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We perform a numerical study of the heat transfer and flow structure of Rayleigh–
Bénard (RB) convection in (in most cases regular) porous media, which are comprised
of circular, solid obstacles located on a square lattice. This study is focused on the role
of porosity φ in the flow properties during the transition process from the traditional
RB convection with φ = 1 (so no obstacles included) to Darcy-type porous-media
convection with φ approaching 0. Simulations are carried out in a cell with unity
aspect ratio, for Rayleigh number Ra from 105 to 1010 and varying porosities φ, at
a fixed Prandtl number Pr = 4.3, and we restrict ourselves to the two-dimensional
case. For fixed Ra, the Nusselt number Nu is found to vary non-monotonically as
a function of φ; namely, with decreasing φ, it first increases, before it decreases
for φ approaching 0. The non-monotonic behaviour of Nu(φ) originates from two
competing effects of the porous structure on the heat transfer. On the one hand,
the flow coherence is enhanced in the porous media, which is beneficial for the
heat transfer. On the other hand, the convection is slowed down by the enhanced
resistance due to the porous structure, leading to heat transfer reduction. For fixed φ,
depending on Ra, two different heat transfer regimes are identified, with different
effective power-law behaviours of Nu versus Ra, namely a steep one for low Ra
when viscosity dominates, and the standard classical one for large Ra. The scaling
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crossover occurs when the thermal boundary layer thickness and the pore scale are
comparable. The influences of the porous structure on the temperature and velocity
fluctuations, convective heat flux and energy dissipation rates are analysed, further
demonstrating the competing effects of the porous structure to enhance or reduce the
heat transfer.

Key words: convection in porous media, turbulent convection

1. Introduction
Thermal convection is an omnipresent phenomenon in nature and technology. One

of the paradigms for thermal convection studies is Rayleigh–Bénard (RB) convection,
i.e. convection in a container heated from below and cooled from above, and it has
been studied extensively over the last few decades (Ahlers, Grossmann & Lohse
2009; Lohse & Xia 2010; Chillà & Schumacher 2012; Xia 2013). Also the related
problem of convection in a fluid-saturated porous medium has received increasing
attention owing to its importance in a wide range of natural and industrial processes,
such as geothermal energy recovery and geological sequestration of carbon dioxide
(Hassanzadeh, Pooladidarvish & Keith 2007; Cinar, Riaz & Tchelepi 2009; Orr 2009;
Cinar & Riaz 2014; Huppert & Neufeld 2014; Riaz & Cinar 2014; Emami-Meybodi
& Hassanzadeh 2015; De Paoli, Zonta & Soldati 2016; Soltanian et al. 2016; Amooie,
Soltanian & Moortgat 2018). It is indeed of both fundamental and practical interest to
study RB convection in porous media, and considerable progress has been achieved
over the years based on the combinations of experimental, numerical and theoretical
studies (Lapwood 1948; Wooding 1957; Joseph, Nield & Papanicolaou 1982; Otero
et al. 2004; Araújo et al. 2006; Nield & Bejan 2006; Landman & Schotting 2007;
Hewitt, Neufeld & Lister 2012, 2014; Keene & Goldstein 2015; Wen, Corson &
Chini 2015; Ataei-Dadavi et al. 2019; Chakkingal et al. 2019).

For pure RB convection, in particular, the heat transfer and flow structure have
been studied extensively (Ahlers et al. 2009). There also has been rapid progress
in the modelling of RB convection with additional effects, such as multiphase RB
convection (Lakkaraju et al. 2013; Wang, Mathai & Sun 2019), convection with
rough walls (Shishkina & Wagner 2011; Wagner & Shishkina 2015; Zhu et al. 2017,
2019; Jiang et al. 2018), tilted convection (Shishkina & Horn 2016; Wang et al.
2018; Zwirner & Shishkina 2018; Jiang, Sun & Calzavarini 2019) and partitioned
RB convection (Bao et al. 2015). In the numerical study of confined inclined RB
convection in low-Prandtl-number fluids, Zwirner & Shishkina (2018) identified
significant heat transfer enhancement, which is closely related to the organization
of the plumes in inclined convection, namely the formation of system-sized plume
columns impinging on the opposite boundary layers. Also porous-media convection
can be understood as geometrically modified RB convection, with correspondingly
modified heat transfer and flow structure. In this study we investigate how these flow
properties are affected by the porous structure.

When a porous medium is present in a convection cell, the convection is blocked
and the flow is stabilized. For given strength of the driving buoyancy force, the
strength of the stabilizing effect can be quantified by the porosity. The stabilizing
effect is stronger for greater blockage, i.e. for smaller porosity φ. However, the
interplay between stabilizing and driving forces can result in surprising effects.
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From Rayleigh–Bénard convection to porous-media convection 895 A18-3

Examples include confined RB convection (Chong et al. 2015, 2018), rotating RB
convection (Stevens et al. 2009; Zhong et al. 2009) and double diffusive convection
(Yang et al. 2015; Yang, Verzicco & Lohse 2016). Chong et al. (2017) compared
these three cases and found that in all three, the appropriate strength of the stabilizing
force leads to significant heat transfer enhancement due to increased flow coherence,
in particular, revealing a universal mechanism of the turbulent transport enhancement
in the presence of stabilizing forces. Obviously, when the stabilizing force becomes
even stronger, the flow motion is eventually suppressed, leading to heat transfer
reduction. Consequently, the heat transport varies non-monotonically with the strength
of the stabilizing force. Also from this comparative perspective between the different
systems, it is of interest to investigate how the stabilizing effect of a porous structure
affects the heat transfer and flow structure of RB convection.

For modelling porous-media convection, various studies have been conducted
focusing on Darcy-type convection. Related numerical simulations are generally
performed based on coarse-grained macroscopic models, such as Darcy’s law and its
extensions (Otero et al. 2004; Hewitt et al. 2012, 2014; Wen et al. 2015). In these
macroscopic models, it is assumed that a macroscopic index, the permeability, relates
the average fluid velocity through the pores to the pressure drop.

Recently, the numerical study of Darcy convection has been extended to very high
Rayleigh numbers and the linear classical scaling for the Nusselt number with respect
to the so-called Darcy Rayleigh number Ra∗=RaDa has been observed (Hewitt et al.
2012, 2014). (All these dimensionless numbers are exactly defined later in the paper.)
Studies of non-Darcy porous-media convection commonly address the extension
of the Darcy regime, such as the inclusion of the inertial effect (Nield & Bejan
2006). Nithiarasu, Seetharamu & Sundararajan (1997) developed a coarse-grained,
generalized model of non-Darcy convection, which yields the single-phase model in
the limit of unity porosity. Based on this model, they found that in the Darcy regime
Nu is determined by the Darcy Rayleigh number Ra∗ and is independent of the
individual values of the Rayleigh number Ra and Darcy number Da. In contrast, in
the non-Darcy flow regime, Nu is significantly affected by both the Rayleigh number
and the Darcy number, and by the porosity.

