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Abstract Energy loss in porous media containing fluids is typically caused by a variety of dynamic mechanisms. In the Biot
theory, energy loss only includes the frictional dissipation between the solid phase and the fluid phase, resulting in under-
estimation of the dispersion and attenuation of the waves in the low frequency range. To develop a dynamic model that can
predict the high dispersion and strong attenuation of waves at the seismic band, we introduce viscoelasticity into the Biot model
and use fractional derivatives to describe the viscoelastic mechanism, and finally propose a new wave propagation model. Unlike
the Biot model, the proposed model includes the intrinsic dissipation of the solid frame. We investigate the effects of the
fractional order parameters on the dispersion and attenuation of the P- and S-waves using several numerical experiments.
Furthermore, we use several groups of experimental data from different fluid-saturated rocks to testify the validity of the new
model. The results demonstrate that the new model provides more accurate predictions of high dispersion and strong attenuation
of different waves in the low frequency range.
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1. Introduction

Petroleum is one of the most important energy resources for
human society, and its exploration has become a research
hotspot during the past few decades. Underground geological
information is critical in the search for oil reservoirs. One of the
most popular methods is the reservoir inversion based on wave
propagation models. Therefore, it is of crucial importance to
establish an appropriate physical model to simulate the wave
propagation in underground porous media. The straightforward
wave propagation model is the elastic wave model in isotropic
media (Wang et al., 2012). However, the actual media beneath
the surface usually consist of the rock frame, fluids and gases

(Nie and Yang, 2008). It leads to complex coupling dynamic
mechanisms in this multiphase mixture and the in-
appropriateness of the assumption of the elasticity.
Biot (1956a, 1956b) first established a two-phase wave

propagation model that considers the dynamic coupling
effects and dissipation mechanisms between the fluid phase
and solid phase in porous media. The Biot model laid the
foundation for studying linear acoustics of multiphase
porous media. Later, Plona (1980) discovered the existence
of the slow P-wave in fluid-saturated porous media in ex-
periments, which confirmed the validity of the Biot theory.
Subsequently, many scholars have developed a series of
effective models based on the Biot theory (White, 1975;
Berryman and Thigpen, 1985; Dvorkin and Nur, 1993;
Johnson, 2001; Pride et al., 2004; Ba et al., 2008a, 2008b,
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2017). However, the energy dissipation in the Biot theory
occurs due to the friction caused by the relative movement
between the fluid phase and the solid phase at the macro-
scopic scale. In tight rocks or rocks filled with highly vis-
cous fluids, there is almost no relative macroscopic
displacement between the two phases, but experiments still
display enormous energy loss and phase velocity dispersion
at the seismic band (Pimienta et al., 2017; Yin et al., 2017;
Morozov and Deng, 2018), which cannot be interpreted by
the Biot theory.
To provide a more appropriate explanation for the above

phenomenon, a lot of researchers have made extensive ef-
forts to take other dissipative mechanisms into account.
Many experiments have revealed that the heterogeneity due
to different pore shapes and distributions can also con-
tribute to wave attenuation (Cheng et al., 2019; Zhang L et
al., 2019). Mavko and Nur (1979) first considered the effect
of squirt flow mechanism on the waves based on the dif-
ferences in pore shapes and distributions at microscopic
scales. The authors believed that under wave excitation, the
fluid in flat fractures of the rock would flow outward in the
direction perpendicular to the wave propagation. After-
ward, many researchers proposed various models including
the squirt-flow mechanism, such as unified models in-
cluding the squirt-flow and Biot mechanisms (Dvorkin and
Nur, 1993; Diallo and Appel, 2000; Parra, 1997; Yang and
Zhang, 2000, 2002; Yang et al., 2014), and simplified
squirt-flow models using measurable parameters (Gurevich
et al., 2010). Generally, the squirt-flow model does provide
an adequate interpretation for strong attenuation in low
permeability cases (Dvorkin and Nur, 1993; Diallo et al.,
2003; Subramaniyan et al., 2015). However, in real sub-
surface rocks, the velocity dispersion and the strong at-
tenuation predicted by the squirt-flow model mostly occur
in the acoustic and ultrasonic bands (Dvorkin et al., 1994,
1995; Gurevich et al., 2010). This result indicates that the
squirt-flow model is still lack of accuracy for predicting the
dispersion and attenuation, especially in tight rocks in the
low frequency range.
In fluid-saturated rocks, the stiffness of the pores is vari-

