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ABSTRACT
The need for highly scalable and accurate detection and filtering
of misbehaving users and obscene content in online video chat ser-
vices has grown as the popularity of these services has exploded in
popularity. This is a challenging problem because processing large
amounts of video is compute intensive, decisions about whether a
user is misbehaving or not must be made online and quickly, and
moreover these video chats are characterized by low quality video,
poorly lit scenes, diversity of users and their behaviors, diversity of
the content, and typically short sessions. This paper presents EMer-
alD, a highly scalable system for accurately detecting and filtering
misbehaving users in online video chat applications. EMeralD sub-
stantially improves upon the state-of-the-art filtering mechanisms
by achieving much lower computational cost and higher accuracy.
We demonstrate EMeralD’s improvement via experimental evalua-
tions on real-world data sets obtained from Chatroulette.com.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues–abuse and
crime involving computers; K.4.2 [Computers and Society]: Pub-
lic Policy Issues–human safety, abuse and crime involving comput-
ers

Keywords
Online video chat, misbehavior detection, video safety

1. INTRODUCTION
The popularity of online video chat services has been increasing

over the last few years. Web services such as Chatroulette [1], my-
Yearbook [2], Omegle [3] and TinyChat [4] have all been experi-
encing aggressive membership growth. For example, Chatroulette
had more than 20 million visitors per month by May 2011 [5],
which is three times the number of visitors in July 2010 [6]. The
common feature of an online video chat website is that it randomly
pairs online users from around the world for webcam-based conver-
sations. These users can then conduct online chat via video, audio
and text with one another. At any point, each user may leave the
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current chat and seek another random user for chatting. In gen-
eral, such websites are offered for free and are easy to use, which
enhances their popularity.

However, a critical problem encountered by these online video
websites is that they attract a large number of misbehaving users
who expose themselves, and/or broadcast offensive, obscene or
pornographic content. For instance, our observation on a typical
weekend (summer 2011) from a representative online video chat
website (Omegle) indicates that 35% of the videos broadcast by
this website have nudity in them. This is a major problem since a
large fraction of the online video chat users are underage minors –
about 1/4th by our estimates – and are thus exposed, perhaps ille-
gally, to content unsuitable for their age.

Researchers have recently begun to address this problem of de-
tecting and filtering misbehaving users and inappropriate content
in online video chat systems. The SafeVchat system [7] employs
a fusion technique that integrates the results from multiple image-
based classifiers to develop a stronger inference about whether a
particular video chat user is misbehaving or not. This fusion ap-
proach overcomes several major challenges in detecting and filter-
ing misbehaving users in online video chat systems, including low
quality Webcam video, poorly lit scenes, and diversity of users and
their behaviors. Starting in early 2011, this system was successfully
deployed on Chatroulette.com, the leading random video chat site
on the Web, and has helped reduce the percentage of misbehaving
users from about 30% down to about 2-5% today.

However, there are a number of key limitations with prior work.
Experiences with deployment in Chatroulette.com have shown that
SafeVchat requires over a hundred servers working at near full
CPU utilization 24 hours a day to handle the Chatroulette user
load. Chatroulette has found this to be an expensive solution that
is also not very scalable. Furthermore, Chatroulette has found that
SafeVchat’s accuracy was only acceptable enough to identify nor-
mal users with high accuracy, not misbehaving users. Given that
most users are normal users, Chatroulette employs a two-stage so-
lution: SafeVchat is first used to identify and filter out most normal
users; in the second stage, a large number of online human users
are employed to review any remaining sessions, which could have
either misbehaving users or normal ones missed by the first stage.
The large bank of human reviewers introduces a second cost factor,
and is also not scalable, especially for many of the smaller compa-
nies emerging in this application domain. Only well-funded Web
companies like Chatroulette can afford such a server-intensive and
human-intensive solution. As a result of these costs, another lead-
ing video chat site, Omegle chose not to deploy this solution.

In this paper, we present a new approach to misbehavior detec-
tion in online video chat systems that significantly improves upon
the state of the art in terms of its increased scalability while also
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achieving higher accuracy. We term our approach EMeralD (Ef-
ficient Misbehavior Detection). The key problem that EMeralD
solves is how to improve scalability while preserving or even im-
proving accuracy. It is easy to improve scalability of misbehavior
detection by simply performing less classification, but this reduces
accuracy. The challenge is to improve scalability while simultane-
ously minimizing the impact on accuracy. We accomplish this by
first observing that the reason SafeVchat is not very scalable is that
it executes every classifier on every image snapshot before perform-
ing its fusion algorithm. Given N classifiers, it fails to note which
of the N classifiers causes the overall decision to exceed the proba-
bility threshold for making a decision. As a result, some classifiers
are executed that do not need to be, and these may be computation-
ally intensive. For example, a face classifier may be sufficient to
prove the existence of a normal user, while additional information
from the skin classifier may be unnecessary.

EMeralD implements a more efficient approach by measuring at
each step whether the execution of a particular classifier (in reality,
EMeralD uses rules that aggregate classifiers) has put the overall
decision probability over the acceptable threshold for identifica-
tion, in our case for normal users. In this way, we are able to exe-
cute fewer rules/classifiers and thus improve the computational effi-
ciency and scalability while achieving the same probability thresh-
old of success that was acceptable for SafeVchat. A difficult prob-
lem that EMeralD solves is what is the optimal ordering of rule
execution that minimizes the computational latency? What makes
this problem challenging is that each rule has a different coverage,
namely the number of normal users with features who could be fil-
tered out by that rule. Thus, the number of users remaining after
the previous stage of rule filtering changes as the permutation of
rules is changed. EMeralD proposes to use an A*-search algorithm
to determine the optimal ordering of the rules to minimize compu-
tational latency by exploiting coverage relationships.

