phase difference ∆φ0 in the non-equal initial amplitude case
of the cubic-quintic NLS equation (2.1), (2.7). The cubic and
quintic nonlinearity coefficients are given in Eq. (3.5), and
the other (fixed) initial parameters are ∆x0 = 10, β0 = 1,
∆β0 = −0.065, and ∆V0 = 0.

∆φ0 value, we simulate the evolution of the two solitary
waves and record the exit velocity and the life time. Nu-
merically, the exit velocity is determined as follows. We
let the solitary waves propagate for a long time. If they
still do not separate, we assign the exit velocity as zero.
If they do separate, we wait till they have separated far
apart and their velocities stabilized. Then we locate the
positions of maximum solitary wave amplitudes at serval
different time values. The average separation velocity of
the two solitary waves in these time intervals is assigned
as the exit velocity. The numerical life time is simply
the time when the two solitary waves are the closest in
the simulations. Below, we carry out numerical studies
of weak interactions as described above on two different
nonlinearities: the cubic-quintic and exponential nonlin-
earities.

A. Weak interactions for the cubic-quintic

nonlinearity

Our first example of nonlinearity is the cubic-quintic
nonlinearity (2.7), which arises in a wide array of physical
systems such as optics [6] and boson condensates [32, 34].
In this nonlinearity, we set

α = 1, γ = 0.04. (3.5)

It is easy to verify that all solitary waves (2.8) in this
case are linearly stable using the Vakhitov-Kolokolov cri-
terion. In our simulations, we set ∆x0 = 10 and β0 = 1.
The x interval is 70 units wide, discretized by 512 grid
points; and the time step size is 0.004.
We first study the nonequal-amplitude case, and take

∆β0 = −0.065. The ∆V∞ versus ∆φ0 diagram is shown
in Fig.1. The prominent structures in this graph can be
split into two regions: one region is −0.34 < ∆φ0 < 2.5,

and the other region is 2.9 < ∆φ0 < 3.3. The structures
in these two regions turn out to be quite similar (except a
horizontal reflection with respect to a vertical axis), thus
we focus on the larger region −0.34 < ∆φ0 < 2.5 below.
The main structure in this region forms a sequence of
hills; their widths get smaller from the right to the left,
and their heights are about the same. These hills will be
called the primary hills. This primary-hill sequence con-
verges to the accumulation point ∆φ0c = −0.339. In or-
der to see this hill sequence near the accumulation point
∆φ0c more clearly, we zoom in the region [−0.35, 0.4],
and the zoomed-in diagram is shown in Fig.2. In this
figure, the cascading sequence can be seen very clearly
(see Fig.2(a)). In Fig.2(b), the corresponding life-time
diagram is displayed. We can see that on the same hill,
interactions have roughly the same life time. On differ-
ent hills, life times are different: hills closer to the ac-
cumulation point ∆φ0c have longer life times. Between
hills, even longer life times can be seen, suggesting more
complex dynamics there. To explore differences in inter-
action dynamics on different hills, we select three points
∆φ0 = 0.1759,−0.0057,−0.1053 (marked in Fig.2(a) by
circles) on three adjacent primary hills. These points are
at the same relative positions (roughly halfway between
the peak and bottom) of the respective hills. At these
points, the interaction dynamics is plotted in Fig.2(1-3).
Here only the separation distance ∆ξ versus time t graphs
are shown. We find that these three dynamical processes
are similar, except that the oscillation times before final
separation differ by one from one hill to the next. The
life times t̃n of interactions on this primary hill sequence
are found to be an almost perfect linear function of the
hill index n as

ωt̃n = 2nπ + δ, (3.6)

where the least-square linear fit gives

ω = 0.08605, δ = 2.8897. (3.7)

Here the life time of each primary hill is measured nu-
merically at the relative location of that hill shown in
Fig.2(a) by circles. This life-time formula has the same
form as those for all window sequences reported before
[15, 16, 20, 23, 29].
In addition to the primary hill sequence as described

above, Fig.1 also possesses higher-order structures be-
tween primary hills. To demonstrate, we first isolate the
long interval [−0.35, 2.5] in Fig. 1 and re-plot that part
of the graph in Fig.3(a). Then we zoom into its sub-
interval [0.91, 0.995], which is between the two largest
primary hills in Fig.3(a). The zoomed-in graph is shown
in Fig.3(b). We see that the zoomed-in graph is simi-
lar to Fig.3(a), but the cascading direction has reversed.
This behavior is analogous to that reported in [18, 24]
for the φ4 model and the coupled NLS equations. The
main structure in this zoomed-in window is again two se-
quences of hills, accumulating to the left and right respec-
tively. We call them secondary hills. Between secondary
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FIG. 2: (a) The exit velocity versus initial phase difference graph of Fig. 1 re-plotted near the accumulation point of the
primary hill sequence; (b) the life time versus initial phase difference graph; (1)-(3): separation versus time diagrams of solitary
wave interactions at three values of ∆φ0 marked by circles in (a): (1) 0.1759; (2) −0.0057; (3) −0.1053.
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FIG. 3: Top: the exit velocity versus initial phase difference graph of Fig. 1 and its two zoomed-in structures; bottom:
soliton-positions versus time diagrams at three values of ∆φ0 marked by circles in the top panel: (1) 1.511; (2) 0.95248; (3)
0.9669.

hills, we see even higher-order structures. To see these
structures more clearly, we zoom into the sub-interval
[0.9657, 0.96785], which is between the two largest sec-
ondary hills in Fig.3(b). The zoomed-in graph is shown
in Fig.3(c). We see that it is again similar to Fig. 3(b)
but with a reversed cascading direction. One can zoom
into the regions between these tertiary hills in Fig.3(c)
further, and will get even higher order structures which
are similar to the ones shown in Fig.3. Thus Fig.3(a) is a

fractal structure! We have also explored the interaction
dynamics on this fractal. To demonstrate, we pick three
∆φ0 values 1.511, 0.95248, 0.9669 which are at the same
relative positions of the fractal (roughly halfway between
the peak and bottom of the widest hills) in Fig.3(a)-(c)
(marked by circles). The interaction dynamics at these
three points are displayed in Fig.3(1-3) respectively. Here
the positions of maximum amplitudes of the interacting
waves are plotted against time. We see that these dynam-
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FIG. 4: The exit velocity versus initial phase difference
graph in the equal initial amplitude case of the cubic-quintic
NLS equation 2.1), (2.7). The cubic and quintic nonlinearity
coefficients as well as the initial conditions are the same as in
Fig. 1, except that ∆β0 = 0 now.

ical patterns are clearly similar, except that the numbers
of oscillations before final separation are different.
In the above numerical simulations, the two solitary

waves have different initial amplitudes (∆β0 = −0.065).
We have also studied interactions of equal-amplitude soli-
tary waves, i.e. with ∆β0 = 0, while keeping the other
parameters the same. In this case, the graph of exit ve-
locity ∆V∞ versus initial phase difference ∆φ0 is shown
in Fig.4. This graph is symmetric with respect to ∆φ0 for
obvious reasons. Examination of this graph shows that
it is also a fractal. Thus fractal dependence arises in
weak interactions of both equal and non-equal amplitude
solitary waves.

B. Weak interactions with exponential nonlinearity

To explore whether the above fractal structures for
weak interactions persist or not with other types of non-
linearities, we consider in this subsection a different type
of nonlinearity — the exponential nonlinearity, with

F (|U |2) = e|U| − 1. (3.8)

Here, −1 is introduced into this function to meet the
condition F (0) = 0. Note that this nonlinearity does not
have any parameters. Throughout this subsection, we set
the initial separation ∆x0 = 8, and average propagation
constant β0 = 2.3. We study two cases, one for non-equal
amplitudes with ∆β0 = −0.045, and the other for equal
amplitudes with ∆β0 = 0. For both cases, the control
parameter is ∆φ0 as before. In our simulations, the x in-
terval was 70 units wide, discretized by 512 grid points.
The time step size was 0.002. The ∆V∞ verse ∆φ0 graphs
for both cases are plotted in Fig. 5. We have verified that
both graphs in this figure are fractals. Comparing these

0

0.4

0.8

∆φ
0

∆ V∞

−π/2 π/20 π 3π/2

(a)

  
0

0.4

0.8

∆ φ
0

∆ V∞

−π π 0 

(b)

FIG. 5: The exit velocity versus initial phase difference graphs
for the exponential nonlinearity (3.8): (a) the non-equal ini-
tial amplitude case with ∆β0 = −0.045; (b) the equal initial
amplitude case with ∆β0 = 0. The other (fixed) initial pa-
rameters are β0 = 2.3, ∆x0 = 8, and ∆V0 = 0.

