
 

RESEARCH ARTICLE
SOLID EARTH: COMPUTATIONAL GEOPHYSICS

Earth and Planetary Physics
5: 149–157, 2021

doi: 10.26464/epp2021022

Three-dimensional frequency-domain full waveform inversion
based on the nearly-analytic discrete method

DeYao Zhang1, WenYong Pan2, DingHui Yang1*, LingYun Qiu3, XingPeng Dong1, and WeiJuan Meng1

1Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China;

2Key Laboratory of Petroleum Resource Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;

3Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

Key Points:
Nearly analytic discrete method is applied to solving 3D frequency-domain acoustic wave equation.●

Compared to traditional finite difference methods, the nearly analytic discrete method can solve the wave equation more accurately
and efficiently.

●

Nearly analytic discrete method is more suitable than traditional methods for 3D frequency-domain full waveform inversion.●

Citation: Zhang, D. Y., Pan, W. Y., Yang, D. H., Qiu, L. Y., Dong, X. P. and Meng, W. J. (2021). Three-dimensional frequency-domain full
waveform inversion based on the nearly-analytic discrete method. Earth Planet. Phys., 5(2), 149–157. http://doi.org/10.26464/epp2021022

 

Abstract: The nearly analytic discrete (NAD) method is a kind of finite difference method with advantages of high accuracy and stability.
Previous studies have investigated the NAD method for simulating wave propagation in the time-domain. This study applies the NAD
method to solving three-dimensional (3D) acoustic wave equations in the frequency-domain. This forward modeling approach is then
used as the “engine” for implementing 3D frequency-domain full waveform inversion (FWI). In the numerical modeling experiments,
synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite
difference methods. Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed
methods. The inversion results show that the NAD method is more suitable than traditional methods, in terms of computational cost and
stability, for 3D frequency-domain FWI, and represents an effective approach for inversion of subsurface model structures.
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1.  Introduction
In recent  decades,  full  waveform  inversion  (FWI)  has  become  in-

creasingly popular in global and exploration seismology due to its

ability  to  provide  high-resolution  subsurface  velocity  structures

(Lailly,  1983; Tarantola,  1986; Virieux  and  Operto,  2009).  FWI  can

be performed both in the time domain (Mora, 1987; Tromp et al.,

2005; Liu  QY  and  Tromp,  2006; Tape  et  al.,  2007; Bozdağ et  al.,

2016; Wang J et al., 2019; Dong XP et al., 2019) and the frequency-

domain (Pratt and Worthington, 1990; Song and Williamson, 1995;

Pratt, 1999; Operto et al., 2004; Sirgue and Pratt, 2004; Brossier et

al.,  2009).  Compared  with  time-domain  FWI,  frequency-domain

FWI is more flexible in selecting specific frequency components in

a  multi-scale  inversion  strategy.  In  addition,  frequency-domain

FWI is  computationally more efficient,  thanks to solving different

sources simultaneously with one matrix factorization. However, in

3D  frequency-domain  FWI  the  matrix  size  grows  exponentially

(Operto  et  al.,  2007; Plessix,  2009).  The  iterative  solution  of  the

seismic inverse problem requires a large number of forward simu-

lations.  Forward  modeling  of  the  seismic  waves  is  considered  as

the  “engine”  of  and  foundation  for  the  implementation  of  FWI.

Therefore, determining  an  accurate  and  efficient  forward  model-

ing approach is necessary and essential if FWI experiments are to

be practical.

In  the past  decades,  researchers  have studied a series  of  forward

modeling  methods,  including  finite  difference  methods  (Kelly  et

al.,  1976; Day,  1982; Igel  et  al.,  1995; Yang  DH  et  al.,  2003, 2004,

2006; Liu SL et al., 2015, Ma X et al., 2018), finite element methods

(Lysmer and Drake, 1972; Marfurt, 1984; Liu SL et al., 2014; He XJ et

al.,  2020),  a  pseudo-spectral  method  (Kosloff  and  Baysal,  1982),

and a spectral  element method (Kosloff  and Baysal,  1982; Seriani

and Priolo,  1994; Komatitsch et al.,  2005). These methods are de-

signed to  solve  different  types  of  questions.  Each  may  have  su-

periorities in some aspects but limitations in others. Among these

methods,  finite  difference  methods  are  widely  used  because  of

the advantages of easy implementation,  low computational cost,

etc.

