
Unified Orbital Description of the Envelope Dynamics in
Two-Dimensional Simple Periodic Lattices

By M. J. Ablowitz and Y. Zhu

The propagation of wave envelopes in two-dimensional (2-D) simple periodic
lattices is studied. A discrete approximation, known as the tight-binding (TB)
approximation, is employed to find the equations governing a class of nonlinear
discrete envelopes in simple 2-D periodic lattices. Instead of using Wannier
function analysis, the orbital approximation of Bloch modes that has been
widely used in the physical literature, is employed. With this approximation
the Bloch envelope dynamics associated with both simple and degenerate
bands are readily studied. The governing equations are found to be discrete
nonlinear Schrödinger (NLS)-type equations or coupled NLS-type systems.
The coefficients of the linear part of the equations are related to the linear
dispersion relation. When the envelopes vary slowly, the continuous limit of
the general discrete NLS equations are effective NLS equations in moving
frames. These continuous NLS equations (from discrete to continuous) also
agree with those derived via a direct multiscale expansion. Rectangular and
triangular lattices are examples.

1. Introduction

In recent years, there has been enhanced interest in the study of wave propagation
in nonlinear periodic lattices. The interplay between nonlinearity and periodicity
has led researchers to discover new and interesting phenomena such as novel
localized modes, i.e., solitons. A field where both nonlinearity and periodicity
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arise naturally is nonlinear optics. Ever since the theoretical prediction of
discrete optical solitons [1] and its subsequent experimental realizations [2–4]
in both one-dimensional (1-D) and two-dimensional (2-D) periodic lattices
were reported, many localized structures have been predicted theoretically and
demonstrated experimentally. Examples include dipole solitons [5], vortex
solitons [6], soliton trains [7], etc. Another area of application is condensed
matter physics where ultracold atoms, i.e., Bose–Einstein condensates (BEC),
can be trapped in a periodic optical lattice. The experimental observation of
gap solitons was reported [8] and theories has been developed [9] in BEC.
With observations and theory in different fields, the study of the underlying
phenomena and their properties has attracted significant scientific interest.

Periodic lattices are common in physical systems. The geometric distribution
of local minima of the potentials, also called sites, can be used to classify the
potentials. These sites are the positions of the potential wells. In optics, they
have increased refractive index and the electromagnetic field is attracted to these
sites. The distribution of the sites determines the properties of the associated
Bloch waves. Generally speaking 1-D lattices are similar from a geometric
point of view. Discrete evolution equations on 1-D lattices were studied by
the so-called Wannier function approach in Refs. [10, 11]. However, there
are significant differences between different 2-D periodic lattices which, in
turn, can lead to significant dynamical effects. Roughly speaking, 2-D periodic
lattices can be divided into two groups: simple and nonsimple lattices. Simple
lattices only have one site in a unit cell while nonsimple lattices may have
more than one site per cell. Examples of typical simple lattices are rectangular
and triangular lattices. A typical nonsimple lattice is the honeycomb lattice,
which has two sites in a unit cell and breaks up into two triangular sublattices.
It leads to different results than those found in simple lattices. Due to the
underlying symmetries in the honeycomb lattice, it is found that the dispersion
relation of the associated Bloch theory may have isolated degenerate points
where two dispersion surfaces touch each other. These points are called Dirac
points and near these points the dispersion surface has conical structure.
The evolution of the Bloch mode envelopes in the neighborhood of these
points is governed by nonlinear Dirac systems [12, 13]. There are interesting
phenomena associated with the Dirac system. An example in optics is conical
diffraction—where a narrow beam transforms into bright expanding rings
[14–16]. Honeycomb lattices also admit various types of band gap solitons,
which like other 2-D periodic lattices is due to the effect of nonlinearity
(cf. [17]). Another important application which exhibits a honeycomb lattice
stucture is the material graphene [18]. In BECs, background honeycomb
lattices can also lead to interesting phenomena [19].

Generally, there are two main approaches to study the underlying envelope
equations. One is a discrete approach based upon the tight-binding (TB)
approximation, which is asymptotically valid when the potential intensity is
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very strong (cf. [11, 20, 21]). The other approach is a purely continuous
derivation, usually obtained by multiscale expansion methods, which assumes
that the envelope varies slowly compared to the lattice scale (cf. [22–24]).
However, the two approaches have not been closely connected. We find a
number of new connections between the discrete and continuous approaches,
which have not been known previously. Our results include the following:

1. We employ a discrete approach in the full Brillouin zone. We approximate
the Bloch functions in terms of orbital functions to find a general discrete
NLS equation—see Section 3. Use of this orbital ansatz is not the same as
the “Wannier function decomposition” previously used in the literature.
Usually, Wannier function analysis is used in simple band dynamics and in
1-D problems. Here we study 2-D problems and find the envelope dynamics
associated with simple and degenerate bands. With this orbital ansatz, we
find, as an example, the “hyperbolic” discrete NLS equation (one direction
is focusing while the other is defocusing). With the TB approach the
dispersion relation surfaces can be approximated analytically as well as
the orbitals. Hence all coefficients of associated discrete equation can be
calculated. Examples of square and triangular lattices are included; the
above analysis shows how the dispersion surface and all coefficients of the
nonlinear wave equation can be obtained.

2. The general connection between the discrete and continuous approaches
has not been previously discussed. In Section 4 we develop a unified
description of how the general discrete and continuous evolution equations
relate to each other. By introducing the limit where the envelope scale
is much larger than the lattice scale we find the continuous k-dependent
scalar and coupled NLS limit from the discrete equations.
To further clarify the discrete to continuous limit we show the results are the
same as those found directly by the continuous approach which is derived
in the Appendix. In this sense we show the two approaches are naturally
connected; they are not two distinct limits.

2. Preliminaries

Here we consider the 2-D lattice nonlinear Schrödinger (NLS) equation, written
in dimensionless form:

iψz + ∇2ψ − V (r)ψ + σ |ψ |2ψ = 0, (1)

where r = (x, y), V (r) is the periodic potential and σ is a constant which is
positive for focusing nonlinearity and negative for defocusing nonlinearity.
This model arises in light propagation in a periodic Kerr nonlinear medium
and in BEC trapped in a 2-D optical lattice.
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In this paper, the potential V (r) is a 2-D periodic bounded real-valued
function whose two primitive lattice vectors are v1 and v2; we denote the
set of lattice vectors by: P = {mv1 + nv2 : m, n ∈ Z}. We will also need
the primitive reciprocal-lattice vectors k1 and k2 and its corresponding set:
G = {mk1 + nk2 : m, n ∈ Z}. The unit cell of the physical lattice is the
parallelogram with v1 and v2 as its two sides and the unit cell of the reciprocal
lattice, usually called the Brillouin zone, is the parallelogram determined
by k1 and k2. The relation between the lattice and its reciprocal lattice is
vm · kn = 2πδmn .

For the problems we are interested in, the local minima of the potential,
which are called sites, are very important. Physically, local minima are the
positions of the potential wells. In optics they have increased refractive index
and the electric field is attracted to these sites. It is natural to use the distribution
of the sites to classify the lattices. In this paper, we consider simple periodic
lattices, which only have one local minimum in a unit cell. With a starting point
and the lattice vectors, all the positions of the sites can be constructed. These
sites form a discrete lattice in the r plane. We use Sv to denote the position of
the site with index v and note that Sv = S0 + v, where S0 is the starting point
of the site lattice. Associated with the periodic functions, due to translational
symmetry, one unit cell contains all needed information. For simplicity, we
place S0 = 0 and call the parallelogram determined by v1 and v2 whose center
is S0 as the primitive unit cell �. We also choose the parallelogram determined
by k1 and k2 whose center is k = 0 as the primitive reciprocal unit cell, the
Brillouin zone �′. It is noted that a nonsimple lattice has more than one site in
any unit cell. In this case we need more than one starting point to construct the
lattice. A detailed study of nonsimple lattices is outside the scope of this
paper.

