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ABSTRACT

We analyze the power spectra and structure functions (SFs) of the temperature and radial velocity fields, calculated in the radial and
azimuthal directions, in annular centrifugal Rayleigh–B�enard convection (ACRBC) for Rayleigh number Ra 2 ½108; 1011�, Prandtl number
Pr¼ 10.7, and inverse Rossby number Ro�1 ¼ 16 using the spatial data obtained by quasi-two-dimensional direct numerical simulation.
Bolgiano and Obukhov-like (BO59-like) scalings for the energy spectrum in both the azimuthal and radial directions and thermal spectrum
in the azimuthal direction are observed. The range of BO59-like scaling becomes wider as Ra increases. At Ra ¼ 1011, it is found that
BO59-like scaling EuðkrÞ � kr�11=5 spans nearly two decades for the energy spectrum calculated in the radial direction. Power-law fittings in
the range larger than the Bolgiano scales, the scaling exponents of transverse and longitudinal velocity SFs vs the order coincide with the
theoretical prediction of BO59 scaling fup ¼ 3p=5 basically. The second-order temperature SFs exhibit a gradual transition from the
Obukhov–Corrsin behavior at scales smaller than the Bolgiano scales to the BO59 behavior at scales larger than the Bolgiano scales.
The slopes from the third to sixth-order temperature SFs are similar, which is similar to classical Rayleigh–B�enard convection and
Rayleigh–Taylor turbulence. The probability density functions (p.d.f.) of temperature fluctuations dT=rT reveal the cold plumes are strong
and the p.d.f. in different regions at high Ra are similar. The stronger turbulent-mixing and larger centrifugal buoyancy in ACRBC may result
in the BO59-like scaling.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091012

I. INTRODUCTION

Turbulent convection is omnipresent in nature as well as in
many engineering settings. Examples include circulations in the atmo-
sphere1,2 and oceans3,4 driven by temperature differences, the convec-
tive flows in the Earth’s mantle5 and outer core,6 and in some
particular situations of rapidly rotating machines.7,8 An idealized
model to study this type of flow is Rayleigh–B�enard convection (RBC),
where a fluid is confined between two horizontal plates heated from
below and cooled from above.9–19 An important issue for thermal tur-
bulence studies is the influence of buoyancy on the small-scale dynam-
ics.20,21 Recently, annular centrifugal RBC (ACRBC) system, where a

fluid is confined between two co-rotating cylinders heated from out-
side and cooled from inside, has been introduced to study turbulent
convection.22–24 Through rapid rotation of the system, the centrifugal
buoyancy is much larger than the Earth’s gravity, around 100 times
Earth’s gravity in the laboratory experiments of Jiang et al.25 The
detection of the buoyancy-dominated energy cascade may be easier.
Furthermore, Kunnen et al.26 suggested that the structure function
(SF) scalings could be longer for a larger-aspect-ratio cell since the sep-
arations between the different length scales may become larger. The
larger azimuthal length of ACRBC than traditional RBC may increase
the integral length scale. In addition, the effect of the proximity of the
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sidewalls is avoided in ACRBC. In addition, the influence of rotation
in addition to buoyancy often plays an important role in many convec-
tion phenomena.27–31 Thus, an exploration of the small-scale proper-
ties in ACRBC is needed.

The seminal work of the statistical properties of turbulence is
Kolmogorov’s theory32 for homogeneous and isotropic turbulence.
Kolmogorov32 considered that the kinetic energy only injects at inte-
gral scales and cascades down to dissipative scales. This energy cascade
range is the so-called inertial range. The well-known scaling (K41) for

the second-order velocity SF S2ðrÞ¼ h½uðxþ rÞ�uðxÞ�2ix;t �ðeurÞ
2=3

was derived, where u is one component of the velocity, x is a position
coordinate, r is the separation vector and r� jrj; h�� �ix;t denotes an
average over the space and time, and eu is the mean energy dissipation
rate. The corresponding scaling exponents for the pth-order velocity
SFs is SpðrÞ� rp=3. Applying Fourier transform to the two-point corre-
lation huðx; tÞ �uðxþ r; tÞi, the corresponding energy spectrum has a
scaling of EuðkÞ� k�5=3, where k is the wavenumber. Extending the
Kolmogorov’s theory, Obukhov33 and Corrsin34 deduced a universal
scaling (OC) of the passive scalar spectrum EhðkÞ� k�5=3 and the cor-
responding SFs RpðrÞ� rp=3.

For thermal turbulence, temperature can modify the velocity field
through the buoyancy force and the flow becomes anisotropic. In sta-
bly stratified turbulence, Bolgiano35 and Obukhov36 independently
derived the scalings (BO59) EuðkÞ � k�11=5 for energy spectrum and
EhðkÞ � k�7=5 for thermal spectrum in the buoyancy subrange
1=L0 � k� 1=LB. Here, L0 is the integral length scale. LB is the so-
called Bolgiano length,35,36

LB ¼ e5=4u e�3=4h ðagÞ�3=2; (1)

where eh is the mean thermal dissipation rate, a is the thermal expan-
sion coefficient, and g is the gravitational acceleration. For
LB � r � L0, the corresponding scalings of the pth-order velocity
and temperature SFs are SpðrÞ � r3p=5 and RpðrÞ � rp=5, respectively.
For gK � r � LB, the scalings of spectra and SFs return back to K41
and OC laws, where gK is the Kolmogorov length scale. For a detailed
derivation of these scalings, one can refer to Monin and Yaglom.37

Later, it was proven that BO59 scalings are also applicable for convec-
tive turbulence.38,39 Assuming spatial homogeneity, the rigorous rela-
tions for eu and eh can be derived. Combining Eq. (1), one can obtain
the global-averaged Bolgiano scale,

LB ¼
Nu1=2L

ðRaPrÞ1=4
; (2)

where the Nusselt number (Nu) is the total heat flux normalized by
the conductive flux (the definitions of the dimensionless parameters
are provided in Sec. II), the Rayleigh number (Ra) characterizes the
buoyancy-driven strength, the Prandtl number (Pr) reflects the ratio
of the viscous dissipation and thermal diffusivity, and L is the charac-
terized length of the flow domain.

