
SIAM J. SCI. COMPUT. c© 2018 SIAM. Published by SIAM under the terms
Vol. 40, No. 3, pp. A1274–A1300 of the Creative Commons 4.0 license

AN ADAPTIVE FAST GAUSS TRANSFORM IN TWO DIMENSIONS∗

JUN WANG† AND LESLIE GREENGARD‡

Abstract. A variety of problems in computational physics and engineering require the convolu-
tion of the heat kernel (a Gaussian) with either discrete sources, densities supported on boundaries,
or continuous volume distributions. We present a unified fast Gauss transform for this purpose in two
dimensions, making use of an adaptive quad-tree discretization on a unit square which is assumed to
contain all sources. Our implementation permits either free-space or periodic boundary conditions
to be imposed, and is efficient for any choice of variance in the Gaussian.

Key words. fast Gauss transform, heat equation, adaptive mesh refinement

AMS subject classifications. 31A10, 35K10, 65R10, 65Y20

DOI. 10.1137/17M1159865

1. Introduction. A variety of problems in applied physics and engineering in-
volve the solution of the heat equation

ut(x, t) = ∆u(x, t) + F (x, t),

u(x, 0) = f(x)
(1.1)

for t > 0, in an interior or exterior domain Ω, subject to suitable conditions on its
boundary Γ = ∂Ω. For simplicity, we will assume that these take the form of either
Neumann conditions,

(1.2)
∂u

∂n
(x, t) = g(x, t) for x ∈ Γ,

Dirichlet conditions,

(1.3) u(x, t) = h(x, t) for x ∈ Γ,

or periodic boundary conditions, with Ω the unit square.
In the absence of physical boundaries, the equations (1.1) are well-posed in free

space (under mild conditions on the behavior of u, f, and F at infinity) without
auxiliary conditions. Moreover, assuming F (x, t) and f(x) are compactly supported
in the region Ω, the solution to (1.1) can be expressed at the next time step, t = ∆t,
in closed form as

(1.4) u(x,∆t) = J [f](x,∆t) + V [F](x,∆t)

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section December
5, 2017; accepted for publication (in revised form) February 20, 2018; published electronically May
3, 2018.

http://www.siam.org/journals/sisc/40-3/M115986.html
Funding: The second author’s work was supported in part by the Applied Mathematical Sci-

ences Program of the U.S. Department of Energy under contract DEFGO288ER25053 and by the
RiskEcon Lab for Decision Metrics, Courant Institute.
†Courant Institute of Mathematical Sciences, New York University, New York, NY 10012. Current

address: Flatiron Institute, Simons Foundation, New York, NY 10010 (junwang@flatironinstitute.
org).
‡Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, and

Flatiron Institute, Simons Foundation, New York, NY 10010 (greengard@cims.nyu.edu).

A1274

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

http://www.siam.org/journals/sisc/40-3/M115986.html
mailto:junwang@flatironinstitute.org
mailto:junwang@flatironinstitute.org
mailto:greengard@cims.nyu.edu

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1275

with

J [f](x,∆t) =

∫
Ω

G(x− y,∆t)f(y) dy,(1.5)

V [F](x,∆t) =

∫ ∆t

0

∫
Ω

G(x− y,∆t− τ)F (y, τ) dydτ .(1.6)

Here,

G(x, t) =
e−‖x‖

2/4t

(4πt)d/2

is the fundamental solution of the heat equation in d dimensions. The functions J [f]
and V [F] are referred to as initial (heat) potentials and domain (heat) potentials,
respectively. In the remainder of this paper, we assume d = 2.

For the Neumann problem (1.1), (1.2), the classical representation [17, 23] takes
the form

(1.7) u(x,∆t) = J [f](x,∆t) + V [F](x,∆t) + S[σ](x,∆t),

where

S[σ](x,∆t) =

∫ ∆t

0

∫
Γ

G(x− y,∆t− τ)σ(y, τ) dsydτ(1.8)

is a single layer (heat) potential. For the Dirichlet problem (1.1), (1.3), the classical
representation takes the form

(1.9) u(x,∆t) = J [f](x,∆t) + V [F](x,∆t) +D[µ](x,∆t),

where

D[µ](x,∆t) =

∫ ∆t

0

∫
Γ

∂G

∂ny
(x− y,∆t− τ)µ(y, τ) dsydτ(1.10)

is a double layer (heat) potential. Here, ∂
∂ny

denotes the derivative in the outward

normal direction at the boundary point y. The only unknowns in the representations
(1.7), (1.9) are the scalar densities σ and µ supported on Γ. These are obtained by
solving integral equations to enforce the desired boundary conditions [17, 23]. Once
σ or µ is known, (1.7), (1.9) can be used to evaluate the solution at time t = ∆t.
This yields a one-step marching method for the heat equation that is both stable and
robust (see, for example, [1, 5, 7, 8, 13, 18, 21, 30, 31]).

For our present purposes, we assume that σ and µ are given. We assume also
that a suitable M -stage quadrature has been applied to V [F](x,∆t), S[σ](x,∆t), and
D[σ](x,∆t) with respect to the time variable, yielding

V [F](x,∆t) ≈
M∑
j=1

wV,j

∫
Ω

G(x− y,∆t− τj)F (y, τj) dy ,

S[σ](x,∆t) ≈
M∑
j=1

wS,j

∫
Γ

G(x− y,∆t− τj)σ(y, τj) dsy ,(1.11)

D[µ](x,∆t) ≈
M∑
j=1

wD,j

∫
Γ

∂G

∂ny
(x− y,∆t− τj)µ(y, τj) dsy ,

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1276 JUN WANG AND LESLIE GREENGARD

where wV,j , wS,j , wD,j are known quadrature weights.
Thus, the computational burden of time-marching (that is, evaluating the various

heat potentials) is dominated by the volume integrals

(1.12) V[f](x) =

∫
Ω

e−
|x−y|2
δ f̃(y) dy

and the boundary integrals

S[σ](x) =

∫
Γ

e−
|x−y(s)|2

δ σ̃(y(s)) dsy ,

D[µ](x) =

∫
Γ

∂

∂ny(s)
e−
|x−y(s)|2

δ µ̃(y(s)) dsy

(1.13)

for various values of δ and given functions f̃ , σ̃, µ̃. Evaluating these integrals accurately
and efficiently is the focus of the present paper.

Definition 1.1. The integrals (1.12) and (1.13) will be referred to as volume and
boundary Gauss transforms, respectively.

Definition 1.2. By the discrete Gauss transform (DGT), we mean the evaluation
of the Gaussian “potential” at M points {xi} due to N sources located at {yj} of
strength {qj}:

(1.14) F (xi) =

N∑
j=1

qj · e−
|xi−yj |

2

δ for i = 1, . . . ,M.

A variety of algorithms have been developed for the rapid evaluation of sums of
the form (1.14), such as the fast Gauss transform (FGT) [15] (see also [16, 24, 25, 28]).
While the naive DGT requires O(MN) work, the FGT permits the evaluation of the
values {F (xi)} using only O(M + N) work, independent of δ. High-dimensional
versions of the FGT are of interest in statistical and machine learning applications
(see, for example, [9]), but we are concerned here with physical modeling, where the
ambient dimension is generally less than or equal to three.

Here, we seek to develop a robust version of the FGT that is fully adaptive, insen-
sitive to δ, and able to compute transforms with discrete sources, volume sources, and
densities supported on boundaries (see Figure 1.1). Some notable prior work on con-
tinuous (volume) fast transforms includes [27], which describes a triangulation-based
adaptive refinement method, and [31], which makes use of a high-order, adaptive,
quad-tree–based discretization. As in [31], our approach relies on an adaptive quad-
tree with high-order Chebyshev grids on leaf nodes, but we carry out a modified ver-
sion of the FGT on the quad-tree itself. This requires a somewhat more complicated
implementation, following that of the hierarchical fast multipole method (FMM) [14].
We will assume that the adaptive quad-tree satisfies the following level-restriction
condition: while variable levels of refinement are allowed in distinct subregions of the
computational domain, two leaf nodes which share a boundary point must be no more
than one refinement level apart (see Figure 2.1). Trees satisfying this condition are
sometimes called “balanced,” but we will use the term “level-restricted” since it is
more standard in the FMM/fast algorithm literature [2, 10, 12, 22].

Our hierarchical FGT permits the inclusion of boundary Gauss transforms and
discrete sources at the same time. We should note that adaptive FGT variants using
an FMM data structure have been constructed previously, such as in [20], but for the

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1277

(a) (b) (c)

Fig. 1.1. We seek a version of the FGT that is able to handle volume sources (a), densities
supported on boundaries (b), and point sources (c).

discrete setting only, where small values of δ pose no additional quadrature challenges.
We also introduce new error estimates that are relevant for the hierarchical processing.