fractals with those in Figs. 1 and 4 of the cubic-quintic
nonlinearity, we see that the fractal structures for these
two different nonlinearities are very similar. The only
major difference between them is in the non-equal ampli-
tude case, where there is only one primary hill sequence
(accumulating toward the left) for the exponential non-
linearity, while there are two primary hill sequences for
the cubic-quintic nonlinearity. It is remarkable that two
very different nonlinearities exhibit quite similar fractal
dependence on initial conditions. Thus fractal scattering
appears to be a universal feature in weak interactions of
Eq. (2.1) rather than an accident. This leads us to the
following questions: how can we analytically establish the
universal nature of fractal scatterings for Eq. (2.1) with
general nonlinearities? how can we analytically explain
the major differences of fractals for different nonlineari-
ties? These questions will be answered in the following
sections.
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IV. DYNAMICAL EQUATIONS

To study weak interactions analytically, we use the
Karpman-Solov’ev method [9] by treating the interfer-
ence as a small perturbation to each solitary wave (see
also [35]). This method has been successfully used be-
fore on the NLS equation [2, 9, 10, 35], the modified
NLS equation [11], the Manakov equations [12], as well
as the (non-integrable) coupled NLS equations [36]. To
proceed, we first need to consider the evolution of a single
solitary wave in the perturbed generalized NLS equation

iUt + Uxx + F (|U |2)U = ǫG, (4.1)

where function G is a perturbation term, and ǫ is a small
parameter. Without perturbations (ǫ = 0), the solitary
wave (2.2) is an exact solution of Eq.(4.1), and its internal
parameters V, β, σ0, x0 are time-independent. When the
perturbation is turned on, these internal parameters of
the solitary wave will evolve slowly on the time scale T =
ǫt. The multiple-scale perturbation theory for this slow
evolution is well known [36, 37]. We write the perturbed
solution as

U = Φ̂(θ, t, T )eiV θ/2+iσ, (4.2)

where

θ = x−
∫ t

0

V dt−x0, σ =

∫ t

0

(β+V 2/4)dt−σ0. (4.3)

Here V (T ), β(T ), σ0(T ), x0(T ) are all functions of slow
time T . Next, we will derive the dynamical equations
(ODEs) for the slow-time evolution of these parameters.

Substituting (4.2) into (4.1), we get the equation for Φ̂
as

iΦ̂t + Φ̂θθ − βΦ̂ + F (Φ̂2)Φ̂ =

ǫGe−iφ − ǫ
[

iΦ̂ββT − iΦ̂θx0T

]

−ǫ (V x0T /2− VT θ/2 + σ0T ) Φ̂, (4.4)

where φ is defined in Eq. (2.4). We expand the amplitude

function Φ̂ into a perturbation series

Φ̂ = Φ(θ;β) + ǫΦ̃ +O(ǫ2). (4.5)

The equation at order ǫ0 is satisfied automatically since
Φ satisfies Eq.(2.3). At order ǫ, the equation for Φ̃ can
be written as

iΨt + LΨ = H, (4.6)

where

Ψ =

(

Φ̃ + Φ̃∗

Φ̃∗ − Φ̃

)

, L =

(

0 L0

L1 0

)

, (4.7)

L0 = −∂θθ + β − F (Φ2),

L1 = −∂θθ + β − F (Φ2)− 2Φ2F ′(Φ2), (4.8)

and

H =

[

−G∗eiφ +Ge−iφ − 2iΦββT + 2iΦθx0T
−G∗eiφ −Ge−iφ + (V x0T − θVT + 2σ0T )Φ

]

.(4.9)

Here the superscript ”*” represents complex conjugation.
Operator L has two eigenfunctions and two generalized
eigenfunctions associated with the zero eigenvalue,

Ψ1 =

(

Φθ
0

)

, Ψ2 =

(

0
Φ

)

,

Ψ̃1 =

(

0
−θΦ/2

)

, Ψ̃2 =

(

−Φβ
0

)

, (4.10)

with the relations

LΨk = 0, LΨ̃k = Ψk, k = 1, 2. (4.11)

In order for the inhomogeneous solution Ψ of the first-
order equation (4.6) to be non-secular at large time, the
inhomogeneous term in Eq.(4.6) must be orthogonal to
the above eigenfunctions and generalized eigenfunctions
of the zero eigenvalue, i.e.,

〈H,Ψk〉 =
〈

H, Ψ̃k

〉

= 0, k = 1, 2, (4.12)

under the inner product defined as

〈F1, F2〉 =
∫ ∞

−∞
F †
1

(

0 1
1 0

)

F2dθ. (4.13)

Here F †
k is the Hermitian of Fk. Evaluating the four

integrals in Eq.(4.12), the slow-time evolution equations
for parameters V (T ), β(T ), σ0(T ), x0(T ) will be obtained.
These evolution equations can be written as

P
dV

dT
= 2

∫ ∞

−∞
Φθ(G

∗eiφ +Ge−iφ)dθ, (4.14)

Pβ
dβ

dT
=

1

i

∫ ∞

−∞
Φ(Ge−iφ −G∗eiφ)dθ, (4.15)

P
dx0
dT

=
1

i

∫ ∞

−∞
Φθ(Ge−iφ −G∗eiφ)dθ, (4.16)

Pβ(
V

2

dx0
dT

+
dσ0
dT

) =

∫ ∞

−∞
Φβ(G

∗eiφ +Ge−iφ)dθ.(4.17)

These equations will be critical for the development of
weak interaction theory of solitary waves below.
Now, we consider the weak interaction of two solitary

waves. Here the tail overlapping can be considered as a
small perturbation which causes the internal parameters
of each solitary wave to evolve on a slow time scale ǫt.
Here ǫ is the magnitude of tail overlapping which is ex-
ponentially small with solitary wave spacing ∆ξ. We will
not introduce ǫ explicitly in the next analysis. To the
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leading order, the interacting solution is simply a super-
position of two solitary waves,

U = U1 + U2,

Uk = Φke
iφk , k = 1, 2, (4.18)

where all parameters slowly vary over time. Picking
up the dominant interference terms, each solitary wave
is governed by the following perturbed generalized NLS
equations:

iUk,t + iUk,θθ + F (|Uk|2)Uk = Hk, (4.19)

where

Hk = − (F (|Uk|2) + F ′(|Uk|2)|Uk|2)U3−k
− F ′(|Uk|2)U2

kU
∗
3−k. (4.20)

In this paper, we only study the weak interaction, so
conditions (3.4) are assumed. Since |∆V | ≪ 1, the phase
difference

∆φ = φ2 − φ1 ≈ −V∆ξ/2 + ∆σ, (4.21)

which is independent of θ.

Now We apply the above solitary wave perturbation
theory to Eq.(4.19). In this problem,

ǫGe−iφ = − (F (Φ2
k)Φ3−k + F ′(Φ2

k)Φ
2
kΦ3−k)e

(−1)k+1i∆φ

− F ′(Φ2
k)Φ

2
kΦ3−ke

(−1)ki∆φ. (4.22)

Substituting (4.22) into Eqs.(4.14)-(4.17), we obtain the
following dynamical equations

Pk
dVk
dt

= −4

∫ ∞

−∞
Φk,θ(F (Φ

2
k)Φ3−k + 2F ′(Φ2

k)Φ
2
kΦ3−k)dθ cos(∆φ), (4.23)

Pk,βk

dβk
dt

= (−1)k2

∫ ∞

−∞
ΦkF (Φ

2
k)Φ3−kdθ sin(∆φ), (4.24)

Pk
dxk,0
dt

= (−1)k2

∫ ∞

−∞
ΦkθF (Φ

2
k)Φ3−kdθ sin(∆φ), (4.25)

Pk,βk
(
Vk
2

dxk,0
dt

+
dσk,0
dt

) = −2

∫ ∞

−∞
Φk,βk

(F (Φ2
k)Φ3−k + 2F ′(Φ2

k)Φ
2
kΦ3−k)dθ cos(∆φ), (4.26)

where Pk, k = 1, 2 are powers of the two individual soli-
tary waves. These equations can be simplified greatly.
Due to assumptions (3.4), and noticing that Φ(θ) and
Φβ(θ) are even functions of θ, the leading-order terms
of the above integrals can be explicitly calculated. For
instance,

∫ ∞

−∞
ΦkF (Φ

2
k)Φ3−kdθ

=

∫ ∞

−∞
ΦF (Φ2)ce(−1)k+1

√
βθdθe−

√
β∆ξ

=

∫ ∞

−∞
(βΦ− Φθθ)ce

√
βθdθe−

√
β∆ξ

= 2
√

βc2e−
√
β∆ξ. (4.27)

Similarly,

∫ ∞

−∞
Φk,θ(F (Φ

2
k)Φ3−k + 2F ′(Φ2

k)Φ
2
kΦ3−k)dθ

=

∫ ∞

−∞
Φθ(F (Φ

2) + 2F ′(Φ2)Φ2)ce(−1)k+1
√
βθdθe−

√
β∆ξ

= (−1)k
√

β

∫ ∞

−∞
ΦF (Φ2)ce

√
βθdθe−

√
β∆ξ

= (−1)k2βc2e−
√
β∆ξ, (4.28)