able due to the heterogeneity of the pores. The fluids inside
some stiff pores do not move; thus, we can consider both this
part of the fluids and the rock skeleton as a new equivalent
solid frame. It is obvious that the new equivalent frame has
intrinsic dissipation under wave excitation. Viscoelasticity is
widely used to describe this intrinsic dissipation mechanism
accurately. The concept of viscoelasticity has existed for a
long time. Maxwell (1867), Voigt (1892), Kelvin (1882) and
Boltzmann (1878) have successively developed the linear
viscoelastic theory. Later, viscoelasticity was included in
various poroelastic models to describe wave dispersion and
attenuation (Biot, 1962a, 1962b; Cheng et al., 2002; Nie and
Yang, 2008; Nie et al., 2010; Xie and Yang, 2018; Zhang B Y

et al., 2019), and the concept was also used in wave-field
modeling (Arntsen and Carcione, 2001; Du, 2004; Zhang et
al., 2018). The inclusion of viscoelasticity in the models
provided a more reasonable explanation for the large dis-
persion and strong attenuation in complex tight rocks.
However, most viscoelastic models are based on the as-

sumption that the medium is linear viscoelastic, which means
that its constitutive relationship can be described by a linear
combination of several springs and dashpots. However, the
dynamic mechanism in porous multiphase media is ex-
tremely complicated, and linear viscoelastic models cannot
precisely describe the physical properties of the media. A
suitable method to improve existing linear viscoelastic
models and ensure their applicability to general conditions is
using fractional derivatives to replace integral derivatives of
the stress and the strain. On the other hand, according to the
concept of viscoelasticity, the current status of the stress and
strain is determined by their accumulation in the last period,
which can be treated as an integral of time in mathematics.
This coincides with the definition of the fractional derivative
(Samko et al., 1993). Therefore, the viscoelastic properties of
the media can be described more precisely by incorporating
fractional derivatives into the viscoelastic constitutive re-
lationship (Deng and Morozov, 2018). Furthermore, frac-
tional viscoelastic models can be used to approximate the
dispersion and attenuation caused by other mechanisms, such
as squirt flow (Carcione and Gurevich, 2011) and patchy
saturation (Picotti and Carcione, 2017); thus, fractional vis-
coelastic models are widely applicable.
In this study, we apply the fractional viscoelastic con-

stitutive relationship to the rock skeleton and establish a new
wave propagation model for porous reservoir media based on
the Biot theory.

2. Wave propagation model

In this section, we describe the constitutive relationship of 3-D
homogeneous isotropic elastic media and generalize it to sa-
tisfy the case of fractional viscoelasticity. Then we apply the
new constitutive relationship to the solid frame and modify the
Biot model to obtain the new wave propagation model.

2.1 Fractional viscoelastic constitutive relationship

The stress-strain relation in 3-D isotropic elastic media is
expressed as

µ= + 2 , (1)ij kk ij ij

where σij denotes the stress components, εij denotes the strain
components, and λ and μ are the Lamé constants. Here we
use the Einstein summation convention, i.e., σkk=σ11+σ22+σ33
and εkk=ε11+ε22+ε33. We rewrite eq. (1) as
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µ K
S µd

= (3 + 2 ) = 3 ,
= 2 , (2)kk kk kk

ij ij

where K is the bulk modulus, Sij=σij−1/3σkkδij and Sij=σij−1/
3σkkδij correspond to the deviatoric stress and strain compo-
nents, respectively. Eq. (2) shows that the bulk stress (σkk) is
proportional to the bulk strain (εkk) and the deviatoric stress
(Sij) is proportional to the deviatoric strain (dij), which is
similar to the 1-D Hooke’s law. Therefore, we can separate
the stress-strain relationship in 3-D isotropic media into two
parts. One is the relationship between the volume change and
the bulk stress, and the other is the relationship between the
shape change and the shear stress. In real materials, these two
stress-strain relationships may be different. For example, the
bulk stress of an ideal fluid is proportional to the bulk strain,
whereas the deviatoric stress is zero because the fluid cannot
bear shear stress; the bulk stress of an incompressible
Newtonian fluid is also proportional to the bulk strain,
whereas the shear stress is proportional to the change rate of
the shear strain. Therefore, real materials exhibit different
elastic behaviors under bulk stress and shear stress, and
different constitutive relationships can be used to describe
the two mechanisms.
Experiments have shown that many subsurface rocks, even

tight rocks, display strong attenuation at the seismic band
(Batzle et al., 2006; Chapman et al., 2016). Given these facts,
we want to introduce the viscoelastic mechanism to describe
energy dissipation. For this, following the concept of frac-
tional viscoelastic constitution relationships widely used in
material sciences (Pritz, 2003; Konjik et al., 2010), we ex-
tend eq. (2) to include the viscoelastic mechanisms for both
bulk dilation and shape deformation and obtain the following
new viscoelastic constitutive relationship:
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are viscoelastic parameters.

