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Abstract
To study arithmetic structures of natural numbers, we introduce a notion of entropy 
of arithmetic functions, called anqie entropy. This entropy possesses some crucial 
properties common to both Shannon’s and Kolmogorov’s entropies. We show that 
all arithmetic functions with zero anqie entropy form a C*-algebra. Its maximal ideal 
space defines our arithmetic compactification of natural numbers, which is totally 
disconnected but not extremely disconnected. We also compute the K-groups of the 
space of all continuous functions on the arithmetic compactification. As an applica-
tion, we show that any topological dynamical system with topological entropy � , can 
be approximated by symbolic dynamical systems with entropy less than or equal to 
�.

Keywords  Anqie entropy · Arithmetic compactification · C*-algebra · K-groups · 
Totally disconnectedness

Mathematics Subject Classification  37A35 · 37A44 · 46J10 · 37A55

1  Introduction

Let ℕ = {0, 1, 2,…} be the set of natural numbers. Complex-valued functions 
defined on ℕ are usually called arithmetic functions. They are important in the study 
of the distribution of primes and other arithmetic problems (e.g., the Prime Number 
Theorem, the Twin Prime Conjecture, etc). In this paper, we shall apply tools from 
operator algebra and dynamical systems to study arithmetic functions. We start from 
C*-subalgebras of l∞(ℕ) , the algebra of all bounded arithmetic functions, which is 
an abelian C*-algebra acting on l2(ℕ).
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Suppose that A is a unital C*-subalgebra of l∞(ℕ) , then there is a compact Haus-
dorff space X such that A is *-isomorphic to C(X) by Stone–Gelfand–Naimark the-
ory, where C(X) is the space of all continuous complex-valued functions on X. The 
space X is known as the maximal ideal space of A . Moreover, if A is generated by 
a bounded arithmetic function f, its maximal ideal space X is homeomorphic to the 
closure of f (ℕ) in ℂ . For example, the C*-algebras generated by �P , the character-
istic function defined on the set of primes, and by f (n) = (−1)n are *-isomorphic, as 
their maximal spaces are homeomorphic to the space with two points. However, it 
is obvious that �P carries more arithmetic information than (−1)n . So generally, C*-
algebras may not reflect arithmetic properties of ℕ . We are interested in C*-subalge-
bras of l∞(ℕ) , which can preserve arithmetic structures of natural numbers, thus we 
introduce the following concept of anqie.

Definition 1.1  Let A be a unital C*-subalgebra of l∞(ℕ) . We call A an anqie (of ℕ ) 
if A is invariant under the map �A on l∞(ℕ) , given by (�Af )(n) = f (n + 1) , for any 
f ∈ l∞(ℕ) and n ∈ ℕ.

Throughout the paper, we shall assume that all abelian C*-algebras are unital. 
From the viewpoint of dynamical systems, an anqie of ℕ is a topological dynami-
cal system associated with the additive structure of ℕ . Precisely, suppose that A is 
a C*-subalgebra of l∞(ℕ) and X is its maximal ideal space. Let � be the map from ℕ 
to X given by the multiplicative state of point evaluation, i.e., �(n) ∶ f ↦ f (n) for any 
f ∈ A . We conclude that (see Proposition 2.3) A is an anqie if and only if the map 
�(n) ↦ �(n + 1) from �(ℕ) to X (corresponding to n ↦ n + 1 on ℕ ) can be continu-
ously extended to a map from X to X. If we denote this map by A, then we also call 
(X, A) an anqie (of ℕ).

Based on such connections between arithmetics and dynamics, algebraic and 
analytical methods can be used in the study of arithmetic functions. This idea was 
explored in [26] to give some partial results about Sarnak’s Möbius disjointness 
conjecture. In this paper, we further study arithemetic functions through anqies.