2.1. Bloch theory for 2-D lattices

When the nonlinear coefficient σ is very small, or equivalently, the envelope
function ψ(r) is infinitesimal, Equation (1) reduces to a linear Schrödinger
equation with a periodic potential

iψz + ∇2ψ − V (r)ψ = 0. (2)

According to the Bloch theory, this linear Schrödinger equation can be
solved by considering its dynamics of eigenstates. Namely,ψ(r, z) = ϕ(r)e−iμz ,
where ϕ(r) satisfies the eigenvalue problem

μϕ + ∇2ϕ − V (r)ϕ = 0. (3)
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It is well known that the eigenfunction ϕ(r), called the Bloch mode, has the
k-dependent form

ϕ(r; k) = eik·rU (r; k), (4)

where k = (kx , ky) is the wave vector and u(r; k) has the same periodicity as
the potential V (r) for any k. For simplicity, we introduce the following two
operators:

H = −∇2 + V (r), Hk = −∇2 − 2ik · ∇ + |k|2 + V (r),

where H is the Schrödinger operator with a periodic potential and Hk is a
k-dependent operator whose eigenfunctions are square integrable periodic
functions in �; hence U (r; k) satisfies the following eigenvalue problem,

HkU (r; k) = μU (r; k); U (r + v j ) = U (r; k); j = 1, 2,

where μ = μ(k) is called the dispersion relation. The Bloch mode ϕ(r; k)
satisfies the eigenproblem

Hϕ(r; k) = μϕ(r; k); ϕ(r + v j ) = eik·v jϕ(r; k); j = 1, 2. (5)

One can check that ϕ(r; k) and ϕ(r; k + g) satisfy the same eigenvalue
problem with boundary condition (5) due to v · g = 2mπ , where v ∈ P and
g ∈ G. Thus for simplicity we can treat them as the same function. Thus for
any r, ϕ(r; k) is periodic with respect to k.

For each k, the operator Hk has infinitely many discrete eigenvalues
μ( j)(k), j = 0, 1, 2, . . . , tending to positive infinity. The dispersion relation
μ and the associated Bloch modes may have a superscript j to indicate
correspondence to different eigenvalues. In this paper, for simplicity, we often
omit the superscript j . As k varies, the discrete eigenvalue μ(k) and the
corresponding eigenfunctions U (r; k) as functions of k are assumed to be
regular over k. The spectrum of the Schrödinger operator H generally has
multiple band structures and there may exist band gaps between two dispersion
surfaces where bounded Bloch modes are not allowed.

Due to the periodicity of ϕ(r; k) over k, one can represent ϕ(r; k) as a
Fourier series

ϕ(r; k) =
∑

v

ϕ̂v(r)eik·v, (6)

where ϕ̂v(r) defined as

ϕ̂v(r) = 1

|�′|
∫
�′
ϕ(r; k)e−ik·vdk (7)

is the so-called Wannier function [25]; here and afterwards, the sum over v
means v takes all values in P, i.e., v = mv1 + nv2, for all m, n ∈ Z. Wannier
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functions contain all the information in the Bloch modes. If one has complete
information regarding the Wannier functions the exact Bloch mode can be
constructed through Equation (6) or vice versa. Unfortunately, in general it is
not possible to analytically compute either Bloch modes or Wannier functions.
However, under some limits such as TB limit, i.e., when the potential is large,
they can be constructed allowing many useful results to be obtained.

2.2. Dispersion relations in the TB limit

A goal of this paper is to understand and develop a unified approach to study
envelope dynamics in weakly nonlinear periodic media. To deal with these
problems, we need a good understanding of the associated linear problem. The
linear problem is governed by a linear Schrödinger equation with a periodic
potential; the dispersion relation of this problem plays a key role.

The TB approximation has been widely used in solid state physics to
calculate electronic band structure [26]. The TB limit corresponds to V0 � 1,
which leads to the Bloch wave function (4) being localized in the neighborhood
of the potential wells (sites). In turn, this leads us to be able to carry out
explicit calculations. The orbital method provides a natural framework for the
discrete approach.

The method begins by approximating the potential as follows:

V (r) ≈
∑

v

Vs(r − v), (8)

where Vs(r) denotes the potential at the site S0 and it only has a global
minimum at S0. We also introduce

�V (r) = V (r) − Vs(r),

where �V (r) is zero in �. The rigorous construction of the potential Vs(r)
associated with the orbital (see later) can be found in [27]. Because the
overall value of the potential is not important, we take the potential to satisfy
maxr{V (r)} = 0.

In the TB limit, Bloch modes associated with lowest few bands can be
approximated by orbitals which are defined as

Hsφ(r) ≡ (−∇2 + Vs(r)
)
φ(r) = Eφ(r), (9)

where E and φ(r) are the eigenvalue (called orbital energy) and corresponding
eigenfunction (orbital) of the operator Hs . Hs usually has finite number of
discrete eigenvalues because Vs(r) is bounded. In this paper, we concentrate
on the lowest several bands in the TB limit. For convenience, we require that
the orbitals are real and have norm 1, i.e.,

∫
φ2(r)dr = 1.
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Next, a discrete approach is used to compute the dispersion relation. The
Bloch modes are represented by

ϕ(r; k) ≈
∑

v

φ(r − v)eik·v. (10)

We note that orbitals and Wannier functions (7) are not equivalent. Wannier
functions provide an exact representation of the Bloch modes (see Equation (6)).
However, they are in general difficult to explicitly obtain, especially, in higher
dimensions or in nonsimple lattices. On the other hand, orbitals can be used to
approximate Bloch modes in a very straightforward way. This approximation
also provides clear and intuitive insight into lattice problems.

We assume the nullspace of the operator (Hs + E) is 1-D; later we
discuss the case when there is a multidimensional nullspace. Substituting the
decomposition of the Bloch mode (10) into the eigenvalue problem (3) leads to∑

v

(Hs + E)φ(r − v)eik·v = (E − μ+�V (r))
∑

v

φ(r − v)eik·v. (11)

Multiplying both sides by φ(r) and using∫
[(Hs − E)φ(r − v)]φ(r)dr = 0,

we obtain the dispersion relation

μ = E +
∑

vλveik·v∑
vκveik·v , (12)

where

λv =
∫
φ(r)�V (r)φ(r − v)dr and κv = κ−v =

∫
φ(r)φ(r − v)dr.

The dispersion relation in Equation (12) can be simplified in the TB limit.
Note that κ0 = 1, λv 	 1 and κv 	 1 when v 
= 0 because φ(r) is highly
localized. To leading order, the dispersion relation is: μ0 = E + λ0 which is
actually the mean value of μ. And because

∑
v
=0κveik·v 	 1, we have

μ ≈ μ0 +
∑

v

(λv − λ0κv)eik·v. (13)

We have actually found the Fourier coefficients of the dispersion relation
μ = μ(k) in terms of integrals of orbitals.

Note that both λv and κv decay rapidly as |v| → ∞. Thus we only need
to consider the nearest neighbor and onsite interactions in the dominant
contribution. Furthermore, we will only need the leading order terms of∑

vCveik·v in our calculations later.
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If only nearest neighbor interactions are considered, we get the dispersion
relation

μ = E + λ0 +
∑
<v>

[λv − λ0κv]eik·v. (14)

Here and afterwards <v> means the sum over v only takes nearest (nonzero)
neighbor shift vectors.