Specifically,M1 andM2 are the static bulk and shear moduli;
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2
and

2
are the relaxation times. We will discuss

how to determine these parameters in the next section. ξ1, ξ2,
β1 and β2 are the orders of the fractional derivatives. The
fractional derivative of order α for a function f(t) was pro-
vided by Caputo (1976) as follows:
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where R+, n N and n n1 < . x( ) is the gamma
function.

The new fractional viscoelastic constitutive relationship
(eq. (3)) can degenerate to an elastic constitutive relationship
or Zener’s viscoelastic constitutive relationship. Actually, for
the elastic case, the strain will respond to a change in stress
instantaneously, meaning all relation time parameters (

1
,

1
,

2
,

2
) should be zero. By setting = = = = 0

1 1 2 2
,

the fractional viscoelastic constitutive relationship (eq. (3))
degenerates to elastic constitutive relationship (eq. (2)). On
the other hand, when the fractional order parameters
ξ1=ξ2=β1=β2=1, both constitutive relationships in eq. (3)
degenerate to Zener’s viscoelastic constitutive relationship
(Zener, 1948). Therefore, the new fractional viscoelastic
model can be regarded as a generalization of the elastic
model and Zener’s model. Compared with Zener’s model,
the orders of the time derivatives in the fractional viscoe-
lastic model can be any positive real number; thus, the pro-
posed model can describe the viscoelastic mechanism more
accurately. In other words, this new model can describe the
continuous viscoelastic deformation of materials under the
stress. Mathematically, the fractional derivative is defined by
the integral equation (eq. (4)). By introducing fractional
derivatives into viscoelastic relationships, we consider the
cumulative stress and strain to establish constitutive re-
lationships. This approach is consistent with the concept of
viscoelasticity. From enormous experimental data provided
by other researchers (Batzle et al., 2006; Pimienta et al.,
2015, 2016, 2017; Spencer and Shine, 2016; Chapman et al.,
2016, 2017; Borgomano et al., 2017; Yin et al., 2017;
Szewczyk et al., 2018), we select , , , (0, 2)1 2 1 2 . The
details will be described in following sections.
We rewrite the viscoelastic constitutive relationship (eq.

(3)) in the following convolution form:

t

S t d

= 3 ,

= 2 ,
(5)

kk kk
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where ψ1 and ψ2 are the relaxation functions. By applying the
Fourier transform to eqs. (3) and (5), we obtain
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where F[ ] represents the Fourier transform. We use the
Mittag-Leffler functions to obtain the time-domain expres-
sions of ψ1 and ψ2 (Samko et al., 1993). The detailed ex-
pressions of ψ1 and ψ2 are found in Appendix A (https://link.
springer.com). By rewriting eq. (5), we have the following
equation:

t t= 2
3 + 2 . (7)ij kk ij ij1 2 2
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Eq. (7) is the proposed new fractional viscoelastic con-
stitutive relationship for a solid frame. In the next subsection,
we incorporate eq. (7) into the Biot model to derive a new
wave propagation model in fluid-saturated porous media.

2.2 Wave propagation model in fluid-saturated porous
media

In the Biot theory, a representative volume element (RVE) of
the isotropic fluid-saturated porous media is selected; its
governing dynamic equations satisfy the following expres-
sions (Biot, 1956a, 1956b):

t

t

P t

t

u U

U u

I u U

U u

= ( + )

         ( ),
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                   + ( ),

(8)

2

2 11 12
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(9)
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here, ρa is the additional coupling density, ϕ is the porosity, ρs
is the density of solid grains and ρf is the fluid density. u and
U are the displacements of the solid frame and the fluid,
respectively; they represent the average displacements of the
RVE. σ=(σij) represents the stress tensor of the solid frame, P
is the fluid pressure and I is the second-order identity tensor.