The paper is organized as follows. In sections 2 and 3, we review our adaptive
discretization strategy and the analytic machinery on which the FGT is based. In
section 4, we describe the new FGT itself, focusing primarily on the volume integral
case (1.12), with a brief discussion of the modifications needed for (1.14) and (1.13).
We also discuss the incorporation of periodic boundary conditions. Section 5 illus-
trates the performance of the algorithm with several numerical examples, and section
6 contains some concluding remarks.

2. Data structure. In the classical FGT [15], aimed at the computation of
(1.14), where the sources are discrete, a uniform grid is superimposed on the compu-
tational domain, with a box size of dimension (r

√
δ)d, where r ≈ 1 (Figure 2.1, left).

Because of the exponential decay of the Gaussian, it is easy to see that only a finite
range of nearby boxes needs to be considered to achieve any desired precision. That
is, the effect due to sources in B at targets that are at least m boxes away is of the
order O(e−m

2r2). Since the field due to sources in any box B is efficiently represented
by a suitable Hermite expansion (see section 3), it is straightforward to develop an
algorithm of complexity O(N + M), where N is the number of discrete sources and
M is the number of targets. The FGT is easily modified to allow for adaptivity. One
simply needs to sort the source and target points on the uniform grid while ignoring
empty boxes and keeping track of the relevant neighbors for each box. The total stor-
age is then of the order O(N + M) as well. This can be accomplished, for example,
with an adaptive quad-tree that is refined uniformly to a level where the box size is
approximately (r

√
δ)d, pruning empty boxes on the way.

Such a strategy fails for volume integrals of the form (1.12), since there are no
empty boxes. Instead, we will assume that the right-hand side (the function f in
(1.12)) is specified on a level-restricted quad-tree. These data structures have been
shown to be extremely effective for elliptic volume integrals [2, 6, 10, 19, 12, 22]. For
the sake of simplicity, we assume that the source distribution f in (1.12) is supported
in the unit box D, centered at the origin. Following the discussion of [10], we assume
that superimposed on D is a hierarchy of refinements (a quad-tree). Grid level 0 is
defined to be D itself, with grid level l + 1 obtained recursively by subdividing each
box at level l into four equal parts. If B is a fixed box at level l, the four boxes at
level l + 1 obtained by its subdivision will be referred to as its children. In a level-
restricted adaptive tree, we do not assume that the same number of levels is used
in all subdomains of D. We do, however, require that two leaf nodes which share a
boundary point must be no more than one refinement level apart (Figure 2.1, right).

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1278 JUN WANG AND LESLIE GREENGARD

Bs

nn

nn
nc

s

s
s s

nf

nf

nf

i

ii i i

i

i

i

i

i i

i i

i i

i i

Hierarchical, level-restricted FGT

B

Single level FGT

r
p
� Dl

icic

Fig. 2.1. The original FGT data structure (left) and a level-restricted quad-tree data structure
(right). In the original FGT, the interaction region (shaded blue-gray) consists of boxes which are
close enough to B so that the Gaussian field induced by the sources in B is significant. (Outside
the shaded region, the field is exponentially small and can be ignored for any fixed precision.) In the
quad-tree, multiple types of interactions must be accounted for, and are described in detail in section
4. The interaction list for a typical node B consists of the boxes labeled i, while the near neighbors
at the same refinement level are labeled n. In a level-restricted tree, for a leaf node B, there can be
near neighbors at one coarser level, labeled nc, or at one finer level, labeled nf as well. The boxes
labeled s are separated from B but at a finer level (see Definition 4.2), while the boxes labeled ic are
separated from B but at a coarser level (see Definitions 4.2 and 4.3).

On each leaf node B, we assume that we are given f on a k × k tensor product
grid—either regularly spaced or at Chebyshev nodes. We then construct a k−1-degree
polynomial approximation to f on B of the form

(2.1) fB(y1, y2) ≈
Nk∑
j=1

cB(j) bj(y1, y2),

where Nk = k(k+1)
2 is the number of basis functions needed for kth order accuracy, and

the basis functions bj are assumed to be scaled to the relevant box size and centered
on the box center. The coefficient vector is defined to be ~cB = (cB(1), . . . , cB(Nk)).

For fourth or sixth order accuracy, polynomial approximation using a regular grid
is fairly well-conditioned, and we assume that f is given on a regular grid. We use as
basis functions

{yl1ym2 | l,m ≥ 0, l +m ≤ k − 1}.

This corresponds to keeping polynomials of total degree less than or equal to k − 1.
It is easy to see that this leads to a kth order accurate approximation as the mesh is
refined. Other options, such as the full tensor product basis (max(l,m) ≤ k−1) or the
Euclidean truncation (l2+m2 ≤ (k−1)2), also lead to kth order accurate schemes. For
an interesting discussion of the effect of this choice as k and the ambient dimension
increase, see Trefethen’s recent paper [29].

If we let ~fB ∈ Rk2 denote the given function values (in standard ordering), then
the coefficient vector ~cB can be computed as the solution of a least squares problem
(interpolating the desired data ~fB at the corresponding points). The solution operator

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1279

for this least squares task is denoted by P ∈ RNk×k2 , so that

~cB = P ~fB .

P can be precomputed and stored (say, using QR factorization). For eighth (or higher)
order accuracy, polynomial interpolation at equispaced nodes becomes increasingly
unstable (the so-called Runge phenomenon). In such cases, we assume that f is given
on a k × k tensor product Chebyshev grid and use as basis functions

{Tl(y1)Tm(y2)| l,m ≥ 0, l +m ≤ k − 1},
where Tl(x) denotes the (suitably scaled) Chebyshev polynomial of degree l. The
coefficients of the tensor product Chebyshev expansion can be computed efficiently
using the fast cosine transform [4].

Remark 1. We have chosen above to use polynomials which satisfy the total degree
condition: l + m ≤ k − 1. It is easy to see that this leads to a kth order accurate
approximation as the mesh is refined. Other options, such as the full tensor product
basis (max(l,m) ≤ k − 1) or the Euclidean truncation (l2 + m2 ≤ (k − 1)2), also
lead to kth order accurate schemes. In an interesting, recent paper [29], Trefethen
discusses these options in detail and proves that Euclidean truncation is, in some
sense, optimal—an effect whose advantage becomes more and more pronounced as k
and the ambient dimension increase.

In order to develop a fast algorithm for the various kinds of source distributions
shown in Figure 1.1, we will make use of efficient far field and local representations of
the induced field.

3. Analytical apparatus. Following the discussion in [15], we define the Her-
mite functions hn(x) by

hn(x) = (−1)nDne−x
2

, x ∈ R,

where D = d/dx. They satisfy the relation

(3.1) e−(x−y)2/δ =

∞∑
n=0

1

n!

(
y − c√
δ

)n
hn

(
x− c√
δ

)
,

where y0 ∈ R and δ > 0. This formula can be interpreted in two ways: (1) as a
Hermite expansion of the Gaussian at the target point x centered at c due to a source
at y, and (2) as a Taylor series for the Gaussian at the target location y centered at
c due to a source at x.

It will be convenient to use multi-index notation. In two dimensions, a multi-index
is a pair of nonnegative integers α = (α1, α2) with which, for any x = (x1, x2) ∈ R2,
we define

|α| = α1 + α2, α! = α1!α2!, xα = xα1
1 xα2

2 , Dα = ∂α1
x1
∂α2
x2
.

If p is an integer, we say α ≥ p if α1, α2 ≥ p. Multidimensional Hermite functions are
defined by

hα(x) = hα1(x1)hα2(x2),

and the analogue of (3.1) is

(3.2) e−|x−y|
2/δ =

1

α!

∑
α≥0

(
y − c√

δ

)α
hα

(
x− c√

δ

)
for a center c.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1280 JUN WANG AND LESLIE GREENGARD

3.1. Hermite expansions and translation operators. We turn now to the
analytical apparatus needed in the FGT algorithm. The first lemma describes how
to transform the field due to a volume source distribution and a collection of discrete
Gaussians into a Hermite expansion about the center of box B in which they are
supported.

Lemma 3.1. Let B be a box with center sB and side length r
√
δ, and let the Gaus-

sian field φ(x) be defined by

(3.3) φ(x) =

∫
B

e−
|x−y|2
δ f(y) dy +

Ns∑
j=1

qje
−
|x−yj |

2

δ ,

where the {yj} lie in B. Then,

(3.4) φ(x) =
∑
α≥0

Aαhα

(
x− sB√

δ

)
,

where

(3.5) Aα =
1

α!

∫
B

(
y − sB√

δ

)α
f(y) dy +

Ns∑
j=1

(
yj − sB√

δ

)α
qj

 .