However, we noticed that there was a further opportunity to im-
prove accuracy even as we were improving scalability. First, we
observed that a key missed opportunity with prior work was that
each classifier was viewed as independent from others, and thus
failed to exploit semantic correlations between the classification
results. EMerald instead exploits these correlations, such as spa-
tial correlations and size correlations between different image fea-
tures. For example, we know that a mouth should reside within a
face. Therefore, if a face classifier finds a face in an image, and a
mouth classifier detects a mouth in the same image, then EMerald
makes a stronger inference that there is indeed a human face in the
image if the mouth’s location is within the face’s location. Such
semantic correlations are exploited by EMeralD to improve the ac-
curacy of classification while using the same OpenCV classifiers as
SafeVchat.

EMeralD has been extensively evaluated in terms of its accuracy
(precision/recall) and computational cost on real-world datasets ob-
tained from Chatroulette. This evaluation demonstrates that EMer-
alD outperforms by a large margin the current state-of-the-art de-
tection and filtering techniques such as PicBlock and Bag-of-Visual-
Words-based detection. Furthermore, EMeralD is shown to be much
more computationally efficient (31%-79% reduction in per-user la-
tency) and scalable than SafeVchat, while also achieving greater
accuracy than SafeVchat. For example, to process 11,000,000 im-
age snapshots per hour, Chatroulette requires 182 servers with full
CPU usage to detect misbehaving users with SafeVchat, while only
57 servers are needed with EMeralD. By improving both scalabil-
ity and accuracy, EMeralD makes misbehaving user detection soft-
ware much more practical and affordable to a wider range of online
video chat services. EMeralD is currently being evaluated by three

industrial companies at present under an evaluation license, includ-
ing Chatroulette. In general, EMeralD’s accuracy and scalability
makes it suitable for most video-based, realtime interactive appli-
cations on the Internet.

2. RELATED WORK
Techniques to detect pornographic content can be divided into

three categories: manual crowd-sourcing, skin color based detec-
tion, and Bag-of-Visual-Words (BoVW) based detection. Man-
ual crowd-sourcing consists of human reviewers inspecting video
snapshots. YouTube [8], for example, allows users to flag and re-
port inappropriate content presented on their website [9], which are
then reviewed by moderation teams of YouTube. Crowd-sourcing
has also been used in online video chat websites such as Cha-
troulette [1], myYearbook [2] and Tinychat [4]. However, this ap-
proach incurs high economic cost and thus is not scalable, is not
applied uniformly, i.e., only images that are “reported” are actu-
ally inspected, does not report all misbehaving users, and falsely
reports some normal users due to pranksters. Online video chat
services have stopped using this mechanism for these limitations.

Skin color based detection mechanisms are broadly used and
achieve acceptable performance in terms of precision and recall
for pornographic content detection [10][11][12][13][14]. This ap-
proach identifies skin exposure regions in an image using a sta-
tistical color model. Size, texture and shape of the skin exposure
regions are sometimes considered to further improve performance.

While skin color based detection mechanism has proved to be
effective and efficient in the context of pornographic image detec-
tion, its effectiveness is limited in the context of online video chat
systems. Due to the diverse quality of snapshot images captured
from online video chat systems, the statistical color model is in-
sufficient for identifying misbehaving users. While pornographic
images are usually taken by professional cameras under good light-
ing conditions, the images in online video chat services are taken
by chatters’ poor-quality webcams, which significantly affects the
appearance of the skin. In addition, since different users may be
under fairly diverse illumination conditions, skin color in snapshot
images have significant variance. Indeed, a recent survey [15] con-
cludes that skin color based detection mechanism may only be used
as a preprocessor for pornographic content detection, and other
content types such as textual content [12], motion analysis [16] and
structural content [11] need to be incorporated to improve accuracy.

There are two recently-proposed systems that harness the Bag
of Visual Words model (BoVW framework) to detect pornographic
images [17][18]. In a BoVW framework, the Scale-Invariant Fea-
ture Transform (SIFT) [19] extracts feature descriptors of an image.
Experimental results over data sets containing commercial porno-
graphic content, shown in [17][18], demonstrate a significant per-
formance improvement in terms of precision and recall. However,
our experiments (described in Section 6) indicate that a BoVW-
based detection mechanism performs poorly in the context of on-
line video chat systems. First, SIFT descriptors are keypoint de-
scriptors that are good at describing salient regions. However, in
images that are taken under dark illumination conditions (a rel-
atively common condition in online video chat systems), only a
few salient keypoints can be found. Second, the problem we con-
front here is more difficult than the pornography detection problem
due to the smaller inter-class distance between different categories.
For example, the “difference”, or visual distance, between the fully
clothed category and the nude body trunk category is large. How-
ever, for our problem, the difference between misbehaving users
and normal users is not that clear. Both normal and misbehaving
users can be partially clothed (normal male users show partially
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naked upper body while misbehaving ones their genitals partially
clothed). Third, the BoVW based detection mechanism is com-
pute intensive. We implemented “BoVW + HueSIFT” approach
proposed in [18] using the implementation of HueSIFT proposed
in [20], and found that it takes 1960 milliseconds to classify one
image.

To address the drawbacks of these detection mechanisms, we
proposed SafeVchat [21]. SafeVchat harnesses Dempster-Shafer
Theory to calculate the probability that a user is misbehaving. Though
SafeVchat provides acceptable classification performance in terms
of precision and recall, it suffers from two key limitations. First,
it incurs over 1200 milliseconds of computational latency for each
user, which results in large computational resource requirements.
Second, it results in 3% leakage of detecting misbehaving users. A
detailed analysis is provided in Section 6.