∫ ∞

−∞
ΦkθF (Φ

2
k)Φ3−kdθ

=

∫ ∞

−∞
ΦθF (Φ2)ce(−1)k+1

√
βθdθe−

√
β∆ξ

= (−1)k+1

∫ ∞

−∞
ΦθF (Φ2)ce

√
βθdθe−

√
β∆ξ

def
(−1)k+1D1e

−
√
β∆ξ, (4.29)
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∫ ∞

−∞
Φk,βk

(F (Φ2
k)Φ3−k + 2F ′(Φ2

k)Φ
2
kΦ3−k)dθ

=

∫ ∞

−∞
Φβ(F (Φ

2) + 2F ′(Φ2)Φ2)ce(−1)k+1
√
βθdθe−

√
β∆ξ

=

∫ ∞

−∞
Φβ(F (Φ

2) + 2F ′(Φ2)Φ2)ce
√
βθdθe−

√
β∆ξ

def
D2e

−
√
β∆ξ. (4.30)

With the above simplifications, the dynamical equations
reduce to

P
dVk
dt

= (−1)k+18βc2 cos(∆φ)e−
√
β∆ξ, (4.31)

Pβ
dβk
dt

= (−1)k4
√

βc2 sin(∆φ)e−
√
β∆ξ, (4.32)

P
dxk,0
dt

= −2D1 sin(∆φ)e
−
√
β∆ξ, (4.33)

Pβ(
V

2

dxk,0
dt

+
dσk,0
dt

) = −2D2 cos(∆φ)e
−
√
β∆ξ, (4.34)

where P is the power of the solitary wave with propaga-
tion constant β, and D1, D2 are defined in (4.29),(4.30).
From the above equations, we find that

βt = Vt = 0, (4.35)

∆ξt = ∆V, (4.36)

∆φt = ∆β, (4.37)

∆Vt = −16βc2

P
cos(∆φ)e−

√
β∆ξ, (4.38)

∆βt =
8
√
βc2

Pβ
sin(∆φ)e−

√
β∆ξ. (4.39)

Equations (4.35)-(4.39) are the key results in the weak
interaction theory of solitary waves. These equations can
be further simplified by variable rescalings. Introducing
notations

ψ = ∆φ, ζ = −
√

β∆ξ, f =
16β3/2c2

P
, g =

8
√
βc2

Pβ
,(4.40)

and

τ =
√

f t, ε =
g

f
− 1 =

P

2βPβ
− 1, (4.41)

then the dynamical equations (4.36)-(4.39) reduce to

{ ζττ = cosψeζ

ψττ = (1 + ε) sinψeζ
. (4.42)

Eq. (4.42) is the final dynamical system we obtained
for the analytical treatment of weak interactions in the
generalized NLS equations (2.1). It is important to re-
mark that Eq. (4.42) is universal for the generalized NLS
equations with arbitrary nonlinearities. It contains only
a single parameter ε, which depends on the specific form
of nonlinearity.
Eq. (4.42) has the following general properties. First,

it is Hamiltonian with the conserved Hamiltonian (en-
ergy) as

E =
1

2
(ζ̇2 − ψ̇2)− eζ cosψ +

ε

2(1 + ε)
ψ̇2. (4.43)

Here ˙( ) ≡ d/dτ . Second, it has some symmetry proper-
ties. One is that it is time-reversible, i.e., if [ζ(τ), ψ(τ)]

is a solution with initial conditions (ζ0, ζ̇0, ψ0, ψ̇0), then
[ζ(−τ), ψ(−τ)] is a solution with initial conditions

(ζ0,−ζ̇0, ψ0,−ψ̇0). Another symmetry is on phase flip-
ping, i.e., if [ζ(τ), ψ(τ)] is a solution with initial condi-

tions (ζ0, ζ̇0, ψ0, ψ̇0), then [ζ(τ),−ψ(τ)] is a solution with

initial conditions (ζ0, ζ̇0,−ψ0,−ψ̇0). Physically, this lat-
ter symmetry corresponds to the interchange of the left
and right solitary waves in the PDE evolutions, which
of course does not change the interaction outcome. Eq.
(4.42) also has the property that if ψ(τ) is a solution, so
is ψ(τ) + 2nπ for any integer of n. This reflects the fact
that in the PDE system, solution evolution remains the
same if the phase difference between the solitary waves
changes by a multiple of 2π.
The dynamical equations (4.42) are asymptotically ac-

curate in describing weak interactions in the PDE system
(to the leading order) when the spacing ∆ξ is large. Sur-
prisingly, even when the two solitary waves come close to
each other, Eq. (4.42) can still describe the interaction
process very well. This is analogous to weak interac-
tions in the (integrable) NLS equation [2, 9]. Below, we
make detailed comparisons between the ODE solutions
of Eq.(4.42) and the PDE solutions in Sec. 3(A) for the
cubic-quintic nonlinearity. Inserting the parameter val-
ues α = 1, γ = 0.04 and β0 = 1 of PDE simulations into
Eqs. (2.9) and (2.10), we get P = 3.74720, Pβ = 1.64835,
and c = 2.69495, thus f = 31.01080, g = 35.24845, and
ε = 0.13665. Corresponding to the initial conditions for
PDE simulations in Sec. 3(A), the initial conditions for
the ODE system (4.42) with nonequal and equal initial
amplitudes are

ζ0 = −10, ζ̇0 = 0, ψ̇0 = −0.01167, (4.44)

and

ζ0 = −10, ζ̇0 = 0, ψ̇0 = 0, (4.45)

respectively. In both cases, the initial phase difference
ψ0 is the control parameter as in PDE simulations. The
ODE system (4.42) is numerically solved by the fourth-
order Runge-Kutta method, with the time step set as
0.01. The simulation results on the exit velocity −ζ̇∞
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FIG. 6: The exit velocity (−ζ̇∞) versus the initial phase difference (ψ0) graphs from the ODE model (4.42). Here the initial
conditions for (a) and (b) are chosen corresponding to the PDE simulation results in Figs. 1 and 4 respectively (see text).

versus ψ0 graph are shown in Fig.6. Clearly, these graphs
are very similar to Figs. 1 and 4) from PDE simulations.
We have also investigated the detailed structures of Fig.
6 in ways analogous to what we did for Figs. 2 and 3.
Specifically, we have examined the primary hill sequence
in Fig. 6(a), and zoomed into regions between primary
hills. The results are shown in Figs.7 and 8 respectively.
Both figures closely resemble Figs. 2 and 3 from the PDE
simulations.

The agreement between the ODE model and the PDE
simulations is not only qualitative, but also quantitative.
To demonstrate, we compare the locations and life times
of primary hill sequences in Figs. 2 and 7. The com-
parison results are summarized in Table 1. Very good
quantitative agreement between them can be seen. In the
ODE model, the life time is also an almost perfect linear
function of the hill index n in the form (3.6). When the
time rescaling (4.41) is recovered, the ODE model gives

ω|ODE = 0.08570, δ|ODE = 2.9655, (4.46)

closely resembling the corresponding values (3.7) from
the PDE simulations.

Above we have established that the reduced ODE sys-
tem (4.42) accurately describes weak interactions of the
PDE system. Since the ODE system (4.42) is universal
for Eq. (2.1) regardless of details of its nonlinearities,
we see that the hill sequences and fractal structures in
Eq. (4.42) are universal for weak interactions of solitary
waves in the PDE system (2.1), as Figs. 1, 4, 5, and 6
clearly indicate.

Next we will turn our attention to the ODE system
(4.42), and analyze its solution dynamics in more detail.
In particular, we would like to understand why fractal
structures arise in this system, and how to analytically
predict their locations and other main features.

TABLE I: Comparison on locations and life times of primary
hills in Figs. 2(a) and 7(a) from the PDE and ODE simula-
tions.

location (PDE) location (ODE) life (PDE) life (ODE)
n ∆φ0,n ψ0,n tn

√
fτn

1 1.7735 1.7794 65 68
2 0.6985 0.7015 117 119
3 0.2430 0.2468 183 185
4 0.0280 0.0359 253 255
5 -0.0850 -0.0763 325 327
6 -0.1530 -0.1431 398 400
7 -0.1963 -0.1863 470 473
8 -0.2258 -0.2157 544 547
9 -0.2475 -0.2367 617 620
10 -0.2630 -0.2523 691 693
∞ -0.3392 -0.3280 ∞ ∞

V. SOLUTIONS OF THE INTEGRABLE

DYNAMICAL EQUATIONS AND THEIR

SINGULARITY CONDITIONS

Eq.(4.42) conserves energy (4.43) for all values of ε.
When ε = 0, it has another conserved quantity,

M = ζ̇ψ̇ − eζ sinψ, (5.1)

which can be called the momentum of this system. In this
particular case, system (4.42) is an integrable Hamilto-
nian system and can be analytically solved. Let Y =
ζ + iψ, Eq.(4.42) becomes

Yττ = eY . (5.2)

The general solution of this equation is

Y (τ) = ln
[

−2C2
1sech

2 (C1τ + C2)
]