The error in truncating the Hermite expansion with p2 terms is given by

(3.6) |EH(p)| =

∣∣∣∣∣∣
∑
α≥p

Aαhα

(
x− sB√

δ

)∣∣∣∣∣∣ ≤ K2QB(2Sr(p) + Tr(p))Tr(p),

where

(3.7) QB =

∫
B

|f(y)|dy +

Ns∑
j=1

|qj |,

(3.8) Sr(p) =

p∑
n=0

rn√
n!
, Tr(p) =

∞∑
n=p

rn√
n!
,

and K < 1.09.

Proof. The error estimate relies on Cramer’s inequality, which takes the form

(3.9)
1

α!
|hα(x)| ≤ K22|α|/2

1√
α!
e−|x|

2/2

in two dimensions, where K < 1.09, and on the fact that

(3.10)

∣∣∣∣y − sB√
δ

∣∣∣∣ ≤ √2

2
r

for y in B. The desired result follows from integration over the domain B and sum-
mation over the discrete sources.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1281

Note that the Hermite expansion converges extremely rapidly for r < 1. For
larger r, it still converges but requires larger values of p. (See [3, 20, 26, 32] for further
discussion of error estimates.) In the original FGT, setting r ≈ 1 is a sensible choice,
since a modest value of p is sufficient and the number of boxes within the interaction
region (where the Gaussian field is not vanishingly small) is modest as well. The
interaction region for a box B is the shaded area on the left in Figure 2.1. Also
notice that the estimate is uniform with respect to the target. In the original FGT,
this is necessary since the Hermite expansion is evaluated at all relevant locations.
In the hierarchical FGT, however, the Gaussian field due to a Hermite expansion is
evaluated only for boxes that are “well-separated” (the boxes labeled by i on the
right-hand side of Figure 2.1). Moreover, we will compute such interactions at every
level of the quad-tree, so that the boxes can be of arbitrary size. Fortunately, once
boxes are separated by a distance R

√
δ, their interactions can be ignored with an

error of the order O(e−R
2

), limiting the size of the expansions (see Figure 3.1).

n
u
m

b
er

of
te

rm
s

n
u
m

b
er

o
f

te
rm

s

side length/
p
�side length/

p
�

Fig. 3.1. (Left) plot of the number of terms p needed in a Hermite expansion as a function of
the box size, when used uniformly in the plane, including the near field. (Right) plot of the number
of terms needed when used only in the far field.

In the full algorithm, a more refined estimate that makes use of the separation
criterion will be useful. We have the following lemma.

Lemma 3.2. Let B be a box with center sB and side length r
√
δ, and let C be a

box with center tC and side length r
√
δ with x ∈ C. Assuming the distance between B

and C is at least r
√
δ, the Gaussian field defined by (3.3) and its Hermite expansion

(3.4) satisfy the error bound

(3.11) |EH(p)| =

∣∣∣∣∣∣
∑
α≥p

Aαhα

(
x− sB√

δ

)∣∣∣∣∣∣ = K2QBe
− 9

8 r
2

(2Sr(p) + Tr(p))Tr(p),

where QB is given by (3.7), and Sr(p), Tr(p) are given by (3.8).

Proof. The proof follows the same outline as that of Lemma 3.1. In this case,
after applying Cramer’s inequality (3.9), we make the additional observation that
|x−sB√

δ
| ≥ 3

2r, which contributes to the exponential decay in r.

The next lemma describes the conversion of a Hermite expansion about sB into
a Taylor expansion about tC .

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1282 JUN WANG AND LESLIE GREENGARD

Lemma 3.3. Let

(3.12) φ(x) =
∑
α≥0

Aαhα

(
x− sB√

δ

)
denote the Hermite expansion of a Gaussian field induced by a source distribution in
a box B with center sB and side length r

√
δ. Then φ(x) has the following Taylor

expansion about the center tC of box C with side length r
√
δ:

(3.13) φ(x) =
∑
β≥0

Bβ

(
x− tC√

δ

)β
.

The coefficients are given by

(3.14) Bβ =
(−1)|β|

β!

∑
α≥0

Aαhα+β

(
sB − tC√

δ

)
.

Assuming that the distance between boxes B and C is at least r
√
δ, the error ET (p)

in truncating the Taylor series after p2 terms satisfies

(3.15) |ET (p)| =

∣∣∣∣∣∣
∑
α≥p

Aαhα

(
x− sB√

δ

)∣∣∣∣∣∣ ≤ K2QBe
− 9

8 r
2

(2Sr(p) + Tr(p))Tr(p),

where QB is given by (3.7), and Sr(p), Tr(p) are given by (3.8).

Proof. This result follows, again, from the standard error estimate in [3, 26, 32],
with one modification: the exponential term in Cramer’s inequality can be bounded
by e−

9
8 r

2

instead of 1.

In practice, we need a variant of Lemma 3.3, in which the Hermite expansion is
truncated before being converted to a Taylor expansion.

Lemma 3.4. Let

(3.16) φ(x) =
∑
α≤p

Aαhα

(
x− sB√

δ

)
denote a truncated Hermite expansion corresponding to the Gaussian field induced by
a source distribution in a box B with center sB and side length r

√
δ. The induced

Taylor series in a box C with center tC and side length r
√
δ is given by

(3.17) φ(x) =
∑
β≥0

Cβ

(
x− tC√

δ

)β
,

with coefficients

(3.18) Cβ =
(−1)|β|

β!

∑
α≤p

Aαhα+β

(
sB − tC√

δ

)
.

Assuming that the distance between boxes B and C is at least r
√
δ, the error

EHT (p) in truncating the Taylor series after p2 terms satisfies the bound

(3.19) |EHT (p)| =

∣∣∣∣∣∣
∑
α≥p

Aαhα

(
x− sB√

δ

)∣∣∣∣∣∣ ≤ K2QBe
−2r2(2Sr(p) +Tr(p))Tr(p)S

2
r (p),

where QB is given by (3.7), and Sr(p), Tr(p) are given by (3.8).

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1283

Proof. The result is a straightforward application of the triangle inequality and
Lemma 3.3.

Note that the total error in using both a Hermite and a local expansion consists
of two contributions: the first comes from truncating the Hermite expansion, given
by (3.6), while the second comes from truncating the local expansion according to
(3.19).

For the hierarchical FGT, we will also need to propagate Hermite and Taylor
expansions between levels of the quad-tree. The following two lemmas provide the
needed analytical tools. Lemma 3.5 describes a formula for shifting the center of a
Hermite expansion, and Lemma 3.6 describes one for shifting the center of a Taylor
expansion. The derivation is straightforward [20].

Lemma 3.5. Let a Gaussian field be given by the Hermite expansion

(3.20) φ(x) =
∑
α≥0

Aαhα

(
x− sB√

δ

)
,

about a center sB, and let sC denoted a shifted expansion center. Then,

(3.21) φ(x) =
∑
β≥0

Bβhβ

(
x− sC√

δ

)
,

where the coefficients are given by

(3.22) Bβ =
∑
α≤β

α!

β!

(
β

α

)(
sB − sC√

δ

)β−α
Aα.

Lemma 3.6. Let tB ∈ R2, and let {Cα} denote the expansion coefficients for a
truncated Taylor series with p2 terms. Letting tC ∈ R2 be a shifted expansion center,
we have

(3.23)
∑
α≤p

Cα

(
x− tB√

δ

)α
=
∑
β≤p

C ′β

(
x− tC√

δ

)β
,

where

(3.24) C ′β =
∑

β≤α≤p

Cα

(
α

β

)(
tC − tB√

δ

)α−β
.

3.2. Local interactions. In the previous section, we summarized the analyti-
cal machinery needed for the fast evaluation of Gaussian fields with well-separated
sources and targets. Before providing a formal description of the full algorithm in
the next section, it remains to consider the computation of local interactions between
neighboring boxes at the level of leaf nodes. For point sources, this is done by direct
evaluation. We concentrate in this section on domain integrals and defer a discussion
of densities supported on boundaries to section 4.2.

Thus, suppose B is a leaf node—that is, a box at level l of the tree hierarchy on
which a k× k tensor product grid of function values has been specified. Let rl denote
the side length of B, so that its area is rl × rl. Consider now a target point t, which
lies in either B, a neighboring box of B at the same refinement level, or a coarse

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1284 JUN WANG AND LESLIE GREENGARD

B

nc

nf

n

Fig. 3.2. For a leaf node B, there are three types of possible local interactions: interaction with
a colleague (see Definition 4.2), and interactions with fine and coarse neighbors—one level finer
or one level coarser, respectively. The grid shown corresponds to an eighth order accurate tensor
product Chebyshev discretization.

or fine neighbor for B, which can be at most one refinement level apart (see Figure
3.2). Because of the translation invariance of the kernel, a simple counting argument
shows that there are at most k× k× 9 possible targets at the same level and at most
k × k × 12 possible targets in neighbors at either a coarser or a finer level. Recalling
that the source distribution f on B is given by (2.1), the Gaussian field induced at t
by fB can be approximated by

(3.25) ψB(t) =

Nk∑
n=1

cB(n)G(t, n),

with

(3.26) G(t, n) =

∫
B

e−
(t1−y1)2

δ e−
(t2−y2)2

δ bn(y1, y2) dy1dy2,

where (t1, t2), (y1, y2) denote the coordinates of the target t and source with respect
to the center of box B. Once the values {G(t, n)} have been tabulated for all possible
target locations and all basis functions, all local interactions can be computed directly
from (3.25), with some careful bookkeeping.