3. SYSTEM OVERVIEW

3.1 Design Requirements
Our obscene content detection system should satisfy two key re-

quirements - scalability and precise classification. Based on our
experiences, online video chat systems are capable of providing
periodic image snapshots of users (it is once every 30 seconds for
Chatroulette). However, image processing is quite computationally
intensive, and as mentioned earlier requires a large array of servers
all working near full CPU utilization. Therefore, our first design
objective is to limit EMeralD’s consumption of computational re-
sources. This is achieved by intelligently choosing which filters to
activate and in what order.

Second, our goal is to achieve high precision and recall in terms
of correctly classifying misbehaving users. The precision should be
high because in a system such as Chatroulette, all users classified as
misbehaving will be subject to manual review by human monitors.
If too many normal users are incorrectly classified as misbehaving,
then the burden of these false positives on the human monitors will
be high, incurring a high labor cost. Recall should also be high, i.e.,
most misbehaving users should be detected and only limited few
may be falsely classified as normal and appear in the chat system.

Our design leverages our observations of users of the online video
chat systems Chatroulette, Omegle, and myYearbook. Misbehav-
ing users on online video chat systems usually hide their faces dur-
ing the conversation. Some misbehaving users do not completely
expose themselves, e.g. expose only their genitals in front of the
webcam and stay partially clothed. Chatters who present their faces
in front of webcams are mostly normal users because a majority of
webcams only provide a narrow field of view (i.e., no wide angle
lens are installed onto webcams); thus showing both the body trunk
and the face of a user requires the user placing his/her webcam far
from the user. However, chatters who do not show their faces may
not be flashers. A fair amount of chatters do not show their faces
clearly, i.e. only a partial face is presented in front of the webcam.
Webcams are usually set up in a fixed position and are not moved
often.

3.2 System Architecture
The key contribution of EMeralD is to offer a system that can

optimize for latency/scalability while enhancing accuracy. Earlier
systems had to execute every individual classifier before a fusion
decision - misbehaving or not - could be made [7]. Having to ex-
ecute every classifier incurred a large computational expense. In-
stead, EMeralD orders its filtering rules in an optimal sequence that
minimizes the overall latency incurred during classification. In our

Figure 1: EMeralD: System architecture for detecting misbe-
having users in online video chat services.

new approach, not all individual classifiers need be executed in or-
der to arrive at an overall classification decision.

As shown in Figure 1, we partition the system into a rule-based
pre-classifier or front end and a binary logistic regression model
or back end. The rule-based pre-classifier leverages data obtained
from five OpenCV facial feature classifiers (face, mouth, eye, nose,
upper body). Three sequential snapshot images from a user are
first delivered to the pre-classifier. In the pre-classifier, a set of as-
sociation rules are defined in advance and the user’s three snapshot
images are sequentially examined by pre-defined rules. During the
examination of the rules, the facial feature classifiers of OpenCV
are called. The pre-classifier stores the classification output from
each of the facial feature classifiers into a centralized database.

The rule checking in the pre-classifier is performed following a
specific sequence, so that when the user’s three snapshot images
satisfy a specific rule, the user will be immediately classified as a
normal user and the rest of the rule checking operations will not
be performed. Therefore, the rule examination in the pre-classifier
can filter out a significant number of normal users whose snapshot
images do not need to pass all the operations of the facial feature
classifiers. Notice that each rule in the pre-classifier needs to use
the outputs of partial facial feature classifiers. To circumvent re-
dundant computation from the facial feature classifiers of OpenCV,
we cache the outputs of facial feature classifiers in a centralized
database, so they can be reused by other classifiers.

In EMeralD, if there are no rules matching with the user’s snap-
shots, then the binary logistic regression of the post-classifier is in-
voked. After obtaining the user’s three snapshot images, the post-
classifier will first retrieve the outputs of the facial feature clas-
sifiers for these three snapshots from the centralized database. It
then calls a motion-based skin color detector [21] to obtain the skin
exposure proportions of the user. By combining both the skin ex-
posure proportions of a user and the user’s facial features, the post-
classifier harnesses a binary logistic regression model to predict the
probability of being a misbehaving user for the user. Binary logistic
regression is adept at identifying misbehaving users, but is costly
to compute, and thus we do not invoke this operation until a large
fraction of normal users have already been filtered out.

4. RULE-BASED PRE-CLASSIFIER
In order to improve scalability, we take advantage of early clas-

sification results, thereby exiting the decision-making process as
soon as an identification threshold is reached, rather than executing
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2: Facial feature classification results of OpenCV for snapshot images from Chatroulette – upper body (green square), face (red square),
mouth (pink square), nose (blue square) and eye (purple square).

every single classifier, as in prior systems. We wish to avoid ex-
ecuting any more classifiers than we are required to execute. To
do this, we first identify important higher-level discriminative fea-
tures. We then extract rules for the most frequently occurring joint
patterns among these discriminative features, using a set of repre-
sentative training data. Finally, we consider all rules that achieve
greater than the threshold accuracy for correctly identifying nor-
mal users, and reorder them so as to minimize overall computa-
tional latency. If any such rule identifies a user as normal, then
we know that we can trust this result to be at least accurate above
the threshold, and can therefore terminate the classification process
early, without executing any subsequent rules.

4.1 Identifying Discriminative Characteristics
We need to first develop higher-level discriminative character-

istics that exploit the semantic knowledge of facial features in or-
der to improve the accuracy of EMeralD over prior work. Using
the raw OpenCV classifiers, or rules based just on these classifiers,
without exploiting semantic knowledge, misses the opportunity to
improve the accuracy of misbehavior detection. One reason that
limits the accuracy of such non-semantic approaches is that the
OpenCV classifiers themselves can be inaccurate when taken in
isolation, as shown in Figure 2. Thus, rules based on non-semantic
approaches will also be limited in accuracy. For example, the
eye classifier of OpenCV misclassifies a black character written on
white paper as an eye (see Figure 2(d)). Thus, we extract higher-
level discriminative characteristics from the basic outputs of facial
feature classifiers of OpenCV.