, (5.3)
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FIG. 7: (a) The exit velocity versus initial phase difference graph of Fig. 6(a) re-plotted near the accumulation point of the
primary hill sequence; (b) the life time versus initial phase difference graph; (1)-(3): separation (−ζ) versus time (τ ) diagrams
at three values of ψ0 marked by circles in (a): (1) 0.187; (2) 0.0056; (3) −0.0939. All these graphs are obtained from the ODE
model (4.42), and they should be compared to the corresponding PDE graphs in Fig. 2.
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FIG. 8: Top: the exit velocity versus initial phase difference graph of Fig. 6 and its two zoomed-in structures; bottom:
separation versus time diagrams at three values of ψ0 marked by circles in the top panel: (1) 1.532; (2) 0.95071; (3) 0.96603.
These graphs from the ODE model should be compared to the corresponding PDE graphs in Fig. 3.

where

C1 =
1

2

√

Ẏ 2
0 − 2eY0 =

1√
2

√
E + iM, (5.4)

and

C2 = −arctanh

(

Ẏ0
2C1

)

. (5.5)

Here the branch of the square root function in (5.4) is
chosen such that Re(C1) ≥ 0. It is noted that solutions

Y which differ by a multiple of 2πi correspond to the
same physical solution, thus it does not matter which
Riemann surface one takes for the logarithmic function
in Eq. (5.3). If C1 = 0, i.e., Ẏ0 = ±

√
2eY0/2, the solution

(5.3) degenerates to the form

Y (τ) = −2 ln

(

e−
1
2
Y0 ∓ 1√

2
τ

)

. (5.6)
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The asymptotic behaviors of these solutions as τ → ∞
can be easily determined. Let

C1 = a+ b i,
C2

C1
= c+ d i, (5.7)

where a, b, c, d are real constants, then the following
leading-order asymptotic expressions for the solution can
be obtained when τ → ∞:

(1) a 6= 0 : Y (τ) → −2|a|τ − sgn(a)2bτ i; (5.8)

(2) a = 0, b 6= 0 :

(2a) d = 0 :

Y (τ) = ln 2b2 − ln cos2 b(τ + c); (5.9)

(2b) d 6= 0 :

Y (τ) = ln 4b2 − ln [cosh 2bd+ cos 2b(τ + c)]

+2i arctan [tanh(bd) tan b(τ + c)] ; (5.10)

(3) a = 0, b = 0 : Y (τ) → −2 ln(∓τ). (5.11)

From these asymptotic expressions, we see that when
a 6= 0, the two solitary waves eventually move away
from each other with exit velocity 2|a|; when a = 0 but
b 6= 0, the solution is time-periodic for both d = 0 and
d 6= 0, the difference being that in the former case, the
periodic solution exhibits finite-time singularities (where
ζ = Re(Y ) → ∞), while in the latter case, the solu-
tion has no singularities; when a = b = 0, the two soli-
tary waves eventually separate logarithmically, and the
exit velocity is zero. As an example, we take the ini-
tial conditions (4.44). In this case, the graph of exit

velocity −ζ̇∞(= 2|a|) versus ψ0 is plotted in Fig. 9 (bot-
tom panel). This graph is smooth everywhere, except
at ψ0 = 0,±π where it has a cusp (due to the absolute-
value function in |a|). The squares and diamonds on this
graph will be explained later. Clearly, this graph has no
fractal structure anywhere. Thus, fractal dependence is a
signature of the dynamical system (4.42) when it is non-
integrable (with ε 6= 0), not when it is integrable (with
ε = 0).
The above asymptotic states do not tell the full story

about the solution dynamics in the integrable system.
For instance, for the case of a 6= 0, even though the so-
lution has a benign-looking asymptotics (5.8) as τ → ∞,
the solution can still develop a singularity (where the sep-
aration ζ → ∞) at a finite time. These solutions with
finite-time singularities turn out to be critical for the ap-
pearance of fractal structures in the non-integrable sys-
tem, as our numerics in the next section will indicate.
Thus we analyze these singularity solutions in more de-
tails below. The necessary and sufficient conditions for
singularities in solution (5.3) are that

cosh(C1τ̃ + C2) = 0, (5.12)

and τ̃ > 0, where τ̃ is the time of singularity. If τ̃ < 0,
i.e., singularities in the solution occur at a negative time,
such singularities are irrelevant for the time evolution of

Eq. (4.42) and need not be considered. The solutions of
Eq. (5.12) are

C1τ̃ + C2 =
1

2
(2n+ 1)πi, n = 0,±1,±2, · · · . (5.13)

This is a complex-valued relation, which gives two real
relations on τ̃ , C1 and C2. When a 6= 0, i.e., C1 is
not purely imaginary, we find by separating the real and
imaginary parts of Eq. (5.13) that the solution (5.3) has
a single finite-time singularity of the type ln(τ − τ̃ ) if the
following conditions are satisfied:

S ≡ Im(C∗
1C2)

Re(C1)
=

1

2
(2n+ 1)π, n = 0,±1,±2, · · · ,

(5.14)

τ̃ = −Re(C2)

Re(C1)
> 0. (5.15)

Here Re(·) and Im(·) represent the real and imaginary
parts of a complex number. When a = 0 (b 6= 0), sin-
gularity solutions exist if d = 0. These solutions have
an infinite number of finite-time singularities of the type
ln(τ − τ̃ ), as the formula (5.9) indicates. Physically, at
the time of singularity τ̃ , the two solitary waves strongly
collide, thus τ̃ is the collision time. Whether conditions
(5.14) and (5.15) can be satisfied depends on the ini-
tial conditions (which determine the C1 and C2 values,
see (5.4), (5.5)). In the text below, we will call initial

conditions (ζ0, ζ̇0, ψ0, ψ̇0) which satisfy Eqs. (5.14) and
(5.15) as singularity points. At singularity points, solu-
tions of the integrable dynamical system (4.42) develop
finite-time singularities.
To demonstrate how to determine singularity points

in the initial-condition space, we take initial conditions
(4.44) of Fig. 6(a) as an example. Here ψ0 is a control pa-
rameter. With these initial conditions, the graph of func-
tion S(ψ0) is plotted in Fig. 9 (top panel). This graph
has a maximum 0.96. As ψ0 → 0+ or π−, S(ψ0) → −∞.
As we can see from this graph, for any value of n ≤ −1,

Eq. (5.14) has two roots, ψ
(1)
0,n and ψ

(2)
0,n. We have checked

that these roots satisfy the other singularity condition

(5.15), thus these ψ
(1)
0,n and ψ

(2)
0,n values are singularity

points. It is noted that the graph of function S(ψ0) also
has another piece in the interval π < ψ0 < 2π, which
is the mirror image of that shown in Fig. 9 around the
point ψ0 = π. But in that interval, τ̃ < 0, not satisfying
the second singularity condition (5.15), thus we did not
plot that piece of the graph in Fig. 9.

Next, we examine these singularity points ψ
(1)
0,n and

ψ
(2)
0,n in more detail. These points form two infinite

sequences with n = −1,−2, . . . , which accumulate at
ψ0 = 0+ and π− respectively. In Fig. 9 (bottom panel),
these two sequences are marked by squares and diamonds
on the exit velocity versus ψ0 graph. Calculating the
asymptotics of C1 from Eq. (5.14) and substituting it
into Eq. (5.15), we find that the collision times τ̃n of both
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FIG. 9: Top: graph of the function S(ψ0) defined in Eq.
(5.14) for the initial conditions (4.44). Intersections of the
graph with horizontal lines are singularity points. Bottom:
exit velocity versus ψ0 graph in the integrable system (4.42).
Both squares and diamonds are singularity points.

sequences have the following asymptotic expressions:

ωτ̃n = 2|n|π + π, n→ −∞, (5.16)

where ω = 2Im(C1|ψ0=0) and 2Im(C1|ψ0=π) for the left
and right sequences respectively. The asymptotic formu-
las for the locations of these two singularity sequences

{ψ(1)
0,n} and {ψ(2)

0,n} can also be calculated. We find from

(5.14) that

ψ
(1)
0,n → A1

(2n+ 1)π
, n→ −∞, (5.17)

and

π − ψ
(2)
0,n → A2

(2n+ 1)π
, n→ −∞, (5.18)

where

A1 = 8e−ζ0Re(C2)Im
2(C1)

∣

∣

ψ0=0
,

and

A2 = 8e−ζ0Re(C2)Im
2(C1)

∣

∣

ψ0=π
.