Although both the traditional RB convection without a porous structure and
Darcy-type porous-media convection have been studied extensively, fewer studies have
been done to reveal the physics of the transition process between these two extreme
cases. One of the few studies focuses on the effect of the buoyancy strength on
the flow properties of RB convection in specified porous media (Keene & Goldstein
2015). That study involved experimental measurements of heat transfer properties
of RB convection in a cubic enclosure containing a packed bed of spheres, and
it was found that the heat transfer properties at high Rayleigh numbers approach
the behaviour of a homogeneous fluid layer without spheres. Ataei-Dadavi et al.
(2019) performed an experimental study of RB convection in an enclosure, filled
with solid packing of relatively large spheres. The influences of the packing type,
size and conductivity of the spheres on the flow and heat transfer were investigated
for varying Rayleigh numbers, and two heat transfer regimes were observed. One
is a reduced heat transfer regime at lower Rayleigh numbers, and the other is the
asymptotic regime at high Rayleigh numbers, where the Nusselt number lines up
with the results of the traditional RB convection without spheres.

In related work, Chakkingal et al. (2019) carried out numerical simulations of RB
convection in a cubic cell packed with relatively large solid spheres and identified
three different flow regimes depending on the solid-to-fluid thermal conductivity and
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™T/™x = 0 ™T/™x = 0

D

Tm - Î/2

Tm + Î/2

l l

FIGURE 1. Schematic configuration of the RB convection in regular porous media.

Rayleigh number. At low Rayleigh numbers, the convective heat transfer is effectively
suppressed, whereas the overall heat transfer can be enhanced for high-conductivity
packings due to the significant contribution of the conductive heat transfer. At
intermediate Rayleigh numbers, the convective flow is highly suppressed for the
high-conductivity packing case, due to the strongly stabilizing effect of the packing
on the stratified temperature distribution. The total heat transfer is then lower than
that in the classical RB convection case. At higher Rayleigh numbers, convection
is the dominant mechanism of heat transfer and then the convective heat transfer is
close to that of classical RB convection.

Despite all of these studies, the nature of the transition between the traditional RB
convection and Darcy-type porous-media convection is still not well understood, and
further studies are required to investigate the effects of porosity on the heat transfer
and flow structure. Detailed examinations of microscale flow field are needed to gain
a comprehensive understanding of this transition process and its underlying physical
mechanism.

In this study we perform a numerical investigation of a representative porous
medium model, namely two-dimensional (2-D) RB convection in regular porous
media, trying to gain an understanding of the transition process between the two
distinct convection regimes. A schematic of the flow configuration is shown in
figure 1. Circular, solid obstacles are spaced uniformly on a square lattice. In such
a pore-scale model, the detailed flow in the pores is resolved and the interaction
between the porous medium and various flow structures of convection is faithfully
captured, which are essential for connecting the macroscopic properties with the
microscale mechanisms.

The heat transfer properties and flow structures of the porous-media convection are
investigated for varying Rayleigh numbers Ra and porosities φ, at a fixed Prandtl
number Pr = 4.3. Figure 2 shows the effect of the porosity φ on the heat transfer
(in its dimensionless form, the Nusselt number Nu) for Ra = 107 and 108. It is
observed that Nu(φ) varies non-monotonically as φ is decreased from 1 (so no
obstacles included). First, when φ is slightly decreased, the heat transfer is enhanced,
and then when φ is sufficiently small, it is reduced as compared to the φ = 1 case.
Correspondingly, there is an optimum porosity for the heat transfer, which depends
on Ra. The non-monotonic behaviour of Nu(φ) is reminiscent of the influence of
other stabilizing force on turbulent transport through coherent structure manipulation
(Chong et al. 2017), which we discussed above.

The objective of this study is to further understand this non-monotonic behaviour
of Nu(φ) and to clarify the connection of this system to other stabilizing–destabilizing

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

si
ng

hu
a 

U
ni

ve
rs

ity
, o

n 
18

 M
ay

 2
02

0 
at

 1
4:

12
:4

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.309


From Rayleigh–Bénard convection to porous-media convection 895 A18-5
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FIGURE 2. Normalized Nusselt number Nu(φ)/Nu(1) at Ra = 107 and 108. Snapshots
of the instantaneous temperature field corresponding to the filled symbols are shown in
figure 8.

flows. In particular, we will reveal how the porous structure induces the two
competing effects on the heat transfer and how they depend on the Rayleigh number
and on the porosity φ, and will connect the observed global transport properties to
the local energy dissipation rates.

Although the real physical system is a three-dimensional (3-D) one, we employ the
2-D configuration, as we want to reveal the dominant effects of porous media over a
wide range of parameters, for which 3-D simulations are still prohibitive. Moreover,
as the 2-D numerical simulations are computationally less demanding, a sufficient
flow resolution can be guaranteed. In a detailed examination of the differences and
similarities between 2-D and 3-D RB convection, van der Poel, Stevens & Lohse
(2013) found that for a large range of Ra and large Pr> 1, the Nu versus Ra scaling
behaviours in 2-D and 3-D convection are comparable up to constant prefactors, which
justifies our 2-D simulation at Pr = 4.3 chosen by us (corresponding to water) for
the traditional RB convection without obstacles. The phenomena observed in the 2-D
problem with obstacles may also be relevant to the 3-D case. The investigation of 3-D
cases will be the focus of a subsequent study.

The remainder of this paper is organized as follows. The numerical model is
described in detail in § 2, including the governing equations of the pore-scale
simulations and the numerical methods. We present the main results in §§ 3–5,
focusing on the heat transfer properties, the flow structures and the energy dissipation
rates, respectively. In § 6 we summarize our findings and give an outlook on further
work.