1.1 � Anqie entropy

A major tool we use to study anqies is the notion of “entropy”. Originated in phys-
ics, “entropy” measures some uncertainty or disorderness of a thermodynamical 
system. A mathematical notion of entropy, initiated by Shannon [22], is a measure-
ment of information contained in signals or random variables. Inspired by Shannon’s 
entropy, Kolmogorov [15] and Sinai [23] introduced a metric entropy on dynami-
cal systems. Similar ideas were used by Adler et  al. [2] (and later by Bowen [5]) 
to define a topological entropy for continuous maps on compact Hausdorff spaces. 
Moreover, Furstenberg [9] introduced an entropy for stationary sequences of finite-
valued random variables through the information contained in certain fields of 
measurable sets determined by them; Voiculescu [24] established free probability 
theory and introduced free entropy.
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In this paper, we shall introduce the anqie entropy of an anqie A , denoted by 
Æ (A) , which is defined to be the topological entropy of the additive map A on X. 
We refer readers to Sect. 3 for more details. For a family of arithmetic functions 
F ⊆ l∞(ℕ) , denote by AF  the anqie generated by F  . It is the smallest �A-invari-
ant C*-subalgebra of l∞(ℕ) containing F  . For simplicity, we write Æ (F) =Æ(AF) 
and call it the anqie entropy of F  . When F = {f1,… , fn} is a finite set, we also 
use the notations Af1,…,fn

 and Æ (f1,… , fn).
The following inequalities about anqie entropy will be proved in Sect. 4,

More generally, the following sub-additivity holds.

Theorem 1.2  For any arithmetic functions f1,… , fn, g1,… , gm ∈ l∞(ℕ) , we have

The above equality holds if f1,… , fn and g1,… , gm are two anqie independent 
families.

The formal definition of anqie independence will be given in Sect. 4. One of 
the most crucial features of Shannon’s entropy is its additivity for independent 
random variables. Theorem 1.2 shows that the anqie entropy shares similar prop-
erty as well.

Entropy sometimes has continuity properties. For example, Yomdin [28] and 
Newhouse [19] showed that, for any compact smooth manifold M, the topological 
entropy function f ↦ h(f ) from C∞(M,M) to [0,+∞] is upper semi-continuous. 
Newhouse also concluded the continuity for C∞ diffeomorphisms of surfaces from 
a result of Katok [14]. Furthermore, for a compact interval I, Propositions 30 and 31 
in Chapter 8 of [4] show that the set of all maps f ∈ C(I, I) with h(f ) = ∞ is dense 
in C(I,  I), and the topological entropy, regarded as a map h ∶ C(I, I) → [0,∞] , is 
lower semi-continuous. Also, Kolmogorov–Sinai entropy is an upper semi-contin-
uous function of invariant measures. For the anqie entropy, we have the following 
result.

Theorem 1.3  Let E∞(ℕ) be the set of all functions f in l∞(ℕ) with Æ (f ) = +∞ . Then 
E∞(ℕ) is dense in l∞(ℕ) in norm topology.

The following theorem shows the lower semi-continuity of the anqie entropy.

Theorem  1.4  Let F = {f0, f1,…} be a family of bounded arithmetic func-
tions with Æ (F) < +∞ . Then for any 𝜖 > 0 , there is a 𝛿 > 0 , such that whenever 
G = {g0, g1,…} ⊆ l∞(ℕ) satisfies supi≥0 ‖gi − fi‖l∞ < 𝛿 , we have Æ (G) >Æ(F) − �.

Intuitively, Theorem 1.3 shows that a slight perturbation on a function may turn 
its entropy to infinity, while Theorem 1.4 implies that to substantially decrease the 
entropy of an arithmetic function, a large perturbation is needed.
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1.2 � Arithmetic compactification of natural numbers

As a corollary of Theorem  1.4, we shall prove in Sect.  5 that E0(ℕ) , the set of 
all bounded arithmetic functions with zero anqie entropy, is an anqie (see Theo-
rem 5.1). We call the maximal ideal space of E0(ℕ) the arithmetic compactifica-
tion of natural numbers, denoted by E0(ℕ) . Problems involving transitive topo-
logical dynamical systems with zero topological entropy may be studied in this 
space. For example, in our language, Sarnak’s Möbius disjointness conjecture 
(see [17]) is equivalent to that limN→∞ N−1

∑N−1

n=0
�(n)f (n) = 0 for all continuous 

function f on E0(ℕ) . Here �(n) is the Möbius function defined to be (−1)r if n is 
the product of r distinct primes and 0 otherwise.