All nearest neighbor interaction coefficients are small and of the same order
of smallness, which we label as τ . Let Cv = (λv − λ0κv)/τ which is O(1).
Then we have the dispersion relation

μ(k) = μ0 + τω(k), (15)

where μ0 = E + λ0 is the mean value of the dispersion relation,
ω(k) = ∑

<v>Cveik·v is the effective dispersion relation and τ measures the
thickness of the dispersion relation band.

The coefficients Cv are given in terms of integrals that depend on orbitals. In
general these integrals cannot be computed in closed form. A simple estimate
can be obtained by using the quantum harmonic oscillator solutions [12, 28];
A rigorous approximation can be obtained via the WKB method [27].

As V0 → ∞, τ → 0 and consequently the dispersion surface becomes
flatter and flatter. On the contrary, the two nearest orbital energy difference
E ( j+1) − E ( j) ∼ O(

√
V 0), thus E ( j+1) − E ( j) → ∞. Consequently, there may

exist a gap between μ( j+1)(k) and μ( j)(k).
Note that the ground state (lowest eigenfunction) of the operator Hs is taken

to be simple in the above calculation; however, the eigenvalues associated
with the higher excited states can be degenerate; i.e., there can be multiple
eigenfunctions corresponding to one eigenvalue. The above is consistent with
the TB limit. Suppose there exist two independent eigenfunction φ1(r) and
φ2(r) corresponding to the eigenvalue E . We can always make φ1(r) and φ2(r)
be orthogonal to each other, i.e.,

∫
φ1(r)φ2(r) dr = 0. Each eigenfunction

φ j (r), j = 1, 2 has one associated Bloch mode ϕ j (r; k). In other words,

ϕ j (r; k) =
∑

v

φ j (r − v)eik·v. (16)

Then each Bloch mode ϕ j (r; k) corresponds to one dispersion relation
branch μ j (k), i.e., Hϕ j (r; k) = μ j (k)ϕ j (r; k). From the above analysis, we
can obtain the dispersion relation (12) for each μ j (k),

μ j (k) = E + λ j,0 + τω j (k), j = 1, 2, (17)

where ω j , λ j,0 are similarly defined as above and the subindex corresponds
to the orbital φ j (r). The orders of the nearest interactions for two different
orbitals are the same. Each dispersion relation branch μ j (k) as a function of k
is single-valued and we assume has certain regularity such as smoothness,
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which holds in the TB limit. The thickness of each branch which is measured
by τ is the same order. Because Cs,v is not the same for different branches,
i.e., usually μ1(k) 
= μ2(k). However, there may be some values at which
μ1(k) and μ2(k) are equal. Then the two branches intersect with each other
and hence can be thought of as belonging to the same dispersion relation
band. In such a case the band is degenerate and has two dispersion relation
branches that intersect with each other. If the multiplicity of the nullspace of
the operator Hs + E is greater than two, then there will be more branches.

3. Discrete envelope dynamics

In the linear limit, the dynamics of Bloch modes are determined by the
dispersion relation. Similar to Fourier modes, the Bloch modes form a complete
set in L2(R2)[29], thus a function in L2(R2) can be decomposed of Bloch mode
components. Due to the superposition principle of linear problems, different
Bloch modes have different dynamics and they do not interfere with each
other; thus each Bloch mode component obeys its own dynamics. However,
when nonlinearity is present, the dynamics is more complex. In this section,
we will derive the governing equation of the envelope dynamics with weak
nonlinearity by employing a discrete approach.

We first study the case when μ(k) has a single dispersion relation branch
and assume to leading order

ψ ∼
(∑

v

av(Z )φ(r − v)eik·v
)

e−iμ z. (18)

Here av represents the Bloch wave envelope at the site Sv and varies slowly
under evolution; here Z = εz; the small parameter ε will be determined later.

Substituting the envelope representation (18) into the lattice NLS Equation (1),
one obtains

(−∇2 + Vs(r − p) − E
) (∑

v

av(Z )φ(r − v)eik·v
)

=
∑

v

(
εi

dav

d Z
+ av (μ− E −�V (r − p))

)
φ(r − v)eik·v

+ σ

(∑
v

avφ(r − v)eik·v
)2 (∑

v

avφ(r − v)eik·v
)∗
,

(19)

where p ∈ P. Multiplying both sides by φ(r − p) yields

iε
dap

d Z
+
∑

v

ap+v((μ− E)κv − λv)eik·v + σ
∑

p1p2p3

γp1p2p3ap1ap2a
∗
p3

= 0, (20)
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where we use the definitions in the previous section, consider only leading
order terms and define

γp1p2p3 =
∫
φ(r − p1)φ(r − p2)φ(r − p3)φ(r − p) dreik·(p1+p2−p3−p). (21)

When only onsite and nearest neighbor interactions are taken into account,
then the governing equation is

iε
dap

d Z
+ τω(k)ap − τ

∑
<v>

ap+vCveik·v + σg|ap|2ap = 0, (22)

where g = γppp is the only onsite interaction term taken for the nonlinear
term. Here we assume that ε, σ , and τ all have the same order to ensure
maximal balance.

Finally, we obtain the following discrete NLS-type equation

i
dap

d Z
+ ω(k)ap −

∑
<v>

ap+vCveik·v + s(σ )g|ap|2ap = 0, (23)

where we have taken ε = τ = |σ | for convenience, s(σ ) is the sign of σ .
Equation (23) is the unified discrete system, which describes the dynamics
of a single envelope in any simple nonlinear periodic lattice. Note that the
coefficients of the linear terms of the dynamic equation are directly related to
the coefficients of the linear dispersion relation in the TB limit. Later we show
that this system reduces to the NLS equation in the continuous limit.

Next we consider the case when μ(k) at some k is degenerate; e.g., the case
when it has two dispersion relation branches and they intersect with each other
at the k values we are studying. To leading order, we assume the field is a
combination of two envelopes corresponding to the two linearly independent
Bloch modes

ψ ∼
(∑

v

(avφ1(r − v) + bvφ2(r − v))eik·v
)

e−iμ z, (24)

where φ1(r) and φ2(r) are the two linearly independent eigenfunctions of the
operator Hs and correspond to the the same eigenvalue E . The eigenfunctions
can be made orthogonal, i.e.,

∫
φ1(r)φ2(r) dr = 0.
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Substituting Equation (24) into Equation (1) yields

(−∇2+Vs(r − p) − E)
∑

v

(avφ1(r − v) + bvφ2(r − v))eik·v

=
∑

v

(
εi

dav

d Z
+ av (μ− E −�V (r − p))

)
φ1(r − v)eik·v

+
∑

v

(
εi

dbv

d Z
+ bv (μ− E −�V (r − p))

)
φ2(r − v)eik·v

+ σ

(∑
v

(avφ1(r − v) + bvφ2(r − v))eik·v
)2

×
(∑

v

(avφ1(r − v) + bvφ2(r − v))eik·v
)∗
.