2. Numerical model
2.1. Governing equations

We consider a Boussinesq fluid in a 2-D RB cell with unity aspect ratio, containing
an obstacle array located on a square lattice, as depicted in figure 1. The fluid is
heated from below and cooled from above with a temperature difference ∆ between
two horizontal plates a distance L apart in the vertical direction. The diameter
of the circular, solid obstacles is D. The minimum value of the obstacle–obstacle
and obstacle–wall separations is l. The porous structures are characterized by the
porosity φ, which measures the volume fraction of the fluid phase. A value of
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895 A18-6 S. Liu and others

φ = 1 corresponds to traditional RB convection without the obstacle array. For the
convection cell with unity aspect ratio, we have l = (L − N × D)/(N + 1), where
N is the number of the obstacles along the horizontal and vertical directions. The
corresponding porosity is φ = 1− N2πD2/(4L2). For fixed D, only specific values of
φ (or l) can be achieved, since N is an integer. We note that, besides the case with
regular obstacle arrangement on a square lattice, the effect of obstacle arrangement
will also be considered in this study (see figure 11). The non-dimensional governing
equations describing the flow dynamics in the pores read

∂u
∂t
+ u · ∇u=−∇p+

√
Pr
Ra
∇

2u+ Tez + f ,

∂T
∂t
+∇ · (uT)=

1
√

PrRa
∇

2T,

∇ · u= 0,

 (2.1)

where u is the velocity vector with components (u, v) along the horizontal and vertical
directions (x, z), p is the pressure, T is the temperature and ez is the unit vector in
the vertical direction. The immersed boundary force term f is added to account for
the presence of the obstacle array. The governing equations were non-dimensionalized
using L for length, ∆ for temperature, the free-fall velocity U=

√
gβ1L for velocity

and L/U for time, where g is the gravitational acceleration and β the isobaric
expansion coefficient.

The two dimensionless parameters in the governing equations (2.1) are the Rayleigh
number, Ra = gβ1L3/(νκ), and the Prandtl number, Pr = ν/κ , where ν is the
kinematic viscosity and κ the thermal diffusivity. The heat transfer property is
measured by the Nusselt number, Nu =

√
RaPr〈vT〉x,t − 〈∂zT〉x,t, where 〈·〉x,t denotes

taking averages over any horizontal plane and time. In practice, the average is taken
over the top and bottom plates. No-slip and no-penetration boundary conditions are
imposed at all solid surfaces, including the fluid–obstacle interfaces. The horizontal
top and bottom plates are isothermal and the sidewalls are thermally insulated.

Note that the heat transfer between the fluid and solid phases is considered. For
simplicity, we assume the same thermal properties for the two phases, including ρcp,
thermal conductivity k and thermal diffusivity κ = k/(ρcp), where ρ is the density and
cp the specific heat capacity. The temperature equation for the fluid and solid phases
reads

∂T
∂t
+∇ · (ucpT)=

1
√

PrRa
∇

2T, (2.2)

where ucp (to be defined below) is the velocity for the fluid and solid phases
depending on the position in the domain (Verzicco 2002, 2004; Stevens, Lohse &
Verzicco 2014; Ardekani et al. 2018a,b; Sardina et al. 2018).

2.2. Numerical methods
In this subsection the essential elements of the numerical methods are presented. The
governing equations are discretized using a second-order finite-difference method with
a pressure-correction scheme. A fractional-step third-order Runge–Kutta scheme is
employed for the time stepping of the explicit terms and a Crank–Nicolson scheme
for the implicit terms. A uniform, staggered, Cartesian grid is used in this study. The
pressure Poisson equation is solved efficiently using a fast-Fourier-transform-based
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solver. For more details of the numerical schemes of the governing equations, we
refer the reader to van der Poel et al. (2015).

To account for the obstacle array, a direct-forcing immersed boundary method
(IBM) in the Euler–Lagrange framework is adopted (Uhlmann 2005; Breugem 2012).
For the resolution of the obstacles, NL markers are distributed uniformly along the
boundary of each obstacle, with the Lagrangian grid size being about 0.7 times
the Eulerian grid size. In each Runge–Kutta substep, a first prediction velocity is
obtained by advancing the momentum equations in time without considering the
IBM force f . The first prediction velocity is then interpolated from the Eulerian
grid to the Lagrangian grid using the moving-least-squares approach (Vanella &
Balaras 2009; de Tullio & Pascazio 2016; Spandan et al. 2017, 2018). The IBM
force f required on each Lagrangian marker for satisfying no-slip and no-penetration
conditions is computed, which is then spread back to the Eulerian grid using the
moving-least-squares approach. The force f is used to update the velocity, followed by
a standard pressure correction step. We note that the pressure field required to enforce
the incompressibility condition has vanishing gradient at the immersed boundary. Thus,
the pressure correction step does not change practically the numerical accuracy of the
IBM scheme, as observed by Fadlun et al. (2000) and Kempe & Fröhlich (2012). As
a validation of the implementation of the IBM, we considered a steady, axisymmetric
shear flow inside a circular domain driven by the rotation of the circular boundary at
a fixed rotation rate without body force. The numerical simulation showed that the
azimuthal velocity increases linearly with the distance away from the rotation axis
and the vorticity is uniform, in quantitative agreement with the theoretical results.

The heat transfer between the fluid and solid phases is realized by solving the
temperature equation (2.2) in both phases (Ardekani et al. 2018a,b; Sardina et al.
2018). A phase indicator ξ is introduced to represent the solid volume fraction and
to distinguish the fluid and solid phases on each grid point of two components of
velocity. The value of ξ is determined from a level-set function ζ given by the signed
distance of four corner nodes to the obstacle surface using the formula (Ardekani
et al. 2018a; Kempe & Fröhlich 2012)

ξ =

4∑
n=1

−ζnH(−ζn)

4∑
n=1

|ζn|

, (2.3)

where H is the Heaviside step function. Then the velocity of the combined phase is
defined at each point in the computational domain as

ucp = (1− ξ)uf + ξup, (2.4)

where uf and up denote velocities of the fluid and solid phases, respectively. For
fixed obstacles considered in this study we obviously have up = 0. We note that the
coupling of the IBM and heat transfer between different phases has been considered in
other convection problems, such as turbulent convection confined by walls with finite
conductivities (Verzicco 2002, 2004; Stevens et al. 2014).

In this study a uniform Eulerian grid is used and the resolution is chosen to fully
resolve the boundary layers and the smallest scales in the bulk (Stevens, Verzicco
& Lohse 2010; Shishkina et al. 2010; Zhang, Zhou & Sun 2017). The numerical
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Ra No φ Nx ×Nz Nu NBL ND

106 144 0.82 540× 540 2.77 97 22
107 144 0.82 540× 540 12.89 21 22
108 144 0.82 540× 540 28.16 10 24
109 144 0.82 1080× 1080 53.40 10 43
1010 144 0.82 3072× 3072 106.1 14 123

TABLE 1. Numerical details of typical grid resolutions. The columns from left to right
denote the Rayleigh number Ra, the number of obstacles No, the porosity φ, the grid
resolution Nx ×Nz, the Nusselt number Nu, the number of grid nodes NBL in the thermal
boundary layers and the number of grid nodes ND per obstacle diameter. The thickness
of the thermal boundary layer is estimated as δth = L/(2Nu). We note that the table only
presents some typical cases. Totally, 67 different cases were simulated, and the results are
collected in figure 3.