In Sect. 5, we shall study properties of E0(ℕ) . From the topological viewpoint, 
the arithmetic compactification is the maximal zero entropy topological factor of 
the Stone–Čech compactification of ℕ . Here, recall that the maximal ideal space 
of l∞(ℕ) is known as the Stone–Čech compactification of ℕ (see [6]). The arith-
metic and Stone–Čech compactifications of ℕ are both uncountable and unmetriz-
able. For comparison, the Stone–Čech compactification is extremely disconnected 
(i.e., the closure of any open set is still open) and totally disconnected (i.e., each 
pair of points can be separated by sets that are both open and closed: clopen sets), 
while for the arithmetic compactification, we obtain

Theorem  1.5  The space E0(ℕ) is totally disconnected but not extremely 
disconnected.

To further study E0(ℕ) , we investigate its K-groups. The operator K-theory 
provides us with useful tools to learn about the structure of C*-algebras. The 
K-groups can be treated as invariants to distinguish two C*-algebras. For exam-
ple, Elliott showed in [8] that the K0-group is a complete invariant for approxi-
mately finite-dimensional C*-algebras. Another important application of K-the-
ory to C*-algebras was presented by Pimsner and Voiculescu [20]. They proved 
that the reduced C*-algebra of the free group of two generators has no projec-
tion other than 0 and 1. We also mention that, in the study of C∗-dynamics, the 
K-groups are essential for the classification of homomorphisms and dynamical 
systems (see, e.g., [16]). The C∗-algebras and the associated topological dynami-
cal systems in this paper are different from those C∗-dynamics. However, the 
study of K-groups would be helpful. For E0(ℕ) , we have the following results.

Theorem  1.6  The group K0(E0(ℕ)) is homeomorphic to the additive group 
{f ∈ E0(ℕ) ∶ f (ℕ) ⊆ ℤ}.

Theorem 1.7  The group K1(E0(ℕ)) is trivial.

As a corollary of Theorem 1.7, we have the following result.
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Corollary 1.8  For any arithmetic function f with zero anqie entropy and |f (n)| = 1 
for any n ∈ ℕ , there is a real-valued function g(n) with Æ (g) = 0 such that 
f (n) = exp(�g(n)).

In the process to prove the above results, we develop an approximation method 
for arithmetic functions. We shall prove the following theorem in Sect. 6.

Theorem  1.9  Suppose that f is a bounded arithmetic function with anqie entropy 
� (0 ≤ 𝜆 < +∞) . Then for any N ≥ 1 , there is an arithmetic function fN with finite 
range, such that Æ (fN) ≤ � and ‖fN − f‖l∞ ≤

1

N
.

In the following, we give some applications of the above conclusion.

1.3 � Applications

Let F0(ℕ) be the subset of l∞(ℕ) consisting of functions with zero anqie entropy and 
finite ranges. Then as a simple corollary of Theorem 1.9, F0(ℕ) is dense in E0(ℕ) 
relative to the norm topology. Note that a function in F0(ℕ) belongs to the algebra 
generated by {0, 1}-valued functions with zero anqie entropy (see Proposition 7.1). 
One can deduce from Theorem 1.9 that Sarnak’s Möbius disjointness conjecture is 
true if and only if limN→∞ N−1

∑N

n=1
�(n)f (n) = 0 for any {0, 1}-valued arithmetic 

function with Æ (f ) = 0 (see also [1, Lemmas 4.28, 4.29], where a proof is given via 
weak* convergence of invariant measures).

We also generalize the anqie entropy of an arithmetic function to that of a map 
f ∶ ℕ → X , where X is a compact Hausdorff space. Let Xf  be the closure of the 
set {(f (n), f (n + 1),…) ∶ n ∈ ℕ} in Xℕ and Bf  the Bernoulli shift B restricted to the 
space Xf  . We define the anqie entropy of f to be the topological entropy h(Bf ) . Note 
that this definition coincides with the definition of the anqie entropy of arithme-
tic functions when X ⊆ ℂ (see Theorem  3.4). As an application of Theorem  1.9, 
we show the following approximation result for topological dynamical systems in 
Sect. 6.

Proposition 1.10  Let (X, d) be a compact metric space and T a continuous map on 
X with topological entropy � ( � ≥ 0 ). Then for any x ∈ X and 𝜖 > 0 , there is a map 
f from ℕ to the set {Tnx ∶ n ∈ ℕ} with finite range, such that the anqie entropy of f is 
less than or equal to � and supn d(Tnx, f (n)) < 𝜖.