Due to the degeneracy, multiplying both sides by φ1(r − p) and φ2(r − p),
respectively, yield the governing system

iε
dap

d Z
+ τω1(k)ap − τ

∑
<v>

ap+vC1,veik·v + σ�1 = 0, (25a)

iε
dbp

d Z
+ τω2(k)bp − τ

∑
<v>

bp+vC2,veik·v + σ�2 = 0, (25b)

where the nonlinear terms are

�1 = g1|ap|2ap + g3
(
b2

pa∗
p + 2|bp|2ap

)+ g4
(
a2

pb∗
p + 2|ap|2bp

)+ g5|bp|2bp,

�2 = g2|bp|2bp + g3
(
a2

pb∗
p + 2|ap|2bp

)+ g5
(
b2

pa∗
p + 2|bp|2ap

)+ g4|ap|2ap.

Here g1 = ∫
φ4

1dr, g2 = ∫
φ4

2dr, g3 = ∫
φ2

1φ
2
2dr, g4 = ∫

φ3
1φ2dr, and g5 =∫

φ1φ
3
2dr.

Letting ε = τ = |σ |, we have

i
dap

d Z
+ ω1(k)ap −

∑
<v>

ap+vC1,veik·v + s(σ )�1 = 0,

i
dbp

d Z
+ ω2(k)bp −

∑
<v>

bp+vC2,veik·v + s(σ )�2 = 0.

It is noted that the linear parts of the two components are decoupled and the
coefficients of the linear parts of Equations (25) are directly related to the Fourier
coefficients of the two underlying dispersion relations. The two components
are coupled only with nonlinear terms. Usually g1 = g2, and g4 = g5 = 0 if φ1

and φ2 are odd over x or y which is the case of the second band.
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The system (25) is a unified description of a coupled discrete NLS-type
system that results when two dispersion branches intersecting at point k in a
simple lattice. This description can be extended to higher order degeneracies.

4. Continuous limit of discrete systems

We consider a further limit, we assume that the envelope av varies slowly over
v with a scale R = νr, ν 	 1. Thus, the envelope has the form

ψ ∼
∑

v

av(Z )φ(r − v)eik·ve−iμ z ≈
∑

v

a(R, Z )φ(r − v)eik·ve−iμz, (26)

In this new spacial coordinate system, av ≈ ∫
a(R)φ2(r − v)dr ≈ a(νSv),

where av is defined at site points. We are going to find the evolution equations
of a(R, Z ) from the discrete equations.

Before proceeding, we assume each branch of the dispersion relation is
sufficiently smooth at the k value we are studying. We also introduce the
notations: ∂m = ∂

∂rm
and ∇ = (∂1, ∂2); ∂̃m = ∂

∂Rm
and ∇̃ = (∂̃1, ∂̃2); ∂̄m = ∂

∂km

and ∇̄ = (∂̄1, ∂̄2); ∂̄m,n = ∂̄m ∂̄n and ∂̃m,n = ∂̃n ∂̃m .
Using Taylor expansion, we get

ap+v ≈ ap + νv · ∇̃a + ν2

2
vH̃vT a,

where H̃ =
(
∂̃11 ∂̃12

∂̃21 ∂̃22

)
is the Hessian matrix operator.

Then∑
<v>

ap+vCveik·v ≈ ap

∑
<v>

Cveik·v + ν∇̃a ·
∑
<v>

vCveik·v + ν2

2

∑
<v>

Cveik·vvH̃vT a

= apω(k) − iν∇̄ω · ∇̃a − ν2

2

2∑
m,n=1

∂̄m,nω∂̃m,na.

(27)

Substituting Equation (27) into Equation (22) yields

iε
∂a

∂Z
+ iντ ∇̄ω · ∇̃a + ν2τ

2

2∑
m,n=1

∂̄m,nω∂̃m,na + σg|a|2a = 0. (28)

Note that we use Equation (22) instead of Equation (23) to derive the continuous
equation because the maximal balance is modified due to the new scale ν.

The above equation governs the nonlinear dynamics in simple periodic
media of a single Bloch mode envelope in the continuous limit from the
discrete system. It is valid for any value of k. In analogy to homogeneous
media, ∇̄ω plays the role of the group velocity; it is the velocity of the
envelope. In special cases, ∇̄ω = 0. This condition gives the extreme points of
the dispersion surface. At these points, the group velocity is zero, and the
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envelope will remain at the center of the cross-section. The envelope has a
spatial shift in the cross-section when propagating along z direction if ∇̄ω 
= 0.
However, introducing a moving frame variable and R̄ = R − ∇̄ωZ (we drop
the bar on R) and rescaling yield the equation

i
∂a

∂Z
+ 1

2

2∑
m,n=1

∂̄m,nω∂̃m,na + s(σ )g|a|2a = 0, (29)

where we have taken the maximal balance condition ε = ν2τ = |σ |. The above
Equation (29) is a 2-D NLS equation. At different values of k, the dispersive
terms may be elliptic, hyperbolic, or even parabolic.

However, when the eigenspace corresponding to μ(k) is multidimensional,
the envelope may belong to different Bloch modes and they may interact with
each other. The envelope is assumed to have the form

ψ ∼
∑

v

(av(Z )φ1(r − v) + bv(Z )φ2(r − v))eik·ve−iμ z

≈
∑

v

(a(R, Z )φ1(r − v) + b(R, Z )φ2(r − v))eik·ve−iμ z.

Similar to the one single Bloch mode envelope case, the system (25) becomes

iε
da

d Z
+ iντ ∇̄ω1 · ∇̃a + ν2τ

2

2∑
m,n=1

∂̄m,nμ1∂̃m,na + σ�1 = 0, (30a)

iε
db

d Z
+ iντ ∇̄ω2 · ∇̃b + ν2τ

2

2∑
m,n=1

∂̄m,nμ2∂̃m,nb + σ�2 = 0. (30b)

Here � j is the continuous version of � j , j = 1, 2,

�1 = g1|a|2a + g3(b2a∗ + 2|b|2a) + g4(a2b∗ + 2|a|2b) + g5|b|2b, (31a)

�2 = g2|b|2b + g3(a2b∗ + 2|a|2b) + g5(b2a∗ + 2|b|2a) + g4|a|2a. (31b)

The system (30) is the continuous system governing the propagation of
two Bloch mode envelopes corresponding to the same μ. It is noted that if
|∇̄ω j | = 0, i.e., both μ1 and μ2 reach the same extreme value at the same
value of k, the above system becomes (after rescaling),

i
∂a

∂Z
+ 1

2

2∑
m,n=1

∂̄m,nω1∂̃m,na + s(σ )�1 = 0, (32a)

i
∂b

∂Z
+ 1

2

2∑
m,n=1

∂̄m,nω2∂̃m,nb + s(σ )�2 = 0, (32b)

where we have taken ε = τν2 = |σ |.
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As was the case for the discrete couple NLS-type system, the above system
(32) is a system of coupled NLS equations with unusual nonlinear couplings
(even if g1 = g2 and g4 = g5 = 0). If k is in the vicinity of those points with
|∇̄ω2 − ∇̄ω1| ∼ O(ν) and μ(k) remains degenerate, a detuning phenomenon
occurs.

After rescaling and absorbing the transport term of the a component, we get

i
∂a

∂Z
+ 1

2

2∑
m,n=1

∂̄m,nω1∂̃m,na + s(σ )�1 = 0, (33a)

i
∂b

∂Z
+ ig · ∇̃b + 1

2

2∑
m,n=1

∂̄m,nω2∂̃m,nb + s(σ )�2 = 0, (33b)

where g = 1
ν

(∇̄ω2 − ∇̄ω1
)
.

In the previous sections, we derived the governing equations of the Bloch
envelope dynamics for general simple lattices. First from the TB approximation
we obtained discrete evolution equations for all values of k in the Brillouin
zone. From these discrete equations the corresponding continuous equations
are derived naturally in the continuous limit. These continuous equations can
also be derived directly by multiscale expansion methods (see the Appendix).