102
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105 107 109106 108 1010
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Nu

102
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100

Nu

Nu
Ra
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0.

30

1

0.92, 1.3 ÷ 10-3

0.87, 4.5 ÷ 10-4

0.82, 1.8 ÷ 10-4

0.75, 7.5 ÷ 10-5

0.12
0.10

0.08

0.06

0.04

Nu
Ra

-
0.

30
0.12
0.10

0.08

0.06

0.04

101100

∂th/l
10-1

105 107 109106 108 1010

Ra Ra

Ra*
103 105102 104 106

(a) (b)

(c) (d)

FIGURE 3. (a) Variations of Nu with Ra for different φ. (b) The compensated plot of (a).
(c) Results for different φ collapse by rescaling the thermal boundary layer thickness δth=

L/(2Nu) with the pore scale l. (d) Variation of Nu with the Darcy Rayleigh number Ra∗=
RaDa.

details of some typical grid resolutions are given in table 1. For the small-Ra cases,
the grid is restricted by the resolution of the obstacles. For these cases a mesh with

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

si
ng

hu
a 

U
ni

ve
rs

ity
, o

n 
18

 M
ay

 2
02

0 
at

 1
4:

12
:4

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.309


From Rayleigh–Bénard convection to porous-media convection 895 A18-9

a grid of 540 × 540 is used, and the number of grid nodes per obstacle diameter
is 22. For larger Ra, the mesh size chosen is adequate to achieve a full resolution
of the thermal boundary layer, with the thermal boundary layer resolved by at least
10 grid points. For the highest Ra (Ra= 1010), a mesh with a grid of 3072× 3072 is
used. This ensures that the turbulent flow in the bulk and boundary layers is fully
resolved. For the traditional RB convection at Ra = 1010, the typical Kolmogorov
length scale η is estimated by the global criterion η = LPr1/2/[Ra(Nu − 1)]1/4, and
the Batchelor scale ηB is estimated by ηB = ηPr−1/2 (Shishkina et al. 2010). We find
that the grid spacing ∆g satisfies ∆g . 0.16η and ∆g . 0.33ηB. The thermal boundary
layers are resolved with 14 grid points, which agrees with the recommendations of
Shishkina et al. (2010). Long-time averages are conducted for the calculation of Nu.
The difference of Nu obtained by time averages over the first and second halves of
the simulations (both taken after initial transients) was smaller than 1 %. Besides, the
relative difference between the top- and bottom-wall Nu was smaller than 1 %.

Simulations were performed for varying Rayleigh numbers (from 105 to 1010) and
porosities (from 0.75 to 1). The Prandtl number and obstacle diameter were fixed at
Pr= 4.3 and D= 0.04, respectively.

3. Heat transfer

In this section the influence of the obstacle array on the heat transfer properties is
examined. The presence of the obstacle array has a significant influence on the heat
transfer properties. The normalized Nusselt number Nu(φ) for two fixed Ra is shown
in figure 2. In figure 3, Nu(Ra) for five fixed porosities φ is shown. In the traditional
RB convection with φ = 1, Nu increases with Ra following an effective power law
Nu ∼ Ra0.30, consistent with the results in the literature for 2-D RB convection (van
der Poel et al. 2013; Zhang et al. 2017; Zhu et al. 2017). For fixed φ < 1, it is
found that the variation of Nu with Ra exhibits two scaling regimes for the parameter
range studied. Compared with the results of traditional RB convection with φ = 1,
the heat transfer is reduced for small Ra even if Nu increases with Ra with a steep
effective power law Nu∼Ra0.65; on the other hand, for large enough Ra, Nu becomes
larger than the corresponding value without obstacles and increases with Ra with an
effective power law Nu ∼ Ra0.30, similar to that of traditional RB convection. The
increase of Nu in the large-Ra regime is more visible in the compensated plot of
figure 3(b) and in figure 2. Note that the regime of heat transfer enhancement with
decreasing φ displayed in figure 2 corresponds to the large-Ra regime shown in
figure 3. Figure 3(a,b) shows that the trends of variation of Nu with Ra for different
values of φ are similar, and the critical Ra for scaling crossover increases as φ is
decreased. Considering that the values of φ and Nu determine the characteristic length
scales of the regular porous medium and flow structures, respectively, the scaling
crossover indicates a competition of the length scale of porosity and that of the flow
structures. When we rescale the thermal boundary layer thickness δth = L/(2Nu) with
the obstacle separation l, it is found that the results for different φ approximately
collapse, and the scaling crossover occurs when δth/l ≈ 1, as shown in figure 3(c).
The data collapse indicates that the heat transfer properties are determined by the
length scales of the flow structures and the pore scale of the regular porous medium.

It is interesting to examine the relevance of our results to pure Darcy-type
convection. For this, it is instructive to show how Nu varies with the so-called
Darcy Rayleigh number Ra∗ = RaDa, where Da = K/L2 is the Darcy number. Here
K is the permeability, which depends on the geometry of the porous media and
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FIGURE 4. The joint PDFs of the vertical velocity v and the temperature fluctuation
δT = T − Tm on the horizontal mid-plane z= 0.5 for different φ at Ra= 108: (a) φ = 1,
(b) φ = 0.92 and (c) φ = 0.82. Corresponding values of the cross-correlation C between
v and δT are labelled at the top right-hand corner of each panel.

represents the resistance for the fluid to flow through the porous media. We estimate
Da with porosity φ and obstacle diameter D based on Kozeny’s equation (Nithiarasu
et al. 1997; Nield & Bejan 2006):

Da=
φ3D2

150(1− φ)2L2
. (3.1)

The results are shown in figure 3(d). We find that in the small-Ra∗ regime, Nu(Ra∗)
shows a trend to collapse as φ is decreased, which is a signature of the transition
to Darcy-type flow and consistent with the observation based on the generalized
non-Darcy model (Nithiarasu et al. 1997). We note that in porous media there
may exist multiple flow states with different heat transfer efficiencies for the same
parameters. The solution may not be able to sample all the flow configurations due to
the suppression of fluctuations in the presence of an obstacle array. The numerically
realized steady state may be different for different initial conditions. Despite this, we
expect that the differences of the statistics of multiple flow states are relatively small,
particularly for the large-Ra cases, and the global trend of variation of Nu with Ra
and φ will not be qualitatively affected by the existence of multiple flow states.