We remark that similar results can be proved for ℤ and E0(ℤ) . Note that the addi-
tive map A is invertible on E0(ℤ) , but not on E0(ℕ) . So the two topological dynami-
cal systems (E0(ℤ),A) and (E0(ℕ),A) are different. Many questions for E0(ℤ) may 
have easier answers than those for E0(ℕ) . Moreover, we may ask whether the similar 
results in this paper hold for other amenable topological semigroups.

This paper is organized as follows. In Sect. 2, we list some frequently used nota-
tion and prove some preliminary results. In Sect.  3, we introduce the definition 
of anqie entropy. Some basic properties of the anqie entropy are also discussed. 
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Comparisons of the anqie entropy with Shannon’s entropy are presented in Sect. 4. 
Theorems 1.2, 1.3, and 1.4 are proved in this section. In Sect. 5, we investigate the 
structure of the arithmetic compactification E0(ℕ) of ℕ . We discuss the approxima-
tion method for maps from ℕ to compact Hausdorff spaces in Sect. 6, where Theo-
rems 1.5, 1.9, and Proposition 1.10 are proved. In Sect. 7, we compute the K0-group 
and K1-group of the space of all continuous functions on E0(ℕ) . Corollary 1.8 is 
shown.

Some notions in this paper have been introduced by the survey paper of Liming Ge 
[10], in which the author announced that proofs of results there would appear later (see 
the introduction of [10] and references there in). Sects. 3, 4, 5 of this paper are based on 
results from the author’s Ph.D. thesis written at the University of New Hampshire under 
the supervision of Professor Liming Ge. Results in Sects. 6 and 7 are new. We refer to [7, 
13] for basics and preliminary results in operator algebra, to [11, 25] for that in dynami-
cal systems, and to [3, 21] for that in K-theory for C*-algebras.

Notation. For an arithmetic function f, we use f (ℕ) to denote the closure of f (ℕ) 
in ℂ . For a compact Hausdorff space X, denote by Xℕ the Cartesian product of X 
indexed by ℕ . The topology on Xℕ we concern in this paper is always the product 
topology. For a finite set C, the notation |C| means the cardinality of C. For a sub-
set R of ℕ , we write �R for the characteristic function defined on R. The symbol � 
denotes the imaginary unit 

√
−1.

2 � Preliminaries

In this section, we prove some preliminary results. First, we list some notation that 
will be used.

Let H be a Hilbert space. Denote by B(H) the algebra consists of all bounded 
linear operators on H . By Riesz representation theorem, for any T ∈ B(H) , there is 
a unique bounded linear operator T∗ satisfying ⟨Tx, y⟩ = ⟨x, T∗y⟩ for any x, y ∈ H . 
Such a T∗ is called the adjoint of T. We call a norm-closed *-subalgebra of B(H) a 
C*-algebra.

Suppose that A is a unital C*-algebra. We use A♯ to denote the set of all 
bounded linear functionals on A . Denote by (A♯)1 the unit ball in A♯ , i.e., 
(A♯)1 = {𝜌 ∈ A♯ ∶ ‖𝜌‖ ≤ 1} . In general, the space A♯ can be equipped with many 
topological structures. Among them, the norm topology and weak* topology are 
used most frequently. For 𝜌 ∈ A♯ , its norm is given by ‖�‖ = supx∈A,‖x‖≤1 ��(x)� . 
When x ∈ A , the equation �x(�) = |�(x)| defines a semi-norm on A♯ . The fam-
ily {�x ∶ x ∈ A} of semi-norms determines the weak* topology on A♯ . Note 
that each 𝜌0 ∈ A♯ has a base of neighborhoods consisting of sets of the form 
{𝜌 ∈ A♯ ∶ |𝜌(xj) − 𝜌0(xj)| < 𝜖} ( j = 1,… ,m ), where 𝜖 > 0 and x1,… , xm ∈ A.

A non-zero linear functional � on an abelian C*-algebra A is called a multiplica-
tive state if for any A,B ∈ A , �(AB) = �(A)�(B).

Suppose now that A is an abelian C*-algebra and X is its maximal ideal space. 
We define the map � ∶ A → C(X) by
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Here we use the fact that X is also the space of all multiplicative states of A . The 
map � is known as the Gelfand transform from A onto C(X), which is a *-isomor-
phism (see, e.g., [7, Theorem 2.1]).