As mentioned earlier, the discrete approach is from the TB limit, i.e.,
V0 � 1. This limit ensures the dispersion relation thickness τ is small. We have
two other small scales: the slow time evolution scale ε and the nonlinear scale
σ . The maximal balance in these discrete systems is ε ∼ O(τ ) ∼ O(σ ). In
discrete systems, the spatial scale is the order of the lattice constant which is
assumed to be O(1). Thus the discrete system describes the spatial dynamics
on the lattice scale. To study phenomena on a large spatial scale, the envelopes
are assumed to vary slowly on a scale O(ν) in space. Then the discrete
systems can be transformed to continuous systems. In the continuous system,
the maximal balance then becomes ε ∼ O(τν2) ∼ O(σ ). In this case, effective
NLS-type equations are derived in a moving frame.

5. Typical simple lattices

In the above-mentioned sections we have derived the dispersion relation for
arbitrary simple lattices and the corresponding dynamics of Bloch mode
envelopes. In this section, we will study two typical simple lattices which are
special cases of the above general analysis.
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Figure 1. (a) The site distributions of the square lattice (34). The shadow region can be
considered as a primitive unit cell. (b) The Brillouin zone of the square lattice is also a square
denoted here by dashed lines. The first dispersion relation band (c) from direction simulation
and (d) from the analytical formula (35).

5.1. Square lattices

Square 2-D periodic structures are common in nature and can be readily
engineered in optics (cf. [4]). A typical square lattice is

V (x, y) = V0

2

(
sin2(k0x) + sin2(k0 y) − 2

)
, (34)

where V0 > 0 is the lattice intensity; here k0 corresponds to the scaled wave
length of the interfering plane waves.

Its characteristic vectors are

v1 = l (1, 0) , v2 = l (0, 1) ,

k1 = 2π

l
(1, 0) , k2 = 2π

l
(0, 1) ,

where l = π
k0

is the length of the periods (i.e., the lattice constant). In this
paper we let l = 1 for simplicity.

The site distribution is displayed in Figure 1(a). For this potential, one site
has four nearest neighbors. The nearest neighbor shift vectors are v1, −v1, v2,
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−v2. They all have the same length. Note that Sv1+v2 is not one of the nearest
neighbors of S0.

For the first band, we know that Cv1 = Cv2 . Thus the dispersion relation of
the first band is

μ(k) = E + λ0 + 2τ (cos(kx ) + cos(ky)). (35)

The Brillouin zone is also a square; it is displayed in Figure 1(b) as well as
special points. The dispersion relation obtained by direct numerical simulation
(V0 = 100) of the eigenproblem (5) is displayed in Figure 1(c) and it agrees
very well with the dispersion relation obtained by the formula (35) both
qualitatively and quantitatively.

From the analytical formula (35), we can readily get that

H̄μ = 2τ

(
cos(kx ) 0

0 cos(ky)

)
,

where H̄ =
(
∂̄11 ∂̄12

∂̄21 ∂̄22

)
is the Hessian matrix operator with respect to k.

The Hessian matrices at the� point (k = (0, 0)) and the M point (k = π
l (1, 1))

are, respectively,

� : 2τ

(
1 0

0 1

)

and

M: 2τ

(
−1 0

0 −1

)
.

The determinants of the matrices are both positive. Thus we obtain elliptic
NLS equations; one is focusing and the other is defocusing. � point is the
band edge, which corresponds to the semi-infinite gap and M point is the band
edge which corresponds to the first band gap. These elliptic NLS equations
can describe the band-gap soliton modes [22, 23].

We also note that the corresponding discrete dynamic equations are also
“elliptic” discrete NLS equations. For example, at the � point the discrete
NLS equation is

i
dam,n

d Z
+ (am+1,n + am,n+1 + am−1,n + am,n−1 − 4am,n)

+ s(σ )g|am,n|2am,n = 0.

The existence of the discrete solitons and their properties have been well
studied (cf. [30]).



Envelope Dynamics in 2-D Simple Periodic Lattices 57

However, the Hessian matrices at the X1 point (k = (π, 0)) and the X2 point
(k = (0, π )) are, respectively,

X1 : 2τ

(−1 0

0 1

)

and

X2 : 2τ

(
1 0

0 −1

)
.

The determinants of the matrices are both negative. X1 and X2 points are
saddle points of the dispersion surface. They are not at the band edges. The
envelope dynamics at these points are governed by hyperbolic NLS equations.
Correspondingly, the discrete dynamic equations are also “hyperbolic.” For
example, at the X1 point the governing equation is

i
dam,n

d Z
+ (−am+1,n − am−1,n + am,n+1 + am,n−1) + s(σ )g|am,n|2am,n = 0.

Unlike the “elliptic” discrete NLS equations, this equation has not been well
investigated. It is noted that defining (−1)mam,n can convert “elliptic” to
“hyperbolic” discrete NLS equations. It means that the above equation admits
“staggered” soliton solutions.

The second band of the dispersion relation for a square lattice is more
complicated. It is noted that μ(k) has two dispersion surfaces μ1(k) and μ2(k)
because the corresponding orbital energy is degenerate. From symmetries, we
obtain that

λ1,0 = λ2,0, g = g1 = g2 = 3g3,

and

C1,v1 = C2,v2 > 0; C2,v1 = C1,v2 < 0.

Then the two dispersion relation branches are

μ1(k) = E + λ1,0 + 2τ (cos(kx ) − h cos(ky)), (36a)

μ2(k) = E + λ1,0 + 2τ (−h cos(kx ) + cos(ky)), (36b)

where h = |C1,v1 |
|C1,v2 | > 0.

The dispersion relation obtained from the direct numerical simulation is
displayed in Figure 2(a) and it agrees very well with the dispersion relation
obtained by the formulas (36) given in Figure 2(b). The two different branches
obtained analytically are also displayed in Figures 2(c) and (d). It is seen
that μ1(k) 
= μ2(k) except kx = ±ky . Later we study special points where
NLS-type equation results. However the theory is valid along the curves of
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Figure 2. The second dispersion relation band obtained (a) from direct simulation and (b)
from the analytical formulas (35). The second band is degenerate which has two branches. (c)
The branch μ1(k); (d) the branch μ2(k).

intersection (here kx = ±ky). However, in general, along these curves, one
only has transport-type equations to leading order; there is not a maximal
balance leading to NLS-type equations.

From the dispersion relations (36), we get

H̄μ1 = −2τ

(
cos(kx ) 0

0 −h cos(ky)

)
;

H̄μ2 = −2τ

(−h cos(kx ) 0

0 cos(ky)

)
.

The Hessian matrices associated with the first and second branches at the
special points are

� : H̄μ1 = −2τ

(−1 0

0 h

)
, H̄μ2 = −2τ

(
h 0

0 −1

)
,

M: H̄μ1 = −2τ

(−1 0

0 h

)
, H̄μ2 = −2τ

(
h 0

0 −1

)
,
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X1 : H̄μ1 = −2τ

(−1 0

0 −h

)
, H̄μ2 = 2τ

(
h 0

0 1

)
,

X2 : H̄μ1 = −2τ

(−1 0

0 −h

)
, H̄μ2 = 2τ

(
h 0

0 1

)
.