While identifying BO59 scaling is challenging. First, the separa-
tion between LB and L0 needs to be large. Moreover, the inhomogene-
ity of the RBC leads to the assumption of BO59 scaling being not very
exact, for example, the time-averaged eu and eh are strong at the hot
and cold plates.26,40,41 Furthermore, the shear effect of the large-scale
circulation (LSC) results in a scaling of the shear flow,42 which is

approximate to the scaling of BO59 laws. Intermittency effects existing
in RBC also cause the issue more complicated.43,44 In addition, the
single-point statistical method is doubtful since the Taylor hypothe-
sis45 is often not met in RBC,46,47 while high-resolution simultaneous
multipoint measurements are difficult for experiments.26,48–50

Nevertheless, there has been a lot of work on the discussion of the
existence of the BO59 scaling, and this issue is still under debate in the
field. Wu et al.51 found a BO59 scaling using the single-point tempera-
ture measurements in a helium-gas cell. Tong and Shen52 conducted
preliminary multipoint measurements by the photon-correlation
homodyne spectroscopy method and found the BO59 scaling of veloc-
ity fluctuations. Evidence of BO59 scaling on the temperature has been
available for some studies,51,53–58 while velocity scaling is more elu-
sive.57,59,60 Kunnen et al.26 computed the SFs up to fourth-order using
spatial data obtained by direct numerical simulation (DNS) and experi-
ments, and they observed BO59 scaling for both velocity and tempera-
ture. Rosenberg et al.61 found evidence for BO59 scaling in rotating
stratified turbulence using DNS. Additionally, BO59 scaling is validated
in another buoyancy-induced flow, two-dimensional Rayleigh–Taylor
turbulence.62–64 On the other hand, some researchers have argued in
favor of the K41 and OC scalings. Sun et al.49 experimentally addressed
that K41 and OC scalings are valid for the flow in the central region of
the cell. Zhou and Xia65 disentangled the anisotropies produced by the
thermal plumes and found that the part of velocity SF which excludes
the contribution of plumes exhibits K41 scalings, while the other part
which includes the effect of plumes deviates from K41. Kaczorowski
and Xia66 showed that the longitudinal velocity increments approach a
K41-like scaling in the bulk region by simulations. Recently,
Bhattacharya et al.67 also argued that the kinetic-energy spectrum is
Kolmogorov-like for a flow with Pr� 1.

In this paper, using the temperature and velocity field data of
quasi-two-dimensional DNS, it is unprecedentedly able to identify the
BO59-like scalings in high-Ra ACRBC. At Ra ¼ 1011, BO59-like scal-
ing EuðkrÞ � kr�11=5 spanning nearly two decades for the energy spec-
trum calculated in the radial direction is observed. The remainder of
this manuscript is organized as follows. In Sec. II, we give a brief
description of the numerical arrangement, including the governing
equations, the parameters and resolution settings, and the process of
the calculation of the spectra and SFs. The results are presented and
analyzed in Sec. III, which is divided into three parts, Sec. IIIA
describes the thermal spectra and energy spectra. In Sec. III B, we
show the temperature and radial velocity SFs calculated in the azi-
muthal and radial directions. The probability density functions
(p.d.f.s) of the temperature fluctuations in different regions are exam-
ined in Sec. III C. In Sec. IV, we provide a discussion about the new
features in ACRBC. Finally, we summarize our findings in Sec. V.

II. NUMERICAL ARRANGEMENT
A. Parameter descriptions

DNS concerns the flow in a cylindrical annulus with cold inner
and hot outer walls corotating axially [see Fig. 1(a)]. The flow inside
this volume is governed by the Boussinesq equations in a rotating ref-
erence frame,

$ � u ¼ 0; (3)

Dh
Dt
¼ 1ffiffiffiffiffiffiffiffiffiffi

RaPr
p $2h; (4)
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Du
Dt
¼ �$p� Ro�1x̂ � uþ

ffiffiffiffiffiffi
Pr
Ra

r
$2u� h

2ð1� gÞ
ð1þ gÞ r : (5)

Here u, h, and p are the dimensionless velocity vector, temperature,
and pressure, respectively. D/Dt represents the material derivative. x̂
is the unit vector pointing in the direction of the angular velocity. The
equations have been made dimensionless with the gap width
L ¼ Ro � Ri, temperature difference D ¼ Thot � Tcold , and the free
fall velocity U �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2½ðRo þ RiÞ=2�aDL

p
. Ro and Ri are the radius of

the outer and inner cylinders. Thot and Tcold are the temperature of the
outer and inner cylinders. x denotes the angular velocity of the
system.

From the governing equations, it is revealed that the control
parameters of the system are the Rayleigh number,

Ra ¼ 1
2
x2ðRo þ RiÞaDL3=ð�jÞ; (6)

the Prandtl number Pr ¼ �=j, the inverse Rossby number (measuring
Coriolis effects) Ro�1 ¼ xL=U , the radius ratio g ¼ Ri=Ro, and
aspect ratios C? ¼ H=L and Ck ¼ 2pr=L. Here, � and j are the kine-
matic viscosity and thermal diffusivity of the fluid, respectively. In the
present study of small-scale statistics, the simulations are performed
for Ra from 108 to 1011 for a fixed Pr of Pr¼ 10.7, a fixed inverse
Rossby number of Ro�1 ¼ 16, and a fixed g of g ¼ 0:5. These param-
eter conditions (Pr, Ro�1 and g) are the same as our another experi-
mental work studying the ultimate regime of thermal turbulence.25

Pr¼ 10.7 corresponds to the Novec-7200 fluid at 25 	C or water at
7 	C. We also note that Ck is dependent on g, the mean aspect ratio

Ck ¼ pðRo þ RiÞ=L ¼ pð1þ gÞ=ð1� gÞ. The key response parame-
ter is the Nusselt number Nu ¼ J=Jcon ¼ �JRo ln g=ðkDÞ, where J and
Jcon denote the total heat flux and the heat flux through pure thermal
conduction, respectively, and k ¼ jqcp is the thermal conductivity of
the working fluid with q and cp the density and the specific heat capac-
ity of the fluid, respectively.

B. Direct numerical simulations

Equations (3)–(5) are solved in cylindrical coordinates (/, z, r),
where /, z, and r refer to the streamwise (azimuthal), spanwise (axial),
and wall-normal (radial) directions, respectively [see Fig. 1(a)]. No-slip
and isothermal boundary conditions are imposed on the inner and
outer cylindrical walls, periodic boundary conditions in the axial direc-
tion. Details of the numerical procedure can be referred to Verzicco and
Orlandi68 and Jiang et al.;22 here, we present an overview. The discreti-
zation adopts second-order finite-difference for the derivatives in space.
Time advancement uses a fractional-step third-order Runge-Kutta
scheme, and the maximum Courant number is 0.8. The simulation
parameters and resolution settings for the calculation of spectra and SFs
are summarized in Table I. The averaging time for simulations ranges
from 14.9 to 190.4 free fall time (savg) after reaching a steady state. The
grid resolutions are varied from N/ � Nz � Nr ¼ 3072� 48� 256 for
Ra¼ 108 to 18 432� 48� 1536 for Ra¼ 1011.

A representative temperature snapshot at the mid-axial position
at Ra¼ 1011 is provided in Fig. 1(b), giving an impression of the typi-
cal flow structures. The simulation for high Ra needs tremendous
amount of CPU hours, and the flow exhibits quasi-2D state when
Ro�1 is large.22 Thus, we conduct quasi-two-dimensional DNS, that is,
the flow is constrained in a thin annular region. C? ¼ H=L � 0:1 for
all cases (listed in Table I). The variation of the radial velocity
[ðurÞstd=hjur jiz;t] of the four cases presented in Table I is all very small
(� 10�4), where ðurÞstd=hjur jiz;t is the standard deviation of the radial
velocity ur divided by jur j averaged axially and by time at the azi-
muthal position of the maximum jur j. So the flow exhibits quasi-2D
state in the quasi-2D convection cell. In addition, we note that the azi-
muthal region is not reduced for all cases in the present study. For
example, N/ ¼ 18 432 means 18 432 points for the whole azimuthal
region (2p) of the annulus.