t U u( )
2

on the right side of eq. (8) comes from the

dissipation function of the Biot theory, where η is the fluid
viscosity and κ is the permeability of the solid frame. In fact,
eq. (8) is the motion equation of the RVE.
By substituting the constitutive relationships of the solid

frame (Yang and Zhang, 2002) and the fluid pressure
(Dvorkin and Nur, 1993)

PA I= ( ) , (10)

P F e F= , (11)

into eq. (8), we obtain the following wave propagation
equations:
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In eqs. (10)–(12), ε=(εij) and A=(aijkl) represent the strain

tensor and stiffness tensor of the solid frame, respectively. εij
can be related with u by using the deformation compatibility

equation: u
x

u
x= 1

2 +ij
i

j

j

i
. The Biot-Willis coefficient α

and fluid storage coefficient F are functions of the three bulk
moduli (Dvorkin and Nur, 1993):
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correspond to the dilations of the

solid frame and the fluid, respectively. In fact, eq. (12) is
equivalent to the wave propagation model in fluid-saturated
porous media that was proposed by Biot (1956a).
In the Biot theory, the constitutive relationship is based on

the assumption that the solid frame is a perfectly elastic body.
However, this is not applicable to real porous materials. Eq.
(10) indicates that the elastic properties of the rock frame are
contained in the term “Aε”. To describe the viscoelastic
mechanism of the rock frame more accurately, we substitute
eq. (7) into eq. (10) to obtain the following new constitutive
relationship of the solid frame:
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By substituting eqs. (11) and (14) into eq. (8), we obtain
the new wave propagation model including the Biot and
fractional viscoelastic mechanisms (simply called the FRVE
model) as follows:
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The main difference between the Biot model and the FRVE
model is the first expression in eq. (15), which corresponds
to the motion equation of the solid phase. In other words, the
FRVE model can degrade to the Biot model by replacing ψ1
and ψ2 with the bulk modulus Km and the shear modulus μm
of the frame, respectively. Therefore, the FRVE model is an
extension of the Biot model and includes the intrinsic dis-
sipation of the solid frame, whereas the Biot model does not.
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In next subsection we will analyze the dispersion and at-
tenuation of different kinds of waves predicted by the new
model.

2.3 The phase velocity and attenuation of waves

We conduct a plane-wave analysis using the new model (eq.
(15)) to investigate the phase velocity dispersion and energy
attenuation of waves. The plane-wave analysis, which is
described in Appendix B, allows us to obtain the phase ve-
locities and inverse quality factors of the fast P-wave (Vp1,

Qp1
1), slow P-wave (Vp2, Qp2

1) and the S-wave (Vs, Qs
1) as

follows:

V Y Q
Y
Y= 1

Re( ) ,   =
2Im( )
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where Y B
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B
A

C
A= 2 ± 2p1,p2

2
. The relevant computa-

tional formulae are found in Appendix B.

3. Viscoelastic parameters

In the present study, we focus on a reservoir that has not been
fractured. Thus the large energy dissipation and negative
velocity dispersion induced by scattering in cracked porous
media (Winkler, 1983; Jakobsen and Chapman, 2009) are not
taken into consideration. On the basis of this assumption,
β1=β2 and ξ1=ξ2; details can be found in Appendix C. For
convenience, we let β=β1=β2 and ξ=ξ1=ξ2 in the next sec-
tions. In this case, the new fractional viscoelastic constitutive
relationship (eq. (3)) degenerates into the Cole-Cole model
(Cole and Cole, 1941). In this relationship, eight viscoelastic
parameters (M1, ω1, Q1, M2, ω2, Q2, β, ξ) have to be de-
termined. Following Carcione’s work (Carcione, 2007), we
define a new set of parameters ω1, Q1, ω2 and Q2 as

Q
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to replace
1
,

1
,

2
and

2
. The newly defined parameters

are directly related to the dispersion and attenuation of the
waves. We call ω1 and ω2 the reference angular frequencies,
and Q1

1 and Q2
1 the reference inverse quality factors.