The above detailed analysis on singularity points was
performed for the particular initial conditions (4.44)

where the two solitary waves are initially stationary
(ζ̇0 = 0). What will happen if ζ̇0 6= 0? To answer this

question, we fix ζ0 and ψ̇0 as in Eq. (4.44), vary ζ̇0,

and examine how singularity points move in the (ψ0, ζ̇0)
plane. The results are shown in Fig.10. The top curve
corresponds to n = −1, the next curve corresponding
to n = −2, and so on. All curves are bounded from
both above and below except the top one (with n = −1).
When n → −∞, these curves approach the accumula-
tion curve plotted by the dashed line in Fig.10. Below
this accumulation curve, there are no singularity points.
The analytical formula for this accumulation curve can
be easily derived. On this accumulation curve, C1 must
be pure imaginary, thus

M = ζ̇0cψ̇0 − eζ0 sinψ0 = 0, (5.19)

E = 1
2 (ζ̇

2
0c − ψ̇2

0)− eζ0 cosψ0 < 0. (5.20)

Here (ζ̇0c, ψ0) is an accumulation point. From Eq. (5.19),
we see that the function of the accumulation curve is

ζ̇0c =
eζ0 sinψ0

ψ̇0

. (5.21)

The maximum and minimum of this curve are

ζ̇0c,min = −ζ̇0c,max = −
∣

∣

∣

∣

eζ0

ψ̇0

∣

∣

∣

∣

. (5.22)

For the ζ0 and ψ̇0 values of Fig. 10, we get ζ̇0c,min =

−0.00389. If ζ̇0 < ζ̇0c,min, there are no singularity solu-

tions for any value of ψ0. When ζ̇0c,min < ζ̇0 < ζ̇0c,max,
two infinite sequences of singularity points can be found.
When ζ̇0 > ζ̇0c,max, however, the number of singularity
points becomes finite; this number gradually decreases
(down to one) as ζ̇0 increases.
The above calculations of singularity points and their

accumulation curves were made for special choices of ini-
tial conditions ζ0 = −10 and ψ̇0 = −0.01167 (see Fig.
10). In view of the importance of singularity points for
fractal structures which we will reveal in the next sec-
tion, we would like to discuss singularity points and their
accumulation curves further for general initial conditions
below.
First, we examine the accumulation curve in the (ψ0,

ζ̇0) plane for general initial conditions ζ0 and ψ̇0. In this
general case, the accumulation curve (if it exists) is nec-
essarily given by Eq. (5.21). But the curve (5.21) (or por-
tions of it) may not satisfy condition (5.20), thus may not
actually be the accumulation curve. Below we determine
what portions of the curve (5.21) are the accumulation
curve. Before we do so, let us first point out that con-
ditions (5.19) and (5.20) are not only the necessary, but
also sufficient conditions for the accumulation curve. In
addition, the accumulation of singularity points toward
the accumulation curve is always from the upper side,
not lower side. To show these, we only need to prove that
condition (5.15) holds only on the upper edge of the curve
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FIG. 10: Singularity points satisfying conditions (5.14)-(5.15)

in the (ψ0, ζ̇0) plane. The dashed curve is the accumulation

curve. Here ζ0 = −10, ψ̇0 = −0.01167.

(5.21), but not the lower edge of it. On the upper edge

of (5.21), C1 is purely imaginary, and sgn(M) = sgn(ψ̇0).

Thus sgn(Im(C1)) = sgn(M) = sgn(ψ̇0). Consequently,

Re(Ẏ0/2C1) > 0. Notice that for any complex num-
ber z, Re[tanh(z)] and Re(z) have the same sign, hence
Re(C2) < 0. Then due to Re(C1) > 0, condition (5.15)
thus holds. By similar reasoning, we can show that on the
lower edge of the curve (5.21), condition (5.15) does not
hold. Thus singularity points accumulate toward (5.21)
only from above, not below.
Now we turn to equations (5.19) and (5.20), and use

them to determine the accumulation curve for the general
case. Substituting Eq. (5.21) into inequality (5.20) and
simplifying, this inequality becomes

− 1

ψ̇2
0

(

ψ̇2
0 + eζ0(1 + cosψ0)

)(

ψ̇2
0 − eζ0(1− cosψ0)

)

< 0,

(5.23)
which is equivalent to

cosψ0 > 1− e−ζ0ψ̇2
0 . (5.24)

Thus the accumulation curve is the parts of curve (5.21)

where ψ0 satisfies the constraint (5.24). If ψ̇2
0 > 2eζ0 ,

condition (5.24) is satisfied for all values of ψ0, hence the

entire curve (5.21) is the accumulation curve. If 0 < ψ̇2
0 ≤

2eζ0 , portions of the curve (5.21) centered at ψ0 = π do
not satisfy condition (5.24), thus do not belong to the
accumulation curve. The rest of the curve (5.21) does
satisfy condition (5.24), thus is the accumulation curve.

If ψ̇0 = 0 (equal initial amplitude case), no value of ψ0

satisfies condition (5.24), thus accumulation points do
not exist.
Next, we derive two general properties about singu-

larity points in the (ψ0, ζ̇0) plane for general initial con-

ditions ζ0 and ψ̇0. One property is that, if ζ̇0c is on

the accumulation curve, then for any ζ̇0 < ζ̇0c, singular-
ity points can not exist. We will prove this by showing
that τ̃ < 0 for ζ̇0 < ζ̇0c. To show τ̃ < 0, we only need
to show Re(Ẏ0/2C1) < 0 (see above). Without loss of

generality, we only show this for ψ̇0 < 0; the proof for
ψ̇0 > 0 is similar (in fact, as has been pointed out be-

fore, flipping the sign of ψ̇0 physically amounts to inter-
changing the positions of the left and right solitary waves
and thus does not affect the interaction outcome). For

ψ̇0 < 0 and ζ̇0 < ζ̇0c, C1 is in the first quadrant (as

M > 0). If ζ̇0 < 0, then Ẏ0 is in the third quadrant, thus

Re(Ẏ0/2C1) < 0 holds. Now we consider 0 < ζ̇0 < ζ̇0c.

In this case, Ẏ0 is in the fourth quadrant, hence iẎ0 lies
in the first quadrant (like C1). To show Re(Ẏ0/2C1) < 0,

we only need to show arg(iẎ0) < arg(2C1). Since both

iẎ0 and C1 are in the first quadrant, we only need to
show arg(−Ẏ2

0) < arg(4C2
1). Notice that

− Ẏ 2
0 + 4C2

1 = −2eY0, (5.25)

which is independent of ζ̇0. In addition, the angle of
−2eY0 falls in between those of −Ẏ 2

0 and 4C2
1 . Thus

to show arg(−Ẏ2
0) < arg(4C2

1), we only need to show

arg(−Ẏ2
0) < arg(−2eY0). Note that

− Ẏ 2
0 = ψ̇2

0 − ζ̇20 − 2iψ̇0ζ̇0, (5.26)

whose angle is an increasing function of ζ̇0 when ψ̇0 < 0,
thus for ζ̇0 < ζ̇0c,

arg(−Ẏ2
0) < arg(ψ̇2

0 − ζ̇20c − 2iψ̇0ζ̇0c). (5.27)

Now recall that ζ̇0c lies on the accumulation curve, thus
it satisfies the conditions (5.19) and (5.20). Substituting
these conditions into (5.27), and recalling our assump-

tions of ψ̇0 < 0 and 0 < ζ̇0 < ζ̇0c, we find that the right
hand side of (5.27) is less than arg(−2eY0), thus inequal-

ity arg(−Ẏ2
0) < arg(−2eY0) is proved. Summarizing the

above arguments, we conclude that for any ζ̇0 below the
accumulation curve, singularity points do not exist in the
(ψ0, ζ̇0) plane.
Another general property about singularity points is

that, at sufficiently large values of ζ̇0, there is a unique
singularity point in the ψ0 interval. The proof is as fol-
lows. It is easy to check that when ζ̇20 + ψ̇2

0 ≫ eζ0 and

|ζ̇0| >∼ |ψ̇0|, functions S and τ̃ have the following leading-
order asymptotic expressions,

τ̃ → 1

ζ̇0
ln
2(ζ̇20 + ψ̇2

0)

eζ0
, (5.28)

S → 1

2
sgn(ζ̇0)ψ0 + SA, (5.29)

where

SA =
ψ̇0

2|ζ̇0|
ln

2(ζ̇20 + ψ̇2
0)

eζ0
− arctan

ψ̇0

|ζ̇0|
− 1

2
π, (5.30)
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and the relative errors are O
(

eζ0/(ζ̇20 + ψ̇2
0)
)

. From Eq.

(5.29), we see that the rise of S value over the interval
0 ≤ ψ0 ≤ 2π is π, which guarantees that Eq. (5.14) has
a single solution in the ψ0 interval for a single value of n.
From Eq. (5.28), we see that when ζ̇0 > 0 is sufficiently
large, τ̃ > 0 over the entire ψ0 interval. Thus singularity
conditions (5.14) and (5.15) admit a unique singularity

point. We note by passing that when ζ̇0 is sufficiently
large negative, τ̃ < 0 over the entire ψ0 interval, thus
there can not be any singularity points. This is consistent
with the previous general property proved above.
To summarize the above results on singularity points

and accumulation points and slightly extend them, we
present the following classifications on singularity solu-
tions in the integrable system (4.42):

1. ψ̇0 = 0 (equal initial amplitudes):

• If ζ̇0 > −
√
2eζ0/2, a singularity solution exists

at the single singularity point ψ0 = 0. Here
M = 0, and E > 0 for ζ̇0 >

√
2eζ0/2 and E < 0

otherwise;

• If ζ̇0 < −
√
2eζ0/2, there are no singularity so-

lutions for any ψ0;

2. ψ̇0 6= 0, ζ̇0 = 0 (non-equal initial amplitudes, zero
initial velocities):

• If ψ̇2
0 > 2eζ0 , singularity solutions exist at two

infinite sequences of ψ0 values, accumulating
at ψ0 = {0+, π−}, or {π+, 2π−}, for ψ̇0 < 0

and ψ̇0 > 0 respectively;

• If 0 < ψ̇2
0 < 2eζ0 : singularity solutions exist at

one infinite sequence of ψ0 values, accumulat-
ing at ψ0 = 0+ or 2π− for ψ̇0 < 0 and ψ̇0 > 0
respectively;

On these sequences of singularity points, M 6= 0
and E 6= 0 generically (at the accumulation points,
M = 0, and E < 0);

3. ψ̇0 6= 0 (the general non-equal initial amplitude
case):

In this case, the accumulation curve is the parts of
curve (5.21) where ψ0 satisfies the constraint (5.24).