It is known that the above Hausdorff space X is weak* compact. Next we show 
that A is countably generated as an abelian C*-algebra if and only if X is metrizable 
and the topology induced by the metric coincides with the weak* topology on X. 
The sufficient part directly follows from [13, Remark 3.4.15]. The necessary part is 
shown in the following proposition.

Proposition 2.1  Let A be an abelian unital C*-algebra. If A is countably generated, 
then (A♯)1 is metrizable and the toplology induced by the metric is equivalent to the 
weak* topology on (A♯)1 . In particular, the maximal ideal space of A is a compact 
metrizable space.

Proof  Since A is countably generated, there is a countable dense subset in A . Let 
{g1, g2,…} be a dense subset of (A)1 , the unit ball in A . For any 𝜌1, 𝜌2 ∈ (A♯)1 , we 
define d(�1, �2) =

∑∞

i=1

�(�1−�2)(gi)�
2i

 . It is not hard to check that d is a metric on (A♯)1 . 
Moreover, for any net {�

�
} of elements of (A♯)1 , the net {d(�

�
, �)} converges to 0 is 

equivalent to the condition that, for any i ≥ 1 , the net {�
�
(gi)} converges to �(gi).

Next, we show that the weak* topology is equivalent to the topology induced 
by the metric d on (A♯)1 . Suppose that the net {�

�
} of elements in (A♯)1 , weak* 

converges to � . Then, for any i ≥ 1 , the net {�
�
(gi)} converges to �(gi) . Thus the 

net {d(�
�
, �)} converges to 0. Conversely, if the net {d(�

�
, �)} converges to 0, where 

𝜌
𝛼
∈ (A♯)1 , then {�

�
(gi)} converges to �(gi) for any i ≥ 1 . Note that, for any � , 

‖�
�
‖ ≤ 1 . Then for any g ∈ A , the net {�

�
(g)} converges to �(g) . So the net {�

�
} is 

weak* convergent to � in (A♯)1.
By Alaoglu–Bourbaki theorem (A♯)1 is weak* compact. Let X be the maximal 

ideal space of A . Then, relative to the weak* topology, X is a closed subset of (A♯)1 . 
From the above analysis, we see that the weak* topology on (A♯)1 coincides with the 
topology induced by the metric d on it. Thus X is a compact metrizable space. 	�  ◻

Proposition 2.2  Suppose that A is a C*-subalgebra of l∞(ℕ) and X the maximal 
ideal space of A . Let � ∶ ℕ → X be the map given by �(n) ∶ f ↦ f (n) , for any f ∈ A . 
Then the weak* closure of �(ℕ) is X (write �(ℕ) = X).

Proof  Assume on the contrary that �(ℕ) ≠ X . Choose y ∈ X⧵�(ℕ) . By Urysohn’s 
lemma, there is a G ∈ C(X) such that G(y) = 1 and G(x) = 0 for any x ∈ �(ℕ) . By 
Eq. (1), for any n ∈ ℕ , 0 = G(�(n)) = �(n)(�−1G) = (�−1G)(n) . Then �−1(G) = 0 and 
G = 0 correspondingly. This contradicts G(y) = 1 . Hence �(ℕ) = X . 	�  ◻

Proposition 2.3  Suppose that A is a C*-subalgebra of l∞(ℕ) and X the maximal 
ideal space of A . Then A is an anqie of ℕ if and only if the map �(n) ↦ �(n + 1) can 
be extended to a continuous map from X to itself.

(1)�(f )(�) = �(f ), f ∈ A, � ∈ X.
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Proof  Suppose that the map �(n) ↦ �(n + 1) is extended to a con-
tinuous map on X, denoted by A. Given f ∈ A , assume that F = �(f ) 
(see Eq. (1)). Note that F◦A ∈ C(X) . Let g = �

−1(F◦A) in A . Then 
g(n) = F◦A(�(n)) = F(�(n + 1)) = f (n + 1) = �Af (n) . Thus g = �Af  in A . This shows 
that A is �A-invariant and thus an anqie of ℕ.