From the Figure 2 or the above Hessian matrices, we can see that X1 (X2) is
the maximum point of the second (first) branch and the minimum point of
the first (second) branch. And there is no degeneracy at X1 and X2 points.
The dynamic equations of the corresponding Bloch mode envelope at these
points are just the scalar NLS equations. However, μ1 equals to μ2 at the �
and M points, thus they are degenerate points. The corresponding eigenspaces
are 2-D. It is also noted that � and M points are both saddle points at the
two branches. Thus coupled hyperbolic NLS equations are used to govern the
Bloch mode envelopes. For example, at the � point, the governing system in
the continuous limit is

i
∂a

∂Z
+ (∂X X − h∂Y Y )a + s(σ )g

(
|a|2a + 1

3
(b2a∗ + 2|b|2a)

)
= 0, (37a)

i
∂b

∂Z
+ (−h∂X X + ∂Y Y )b + s(σ )g

(
|b|2b + 1

3
(a2b∗ + 2|a|2b)

)
= 0. (37b)

This is a coupled hyperbolic NLS system (recall h > 0).

5.2. Triangular lattices

An equilateral triangular lattice is also a common simple lattice in nature
and has recently attracted interests in nonlinear optics [31]. In this paper we
consider the triangular lattice in Figure 3. The unit cell (see the shadow region
in Figure 3a) is composed of two equilateral triangles pointing left and right.
Its reciprocal lattice is shown in Figure 3(b). The reciprocal unit cell is also
composed of two equilateral triangles, now pointing up and down. In both the
physical and reciprocal lattices, the unit cells which are parallelograms can
be grouped to form hexagonal tiles. For example in Figure 3(b), the shadow
region is the reciprocal unit cell. It is equivalent to the hexagon surrounded by
dotted lines. The equivalence means the two tiles give the same information of
the lattice due to the periodicity. Thus equilateral triangular lattices are also
called hexagonal lattices.

A typical triangular lattice which has the structures in Figure 3 is

V (r) = −V0

9
|eik0b1·r + eik0b2·r + eik0b3·r|2, (38)
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Figure 3. (a) The triangular lattice (38). The shadow region is the primitive unit cell. (b)
The extended Brillouin zone of the triangular lattice. The shadow region is the Brillouin zone.

where bn = (sin( 2nπ
3 ), cos( 2nπ

3 )), n = 1, 2, 3. The characteristic vectors are

v1 = l

(√
3

2
,

1

2

)
, v2 = l

(√
3

2
,−1

2

)
,

k1 = 4π√
3 l

(
1

2
,

√
3

2

)
, k2 = 4π√

3 l

(
1

2
,−

√
3

2

)
,

where l = 4π
3k0

is the lattice constant. We let l = 1 in this paper for simplicity.
In the previous sections, we have shown that the envelope dynamics is

closely related the dispersion relation, which motivates the study of the linear
dispersion relation. Here we consider the first band of the dispersion relation.
From Figure 3, we can see that one site has six nearest neighbors. For instance,
the six nearest neighbor sites of site S0 are Sv1, Sv2, S−v1, S−v2, Sv1−v2 , and
Sv2−v1 . Thus the shift vectors from a site to its nearest neighbors are v1, v2,
−v1, −v2, v1 − v2, v2 − v1.

In this section, we only consider the dispersion relation and the corresponding
dynamics of the first band. The dispersion relation is

μ(k) = E + λ0 − 2τ (cos(k · v1) + cos(k · v2) + cos(k · (v1 − v2))). (39)

The dispersion relation of the first band is displayed in Figure 4. Figure 4(a)
is from the direct numerical simulation of Equation (3) and Figure 4(b) is from
the analytical formula (39). For convenience, the dispersion relation is showed
in an extended Brillouin zone which is the rectangular region surrounded by
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Figure 4. The first band of the dispersion relation: (a) from direct simulation; (b) from the
analytical formula (39).

dashed lines in Figure 3. Our analysis is in good agreement with the direct
numerical simulation.

From the dispersion (39) we can easily get that

H̄μ =
τ

2

(
3(cos(k · v1) + cos(k · v2))

√
3(cos(k · v1) − cos(k · v2))√

3(cos(k · v1)− cos(k · v2)) cos(k · v1)+ cos(k · v2)+4 cos(k · (v1−v2))

)
,

where H̄ = (∂̄11 ∂̄12

∂̄21 ∂̄22
) is the Hessian matrix operator with respect to k.

At the � point (k = (0, 0)), the Hessian matrix is

H̄μ = 2τ

(
3
2 0
0 3

2

)
.

Thus � point is the minimum point and the envelope dynamics can be described
by a focusing NLS equation if σ > 0.

At the K (k = 4π
3 (0, 1)) point and K′ point (k = 4π

3 (0,−1)), the Hessian
matrices are the same,

H̄μ = 2τ

(− 3
4 0
0 − 3

4

)
.

Thus they are maximum points and the envelope dynamics can be described
by the same defocusing NLS equation if σ > 0.
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At the M point (k = 4π√
3
(1, 0)), the Hessian matrix is

H̄μ = 2τ

(− 3
2 0
0 1

2

)
.

Thus M point is a saddle point and the envelope dynamics is governed by a
hyperbolic NLS equation.

At the X1 point (k = 2π√
3

(
1
2 ,

√
3

2

)
), the Hessian matrix is

H̄μ = 2τ

(
0

√
3

2√
3

2 −1

)
.

At the X2 point(k = 2π√
3
( 1

2 ,−
√

3
2 )), the Hessian matrix is

H̄μ = 2τ

(
0 −

√
3

2

−
√

3
2 −1

)
.

It is seen that both X1 and X2 are saddle points but with different eigendirections.
The envelope equations are also hyperbolic NLS equations.

We do not consider the higher band case for triangular lattices; the basic
situation is explained in the square lattice example. An interested reader can
find higher band results by applying the analysis presented in this paper.

6. Conclusion

In this paper, discrete Bloch mode envelopes and their continuous limits in
general simple periodic media are studied. It is found that the dispersion
relation of the underlying Bloch system plays a key role. Namely, all nonlinear
evolution equation for the envelope are found to be deeply connected to the
dispersion relation in both discrete and continuous limits. This is similar to
nonlinear wave problems in constant bulk media. In the TB limit elementary and
convenient analytical descriptions of the dispersion relation can be obtained.

After investigating the dispersion relation, the structure of the nonlinear
envelope equation is found. First, the discrete wave system for a single Bloch
mode envelope using the TB approximation is developed. Because the system
is obtained in general simple periodic media the equation depends on the
location of the Brillouin zone. Hence this is not the discrete NLS equation in
standard form. This discrete nonlinear wave equation takes into account the
dispersion relation and geometric structure of the potential. The coefficients
of the linear part of the nonlinear discrete wave equation depends on the
Fourier coefficients of the dispersion relation. Only under certain conditions or
lattice arrangements, for example, a square lattice, does the wave equation
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reduce to the standard 2-D discrete NLS equation. When the envelope is
a combination of two discrete Bloch mode envelopes which correspond to
two linearly independent Bloch modes, a coupled discrete wave system with
unusual nonlinear couplings is obtained.

Then, in a further limit from the discrete system the envelopes are taken
to vary slowly with respect to the lattice scale. In this continuous limit the
discrete systems turn out to be effective NLS equations and the coefficients of
the dispersive linear term is the second derivative of the dispersion relation.
This is similar to what occurs in standard constant media. These effective NLS
equations agree with those derived by a direct multiscale expansion method.
Thus, we are able to make the connection between the two approaches.

In addition, general formulas are derived for the dispersion relation in
the TB limit, which are valid for any simple periodic lattice. Due to the
periodicity/symmetry of the potential, the dispersion relation can multiple band
structures. For the lowest bands the parameters are estimated. Details for two
simple lattices are given as examples. Direct numerics and analytical results
show close agreement.