In fact, all viscoelastic parameters (M1, ω1, Q1,M2, ω2, Q2,
β, ξ) are related to macroscopic physical properties. Speci-
fically,M1, ω1, Q1 and ξ describe the viscoelastic mechanism
caused by volume dilatation, and M2, ω2, Q2 and β describe
the viscoelastic mechanism caused by a shape change. On
the basis of eqs. (16) and (17) and following Carcione’s
method (Carcione, 2007), we provide a theoretical analysis
on all viscoelastic parameters below.
M1 andM2 are the bulk and shear moduli of the rock frame

in the relaxed regime. They describe the stiffness of the
frame when there is enough time to return to the equilibrium
state, so we have
M K M µ= ,  = , (19)1 m 2 m

where Km and μm are the bulk and shear moduli of the dry
frame. Furthermore, M1 and M2 are closely related with the
low-frequency limit of the phase velocities of fast P- and S-
waves. The two reference frequencies ω1 and ω2 are asso-
ciated with the frequencies where the attenuation peaks of
the fast P-wave and S-wave appear. The values of Q1

1 and

Q2
1, are closely related to the attenuation peak values and the

phase velocity dispersion magnitudes of the fast P-wave and
S-wave. ξ and β describe the transition of the fast P-wave and
S-wave between the relaxed regime and the unrelaxed re-
gime.
We provide two approaches to determine the values of the

viscoelastic parameters ω1, ω2, Q1
1, Q2

1, ξ and β. The first
method consists of inverting these viscoelastic parameters by
fitting a few phase velocity or attenuation data measured at
different frequencies (Yang et al., 2014; Liu et al., 2018). The
second method is based on stress oscillation experiments
(Pimienta et al., 2015, 2016). Specifically, we provide an
oscillating confining pressure on the sample and measure the
variation of strain. By analyzing the attenuation behaviors of
the sample, we can calculate these viscoelastic parameters.

4. Numerical examples

In this section, we investigate the effects of ξ and β on the
dispersion and attenuation of fast P- and S-waves. Here we
suppose that the rock sample is water-saturated. The physical
properties and viscoelastic parameters of the sample are
listed in Table 1. In first numerical experiment, we choose
ξ=1 and different values of β to observe the changes in the
phase velocities and inverse quality factors of the fast P- and
S-waves. Similarly, we choose β=1 and change the values of
ξ in the second numerical example. The computational re-
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sults are displayed in Figure 1.
Figure 1a–1d correspond to the case of ξ=1 and show the

effects of different values of β on the phase velocity dis-
persion and attenuation of the fast P- and S-waves. Figure 1a
and 1c show the phase velocities of the S-wave and fast P-
wave, respectively. Obviously, there is a large dispersion
between 10 and 1000 Hz and the dispersion transition be-
comes narrower with increasing β. However, the results
calculated by the Biot model show no visible dispersion in
the low frequency range. Meanwhile, all high-frequency
limits of phase velocities computed by the FRVE model are
the same for the three cases of β=0.8, 1 and 1.2, which are
larger than that computed by the Biot model. One interesting
phenomenon is that the phase velocities of the S-wave and
the fast P-wave decrease slightly from 1 to 10 Hz for β=1.2.
According to investigations of wave scattering in poroelastic
media (Hudson, 1981; Blair, 1990; Morochnik and Bardet,
1996), we believe that this dispersion is similar to the Ray-
leigh scattering associated with randomly distributed and
oriented cracks in porous media. This result indicates that we
can apply the fractional viscoelastic model (β=1.2) to char-
acterize the attenuation induced by wave scattering. In Fig-
ure 1b and 1d, all three cases (β=0.8, 1, and 1.2) of the FRVE
model have an attenuation peak in the low frequency range.
As β increases, the attenuation peak shifts towards lower
frequencies and its value increases. The numerical results
show that the fractional-order parameter β has significant
effects on the dispersion and attenuation of the two waves in
the low frequency range.
Figure 1e–1h show the changes in the wave attenuation

and dispersion as ξ increases for β=1. Figure 1g and 1h show
the phase velocities and inverse quality factors of the fast P-
wave, respectively. Similar to the results in Figure 1c and 1d,
a large velocity dispersion and strong attenuation is observed
due to the viscoelastic mechanism. In addition, as ξ in-
creases, the transition range of the velocity dispersion of the
fast P-wave becomes narrower, the attenuation peak of the
fast P-wave shifts towards a lower frequency, and its value
decreases. However, as shown in Figure 1e and 1f, the phase
velocities and inverse quality factors of the S-wave are the
same for the three cases (ξ=0.8, 1 and 1.2), indicating that the
dispersion and attenuation of the S-wave are independent of
the parameter ξ. Hence, we conclude that ξ only affects the
dispersion and attenuation of the fast P-wave.

