Liu et al. Light: Science & Applications (2021)10:198
https://doi.org/10.1038/s41377-021-00633-3

Official journal of the CIOMP 2047-7538
www.nature.com/Isa

ARTICLE Open Access

Non-line-of-sight reconstruction with signal-object
collaborative regularization

Xintong Liu®', Jianyu Wang', Zhupeng Li**, Zuogiang Shi**, Xing Fu 304

and Lingyun Qiu®'”™

Abstract

Non-line-of-sight imaging aims at recovering obscured objects from multiple scattered lights. It has recently received
widespread attention due to its potential applications, such as autonomous driving, rescue operations, and remote
sensing. However, in cases with high measurement noise, obtaining high-quality reconstructions remains a challenging
task. In this work, we establish a unified regularization framework, which can be tailored for different scenarios, including
indoor and outdoor scenes with substantial background noise under both confocal and non-confocal settings. The
proposed regularization framework incorporates sparseness and non-local self-similarity of the hidden objects as well as
the smoothness of the signals. We show that the estimated signals, albedo, and surface normal of the hidden objects
can be reconstructed robustly even with high measurement noise under the proposed framework. Reconstruction

results on synthetic and experimental data show that our approach recovers the hidden objects faithfully and
outperforms state-of-the-art reconstruction algorithms in terms of both quantitative criteria and visual quality.

Introduction

Non-line-of-sight (NLOS) imaging focuses on recover-
ing objects that are hidden from the direct line of sight. In
real applications, lasers or other light sources are used to
illuminate a visible wall, the scattered light from which
reaches the hidden object and is scattered back again. The
photons collected by detectors such as single photon
avalanche diode (SPAD) or conventional cameras can be
used to recover the location, shape, albedo, and normal of
the target. This problem has attracted much attention
recently due to its potential applications such as auto-
driving, survivor-rescuing, and remote sensing. A typical
schematic of the NLOS layout is shown in Fig. 1a.

The NLOS reconstruction problem belongs to the
inverse problem in mathematics, aiming to find the hid-
den scene that matches the detected signal. This problem

Correspondence: Xing Fu (fuxing@tsinghua.edu.cn) or

Lingyun Qiu (lygiu@tsinghua.edu.cn)

'Yau Mathematical Sciences Center, Tsinghua University, 100084 Beijing, China
“State Key Laboratory of Precision Measurement Technology and Instruments,
Department of Precision Instrument, Tsinghua University, 100084 Beijing, China
Full list of author information is available at the end of the article

These authors contributed equally: Xintong Liu, Jianyu Wang.

© The Author(s) 2021

is usually ill-posed due to measurement noise, depth and
scale ambiguity, and non-uniqueness of the solution.

The study in NLOS dates back to Velten et al. * in 2012
when the back-projection method was proposed. After
that, the widely used confocal experimental settings were
designed by O'Toole et al. > Geometric-based approa-
ches™ use only the time of flight to reconstruct the
hidden target. Instead of treating light as rays, NLOS can
also be formulated as the propagation of a wave®™®. With
the development of deep learning, neural-network-based
NLOS reconstruction methods are emerging'®™'*. Many
different experimental settings and algorithms are
designed to improve practicability'>>?,

Several efficient NLOS imaging algorithms in confocal
settings have been proposed. The light-cone-transform?
and frequency-wavenumber migration methods® (F-K)
reconstruct the albedo of the hidden target in a time-
efficient way using the fast Fourier transform. The
directional light-cone-transform®* (D-LCT) reconstructs
the albedo and surface normal simultaneously. The
algorithm proposed by Heide et al. ** considers partially
occluded scene and reconstructs both the albedo and
surface normal, at a rather high computational cost and
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Fig. 1 Schematic of NLOS layout and the proposed SOCR reconstruction algorithm. a To reconstruct the unseen object, some light sources are
used to illuminate a visible wall. The photons bounced back from the object are detected at several points on the visible wall. b Ground truth and our
reconstruction. The x, y, and z components are displayed in their absolute values. ¢ Flowchart of the proposed framework. The estimated signal and
the learned patterns of the target are shown on the left. Reconstructed albedo is shown on the right
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memory usage, though. Note that these methods for
confocal settings do not generalize directly to non-
confocal scenarios, the more general version of NLOS
measurement. In real applications, confocal experiments
are harder to implement due to the beam interference
from illuminating and detecting the same location on the
visible wall®. Although non-confocal measurements can
be converted to confocal ones based on the normal
moveout correction technique%, the reconstruction
results using the converted measurements usually contain
a lot of artifacts due to the approximation error, especially
in the case of the large interval between illumination and

detection positions. In the non-confocal case, the Lapla-
cian of Gaussian filtered back-projection®” (LOG-BP) and
the phasor field methods”® reconstruct the albedo effi-
ciently without providing surface normal.