In this paper, only simple lattices were considered. If the lattice is not simple,
the approach needs to be modified appropriately. Results for a honeycomb
lattice (a typical nonsimple lattice) can be found in Ref. [12].
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Appendix

In this appendix we derive the dynamics of Bloch mode envelopes with a
multi-scale expansion method. We assume the input envelopes are much wider
than the lattice scale. Under evolutions, envelopes vary slowly both in time
and in space. We also assume the nonlinearity is weak. Thus there are many
scales involving in the evolutions. Maximal balance conditions will be used to
derive the governing equations.

We study the easier case where the eigenspace corresponding to μ is 1-D
while the multidimensional eigenspace case can be extended. We also assume
μ(k) is sufficiently smooth at the k value we are studying. We assume the
solution of Equation (1) can be expanded in a multiscale perturbation series

ψ = (
A(R, Z )U (r; k) + νψ1 + ν2ψ2 + · · · ) eik·r−iμz, (A.1)



64 M. J. Ablowitz and Y. Zhu

where Z = εz and R = νr. The orders of ε and ν will be determined later via
maximal balance; u(r; k) is taken to have the unit norm, i.e.,

∫
�

UU ∗dr = 1.
Substituting Equation (A.1) into the Equation (1) yields that the leading

order is satisfied automatically. At order O(ν), the equation for ψ1 is

(Hk − μ)ψ1 = i
∂A

∂Z
U + 2∇̃ A · (ik + ∇)U, (A.2)

where we recall that ∇̃ A corresponds to derivatives with respect to R. (Hk + μ)
has a 1-D nullspace, which contains U . Thus the Fredholm condition yields∫

�

(
i
∂A

∂Z
U + 2∇̃ A · (ik + ∇)U

)
U ∗dr = 0. (A.3)

Here we have assumed ε = ν and the nonlinearity is of higher order σ ∼ O(ν2).
Note that because

(Hk − μ)U = 0,

taking derivative over km yields

(Hk − μ)∂̄mU = 2i(ikm + ∂m)U + ∂̄mμU ≡ 2iLmU, (A.4)

where the operator Lm = ikm + ∂m − i
2 ∂̄mμ. The Fredholm condition on

equation (A.4)

2i

∫
�

(LmU )U ∗dr = 0

gives ∫
�

(ikmU + ∂mU )U ∗dr = i

2
∂̄mμ. (A.5)

Substituting Equation (A.5) to Equation (A.3) yields

∂A

∂Z
+ ∇̄μ · ∇̃ A = 0. (A.6)

This is the leading order equation for the envelope which is a transport
equation. Note ∇̄μ plays the role of the group velocity. Because we assumed
the nonlinear term is of the next higher order, we have to expand to the next
order. An easy way to obtain the correction to Equation (A.6) is to insert a
correction into the above equation, i.e.,

∂A

∂Z
+ ∇̄μ · ∇̃ A = νh1 + · · · . (A.7)

This treatment can avoid introducing a new scale.
At the order O(ν2), the equation is

(Hk − μ)ψ2 = ∇̃2 AU + 2∇̃ · (ik + ∇)ψ1 + s(σ )|A|2 A|U |2U + ih1U.
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Here we have taken |σ | = ν2 to ensure the maximal balance. Using the
Fredholm condition we get∫

�

(∇̃2 AU + 2∇̃ · (ik + ∇)ψ1 + s(σ )|A|2 A|U |2U + ih1U
)

U ∗dr = 0. (A.8)

To compute the above integral, we take the derivative over kn in Equation (A.4)
and get

(Hk − μ)∂̄m,nU = 2iLn ∂̄mU + 2iLm ∂̄nU + 2δmnU + ∂̄m,nμU.

The Fredholm condition ensures that

2i

∫
�

(Ln ∂̄mU + Lm ∂̄nU )U ∗dr = 2δmn − ∂̄m,nμ. (A.9)

Note that ∂̄mU satisfies Equation (A.4). Thus ∂̄mU = −2i(Hk + μ)−1LmU +
MU, where M is a function independent of r. Here the operator (Hk + μ)−1

exists because LmU is orthogonal to the nullspace of Hk + μ. MU is the
homogeneous solution and does not make any contribution to the integrals in
Equation (A.9). We can make it zero for simplicity. It is also noted that both
Lm and (Hk + μ)−1 are Hermitian operators, then we get∫

�

(Ln ∂̄mU )U ∗dr = −2i

∫
�

(Ln(Hk + μ)−1LmU )U ∗dr

= −2i

∫
�

(Lm(Hk + μ)−1LnU )U ∗dr =
∫
�

(Lm ∂̄nU )U ∗dr.

Thus we have

2i

∫
�

(Ln ∂̄mU
)

U ∗dr = δmn − 1

2
∂̄m,nμ. (A.10)

Substituting Equation (A.6) into Equation (A.2) yields

(Hk − μ)ψ1 = 2∇̃ A ·
(

ik + ∇ − i

2
∇̄μ

)
U. (A.11)

Comparing Equations (A.11) and (A.4), we find that ψ1 and −i∇̃ A · ∇̄U
satisfies the same equation, thus

ψ1 = −i∇̃ A · ∇̄U + dU. (A.12)

Here dU is the homogeneous solution and it can be seen that it does not enter
the final result, thus we take it to be zero for simplicity.



66 M. J. Ablowitz and Y. Zhu

From (A.10) and (A.12), we get∫
�

(
2∇̃ · (ik + ∇ − i

2
∇̄μ)ψ1

)
U ∗dr

=
∫
�

(
2∇̃ · (ik + ∇ − i

2
∇̄μ)(−i∇̃ A · ∇̄U )

)
U ∗dr

= −2i
∑
m,n

∂̃m,n A

∫
�

(Lm ∂̄nU )U ∗dr

= −
∑
m,n

∂̃m,n A

(
δmn − 1

2
∂̄m,nμ

)
.

(A.13)

Substituting Equation (A.13) into Equation (A.8), we obtain the equation for
the second-order O(ν2) :

ih1 + 1

2

∑
m,n

∂̄m,nμ∂̃m,n A + s(σ )γ |A|2 A = 0,

where γ = ∫
�

|U |4dr.
Then we have the final equation with the first two orders is

i
∂A

∂Z
+ i∇̄μ · ∇̃ A + ν

(
1

2

∑
m,n

∂̄m,nμ∂̃m,n A + s(σ )γ |A|2 A

)
= 0.

To observe the higher order phenomenon, one need longer time to see it. By
introducing a moving coordinate system and rescale the space coordinate R
which is similar to the previous section, the final equation is

i
∂A

∂Z
+ 1

2

∑
m,n

∂̄m,nμ∂̃m,n A + s(σ )γ |A|2 A = 0.

This is an NLS equation for the envelope dynamics. We note that this equation
has the same form as the general NLS equation that is derived in homogenous
media with dispersion relation μ = μ(k) [32]. It is noted that a similar
derivation can be found in Ref. [33].

Next we will discuss the case that the eigenspace corresponding to μ is 2-D.
Suppose μ(k) at some values of k is degenerate. We assume the degeneracy is
due to the intersection of two different dispersion surfaces μ j (k), j = 1, 2,
and we also assume each dispersion surface μ j (k) is sufficiently smooth. Then
the envelope has the form

ψ(r, Z ) = (
A(R)U1(r; k) + B(R)U2(r; k) + νψ1 + ν2ψ2 + · · · ) eik·r−iμz.
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Here U j (r; k) belongs to the dispersion branch μ j (k), j = 1, 2 and we require
that the two eigenmodes are orthogonal which means∫

�

U1U ∗
2 dr = 0. (A.14)

At order O(ν), the equation for ψ1 is

(Hk + μ)ψ1 = −i
∂A

∂Z
U1 − 2∇̃ A · (ik + ∇)U1 − i

∂B

∂Z
U2 − 2∇̃ B · (ik + ∇)U2.