5. Applications

5.1 Unconventional reservoir examples

In this subsection, we use the dispersion data of two water-
saturated tight rock cores to testify the validity of the FRVE
model. The rock cores are provided by the Exploration and
Development Research Institute of PetroChina Changqing

Oilfield Company, and the data are obtianed by the Key
Laboratory of Geophysics of the China National Petroleum
Corporation. The two cores used in this experiment are
drilled from the Sulige gas field. One is a sandstone sample
(A11), and the other is a dolomite sample (C12). Both cores
have low permeabilities less than 0.3 mD and low porosities
less than 10%. The cores are saturated by water and the
dispersion data are measured in the frequency band of
1–1171 Hz. The physical properties are listed in Table 2.
We calculate the phase velocity dispersions of the S-wave

and fast P-wave using the Biot model and the FRVE model,
and compare the numerical results with the measured data.
The results are displayed in Figure 2. The fast P- and S-
waves show high velocity dispersion in the frequency range
of 1–100 Hz. However, there is no obvious dispersion of the
phase velocities computed by the Biot model in the low
frequency range. Actually, following the definition of the
characteristic frequency used in the Biot theory (Biot, 1956a)

f = 2 , (20)c
f

which represents the frequency corresponding to the at-
tenuation peak induced by the Biot’s dissipation mechanism,
we obtain the characteristic frequencies 5.34×107 Hz and
1.15×108 Hz for core A11 and core C12, respectively. The
result implies that the velocity dispersion and attenuation
predicted by the Biot model mainly occur in the frequency
range of 107–109 Hz for the two cores. Therefore, the Biot
model cannot explain the high velocity dispersion in the
seismic frequency range. In contrast, the phase velocities
computed by the FRVE model provide a good fit to the
measured data (Figure 2), indicating that the viscoelastic

Table 1 Physical properties and viscoelastic parameters of the fluid-sa-
turated sample

Name Values

Fluid density ρf (kg m
−3) 1000

Fluid viscosity η (Pa∙s) 0.001

Fluid bulk modulus Kf (GPa) 2

Porosity ϕ (%) 10

Permeability κ (mD) 1

Solid-phase density ρs (kg m
−3) 2650

Solid frame bulk modulus Km (GPa) 16

Solid material bulk modulus Ks (GPa) 38

Solid frame shear modulus μm (GPa) 8

Solid-fluid coupling density ρa (kg m
−3) 420

Reference angular frequency ω1 100

Reference angular frequency ω2 100

Reference quality factor Q1 20

Reference quality factor Q2 20
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Figure 1 Effects of fractional order parameters (ξ and β) on the dispersion and attenuation of waves for the first test model. The physical properties and
viscoelastic parameters of the sample are listed in Table 1. (a) and (e) show the phase velocities of the S-wave; (b) and (f) show the inverse quality factors of
the S-wave; (c) and (g) show the phase velocities of the fast P-wave; (d) and (h) show the inverse quality factors of the fast P-wave. In (a)–(d), ξ=1; in (e)–(h),
β=1.
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mechanism is the primary reason for the energy loss in tight
rocks at low frequencies.
Based on the above numerical results, we have some

physical explanations below. As we mentioned in the In-
troduction Section, the energy loss predicted by the Biot
model is caused by the macroscopic relative movement be-
tween the solid phase and the fluid phase. However, due to
the low permeability and low porosity for the tight cores, the
fluid movement inside the pores may not be a Poiseuille
flow, even there is no macroscopic relative movement be-
tween the rock frame and the pore fluids. Hence, the Biot
dissipation in the cores is negligible. On the other hand, since
the solid part accounts for more than 90% of the cores, its
intrinsic dissipation cannot be neglected. Due to the poor
connectivity in tight cores, some pores are sealed, and the
fluids inside such pores move in conjunction with the rock
skeleton. In other pores, a portion of the fluid is constrained
by electrostatic forces along the pore walls. Although there is
no macroscopic relative movement between the rock skele-
ton and these fluids, the elastic properties of the saturated
cores may be affected under a pressure gradient. Therefore,

Table 2 Physical properties of the water-saturated rock cores from
Changqing Oilfield