Measurement noise is one of the major obstacles to get
high-quality reconstructions in NLOS inverse problems.
When the measurement noise is high, the targets recon-
structed are usually noisy with blurred boundaries. Several
methods have been developed to improve the quality of the
reconstruction. The back-projection algorithm can be
enhanced by a post-processing step using the Laplacian of
Gaussian filter”” or introducing weighting factors®®, A wide
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Table 1 Comparisons of voxel-based NLOS reconstruction algorithms

Methods Confocal Non-confocal Prior Noise robustness
Albedo Normal Albedo Normal

LOG-BP?’ v/ X v/ X Object Low

LCT+ L, +TV? v X X X Object Medium

Occluder® v/ v X X Object Not known

FK® v/ X X X None Medium

D-LCT* v v X X Object Medium high

Phasor Field® v X v X None Medium

SOCR v v v v Signal & object High

The proposed method is the only one that is capable of reconstructing both albedo and surface normal in both confocal and non-confocal settings. It is also the only
one that incorporates the priors of the signal and object with the highest robustness to measurement noise

class of approaches solves optimization problems with
regularization terms of the hidden object’®***>**73% The
light-cone-transform can be improved by introducing L,
and TV regularizations® (LCT +L; +TV). The D-LCT
algorithm uses the L, regularization term to overcome the
rank deficiency. Besides, it is possible to attenuate the noise
in the measurements as a preprocessing step. However, the
pre-existing denoising techniques®>~>* tend to over smooth
the measured signal and lead to reconstructions with
less fine structures. An example is provided in Section 1 of
the Supplement.

In this paper, we propose an NLOS reconstruction fra-
mework with collaborative regularization of the signal and
the reconstructed object, which we term the signal—object
collaborative regularization (SOCR) method. Instead of
using the measurement directly, we introduce an
approximation of the oracle signal and treat it as an
optimization variable. We focus on the sparseness and
non-local self-similarity of the hidden object as well as the
smoothness of the estimated signal. A joint prior term for
NLOS imaging is constructed, which is a combination of
three different priors. We simplify the physical model
proposed by Tsai et al. " as a linear model and reconstruct
the hidden scene by solving a least-squares problem with
collaborative regularization. The main steps of the algo-
rithm are shown in Fig. 1c. To the best of our knowledge,
this is the first work that introduces the approximation of
oracle signals and the signal—object collaborative regular-
ization framework in NLOS imaging. The proposed fra-
mework is powerful in reconstructing both the albedo and
the surface normal of the hidden targets under the general
non-confocal settings, and the physical model used redu-
ces to the directional albedo model proposed by Young
et al. ** for the special case of the confocal settings. The
proposed method reconstructs the targets faithfully with
clear local structures and sharp boundaries, outperforming

previous methods in terms of both quantitative criteria
and visual quality (see Table 1).

Results

We demonstrate the effectiveness of the proposed
framework with both synthetic and experimental data.
The results are compared with the Laplacian of Gaus-
sian filtered back-projection27 (LOG-BP), L; and TV
regularized light—cone—tramsform3 (LCT+ L, +TV),
frequency-wavenumber migration® (F-K), and direc-
tional light-cone-transform®* (D-LCT) methods. Note
that the LOG-BP, LCT + L; + TV, and F-K methods can
only recover the albedo of the hidden scene, while
D-LCT can recover both the albedo and surface normal
simultaneously.

Synthetic data

The Zaragoza NLOS synthetic dataset® is a public
dataset containing synthetic data rendered from several
hidden objects. For confocal experiments, we choose the
letter T, US Air Force (USAF) test resolution chart, and
Stanford bunny from this dataset as typical examples of a
simple plane object, a plane target of several disjoint
components, and a surface with complex structures,
respectively. All these three objects are 0.5m from the
diffuse wall. For the letter T and the Stanford bunny, the
wall in the line of sight is sampled at 64 x 64 points over a
region of 0.6 x 0.6 m* and the photon travel distance is
0.0025 m in each time bin. For the instance of USAF, the
illumination points are downsampled to 64 x 64 grids over
a region of 1x1m” and the photon travels 0.003 m in
each time bin.

The reconstruction results of the letter T are shown in
Fig. 2b—f. Maximum intensity projections along the depth
direction are shown in the hot colormap. In addition, two
cross-section lines with the albedo values of the 13th row
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Fig. 2 Reconstruction results of the letter T (confocal). The ground truth is shown in a. Reconstructed albedo is shown in b-f. The absolute
albedo error of two cross-section lines (the 13th row and 38th column) are shown in g and h. The proposed method has the smallest error

64




Liu et al. Light: Science & Applications (2021)10:198

Page 5 of 20

a Ground truth b LOG-BP

0.01

algorithm reconstructs the object with the best visual quality
(.