The maximum grid spacings Dg have been compared to the
Kolmogorov scale gK and the Batchelor scale gB ¼ gK=ðPr1=2Þ. Here,
gK ¼ Pr1=2 ½RaNuf ðgÞ��1=4L [Eq. (A10)] is based on the rigorous

FIG. 1. Flow setup and temperature snapshot. (a) Sketch of the system, which defines the cylindrical coordinates and parameters. (b) Instantaneous temperature field at z/
H¼ 0.5 for Ra¼ 1011. The large dashed circle denotes the first set of numerical probes inserted at the radial position R0 ¼ ðr � RiÞ=L¼ 0.5, along which the power spectra
in the azimuthal direction are calculated. The small dashed circle with R0 ¼ 0:15, which approaches the inner cylinder but outside of the boundary layer, where the second set
of probes are distributed and used to calculate the structure functions in the azimuthal direction. The dotted lines denote part of the third set of probes inserted in the bulk
region (except the BLs) in which the power spectra and SFs in the radial direction are calculated. To visualize clearly, the dotted lines are plotted only in part of the azimuthal
region. The colorbar is from 0.3 to 1. In (a) and (b), the directions of the radial velocity ur, separations for the calculation of SFs dlr and dl/ are signified.
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relations for the volume and time-averaged kinetic and thermal dissi-
pation rates. The derivation of gK is provided in the Appendix. The
resolution criterion for the bulk, Dg < gK and Dg < 2:5gB, found to
be adequate in Verzicco and Camussi69 and Kunnen et al.,26 is thus
fulfilled. In addition, we check the bulk resolution by studying the scal-
ing of the second-order transverse and longitudinal SFs, ST;ur2 and
SL;ur2 , of the radial velocity ur with separations dl in the dissipative
range (The directions of dl are shown in Fig. 1). The velocity incre-
ments are averaged in the bulk region and over time. From Fig. 2, it is
indicated that for both Ra ¼ 108 and 1011, ST;ur2 � ðdl/Þ2 and
SL;ur2 � ðdlrÞ2, when dl is of the order of the Kolmogorov length scale
gK . The crossover scales between the dissipative range and the inertial
range are about several times of gK . In addition, it is found that
SL;ur2 ’ ST;ur2 =2 at Ra ¼ 1011. The results of second-order SFs in the
dissipative range for ACRBC are similar to traditional RBC.66 On the
one hand, this suggests that the bulk resolution is adequate to resolve
the dissipative scales; on the other hand, it also implies that the flow in
the bulk region of ACRBC at Ra ¼ 1011 is nearly homogeneous and
isotropic. As the BL near the outer cylinder is thinner than that near
the inner cylinder,24 there are at least 19 grid points inside viscous BL
and 16 grid points inside thermal BL near the outer cylinder, so it is
well-resolved. We validate our simulations by computing the Nu

averaged over the last half of the savg range (Nuh) and averaged over
the entire savg range (Nu) and ensuring that the deviation
Dif fNu ¼ jNu�Nuhj=Nu < 1%.23,67 Thus, a satisfactory statistical
convergence is attained.

C. Methods for the calculation of the spectra
and structure functions

Many numerical probes are distributed in the flow field. The
probes are positioned at grid points and record the evolution of the
temperature h and radial velocity ur at these grid points in time. As
shown in Fig. 1(b), the first set of probes are distributed along the
cylindrical surface with the radial position R0 ¼ ðr � RiÞ=L¼ 0.5. The
data acquired from these N/(� Nz) probes are used to calculate
the power spectra (PS) Eh;uðk/Þ as a function of the azimuthal wave-
number k/. Kunnen et al.26 found local Bolgiano scale is small when
approaching the walls but outside of the boundary layers (BLs), which
can lead to longer BO59 scaling regime. Thus, the second set of probes
are distributed along the surface near the inner cylinder with the radial
position R0 ¼ 0.15. Temperature SFs in the azimuthal direction

R/
p ðdl/Þ � hjhðx þ dl/Þ � hðxÞjpi and transverse SFs for the radial

velocity ST;urp ðdl/Þ � hjurðx þ dl/Þ � urðxÞjpi are calculated by this

FIG. 2. Comparison of the second-order transverse structure function ST;ur2 with the second-order longitudinal structure function SL;ur2 plotted in compensated form for (a)
Ra ¼ 108; Ro�1 ¼ 16; Pr ¼ 10:7 and (b) Ra ¼ 1011; Ro�1 ¼ 16; Pr ¼ 10:7. The vertical lines denote the crossover scales between the dissipative range and the inertial
range. The arrows mark the dissipative ranges, which are smaller than the crossover scales.

TABLE I. Simulation parameters and resolution settings for the calculation of spectra and SFs. The columns from left to right indicate the followings: Rayleigh number Ra;
Nusselt number Nu; Dif f Nu � jNu� Nuhj=Nu is used to evaluate the statistical convergence, where Nuh is the counterpart of Nu, averaged over the second half of NuðtÞ; the
averaging time period savg after the system has reached statistically stationary state; ður Þstd=hur iz;t is the standard deviation of the radial velocity ur divided by ur averaged axi-
ally and by time at the azimuthal position of the maximum ur , which is used to suggest the flow is in the quasi-2D flow state; the resolution in the azimuthal, radial, and axial
directions N/ � Nr � Nz ; the maximum grid spacing in the bulk region Dg compared with the Batchelor scale; the number of grid points within the viscous boundary layer (BL)
Nv�BL and thermal BL Nt�BL near the outer cylinder; aspect ratio C? ¼ H=L; radius ratio g ¼ Ri=Ro.

Ra Nu Dif fNu savg ðurÞstd=huriz;t N/ � Nr � Nz Dg=gB Nv�BL Nt�BL C? g

108 25.30 0.83% 190.4 2:60� 10�16 3072� 256� 48 1.28 19 16 0.19 0.5
109 48.46 0.72% 116.7 5:48� 10�8 6144� 512� 48 1.37 34 25 0.09 0.5
4:7� 1010 143.18 0.76% 41.47 6:76� 10�5 12 288� 1024� 48 2.39 40 31 0.05 0.5
1011 180.38 0.85% 14.9 1:43� 10�4 18 432� 1536� 48 2.06 56 42 0.05 0.5
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set of probe data. The PS and SFs in the azimuthal direction are aver-
aged axially, azimuthally, and by time. In addition, the azimuthal
domains are divided into 3, 7, 14, and 22 equal azimuthal parts for
Ra¼ [108, 109, 4:7� 1010, 1011], respectively. The PS and SFs are then
averaged over the several azimuthal parts. As shown in Fig. 4, the max-
imum scale of the case with larger Ra is smaller since the azimuthal
region is divided into more parts.