Physical properties A11 C12

Fluid density ρf (kg m
−3) 1000 1000

Fluid viscosity η (Pa∙s) 0.001 0.001

Fluid bulk modulus Kf (GPa) 2.18 2.18

Porosity ϕ (%) 9.39 8.55

Permeability κ (mD) 0.280 0.118

Solid-phase density ρs (kg m
−3) 2664.2 2894.9

Solid frame bulk modulus Km (GPa) 16.53 32.68

Solid material bulk modulus Ks (GPa) 38.00 89.65

Solid frame shear modulus μm (GPa) 21.55 26.83

Solid-fluid coupling density ρa (kg m
−3) 420 420

Figure 2 Comparison of the experimental data and the numerical results for unconventional reservoirs. The physical properties of the two samples are listed
in Table 2. (a) and (b) show the results for the core A11; (c) and (d) show the results for the core C12. Discrete stars represent the experimental data.
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we treat these fluids and the rock skeleton as a new solid
“frame”. Obviously, the new frame is viscoelastic and its
inner friction contributes to the energy loss, which we be-
lieve is the primary reason for the phase velocity dispersion
at the seismic band.
From the comparisons of numerical results and analyses

stated above, we conclude that the FRVE model provides
better predictions of the dispersion and attenuation of the
waves in unconventional reservoirs than the Biot model.

5.2 Conventional reservoir examples

In this subsection, we will demonstrate that the FRVE model
is also suitable for conventional reservoirs. Here we use
several groups of experimental data provided by Spencer and
Shine (2016). The two rock cores (labeled as LF176 and
LF177) used in this experiment are Lower Miocene sand-
stones collected from the deepwater Gulf of Mexico, and the
dominant grains of the rocks are quartz. These samples are
visually homogeneous in a thin-section photomicrograph;
thus, they can be considered as isotropic media. The two
samples have high porosity (20.9% and 19.7%) and high
permeability (115 and 58 mD) and are saturated with dif-
ferent Cannon hydrocarbon viscosity standard fluids labeled
as N100 and N35, respectively. The experiments conducted
by Spencer and Shine (2016) were performed at room tem-
perature under a confining pressure of 17.24 MPa (2500 psi)
and a pore pressure of 3.45 MPa (500 psi). The physical
properties of the standard fluids and rock cores are listed in
Tables 3 and 4, respectively.
The dispersion and attenuation of Young’s modulus E and

Poisson’s ratio ν of the saturated rock sample were measured
in a wide frequency band of 0.2–205 Hz by Spencer and
Shine (2016). Transformations of E and ν are required to
obtain the dispersion and attenuation data of the P-wave and
S-wave.
Based upon the elastic wave propagation theory, the phase

velocities of the P-wave and S-wave can be expressed by E
and ν as

V E V E= (1 )
(1 + )(1 2 ) ,  = 2 (1 + ) , (21)p s

where ρ=ϕρf+(1−ϕ)ρs represents the density of the saturated
rock sample. In Appendix D, we describe the inverse quality
factors of the P- and S-waves that were obtained through a
series of operations. Furthermore, we can obtain all viscoe-
lastic parameters (ω1, Q1, ω2, Q2, β, ξ) included in the FRVE
model by fitting the phase velocity data of the P- and S-
waves. In this experiment, we get β=0.63 and ξ=0.50 for the
sample LF176, and β=0.47 and ξ=0.36 for the sample LF177.
Based on the obtained fractional-order parameters and phy-
sical properties listed in Tables 3 and 4, we compute the

theoretical phase velocities and inverse quality factors of the
fast P- and S-waves by using the FRVE model. The results
(solid line) are shown in Figures 3 and 4. To compare with
other models, we also exhibit the theoretical results com-
puted by the Biot model (dotted line) and the linear viscoe-
lastic model (dashed line) in Figures 3 and 4. Here, the linear
viscoelastic model (simply called the LV model) is the spe-
cial case of the FRVE model with ξ=β=1.
In Figures 3a, 3c, 4a and 4c, there is an obvious disper-

sion for the fast P-wave (2.6–4.3%) and S-wave (2.1–2.9%)
at the seismic band. However, the phase velocities calcu-
lated by the Biot model remain constant in the low fre-
quency range, and the values are far away from the
experimental data. Similar to the last subsection, we cal-
culate the Biot characteristic frequencies of LF176
(9.94×107 Hz) and LF177 (5.10×108 Hz). The results show
that the Biot dissipation occurs in the ultrasonic band
around 107–108 Hz for these samples LF176 and LF177.
Therefore, the attenuation and dispersion at the seismic
band are not caused by the Biot dissipation mechanism. In
contrast, the phase velocities computed by the FRVE model
and the LV model match well with the experimental data,
unlike the Biot model. Thus, we believe that the viscoelastic
mechanism is the primary reason for the large dispersion and
strong attenuation in this experiment. Additionally, Figures 3
and 4 show that the new model fits the experimental data
better than the LV model.
In Figures 3b, 3d, 4b and 4d, both the fast P-wave and the

