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Non-line-of-sight (NLOS) imaging enables people to see
a hidden scene based on multiple interaction information
between the object and the carrier. There have been numer-
ous studies focusing on the physical modeling of photon
scattering, but few have explored the detection process,
which also plays a vital role. In this paper, we put forward
a novel, to the best of our knowledge, detection methodol-
ogy for NLOS imaging based on time-sequential first photon
(TSFP) data. We verify the method with both synthetic and
experimental data, showing a dramatic reduction in acqui-
sition time cost compared with traditional methods for the
same reconstruction quality. This work may contribute to
real-time and photon-starved NLOS imaging for practical
applications. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.446079

Many solutions for non-line-of-sight (NLOS) imaging have
emerged and have attracted lots of attention for potential
applications, such as automatic driving, object tracking, and
surveillance. In the optics domain, NLOS imaging can be inter-
preted as a photon-scattering process based on geometric optics
[1–5] or wave propagation approaches [6,7]. In geometric per-
spective, the hidden curved surface can be reconstructed based
on solving normal information [8–10] and occlusion considera-
tion [10]. In mathematics, the NLOS problem can be viewed as
an inverse problem, and there are many algorithm innovations
that aim to lower the time and space complexity for possible real-
time applications, such as the light-cone transform (LCT) [4],
f-k migration [6], fast backprojection [11], phasor field [7,12]
and deep-learning-based approaches [13]. For precise recon-
structions, signal-object collaborative regularization [14] was
recently reported to show high robustness against noise.

The detection process in NLOS imaging is also crucial for
signal acquisition in practice. A classical approach is to scan a
laser, illuminating positions on the visible wall, and capture tem-
poral signals that contain information on the hidden scene. To

record the temporal signals, time-of-flight (TOF) measurements
together with time-correlated single-photon-counting (TCSPC)
technology is widely adopted. This involves registering every
photon event with a specific arrival time stamp based on a
common start time at picosecond resolution and with high
sensitivity for weak light detection, relying on a Geiger-mode
single-photon avalanche diode (SPAD). Until now, most meth-
ods have employed the accumulated data from the photon event
histogram (PEH) method for reconstruction in NLOS imag-
ing, which requires a long and fixed measurement time at each
scanning position to achieve an acceptable signal-to-noise ratio
(SNR).

In contrast, to realize fast measurement, one can operate the
TCSPC device in time-tagged time-resolved (TTTR) mode to
record every photon event arrival time sequentially in time, and
can adaptively stop the measurement whenever enough infor-
mation has been acquired for reconstruction, leading to a much
more efficient detection process. In this way, first-photon imag-
ing [15] was first demonstrated in a line-of-sight (LOS) scenario
in which the measured first photon event is contributed by only
one voxel from the scene, thus allowing the albedo of each illu-
minated point to be solved using only one observation of the
first photon event.

However, the application of first-photon imaging in a NLOS
setup is extremely challenging. First, different voxels in the
hidden scene with equal propagation distances, and even dif-
ferent propagation distances (due to the temporal broadening
that occurs in practical measurements), may contribute simul-
taneously to the measured signal in the same time bin. These
contributions cannot be distinguished by a single observation
of the first photon event. Second, the signal received using the
first-photon method is noisier than that obtained using the tra-
ditional accumulation method because the parameter estimation
for each time bin is based on only one time measurement. Fur-
thermore, the NLOS problem is naturally ill posed, as the same
measured signals may correspond to multiple reconstructions.
To achieve fast NLOS measurement based on the first-photon
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Fig. 1. Comparison of first-photon detection methods for the LOS
and NLOS cases. The solid-line waveforms are the ideal photon
intensity signals, and the dashed waveforms are contributions from
different spherical shell regions. The squares are the first photon
event measurements.

method and mitigate the reconstruction difficulties from noisy
data and an ill-posed operator, in this paper we put forward a
time-sequential first photon (TSFP) method that employs first-
photon data from several time bins for reconstruction in the
time stream of each scanning position measurement. For the
proposed detection process, the acquisition time is so short that
the variance of the histogram signal is outside the tolerance of
conventional PEH methods.