Fig. 3 Reconstruction results of the USAF (confocal). The ground truth is shown in a. Reconstructed albedo is shown in b-f. The proposed
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and 38th column are shown on the top and right panels in
each sub-figure. It is shown that all methods find the letter
T correctly. The root mean square error (RMSE) of our
reconstructed albedo is 0.0788, which is much smaller
than those obtained by LOG-BP (0.1489), LCT +L; + TV
(0.1547), F-K (0.1079), and D-LCT (0.1298) methods. By
thresholding the albedo values <0.55, our reconstruction
matches perfectly with the ground truth, with RMSE
further reducing to 0.0572, much less than that of the
D-LCT algorithm (0.1266). Furthermore, we compare in
Fig. 2g and h the absolute error of the albedo along these
two cross-section lines. It is shown that our reconstruc-
tion has the smallest error.

In Fig. 3, we compare the depth maps of the recon-
structed target USAF. The background of LOG-BP,
LCT + L, + TV, F-K, and the D-LCT reconstructions are
not clean, while the SOCR reconstruction matches very
well with the ground truth.

The reconstruction results of the Stanford bunny are
compared in Fig. 4. The LOG-BP algorithm only finds the
location of the target approximately and the F-K algo-
rithm fails to recover the ears of the bunny. Although the
LCT 4+ L; + TV algorithm recovers the albedo correctly,
the boundary of the reconstructed target is blurry. Both
our method and the D-LCT method reconstruct the
hidden object well, while our model provides a sharper

boundary of the hidden target in each of the three
components.

In Fig. 5 we compare the depth error of the D-LCT and
SOCR reconstructions. Albedo values that are smaller
than 7% of the maximum intensity are thresholded to
zero. The background is shown in black, while the
reconstruction outside the ground truth is shown in
white. In this experiment, the oracle scene contains 1231
non-zero albedo values. The boundary of our recon-
struction matches the ground truth better with only 46
voxels outside the ground truth, which is about one-sixth
of the D-LCT reconstruction (254 voxels). In addition, the
depth error of our reconstruction at the legs and chest of
the bunny is also smaller.

To demonstrate the efficiency of our algorithm in
recovering the surface normal, we generate synthetic data
of a pyramid (see Fig. 1a), with a simplified version of the
three-point rendering model®” under the confocal set-
tings. The central axis of the pyramid is vertical to the
visible wall and it is 0.2 m in height with a base length of
0.5 m. The wall in the line of sight is sampled at 64 x 64
points over a region of 2 x2m?” and the photon travel
distance is 0.0096 m in each time bin. In Fig. 1b and ¢, we
show the reconstruction, estimated signal, and learned
patterns of the pyramid. The results are gradually
improved as the iteration proceeds.
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Fig. 4 Reconstruction results of the Stanford bunny (confocal). The ground truth is shown in a. Reconstructions are shown in b—f. The proposed
method provides a sparser reconstruction than the D-LCT algorithm, and the boundary is much sharper than the one given by LCT + Ly + TV
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In Fig. 6b we compare the depth error of the D-LCT and
SOCR reconstructions. Albedo values that are <15% of the
maximum intensity are thresholded to zero. Reconstruction
outside the ground truth is shown in white. The D-LCT
reconstruction fails to capture the boundary correctly, with
426 excessive voxels outside the ground truth. In contrast,
the proposed model provides an accurate estimation of the
target, with only 65 excessive voxels. The depth RMSE of the
SOCR reconstruction is 0.65 cm at the target, which is 41%
smaller than the D-LCT reconstruction (1.10 cm).

In Fig. 6¢ we show the error of surface normal, which is
defined as the angle between the reconstruction and the
ground truth. The normal on the edges of the pyramid is
not well defined and thus not included. Our algorithm
provides an accurate estimation of the surface normal of
the entire target, while the result of the D-LCT algorithm
has a larger surface normal error near the edges. The
mean normal error of D-LCT and our algorithm are 2.90°

and 1.62°, respectively. Besides, the maximum normal
error of the D-LCT algorithm is 11.81°, which is two times
larger than ours (5.23°). Quantitative comparisons of the
D-LCT and SOCR reconstructions are summarized in
Tabel 2.