On the other hand, suppose that A is an anqie of ℕ . Let A be the map from X 
to itself given by A�(f ) = �(�Af ) for any � ∈ X and f ∈ A . It is easy to see that 
A(�(n)) = �(n + 1) . Now we show that A is a continuous map on X. If {�

�
} is a weak* 

convergent net of elements of X, with limit � , then for any f ∈ A , �
�
(�Af ) = A�

�
(f ) 

converges to �(�Af ) = A�(f ) . Thus the net {A�
�
} weak* converges to A� in X. Hence 

A is the continuous map on X extended by �(n) ↦ �(n + 1) . 	�  ◻

At the end of this section, we recall Weyl’s Criterion (see, e.g., [12, Chap-
ter 21]) which will be used in this paper to compute some examples. A sequence 
{�n = (xn,1,… , xn,k)}

∞
n=1

 in ℝk is said to be uniformly distributed modulo 1 if for any 
[aj, bj] ⊆ [0, 1] , j = 1,… , k , we have

where {x} denotes the fractional part of the real number x.

Proposition 2.4  (Weyl’s Criterion) The sequence {�n = (xn,1,… , xn,k)}
∞
n=1

 in ℝk is 
uniformly distributed modulo 1 if and only if for any (l1,… , lk) ∈ ℤk⧵{0},

We also need the following well-known result (see, e.g., [18, Exercise 11.1.21]).

Lemma 2.5  Let P(n) = adn
d + ad−1n

d−1 + ⋅ ⋅ ⋅ + a1n + a0 be a polynomial with real 
coefficients. Assume that at least one coefficient ai with i ≥ 1 is irrational. Then the 
sequence of fractional parts of P(n) is uniformly distributed modulo 1.

As a corollary of Proposition 2.4 and Lemma 2.5, we have the following result.

Corollary 2.6  Suppose that xn = ({n2�}, {(n + 1)2�}) for n ≥ 1 , where � is irrational. 
Then the sequence {xn}∞n=1 is uniformly distributed modulo 1.

lim
N→∞

N−1

N∑

n=1

k∏

j=1

�[aj,bj]
({xn,j}) =

k∏

j=1

(bj − aj),

lim
N→∞

1

N

N∑

n=1

e2�i(l1xn,1+⋯+lkxn,k) = 0.
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3 � Anqie entropy

From the definition of anqie, we see that each anqie corresponds to a topological 
dynamical system associated with the additive structure of ℕ . To understand anqies, 
it is natural to study the associated dynamics. The “entropy” for anqies defined in 
this section is based formally on the topological entropy of the additive map A (see 
the paragraph below Definition 1.1). Here, let us first recall the definition of topo-
logical entropy for topological dynamical systems.

Definition 3.1  Let X be a compact Hausdorff space and T a continuous map on 
X. Suppose U and V are two open covers for X. Denote by U ∨ V the open cover 
whose elements consist of all intersections of elements from U and V (i.e., 
U ∨ V = {A ∩ B ∶ A ∈ U,B ∈ V} ), and by N(U) the minimal number of open sets in 
U that cover X. Define

We call h(T) the topological entropy of T.

We refer to [2] for basics on topological entropy. Topological entropy is an 
invariant of topological dynamical systems. For two topological dynamical sys-
tems (X1, T1) and (X2, T2) , if there is a continuous surjective map � ∶ X1 → X2 such 
that T2� = �T1 , we say that (X2, T2) is a (topological) factor of (X1, T1) and � a fac-
tor map. In this case, we have h(T2) ≤ h(T1) . Additionally, we say that (X1, T1) and 
(X2, T2) are topologically conjugate (to each other) when � is an homeomorphism. In 
this case, we have h(T1) = h(T2).

When (X, T) is a point transitive dynamical system and a transitive point x0 is 
given, we shall denote this dynamical system as (X, T , x0) . We say that (X2, T2, x2) 
is a factor of (X1, T1, x1) if there is a factor map � ∶ X1 → X2 such that �(x1) = x2 . 
When � is a homeomorphism, we say that (X1, T1, x1) and (X2, T2, x2) are equivalent 
(to each other).

Now we are ready to introduce the notion of entropy for anqies.

Definition 3.2  Suppose that A ⊆ l∞(ℕ) is an anqie. We define the anqie entropy of 
A , denoted by Æ (A) , to be the topological entropy h(A) of the additive map A which 
extends the map n ↦ n + 1 on ℕ to the whole maximal ideal space of A . If A is gen-
erated by a family of bounded arithmetic functions F  as an anqie, we call Æ (A) the 
anqie entropy of F  , denoted by Æ (F) . In particular, when F = {f0, f1,…} is at most 
countable, we also use the notation Æ (f0, f1,…) to denote the anqie entropy of F .