Assuming bn(y1, y2) = pn1
(y1)pn2

(y2), and using the fact that the Gaussian itself
allows for separation of variables, the formula for G(t, n) can be written in the form

(3.27) G(t, n) =

∫ rl/2

−rl/2
e−

(t1−y1)2

δ pn1(y1)dy1 ·
∫ rl/2

−rl/2
e−

(t2−y2)2

δ pn2(y2)dy2.

Thus, for colleagues (see Definition 4.2), it is straightforward to check that there are at
most 3k possible relative target locations (ti−yi) and at most k basis functions pni(yi),
which are either monomials or scaled Chebyshev polynomials. These 3k2 numbers can
be computed in milliseconds on a single core. For coarse or fine neighbors, there are at
most 4k possible relative target locations (ti − yi), so that these tables involving 4k2

numbers can be generated in milliseconds as well. Finally, we note that such tables
must be generated for each refinement level that contains a leaf node.

4. Fast Gauss transform algorithm. We now describe a version of the FGT
that uses a level-restricted quad-tree, closely following the discussion in [10]. Since the

Gaussian kernel e−‖x−y‖
2/δ is rapidly decaying, we will ignore interactions beyond a

distance where they can be considered negligible, according to a user-defined precision

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1285

ε. That is, we define a cut-off parameter rc so that e−|x−y|
2/δ ≤ ε, when ‖x −

y‖ ≥ rc
√
δ. Clearly, if a source box has side length greater than or equal to rc

√
δ,

its contribution to well-separated boxes is negligible. We will also make use of the
following definitions.

Definition 4.1 (cut-off level). Given a quad-tree with levels l = 0, 1, . . . , L, the
cut-off level is defined to be the coarsest level of the tree at which the box size is less
than or equal to rc

√
δ. We denote this by lcut. If the box size is greater than rc

√
δ

even at the finest level (level L), we let lcut = L+ 1.

Definition 4.2 (neighbors). Leaf nodes at the same level as B which share a
boundary point, including B itself, are referred to as colleagues. Leaf nodes at the
level of B’s parent which share a boundary point with B are referred to as the coarse
neighbors of B. Leaf nodes one level finer than B which share a boundary point with
B are referred to as fine neighbors. The union of the colleagues, coarse neighbors,
and fine neighbors of B is referred to as B’s neighbors. The s-list of a box B consists
of those children of B’s colleagues which are not fine neighbors of B (Figure 2.1).

Definition 4.3 (interaction lists). The interaction region for B consists of the
area covered by the neighbors of B’s parent, excluding the area covered by B’s col-
leagues and coarse neighbors. The interaction list for B consists of those boxes in
the interaction region which are at the same refinement level (marked as i in Figure
2.1) and is denoted by I(B). Boxes at coarser levels will be referred to as the coarse
interaction list, denoted by Ic(B) (marked as ic in Figure 2.1).

Definition 4.4 (expansions). We denote by Bl,k the kth box at refinement level l
and by Φl,k the Hermite expansion describing the far field due to the source distribution
supported inside Bl,k. We denote by Ψl,k the local expansion describing the field due

to the source distribution outside the neighbors of Bl,k, and denote by Ψ̃l,k the local
expansion describing the field due to the source distribution outside the neighbors of
the parent of Bl,k. When the context is clear, we will sometimes use the notation

Φ(B), Ψ(B), Ψ̃(B) to describe the expansions associated with a box B.

Remark 2. Let B = Bl,k be a box in the quad-tree hierarchy with children C1, C2,
C3, C4. Then, according to Lemma 3.5, there is a linear operator THH for which

(4.1) Φl,k = Φ(B) = THH [Φ(C1),Φ(C2),Φ(C3),Φ(C4)].

The operator THH is responsible for merging the expansions of four children into a
single expansion for the parent. Likewise, according to Lemma 3.6 there is a linear
operator TLL for which

(4.2) [Ψ̃(C1), Ψ̃(C2), Ψ̃(C3), Ψ̃(C4)] = TLL Ψl,k = TLL Ψ(B).

TLL is responsible for shifting the incoming data (the local expansion) from a parent
box to its children. Finally, according to Lemma 3.4, for any source box Bl′,k′ in the
interaction list I(B) of box Bl,k, there is a linear operator THL for which the induced
field in Bl,k is given by Ψ = THLΦl′,k′ . Clearly,

(4.3) Ψl,k = Ψ̃l,k +
∑

i∈I(B)

THLΦi.

Since our algorithm is operating on an adaptive tree, the leaf nodes may need to
handle interactions between nonneighboring boxes at different levels. More precisely,

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1286 JUN WANG AND LESLIE GREENGARD

viewing each such leaf node B as a “target box,” we need to incorporate the influence
of the s-list and the coarse interaction list (see Figure 2.1). For every box in the s-list,
its Hermite expansion is rapidly convergent in B and its influence can be computed by
direct evaluation of the series. We also need to compute the dual interaction, namely
the influence of a leaf node B on a box B′ in the s-list. Rather than evaluate the
Hermite expansion of B at all targets in B′, or shift to a local expansion in B′, we
can directly expand the influence of the polynomial source distribution in B, given
by the coefficients ~cB , as a local expansion in B′. Thus, incorporating all far field
interactions into (4.3), we have

(4.4) Ψl,k = Ψ̃l,k +
∑
i∈I

THLΦi,+
∑
i∈Ic

Tdirect ~ci.

The operator Tdirect, which maps the coefficients of a polynomial approximation of
the density in B′ (a coarse interaction list box) onto the p2 coefficients of the lo-
cal expansion in B, can be precomputed and stored for each level in the quad-tree
hierarchy. Inspection of Figure 2.1, the translation invariance of the kernel, and a
simple counting argument show that this requires O(kpL) work and storage, where k
is the degree of polynomial approximation, p is the order of the local expansion, and
L is the number of levels. More precisely, let bn(y1, y2) = pn1

(y1) pn2
(y2) be a basis

function for the polynomial approximation in box B′, and let α = (α1, α2) denote the
multi-index of a term in the induced local expansion in B. Then

(4.5) Tdirect(α, n) = T1(α1, n1)T2(α2, n2),

where

Ti(αi, ni) =
1

αi!

∫ Dl−1/2

Dl−1/2

hαi

(
yi − si√

δ

)
pni(yi) dyi ,

(s1, s2) denotes the center of B, and Dl−1 denotes the side length of box B′ at level
l − 1.

4.1. Pseudocode for the fast Gauss transform. We assume we are given
a square domain B0,0, on which is superimposed an adaptive hierarchical quad-tree
with lmax refinement levels. We let lcut denote the cut-off level. If lcut ≤ lmax, for
each level l that satisfies the condition lcut ≤ l ≤ lmax, determine the number of terms
needed in the Hermite expansions Nh(l) and the number of terms needed in the local
expansion Nt(l) according to the box size, the parameter δ that defines the variance
of the Gaussian, the user-defined precision ε, and the estimates (3.11), (3.15).