To demonstrate the efficiency of our method under
non-confocal settings, we compare our method with
existing non-confocal solvers (the LOG-BP algorithm and
the phasor field method®). Besides, we bring the confocal
solvers (LCT+L;+ TV and F-K) into comparison by
converting the non-confocal measurements to confocal
data using the midpoint approximation technique®. We
use the simulated data of the letter K from the NLoS
Benchmark dataset®® to test the algorithms. The visible
wall is illuminated at 64 x 64 points in a region of 0.512 x
0.512 m? The detection point locates at the center of the
illuminating region. The photon travel distance is 0.001 m
per second. Reconstruction results are shown in Fig. 7.
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Fig. 5 Absolute depth error of the D-LCT and the SOCR
reconstruction. The absolute depth error of the D-LCT reconstruction
is shown in a. The absolute depth error of the SOCR reconstruction is
shown in b. The SOCR reconstruction has a smaller absolute depth
error at the chest and legs of the bunny. The D-LCT reconstruction has
254 excessive voxels outside the ground truth, which is 20.63% of the
non-zero voxels contained in the ground truth (1231), while the
proposed algorithm has 46 excessive voxels (3.74%), which is about
one-sixth of the D-LCT reconstruction

The phasor field method fails to reconstruct the details at
this spatial resolution and the result of the LOG-BP is
blurry. The reconstruction result of the F-K method is
noisy. The LCT +L; + TV and D-LCT methods intro-
duce artifacts, which may arise from the approximation
error in the confocal signals. The proposed method
reconstructs the letter with the highest contrast and little
noise. The blue box in each subfigure shows a zoom-in of
a corner of the hidden target. In our reconstruction, the
two strokes of the letter K are well separated, while all
other methods provide blurry reconstructions.

Measured data

We use the Stanford dataset® to test our framework
with measured data under confocal settings. The mea-
surements are captured at 512 x 512 focal points over a
square region of 2 x 2m? and downsampled to 64 x 64.
The hidden scenes are 1 m from the illumination wall.
For the instance of the statue, the exposure time is
10 min. As is shown in Fig. 8, the reconstructed albedo of
our algorithm has higher contrast compared to other
methods. Besides, the three components of our recon-
struction are clear with less noise.

In Figs. 9 and 10, we show reconstruction results of the
instance of the dragon with a total exposure time of
60 min and 15s, respectively. The specularity of the
material and high-level noise in the measured data make
it challenging to obtain fine reconstructions. For the case
of a long exposure time, all methods find the target
correctly. Our algorithm provides a clear reconstruction
of the object with fine details and little noise due to the
collaborative regularization. In extremely short exposure
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time, reconstructions of existing methods are of low
quality and contain heavy noise, while the proposed
method provides a faithful reconstruction of the hidden
target. The head and tail of the dragon are well recon-
structed with fine details.

To test the proposed framework for outdoor applica-
tions under confocal settings, we use the scenario con-
taining a statue and a potted plant on the table in this
dataset. The total exposure time is 10 min. As is shown in
Fig. 11, the LOG-BP reconstruction is of low quality, with
many discontinuous fragments. The LCT +L; + TV and
F-K reconstructions contain background noise. Both the
D-LCT method and the proposed algorithm reconstruct
the scene well, while our reconstruction is less noisy,
especially in the y-component. Besides, we also provide a
better reconstruction of the normal of the white table-
cloth than the D-LCT method.

To test the proposed method on measured data under
non-confocal settings, we use the instances of the NLOS
letters, the shelf, and the office scene from the dataset
provided by Liu et al.®. The time resolution is down-
sampled to 16 ps. We also convert the non-confocal
measurements to confocal signals using the midpoint
approximation technique to bring the LCT +L; + TV,
F-K, and D-LCT methods into comparison. For the
instances of the NLOS letters and the shelf, the visible
surface is illuminated at 130 x 180 points and the dis-
tance of the adjacent sampling grids is 0.01 m. The
photons are detected at a fixed point, which is 1.05 m to
the left and 0.73 m to the top of the sampling region. The
exposure time is 390 min in total. For the instance of the
office scene, the visible surface is illuminated at 131 x
181 points. The photons are detected at a fixed point,
which is 1.04 m to the left and 0.61 m to the top of the
sampling region. The exposure time per pixel measure-
ment is 1ms and it takes only 23s for the whole
measurements.

In Fig. 12 we compare our reconstruction result of the
letters NLOS with existing reconstruction algorithms.
The LOG-BP method provides a blurry reconstruction of
the gap between the letters ‘N” and ‘O’. The phasor field
reconstruction is sharp, but with artifacts outside the
ground truth. The F-K, LCT+L; + TV, and D-LCT
reconstructions are noisy and contain artifacts. This
indicates the fact that the approximation error in the
process of converting non-confocal measurements to
confocal signals has considerable influence and cannot be
neglected. Our reconstruction captures the four letters
correctly and stands out as the only one that reconstructs
the gaps between the four letters clearly.

In Fig. 13 we show reconstruction results of the
instance of the shelf, which is a complex scenario.
The measurements are obtained with all the lights on”.
The reconstruction results of the F-K, LCT +L; + TV
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Fig. 6 Absolute depth error and normal error of the pyramid (confocal). The ground truth is shown in a. Absolute depth error of the D-LCT and
SOCR reconstructions is compared in b. Normal error of the D-LCT and SOCR reconstructions is shown in ¢. The depth error is shown in the same way
as in Fig. 5, and the normal error is defined as the angle between the normal of the reconstruction and the ground truth
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and D-LCT methods are blurry and noisy. This phe-
nomenon can result from the approximation error in the
process of converting the non-confocal measurements to
confocal signals. The bottle in the phasor field recon-
struction is over smoothed and the stone next to the
letter T is not correctly reconstructed. Both the LOG-BP
method and the SOCR algorithm reconstruct the targets
well, while SOCR also reconstructs the surface normal of
the hidden scene.