The third set of numerical probes are inserted into every radial
profile distributed over 2p except the BLs, i.e., all grid points in the
bulk region. This set of data are used to calculate PS Eh;uðkrÞ as a func-
tion of the radial wavenumber kr , temperature SFs in the radial direc-
tion Rr

pðdlrÞ � hjhðx þ dlrÞ � hðxÞjpi, and longitudinal SFs for the

radial velocity SL;urp ðdlrÞ � hjurðx þ dlrÞ � urðxÞjpi. Note that PS and
SFs in the radial direction are averaged axially, azimuthally, radially,
and by time. We also note that since the clipped Chebychev-type clus-
tering grids are adopted in the radial direction to ensure the spatial res-
olution within BLs, the grid positions are nonuniform for the third set

of probes. In order to average the PS and SFs in the radial direction,
the velocity and temperature are first interpolated onto a uniform grid
with a cubic spline interpolation algorithm separately for each azi-
muthal positions and each time step. We note that the deviations of
the original value and the interpolated value are very small so the
interpolation effects on the statistics are negligible (see Fig. 3). Then,
spectra and SFs in the radial direction are calculated followed by space
and time averaging. All the spectral quantities and SFs are averaged
over at least 40 snapshots taken at 0.2t intervals after reaching a steady
state.

III. RESULTS
A. Spectra

We discuss first about the characteristic scales. In the Appendix,
we derive the two exact relations for kinetic and thermal dissipation
rates in ACRBC, which are similar to those of classical RBC only
with small radius ratio corrections. Thus, the characteristic scales
of ACRBC are also approximately equal to those of classical RBC.
Table II lists the Bolgiano scales LB for each case. LB decreases with
the increase in Ra. Thus, the range of BO59 scaling should become
wider for higher Ra.

We calculate the spectra both in the azimuthal and radial direc-
tions. Let us first examine the scaling properties of the power spectra
calculated in the azimuthal direction. Figures 4(a) and 4(b) plot the PS
vs the azimuthal wavenumber k/ for temperature and radial velocity,
respectively. At 3� k/ � 50 for Ra � 109, temperature PS display a
scaling exponent around �7/5, i.e., the BO59-like scaling. This is par-
ticularly evident from the compensated spectra plotted in Fig. 4(c),
while for larger wavenumber, the scaling range of�5/3 is very limited.
For radial velocity spectra, we find a scaling of Euðk/Þ � k�11=5/ [also
see Fig. 4(d)], which is the BO59 scaling for the energy spectrum.
Similarly, no obvious K41 scaling [Euðk/Þ � k�5=3/ ] for larger wave-
numbers follows. It is known that centrifugal buoyancy is in the radial
direction, so we do not expect that energy cascade in the azimuthal
direction will be modified by the buoyancy. Nevertheless, BO59-like
scalings are found for the temperature and radial velocity spectra cal-
culated in the azimuthal direction. We consider that might be due to
the strong mixing effects of the LSC at high Ra.

In addition, the width of the wavenumber range over which
BO59-like scaling is observed indeed increases with Ra: from
4� k/ � 15 at Ra¼ 108 to 3� k/ � 80 at Ra¼ 1011 for the thermal

FIG. 3. Comparison of the instantaneous ur profiles (except the BLs) adopted
clipped Chebychev-type clustering grids with the interpolated grids with uniform
separations at the mid-axial and an azimuthal position at Ra ¼ 108; Ro�1 ¼ 16;
Pr ¼ 10:7 and Ra ¼ 1011; Ro�1 ¼ 16; Pr ¼ 10:7. The deviations of the ur are
very small so the interpolation produce negligible effects on PS and SFs.

TABLE II. Global estimates of different length scales at different Ra. ðL0Þazi and ðL0Þrad are the transverse integral scale and longitudinal integral scale, which are calculated by
the integration of the transverse and longitudinal autocorrelation functions of radial velocity ur, respectively.

70 The Bolgiano scale LB ¼ Nu1=2L
ðPrRaÞ1=4

½f ðgÞ�1=2 and Kolmogorov scale

gK ¼ Pr1=2 L
ðRaNuÞ1=4

½f ðgÞ��1=4 are based on the rigorous relations for the volume and time-averaged kinetic and thermal dissipation rates (the derivation is given in the Appendix).

Here, the correction of radius ratio f ðgÞ ¼ 2ðg�1Þ
ð1þgÞ ln ðgÞ and the derivation of f ðgÞ are supplied in the Appendix. ðk0Þazi; ðk0Þrad; kB, and kg are the corresponding wavenumber of

the length scales (k ¼ 1=L).

Ra ðL0Þazi ðL0Þrad LB (�10�2) gK (�10�2) ðk0Þazi ðk0Þrad kB kg

108 0.147 0.178 2.73 1.47 6.81 5.61 35.67 68.84
109 0.133 0.148 2.12 0.70 7.54 6.75 46.22 143.40
4:7� 1010 0.096 0.128 1.39 0.21 10.44 7.82 71.17 489.63
1011 0.081 0.119 1.30 0.16 12.29 8.40 75.81 629.69
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spectra [Fig. 4(a)] and from 1� k/ � 10 at Ra¼ 108 to 1� k/ � 30 at
Ra¼ 1011 for the energy spectra [Fig. 4(b)]. As shown in the compen-
sated Figs. 4(c) and 4(d), the compensated PS are flat as LB � k/ � 1, which
means the ranges of BO59 scalings are basically consistent with the theoreti-
cal predictions (k0 � k� kB) listed in Table II. Furthermore, Zhou and

Xia58 identified the “Bolgiano frequency” as the peak frequency of the dissi-
pation spectra and found a universal BO59 range for different Ra. We cal-
culate the wavenumber kp corresponding to the maximum value of the
temperature dissipation spectrum k2/ � Ehðk/Þ [see Fig. 4(f)]. It is found
that kp increases with the increase in Ra. Normalized by this characteristic

FIG. 4. (a) Temperature power spectra Ehðk/Þ as a function of the azimuthal wavenumber k/ averaged axially, azimuthally, and by time for different Ra. The maximum scales
of the cases are slightly different because of the different lengths of azimuthally divided regions. (b) Radial velocity power spectra Euðk/Þ as a function of the azimuthal wave-
number k/ averaged axially, azimuthally, and by time for different Ra. [(c) and (d)] Compensated plot of [(a) and (b)] with the PS compensated by the BO59 scaling prediction,
and the azimuthal wavenumber k/ compensated by the Bolgiano scale LB. The horizontal dashed lines mark the BO59 scaling. (e) Temperature power spectra scaled by the
energy EhðkpÞ and the characteristic scale kp. (f) Temperature dissipation spectra k2/ � Ehðk/Þ for different Ra. The vertical lines are the positions of kp, which are the peak
wavenumbers of the corresponding dissipation spectra. All data are for the cylindrical surfaces at radial location R0 ¼ ðR � RiÞ=L¼ 0.5. All fractions are the slopes of the
nearby reference lines.
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wavenumber, PS for different Ra are basically collapsed in the mesoscale
[Fig. 4(e)] and obey around�7/5 scaling relation at Ra� 4:7� 1010.