We now focus on the statistics of the velocity and temperature fields on the
horizontal mid-plane z= 0.5, to quantify the modifications of heat transfer properties
as φ is decreased, particularly in the regime where Nu(φ) varies non-monotonically.
Figure 4 plots the joint probability density function (PDF) P(v, δT) of vertical velocity
v and temperature fluctuation δT for different φ at Ra = 108, where δT = T − Tm
and Tm= 0.5 is the arithmetic mean temperature. In the absence of the obstacle array
(i.e. for φ = 1), the velocity can attain considerably larger values than that in porous
media at the same Ra. The temperature in the bulk is well mixed with δT ≈ 0. Thus,
P(v, δT) is concentrated in a slender region located on the horizontal axis, as shown
in figure 4(a). From P(v, δT) the correlation between v and δT can be identified.
Due to buoyancy, flow elements with positive (negative) δT are more likely to move
upward (downward). Note that there is a non-negligible probability for the occurrence
of counter-gradient convective heat transfer, which is manifested in the finite values
of P(v, δT) in the second and fourth quadrants, consistent with the observation of
counter-gradient convective heat transfer in Sugiyama et al. (2010) and Huang &
Zhou (2013). The properties of temperature fluctuations and convective heat transfer
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FIGURE 5. The normalized PDFs of (a) δT/σδT and (b) v · δT/σv·δT on the horizontal mid-
plane z= 0.5 for different φ at Ra= 108, where σδT and σv·δT are the standard deviations
of δT and v · δT , respectively. The dashed lines indicate the Gaussian distribution.

can also be quantified by the normalized PDFs of δT and v · δT on the horizontal
mid-plane z = 0.5, which are given in figure 5. The strong mixing of temperature
in the bulk is manifested by the peak value of P(δT) at δT = 0 in figure 5(a), and
the correlation between v and δT is reflected by the asymmetry of the left- and
right-hand branches of P(v · δT) in figure 5(b). The counter-gradient convective heat
transfer is quantified by the left-hand branch of P(v · δT).

As φ is decreased, it is found that the fluctuation properties are significantly
influenced, as shown in figure 4(b,c). The velocity distribution is narrowed down,
showing that the convection strength is decreased for the flow through regular porous
media. Compared with the results of traditional RB convection with φ = 1, the
temperature mixing is less efficient and large temperature fluctuations are more likely
to appear. The decreased mixing efficiency is also manifested by the flattening of
the peak of P(δT) around δT = 0 in figure 5(a). From P(v, δT) it is found that
the counter-gradient convective heat flux is suppressed, which is also manifested by
the rapid decrease of the left-hand branch of P(v · δT) as v · δT is decreased from
0 in figure 5(b). Note that as φ is decreased, the distribution of P(v, δT) is more
compact and concentrated along a line with positive slope, which suggests that the
correlation between v and δT is enhanced in regular porous media. We here quantify
the correlation between v and δT using the cross-correlation C ≡ 〈gvgT〉, where
gχ ≡[χ −〈χ〉]/σχ , σχ ≡

√
〈χ 2〉 − 〈χ〉2 and 〈·〉 denotes the average over the horizontal

mid-plane and time. Values of C = 1 and −1 correspond to perfect correlations and
anti-correlations, respectively, and C = 0 corresponds to no correlation. The values
of C for the three cases of figure 4 are shown in the top right-hand corner of each
panel, which definitely demonstrate the enhancement of the correlation between v

and δT with decreasing φ. For both the traditional RB convection and convection in
regular porous media, the cross-correlation between temperature fluctuation δT and
horizontal velocity u on the horizontal mid-plane is small with |C|< 0.1.

The variation of P(v, δT) with φ shown in figure 4 leads us to identify two
competing effects of the obstacle array on the heat transfer. On the one hand,
the flow becomes more coherent with enhanced correlation between temperature
fluctuation and vertical velocity. This is beneficial for heat transfer. On the other
hand, the obstacle array slows down the convection due to enhanced resistance,
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FIGURE 6. Nusselt number Nu(t) in a time interval of 200 dimensionless units for
different φ at (a) Ra= 107 and (b) Ra= 109.

which is unfavourable for heat transfer. The competing effects of the obstacle array
on the heat transfer result in the non-monotonic variation of Nu with φ as was already
shown in figure 2. As φ is slightly decreased from 1, the enhancement of the flow
coherence increases the heat transfer efficiency. While, when φ is small enough, the
convection is strongly suppressed, leading to heat transfer reduction. The heat transfer
enhancement on increasing flow coherence is a widespread phenomenon and has been
observed in various flow configurations, such as confined RB convection (Huang et al.
2013; Chong et al. 2018) and partitioned RB convection (Bao et al. 2015). Chong
et al. (2017) revealed a universal, non-monotonic behaviour of turbulent transport
in systems with competing stabilizing and destabilizing forces. The non-monotonic
variation of Nu with the increase of the stabilizing effect of porous structure is
consistent with the observation of Chong et al. (2017).

Figure 6 shows sampled time records of Nu for different φ at Ra = 107 and
109, showing the influence of the obstacle array on the temporal characteristics of
fluctuations. It is found that for relatively small Ra, high-frequency fluctuations are
significantly suppressed as φ is decreased, while for large enough Ra, the suppression
of high-frequency fluctuations is less visible for the values of φ studied. The influence
of the obstacle array on the fluctuations is dependent on the relative magnitudes of
the spatial coherence length and the pore scale. At small Ra, the length scales of the
flow structures are large compared to the pore scale, and the resistance of the obstacle
array to the convection is strong. Thus flow fluctuations are significantly suppressed,
and there is no developed turbulence in the pores. As Ra is increased, the convection
is more energetic and the length scales of the flow structures are decreased. Thus
the obstacle array has smaller effects on the fluctuations, and the flow in the pores
becomes chaotic or even turbulent at large enough Ra.

4. Flow structure
In this section we focus on the flow structures of RB convection in regular porous

media. Figure 7 displays typical snapshots of the instantaneous temperature T , the
velocity magnitude |u| and the convective heat flux v · δT in the vertical direction.
In the traditional RB convection with φ = 1, the flow consists of a well-organized
large-scale circulation (LSC) with two well-established counter-rotating corner rolls
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FIGURE 7. Typical snapshots of the instantaneous (a,d,g) temperature T , (b,e,h) the
velocity magnitude |u| and (c, f,i) the local convective heat flux v · δT in the vertical
direction at (a–c) (Ra, φ) = (109, 1), (d–f ) (Ra, φ) = (109, 0.82) and (g–i) (Ra, φ) =
(107, 0.82). Circles in (d–i) indicate the obstacle array. Note that according to the
temperature equation (2.2), the temperature in the obstacles is well defined.