We list some simple but very useful facts of Æ in the following lemma.

Lemma 3.3  Suppose that A1,A2 ⊆ l∞(ℕ) are anqies.

h(T ,U) = lim
n

1

n

{
log

(
N(U ∨ T−1U ∨⋯ ∨ T−n+1U)

)}
,

h(T) = sup
U

{h(T ,U) ∶ U is an open cover of X}.
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(i) If A1 is a subanqie of A2 , i.e., A1 ⊆ A2 , then Æ (A1) ≤ Æ (A2);

(ii) For any f1,… , fn ∈ l∞(ℕ) (n ≥ 1) and any polynomials �1,… ,�m 
∈ ℂ[x1,… , xn] (m ≥ 1) , we have Æ (�1(f1,… , fn),… ,�m(f1,… , fn)) ≤ Æ (f1,… , fn).

Proof  (i) Suppose that (X1,A1) and (X2,A2) are topological dynamical systems cor-
responding to A1 and A2 , respectively. Let � ∶ X2 → X1 be the map given by

Since every maximal ideal in A1 extends to a maximal ideal in A2 , we have that � is 
surjective. The continuity of � follows from the definition of weak* topology on X1 
and X2 . Moreover, it is not hard to check that �◦A2 = A1◦� . Then (X1,A1) is a topo-
logical factor of (X2,A2) . Hence h(A1) ≤ h(A2) and Æ (A1) ≤ Æ (A2).

(ii) follows from (i). 	�  ◻

More generally, the above polynomials �j ’s can even be replaced by con-
tinuous functions defined on the maximal ideal space of the anqie generated by 
f1,… , fn . For example, we can obtain Æ (Re(f )),Æ(Im(f )),Æ(

√
�f �) ≤ Æ(f) for any 

f ∈ l∞(ℕ) . Clearly, the anqie entropy Æ (F) takes value in [0,+∞] for any fam-
ily F ⊆ l∞(ℕ) . One may ask whether there is an arithmetic function with infinite 
anqie entropy. In the following, we construct an f so that Æ (f ) = ∞ . Then from 
Lemma 3.3(i), one can easily see that Æ (l∞(ℕ)) = ∞.

Example  Let ∪n≥0 [1 − 2−n, 1 − 2−n−1) be a partition of [0, 1). For each n, there is a 
partition of [1 − 2−n, 1 − 2−n−1) into 2n2 subintervals of equal length, denote them by 
[xn,i, xn,i+1) accordingly, for i = 0, 1,… , 2n

2

− 1 . On the interval [xn,i, xn,i+1] , define 
F((xn,i + xn,i+1)∕2) = 2−n∕2 and F(xn,i) = F(xn,i+1) = 0 , with remaining part con-
nected linearly (assume F(1) = 0 ). Then F is a zigzag function of height 2−n∕2 in the 
interval [xn,i , xn,i+1] . Moreover, F is continuous on [0, 1]. One can verify that, for any 
open subset U of [0, 1], there is an integer N such that FN(U) = [0, 1] (Here denote 
by FN the composition of F for N times). Hence the topological dynamical system 
([0, 1], F) is transitive and there is an x0 ∈ [0, 1] such that the set {Fnx0 ∶ n ∈ ℕ} is 
dense in [0, 1] (see [4, Chapter V, Proposition 39]).

Note that for m ≥ 0 , when x ∈ [0, 2−2m] , Fm(x) = 4mx . Choose the interval 
Jn,i = [xn,i∕2

2m, (xn,i + xn,i+1)∕2
2m+1] for n = 0, 1,… , 4m and i = 0, 1,… , 2n

2

− 1 . 
So there are 1 + 2 + 24 + ⋅ ⋅ ⋅ + 2(4m)

2 (= am) disjoint closed intervals Jn,i 
in [0, 2−2m) such that for each n′ , i′ with 0 ≤ n′ ≤ 4m and 0 ≤ i� ≤ 2n

2

− 1 , 
∪4m
n=0

∪2n
2
−1

i=0
Jn,i ⊆ [0, 2−2m) ⊆ Fm+1(Jn�,i� ) = F([xn�,i� , (xn�,i� + xn�,i�+1)∕2]) = [0, 2−n

�∕2]. 
By [4, Chapter VIII, Proposition 8], h(Fm+1) ≥ log am > log 2(4m)

2 . Hence, we obtain

(2)(�(�))(f ) = �(f ), � ∈ X2, f ∈ A1.

h(F) =
h(Fm+1)

m + 1
>

log 2(4m)
2

m + 1
→ ∞(when m → ∞).