Figure 1 compares TOF signal measurement in the confocal
case between the LOS and the NLOS scenarios at the same
scanning position. The temporal waveform of the echo in NLOS
imaging is sampled by several first-photon events distributed
over different time bins, which are more likely to carry the most
significant information for reconstructing the hidden scene than
the subsequent first-photon events (received by other time bins).

In [16], the authors take dead time into account and recon-
struct the depth and reflectance of the LOS scene by solving
a Bayesian model with PEH data. In the case of NLOS imag-
ing, the dead time can be neglected due to the low photon flux
detected after multiple diffuse reflections. In this work, we apply
the maximum likelihood estimation (MLE) method for NLOS
reconstruction under extremely low-dose acquisition conditions
by making use of the TSFP detection process.

We adopt the physical model introduced in the LCT method
[4]:

τ(z, t,α) = b +
∫
Ω

α(x)
| |x − z| |4

δ(ct − 2| |x − z| |)dx, (1)

where τ(z, t,α) is the photon intensity detected at position z on
the visible wall at time t, b≠ 0 is a constant for the intensity value
of slow-varying background noise, α(x) is the albedo value at
point x in the hidden scene, δ is the Dirac delta function, c is the
speed of light, and Ω is the reconstruction domain.

To detect the photon intensity, every focal point z is illu-
minated by a series of laser pulses. For a specified scanning
position and time bin, the detection process for photon events is
considered as a sequence of Bernoulli trials. The probability of
a failure outcome is modeled as

p(τ) = exp(−ητ), (2)

where η is the detection efficiency. The probability of detecting
the first photon at the kth pulse is

P(τ) = p(τ)k−1[1 − p(τ)]. (3)

The set of scanning positions is denoted {zi}
S
i=1 and the time is

discretized with {tj = j∆t}T
j=1, in which i= 1, . . . , S is the index

of scanning positions, j= 1, . . . , T is the index of time bins, and
∆t is the time resolution. The probability of failing to detect a
photon event at zi and tj is

pij(α) = exp(−ητ(zi, tj,α)). (4)

By assuming that the detection process of photon events is inde-
pendent among all scanning positions and time bins, the joint
probability of detecting the first photon at point zi and time tj
with a pulse number of kij is written as

P(α) =
∏︂

i,j
pkij−1

ij (α)[1 − pij(α)]. (5)

In the case of low light flux, we have ητ ≈ 0, and 1 − pij(α) ≈
ητ(zi, tj,α). Using the maximum likelihood principle, we obtain
the following negative log-likelihood function:

L(α |k) =
∑︂

i,j
(kij − 1)[ητ(zi, tj,α)] − ln[ητ(zi, tj,α)]. (6)

Regularization can be used to improve the reconstruction quality.
We choose the L1 and total variation (TV) regularizations to
enhance the sparseness and smoothness of the reconstructions.
The reconstruction can be obtained by solving

α∗ = arg min
α

L(α |k) + λ1 | |α | |1 + λ2TV(α). (7)

This optimization problem is convex when λ1 = λ2= 0, and is
solved by the gradient descent method, as Fig. 2 shows. For
general conditions, the optimization problem in Eq. (7) can be
solved using the split Bregman method [17] and the FISTA
algorithm [18]. The goal of our fast NLOS reconstruction is to
find the function α(x) that matches measurement k. In practice,
α(x) is discretized with voxels in the domain Ω.