In Fig. 14 we compare reconstruction results of the
instance of the office scene. The D-LCT method fails to
reconstruct the chair correctly. The F-K and LCT + L; +
TV reconstructions are noisy. The LOG-BP and phasor
field reconstruction contain artifacts in the background.
The proposed framework provides a smooth reconstruc-
tion of the scene.

Discussion

We have proposed a signal-object collaborative reg-
ularization based optimization framework that provides
accurate estimations of both the albedo and surface nor-
mal under confocal and non-confocal NLOS settings.
Reconstructions of the proposed method have sharp
boundaries and contain very little noise.

Compatibility with the physical model

In our framework, the reconstruction task is accom-
plished by solving an optimization problem with data
fidelity and joint regularization. It can be used as a plug-in
module in different physical models*>***!. In addition,
the proposed collaborative regularization term can be
further simplified to accommodate cases where only the
albedo needs to be reconstructed.
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Table 2 Comparisons of the D-LCT and SOCR reconstructions of the pyramid

Methods Excessive voxels Depth error (RMSE) (cm) Normal error (mean) Normal error (maximum)
D-LCT 426 1.10 2.90° 11.81°
SOCR 65 0.65 162° 5.23°

b LOG-BP

0.00 1.00 0.00

0.01 1.00 0.00

\

a Ground truth

C Phasor field

Fig. 7 Reconstruction results of the letter K (non-confocal). The ground truth is shown in a. Reconstructions are shown in b-g. The F-K
reconstruction is noisy. The LCT + Ly 4+ TV and D-LCT reconstructions are blurry and contain artifacts. The phasor field method does not provide a
clear reconstruction. The proposed method has the highest contrast and the corners are well reconstructed

1.00 0.00 1.00

1.00 0.01 1.00

Choice of the parameters

The proposed method involves several regularization
parameters. To reduce the difficulty of solving the system,
we decompose the optimization problem into sub-problems.
Many of them are closely related to image denoising pro-
blems where the choice of the parameters is well studied®*>°,
Most of the parameters are determined adaptively and

automatically. In Section 3 of the Supplement, we provide a
detailed discussion of the choice of parameters.

Complexity and execution time

In the proposed framework, the reconstruction is realized
by solving an optimization problem with orthogonal con-
straints. This problem is solved using alternating iterations,
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Fig. 8 Reconstruction results of the statue (confocal, 10 min). The ground truth is shown in a. Reconstructions are shown in b-f. Our reconstruction
has the highest contrast, with clear local structures and less noise outside the target. The three components of our reconstruction are jointly sparse due
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which pays a high cost of increased computations. When
the reconstruction domain is discretized by N xN xN
voxels and the visible wall is sampled at N x N points, the
time and memory complexity are O(N®) and O(N®),
respectively. It takes about 3 min to reconstruct the instance
of the letter K on an Intel Xeon Gold 5218 server with 64
cores. More details are provided in section 4 of the sup-
plement. The proposed framework is easy to implement
using embarrassingly parallel algorithms*’. Compared to the
reconstruction quality improved, the computational time
could be regarded as secondary in importance, considering
the growing computational capabilities and possible imple-
mentations on large-scale parallel computing platforms.

Convergence analysis
The proposed constrained optimization problem (14) is
highly nonlinear and nonconvex due to the L; regularization

term and the two orthogonal constraints. It is decomposed
into sub-problems and solved approximately (see Section 2
of the Supplement). In the initializing stage, a convex least-
squares problem is solved using the conjugate gradient
method, so the final reconstruction is not sensitive to the
initial value. In all experiments, we use zero values as an
initialization of the hidden targets. Then, an L; regularized
problem is solved efficiently using the split Bregman
method with convergence guarantee®'. In the sub-problem
of dictionary learning, we use the discrete cosine matrices as
initial values of the two orthogonal dictionaries and update
the dictionaries and the coefficients iteratively. The ortho-
gonality constraints are preserved in each iteration and the
corresponding objective value decreases monotonically”,
The sub-problem of updating the estimated signal is also
solved iteratively and the corresponding objective functions
are convex. Convergence of the sub-problem of updating
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Fig. 9 Reconstruction results of the dragon (confocal, 60 min). The ground truth is shown in a. Reconstructions are shown in b—f. The
reconstruction results of the BP, LCT + Ly + TV, F-K, and D-LCT methods are noisy due to the specularity of the dragon and heavy noise in measured
data. Our framework provides a reconstruction with little noise outside the target
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the reconstructed target is also guaranteed using the split
Bregman method. The global convergence is not obtained,
because the reconstructed target is updated approximately
(see Section 2 of the Supplement). Nonetheless, numerical
experiments indicate the empirical convergence of the
proposed algorithm.