The  nearly  analytic  discrete  (NAD)  method  is  a  finite  difference

method  that  uses  displacement  and  its  gradient  to  approximate

the high-order partial derivatives in the wave equation (Yang DH

et al., 2003, 2004, 2006; Tong P et al., 2011, 2013). As this method
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captures  more  detailed  wave  equation  information,  dispersion
analysis and numerical experiments have shown that it can solve
the wave equation more accurately and efficiently than tradition-
al finite difference methods (Yang DH et al., 2010, 2012). Previous
studies have  implemented  the  NAD  method  for  forward  model-
ing and reverse time migration in time-domain applications (Yang
DH  et  al.,  2003; Li  JS  et  al.,  2013).  This  study  extends  the  NAD
method to  solve  the  three-dimension  (3D)  acoustic  wave  equa-
tion in the frequency-domain, which is then used as the “engine”
for conducting 3D frequency-domain FWI. The paper is organized
as follows.  First,  we introduce the 3D frequency-domain acoustic
wave equation's discretization with a perfect matched layer (PML)
absorbing  boundary  condition,  which  gives  the  linear  system
equations. According to the characteristics of the coefficient mat-
rix (or “impedance matrix”), we choose the Krylov subspace itera-
tion with incomplete LU decomposition to solve the linear system.
We then  introduce  the  theoretical  basis  of  3D  FWI  in  the  fre-
quency-domain. The non-linear conjugate gradient method is ad-
opted for  model  updating  in  the  iterative  inversion  process.  Fi-
nally,  we  give  numerical  examples  of  forward  modeling  and  3D
frequency-domain FWI. The forward modeling experiments show
that the NAD method for the 3D frequency-domain acoustic wave
equation  works  well  and  can  suppress  the  numerical  dispersion
effects more effectively than traditional finite difference methods.
The  FWI  experiments  show  that  the  frequency-domain  FWI  with
the NAD method can efficiently and stably reconstruct the subsur-
face velocity structures. 

2.  Forward Modeling with the NAD Method in

Frequency-Domain
In  the  frequency-domain,  the  3D  acoustic  wave  equation  with

constant density can be written as

Δu (x, y, z) + ω2

c2
u (x, y, z) = −

1

c2
s (x, y, z) , (x, y, z) ∈ D, (1)

u Δ ω
c = c (x, y, z)

s D

where  is  pressure  wavefield,  is  Laplace  operator,  indicates

angular frequency,  is the compressional velocity of the

medium,  is  the  seismic  source  term,  and  denotes  the  whole

3D computing area.

To  discretize  the  acoustic  wave  equation  with  the  NAD  method,

we need to derive the partial derivative form of the frequency-do-

main  equation  with  respect  to x, y and z, respectively,  as  illus-

trated in the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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x

Second,  we  apply  the  PML  condition  (Komatitsch  and  Tromp,

2003), which is widely used in the area of seismic wave propaga-

tion,  in  Equation  (2)  for  eliminating  the  reflections  from  artificial

boundaries. The real coordinate  in the original differential equa-

x̃
x x̃

tions is replaced with the complex coordinate  in the PML region.
The relation between  and  is:

x̃ = x −
i
w

x

∫
0

dx(s)ds, (3)

dx(s) > 0 i
ds ∶= dx(s)where  is an attenuation function, and  denotes the ima-

ginary  unit.  We  choose  as  (Komatitsch  and  Tromp,
2003):

dx(s) = −
3c
2l

log(R)( s
l
)2
. (4)

c

l
s R

In  Equation  (4),  is  the  wave  propagation  velocity  between  the
PML region and real  physical  region,  indicates  the depth of  the
PML region,  is the position in the PML layer, and  is theoretical
reflection parameter which can be very small  (in our models,  it  is
set as 0.001).

x̃ ỹ z̃In the PML region, after replacing x, y and z with ,  and , Equa-
tion (2) can be rewritten as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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∂x̃2

+
∂2uỹ
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(5)

x̃ ỹ z̃Then we turn the variables ,  and  in Equation (5) to x, y and z.
By  referring  to  Equation  (3),  we  see  that  the  derivative  can  be
computed as

∂x
∂x̃

= iω
iω + dx

. (6)

x̃Applying  chain  rule  to  Equation  (5),  taking  as  an  example,  the
result is given in the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(7)

d′xp d′′xpp
dx x̃ ỹ z̃

where  and  are the  first-order  and  second-order  derivat-

ives of . We can replace ,  and  to obtain the corresponding
partial derivatives, then apply all of the partial derivatives to Equa-
tion (5).  The final 3D acoustic wave equation of the NAD method
with  PML boundary  condition is  obtained.  The whole  discretized
wave equation is illustrated in the Appendix. In the end, we apply
the fourth-order NAD method to discretize the 3D wave equation
following Lang C and Yang DH (2017). After discretization with the
fourth-order  NAD  method,  the  3D  frequency-domain  acoustic
wave equation can be written in compact matrix form, known as a
linear system equation:

AAAUUU = sss, (8)
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AAA UUU
sss

UUU = (u, ux, uy, uz)
where  is the impedance matrix,  is the pressure wavefield vec-
tor, and  is the source term vector. In the NAD method, the wave-
field  includes  its  spatial  derivatives . Lang  C  and

Yang  DH  (2017) have carried  out  many  studies  concerning  solu-
tions  of  Equation  (8).  In  this  study,  to  solve  the  linear  system  we
use the Krylov subspace iteration (GMRES and BiCGSTAB iteration)
with  incomplete  LU  (ILU)  decomposition  precondition.  A  Ricker
wavelet is used as the source time function:

w(t) = A [1 − 2(πf0t)2] e−(πf0t)2 , (9)

A f0
e

where  is the amplitude of seismic source,  denotes the central
frequency,  and  is  the  Euler  number.  In  the  frequency-domain,
the source wavelet is obtained as:

F [w(t)] = √
2A
πf0

( f
f0
)2

e−( f
f0
)2

, (10)

fwhere  denotes frequency. 

3.  Full Waveform Inversion
In this section, the theory of 3D frequency-domain FWI based on
the NAD method is  introduced.  In  FWI,  the  model  properties  are
updated  iteratively  by  minimizing  an  objective  function  that
measures  the  observed  and  synthetic  seismic  data  differences.
The L-2 norm objective function is formulated as:

E(c) = 1
2
∑
ω,i

[δd i(c, ω)]Hδd i(c, ω), (11)

(⋅)H δd iwhere  denotes the conjugate transpose of the matrix, and 

is the data residual at the i-th source, which is obtained by

δd i
j (c, ω) = uij(c, ω) − d i

j (ctrue, ω), j = 1, 2, ⋅ ⋅ ⋅, n, (12)

ctrue n
d i
j (ctrue, ω)

u i
j (c, ω)

where  means the real model (or target model),  denotes the
total  number  of  receivers,  is the  observed  data  recor-

ded on the j-th receiver of the i-th source, and  is the corres-

ponding synthetic data.

E(c)

The full waveform inverse problem is commonly solved within the
gradient-based optimization framework.  Different local  optimiza-
tion  methods,  including  steepest  descent,  non-linear  conjugate
gradient (NCG), quasi-Newton methods, etc. (Nocedal and Wright,
2006; Pan  WY  et  al.,  2017),  can  be  used  for  the  model  updating.
Within  these  optimization  methods,  the  first-order  derivative  of
the  misfit  function,  namely  the  gradient,  needs  to  be  calculated
first. Following Pratt (1999), the gradient of the misfit function 

can be written as:

∇E(c) = ∂E
∂c

= Re(JJJTδddd∗), (13)

JJJ
UUU = (u1, u2, ⋅ ⋅ ⋅, un)T (⋅)T (⋅)∗where  is  the  partial  derivative  of  the  synthetic  wavefield  data

 (  and  mean the transpose and conjugate

of vectors):

JJJ= ∂UUU
∂c

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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∂u1

∂c2
⋅ ⋅ ⋅

∂u1

∂cm
⋮ ⋮ ⋮ ⋮
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∂c1

∂un
∂c2

⋅ ⋅ ⋅
∂un
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= [ ∂u

∂c1

∂u
∂c2

⋯
∂u
∂cm

] .
(14)

However, it  is  computationally  unaffordable  to  calculate  the par-
tial derivative wavefield explicitly for large-scale inverse problems.
With the help of the linear system in Equation (8), the partial deriv-
ative wavefield can be derived as (Pratt et al., 1998; Pan WY et al.,
2016):

∂UUU
∂c

= −AAA−1 ∂AAA
∂c

UUU. (15)

Substituting  Equation  (15)  into  Equation  (14)  then  into  Equation
(13), we can obtain the gradient as:

∇E(c) = −Re [UUUT(∂AAA
∂c

)TAAA−Tδddd∗] , (16)

∂AAA
∂c

UUU δddd∗

AAA−T

where ,  and  can be obtained easily, but for large models

the  cost  of  calculating  directly  is  impracticable.  Instead,  the

gradient can be computed efficiently by cross-correlating the for-
ward and adjoint wavefields:

∇E(c) = −Re [UUUT(∂AAA
∂c

)Tvvv] , (17)

vvvwhere  is known as the adjoint wavefield obtained by solving the
following adjoint wave equation:

AAATvvv = δddd∗. (18)