We denote the leaf nodes by Bi, i = 1, . . . ,M , where M is the total number of
leaf nodes across all levels. We assume that the source distribution on each Bi is given
by a collection of point sources, as well as a smooth function f , sampled on a k × k
grid. The number of grid points is denoted by N = Mk2 and the number of discrete
sources is denoted by Ns. We assume the output is desired at the N grid points as
well as the Ns source locations.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1287

Step I: Upward pass
for l = lmax, . . . , lcut

for every box j on level l
if j is childless then
• Form Hermite expansion Φl,j using (3.5)

else
• Form Hermite expansion Φl,j by merging the expansions of

its children using THH (see Lemma 3.5)
endif

end
end

Step II: Downward pass
for every box j on level lcut
• Set Ψlcut,j = 0

end
for l = lcut + 1, . . . , lmax

for every box j on level l:

• Compute Ψ̃l,j from its parent’s Ψ expansion using the operator
TLL

for every box m in j’s interaction list:
• Increment Ψl,j by adding in the contributions from all boxes

in j’s interaction list, using (4.4).
if j is childless then

for every box m in j’s s-list:
• Evaluate the Hermite expansion Φ(m) at each target

in box j.
end
for every box m in j’s s-list:
• Increment the local expansion Ψ(m) from the smooth

and point source distribution in j, using the precomputed
operators (4.5) for the smooth source distribution

and (3.2) for the point sources
end
• Evaluate the local expansion Ψl,j at each target in box j

(whether the target is a grid point or a point source location)
endif

end
end

Step III: Local interactions
for l = 0, . . . , lmax

for every leaf node Bj on level l:
• At each tensor product grid point in Bj , compute influence of the

smooth source in colleagues, fine neighbors, and coarse
neighbors using precomputed tables of coefficients (3.26)
• For each point source location in Bj , use Chebyshev interpolation

to obtain the Gaussian field due to smooth sources in colleagues,
fine and coarse neighbors
• For all targets in Bj , use direct computation to evaluate the

Gaussian field due to point sources in colleagues,
fine and coarse neighbors

end
end

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1288 JUN WANG AND LESLIE GREENGARD

The cost of the adaptive FGT is easily estimated. Creating the tree and sorting sources
into leaf nodes requires at most O((N + Ns)lmax) work. Forming expansions on all
leaf nodes requires O((N+Ns)p

2 work, for an expansion of order p. The remainder of
the upward pass requires O(Nbp

3) work to carry out the recursive merging of Hermite
expansions, where Nb is the number of boxes in the quad-tree. The downward pass
requires approximately O(27Nbp

3) work to carry out the Hermite-local and local-
local translations. Finally, the local work is of the order O(Nsq) for the point sources
(assuming the tree has been refined until there are O(q) sources per leaf node). For

the continuous source distribution, only approximately 13N k(k+1)
2 +Nsk

2 operations
are required. The first term accounts for the cost of computing the Gaussian potential
on the tensor product grids from the near neighbors, using precomputed tables, while
the latter term is the interpolation cost at the point source locations. The factor 13 is
a consequence of the observation that the maximum number of neighbors a box can
have is 13 (12 fine neighbors and itself).

Remark 3. The preceding analysis assumes that the translation operators THH ,
TLL, and THL have been computed according to the formulae (4.1), (4.2), and (4.3),
taking advantage of the tensor product nature of the two-dimensional Hermite and
local expansions to achieve O(p3) complexity, instead of the naive estimate O(p4). In
the d-dimensional setting, the operation count is O(dpd+1) instead of O(p2d) [15, 16].

We have further accelerated the code by making use of diagonal translation oper-
ators, following the method described in [16] and [25]. Instead of Hermite expansions,
it is straightforward to show that

(4.6)
∑
α≥0

Aαhα

(
x− sB√

δ

)
=

∫
R2

w(k)e−
‖k‖2

4 eik·(x−s
B)/
√
δ dk ,

where

(4.7) w(k) = w(k1, k2) =
∑
α≥0

Aα(−i)|α|kα1
1 kα2

2 .

This formula is derived from the Fourier relation

(4.8) e−‖x‖
2

=

(
1

4π

)∫
R2

e−‖k‖
2

4eik·x dk.

In order to make practical use of (4.6), we need to discretize the integral, for which
the trapezoidal rule is extremely efficient because of the smoothness and exponential
decay of the integrand. The reason (4.6) is useful is because it provides a basis in which
translation is diagonal. Assuming pt denotes the number of trapezoidal quadrature
points required, it is shown in [16] and [25] that the dominant cost of translating
Hermite to local expansions, namely, the O(27Nbp

3) term above, can be reduced to
O(3Nbp

2
t +Nbpp

2
t) work.

The principal difference between the methods in [16] and [25] and our hierarchical
scheme is that pt must be different on each level. Informally speaking, for a level where

the linear box size is rl, pt must be sufficiently large so that the integrand eik·(x−s
B)/
√
δ

is Nyquist-sampled for (x−sB) ≤ 4rl, where rl < rc
√
δ and rc is the cut-off parameter

defined above. (It is easy to verify that pt = O(p) [16, 25].)

4.2. Boundary fast Gauss transform. We turn now to the evaluation of
boundary Gauss transforms of the form (1.13) for targets both on and off the boundary

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1289

Γ. We assume that Γ itself is described as the union of Mb boundary segments:

Γ = ∪Mb
j=1Γj ,

with each boundary segment defined by a kth order Legendre series. That is,
(4.9)

Γj = Γj(s) = (x1
j (s), x

2
j (s)) : x1

j (s) =

k−1∑
n=0

x1
j (n)Pn(s), x2

j (s) =

k−1∑
n=0

x2
j (n)Pn(s),

with −1 ≤ s ≤ 1. We assume that the densities σ and µ in (1.13) are also given by
corresponding piecewise Legendre series:

σj(s) =

k−1∑
n=0

σj(n)Pn(s), µj(s) =

k−1∑
n=0

µj(n)Pn(s).

For the sake of simplicity, we assume that Γ has been discretized in a manner
that is commensurate with the underlying adaptive data structure used above. That
is, we assume the length of Γj , denoted by |Γj |, satisfies |Γj | ≈ rl, where rl is the box
size of the leaf node in the tree that contains the center point cj of Γj .

Suppose now that we apply composite Gauss–Legendre quadrature to the integrals
in (1.13). For the “single layer” type integral, we have

(4.10) S[σ](x) =

∫
Γ

e−
|x−y(s)|2

δ σ(y(s)) dsy ≈
Mb∑
j=1

k−1∑
i=0

e−
|x−yij |

2

δ σijwij ,

where yij = (y1
ij , y

2
ij) is the location of the ith scaled Gauss–Legendre node on Γj , σij

is the density value at that point, and wij = wi
√

[dy1
j /ds(si)]

2 + [dy2
j /ds(si)]

2. Here,

si and wi denote the standard Gauss–Legendre nodes and weights on [−1, 1].
Note that the quadrature weight wij involves both the standard weight wi and the

change of variables corresponding to an arc-length parametrization on each segment.
The necessary derivatives can be computed from (4.9). Note also that the sum in
(4.10) consists simply of point sources and is easily incorporated into the FGT above.
As a precomputation step, we carry out a “tree sort” to assign point sources to boxes
in the tree. After that the algorithm remains largely unchanged from the volume
FGT, with the only exception that Hermite expansions are formed from point sources
instead of volume integrals, according to Lemma 3.1. The point source FGT computes
the sum (4.10) to a user-specified precision ε.

Now the only remaining issue has to do with the accuracy of the formula (4.10),
since the smoothness of the integrand depends strongly on the parameter δ. Here,
however, the rapid decay of the Gaussian makes the problem tractable for any δ. To see
why, consider a boundary segment Γj , centered at cj in a leaf box B of commensurate

size (Figure 4.1, left). Suppose first that δ is sufficiently large that C
√
δ ≥ |Γj |, where

C = 2
√

ln(1/ε). Then the Gaussian is a smooth function on the scale of the boundary
segment, and k-point Gauss–Legendre quadrature is spectrally accurate. Suppose, on
the other hand, that C

√
δ < |Γj |, and let rcorr = |Γj |. Then, for any target outside

the circle of radius rcorr centered at cj , the integrand is bounded by ε |Γj | ‖σ‖∞.

Thus, for each boundary segment with C
√
δ < |Γj |, it remains only to correct the

result obtained from the FGT within this circle Dj (Figure 4.1, right).

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1290 JUN WANG AND LESLIE GREENGARD

�j

rcorr
cj

�j

rcorr

sl
sr

t1

t2 t3

Fig. 4.1. (Left) A boundary segment Γj with center point cj lying in a leaf node B of side
length rl. Depending on the value of δ, a boundary integral of the form (1.13) is either resolved
by its discretization using standard Gauss–Legendre quadrature with k nodes on Γj , or negligible
outside the disk centered at cj with radius rcorr, which we will denote by Dj . (Right) In the latter
case (when δ is small and the Gaussian is sharply peaked), a simple interpolatory rule can be used
to compute the correct contribution using O(k2) work per target point, either on or off the boundary.
The shaded circles in the figure around the three target points ti are meant to indicate the regions
where the Gaussians centered at ti are less than a user-prescribed tolerance ε. t1 is sufficiently far
from Γj that it can be ignored. t2 and t3 are off and on the boundary, respectively. The relevant
portion of Γj for t2 is marked in terms of the parameter s by sl and sr.

This correction can be computed rapidly and accurately as follows. Taking the
point of view of some target t ∈ Dj , let us denote by D(t, r) the circle of radius

r centered at t, where r =
√
δ ln(1/ε) so that e−‖t−y‖

2/δ < ε. If D(t, r) does not
intersect Γj , the field is negligible and no correction is needed. Otherwise, we compute
the intersection of Γj and D(t, r) and let the endpoints of the intersection be denoted
by sl and sr (in terms of the underlying parametrization of Γj). We then interpolate
the source distribution σ(s) to kc scaled Gauss–Legendre nodes on Γsj for s ∈ [sl, sr]
and replace the original k-point quadrature on Γj by a kc-point Gauss–Legendre rule
on [sl, sr]. Setting kc to 20 yields approximately 14 digits of accuracy assuming the
density σ(s) is locally smooth.