In addition, it is observed that the amplitude of the energy spec-
trum increases with Ra [Fig. 4(b)], which suggests that convection
with large Ra has more kinetic energy than that with small Ra. Note
that the spectrum exhibits strong fluctuations at the intermediate
wavenumbers at Ra¼ 108 and gradually becomes smooth at higher
Ra. That may be because for high Ra, the flow is more turbulent and
the nonlinear interactions among the modes become more intense.
While at Ra¼ 108, the more coherent thermal plumes possibly induce
the fluctuations of energy.

Next, we examine temperature and radial velocity PS calculated
in the radial direction. Since centrifugal buoyancy affects the turbulent
flow moving along the radial direction more directly, buoyancy will
feed kinetic energy and may alter the energy cascade. While as shown
in Figs. 5(a) and 5(c), there exists no more than one decade scaling
range for temperature PS in the radial direction. For radial velocity PS
calculated in the radial direction [Fig. 5(b)], BO59-like scaling for the
energy spectrum is identified. The scaling �11=5 is observed for each
Ra, and this significant scaling regime spans nearly two decades from
kr � 2 to kr � 200 for Ra� 4:7� 1010. The flat region of Fig. 5(d)
occurs at LB � kr � 1, which indicates that the BO59-like scaling is
observed for kr � kB. In ACRBC, the radial velocity spectra follow
BO59-like scaling, which suggests the energy cascade in the inertia

range is influenced by centrifugal buoyancy. Later it is confirmed that
the corresponding scaling exponents fup for the pth-order radial veloc-
ity SFs also possibly follow the relation of BO59 scaling fup ¼ 3p=5.

B. Structure functions

In this part, the temperature and radial velocity SFs calculated in
the azimuthal and radial directions will be discussed. As Kunnen et al.26

reported, the local Bolgiano scale is smaller when approaching the hot or
cold walls, but outside of the boundary layers. Hence, to observe a longer
range of BO59 scaling, the radial position of the SFs calculated in the azi-
muthal direction is at R0 ¼ 0.15, which is near the inner cylinder while
out of the BL. Temperature SFs in the azimuthal direction and transverse
SFs for the radial velocity are defined as R/

p ðdl/Þ � hjhðx þ dl/Þ
�hðxÞjpi and ST;urp ðdl/Þ � hjurðx þ dl/Þ � urðxÞjpi, respectively. The
SFs in the azimuthal direction are averaged axially, azimuthally, and by
time. Similarly, temperature SFs in the radial direction and longitudinal
SFs for the radial velocity are calculated by Rr

pðdlrÞ � hjhðx þ dlrÞ
�hðxÞjpi and SL;urp ðdlrÞ � hjurðx þdlrÞ � urðxÞjpi, respectively. The
SFs in the radial direction are averaged axially, azimuthally, radially, and
by time.

Let us first discuss the temperature SFs. The scaling of the tem-
perature SFs is not obvious (Fig. 6). We show the 1–6 order tempera-
ture SFs at Ra ¼ 1011 in Figs. 6(a) and 6(b). For dl � LB, the slope for

FIG. 5. (a) Temperature power spectra Ehðkr Þ as a function of the radial wavenumber kr (out of the BLs) averaged axially, azimuthally, radially, and by time for different Ra. (b)
Radial velocity power spectra Euðkr Þ as a function of the radial wavenumber kr (out of the BLs) averaged axially, azimuthally, radially, and by time for different Ra. [(c) and (d)]
Compensated plot of [(a) and (b)] with the PS compensated by the BO59 scaling prediction, and the radial wavenumber kr compensated by the Bolgiano scale LB. The hori-
zontal dashed lines mark the BO59 scaling. All fractions are the slopes of the nearby reference lines.
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sixth-order temperature SFs is still relatively flat, implying the energy
cascade might not occur at the scales much larger than LB. For
gK � dl � LB, the slopes from the third to sixth-order SFs are similar.
For classical RB71,72 and some other buoyancy-driven turbulence,63,73

the exponents of temperature SFs are also observed to increase
extremely slowly with order p and the saturated exponent nh

1 is
around 0.8. Zhou and Xia72 considered that the saturation is related to
thermal plumes. Here, we note that in supergravitational turbulence,
nh
1 for temperature SFs in the azimuthal direction agrees with the
value of 4/5 found in classical RB turbulence [see Fig. 6(a)]. For the
second-order temperature SFs, it is found that the BO59-like scalings
(2/5) are around LB for each Ra [see Figs. 6(c) and 6(d)]. Furthermore,
we identify a potential scaling range for the radial temperature SF
[Fig. 6(d)] at dlr=L ’ 10�1 showing a slope <2=5. The fitting scaling

exponents for this range are ’ 0:1 for Ra¼ [4:7� 1010, 1011] and
’ 0:2 for Ra¼ [108, 109].

As shown in Figs. 6(c) and 6(d), the amplitude of the second-
order temperature SFs increases with Ra for dl � 10�2, while the
amplitude decreases with the increase in Ra for dl � 10�2. As Ra
increases, thermal BLs become thinner due to the stronger shear
effects of the LSC [see Fig. 7(d)]. Here, we adopt the slope method24,74

to calculate the thermal BL thickness ðktÞs as the distance where the
tangent of the temperature profile at the cylindrical wall intersects the
bulk temperature. The result of ðktÞs is basically consistent with that of
ðktÞNu � L=ð2NuÞ estimated by Nusselt number9,75 for different Ra.
The scaling exponent 0.29 is similar to the thermal BL thickness in tra-
ditional RBC.76,77 The detaching thermal plumes are considered as
parts of the thermal BLs,78,79 so the scale of plumes is smaller with

FIG. 6. Temperature structure functions taken at Ra¼ 1011 (a) calculated in the azimuthal direction (at R0 ¼ 0.15, out of the BL) averaged axially, azimuthally, and by time and
(b) calculated in the radial direction (except the BLs region) averaged axially, azimuthally, radially, and by time. The order p increases from 1 to 6 from top to bottom. The
second-order temperature SFs (c) calculated in the azimuthal direction and (d) radial direction for different Ra. The fractions are the slopes of the nearby reference lines. The
integral lengths, Bolgiano lengths, and Kolmogorov lengths are indicated with the dash-dotted lines, the solid lines, and the dashed lines, respectively.
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increasing Ra [Figs. 7(a)–7(c)]. Since thermal plumes are dominant
carriers of heat in turbulent convection,80 the smaller scale of plumes
represents the amplitude of temperature increment becomes weaker
for large scales and stronger for small scales.