AAA AAAT

AAA

m

The  LU  decompositions  of  and  are  similar.  In  the  previous

section,  we  have  obtained  the  ILU  decomposition  of .  Thus,
Equation  (19)  can  be  solved  using  the  same  approach  with  the
fourth-order NAD method. At each non-linear iteration, the mod-
el parameter  can be updated by

mk+1 = mk + αkδmk, (19)

αk δmkwhere  and  are the step length and search direction at the
k-th  iteration.  The  step  length  is  calculated  using  the  line  search
method. In this study,  we adopt the NCG method for solving the
inverse problem. The search direction is calculated by

δmk = −∇Ek + βkδmk−1, (20)

βk δmk δmk−1where  is a scalar such that  and  are conjugate. It can

be  obtained  with  the  “Fletcher-Reeves”,  “Polak-Ribiere”,
“Hestenes-Stiefel” or “Dai-Yuan” methods. 

4.  Numerical Experiments
This section  first  gives  two  forward  modeling  examples  to  illus-
trate the  NAD  method's  advantages  compared  to  traditional  fi-
nite difference methods. We then present numerical examples of
3D frequency-domain FWI based on the NAD method. 

4.1  Homogeneous Model Example
The 3D homogeneous model has a size of 4 km, 0.5 km, and 4 km
in x, y and z directions. The grid spacing is 25 m. PML layers with a
thickness of  6 are applied on all  boundaries of  the model  for  ab-
sorbing the reflections of artificial boundaries. The compressional
velocity of the medium is 2 km/s. A Ricker wavelet with a domin-
ant frequency of 30 Hz, located at the center of the model, is used
as the source for forward modeling.

Figure  1 shows  the  frequency-domain  wavefield  snapshot  at  the
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slice of y = 0.25 km with a frequency of 30 Hz. Figure 2 shows the

frequency-domain wavefield snapshots in 3D with a frequency of

11 Hz. Figures 3, 4 and 5 are the wavefield snapshots in the time

domain.  In Figure  3,  at  the  time  of t2 =  1.233  s,  the  wavefronts

have spread  out  of  the  computation  region  without  evident  re-

flections, indicating  that  the  PML  boundary  condition  works  ef-

fectively. However, it can be seen in Figure 5 that the fourth-order

NAD method works much better in suppressing the numerical dis-

persion effects, as indicated by the red boxes, than the traditional

fourth-order finite  difference method.  Theory regarding suppres-

sion  of  dispersion  effects  is  discussed  in Lang  C  and  Yang  DH

(2017). 

4.2  Two-layer Model Example
Next, we test the NAD method with a two-layer model example to

examine its effectiveness in handling internal discontinuity within

the  velocity  structure.  The  model  size,  grid  spacing,  boundary

conditions, and source configurations are all the same as those of

the previous  homogeneous  model  example.  The  interface  is  loc-

ated at 2.7 km in depth. The upper and lower layers have velocit-

ies of 2 km/s and 2.5 km/s, respectively. The internal discontinuity

is  described  by  velocity  variation  in  the  impedance  matrix  of

Equation (8). Figures 6 and 7 show the wavefield snapshots calcu-

lated  using  the  fourth-order  NAD  method  in  the  frequency  and

time domains, respectively. As can be seen, the wavefields can be

modeled  accurately  with  few  dispersion  artifacts  and  boundary

reflections. These observations in the numerical experiments veri-

fy  the  effectiveness  and accuracy  of  the  NAD method in  forward

modeling with internal discontinuity. 

4.3  Two-layer Model FWI Example
To  illustrate  the  effectiveness  of  our  methods  for  frequency-do-

main  FWI,  we  first  carry  out  inversion  experiments  with  a  simple

 
Figure 1.   Wavefield snapshot with the frequency f = 30 Hz.
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Figure 2.   Wavefield snapshots with the frequency f = 11 Hz.

 
Figure 3.   Time-domain wavefield snapshots at the times of t1 = 0.667

s (left), t2 = 1.233 s (right).
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Figure 4.   Time-domain wavefield snapshot at the time t = 0.267 s.

 
Figure 5.   Time-domain wavefield snapshots obtained by the NAD

method (left) and traditional finite difference method (right).
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two-layer  model.  The  model  sizes  in x, y and z directions  are

2.5 km, 0.5 km, and 2.5 km, respectively. The grid spacing is 25 m.

The number of grids in x, y and z directions are 101, 21, and 101.