Since filtering misbehaving users in the video chat context is a
novel research area, there is a paucity in prior work that could guide
us about which features we should consider to classify misbehaving
users. Our extensive observations help us identify a long list of ini-
tial correlates to the user being a normal one or not. However, we
do not make our decision simply by this heuristic examination. We
relied on the statistical test results of the relationship. Only the cor-
relates that show statistically significant relationship with the user’s
identity are included into our association rules. We summarize our
new discriminative characteristics as follows.

(1) The presence of a face in a non-facial region is usually an
occurrence by chance. As shown in Figure 2(g)-(l), mis-identified
faces in non-facial regions usually only appear in one snapshot im-
age of a user, while true faces can be correctly identified in multi-
ple snapshot images of a user. Therefore, we define a discrimina-
tive characteristic Face[n], where n ∈ {0, 1, 2, 3} is the number
of snapshot images of a user with at least one identified face by
OpenCV. For example, the user whose snapshot images are shown
in Figure 2(g)-(i) has Face[2].

(2) The face classifier of OpenCV may identify multiple faces in
a snapshot, and there is an extremely low random chance that the
face classifier mistakenly identifies two or more faces in non-facial
regions of one snapshot image. Therefore, we consider whether

multiple faces appear in at least one snapshot image of a user, de-
noted as MultiFace[n], n ∈ {Y es,No}.

(3) Although a user has 0.99 likelihood of being normal when a
face is present in his or her snapshot images, there are still a small
number of misbehaving users who present their faces in front of the
webcam. Since webcams have a narrow view angle, to show both
their face and genitals, a misbehaving user has to stay far away
from the webcam. Our analysis shows that faces of this type of
misbehaving users are usually placed on the corner of their snap-
shots. Therefore, we also consider the positions of the user’s faces
in the user’s three snapshots as a discriminative characteristic. To
describe face position efficiently, we first calculate the centroid co-
ordinate of a face. We then calculate the distance from the centroid
coordinate to the bottom-left (and bottom-right) corner of the snap-
shot image, called “left distance“ (and “right distance“). The larger
of these two distances is selected as the face distance of the snap-
shot. Since the length of an upper body is at least two times longer
than that of a face, it is difficult for a user to show both his genital
and face when his face has a large face distance. We divide the
face distance by the length of the face in the snapshot and use the
quotient as the position of the face in the snapshot. Note that for a
snapshot image with zero or multiple faces, the position of the face
is defined as ∞ and 0. Face positions can be ranked and we select
the maximum face position to represent the face position of the user
within user’s three snapshot images. The face position of a user is
a continuous variable. To use this discriminative characteristic for
association rules, we quantize the continuous values into four cate-
gories (bins), denoted as FacePos[n], n ∈ {B1, B2, B3, B4}.

(4) Further observations on the output of the upper body clas-
sifier of OpenCV indicate that an upper body detected in a snap-
shot is usually wrong, especially when the detected upper body is
fairly small (see Figure 2(c)). In contrast, when the upper body
classifier identifies a large region in a snapshot as an upper body,
the labeled region is typically correct (see Figure 2(a)). To use
the presence of an upper body as a discriminative characteristic,
we consider the largest OpenCV-labeled upper body size of a user
within the user’s three snapshots and denote this characteristic as
UpperBody[n], n ∈ {B0, B1, B2, B3, B4}. Similar to the face
position characteristic, we also quantize continuous upper-body size
values into 5 bins and make it a categorical variable.

(5) Although the eye’s visual characteristic – a center-surround
pattern – is common in non-facial regions, the presence of OpenCV-
labeled double eyes in a correct relative position generally represent
true eyes of a user (see Figure 2(f) versus 2(d)). We consider how
many snapshot images of a user contain OpenCV-labeled double
eyes in a correct relative position. We denote this discriminative
characteristic as DoubleEye[n], n ∈ {0, 1, 2, 3} where n is the
number of snapshot images of a user with OpenCV-labeled double
eyes in a correct relative position.

(6) Similar to eye’s visual characteristic, nose, mouth, face and
upper body’s visual characteristics are also commonly present in
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non-facial regions (see Figure 2(c), 2(j) and 2(k)). One other ap-
proach to reduce the mislabeling of the OpenCV facial feature clas-
sifiers is to combine the outputs of two facial feature classifiers
and examine whether the outputs of two classifiers are in a cor-
rect relative position. A correct relative position for two differ-
ent facial characteristics should satisfy at least one of the position
relationships (e.g., Figure 2(a), 2(f)). Specifically, we consider
6 pairs of facial feature relationships as discriminative character-
istics: a nose in a face, an eye in a face, a mouth in a face, a
face in an upper body, an eye on upper left/right of a nose, and
a nose on top of a mouth. Since these combinations may still ap-
pear by chance, we count the combination in user’s three snapshot
images and denote these combined discriminative characteristics
as NoseFace[n], EyeFace[n], MouthFace[n], EyeNose[n],
FaceUpperBody[n], NoseMouth[n], n ∈ {0, 1, 2, 3}.