We verify our method with synthetic and experimental data.
To generate synthetic data, we employ the signals of Stanford
Bunny and USAF from the Zaragoza dataset [19]. The original
data are scaled and a constant dark count is added. Random
samples of the photon event data are generated using Eq. (2).
For each focal point, when a sufficient number of time bins (we
choose 10, 50, 75, 100, and 200 in the simulations) receive the
first photon, we stop the simulation and record the pulse number,
the TSFP data, and the PEH data. By assuming the repetition
rate of the laser to be 10 MHz, the acquisition time is computed
as the product of the pulse number and pulse period.

In our simulation, the visible wall is sampled at 64 × 64 focal
points and the average photon events per pulse are 0.0046 and
0.0051, respectively, for the instances of the Stanford Bunny

Fig. 2. Sketch of the optimization process. l is the index of
iterations.
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Fig. 3. Reconstruction results for synthetic data from Stanford
Bunny (top) and USAF (bottom).

and USAF. For the TSFP method, we use all the first-arriving
photon events from several time bins to reconstruct the scene.
For the PEH method, we apply the LCT solver [4], f-k solver [6],
and phasor field solver [12] for reconstruction. To achieve fair
comparisons, we do not include regularizations in all methods.

To evaluate the reconstruction quality, the structural similarity
(SSIM) [20] and signal-to-noise ratio (PSNR) are introduced for
maximum intensity projection of the reconstructions. In Fig. 3,
the reconstruction results for the simulated data are shown in
order of descending number of photon events per scanning posi-
tion (NoP) from left to right. One can see from Fig. 3 that
the TSFP method has much better reconstruction quality than
the PEH methods at the same acquisition time, especially in
the photon-starved situation. To put it another way, the TSFP
method requires far less acquisition time than the PEH methods
to achieve the same reconstruction quality.

Next, we investigate the experimental performance of the pre-
sented method. The NLOS experimental setup adopts confocal
laser scanning, and each scanning position on the visible wall
serves as a relay of the temporal signal. The TCSPC device is
PicoHarp300 (PicoQuant), with a minimum time resolution of 4
ps. The temporal response of the overall system is measured as

Fig. 4. Experimental reconstructions of the triangle (top) and a
letter H (bottom).

about 200 ps full width at half maximum (FWHM). A 515 nm
pulsed laser (ROI) with a pulse width of 17 ps, a pulse energy
of 0.8 nJ, and a repetition rate of 10 MHz scans a 50 × 50 cm2

area on the visible wall at equal intervals. The reflected photons
from the visible wall and the hidden scene are collected by a
single-pixel SPAD (Micro Photon Devices). The hidden objects
we use are custom-made paperboard in the shape of a triangle
and a letter H.

The ground-truth images used for SSIM and PSNR eval-
uations are generated with the LCT+TV+L1 method [4]
using the overall measured PEH data, with an accumula-
tion time of 1 s for each scanning point. The reconstruction
results from LCT+TV+L1, f-k, the phasor field method, and
TSFP+TV+L1 are compared in Fig. 4. The parameters in the
LCT+TV+L1 method are fine-tuned. It is shown that the pro-
posed method outperforms traditional PEH-based methods and
has the best visual quality.

Our algorithm requires iteration and takes longer than the
direct imaging method [4]. In our iteration scheme, the major-
ity of the time is spent on the gradient descent step, which
calls for forward model computation. To reduce the reconstruc-
tion time, it is possible to optimize the code with time-efficient
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implementations of the forward operator. Combining our TSFP
approach with deep-learning techniques [13] for fast and accu-
rate reconstructions would be an interesting direction for future
research.

In conclusion, we have proposed a new detection method
for NLOS imaging in a photon-limited environment. Compared
with traditional PEH methods that use a fixed measurement time,
the TSFP method is a detection framework that has a higher
photon event efficiency and requires less time. In NLOS imag-
ing, we carried out several synthetic and practical experiments
and verified that the TSFP method leads to a significant reduc-
tion in acquisition time cost, compared with the PEH method,
to achieve the same reconstruction quality. Our method only
requires a small number of photon events for NLOS recon-
struction, and the acquisition time may be further reduced with
SPAD arrays. These advantages of the TSFP framework and its
possible extensions have great potential to facilitate the devel-
opment of practical NLOS imaging systems for real-time and
photon-starved applications.