4.3. Periodic boundary conditions. It is straightforward to extend the FGT
to handle periodic conditions on the unit square D = [−0.5, 0.5]2. Conceptually
speaking, this can be accomplished by tiling the entire plane R2 with copies of the
source distribution f . For this, we let Λ = {j = (j1, j2)|j1, j2 ∈ Z}. The tile Tj

is a unit square centered at the lattice point j ∈ Λ. The extended periodic source
distribution will be denoted by f̃ . From this, the solution to the periodic problem
can be written as

F̃ (x) =

∫
R2

e−
|x−y|2
δ f̃(y) dy, x ∈ D.

As in the FMM for the Poisson equation [14, 10], we can accommodate periodic
boundary conditions with very little change to the data structure or processing. To see
this, note that, if we carry out the upward pass of the FGT until the root node (level
l = 0), we obtain a Hermite expansion describing the field due to all sources in D.
Because of the translation invariance of the kernel, the coefficients of this expansion
are the same for every tile Tj covering the plane, expanded about the corresponding
lattice point j. We denote the expansion about j by

φ(x) =
∑
α≤p

Aαhα

(
x− j√
δ

)
.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

Jun Wang

Jun Wang

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1291

Let us now define the root node’s colleagues at level 0 by

C = {(−1,−1), (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)}
and the punctured lattice by Λ′ = Λ − C. The tiles indexed by Λ′ are clearly well-
separated from D. From Lemma 3.4 and the linearity of the problem, it is clear that
the contribution to the field in D from all tiles in Λ′ can be represented by a local
expansion

(4.11) F̃far(x) =
∑
β≥0

Cβ

(
x√
δ

)β
,

centered at the origin, with coefficients

(4.12) Cβ =
(−1)|β|

β!

∑
α≤p

AαLα+β ,

where

(4.13) Lα+β =
∑
j∈Λ′

hα+β

(
j√
δ

)
.

Extending Definitions 4.2–4.4, we let Ψ0,1 denote the local expansion for the root

node D at level 0. When δ is so small that lcut ≥ 0, the far field F̃far(x) in the root
node D is negligible (for given accuracy ε), so that we can initialize the coefficients of
Ψ0,1 to zero. Otherwise, we carry out the computation in (4.12) to obtain Ψ0,1. This
requires the evaluation of the lattice sums in (4.13). These are obtained rapidly from
the Poisson summation formula:

∞∑
j1=−∞

∞∑
j2=−∞

hα

(
(j1, j2)√

δ

)

= π2δ2(−2πi
√
δ)α1+α2

(∞∑
m=−∞

mα1 · e−π2m2δ

)(∞∑
n=−∞

nα2 · e−π2n2δ

)
.

(4.14)

It is straightforward to verify that, when δ is large enough that F̃far(x) is non-
negligible, only a few terms are required on the right-hand side of (4.14) and only
milliseconds are needed for all Lα+β .

Only two other changes are needed in the FGT: the interaction list and near
neighbor computations must be adjusted to account for periodic images. Having
defined the colleagues of the root node above, this is handled automatically by the
data structure. For large-scale problems with many levels of refinement, this involves
a modest increase in work for boxes near the boundary of D and a negligible increase
in the total work.

5. Numerical results. In this section, we illustrate the performance of both
the volume and boundary FGT, implemented in Fortran, with experiments carried
out on a single core 3.4GHz Intel Xeon processor.

Definition 5.1. In each example, we use the term throughput to mean the num-
ber of points processed per second. This is a useful benchmark for linear scaling al-
gorithms, permitting simple estimation of the performance in terms of CPU time to
any problem size.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

Jun Wang

Jun Wang

A1292 JUN WANG AND LESLIE GREENGARD

Our first example demonstrates the linear scaling of CPU time with the number
of grid points. We compute the volume Gauss transform

(5.1) Gδ[fk](x) =

∫
R2

e−
|x−y|2
δ f(y)dy ,

with the source distribution

(5.2) fk(x) = sin(2kπx1) cos(2kπx2) (k ∈ Z),

imposing periodic boundary conditions.
In order for the numerical experiment to be nontrivial, we increase the complexity

of the problem as we increase the number of degrees of freedom. More precisely, we
consider four cases, with k = 1, 2, 4, 8 and δ = 1

k2 , requiring a finer and finer spatial
mesh to resolve the data. For each choice of k, we create a level-restricted quad-tree,
refined to a level where fk is accurately represented with our piecewise eighth degree
polynomial to 10 digits of accuracy. For the function described in (5.2), the refinement
happens to be uniform, with N = 256, 1024, 4096, 16384 leaf nodes for the four cases,
respectively. (We will see examples with inhomogeneous source distributions and
adaptive data structures below.) Timings are provided in tabular and graphical form
in Table 5.1 and Figure 5.1, respectively. In each case, the resulting error is less than
the requested precision ε.

Table 5.1
Throughput on a single core for the volume FGT with periodic boundary conditions.

k
ε 1 2 4 8

10−3 3.0 · 105 3.3 · 105 6.1 · 105 7.3 · 105

10−6 1.7 · 105 1.8 · 105 3.1 · 105 4.3 · 105

10−9 0.9 · 105 0.9 · 105 1.1 · 105 1.3 · 105

Throughput for the periodic volume FGT

p
oi

n
ts

/s
ec

⇥
10

5

k

Fig. 5.1. Throughput for the volume FGT with various precisions, plotted as a function of δ.
(The data is the same as in Table 5.1.)

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1293

While the cost appears to grow in a sublinear fashion with the number of grid
points, this is simply because of the nontrivial cost of the precomputation. A more
precise model for the CPU time takes the form

(5.3) T (N, ε) = A(ε)N +B(ε) logN

for precision ε. The term B(ε) logN is dominated by the building of tables for the
local interactions, which is done once per level. In the present example, the sublinear
part contributes about 30% of the cost for the smaller problem sizes and less than
10% for the largest N . If we subtract the time for precomputation/table building,
and measure the time of the remainder of the FGT, we see a steady throughput for
each fixed precision. This verifies the linear scaling (Table 5.2 and Figure 5.2). For
the rest of the examples, the timings presented always include the precomputation.

Table 5.2
Throughput on a single core for the volume FGT with periodic boundary conditions.

k
ε 1 2 4 8

10−3 7.0 · 105 7.2 · 105 8.2 · 105 8.1 · 105

10−6 3.8 · 105 4.0 · 105 4.3 · 105 4.1 · 105

10−9 1.5 · 105 1.5 · 105 1.4 · 105 1.5 · 105

p
oi

n
ts

/s
ec

⇥
10

5

k

Throughput for the periodic volume FGT (linear part)

Fig. 5.2. Throughput for the volume FGT with various precisions, plotted as a function of δ.
(The data is the same as in Table 5.2.)

For our second example, we again compute the volume FGT with periodic bound-
ary condition where fk is given by (5.2) with k = 2. The integral Gδ[fk] is available
analytically for this fk(x) from Fourier analysis. The source distribution is again
resolved to 10 digits of accuracy, but we now compute the FGT with requested preci-
sions of ε = 10−3, 10−6, and 10−9. For each choice of ε, we carry out the computation
for a wide range of δ, from δ = 10−7 to δ = 10−1. Timings are provided in Table 5.3
and plotted in Figure 5.3. In each case, the resulting error is less than ε.

Our third example illustrates the performance of the FGT with an adaptive data
structure. For this, we let B denote the unit box, with f given by

(5.4) f(x) =

5∑
i=1

e−αi|x−xi|
2

,

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1294 JUN WANG AND LESLIE GREENGARD

Table 5.3
Throughput on a single core for the volume FGT with periodic boundary conditions.

δ

ε 10−1 10−2 10−3 10−4 10−5 10−6 10−7

10−3 3.4 · 105 3.5 · 105 3.3 · 105 5.5 · 105 6.2 · 105 6.9 · 105 7.3 · 105

10−6 1.7 · 105 1.7 · 105 1.7 · 105 0.7 · 105 3.0 · 105 5.0 · 105 5.4 · 105

10−9 0.8 · 105 0.9 · 105 0.6 · 105 0.3 · 105 3.5 · 105 4.0 · 105 4.4 · 105

Throughput for the periodic volume FGT

p
oi

n
ts

/s
ec

⇥
10

5

�

Fig. 5.3. Throughput for the periodic volume FGT with various precisions, plotted as a function
of δ. (The data is the same as in Table 5.3.)

with

[x1, . . . ,x5] = [(0.20, 0.10), (0.31, 0.50), (0.68, 0.40), (0.41, 0.80), (0.12, 0.45)]

and

[α1, . . . , α5] = (0.010, 0.005, 0.003, 0.002, 0.001).