Feature extraction of the reconstructed target

In the proposed collaborative regularization term, two
dictionaries are used to capture the local structures and
non-local correlations of the reconstructed target. In Fig. 15
we show the spatial dictionaries learned from the instances
of the letter T and the pyramid. The dictionary atoms are of
size 3x3x 3 and are shown in the vector form in each
column of the matrices. For each instance, four atoms are
shown in detail in the form of slices parallel to the visible
wall. The atoms of the letter T capture the vertical and

horizontal structures of the target, while the atoms learned
from the instance of the pyramid capture the orientations of
its four faces. The dictionary atoms and their corresponding
coefficients can be viewed as features of the reconstructed
target, which can be used for further tasks, such as recog-
nition and classification.

Necessity of introducing the joint prior

The proposed joint signal—object prior is a combination
of three priors, namely (I) the sparseness prior of the target,
(IT) the non-local self-similarity prior of the target, and (III)
the smoothness prior of the signal. To demonstrate the
necessity of introducing them all, in Fig. 16 we show
reconstruction results of the instance of the dragon in 15s
exposure time under different regularization settings. As is
shown in Fig. 16a, when no prior is introduced, the solution
of the least-squares problem is of low quality due to high
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Fig. 10 Reconstruction results of the dragon (confocal, 15 s). The ground truth is shown in a. Reconstructions are shown in b—f. Reconstruction
results of the LOG-BP, F-K, and D-LCT methods are noisy. The LCT + L; 4+ TV reconstruction contains smooth background noise. The x-component
and y-component of the D-LCT method are corrupted with noise. The proposed framework provides a faithful reconstruction of the target with

d F-K

e.4 z-component

f.4 z-component

measurement noise, and one can hardly identify the dragon
from background noise. When the sparseness prior of the
object is used, the visual quality is much better, but the
reconstruction still contains background noise (Fig. 16b). As
is shown in Fig. 16¢ and d, introducing the non-local self-
similarity prior or the smoothness prior alone only brings
minor improvements. In the absence of the smoothness
prior or the non-local self-similarity prior, the reconstruc-
tions contain artifacts (Fig. 16e) or discontinuities (Fig. 16f).
In the absence of the sparseness prior, the dictionary
learning stage actually learns the background noise, and the
reconstruction does not contain the hidden target (Fig. 16g).
As is shown in Fig. 16h, a faithful reconstruction of the
hidden target is obtained with collaborative regularization,
even in the presence of high measurement noise.

Materials and methods

The NLOS reconstruction process depends on the
physical model used. Rather than putting forward a new
physical model, we simplify the model introduced by
Tsai et al. > as

I o) ol ) _ (H=x9i-y—2) nxyz)
(%, x4, 90 8) = [ffq (2 ey2)

) (xéfx.y:lfy,fz)-n(x,y,z,:)
d(x’dﬁ}/d,xy,z)x f(xvyﬁ Z)

8(d (x5, %,,2) +d(x, ¥4, %,,2) — ct)drdydz

(1)

in which ¢ is the speed of light, the visible wall is
positioned at the plane z=0, x and y are the
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Fig. 11 Reconstruction results of the outdoor scene (confocal, 10 min). The experimental set-up is shown in a. Reconstructions are shown in
b—f. The LOG-BP reconstruction is of low quality. Both the LCT 4 L; + TV and F-K reconstructions contain background noise. Our reconstruction has
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coordinates of the illumination point on the visible wall,
%y and y} are the coordinates of the detection point on
the visible wall. T(x{, Vis X, Vs t) is the photon intensity
measured at time t. f(x,y,z) is the albedo value at the
point (x,y,z), n(x,y,z,:) is a vector that represents the
unit surface normal pointing toward the visible wall at
the point (x,y,z). d represents the Dirac delta function.
The distances between the point (x,7,z) in the
reconstructed domain and the illumination and detec-
tion points are given by

d(x;7y{>xaya Z) = \/(x{ —x)2+(y; —y)2+z2 (2)

Ay s ) =\ (= + 04 =)+ @)

In Eq. (1), the measurement is nonlinear with respect to
the surface normal. We simplify this model as

EASA
x’yxyz

y z) n(x.yz,:)

Mo s e f 3.2
-8(d (%, 5, %,y, z) +d(9cd,y;l x,9,Z ) — ct)dxdydz

(4)

T (&, 5, %), Yo £) =

By denoting u = fn, Eq. (4) can be rewritten as

X, —x z)u(xyz)