Next, we consider the radial velocity SFs (Fig. 8), which exhibit
relatively longer BO59-like scaling ranges than the temperature SFs.
The transverse integral scales ðL0Þazi and longitudinal integral scales
ðL0Þrad (Table II) are calculated by integrating the transverse and lon-
gitudinal autocorrelation functions of the radial velocity ur, respec-
tively.70 BO59-like scalings are observed between LB and ðL0Þazi for
the transverse SFs of ur [Figs. 8(a) and 8(c)], while it is found near the
integral scale ðL0Þrad for the longitudinal SFs [Figs. 8(b) and 8(d)].
Kunnen et al.26 reported that the local Bolgiano scale can be about one
order of magnitude larger than the global Bolgiano scale, so BO59 scal-
ings appearing at the scale larger than the global LB is possible for the
longitudinal SFs. As shown in Table II, it is found that the longitudinal
integral length scale ðL0Þrad is larger [for isotropic turbulence this can
be quantified: ðL0Þrad ¼ 2ðL0Þazi

70]. Thus a longer scaling range exists
between LB and ðL0Þrad , in comparison with its transverse counterpart,
leading to its detection easier. To obtain high-order SFs with good sta-
tistics, the transverse SFs are averaged axially, azimuthally, and by
time, and the longitudinal SFs are averaged in the radial direction

additionally. We examine the convergence carefully while computing
the SFs, which is generally verified by the integral kernels,81–85

FðD/;rurÞ � jD/;rurjp; (7)

where D/;rur denotes the increments of the radial velocity in the
azimuthal or the radial direction. FðD/;rurÞ is the probability density
function of the velocity increments. Convergence for high-order SFs is
more severe.81,84,86,87 As shown in the inset of Figs. 8(a) and 8(b), we
plot the integral kernels of SFs at the Bolgiano lengths for p¼ 6. It is
indicated that the tails of the integral kernels are converged basically,
thus we have sufficient statistics to capture all the rare events necessary
to faithfully calculate the SFs. As shown in Figs. 8(e) and 8(f),
the second-order SFs show the predicted BO59-like scaling for
Ra 2 ½108; 1011� and the BO59-like scaling ranges fall in dl � LB. In
addition, we show that the amplitudes of transverse and longitudinal
SFs increase with Ra, thus exhibiting stronger nonlinearity for flows
with larger Ra.67

As the scaling is obvious for the SFs of the radial velocity [Figs.
8(c) and 8(d)], power-law fittings in the range LB 
 dl/ 
 5LB for the
transverse SFs and LB 
 dlr 
 30LB for the longitudinal SFs are
performed. The SF exponents as a function of the order p for
Ra¼ 4:7� 1010 and 1011 are shown in Fig. 9. The error bars are from

FIG. 7. Instantaneous temperature fields
at the mid-axial height for (a) Ra¼ 108,
(b) Ra¼ 109, and (c) Ra¼ 1011. [(a)–(c)]
share the same colorbar from 0.3 to 1. (d)
The thermal BL thickness calculated from
the slope method ðktÞs

24,74 and Nusselt
number ðktÞNu

9,75 as a function of Ra. The
fitted lines are ðktÞs ¼ 3:99Ra�0:2960:02

and ðktÞNu ¼ 3:66Ra�0:2860:01.
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FIG. 8. Structure functions of the radial velocity taken at Ra¼ 1011 (a) calculated in the azimuthal direction (at R0 ¼ 0.15, out of the BL) averaged axially, azimuthally,
and by time and (b) calculated in the radial direction (except the BLs region) averaged axially, azimuthally, radially, and by time. The order p increases from 1 to 6
from top to bottom. Inset of [(a) and (b)]: Integral kernels of SF at the Bolgiano lengths for p¼ 6 (denoted by the red cross in the sixth-order SFs). [(c) and (d)] are
the same data as [(a) and (b)] but ST ;urp and SL;urp are compensated by BO59 scaling ðdlÞ0:6p, respectively. For the sake of clarity, the third- to sixth-order transverse
SFs in (c) have been shifted down by 0.1 with respect to its higher neighbor. The second-order SFs of the radial velocity (e) calculated in the azimuthal direction and
(f) calculated in the radial direction for different Ra. The fractions are the slopes of the nearby reference lines. In [(a)–(d)], the integral lengths, Bolgiano lengths, and
Kolmogorov lengths are indicated with the dash-dotted lines, the solid lines, and the dashed lines, respectively. In (e) and (f), the Bolgiano lengths are indicated by
the vertical solid lines.
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the difference of the fittings for the first half and second half of the
averaging time. The error is small and the maximum error is 60:12
corresponding to the sixth-order transverse SF at Ra ¼ 4:7� 1010.
The data coincide with the theoretical prediction of BO59-like scaling
fup � 3p=5 (the dashed line) basically and small deviations probably
result from the contamination of the fitting by the non-BO59 range,
while the data deviate from the K41 scaling fup � p=3 (the solid line)
significantly. For high Ra, the flow is driven by the large centrifugal

buoyancy in the radial direction. So both the transverse and longitudi-
nal SFs of the radial velocity ur show BO59-like scaling. In addition,
intermittency corrections for the velocity field are weak and within the
errorbars, which are also observed in some two-dimensional (2D) tur-
bulence.63,88 As the flow in ACRBC is quasi-2D, the mechanism for
the energy cascade is probably similar to 2D turbulence.

C. Statistics of temperature fluctuations in different
regions

In order to gain a deeper insight into the physics behind the
small-scale properties in this novel turbulent flow system, we investi-
gate probability density function (p.d.f.) of the temperature fluctua-
tions dh=rh in four different flow regions, where dhðr;/; tÞ
¼ hðr;/; tÞ � hhðr;/; tÞit and rh is the root mean square (r.m.s.)
value of dh. As shown in Fig. 10(b), we first identify the local strongest
plumes according to the azimuthal temperature distribution at
R0 ¼ ðr � RiÞ=L ¼ 0:2 or R0 ¼ 0:8 at each time. The flow near this
region is similar to the large-scale circulation (LSC) in traditional
RBC. While we note that because the flow is strong due to the super-
gravity, and Coriolis force can deflect the plumes, these “radial large-
scale circulation” positions (/r) are not strict. Second, based on the
spatial distribution of thermal plumes in the convection cell, the con-
vective flow can be divided into four distinct regions, namely, turbu-
lent bulk (R0 2 ½1=3; 2=3� and / 2 ½/r=3; 2/r=3�), mixing zone
(R0 2 ½0:06; 0:3� [ ½1:7; 1:94� and / 2 ½/r=3; 2/r=3�), radial large-
scale circulation region (R0 2 ½0:1;0:9� and /2½0;/r=5�[½4/r=5;/r �),
and thermal BL (R0 2 ½0:2dth;0:6dth�[ ½1�0:6dth;1�0:2dth�), as
shown in Fig. 10(a). Note that the criterion of the different regions is
based on recent studies of temperature fluctuations in traditional
RBC.89,90 Third, the space- and time-series of the temperature fluctua-
tions dh=rh in each region are extracted and used to calculate the p.d.f.s
in each region and different Ra.