The volume integral Gδ[f] is available analytically for this choice of f(x). In
Figure 5.4, we plot the source distribution along with a level-restricted quad-tree on
which the source distribution is resolved to 10 digits of accuracy. We compute the
volume FGT with requested precisions of ε = 10−3, 10−6, and 10−9. For each choice
of ε, we carry out the computation for a wide range of δ, from δ = 10−7 to δ = 10−1.
Timings are given in Table 5.4 and plotted in Figure 5.5. In each case, the resulting
error is less than ε.

Note that, for a fixed ε, the performance of the volume FGT is relatively insen-
sitive to the variance parameter δ. For large δ, the far field is nontrivial but very
smooth. For sufficiently small δ, the interaction is entirely local and the FGT is par-
ticularly fast. The worst case performance is for δ ≈ 10−4, where both the far field
and the near field require significant effort.

Our fourth example illustrates the performance of the boundary FGT. We com-
pute the integral

(5.5) Gδ[σ](x) =

∫
Γ

e−
|x−y|2
δ σ(y)dsy ,

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1295

Fig. 5.4. (Left) Plot of the volume source distribution, which is taken to be the sum of a few
Gaussians. (Right) A level-restricted quad-tree on which the source distribution is resolved to 10
digits of accuracy as a piecewise polynomial of degree 8.

Table 5.4
Throughput on a single core for the adaptive volume FGT (third example) with various precisions.

δ

ε 10−1 10−2 10−3 10−4 10−5 10−6 10−7

10−3 2.8 · 105 2.8 · 105 3.4 · 105 4.3 · 105 5.0 · 105 7.5 · 105 8.0 · 105

10−6 1.6 · 105 1.6 · 105 1.5 · 105 0.9 · 105 3.1 · 105 5.4 · 105 6.0 · 105

10−9 0.8 · 105 0.8 · 105 0.5 · 105 0.4 · 105 3.6 · 105 4.3 · 105 4.8 · 105

where Γ is chosen to be the ellipse:

(5.6)

{
y1(θ) = 0.45 cos(θ),

y2(θ) = 0.25 sin(θ),
(0 ≤ θ ≤ 2π) .

We let

(5.7) σ(y) = cos(2y1) + sin(y2).

We discretize Γ adaptively as a function of θ with piecewise 16th order Gauss–
Legendre panels until σ, y1, and y2 are all resolved to 12 digits of accuracy. We
then create an adaptive quad-tree on the unit box, so that each leaf box of the tree
contains no more than O(1) boundary points, and then enforce the level-restricted
condition, yielding the data structure shown in Figure 5.6. The leaf nodes (with 8×8
tensor product Chebyshev grids on each) define our volumetric targets. The boundary
FGT is then evaluated at all volumetric grid points and all boundary points as well.
Timings are given in Table 5.5 and plotted in Figure 5.7. In each case, the resulting
error is less than than the requested tolerance ε.

Note that, again, the performance of the boundary FGT varies only modestly over
a wide range of the parameter δ. For sufficiently small δ, the interaction is entirely
local and no expansions are formed. For sufficiently large δ, a smooth quadrature rule
is accurate enough to discretize the boundary integral, avoiding the need for local
correction. The code is slowest for intermediate values of δ, where both local and far
field contributions are significant (while still satisfying linear scaling with the number
of source and target points).

Remark 4. As noted above, the boundary FGT relies on the FGT for discrete
point sources, which carries out the rapid evaluation of sums of the form (1.14). The

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1296 JUN WANG AND LESLIE GREENGARD

Throughput for the Volume FGT

p
oi

n
ts

/s
ec

⇥
10

5

�

Fig. 5.5. Throughput for the adaptive volume FGT with various precisions, plotted as a function
of δ. (The data is the same as in Table 5.4.)

Fig. 5.6. A level-restricted quad-tree determined by the discretization of the indicated ellipse.

algorithm outline in section 4 describes all of the steps needed for the discrete FGT
using the same level-restricted quad-tree as used for volume source distributions. We
should point out, however, that the scheme of [16, 25] is slightly faster. To give an
indication of relative performance, we consider the sum (1.14) with 100,000 random
sources and targets located within the unit box [−0.5, 0.5]2 with δ = 10−3. For nine
digits of accuracy, the fast generalized Gauss transform [25] has a throughput of
1.8 × 106 points per second, while the hierarchical FGT yields 7.1 × 105 points per
second. Since we are primarily interested in volume distributions, we have used only
the hierarchical FGT in our experiments.

There are also a variety of kernel-independent or black-box FMMs which could
be modified to handle Gaussian kernels and volume distributions, such as those in
[11, 22, 34]. These typically do not come equipped with diagonal translation operators,
and we have not attempted a direct comparison with any of these schemes.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1297

Table 5.5
Throughput on a single core for the adaptive volume FGT (third example) with various precisions.

δ

ε 100 10−1 10−2 10−3 10−4 10−5 10−6

10−3 4.2 · 105 3.9 · 105 4.1 · 105 3.6 · 105 5.0 · 105 2.8 · 105 5.4 · 105

10−6 2.0 · 105 1.8 · 105 1.6 · 105 1.6 · 105 0.9 · 105 1.8 · 105 3.9 · 105

10−9 1.0 · 105 0.9 · 105 0.8 · 105 0.4 · 105 0.2 · 105 1.1 · 105 2.7 · 105
p
oi

n
ts

/s
ec

⇥
10

5

Throughput for the boundary FGT

�

Fig. 5.7. Throughput for the boundary FGT with boundary and volume targets for various
precisions, plotted as a function of δ (fourth example).

5.1. An initial value problem for the heat equation. As a final example,
we consider the homogeneous heat equation,

ut(x, t) = ∆u(x, t),

u(x, 0) = f(x)
(5.8)

for x ∈ D = [−0.5, 0.5]2, with periodic boundary conditions. The initial data is chosen
to be a piecewise constant function,

(5.9) f(x) = Ci for x ∈ Di,

where the unit box D is refined uniformly on a tree that is five levels deep, resulting
in a 32-by-32 grid of leaf nodes Di. On each leaf node, we let Ci take on a random
value in the range [0, 1]. f(x) is plotted in Figure 5.8.

The exact solution of this problem is given by

(5.10) u(x, t) =
1

4πt

∫
R2

e−
|x−y|2

4t f̃(y)dy,

where f̃ is the periodic extension of f . This is precisely what is computed by the
periodic version of the volume FGT, and the solution u(x, t) is plotted for various
choices of t in Figure 5.8, with nine digits of precision in the FGT.

Remark 5. There is a subtle issue regarding the use of the FGT to compute
(5.10), namely, that the error estimates for the FGT derived above are based on the
Gaussian rather than the heat kernel, which includes the additional 1/(4πt) scaling

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1298 JUN WANG AND LESLIE GREENGARD

Fig. 5.8. The solution to the heat equation on a box with periodic boundary conditions and
piecewise constant initial data, plotted at various times.

in two dimensions. To compute an accurate convolution requires that the local tables
be built using the full heat kernel (whose support to a fixed precision ε is slightly
greater than the support of the Gaussian alone). The far field and local expansions
also require a few more terms. Without entering into a detailed analysis, we illustrate
the difference when t = 10−4 for leaf node boxes in the present example. For the FGT,
Hermite expansions of order p = 22 are needed to achieve nine digits of precision. For
the full heat kernel, it turns out that p = 28 is required to achieve the same accuracy.

6. Conclusions. We have presented a new adaptive version of the fast Gauss
transform (FGT), which can be used for the evaluation of volume or boundary inte-
grals with a Gaussian kernel as well as the field induced by discrete point sources. This
is a standard and well-defined computational task in its own right, and serves as a key
component in integral equation–based solvers for the heat equation in complex geom-
etry [33]. The extension of the present method to three dimensions is straightforward
and will be reported at a later date.

REFERENCES

[1] D. N. Arnold and P. Noon, Coercivity of the single layer heat potential, J. Comput. Math.,
7 (1989), pp. 100–104, http://www.jstor.org/stable/43692419.

[2] T. Askham and A. J. Cerfon, An adaptive fast multipole accelerated Poisson solver for
complex geometries, J. Comput. Phys., 344 (2017), pp. 1–22, https://doi.org/10.1016/j.
jcp.2017.04.063.

[3] B. J. C. Baxter and G. Roussos, A new error estimate of the fast Gauss transform, SIAM
J. Sci. Comput., 24 (2002), pp. 257–259, https://doi.org/10.1137/S1064827501396920.