(Sugiyama et al. 2010), as shown in figure 7(a–c). Due to the formation of the
LSC, the velocity in the bulk is non-uniform. Following the LSC, plumes detaching
from the thermal boundary layers mainly go up and down near the sidewalls. The
temperature at the cell centre is well mixed with T ≈ Tm. From the distribution of
v · δT it is confirmed that counter-gradient convective heat flux appears locally around
the LSC and corner rolls, which is due to the bulk dynamics and the competition
between the corner-flow rolls and the LSC (Sugiyama et al. 2010; Huang & Zhou
2013). The inclusion of an array of obstacles has a significant influence on the
flow structures, as displayed in figure 7(d–i). Convection strength is reduced and
the LSC is suppressed due to the impedance of the obstacle array. Temperature
mixing at the cell centre is less efficient. Thermal plumes detaching from the thermal
boundary layers can penetrate deep in the bulk, forming convection channels, namely
the regions with strong flows that are formed between the obstacles. When Ra is
relatively large, the characteristic length scales of the flow structures are smaller
than the pore scale, and the flow is chaotic and dominated by fragmented plumes,
as shown in figure 7(d); while when Ra is relatively small the flow is dominated
by large-scale plumes, as shown in figure 7(g). Comparing figures 7( f,i) and 7(c), it
is found that the counter-gradient convective heat flux is reduced in regular porous
media, which is attributed to the suppression of the LSC and coherence of plume
dynamics due to the impedance of the obstacle array.
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(a) (b) (c) 0.7
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FIGURE 8. Snapshots of the instantaneous temperature field at Ra= 107 and different φ,
corresponding to the filled symbols in figure 2: (a) φ=0.99, (b) φ=0.90 and (c) φ=0.85.

Snapshots of temperature fields at Ra = 107 and different porosities are shown in
figure 8, demonstrating the enhancement of flow coherence with decreasing φ. For
relatively large φ, plumes wander randomly in the bulk, as shown in figure 8(a). As φ
is further decreased, plumes cannot move freely due to the impedance of the obstacle
array and prefer moving along convection channels, as shown in figure 8(b,c).

To further investigate the influence of the obstacle array on the convection, we
study the velocity distribution in the bulk region. Figure 9 shows the PDFs of the
velocity magnitude |u| inside a circular domain of radius r at the cell centre for
different φ at Ra = 108. In the traditional RB convection with φ = 1, the velocity
magnitude is spatially non-uniform due to the formation of the LSC. The mean
velocity vanishes at the cell centre and increases linearly with r at leading order. Due
to this non-uniformity, P(|u|) shifts along the |u| axis as r is increased, and follows a
linear relation for small |u|, P(|u|)∼ |u|, as shown in figure 9(a). The obstacle array
has a significant influence on the velocity distribution, as shown in figure 9(b,c). The
maximum convection velocity is decreased due to the drag of the obstacle array, and
the results for different values of r collapse, indicating that the velocity distribution
is spatially uniform in the bulk. The shape of P(|u|) also changes qualitatively and
deviates from the power-law distribution as φ is decreased. In regular porous media
the probability density is larger for |u| to take smaller values, and when φ is small
enough, P(|u|) satisfies an exponential distribution, as shown in figure 9(c). The
change of velocity distribution demonstrates the transition of flow organization as φ
is decreased, from the formation of the LSC in the traditional RB convection to the
wandering motion of plumes penetrating in the pores in the porous-media convection.

Figure 10 shows the joint PDFs of two velocity components (u, v) inside a circular
domain of radius r= 0.4 at the cell centre for different φ at Ra= 108. It is found that
both the size and shape of P(u, v) change as φ is decreased from 1. The shrinking
of P(u, v) indicates the reduction of convection strength. The change of contour
levels manifests the increased probability for |u| to take smaller values. When φ is
small enough, the contour lines of P(u, v) protrude along the horizontal and vertical
coordinate axes, indicating the formation of convection channels.

How robust are our results with respect to the arrangement of the obstacles? To
answer this question, we study how the obstacle arrangement influences the flow
structure. We consider three different arrangements with similar porosities, i.e. two
regular arrangements and one random arrangement. Simulations are performed at
Ra= 109. The snapshots of temperature T , velocity magnitude |u| and convective heat
flux v · δT in the vertical direction are shown in figure 11. It is seen that the flow
structure is significantly influenced by the obstacle arrangement. In figure 11(a–c), the
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FIGURE 9. Log–log plots of the PDFs of the velocity magnitude |u| inside a circular
domain of radius r at the cell centre for different φ at Ra= 108: (a) φ = 1, (b) φ = 0.92
and (c) φ = 0.82. The insets are the same results shown in semi-log plots. In (a) and
the inset of (c) guiding lines of constant slope are included, describing the respective
exponential scaling behaviours of P(|u|). As |u| increases, P(|u|) increases linearly for
small |u| in (a), and it decreases exponentially in the intermediate range of |u| in (c).
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FIGURE 10. The joint PDFs of two velocity components (u, v) inside a circular domain
of radius r = 0.4 at the cell centre for different φ at Ra= 108: (a) φ = 1, (b) φ = 0.92
and (c) φ = 0.82.

porous medium I is constructed by placing the circular obstacles on a square lattice,
as done in the rest of this paper. As already discussed, thermal plumes can penetrate
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FIGURE 11. Snapshots of (a,d,g) temperature T , (b,e,h) velocity magnitude |u| and (c, f,i)
convective heat flux v · δT in the vertical direction for three different obstacle arrangements
with similar porosities at Ra= 109. (a–c) Porous medium I consists of obstacles located
on a square lattice, and the porosity φ = 0.68. (d–f ) Porous medium II is constructed by
rotating the obstacle lattice of I by 45◦, with porosity φ = 0.67. (g–i) Porous medium III
is constructed by randomly placing the obstacles in the cell, with porosity φ = 0.68.

up and down without obstruction, forming vertical convection channels with strong
fluid and heat transport. In figure 11(d–f ), the regular porous medium II is constructed
by rotating the lattice of porous medium I by 45◦. In such an obstacle arrangement,
the vertical convection channels observed in porous medium I are obstructed by the
obstacles, except the vertical channels close to the sidewalls. Despite that, we find
that thermal plumes can penetrate deep into the bulk along zigzag channels aligning
vertically. Besides, strong fluid and heat transport occur close to the sidewalls, where
the fluid can penetrate up and down without obstruction. In figure 11(g–i), a random
porous medium is constructed (porous medium III), with the pore scale l> lmin=0.005,
where lmin is the minimum pore scale. It is observed that the plume motion is less
organized compared to those in the regular porous media I and II. Curved convection
channels with strong flow emerge in the pores, with no preferred flowing directions.
Except the localized vertical channels, the curved convection channels are less efficient
at transporting heat in the vertical direction. The Nusselt numbers for the obstacle
arrangements I, II and III are 51.96, 53.97 and 47.14, respectively. The lower Nu in
porous medium III is attributed to the less organized plume motion and less efficient
vertical heat transfer.
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FIGURE 12. Typical snapshots of the kinetic energy dissipation rates log10εu(x) on
logarithmic scale for different Ra and φ: (a,d) Ra= 106, (b,e) Ra= 108 and (c, f ) Ra= 109;
(a–c) φ = 1 and (d–f ) φ = 0.92.