When ψ̇2
0 > 2eζ0 , the entire curve (5.21) is the ac-

cumulation curve. When 0 < ψ̇2
0 ≤ 2eζ0 , the accu-

mulation curve is (5.21) except portions of it which
are centered at ψ0 = π.

For ζ̇0 below the accumulation curve, there are no
singularity points; at sufficiently large ζ̇0 values,
there is a single singularity point.

At all these singularity values, E and M are non-
zero generically (except the accumulation points
where M = 0).
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FIG. 11: The exit velocity versus initial phase difference
graphs in the ODE model (4.42) at various values of ε: (1)
0.13665; (2) 0.036; (3) 0.0036; (4) 0; (5) −0.0036; (6) −0.036.
The initial conditions are given in (4.44). The squares and
diamonds in (4) are singularity points of the integrable system
(see Fig. 9, bottom).

It is noted that in the above classifications, case (2) is
just a special case of case (3), and can be readily deduced
from (3). Case (1) can be deduced from (3) as well under

the limit ψ̇0 → 0. But cases (1) and (2) are important
special cases, hence we listed them out separately.

VI. ORIGINS OF FRACTAL STRUCTURES IN

THE NON-INTEGRABLE DYNAMICAL

EQUATIONS

We have known from Figs. 6, 7 and 8 that the non-
integrable ODE system (4.42) exhibits hill sequences and
fractal structures which coincide with those in the PDE
simulations, but such structures do not exist when this
ODE system becomes integrable. The natural question
then is: where do the fractal structures in the non-
integrable system (4.42) come from? In this section, we
will establish through careful numerics that these fractal
structures bifurcate from singularity points of the inte-
grable system.
To determine the origin of these fractals, we take the

same initial conditions (4.44) as in Fig. 6(a), but grad-
ually decrease the value of ε from 0.13665 of Fig. 6(a)
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FIG. 12: The exit velocity versus initial phase difference
graphs in the ODE model (4.42) at various values of ζ̇0: (1)
0.00707; (2) 0.00548; (3) 0.00495; (4) 0.00350; (5) 0; (6)

−0.00350; (7) −0.00424. Here ζ0 = −10, ψ̇0 = −0.01167,
and ε = 0.0036.

down to zero (the integrable case), then down further
to negative values. In this process, we closely monitor
how the fractal structure of Fig. 6(a) changes as ε de-

creases. The result is shown in Fig. 11. Here, the −ζ̇∞
verse ψ0 graphs are plotted at six decreasing ε values:
ε = 0.13665, 0.036, 0.0036, 0,−0.0036 and −0.036. We
see that as ε decreases from 0.13665 but above zero,
primary hill sequences and the fractal regions between
them persist and are clearly visible in Fig. 11(1, 2, 3).
Indeed, we have zoomed into the sensitive regions be-
tween primary hills in each of Figs. 11(1, 2, 3), and
obtained higher order structures which look very similar
to those shown in Fig. 8. As ε→ 0+, our key observation
is that, the peaks of individual primary hills as well as
the nearby fractal regions collapse to sequences of points
on the smooth −ζ̇∞ curve of the integrable system (see
Figs. 11(3, 4)). Closer examination tells us that, these
sequences of points in Fig. 11(4) are nothing but the two
sequences of singularity points of the integrable system
which we plotted in Fig. 9! In other words, hill sequences
and fractal structures in the non-integrable system bifur-
cate from the singularity points of the integrable system!
However, this bifurcation is one-sided: as ε decreases be-
low zero, no fractal regions appear, see Fig. 11(5). A fi-
nite number of primary hills, reminiscent of primary hill
sequences for positive ε values, do exist. But the whole

graph is smooth, and it has no fractal structures inside
(even the spike-looking parts of the graph in Fig. 11(5)
turn out to be smooth upon closer examination). Fur-
thermore, as ε decreases further below zero, the number
of primary hills keeps decreasing, and the graph becomes
more smooth, see Fig. 11(6). Thus, fractal structures
are a signature of the non-integrable system (4.42) only
for positive values of ε, not negative values of ε.

To further substantiate our claim on fractal structures
of the non-integrable system bifurcating from singular-
ity points of the integrable system, we tune initial con-
ditions so that singularity points in the integrable sys-
tem gradually disappear in the ψ0 interval, and check
if fractal structures in the non-integrable system disap-
pear as well (for small ε). Specifically, we fix the ζ0 and

ψ̇0 values in Eq. (4.44) and tune the ζ̇0 value, as we
did in Fig. 10. The ε value in Eq. (4.42) is taken as
ε = 0.0036, which is very small. Thus, the non-integrable
system is weakly perturbed from the integrable one. For
the above initial conditions, singularity points of the in-
tegrable system have been displayed in Fig. 10 in the
(ψ0, ζ̇0) plane. We gradually decrease the ζ̇0 value. For

each ζ̇0, we numerically compute the exit velocity ver-
sus ψ0 graph in the perturbed (non-integrable) system
(4.42), and compare how this graph relates to singularity
points of the integrable system in Fig. 10. To illustrate,
we pick seven representative ζ̇0 values, which are 0.00707,
0.00548, 0.00495, 0.00350, 0, −0.00350 and −0.00424 in
decreasing order. These seven ζ̇0 values are marked by
horizontal dashed lines in Fig. 10. As we can see from
that figure, at these seven ζ̇0 values, the numbers of sin-
gularity points in the ψ0 interval are 1, 3, 5, ∞, ∞, ∞,
and 0 respectively. For each of these seven ζ̇0 values,
the corresponding exit velocity versus ψ0 graph in the
perturbed system (4.42) is shown in Fig. 12. We no-
tice from this figure that the numbers of primary hills
and fractal regions near these hills at these ζ̇0 values are
equal to 1, 3, 5, ∞, ∞, ∞, and 0 respectively — exactly
like singularity points in the integrable system! In par-
ticular, when singularity points in the integrable system
disappear, so do primary hills and fractal structures in
the weakly perturbed non-integrable system. Further-
more, the locations of primary hills and fractal regions
closely follow those of singularity points of the integrable
system. Thus, the connections between them are unmis-
takable. Fig. 12, together with Fig. 11, establishes be-
yond doubt that primary hills and fractal structures in
the non-integrable system (4.42) indeed bifurcate from
singularity points of the integrable system.

The bifurcation of fractal structures from singularity
points of the integrable system indicates that near such
points, the solutions of the perturbed system (4.42) are
very sensitive to initial conditions. To shed light on why
this sensitivity occurs, we present some numerical results
below. First, we look at the integrable system (with
ε = 0). Taking the initial conditions as (4.44), evolu-
tions of ψ versus τ at the singularity point ψ0 = 0.98325
(marked in Fig. 9, bottom panel) and its left and right
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near neighbors ψ0 = 0.92 and 1.05 are plotted in Fig.
13(a) using the solution formula (5.3). An interesting
feature about these evolutions is that for initial ψ0 val-
ues at the two sides of the singularity point, the phase
functions ψ(τ) have drastically different trajectories as
they go through the time τ ≈ 700 where the two soli-
tary waves interact strongly (this time is the singular-
ity time of the singular solution at ψ0 = 0.98325). For
ψ0 below the singularity point, the phase sharply (but
continuously) decreases by 2π, while for ψ0 above the
singularity point, the phase sharply (but continuously)