4.2 Creating Association Rules
Based on the discriminative characteristics, we harness the Apri-

ori algorithm [22] to create association rules which are used in the
pre-classifier of EMeralD. We first describe each user as an 11-
element vector and each element represents a discriminative char-
acteristic. For example, the user whose snapshot images are shown
in Figure 2(g)∼2(i) is described as {Face[2], MultiFace[No],
FacePos[B1], UpperBody[B0], DoubleEye[0], NoseFace[0],
EyeFace[0], MouthFace[0], FaceUpperBody[0], EyeNose[0],
NoseMouth[0]}. The Apriori algorithm attempts to find all fre-
quent k-itemsets (k = 1, . . . , 12) and uses the corresponding fre-
quent itemsets to create association rules. Note that there are fre-
quent 12-itemsets because we investigate the relationship between
11 discriminative characteristics and the hypothesis of being a nor-
mal user. For a frequent k-itemset, the higher the value of k, the
more computation cost an association rule will involve, because
the examination of an association rule needs to involve the oper-
ations of facial feature classifiers of OpenCV which are usually
compute-intensive. Rule Face[2] ==⇒ User[Normal], for ex-
ample, only involves the operation of the face classifier, while rule
Face[2]&EyeNose[1] ==⇒ User[Normal] involves the compu-
tation of face, nose and eye classifiers. To involve as little com-
putation and filter as many users as possible, our association rule
generation and selection, in practice, have to satisfy the following
conditions:

• Since we observed not all the normal users present their faces
and the facial feature classifier of OpenCV may not be able to iden-
tify their facial characteristics even when they present their faces in
front of webcams, we empirically set the minimum support value
to 100 out of 10,000 (1%).

• An online video chat system like Chatroulette and myYearbook
usually skips the costly human review process for users with high
likelihood of being normal; therefore, the minimum confidence for
generating association rules is 0.99.

• The association rules that are used in the pre-classifier of EMer-
alD have to follow the form X1&X2&...&Xi ==⇒ User[Normal]
where X denotes a discriminative characteristic and User[Normal]
represents the hypothesis that a user is normal.
• To reduce computation cost, we limit the operations of some

facial feature classifiers of OpenCV for each association rule. For
each association rule that is selected to use in the pre-classifier of
EMeralD, we designate the number of facial feature classifiers in-
volved by the rule to be no greater than two.

• We also constrain that the association rules used in the pre-
classifier cannot be redundant. An association-rule set is non-redundant
when the following is true. If there is association rule r′ which is
generated from frequent itemsets Ω′ and has confidence value c′,

then there is no other association rule r which is generated from
frequent itemsets Ω (Ω′ ⊂ Ω) and has confidence value c (c′ > c).
Here, if rule r is redundant, the dataset that rule r covers is also
covered by rule r′.

4.3 Minimizing Computational Latency
After creating the association rules, we need to further determine

the operation sequence of all the association rules, i.e., in what or-
der should the rules be examined. Each association rule has its
computation cost and support (i.e., the users covered by the associ-
ation rule), and a user might be covered by several different associ-
ation rules because of OpenCV-labeled multiple facial features. In
addition, each facial feature classifier that is used by multiple rules
only need to be computed once, thus saving the computation cost.
Therefore, the computation cost is significantly dependent upon the
order of rule execution. For example, in Figure 3(a), assume that
three association rules r1, r2 and r3 can filter 257 users from a 300-
Chatroulette-user dataset and label them as normal users. Each of
the association rules has its own computation cost. We consider
two examination sequences for these three association rules. The
first examination sequence follows r2, r3 and r1, which takes 69.60
seconds to filter out 257 users. In another sequence - r3, r2, r1, the
entire processing time for filtering out the same number of users is
41.78 seconds, which is 40% less than that of the first sequence.

To determine the order of rule execution that minimizes the com-
putational latency, we model the problem as a path finding and
graph traversal problem and apply the A* search algorithm [23]
to find the least-cost path. First, we define two sub-datasets, s1
and s2. These sub-datasets contain those user datasets that do not
affect our computation latency no matter what sequence the asso-
ciation rules are examined in. The sub-dataset s1 is the sub-dataset
which is covered by all the association rules. No matter which
association rule is examined first, sub-dataset s1 will be filtered.
Therefore, this sub-dataset does not involve extra examination cost
for other association rules irrespective of which association rule in
the pre-classifier is examined first. We ignore this sub-dataset in
our modeling. In Figure 3(a), there are 105 such users. The sec-
ond sub-dataset - s2 - is the sub-dataset which is not covered by
any association rule in the pre-classifier. All datasets in this sub-
dataset will be examined by all association rules, which involves
the maximum computation cost (i.e. all facial feature classifiers
of OpenCV will be performed for examining sub-dataset s2). In
Figure 3(a), there are 43 such users. In addition to sub-dataset s1,
our model also ignores the computation cost of the classifier which
all the association rules involve. For example, Figure 3(a) indi-
cates all three association rules involve the operations of the face
classifier. No matter which association rule is examined first, the
face classifier has to be used for labeling the face regions for all the
300-Chatroulette users.

Since any association rule can only cover a part of a dataset,
selection of an association rule involves extra computation cost,
which is the cost of applying that rule on all users not filtered out
by it. For example, association rule r1 does not cover 93+43 users.
So, the extra commutation cost of selecting r1 is (93+43)×81ms.
Notice that we have not considered the cost of face classifier, as
face classifier is included in all association rules. Similarly, extra
computation cost of selecting rule r1 followed by rule r2 is the extra
computation cost of selecting r1 plus (44+43)×52ms, where 44+
43 is the number of users not covered by r1 or r2. Finally, the extra
computation cost of selecting the sequence r1, r2, r3 is the extra
computation cost of selecting r1 followed by r2 plus 43 × 36ms,
where 43 is the number of users not covered by any of the three
rules, i.e. sub-dataset s2.
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(a) Two examination sequences of three association rules. (b) Modeling the least computation cost for three association rules.

Figure 3: Understanding and modeling the computation cost of three association rules.