As shown in Fig. 11, except the thermal BL, the strength of the
cold plumes is obviously larger than the hot plumes. Especially for
the temperature fluctuations at Ra¼ 1011 [Fig. 11(b)], the p.d.f.s in the

FIG. 9. Comparison of radial velocity SF exponents at Ra¼ 1011 and 4:7� 1010

with the model predictions. fLp and fTp are the scaling exponents of the pth-order
longitudinal and transverse SFs of the radial velocity ur, respectively. The power-
law fitting ranges are LB 
 dl/ 
 5LB for the transverse SFs and LB 
 dlr

 30LB for the longitudinal SFs. The solid line is the prediction of K41 fp ¼ p=3.
The dashed line corresponds to the prediction of BO59 for the velocity fp ¼ 3p=5.
The error bars are from the difference of the SF exponents fittings for the first half
and the second half of the averaging time.

FIG. 10. (a) Sketch of a part of the system including a pair of convection rolls, which defines the distinct flow regions in ACRBC. The flow regions include the turbulent bulk
region (R0 2 ½1=3; 2=3� and / 2 ½/r=3; 2/r=3�), mixing zone (R0 2 ½0:06; 0:3� [ ½1:7; 1:94� and / 2 ½/r=3; 2/r=3�), radial large-scale circulation region (R0 2 ½0:1; 0:9�
and / 2 ½0;/r=5� [ ½4/r=5;/r �), and thermal boundary layer (R0 2 ½0:2dth; 0:6dth� [ ½1� 0:6dth; 1� 0:2dth�). The black arrows indicate the direction of the large-scale
circulation. (b) Instantaneous temperature field at the mid-axial height for Ra¼ 1011. The red dashed lines are the azimuthal positions of the radial large-scale circulation or the
local strongest plumes. The arrow indicates that the system rotates anticlockwise. The colorbar is from 0.3 to 1.
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FIG. 11. The p.d.f.s of normalized temperature fluctuations dh=rh in four different flow regions: bulk region, mixing zone, radial large circulation region, and thermal boundary
layer region for (a) Ra¼ 109 and (b) Ra¼ 1011. The four flow regions are shown and defined in Fig. 10. The black dashed lines show a standard Gaussian distribution
Pðdh=rhÞ ¼ 1ffiffiffiffi

2p
p e�ðdh=rhÞ2=2 and the red solid lines show a plot of exponential distribution Pðdh=rhÞ ¼ 1ffiffi

2
p e�

ffiffi
2
p
jdh=rh j.91

FIG. 12. The p.d.f.s of the temperature fluctuations dh=rh normalized by the corresponding r.m.s. value for different Ra in four different flow regions: (a) bulk region, (b) mixing
zone, (c) radial large scale circulation region, and (d) thermal boundary layer region. The four flow regions and coordinate system used are shown in Fig. 10. The black dashed
lines show a standard Gaussian distribution Pðdh=rhÞ ¼ 1ffiffiffiffi

2p
p e�ðdh=rhÞ2=2, and the red solid lines show a plot of exponential distribution Pðdh=rhÞ ¼ 1ffiffi

2
p e�

ffiffi
2
p
jdh=rh j.91
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turbulent bulk, mixing zone, and radial large-scale circulation region
are collapsed basically. The flow structures and statistics in the most of
the flow regions tend to be similar to Ra increases, which may be due
to the strong centrifugal buoyancy at high Ra in ACRBC. Note that in
traditional RBC,89,90 it is found that the p.d.f.s of the temperature fluc-
tuation dh=rh are very different in these regions (see Fig. 4 of Wang
et al.89). Comparing the flow structure [Fig. 10(b)] in ACRBC with
that in traditional RBC, the flow seems more homogeneous in
ACRBC, which may lead to the assumption of BO59 scaling being
more reasonable.20 Note that the stronger cold plumes in different
regions may facilitate the turbulent mixing.

From the p.d.f.s of the dh=rh in the four different flow regions
(Fig. 12), it is seen that the influence of Ra on the flow statistics in turbu-
lent bulk [Fig. 12(a)], radial large-scale circulation region [Fig. 12(c)],
and thermal BL [Fig. 12(d)] is relatively weak, while for the mixing zone
[Fig. 12(b)], the p.d.f. becomes more asymmetric with increasing Ra,
suggesting that there exist more and much stronger cold plumes at high
Ra. We also note that the p.d.f.s of dh=rh in the turbulent bulk are not

the Gaussian distribution Pðdh=rhÞ ¼ 1ffiffiffiffi
2p
p e�ðdh=rhÞ2=2 and exponential

distribution Pðdh=rhÞ ¼ 1ffiffi
2
p e�

ffiffi
2
p
jdh=rhj suggested by He et al.91 The

strong centrifugal buoyancy and turbulent mixing resulting from the
many strong cold plumes in ACRBC might be the reason for the BO59-
like scalings in some of the PS and SFs.

IV. DISCUSSION

In ACRBC, BO59-like scaling is found, which may result from
the large supergravity. The scale dependence of kinetic energy sup-
plied by centrifugal buoyancy (ax2Rhu) might be different from tra-
ditional RBC because of the supergravity in ACRBC. In experiments,
an effective gravity of 100 times Earth’s gravity can be achieved.25

The large centrifugal buoyancy mainly results in more stronger cold
plumes at high Ra. The universal shape of the PDF in different flow
regions at high Ra suggests that the flow dynamics in most regions of
ACRBC are similar, which is significantly different from traditional
RBC. The stronger turbulent-mixing and larger buoyancy force
(more and stronger cold plumes) in ACRBC may result in the wider
BO59-like scaling range with the increase in Ra. We should note that
Coriolis force appears in this new convection system. On the one
hand, Coriolis force leads to the quasi-2D flow state according to the
Taylor–Proudman theorem. On the other hand, the deflected plumes
can break through the “sidewall” existed in traditional RBC, which
might lead to the larger azimuthal integral scale in ACRBC than tra-
ditional RBC and longer BO59-like scaling regime. In the present
study, we conduct a set of quasi-2D DNS. Inverse energy cascade
occurs in 2D turbulence.73,88,92 In buoyancy-driven 2D turbulence,
Zhou et al.64 found that the kinetic energy, injected by buoyancy
term also cascades upward to larger scales and follows the BO59 scal-
ing. The analyses of the scale-by-scale balance and energy flux need
to be further studied. Furthermore, BO59-like scaling may be identi-
fied in a large aspect ratio and no sidewalls cell as suggested by
Kunnen et al.26 The mean aspect ratio of ACRBC is Ck
¼ pðRo þ RiÞ=L � 9:42. A larger azimuthal length compared to the
Bolgiano scale can result in a longer scaling range. As no sidewall
exists in the azimuthal direction and periodic boundary conditions
are adopted in the axial direction, the effects due to proximity of the
sidewalls can be avoided. Additionally, we notice that Bhattacharya

et al.67 studied the Pr dependence of the spectra in traditional RBC at
Ra ¼ 107. They found Kolmogorov scalings for Pr 
 1 and a much
steeper energy spectrum EuðkÞ � k�3:49 for Pr¼ 6.8. Note that the
scaling �3.49 is significantly different from the BO59 scaling �2.2.
So it is considered that BO59-like scalings found in ACRBC are not
consequences of Pr effects.