increases by 2π. Recall that ψ̇ ∝ ∆β and it determines
the relative energy (amplitude) distributions among the
two solitary waves [see Eqs. (4.37), (4.40) and (4.41)],
we know that on the two sides of the singularity point,
the energies have opposite distributions among the two
solitary waves during their strong interactions. However,
after the interaction is completed, the asymptotic slopes
of the three ψ(τ) trajectories in Fig. 13(a) are almost the
same, signaling that the interaction outcome is actually
insensitive to the ψ0 values (the roughly 2π difference be-
tween these phase trajectories does not affect the physical
solutions). This is why outcomes of weak interactions in
the integrable system (4.42) do not exhibit sensitive de-
pendence on initial conditions (see Fig. 9 bottom panel).
However, when system (4.42) is positively perturbed, the
results are completely different. To demonstrate, we take
ε = 0.0036 now, while the initial conditions (4.44) remain
the same. In this slightly perturbed system, the solution
develops finite-time singularity at the singularity point
ψ0 = 0.9695, which is the counterpart of the singular-
ity point mentioned above in the integrable system. The
phase function at this singularity point is plotted in Fig.
13(b) (solid line). (It is noted that in this perturbed case,
we do not have exact solution formulas, hence this solu-
tion was obtained by numerically integrating Eq. (4.42).
Due to the finite-time singularity in the solution, our
numerical integration can not go beyond the singularity
time τ ≈ 700. The solution beyond the singularity time,
shown in Fig. 13(b) as dotted lines, was inferred from our
numerics at nearby ψ0 values.) On the two sides of the
singularity point, we select two nearby values ψ0 = 0.92
and 1.01. The phase trajectories at these φ0 values are
also plotted in Fig. 13(b). We see that as these trajecto-
ries go through the time τ ≈ 700, one sharply decreases
by 2π, while the other sharply increases by 2π, similar
to what happens in the integrable case (see Fig. 13(a)).
However, after these sharp decreases/increases, the tra-
jectories turn around and start to move in the opposite
direction. Eventually, these trajectories approach dras-
tically different asymptotic slopes (one positive and the
other one negative in fact), indicating that the interac-
tion outcomes are very different for these slight changes
in the ψ0 values. This is the phenomenon of sensitive
dependence on initial conditions which occurs in the per-
turbed system (4.42) (with ε > 0), but not the integrable
system (with ε = 0).

It is also enlightening to look at this sensitive depen-

dence on initial conditions from the viewpoint of PDE
evolutions. To illustrate, we take the cubic-quintic non-
linearity (2.7) in Eq. (2.1), and take α = 1, β0 = 1.
Then for the ε values and initial conditions used in the
ODE simulations of Fig. 13, and in view of the variable
rescalings (4.40) and (4.41), the corresponding PDE pa-
rameters for Fig. 13(a) (the integrable case) are γ = 0,
∆β0 = −0.066016, ∆V0 = 0, ∆x0 = 10, and the cor-
responding PDE parameters for Fig. 13(b) (the per-
turbed case) are γ = 0.0010, ∆β0 = −0.066, ∆V0 = 0,
∆x0 = 10. For these PDE parameters, the PDE evolu-
tion results (in the form of contour plots) at three ∆φ0
values corresponding to those in the ODE simulations
of Fig. 13 are displayed in Fig. 14. In the integrable
(NLS) case (top row of Fig. 14), we take the three
∆φ0 values exactly the same as those in Fig. 13(a), i.e.
∆φ0 = 0.92, 0.98325, 1.05. In this case, at the lower ∆φ0
value, the left solitary wave retains its higher energy at
the collision time; at the singularity point of ∆φ0, the
two waves completely coalesce at the collision time, sig-
naling the singularity formation in the ODE system; at
the higher ∆φ0 value, the right solitary wave gets higher
energy at the collision time. However, after interaction,
the two waves always separate, and the right wave always
gets higher energy, in all three cases. Recall that before
interaction, the left wave has higher energy, thus we can
call these interaction outcomes transmission. In these in-
teractions, even though the intermediate process (espe-
cially the collision segment) rather strongly depends on
the initial phase difference ∆φ0, the interaction outcome
is insensitive to it. These PDE evolution results com-
pletely resemble the ODE simulations in Fig. 13(a). In
the perturbed (non-integrable) case, the PDE simulation
results are quite different from the integrable ones (as in
the ODE simulations). In the perturbed case, we take
the three ∆φ0 values to be 0.92, 0.972 and 1.01. Notice
that the first and third of these ∆φ0 values are exactly
the same as those in the ODE simulations of Fig. 13(b),
while the middle ∆φ0 value of 0.972 is slightly different
from the corresponding ODE value of 0.9695. This slight
difference in the middle ∆φ0 value is necessary in order
for the corresponding ODE and PDE simulations to ex-
hibit the same behaviors, and this difference is due to the
modeling error of the PDE evolutions by the ODE system
(4.42). At ∆φ0 = 0.92 (see Fig. 13(1)), the interaction
outcome is similar to the integrable ones (top row of Fig.
13) in that it is also transmission. But at ∆φ0 = 0.972
(Fig. 13(2)), the two waves strongly coalesce, then form
an oscillating bound state. At ∆φ0 = 1.01, on the other
hand, the two exiting waves have opposite energy distri-
butions from Fig. 13(1); this interaction outcome can be
called reflection. Thus, in the perturbed case, the inter-
action outcome is sensitive to initial conditions, which
distinctively contrasts the integrable case. Again, these
PDE evolution results for the perturbed case completely
resemble the ODE simulations in Fig. 13(b).

The above ODE and PDE simulations corroborate the
fact that the source of this sensitive dependence on initial
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FIG. 13: Evolutions of ψ versus τ at a singularity point ψ0

and its left and right neighbor points in the dynamical system
(4.42) with initial conditions (4.44). (a) ε = 0 (the integrable
case); here ψ0 = 0.98325 is the singularity point which is
marked in Fig. 9 (bottom panel); the left and right neighbor
points are taken as ψ0 = 0.92 and 1.05; (b) ε = 0.0036 (the
positively perturbed case); here ψ0 = 0.9695 is the singularity
point; its left and right neighbor points are taken as ψ0 = 0.92
and 1.01.

conditions in the perturbed system lies in the finite-time
singularities of solutions in the integrable dynamical sys-
tem (4.42). From the PDE point of view, the origin of
this sensitive dependence can be traced to the coalescing
of the two solitary waves in the integrable PDE system.
At the moment, our understanding on this sensitive de-
pendence and fractal structures in the perturbed system
is still very limited. For instance, we can not yet explain
any quantitative details inside these fractal structures,
nor can we explain why this sensitive dependence occurs
only for one-sided perturbations of the integrable sys-
tem (with ε > 0). These are non-trivial questions which
merit further analysis, but they are beyond the scope of
the present article.

The fact of primary hills and fractal structures in the
non-integrable system (4.42) bifurcating from singularity
points of the integrable system has far reaching conse-
quences. One important consequence is that, the main
features of primary hill sequences shown in Figs. 2(a)
and 7(a) for PDEs and ODEs can now be analytically
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FIG. 14: Evolutions of |U(x, t)| in the PDE (2.1) with cubic-
quintic nonlinearity (2.7), corresponding to the ODE simu-
lations of Fig. 13. Top row: the integrable (NLS) equation
(γ = 0); (a) ∆φ0 = 0.92, (b) ∆φ0 = 0.98325, (c) ∆φ0 = 1.05.
Bottom row: the perturbed case (with γ = 0.0010); (1)
∆φ0 = 0.92; (2) ∆φ0 = 0.972; (3) ∆φ0 = 1.01. The val-
ues of other initial parameters are given in the text.

explained. For instance, the life-time formula (3.6) for
primary hill sequences in the weakly perturbed system
(4.42) is nothing but the analogous collision-time (sin-
gularity time) formula (5.16) for sequences of singularity
points in the integrable system. To make a quantitative
comparison between these formulas, we take the initial
conditions (4.44) which was used in the PDE and ODE
simulations of Figs. 2(a) and 7(a). When the time rescal-
ing (4.41) is recovered, the collision-time formula (5.16)
of the integrable system becomes

0.0839t̃n = 2nπ + π, (6.1)

which compares very favorably with the life-time formu-
lae (3.6), (3.7) and (4.46) in direct PDE and ODE simula-
tions. The small differences in the ω and δ values between
the analytical formula (5.16) and the PDE/ODE ones
(3.6) are caused by the not-so-small value of ε = 0.13665.
As ε→ 0, these quantitative differences will vanish. Re-
garding the locations of individual hills in the primary-
hill sequence, they are described by the formula (5.17) for
singularity-point locations of the integrable system when
ε ≪ 1. Note that the form of this formula is different
from all previous ones on window sequences in solitary-
wave collisions [15, 16, 20, 25, 29].
For ε > 0, each primary hill is paired with a sensitive

(fractal) region at its foot (see Figs. 11 and 12). Similar
to primary hill sequences, the locations of these fractal
regions are described by the same formula (5.17) in the
limit ε→ 0+.
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The fact of primary hills and fractal structures bifur-
cating from singularity points of the integrable system
also explains major features of interaction results in Fig.
5(a) for the exponential nonlinearity (3.8). We have no-
ticed that, unlike Fig. 1, this graph has only one infi-
nite sequence of primary hills accumulating toward the
left (the right sequence of Fig. 1 is absent). This phe-
nomenon is due to the fact that for the choices of initial
conditions for Fig. 5(a), there is only one infinite se-
quence of singularity points in the integrable system. To
see it, we first calculate the f, g and ε values for Fig.
5(a), which are found to be

f = 228.8211, g = 231.91770, ε = 0.01353. (6.2)

Thus in the scaled dynamical equation (4.42), the initial
conditions corresponding to those for Fig. 5(a) are

ζ0 = −12.13260, ζ̇0 = 0, ψ̇0 = −0.00297. (6.3)