Bt t) = [
-6(d(xi,y;,x,y, ) +d(xd,yd,x,y,z) — ct)dxdydz

(5)

which is a linear model with respect to the variable u.
For the special case of the confocal settings, we have
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Fig. 12 Reconstruction results of the NLOS letters (non-confocal, 390 min). The ground truth is shown in a. Reconstructions are shown in b-g.
Reconstruction results of the LCT 4 Ly + TV, LOG-BP, phasor field and D-LCT methods contain artifacts. The SOCR reconstruction is noiseless, and the
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¥ = x| =« and y' = y| = y;. Equation (5) reduces to the
directional-albedo model**

/o o (&' —xy —y,—z)u(xy.2,:)
Ts,con(x Y, t) = fffﬂ 4d(x’,y’,xﬁy,z)5 6

-0(2d(x, 9, x,y,2) — ct)dxdydz

In both confocal and non-confocal cases, we find the vector
field u that matches the corresponding measurements.

Then, the albedo and surface normal of the reconstructed
target can be computed as L = |ju|| and n = T The
surface normal is not defined where the albedo is zero.

The reconstruction of the vector field u can be obtained
by solving the regularized least-squares problem

u* = argmin ||Au — El”z+l"(u) (7)
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Fig. 13 Reconstruction results of the shelf with lights on (non-confocal, 390 min). The ground truth is shown in a. Reconstructions are shown in
b-g. The hidden scene is measured under strong ambient light. Both the LOG-BP method and the SOCR algorithm reconstruct the targets well, while
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in which A is the forward model described in Eq. (5) for
the non-confocal settings or Eq. (6) for the confocal
settings, d represents the raw measurement and I'(u) is a
regularization term of the reconstruction u.

In real-world applications, the measurements are cor-
rupted with noise unavoidably, which may lead to noisy

reconstructions. To tackle this problem, we introduce
the estimated signal d as an approximation of the oracle
signal corresponding to the real hidden scene and use
the raw measurements as a source that provides partial
information of the estimated signal. Joint priors for d and
u are designed to obtain high-quality reconstructions.
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Fig. 14 Reconstruction results of the office scene (non-confocal, 23 s). The ground truth is shown in a. Reconstructions are shown in b-g. In this
scene, the shelf is partially occluded by the chair, which makes it hard to reconstruct fine details. Reconstructed targets obtained with the LCT + Ly +
TV, F-K and D-LCT methods are noisy. The LOG-BP and phasor field reconstructions contain artifacts. The proposed method provides a smooth
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The proposed framework is given by
(u*,d*) = argmin ||Au — d|*+J (u,d) (8)
u,d

in which J(u,d) is the collaborative regularization term
containing the raw measurement d

In this work, the joint prior we construct is based
on three assumptions: sparseness of the hidden surface,

self-similarity of the hidden object, and smoothness of the
estimated signal. The regularization term is formulated as a
weighted combination of three priors and the optimization
problem is solved using the alternating iteration method.
The first prior focuses on the sparseness of the hidden
scene. To recover the unseen objects, we use discrete voxels
in three dimensions. However, it is only possible to recon-
struct the surface of the hidden object where photons can
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Fig. 15 The spatial dictionaries learned from the instances of the letter T and the pyramid. The spatial dictionary learned from the instance of
the letter T is shown in a. The spatial dictionary learned from the instance of the pyramid is shown in b. For the letter T, the first atom captures the
low-frequency pattern of the local patches. The second, eighth, and tenth atoms capture the local structures of the object in three directions. For the
instance of the pyramid, the dictionary atoms provide an accurate representation of the four faces. These two dictionaries differ significantly and can
be used in further tasks like recognition and classification

J

reach. For this reason, the directional albedo is sparse. We
impose the sparseness on the albedo and the first prior is

= Z L(ih i23 l3)
i,d2,03
(9)

in which L represents the albedo. i1, i and i3 are indices
of the voxels in three directions.

The second prior is introduced to capture local struc-
tures of the hidden target. It is assumed that the hidden
scene is subject to a non-local self-similarity prior, which
means that local structures repeat many times in the
reconstruction domain. To preserve the orientation of the
surface, we impose this prior on the albedo L. We call a
sub-block matrix of the albedo L a local spatial patch. For
each reference patch with the voxel (iy,is,i3) in the left,
top and front, we find its H nearest neighbors in terms of
root mean square error and call these patches the neigh-
boring patches of the reference patch. Then, these patches
are stretched into vectors and listed column by column to
form a matrix such that their similarities with the reference
patch are in descending order. We denote this matrix by

]1(“) = Z Zu(ilai2ai3aj)2

i,z \| j=

B, i,.is(L). Our goal is to find two orthogonal matrices that
sparsely represent the local spatial structures (columns)
and non-local correlations (rows) of the targets. This sparse
approximation scheme can be intuitively written by

Bi, i,i;(L) = DsCj, ;, i, DT (10)

1:i2,13
in which C; ;; is the sparse matrix that consists of
transform coefficients, Ds and D, are orthogonal matrices.
The second regularization term is given by

J2 (u) = Z ( ||Bil)i27i3 (L) - DSCil,izyisDrj;H2+/1;2m|ciuiz,is ’0)
1,02,03
(11)

in which the summation is over all possible blocks. ij, iy
and i3 are indices of the voxel in the left, top and front of
the reference patch, Cil,i21i3| o is the number of nonzero
values of C;, ;, ;; and A, is a fixed parameter that controls
sparsity of the transform coefficients.