V. CONCLUSION

We present an analysis of the power spectra and structure
functions in annular centrifugal Rayleigh–B�enard Convection, by
means of quasi-2D DNS, with Ra varying from 108 to 1011, and Pr,
Ro�1, g fixed at 10.7, 16, 0.5, respectively. First, BO59-like scaling
EhðkÞ � k�7=5 for the thermal spectrum in the azimuthal direction
and EuðkÞ � k�11=5 for the energy spectrum in both the azimuthal
and radial directions are observed. Especially, for the radial velocity
PS calculated in the radial direction, BO59-like scaling is identified
for each Ra, and the scaling range spans nearly two decades for
Ra ¼ 1011, which implies centrifugal buoyancy may play an impor-
tant role in the energy cascade process. Furthermore, it is found
that the width of the wavenumber range over which BO59-like scal-
ing is observed increases with Ra, which suggests the Bolgiano scale
LB decreases with the increase in Ra. Second, temperature and
velocity SFs are investigated. The exponents of temperature SFs are
observed to saturate from third to sixth-order SFs, which agrees
with the results in classical RBC and Rayleigh–Taylor turbulence
basically. In addition, since the scale of plumes becomes smaller
with the increase in Ra, the amplitudes of the temperature SFs
increase for small scales and decrease for large scales. Similar to the
velocity PS, the radial velocity SFs follow the BO59-like scaling
above the Bolgiano scale LB. The amplitudes of velocity SFs increase
with Ra, suggesting stronger nonlinearity for flows with larger Ra.
The SF exponents as a function of the order p basically coincide
with the theoretical prediction of BO59 scaling fup � 3p=5. Third,
probability density functions of temperature fluctuations dh=rh in
different regions are studied systematically. It is found that the cold
plumes are strong in ACRBC almost in all regions. The unified pro-
file of the p.d.f.s at high Ra suggests that similar turbulent dynamics
exist in different regions of ACRBC. The stronger turbulent-mixing
and larger buoyancy force (more stronger cold plumes) in ACRBC
may result in the wider BO59-like scaling than traditional RBC. Of
course, more studies are needed to further verify the BO59-like
scaling in thermal turbulence.
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APPENDIX: DERIVATION OF THE CORRECTION
OF RADIUS RATIO f ðgÞ

Below, we provide the detailed derivation of the correction of
radius ratio f ðgÞ for the Bolgiano scale LB and Kolmogorov scale
gK. First, the governing equations in dimensional form read as
follows:

~r �~u ¼ 0; (A1)

@~u
@t
þ ð~u � ~rÞ~u ¼ � 1

q
~rp� 2~x �~u þ �~r2

~u � adTx2~r ; (A2)

@T
@t
þ ð~u � ~rÞT ¼ j~r2

T : (A3)

Here, dT¼T � T0 is the temperature difference from the reference
temperature.

Second, we take the scalar product of Eq. (A2) with~u and the
product of Eq. (A3) with T, and then average over the whole con-
vective cell and time, and we obtain

1
2
d
dt
h~u �~uiV;t þ

1
2
h~u � ~rð~u �~uÞiV;t

¼ �h~u � ~rpiV;t þ �h~u � ~r
2
~uiV ;t � 2h~x �~u �~uiV;t

þ ax2hrurTiV;t ; (A4)

1
2

dhT2iV;t
dt

þ 1
2
h~u � ~rðT2ÞiV;t ¼ jh~r � ðT~rTÞiV;t � jhj~rTj2iV;t :

(A5)

When the flow is in the stationary state, dh�iV;t=dt vanishes. Using
the imcompressibility condition Eq. (A1) and the no-slip boundary
condition, Eqs. (A4) and (A5) become

eu ¼ �hð~r �~uÞ2iV;t ¼ ax2hrurTiV;t ; (A6)

eh ¼ jhj~rTj2iV;t ¼ jh~r � ðT~rTÞiV;t ; (A7)

where eu and eh are the mean energy and thermal dissipation rate.
Averaging Eq. (A3) azimuthally, axially, and temporally, we can
deduce the Nusselt number Nu,22,24

Nu ¼ J
Jcon
¼
hurTit;/;z � j

@

@r
hTit;/;z

jDðr � ln ðgÞÞ�1
: (A8)

Combining Eqs. (A6)–(A8) and the definition of Ra [Eq. (6)], we
can obtain two exact relations for ACRBC,

eu ¼ ax2 1
pðR2

o � R2
i ÞH

ðRo

Ri

2prHhrurTi/;z;tdr

¼ ax2 1
pðR2

o � R2
i ÞH

ðRo

Ri

2prH NujD= ln ðgÞ þ j r
@T
@r

� �
/;z;t

" #
dr:

To calculate the above integration, we estimate ð@T@r Þ/;z;t by diffusive
solution, i.e., ð@T@r Þ/;z;t ¼ � D

r ln ðgÞ. Then, we have

eu ¼
2ax2

R2
o � R2

i

NujD
ln ðgÞ

ðRo

Ri

rdr � j
ðRo

Ri

D
ln ðgÞ rdr

" #

¼ ax2jD
ln ðgÞ ðNu� 1Þ

¼ j2�

L4
RaðNu� 1Þ 2ðg� 1Þ

ð1þ gÞ ln ðgÞ :

Similarly

eh ¼
j

pðR2
o � R2

i ÞH
2pRoH

D
T
@T
@r

E
r¼Ro

� 2pRiH
D
T
@T
@r

E
r¼Ri

� �

¼ j
pðR2

o � R2
i ÞH

2pRoH
D
2
� Q
2pRoHk

� 2pRiH �D
2

� �
� Q
2pRiHk

" #

¼ jD
pðR2

o � R2
i ÞH
� Q
k

¼ jD
pðR2

o � R2
i ÞH
�NuD2pH

ln ðgÞ

¼ jD2Nu
L2

2ðg� 1Þ
ð1þ gÞ ln ðgÞ ;

where Q is the heat input through the outer cylinder into the system
per unit of time. Substitute the above expressions of eu and eh into
the Bolgiano scale LB [Eq. (1)] and the Kolmogorov scale
gK ¼ �3=4=e1=4u , we finally obtain

LB ¼
Nu1=2L

ðPrRaÞ1=4
f ðgÞ½ �1=2; (A9)

gK ¼
Pr1=2 L

ðRaNuÞ1=4
f ðgÞ½ ��1=4; (A10)

where f ðgÞ ¼ 2ðg�1Þ
ð1þgÞ ln ðgÞ. It is noted that for g ¼ 0:5 (the present

system), the corrections of radius ratio ½f ðgÞ�1=2 and ½f ðgÞ��1=4
approximate to 1. Thus, the characteristic scales of ACRBC are very
similar to those of traditional RBC.
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