We use the extra computation cost of each association rule and
association-rule-selection steps to model a graph. Each edge in this
graph represents a selection of an association rule. The weight on
an edge is the extra communication cost of selecting this rule in
the sequence starting from the root. In general, weight of an edge
with rule r is dependent on the number of users (K) that have not
yet been filtered out and are not covered by rule r and the cost (δt)
of applying r, i.e. the edge weight is (w = K · δt). Note that the
weight of the edge for the same association rule is different because
the value of K and δt may vary in each association-rule-selection
step. For example, Figure 3(a) demonstrates that association rule
r2 which is examined in two different sequences has different value
of K (K = 119 and K = 56) and same value of δt 1. The con-
nection of the nodes in the graph follows the steps of selecting the
association rules (i.e., in any path of the graph from the first step
to the last, each association rule can only appear once; further, a
path from the first step to the last has to contain all the association
rules that are used in the pre-classifier.). Figure 3(b) shows a graph
which represents the example case shown in Figure 3(a).

Since A* search algorithm uses a distance-plus-cost heuristic
function that contains an admissible heuristic function h(x), we
further define the admissible heuristic function h(x) = δt ·x where
x is the total number of users in sub-dataset s2. It is obvious that
function h(x) is not an admissible heuristic if we take the step-one
node as the starting node and the final-step node as the goal. To en-
sure function h(x) does not overestimate the distance to the goal,
we designate the final-step and step-one nodes as the starting node
and the goal, respectively.

5. PROBABILISTIC POST-CLASSIFIER
In stage two, all remaining users not filtered out as normal by the

pre-classifier are subject to the probabilistic post-classifier, in order
to identify misbehaving users.

To identify the appropriate statistical model, we need to under-
stand the distributional characteristics of variables of interest. Since
our goal is to establish a model to identify flashers, a user being a
flasher or not is our dependent variable. It is a binary response
with 2 categories (0, 1) and thus follows a binomial distribution. A
simple linear regression model, which assumes normal distribution

1The operation of the face classifier has been ignored.

of dependent variable, is not appropriate for our system. Instead,
we consider a binary logistic regression model, which is a special
case of the general linear model, yet it does not impose strict as-
sumptions on the distributions of the independent variables. The
random component for the (success, failure) outcomes has a bino-
mial distribution [24]. The logit of the probability of success in
outcome (i.e., being a flasher in our study) is expressed by a linear
function of continuous or categorical predictors. The logit model is
log p(x)

1−p(x)
= α+ β(x).

Our previous work has successfully established the connection
between video chat users’ skin exposure and being flasher or not.
EMeralD defines 3 different variables of Skin Proportion 1, 2, and
3 (SP1, SP2, SP3) to represent users’ skin exposure percentages
captured by 3 different skin-color spaces. In this paper, we extend
the model further by integrating facial features in identifying mis-
behaving users. We use the 10 discriminative characteristics (facial
features) introduced in Section 4.1 as ordinal variables. The value
of a variable is dependent upon how the corresponding discrimi-
native characteristic is presented in user’s snapshots. For example,
the value of variable NoseMouth[n] is 2 if NoseMouth[2] is
presented in user’s snapshots. To sum up, our theoretical model
can be expressed as

log
p(flasher)

1− p(flasher)
= α+β1 ·facialfeature+β2 ·skinportion

(1)
Inter-variable correlations and multicollinearity diagnostic statis-

tics (Variance Inflation Factor - VIF, Tolerance, Condition Index) [25]
have been calculated to evaluate the threat of multicollinearity. While
there is no formal cutoff value to use with VIF for determining the
presence of multicollinearity, values of VIF exceeding 10 and Con-
dition Index exceeding 15 often indicate multicollinearity, but in
weaker models, which is often the case in logistic regression, VIF
values above 2.5 may be a cause for concern.

Our multicollinearity diagnostic statistics show that multicollinear-
ity threats do exist among several independent variables, namely
FacePos[n], Face[n] and three skin portion measures. Common
solutions for multicollinearity include dropping one or more cor-
related variables and combining variables. In this study, we no-
ticed that FacePos[n] and Face[n] have high information overlap
– both loaded high on the same dimension, with condition index ex-
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ceeding 15. Since it is neither practical nor meaningful to combine
these two ordinal variables, we choose to keep only one of them in
the final model to avoid the multicollinearity issue.

When capturing users’ exposed skin portions, we apply three
aforementioned measures [21]. These three measures provide slightly
different information about the degree of skin exposure and are
all included in our theoretical model. However, correlation anal-
ysis and multicollinearity diagnostics revealed multicollinearities
among these measures. To reduce the threats of multicollinear-
ity yet to consider all three measures at the same time, we con-
duct principal component analysis – a mathematical procedure that
transforms multiple correlated continuous variables into a smaller
number of uncorrelated variables – on these three predictors before
we proceed in the model building process.

We used the principal component analysis procedure in IBM
SPSS 19.0 [26] to transform three measures of skin exposure. Kaiser
Criterion (Eigen value > 1) was followed when selecting compo-
nents and Scree Plot was used to confirm the dimensions identi-
fied. We extracted one component (skinexpcomp) to represent the
3 aforementioned measures of skin exposure according to Eigen
values and the elbow point identified in scree plot. When subse-
quently building our binary logistic regression model, we include
only the skin exposure composite (skinexpcomp) which is a linear
function of normalized measure scores:

skinexpcomp = 0.349 · SP1 + 0.366 · SP2 + 0.346 · SP3 (2)

A training sample data was analyzed with the stepwise binary lo-
gistic regression procedure in statistical package IBM SPSS 19.0.
Maximum Likelihood Estimation with EM algorithm was utilized
to estimate the model coefficients. Stepwise logistic regression pro-
cedure in SPSS was able to provide multiple models with different
combination of independent variables. We identified the optimal
model by comparing their goodness of fit indices such as deviance
score, AIC (Akaike Information Criterion) and BIC (Bayesian In-
formation Criterion).