5. Energy dissipation rates
Rayleigh–Bénard convection is a closed system with exact balance properties. The

overall kinetic and thermal energy dissipation rates εu,T are related to the governing
and response parameters by two exact relations (Shraiman & Siggia 1990; Grossmann
& Lohse 2000; Ahlers et al. 2009):

〈εu〉V,t =
ν3

L4
(Nu− 1)RaPr−2, 〈εT〉V,t = κ

∆2

L2
Nu, (5.1a,b)

where 〈·〉V,t denotes the volume and time average, and

εu =
1
2
ν
∑

ij

[
∂uj

∂xi
+
∂ui

∂xj

]2

, εT = κ
∑

i

[
∂T
∂xi

]2

. (5.2a,b)

We note that the exact global relations (5.1) are not affected by the presence of the
obstacles. Figures 12 and 13 plot typical snapshots of the non-dimensional kinetic and
thermal energy dissipation rates log10 εu,T(x) on logarithmic scale for Ra=106,108,109

and φ = 1, 0.92. In the traditional RB convection with φ = 1, it is found that the
characteristic length scales of the flow structures become smaller for larger Ra, as
shown in figures 12(a–c) and 13(a–c). A well-organized LSC develops at sufficiently
large Ra, and velocity boundary layers appear close to both the horizontal plates and
vertical sidewalls, which dominate the dissipation of kinetic energy. There are no
thermal boundary layers along the sidewalls due to the imposed adiabatic condition
for temperature, and the dissipation of thermal energy is dominated by plumes in
the bulk and the thermal boundary layers near the horizontal top and bottom plates.
The bulk contributions of both the kinetic and thermal energy dissipation rates
are small (Grossmann & Lohse 2000, 2001, 2004; Zhang et al. 2017). Results of
convection in a regular porous medium are displayed in figures 12(d–f ) and 13(d–f ).
When Ra is small, convection is dominated by large-scale hot and cold plumes,
penetrating to the top and bottom plates, respectively, along convection channels with
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FIGURE 13. Typical snapshots of the thermal energy dissipation rates log10εT(x) on
logarithmic scale for different Ra and φ: (a,d) Ra= 106, (b,e) Ra= 108 and (c, f ) Ra= 109;
(a–c) φ= 1 and (d–f ) φ= 0.92. In (e, f ), we show the obstacles as thin white circles. Note
that the temperature field in them is well defined according to (2.2), and correspondingly
the thermal energy dissipation rate εT(x, t) is non-zero at these locations.

fast velocities. Along these channels intense dissipation of kinetic energy occurs with
length scale characterized by the pore scale. As Ra is increased, the length scales of
the flow structures become smaller, and plumes wander in the bulk, leading to intense
dissipation of kinetic energy in the bulk, in distinct contrast to the results of traditional
RB convection with φ = 1. For sufficiently large Ra, the kinetic energy dissipation in
the bulk is concentrated around the obstacle surfaces due to the interaction between
plumes and the obstacle array, and the pore scale is no longer a proper length scale
for the kinetic energy dissipation. Due to the wandering motion of plumes in regular
porous media, intense dissipation of thermal energy can occur locally in the bulk.
However, the averaged bulk contribution of thermal energy dissipation remains small
as compared to the boundary layer contribution.

To further quantify the spatial distributions of the kinetic and thermal energy
dissipation rates, we plot the profiles of averaged energy dissipation rates 〈εu,T〉x,t

along the vertical direction z in figure 15, showing the contributions of the bulk and
boundary layer regions. Using (5.1) Nu can be obtained by integrating these profiles
of 〈εu,T〉x,t. Figure 15(a,b) plots the results of traditional RB convection with φ = 1.
The contributions of the boundary layer region dominate for both the kinetic and
thermal energy dissipation rates, consistent with the observations in figures 12 and
13. From figure 15(a) it seems to be less obvious that the kinetic energy dissipation
is dominated by regions close to the walls. We note that 〈εu〉x,t contains the kinetic
energy dissipation from the velocity boundary layers near the sidewalls. Contrary
to the velocity, the temperature field has no boundary layers close to the sidewalls,
which are adiabatic. The results of convection in regular porous media are shown in
figure 15(c,d). For these cases the obstacle array has a significant influence on the
distribution of 〈εu〉x,t due to the no-slip condition at the pores, while 〈εT〉x,t is only
mildly affected. The relative contribution of the bulk region of εu is significantly
enhanced, while εT remains dominated by the boundary layer. For relatively large

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

si
ng

hu
a 

U
ni

ve
rs

ity
, o

n 
18

 M
ay

 2
02

0 
at

 1
4:

12
:4

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

30
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.309


From Rayleigh–Bénard convection to porous-media convection 895 A18-19

0 0.2 0.4 0.6 0.8

ƒ = 1
ƒ = 0.92
ƒ = 0.82

1.0
z

0 0.2 0.4 0.6 0.8 1.0
z

¯´
u˘ x

,t

10-2

10-3

10-4

¯´
T˘ x

,t

10-2

10-3

10-4

(a) (b)

FIGURE 14. Variations of the averaged (a) kinetic and (b) thermal energy dissipation rates
〈εu,T〉x,t with z for different φ at Ra= 106.
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FIGURE 15. Variations of the averaged (a,c) kinetic and (b,d) thermal energy dissipation
rates 〈εu,T〉x,t with z for different Ra at (a,b) φ = 1 and (c,d) φ = 0.92. In (c,d) the grey
areas indicate obstacle positions.

Ra, intense dissipation of kinetic energy occurs around the obstacle surfaces. These
observations are also consistent with those seen in figures 12 and 13.