Funding. National Natural Science Foundation of China (11971258,
12071244, 61975087).

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are
not publicly available at this time but may be obtained from the authors upon
reasonable request.

REFERENCES
1. T. Hutchison Kirmani, J. Davis, and R. Raskar, in IEEE 12th Interna-

tional Conference on Computer Vision (ICCV) (2009), pp. 159–166.
2. T. W. Velten, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R.

Raskar, Nat. Commun. 3, 745 (2012).

3. M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, Opt.
Express 23, 20997 (2015).

4. M. O’Toole, D. B. Lindell, and G. Wetzstein, Nature 555, 338
(2018).

5. S. Xin, S. Nousias, K. N. Kutulakos, A. C. Sankaranarayanan, S. G.
Narasimhan, and I. Gkioulekas, in IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2019), pp. 6793–6802.

6. D. B. Lindell, G. Wetzstein, and M. O’Toole, ACM Trans. Graph. 38, 1
(2019).

7. X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. A. Reza, T. H. Le, A.
Jarabo, D. Gutierrez, and A. Velten, Nature 572, 620 (2019).

8. C.-Y. Tsai, A. C. Sankaranarayanan, and I. Gkioulekas, in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(2019), pp. 1545–1555.

9. S. I. Young, D. B. Lindell, B. Girod, D. Taubman, and G. Wetzstein, in
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2020), pp. 1404–1413.

10. F. Heide, M. O’Toole, K. Zang, D. Lindell, S. Diamond, and G.
Wetzstein, ACM Trans. Graph. 38, 1 (2019).

11. V. Arellano, D. Gutierrez, and A. Jarabo, Opt. Express 25, 11574
(2017).

12. X. Liu, S. Bauer, and A. Velten, Nat. Commun. 11, 1645 (2020).
13. W. Chen, F. Wei, K. N. Kutulakos, S. Rusinkiewicz, and F. Heide, ACM

Trans. Graph. 39, 1 (2020).
14. X. Liu, J. Wang, Z. Li, Z. Shi, X. Fu, and L. Qiu, Light: Sci. Appl. 10,

1 (2021).
15. D. V. Kirmani, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and

V. K. Goyal, Science 343, 58 (2014).
16. F. Heide, S. Diamond, D. B. Lindell, and G. Wetzstein, Sci. Rep. 8,

17726 (2018).
17. T. Goldstein and S. Osher, SIAM J. Imaging Sci. 2, 323 (2009).
18. M. Beck and Teboulle, IEEE Trans. on Image Process. 18, 2419

(2009).
19. M. Galindo, J. Marco, M. O’Toole, G. Wetzstein, D. Gutierrez,

and A. Jarabo, in Proceedings of SIGGRAPH ‘19 Posters (2019),
paper 73.

20. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, IEEE Trans.
on Image Process. 13, 600 (2004).

https://doi.org/10.1038/ncomms1747
https://doi.org/10.1364/OE.23.020997
https://doi.org/10.1364/OE.23.020997
https://doi.org/10.1038/nature25489
https://doi.org/10.1145/3306346.3322937
https://doi.org/10.1038/s41586-019-1461-3
https://doi.org/10.1145/3269977
https://doi.org/10.1364/OE.25.011574
https://doi.org/10.1038/s41467-020-15157-4
https://doi.org/10.1145/3414685.3417825
https://doi.org/10.1145/3414685.3417825
https://doi.org/10.1038/s41377-020-00435-z
https://doi.org/10.1126/science.1246775
https://doi.org/10.1038/s41598-018-35212-x
https://doi.org/10.1137/080725891
https://doi.org/10.1109/TIP.2009.2028250
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861