6. EVALUATION
In this section, we conduct detailed experiments to answer the

question of whether our EMeralD system achieves our design goals
– both high accuracy and high efficiency when detecting and filter-
ing misbehaving users in online video chat services. We first com-
pare the accuracy (in terms of precision and recall) of our EMeralD
system with state-of-the-art techniques. We then focus on the over-
all run-time efficiency of EMeralD and its execution cost.

6.1 Classifier Performance
In our evaluations, we use a real-world dataset containing 20,000

Chatroulette users’ snapshots and randomly split the 20,000 sam-
ples into two groups: a 10,000-user training set used to train our
pre-classifier and post-classifier; and a 10,000-user testing set to
evaluate these classifiers. The 20,000-Chatroulette-user dataset was
obtained from Chatroulette system in September 2010 when there
were approximately 35% misbehaving users.

Table 1: Ordering of Association Rules Used in EMeralD
Order Association Rule Confidence

1 MultiFace[Y es] ==⇒ User[normal] 1.00
2 Face[3]&FacePos[B2] ==⇒ User[normal] 1.00
3 Face[3]&FacePos[B3] ==⇒ User[normal] 1.00
4 Face[3]&FacePos[B4] ==⇒ User[normal] 1.00
5 DoubleEye[3] ==⇒ User[normal] 1.00
6 DoubleEye[2] ==⇒ User[normal] 1.00
7 UpperBody[B4] ==⇒ User[normal] 0.99
8 FaceMouth[3] ==⇒ User[normal] 1.00
9 FaceMouth[2] ==⇒ User[normal] 0.99

We compare the precision and recall of EMeralD with that of the
state-of-the-art skin color based detection technique (PicBlock [27])
as well as the integration of SIFT and a Bag-of-Visual-words frame-
work (SIFT+BoVW, Dense-SIFT+BoVW), and our earlier system
SafeVchat, which is currently deployed on Chatroulette. As shown
in Figure 4, EMeralD significantly outperforms PicBlock [27], be-
cause the skin colors in snapshot images captured from online video
chat systems are very diverse and the statistical skin-color model
used in PicBlock cannot provide effective discriminative character-
istics for misbehaving user classification.

While SIFT+BoVW performs better than PicBlock, it still can-
not satisfy the requirement of online video chat systems. Figure 4(a)
shows that the recall for classifying normal users is fairly low when
the classification precision remains at a high level (e.g., > 0.95).
As a result, a large number of normal users have to be manually
reviewed by human moderators. The main reason behind the poor
classification results of SIFT+BoVW is that the SIFT descriptor is
a sparse feature representation, which may cause a loss of some
discriminative characteristics. To address this issue, we replace the
SIFT descriptor with the Dense SIFT descriptor [28] and repeat the
experiment of SIFT+BoVW. As shown in Figure 4(a), the recall of
Dense-SIFT+BoVW for classifying normal users has increased to
0.50 when precision is high. However, compared with SafeVchat
and EMeralD, Dense-SIFT+BoVW still has lower precision and
recall, since snapshot images have smaller inter-class distance be-
tween normal and misbehaving users.

Finally, we compare the performance between SafeVchat and
EMeralD. As shown in Figure 4, the classification performance
of EMeralD is slightly higher than that of SafeVchat in terms of
precision and recall. Still, this performance improvement is quite
beneficial. SafeVchat uses a threshold for the likelihood of be-
ing a normal user. This threshold is used to automatically filter
out normal users, thus saving human review cost. As shown in
Figure 4(a), SafeVchat provides 0.97 precision for classifying nor-
mal users with 0.70 recall, while EMeralD reaches 0.997 precision.
This indicates that EMeralD only misses (misclassifies) 0.3% of
misbehaving users, while automatically and correctly filtering out
70% of normal users – one order of magnitude lower than that of
SafeVchat (3% versus 0.3%). To illustrate this improvement, we
again take the Chatroulette system as an example. Chatroulette re-
ports that there are approximately 20,000 ∼ 40,000 online users
at any given time. By using both EMeralD and SafeVchat2, Cha-
troulette can automatically filter out about 70% of normal users
without involving human reviewers. EMeralD mistakenly leaves
only 40 ∼ 80 misbehaving users while SafeVchat leaves 400 ∼ 800
misbehaving users. Furthermore, we observe that the classification
performance of EMeralD for misbehaving users has 5% ∼ 8% of
improvement on average (see Figure 4(b)). The reasons for these
improvements are summarized as follows. (1) The discriminative
characteristics that we use in EMeralD is more powerful than the
features we used in SafeVchat. One example is that we consider
face position as a discriminative characteristic while SafeVchat ig-
nores spatial information. (2) The rule-based pre-classifier provides
higher classification capacity for normal users, which dominates
the improvement of classification performance. Figure 5 shows
that rule-based pre-classifier has high classification precision. The
more the rules are harnessed, the higher the classification recall is.
(3) Though the classification precision drops when the probabilis-
tic post-classifier is executed, we still observe that our probabilistic
post-classifier contributes 6% of recall improvement while main-
taining 0.997 precision.

2Chatroulette ignores their human review process for the users’
snapshots whose likelihoods of being normal users are above 0.97.
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(b) Classification results for misbehaving users.

Figure 4: Classification performance in terms of precision and recall.