(A.15)

Because μ = μ1 = μ2 at the k value we are studying, we have two Fredholm
conditions; i.e., calling the RHS of the above equation F then the conditions
are

∫
�

FU ∗
j dr = 0, j = 1, 2. Due to the orthogonality of U1 and U2, we obtain

two equations for A and B which are decoupled

∂A

∂Z
+ ∇̄μ1 · ∇̃ A = 0; (A.16a)

∂B

∂Z
+ ∇̄μ2 · ∇̃ B = 0. (A.16b)

At order O(ν2), the equation for ψ2 is

(Hk + μ)ψ2

= −∇̃2 Au1 − ∇̃2 Bu2 − 2∇̃ · (ik + ∇)ψ1 − s(σ )�− ih1U1 − ih2U2,

(A.17)

where � is the nonlinear term which is of the form

� = |A|2 A|U1|2U1 + B2 A∗U 2
2 U ∗

1 + 2|B|2 A|U2|2U1 + A2 B∗U 2
1 U ∗

2

+ 2|A|2 B|U1|2U2 + |B|2 B|U2|2U2;

and h1, h2 are two corrections of the first-order equations.
Similar to the one component case, we only need to be concerned with

the terms corresponding to ∇U j , j = 1, 2. Substituting Equation (A.16) into
Equation (A.15), we obtain

(Hk + μ)ψ1 = −2∇̃ A ·
(

ik + ∇ − i

2
∇̄μ1

)
U1

− 2∇̃ A ·
(

ik + ∇ − i

2
∇̄μ2

)
U2. (A.18)

It can be checked that

ψ1 = −i∇̃ A · ∇̄U1 − i∇̃ B · ∇̄U2 + d1U1 + d2U2.

The coefficients of the homogeneous solution d1 and d2 can be treated as zero
for simplicity.
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Applying Fredholm condition on Equation (A.17) yields∫
�

(
2∇̃ · (ik + ∇)ψ1

)
U ∗

j dr

=
∫
�

(
2∇̃ · (ik + ∇μ)(−i∇̃ A · ∇̄U1 − i∇̃ B · ∇̄U2)

)
U ∗

j dr

= − 2iδ1 j

∑
m,n

∂̃m,n A

∫
�

(Lm ∂̄nU1)U ∗
j dr − 2iδ2 j

∑
m,n

∂̃m,n A

∫
�

(Lm ∂̄nU2)U ∗
j dr

= − δ1 j

∑
m,n

∂̃m,n A

(
δmn − 1

2
∂̄m,nμ

)
− δ2 j

∑
m,n

∂̃m,n B

(
δmn − 1

2
∂̄m,nμ

)
,

where we have used the identities

2i

∫
�

(Lm ∂̄n U j ) U ∗
j dr = 2i

∫
�

(Ln ∂̄m U j ) U ∗
j dr = δmn − 1

2
μ j , (A.19)

and

2i

∫
�

(Lm ∂̄n U j ) U ∗
3− j dr = 2i

∫
�

(Ln ∂̄m U j ) U ∗
3− j dr = 0, (A.20)

which can be readily obtained by employing the two Fredholm condition on
the equation

(Hk + μ)∂̄m,nU j = −2iLn ∂̄m U j − 2iLm ∂̄n U j + 2δmnU j − ∂̄m,nμ jU j .

Then the next order equations are (we finally get the evolution equations of the
first two orders):

i
∂A

∂Z
+ i∇̄μ1 · ∇̃ A + ν

(
1

2

∑
m,n

∂̄m,nμ1∂̃m,n A + s(σ )�1

)
= 0,

i
∂B

∂Z
+ i∇̄μ2 · ∇̃ B + ν

(
1

2

∑
m,n

∂̄m,nμ2∂̃m,n B + s(σ )�2

)
= 0,

where the nonlinear terms are

�1 = γ
(1)
1 |A|2 A + γ

(1)
2 B2 A∗ + 2γ (1)

3 |B|2 A + γ
(1)
4 A2 B∗ + 2γ (1)

5 |A|2 B + γ
(1)
6 |B|2 B);

�2 = γ
(2)
1 |B|2 B + γ

(2)
2 A2 B∗ + 2γ (2)

3 |A|2 B + γ
(1)
4 B2 A∗ + 2γ (2)

5 |B|2 A + γ
(2)
6 |A|2 A);

and

γ
( j)
1 =

∫
�

|U j |4dr; γ
( j)
2 =

∫
�

U ∗2
j U 2

3− j dr; γ
( j)
3 =

∫
�

|U j |2|U3− j |2dr;

γ
( j)
4 =

∫
�

|U j |2U jU
∗
3− j dr; γ ( j)

5 =
∫
�

|u j |2U ∗
j U3− j dr; γ ( j)

6 =
∫
�

|U3− j |2U3− jU
∗
j dr.
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In the above nonlinear terms, γ ( j)
1 and γ ( j)

3 are real. However, the reality of
other parameters can not be obtained easily. If U1(r; k) and U2(r; k) have the
same phase, for example, at �, M, X1, and X2 points U1 and U2 have the same
phase e−ik·r, then the parameters γ ( j)

m , j = 1, 2; m = 1, 2, . . . , 6 are all real.
It is noted that if the orbitals functions are highly localized, the above

parameters can be related to the nonlinear coefficients in Equation (25). For
example,

γ
(1)
1 =

∫
�

|u(1)|2dr =
∫
�

∣∣∣∣∣
∑

v

φ1(r − v)eik·v
∣∣∣∣∣
4

dr ≈
∫
φ4

1(r)dr = g1.

Similarly, we can get

γ
(1)
2 ≈ γ

(2)
2 ≈ γ

(1)
3 ≈ γ

(2)
3 ≈ γ

(2)
4 ≈ g3;

γ
(1)
4 ≈ γ

(2)
6 ≈ γ

(1)
5 ≈ g4;

γ
(2)
4 ≈ γ

(1)
6 ≈ γ

(2)
5 ≈ g5.

Thus in this limit, � j ≈ � j , j = 1, 2, and the two approaches reduce to the
same equation.

Similar to the previous section, if ∇̄μ1 = ∇̄μ2 = 0, i.e., μ1 and μ2 reach the
same extreme value, the above system becomes (after rescalling the distance
Z̄ = νZ and dropping the bar below)

i
∂A

∂Z
+ 1

2

∑
m,n

∂̄m,nμ1∂̃m,n A + s(σ )�1 = 0,

i
∂B

∂Z
+ 1

2

∑
m,n

∂̄m,nμ2∂̃m,n B + s(σ )�2 = 0.

We can also obtain the detuning phenomenon if |∇̄μ(2)
j (k) − ∇̄μ(1)

j (k)| ∼
O(ν). The system becomes

i
∂A

∂Z
+ 1

2

∑
m,n

∂̄m,nμ1∂̃m,n A + s(σ )�1 = 0,

i
∂B

∂Z
+ ig · ∇̃b + 1

2

∑
m,n

∂̄m,nμ2∂̃m,n B + s(σ )�2 = 0,

where g = 1
ν
(∇̄μ2 − ∇̄μ1)).
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