In figure 2 it is shown that the heat transfer is enhanced when φ is slightly
decreased from 1 at fixed Ra, and further decrease of φ reduces the heat transfer
compared with the φ = 1 case. To show the influence of the obstacle array on the
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FIGURE 16. (a) Plots of Re(Ra) in the small-Ra regime. (b) Comparison of Nu obtained
based on the heat flux averaging Nu=−〈∂zT〉x,t over the horizontal plates (dashed lines)
and (5.3) with c= 8.0 (solid lines with symbols) for the same four cases for the porosity
φ shown in (a).

heat transfer from a local perspective, we plot the profiles of 〈εu,T〉x,t for various
φ at Ra = 106 in figure 14. As φ is slightly decreased from 1, the kinetic energy
dissipation is enhanced in the bulk, which is the local manifestation of heat transfer
enhancement due to the obstacle array. When φ is further decreased, the pore scale
decreases accordingly and convection is significantly slowed down due to the drag
of the obstacle array. Correspondingly, 〈εu〉x,t is decreased in both the boundary layer
and the bulk regions, and 〈εT〉x,t is also decreased, particularly in the boundary layer
region. Due to the smallness of the spatial coherence length and strong convection
at large Ra, smaller porosity (or pore scale) is needed to significantly slow down the
convection and reduce the overall energy dissipation rates.

For fixed φ, Nu increases with Ra with an effective power law Nu∼Ra0.65 when Ra
is relatively small, and it changes to Nu∼ Ra0.30 for large enough Ra. For small Ra
with the spatial coherence length larger than the pore scale, turbulence is suppressed in
the pores. In the presence of the obstacle array one basically gets additional laminar-
type boundary layers in the bulk region, namely laminar shear flows in the pores,
and viscosity dominates such that the flow becomes of Prandtl–Blasius–Pohlhausen
type. Intense dissipation of kinetic energy occurs along the convection channels. Thus,
the overall kinetic energy dissipation rate can be estimated as 〈εu〉V,t ∼ φνU2

rms/l
2,

corresponding to the so-called ∞-regime in Grossmann & Lohse (2001) for large Pr
and small Ra, but with l replacing the box size L. Based on the exact relation between
〈εu〉V,t and Nu, we can further estimate Nu as

Nu≈ c · φ
(

L
l

)4

Pr2Re2Ra−1
+ 1, (5.3)

where Re = Urmsl/ν and c is an undetermined constant (Grossmann & Lohse 2000,
2001, 2004). Plots of Re(Ra) in the small-Ra regime are shown in figure 16(a) for
four fixed φ, and then Nu can be estimated using (5.3). With c = 8.0, it is found
that Nu obtained using (5.3) is consistent with the results based on the definition
of Nu for different Ra and φ, as shown in figure 16(b), which provides additional
confirmation of our observations regarding the modifications of the heat transfer and
flow structure by the porous media. As Ra is increased, the characteristic scales of
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the flow structures become smaller and intense dissipation of kinetic energy tends
to occur around the obstacle surfaces. For large enough Ra, convection in the pores
becomes chaotic or even turbulent, the pore scale is no longer a proper length scale for
the kinetic energy dissipation rate and the estimate of Nu through (5.3) is no longer
applicable.

6. Summary
We have studied the heat transfer and flow structure of 2-D RB convection in

regular porous media using pore-scale modelling. The porous medium is comprised
of circular, solid obstacles located on a square lattice. The heat transfer between the
fluid and solid phases is considered.

The obstacle array has two competing effects on the heat transfer. On the one hand,
the flow becomes more coherent with the correlation between temperature fluctuation
and vertical velocity enhanced and the counter-gradient convective heat transfer
suppressed, leading to heat transfer enhancement. On the other hand, the convection
strength is reduced due the impedance of the obstacle array, leading to heat transfer
reduction. The coexistence of the two competing effects leads to the non-monotonic
behaviour of Nu(φ) as φ is decreased from 1, as shown in figure 2. The heat transfer
enhancement is consistent with the counterintuitive observation that an appropriate
strength of a stabilizing force can enhance heat transfer by increasing flow coherence
(Chong et al. 2017). Significant enhancement of the heat transfer due to the increased
flow coherence was also observed in the confined inclined convection in low-Pr fluids
(Zwirner & Shishkina 2018). Due to the emergence of system-sized plume columns
and the interaction of these plume columns with the opposed boundary layers in
inclined convection, an increase of the heat transfer by a factor of approximately
2.3 can be realized. The observations of heat transfer enhancement in these distinct
systems are manifestations of a universal mechanism to enhance turbulent transfer by
increasing flow coherence.

The influence of porosity on flow properties is dependent on Ra, and two different
heat transfer regimes are observed at fixed φ. In the small-Ra regime where viscosity
dominates, Nu is decreased as compared to the φ=1 case with a steep effective power
law Nu∼ Ra0.65, while in the large-Ra regime Nu is increased as compared to φ = 1
with the classical power law Nu ∼ Ra0.30. The scaling crossover occurs when the
thickness of the thermal boundary layer δth is comparable to the pore scale l.

The influence of the obstacle array on the heat transfer is also analysed from
the local perspective, namely the energy dissipation rates. It is found that the bulk
contribution of kinetic energy dissipation rate is enhanced as φ is slightly decreased
from 1; while when φ is small enough, convection is significantly slowed down
by the obstacle array, and the kinetic energy dissipation rate is decreased in the
whole cell. For small Ra, due to the large coherence length of the flow structures
and the impedance of the obstacle array, turbulence is suppressed in the pores and
additional laminar-type boundary layers appear in the bulk. It is shown that also
for porous-media convection Nu can be estimated from Re through (5.3) similarly
to that suggested by Grossmann & Lohse (2001, 2004) for the viscosity-dominated
so-called ∞-regime. Regarding the turbulent modulations, the results of this study
suggest that it is possible to modulate the heat transfer with porous structure and
that the transitional Ra between different heat transfer regimes can be changed by
manipulating the pore scale.

The influence of the obstacle arrangement on the flow structure is also studied.
Three different arrangements with similar porosities are considered. The flow structure
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is found to be significantly influenced by the obstacle arrangement. In regular porous
media, thermal plumes can penetrate deep into the bulk along convection channels
aligning vertically, resulting in strong fluid and heat transport. When the obstacles
are randomly located in the cell, the plume motion is less organized, and curved
convection channels with strong flow emerge in the pores, with reduced efficiency of
vertical heat transfer.

In this study we have mainly focused on the heat transfer and flow structure of 2-D
RB convection in regular porous media. In the future, it will be of interest to extend
the study to the 3-D case, to allow for a one-to-one comparison with experiment.
Following the comparative study of Chong et al. (2017) and Lim et al. (2019), it is
also desirable to investigate further turbulent flows with different stabilizing forces,
to get an even more complete understanding of various stabilizing–destabilizing flow
systems.
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