[4] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover, New York, 2001.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

http://www.jstor.org/stable/43692419
https://doi.org/10.1016/j.jcp.2017.04.063
https://doi.org/10.1016/j.jcp.2017.04.063
https://doi.org/10.1137/S1064827501396920

ADAPTIVE FAST GAUSS TRANSFORM IN 2D A1299

[5] R. M. Brown, The method of layer potentials for the heat equation in Lipschitz cylinders,
Amer. J. Math., 111 (1989), pp. 339–379, https://doi.org/10.2307/2374513.

[6] H. Cheng, J. Huang, and T. J. Leiterman, An adaptive fast solver for the modified Helmholtz
equation in two dimensions, J. Comput. Phys., 211 (2006), pp. 616–637, https://doi.org/
10.1016/j.jcp.2005.06.006.

[7] M. Costabel, Time-dependent problems with the boundary integral equation method, in Ency-
clopedia of Computational Mechanics, E. Stein, R. de Borst, and T. J. R. Hughes, eds., John
Wiley & Sons, New York, 2004, pp. 703–721, https://doi.org/10.1002/0470091355.ecm022.

[8] G. F. Dargush and P. K. Banerjee, Application of the boundary element method to transient
heat conduction, Int. J. Numer. Methods Engrg., 31 (1991), pp. 1231–1247, https://doi.
org/10.1002/nme.1620310613.

[9] A. Elgammal, R. Duraiswami, and L. S. Davis, Efficient kernel density estimation using
the fast Gauss transform with applications to color modeling and tracking, IEEE Trans.
Pattern Anal. Mach. Intell., 25 (2003), pp. 1499–1504, https://doi.org/10.1109/TPAMI.
2003.1240123.

[10] F. Ethridge and L. Greengard, A new fast-multipole accelerated Poisson solver in two
dimensions, SIAM J. Sci. Comput., 23 (2001), pp. 741–760, https://doi.org/10.1137/
S1064827500369967.

[11] W. Fong and E. Darve, The black-box fast multipole method, J. Comput. Phys., 228 (2009),
pp. 8712–8725, https://doi.org/10.1016/j.jcp.2009.08.031.

[12] L. Greengard and J.-Y. Lee, A direct adaptive Poisson solver of arbitrary order accuracy,
J. Comput. Phys., 125 (1996), pp. 415–424, https://doi.org/10.1006/jcph.1996.0103.

[13] L. Greengard and P. Lin, Spectral approximation of the free-space heat kernel, Appl. Comput.
Harmon. Anal., 9 (2000), pp. 83–97, https://doi.org/10.1006/acha.2000.0310.

[14] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,
135 (1997), pp. 280–292, https://doi.org/10.1006/jcph.1997.5706.

[15] L. Greengard and J. Strain, The fast Gauss transform, SIAM J. Sci. Stat. Comput., 12
(1991), pp. 79–94, https://doi.org/10.1137/0912004.

[16] L. Greengard and X. Sun, A new version of the fast Gauss transform, Doc. Math., III (1998),
pp. 575–584.

[17] R. B. Guenther and J. W. Lee, Partial Differential Equations of Mathematical Physics and
Integral Equations, Prentice Hall, Englewood Cliffs, NJ, 1988.

[18] M. T. Ibáñez and H. Power, An efficient direct BEM numerical scheme for phase change
problems using Fourier series, Comput. Methods Appl. Mech. Engrg., 191 (2002),
pp. 2371–2402, https://doi.org/10.1016/S0045-7825(01)00416-9.

[19] M. H. Langston, L. Greengard, and D. Zorin, A free-space adaptive FMM-based PDE
solver in three dimensions, Comm. Appl. Math. Comput. Sci., 6 (2011), pp. 79–122, https:
//doi.org/10.2140/camcos.2011.6.79.

[20] D. Lee, A. Gray, and A. Moore, Dual-tree fast Gauss transforms, Adv. Neural Inform.
Process. Systems, 18 (2006), pp. 747–754.

[21] J.-R. Li and L. Greengard, High order accurate methods for the evaluation of layer heat
potentials, SIAM J. Sci. Comput., 31 (2009), pp. 3847–3860, https://doi.org/10.1137/
080732389.

[22] D. Malhotra and G. Biros, Algorithm 967: A distributed-memory fast multipole method
for volume potentials, ACM Trans. Math. Softw., 43 (2016), 17, https://doi.org/10.1145/
2898349.

[23] W. Pogorzelski, Integral Equations and Their Applications, Pergamon Press, Oxford, 1966.
[24] R. S. Sampath, H. Sundar, and S. Veerapaneni, Parallel fast Gauss transform, in Pro-

ceedings of the ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’10), New Orleans, LA, 2010, pp. 1–10.

[25] M. Spivak, S. Veerapaneni, and L. Greengard, The fast generalized Gauss transform, SIAM
J. Sci. Comput., 32 (2010), pp. 3092–3107, https://doi.org/10.1137/100790744.

[26] J. Strain, The fast Gauss transform with variable scales, SIAM J. Sci. Stat. Comput., 12
(1991), pp. 1131–1139, https://doi.org/10.1137/0912059.

[27] J. Strain, Fast adaptive methods for the free-space heat equation, SIAM J. Sci. Comput., 15
(1994), pp. 185–206, https://doi.org/10.1137/0915013.

[28] J. Tausch and A. Weckiewicz, Multidimensional fast Gauss transforms by Chebyshev ex-
pansions, SIAM J. Sci. Comput., 31 (2009), pp. 3547–3565, https://doi.org/10.1137/
080732729.

[29] L. N. Trefethen, Multivariate polynomial approximation in the hypercube, Proc. Amer. Math.
Soc., 145 (2017), pp. 4837–4844, https://doi.org/10.1090/proc/13623.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

https://doi.org/10.2307/2374513
https://doi.org/10.1016/j.jcp.2005.06.006
https://doi.org/10.1016/j.jcp.2005.06.006
https://doi.org/10.1002/0470091355.ecm022
https://doi.org/10.1002/nme.1620310613
https://doi.org/10.1002/nme.1620310613
https://doi.org/10.1109/TPAMI.2003.1240123
https://doi.org/10.1109/TPAMI.2003.1240123
https://doi.org/10.1137/S1064827500369967
https://doi.org/10.1137/S1064827500369967
https://doi.org/10.1016/j.jcp.2009.08.031
https://doi.org/10.1006/jcph.1996.0103
https://doi.org/10.1006/acha.2000.0310
https://doi.org/10.1006/jcph.1997.5706
https://doi.org/10.1137/0912004
https://doi.org/10.1016/S0045-7825(01)00416-9
https://doi.org/10.2140/camcos.2011.6.79
https://doi.org/10.2140/camcos.2011.6.79
https://doi.org/10.1137/080732389
https://doi.org/10.1137/080732389
https://doi.org/10.1145/2898349
https://doi.org/10.1145/2898349
https://doi.org/10.1137/100790744
https://doi.org/10.1137/0912059
https://doi.org/10.1137/0915013
https://doi.org/10.1137/080732729
https://doi.org/10.1137/080732729
https://doi.org/10.1090/proc/13623

A1300 JUN WANG AND LESLIE GREENGARD

[30] S. K. Veerapaneni and G. Biros, A high-order solver for the heat equation in 1D domains
with moving boundaries, SIAM J. Sci. Comput., 29 (2007), pp. 2581–2606, https://doi.
org/10.1137/060677896.

[31] S. K. Veerapaneni and G. Biros, The Chebyshev fast Gauss and nonuniform fast Fourier
transforms and their application to the evaluation of distributed heat potentials, J. Comput.
Phys., 227 (2008), pp. 7768–7790, https://doi.org/10.1016/j.jcp.2008.05.003.

[32] X. Wan and G. Karniadakis, A sharp error estimate for the fast Gauss transform, J. Comput.
Phys., 219 (2006), pp. 7–12, https://doi.org/10.1016/j.jcp.2006.04.016.

[33] J. Wang, L. Greengard, S. Jiang, and S. K. Veerapaneni, A high-order solver for the
two-dimensional heat equation in moving domains, in preparation, 2018.

[34] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast mulitpole method in
two and three dimensions, J. Comput. Phys., 196 (2004), pp. 591–626, https://doi.org/10.
1016/j.jcp.2003.11.021.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

04
/1

6/
21

 to
 2

02
.1

22
.3

6.
77

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

https://doi.org/10.1137/060677896
https://doi.org/10.1137/060677896
https://doi.org/10.1016/j.jcp.2008.05.003
https://doi.org/10.1016/j.jcp.2006.04.016
https://doi.org/10.1016/j.jcp.2003.11.021
https://doi.org/10.1016/j.jcp.2003.11.021

	Introduction
	Data structure
	Analytical apparatus
	Hermite expansions and translation operators
	Local interactions

	Fast Gauss transform algorithm
	Pseudocode for the fast Gauss transform
	Boundary fast Gauss transform
	Periodic boundary conditions

	Numerical results
	An initial value problem for the heat equation

	Conclusions
	References