S-wave exhibit strong attenuation in the frequency range of
0.2–205 Hz. Specifically, the measured inverse quality factor
increases as the frequency grows. However, there is no
visible attenuation in the inverse quality factor curves cal-

Table 3 Physical properties of the two Cannon hydrocarbon viscosity
standard fluids

Physical properties N100 N35

Fluid density ρf (kg m
−3) 875.6 867.3

Fluid viscosity η (Pa∙s) 0.301 0.077

Fluid bulk modulus Kf (GPa) 2.136 2.015

Table 4 Physical properties of the two Lower Miocene sandstones col-
lected from the deepwater Gulf of Mexico

Physical properties LF176 LF177

Porosity ϕ (%) 20.9 19.7

Permeability κ (mD) 115 58

Solid-phase density ρs (kg m
−3) 2650 2650

Solid frame bulk modulus Km (GPa) 9.04 10.21

Solid material bulk modulus Ks (GPa) 44.24 44.24

Solid frame shear modulus μm (GPa) 9.81 10.40

Solid-fluid coupling density ρa (kg m
−3) 420 420

372 Yang J, et al. Sci China Earth Sci March (2021) Vol.64 No.3



culated by the Biot model, indicating the failure of the at-
tenuation prediction. In contrast, the numerical results
computed by the FRVE model and the LV model display
strong attenuation and are much closer to the experimental
data. Moreover, in Figures 3d, 4b and 4d, wave attenuations
predicted by the LV model have an attenuation peak around
10–100 Hz, whereas the results computed by the FRVE
model show no attenuation peaks below 103 Hz and are more
consistent with the experimental data than those computed
by the LV model. Based on the comparisons, we conclude
that the FRVE model performs better than the existing vis-
coelastic model and the Biot model for the prediction of
wave dispersion and attenuation in conventional reservoirs.

6. Discussion and conclusions

In this study, we suggest a generalized fractional viscoelastic

constitutive relationship by replacing the integer time deri-
vatives in the Zener viscoelastic model with fractional de-
rivatives. Based on the framework of the Biot theory, we
apply this fractional viscoelastic constitutive relationship to
the solid frame of fluid-saturated porous rocks and propose a
new poroviscoelastic wave propagation model including the
fractional viscoelastic mechanism, simply called the FRVE
model. This new FRVE model is a generalization of the
linear poroviscoelastic model. In other words, when the
fractional-order parameters β and ξ are integers, the FRVE
model degrades to the conventional poroviscoelastic model.
We investigate the validity and accuracy of the new model

for predicting the phase velocities and attenuations of the fast
P- and S-waves using experimental data. The numerical re-
sults show that the FRVE model provides more accurate
predictions when compared with the famous Biot model and
linear viscoelastic model for unconventional and conven-
tional reservoirs. Moreover, the numerical results also de-

Figure 3 Comparison of the measured data and theoretical results computed by three models. The sample is LF176 saturated with N100. (a) Phase
velocities of the S-wave; (b) inverse quality factors of the S-wave; (c) phase velocities of the fast P-wave; (d) inverse quality factors of the fast P-wave.
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monstrate that the fractional order parameter β affects the
dispersion and attenuation of both the fast P- and S-waves,
whereas another parameter ξ only affects the fast P-wave.
Due to the generality and the continuity of the fractional

order, the FREV model can accurately describe wave pro-
pagation in complex reservoirs and is suitable for different
porous media, such as fluid-saturated tight dolomites and
sandstones with high permeability. On the basis of the time-
domain FREV model, we can implement the temporal-spa-
tial forward modeling of waves and reservoir parameter in-
version in unconventional and conventional oil/gas
reservoirs to provide valuable information for petroleum
prospecting. It is expected that the new FREV model will
have wide applications in complex reservoirs.
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