6.2 Run Time Performance
Since PicBlock, SIFT+BoVW and Dense-SIFT+BoVW perform

extremely poorly (low precision and recall) in detecting misbe-
having users, we have only considered SafeVchat for comparison
to evaluate EMeralD’s runtime performance. We used EMeralD
for two Chatroulette datasets: one is the 20,000-Chatroulette-user
dataset that we used for precision and recall evaluation, and the
other is a recently collected 30,000-Chatroulette-user dataset that
contains 2% misbehaving users. As shown in Table 2, compared
to the computation latency of SafeVchat (1276 milliseconds per
user), EMeralD system can reduce computation latency by 31.15%
on the 20,000-Chatroulette-user dataset. Figure 5 explains the rea-
son behind this. Rule-based pre-classifier is first used to examine
users’ snapshots. As shown in this figure, the first four associa-
tion rules successfully filter out 53% of normal users by running
only the face classifier of OpenCV. This filtering of 53% of normal
users saves the subsequent computation overhead of other OpenCV
classifiers. Similar saving is also applied to the other rules except
for rule 8 and 9. Note that rule 8 and 9, though correctly filter
out 68% of the normal users, do not save computation overhead
because the dataset that rule 8 and 9 process has already been ex-
amined by all the OpenCV classifiers except the mouth classifier of
OpenCV. We can also observe from Table 2 that the latency reduc-
tion of EMeralD is affected by the fraction of misbehaving users
(i.e., 30,000-Chatroulette-user dataset achieves 48.86% of latency
reduction while the other dataset has 31.15% of latency reduction).
To further investigate the relationship between the fraction of mis-
behaving users and the average computation latency, we randomly
select 1,000 users from the 20,000-user dataset and manually tune
the fraction of misbehaving users. We observe that the average
computation latency per user has a linear relationship with the frac-
tion of misbehaving users (Figure 6). The higher the fraction of
misbehaving users, the more is the computation latency. The rea-
son behind this is quite straightforward – misbehaving users usually
have to be examined by the probabilistic model which uses the out-
puts of all OpenCV facial feature classifiers which are computation
intensive. Another surprising observation from Table 2 is that the
average computation latency reduction per user can reach 79.45%
when the confidence threshold (minimum confidence) that is used
for association rule selection in the pre-classifier is decreased from

Table 2: Comparison of Computation Latency

Confidence
Chatroulette dataset 30,000 users 20,000 users
% of Misbehaving users 2% 35%

0.99
Avg. latency per user 653 ms 878 ms
Latency reduction 48.86% 31.15%

0.97
Avg. latency per user 262 ms 782 ms
Latency reduction 79.45% 38.67%

Table 3: Performance Comparison of EMeralD and SafeVchat
# of instances Throughput per instance Total cost per month

EMeralD 57 190,350 snapshots per hour $5,089
SafeVchat 182 59,424 snapshots per hour $16,249

99% to 97%. Figure 6 indicates that lower confidence threshold
typically results in lower computation latency, because more asso-
ciation rules will be selected to use in the pre-classifier of EMeralD,
which makes more users filtered out and labeled as normal users.
Note however the decrease in the confidence threshold also gives
rise to the decrease in classification precision of the pre-classifier.

To test how EMerald performs on a large scale, we deployed
EMeralD on 57 large instances on Amazon’s EC2 infrastructure.
These server instances were driven by a large collection of Planet-
Lab clients generating image snapshots to emulate the Chatroulette
workload of about 11 million snapshots per hour. Each instance
that the EMeralD code executed on had 7.5 GB of memory and
4 EC2 Compute Units, running a 64-bit version of SUSE Linux
Enterprise 11. Each instance processes the snapshots of 8 ∼ 10
Chatroulette users in parallel with 85.32% ∼ 93.01% of CPU uti-
lization. Using this deployment, we on average process 190,350
Chatroulette snapshots per hour for every instance. As shown in
Table 3, this throughput is three times that of SafeVchat, which
has 59,424 snapshots per hour for every instance, and used 182
EC2 instances as of December 2010. This three-fold improvement
in throughput at a large scale mainly results from the reduction of
computational complexity.

We also estimate the cost savings of using EMeralD in Table 3.
Under current cost assumptions at Amazon for large VM instances,
we estimate that EMeralD would only cost Chatroulette $5,089 per
month in computation, whereas we estimate SafeVchat currently
costs Chatroulette about $16,249 per month for the current user
workload, generating 11 million snapshots per month. Note that
though tens of millions of snapshots stream into Chatroulette, ex-
tra storage instances are not necessary because the size of a user’s
snapshot is relatively small. Every 15,000 snapshots need approx-
imately 100 MB of storage space and a large instance has 850 GB
of local storage. 57 large instances can store users’ snapshots for
a month without being overwritten. In practice, Chatroulette only
keeps users’ snapshots for several hours. Therefore, this cost analy-
sis only involves the cost of computation resources for Chatroulette.

7. CONCLUSION
We have presented EMeralD, a novel system for misbehavior

detection in online video chat systems that substantially improves
scalability while improving accuracy. In EMeralD’s two-stage ap-
proach, first a rule-based pre-classifier identifies and filters out nor-
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Figure 6: Proportion variance of misbehaving users versus
computation latency of EMeralD.

mal users by executing only as many classifiers as are needed to
reach a probability threshold for identification, thus saving on need-
less computation. Moreover, the rules are reordered using an A*
search algorithm to minimize latency. In stage two, remaining users
are processed by a post-classifier using binary logistic regression to
accurately identify misbehaving users. Using the real-world image
datasets obtained from Chatroulette, we demonstrate compared to
prior work that (1) EMeralD achieves improved precision and re-
call of identifying misbehaving users, (2) EMeralD lowers the com-
putational latency by at least 31-49%, and (3) EMeralD scalably
achieves 3 times higher throughput on a large scale Amazon EC2
server deployment.
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