Notice that ψ̇2
0 < 2eζ0 , thus according to the classifi-

cations of singularity points in the end of the previous
section (case 2), the integrable equation (4.42) with the
above initial conditions has only one sequence of singu-
larity points in the ψ0 interval, accumulating to the left
toward ψ0 = 0+. This is in perfect agreement with the
primary-hill sequence of Fig. 5(a) from direct PDE sim-
ulations.
In many of the interaction results presented in this

paper, the exit velocity versus ψ0 graphs have infinite se-
quences of primary hills (see Figs. 1 and 5 for instance);
when zooming into the sensitive regions between primary
hills, one gets infinite sequences of secondary hills. It
is important to understand that these two infinite se-
quences are pure coincidence, and are totally un-related.
Each primary hill corresponds to a particular singularity
point of the integrable system, thus the number of pri-
mary hills is equal to the number of singularity points in
the integrable system. This number can be either infinite
or finite, depending on the choices of initial conditions.
For instance, Figs. 12(1, 2, 3) have 1, 3 and 5 primary
hills, corresponding to the same numbers of singularity
points on the top three dashed lines of Fig. 10. On the
other hand, at the foot of each primary hill, there is al-
ways an infinite sequence of secondary hills (when ε > 0).
In other words, secondary hills always exist as an infi-
nite, not finite, sequence. For example, if one zooms into
each of the three sensitive regions at the foot of the three
primary hills in Fig. 12(2), one always gets an infinite se-
quence of secondary hills. Thus secondary-hill structures
are un-related to primary-hill structures. If we zoom into
the sensitive regions between secondary hills, we always
get infinite sequences of tertiary hills which are very sim-
ilar to the sequences of secondary hills both qualitatively
and quantitatively (see Figs. 3(b, c)). This process can
continue indefinitely. Thus, our conclusion is that sensi-
tive regions between primary hills are fractal structures
(in the sense that portions of these structures, when am-
plified, are the same as the strcutures themselves). But
the whole graph with primary hills is not a fractal.

VII. APPLICATIONS TO THE GENERALIZED

NLS EQUATIONS WITH VARIOUS

NONLINEARITIES

In previous sections, we have shown that for the cubic-
quintic and exponential nonlinearities at selected param-
eters (α = 1, γ = 0.04, β0 = 1 for the former, and
β0 = 2.3 for the latter), weak interactions of solitary
waves exhibit hill sequences and fractal structures for a
wide range of initial conditions, and the reduced ODE
model (4.42) accurately captures these interaction dy-
namics both qualitatively and quantitatively. In this sec-
tion, we consider a larger question: for a given form of
nonlinearity in the PDE (2.1), can it exhibit fractal struc-
tures? For example, with the cubic-quintic nonlinearity
(2.7), for what parameters α and γ can one possibly find
fractal structures? This question can be answered by
applying our previous results on the ODE model (4.42).
For demonstration purpose, we will do so for three forms
of nonlinearity: cubic-quintic, exponential, and saturable
nonlinearities.

From the analysis of the ODE system (4.42) in the
previous section, we have found that fractal structures in
weak interactions can only occur for ε > 0, not for ε < 0.
Thus, once we have obtained the functional dependence
of ε on system parameters, it will quickly become clear
when fractal structures can arise. The analytical expres-
sion for ε is given in Eq. (4.41). Notice that due to the
Vakhitov-Kolokolov stability criterion [6, 33], the solitary
wave is linearly stable only when Pβ > 0, i.e. ε > −1.
Below, we will use the ε formula in (4.41) to calculate ε
for general system parameters in the three nonlinearities
mentioned above.

First we consider the cubic-quintic nonlinearity (2.7).
When α < 0, we found that Pβ is always negative, i.e.
the solitary wave is always linearly unstable. Thus we
only consider the α > 0 case below. In this case, it is
easy to see from Eqs. (2.3) and 2.7) that by a rescaling
of variables, we can make α = β0 = 1. Thus the only
remaining parameter for this nonlinearity is γ. Using
the analytical formula (2.9) for P , we can obtain the
dependence of ε on γ, which is plotted in Fig. 15(1).
From this graph, we see that ε > 0 when γ > 0, and
ε < 0 when γ < 0. Thus fractal structures in this cubic-

quintic model can appear only when γ > 0, not when

γ < 0. If γ = 0, this cubic-quintic model reduces to the
integrable NLS equation, and the dynamical equations
(4.42) reduce to the integrable case (with ε = 0) studied
in Sec. 5. In this integrable case, there is of course no
fractal dependence in solitary wave interactions.

Next, we consider the exponential nonlinearity (3.8).
In this case, the solitary wave depends only on the prop-
agation constant β, thus ε depends only on β as well.
The analytical expression for function ε(β) is not avail-
able, but this function can be easily determined by nu-
merical methods, and its graph is plotted in Fig.15(b). It
is seen that this graph has two critical propagation con-
stants, β̄a = 2.2457 where ε = 0, and β̄b = 14.0051 where



20

−0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

1

1.5

γ

ε

(1)

0 2.2457 8 14.0051 16

0

2

4

6

8

10

12

β

ε

(2)

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

β

ε

(3)

FIG. 15: Graphs of ε versus system parameters for three different nonlinearities: (1) ε verse γ for the cubic-quintic nonlinearity
(2.7); (2) ε verse β for the exponential nonlinearity (3.8); (3) ε verse β for the saturable nonlinearity (7.1).

ε = +∞. When β < β̄a, ε < 0, thus fractal structures
do not exist; when β̄a < β < β̄b, thus fractal structures
can appear (see previous sections); when β > β̄b, ε < −1,
thus the solitary wave is linearly unstable.
Next, we consider the saturable nonlinearity,

F (|U |2) = 1− 1

1 + |U |2 , (7.1)

which is common in optics (for instance, in photorefrac-
tive crystals [38]). Here one is added in the above formula
to make F (0) = 0 (this does not affect the solitary waves
and their interaction dynamics). In this case, ε also de-
pends only on the propagation constant β. This depen-
dence is computed numerically and plotted in Fig.15(c).
We find that ε is negative for all values of β, thus fractal
structures can not exist in weak interactions of solitary
waves for this saturable nonlinearity. This conclusion is
consistent with our earlier results for the cubic-quintic
nonlinearity, as the saturable nonlinearity (7.1) resem-
bles the cubic-quintic nonlinearity (2.7) with α > 0 and
γ < 0. It is noted, however, that for the saturable nonlin-
earity, weak interactions of solitary waves can still exhibit
some interesting structures as shown in Figs. 11(5, 6),
but these structures are not fractal structures.
From the above three examples (as well as the previ-

ous section), we see that the reduced ODE model (4.42)
enables us to accurately predict when and where frac-
tal structures and hill sequences appear in the space of
initial parameters of solitary waves. Based on this re-
duced model, a global and universal understanding on
weak interactions of solitary waves has been achieved for
the generalized NLS equations (2.1) with arbitrary forms
of nonlinearity.

VIII. CONCLUSION AND DISCUSSION

In this paper, we have analyzed weak interactions of
solitary waves in the generalized nonlinear Schrödinger
equations with general forms of nonlinearity. We have
shown that these interactions exhibit similar fractal de-
pendence on initial conditions for different nonlinearities.

To analytically explain these universal fractal structures,
we derived a set of fourth-order dynamical equations for
the solitary-wave parameters using asymptotic methods.
A remarkable feature of these dynamical equations is that
they contain only one parameter, which is dependent on
the specific form of nonlinearity. When this parameter is
zero, these dynamical equations are integrable, and the
exact analytical solutions are derived. When this param-
eter is non-zero, the dynamical equations exhibit fractal
structures which match those in the original PDEs both
qualitatively and quantitatively. We have also investi-
gated the origin of these fractal structures, and found
that they bifurcate from the singularity points (i.e. ini-
tial conditions for singularity solutions) in the integrable
system. Based on this observation, an analytical crite-
rion for the existence and locations of fractal structures
is obtained. Lastly, we applied these analytical results
to the generalized nonlinear Schrödinger equations with
various nonlinearities such as the cubic-quintic, exponen-
tial and saturable nonlinearities, and predictions on their
weak interactions of solitary waves are presented.

Regarding the bifurcation of fractal structures from the
integrable dynamical equations, even though we have es-
tablished that this bifurcation occurs at the singularity
points of the integrable system, more challenging ques-
tions are to comprehensively analyze how this bifurcation
takes place, and to quantitatively predict the detailed
geometric structures inside these fractals. This has not
been done yet. Recently, Goodman and Haberman an-
alyzed the approximate ODE models for the collisions
of solitary waves in three physical systems where win-
dow sequences and fractal structures have been reported
[28, 29, 30]. They found that the origin of window se-
quences and fractal structures in these systems lies in the
crossing of the separatrix (homoclinic orbit). Analytical
predictions on the locations of window sequences in the
ODE models were derived as well. It is not clear at the
moment whether similar analysis can be performed for
our system (4.42). This question is beyond the scope of
the present article, and will be left for future studies.
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