Figure 8 presents the target velocity model consisting of two lay-

ers. The upper layer has a velocity of 2.0 km/s and the lower layer

has a  higher  velocity  of  2.5  km/s.  The  initial  model  is  homogen-

eous with a constant velocity of 2.0 km/s. Three wells are placed in

the middle of three sides of the model. Eleven sources and 89 re-

ceivers are deployed regularly in each well. A Ricker wavelet with

dominant  frequency  of  15  Hz  is  used  as  the  source  function.  We

carry out the inversion experiments with a multi-scale strategy by

ranging the frequency from 1 Hz to 21 Hz.

Figure  9 shows  the  inversion  result  after  60  NCG  iterations.  The

boundary between  higher  and  lower  velocity  layers  can  be  ob-

served clearly.  But  the  velocities  in  deeper  parts  are  not  well  re-

covered. Figure 10 shows the final inversion result after 100 NCG

iterations. As can be seen, the boundary of the velocity structure is

obtained  more  accurately.  But  the  velocities  around  the  bottom

edge are  still  not  recovered  very  well.  According  to  our  experi-

ence, this may be caused by the settings of sources and receivers.

The wave in the route from source to receivers  cannot reach the

bottom in the three wells. 

4.4  SEG/EAGE 3D Overthrust Model Inversion Example
Finally, we apply the frequency-domain FWI with the NAD meth-

od to a subsection of  the SEG/EAGE 3D Overthrust model,  which

 
Figure 6.   Frequency-domain snapshot with the frequency f = 30 Hz.

 
Figure 7.   Time-domain snapshot at t = 0.667 s.
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Figure 8.   Two-layer true model.
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Figure 9.   The inverted velocity model after 60 NCG iterations.
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Figure 10.   The inverted velocity model after 100 NCG iterations.
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contains  more  complex  velocity  variations.  The  model  has  a  size

of  1.65  km,  2.55  km,  and  1.65  km  in  the x, y and z directions, re-

spectively.  The grid spacing is 50 m. PML layers are applied to all

boundaries  of  the  model. Figures  11 and 12 present  the  3D  true

and initial  velocity models,  respectively.  In the x direction, we ar-

range five wells on both sides regularly.  Twenty-one sources and

43 receivers are deployed regularly in each well. The source func-

tion  is  a  Ricker  wavelet  with  dominant  frequency  of  15  Hz.  We

choose 20 frequencies from 1 Hz to 31Hz for inversion.

Figure  13 shows the  inversion result  after  100 NCG iterations.  As

can be seen,  the velocity structures are accurately reconstructed.

The structures in the bottom are also well  inverted.  These obser-

vations suggest  that  our  NAD  method  works  well  for  3D  fre-

quency-domain  FWI  and  can  invert  subsurface  model  structures

accurately and stably. 

5.  Conclusions
This  paper  develops  a  nearly-analytic  discrete  method  (NAD)

method  for  3D  acoustic  wave  equation  forward  modeling  in  the

frequency-domain. We derive partial derivatives of the frequency-

domain acoustic  wave equation to obtain discretized NAD equa-

tions.  The  PML  absorbing  boundary  condition  is  introduced  into

the  system  to  absorb  reflected  waves  from  artificial  boundaries.

We  then  present  the  basic  principle  of  FWI  in  the  frequency-do-

main. The NAD method is applied in 3D frequency-domain FWI as

a  forward  modeling  “engine”.  Numerical  examples  are  given  to

show that the NAD method works better than traditional finite dif-

ference  methods.  The  proposed  methods  also  work  well  for  3D

frequency-domain FWI  and  can  reconstruct  model  properties  ef-

fectively.
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Figure 11.   The true velocity model.
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Figure 12.   The initial velocity model.
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Appendix: 3D Fourth-order NAD method
Replacing the parameters in Equation (5) with Expressions (7) in x, y and z directions gives:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( iω
iω + dx

)2 ∂2u
∂x2

+ ( iω
iω + dy

)2 ∂2u
∂y2

+ ( iω
iω + dz

)2 ∂2u
∂z2

−

(iω)2d′xp(iω + dx)3 ∂u∂x −
(iω)2d′yp(iω + dy)3 ∂u∂y −

(iω)2d′zp(iω + dz)3 ∂u∂z +
ω2

c2
u = −

1

c2
s,

( iω
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)2 ∂3u
∂x3
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−
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∂x2
−
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−
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1
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(iω)2d′′ypp(iω + dx)3 +
ω2

c2
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1
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,

d′xp d′′xpp dxwhere  and  are the first-order and second-order derivatives of .

Then, according to Yang et al., (2003, 2006), Tong (2011, 2013) and Lang and Yang, (2017), the discretization of each partial derivative us-
ing the NAD method is obtained as:
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Figure 13.   The inverted velocity model by frequency-domain FWI.
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Taking the cross-derivative in x direction as an example:
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