The third prior concerns smoothness of the estimated
signal. Since noisy data usually lead to noisy reconstruction,
we introduce the variable d as an approximation of the ideal

signal. We denote by P ;, ;,)(d) the vector form of a patch
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Fig. 16 Reconstruction results of the dragon with different regularizations (confocal, 15 s). Reconstruction without regularization is shown in

a. Reconstructions with different regularization settings are shown in b-h. The measurements contain heavy noise due to extreme short exposure time. The
specularity of the material also makes the physical model deviate from the measurement process. The proposed joint signal-object prior is a combination of
three priors, namely (I) the sparseness prior of the target, (Il) the non-local self-similarity prior of the target, and (lll) the smoothness prior of the signal
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of the raw measurement, which is a sub-block of the mea-
sured data. (i1, i, i3) represents the indices of the voxel of
this patch in the left, top and front. In the ideal Wiener filter,
the penalty is imposed on coefficients in the frequency
domain with weights determined by the oracle signal and the
noise level. In real applications, the oracle signal is not known,
but an approximation can be obtained with the reconstruc-
tion. Based on this observation, the third prior is given by

J3(u,d) = [[d— dH Fpadsa D |[Pis iy (d) — DS

ll iz, 13

(i1,i2,i3) HZ
+Apd Z Hp(il«lé»is)(d) HZ

i,i2,i3

2
A i Z j (d/TP(il [:,@)(Au) S ‘12"‘3>(j)>
i1,i2,13,, 2443

- DS(il«iZ»iS)

(12)

in which d stands for the noisy measurement, i, i and i3
are indices of the voxel in the left, front, and top of the
patch. P ;, iy (d), P, j, i) (d) and Py;, ;, ;) (Au) are patches
of the estimated signal, raw measurement and the
simulated data generated by the reconstruction with the
physical model respectively. D represents the Kronecker
product of the discrete cosine transform matrices in three
spatial directions with its /™ filter denoted by d. S(ivinis) 18
the vector consisting of the corresponding transform
coefficients in the frequency domain with its /™ element
denoted by S;, ;, i) (/). Apa, Asa and o are fixed parameters.

The first two terms provide a balance between the noisy
measurement and the signal estimated by the empirical
Wiener filter. The last two terms correspond to Wiener
filtering. In this formulation, a better approximation of
the oracle signal can be obtained, which in turn helps to
improve the quality of the reconstructed target.
Finally, we formulate the collaborative regularization
term as a weighted combination of these three prior terms.
J(u,d) = s,Ji(w) + Ao () + AiJ3(u, d) (13)
in which s,, 1, and A are fixed parameters. The proposed
SOCR reconstruction model is then written as

min

A v 3 L{in,
wd,D.Dy,C ” u—d|*+s, 3 L(ir,ia, i)

i1,ia,i3

A X2 ( [|Bi, s (L) — Dscil.iz,i5D§|12+/1;u\Cil.iz.,ia {0)

i1,iz,i3

+ ]l d = Al +Aadps 3 [P i) () = DS (s i ||”
i1,i,03

2
+Aadpa Z . (W S(il.iz,is)(j)) (14)
i1,02.03,] 7 i3

+Aadpirsa 3 ||Piiipin) (d) — DS
b

st DiDn=1Ip,.

S, 22

Z“(lhlz,i&l)

j=1

2
(i1,i2,03) H

DIDy=1Iy
L(iy, i, i3) =

in which py, p, and p, are sizes of the patches of the
reconstructed albedo in three directions. H is the number
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of neighbors selected for each patch. This problem is
solved using the alternative iteration method with two
stages, and the main steps are shown in Fig. 1c. In the
initializing stage, a basic reconstruction is obtained by
solving the least-squares problem. Then, the sparseness
parameter is adaptively chosen and a sparse reconstruction
is obtained by solving an L;-regularized problem. This
reconstruction is used to initialize the dictionaries. In the
second stage, the estimated signal, reconstructed target and
dictionaries are updated iteratively to obtain the final
reconstruction. In Section 2 of the Supplement, we provide
a detailed discussion of the scheme to solve this problem.
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