Anqie entropy and arithmetic compactification of natural… Page 11 of 32  11

Therefore, h(F) = ∞ . Now we let f (n) = Fn(x0) and Xf  the maximal ideal space of 
Af  . Then (Xf ,A) and ([0, 1], F) are topologically conjugate. Thus Æ (f ) = h(F) = ∞.

In fact, the set E∞(ℕ) consisting of bounded arithmetic functions f with Æ (f ) = ∞ 
is dense in l∞(ℕ) (see Theorem 1.3), which will be proved in the next section. Now 
let us explore a way to compute the anqie entropy of a family of arithmetic func-
tions F  . From the definition of anqie entropy, we see that it is important to know the 
properties of the anqie associated with F .

Let F  be a family of bounded arithmetic functions. Suppose that AF is the anqie 
generated by F  , i.e., AF is the C*-algebra generated by {1, (�A)jf ∶ f ∈ F, j ∈ ℕ} . 
Let XF be the maximal ideal space of AF . Then XF is metrizable if F  is countable 
(see Proposition 2.1). The following dynamical Gelfand-Naimark theorem gives a 
description of XF . This provides us with a method to compute the anqie entropy of F .

Theorem 3.4  Let F = {f
�
}
�∈Λ be a family of bounded arithmetic functions, where Λ 

is an index set. Let A0 be the C*-algebra generated by F  , and AF  the smallest �A
-invariant C*-algebra that contains A0 . Suppose that XF  is the maximal ideal space 
of AF  . The following statements hold.

(i) For each n ∈ ℕ , write zn =
(
f
�
(n)

)
�∈Λ

 , an element in 
∏

�∈Λ f�(ℕ) . Let X0 be 
the closure of {zn ∶ n ∈ ℕ} in 

∏
�∈Λ f�(ℕ) . Then A0 ≅ C(X0).

(ii) Write �n = (zn, zn+1,…) , an element in Xℕ

0
 . Let YF  be the closure of 

{�n ∶ n ∈ ℕ} in Xℕ

0
 . Then AF ≅ C(YF).

(iii) Suppose B is the Bernoulli shift on Xℕ

0
 defined by B ∶ (�0,�1,…) 

↦ (�1,�2,…) . Then the map B restricted to YF  , denoted by BF  , is identified with A 
on XF .

Proof  (i) Define the map � ∶ C(X0) → l∞(ℕ) by �(g)(n) = g(zn) for g ∈ C(X0) . Let 
�̃
�
∶
∏

�∈Λ f�(ℕ) → f
�
(ℕ) be the projection map from 

∏
�∈Λ f�(ℕ) onto its �-th coor-

dinate. Denote by �
�
 the restriction of �̃

�
 to X0 . Then �

�
∈ C(X0) and �(�

�
) = f

�
 for 

any � ∈ Λ . Since {zn ∶ n ∈ ℕ} is dense in X0 , we conclude that � is isometric and 
A0 ⊆ 𝜛(C(X0)).

Let �1 = (�1,�)�∈Λ and �2 = (�2,�)�∈Λ be distinct points in X0 . Then there is a 
�0 ∈ Λ such that �1,�0

≠ �2,�0
 . Hence �

�0
= �

−1(f
�0
) satisfies �

�0
(�1) ≠ �

�0
(�2) . 

This implies that �−1(A0) separates the points of X0 . Note that �−1(A0) is a closed 
*-subalgebra of C(X0) . By the Stone-Weierstrass theorem (see, e.g., [13, Theo-
rem 3.4.14]), �−1(A0) = C(X0) . Thus A0 ≅ C(X0).

(ii) Define the map � ∶ C(YF) → l∞(ℕ) by �(h)(n) = h(�n) for h ∈ C(YF) . Note 
that {�n ∶ n ∈ ℕ} is dense in YF  , then � is an injective homomorphism and C(YF) is 
*-isomorphic to �(C(YF)).

To prove AF ⊆ 𝜋(C(YF)) , we only need to show that, for any given j ∈ ℕ 
and f ∈ A0 , (�A)jf ∈ �(C(YF)) . Define a function �j on YF  , such that for any 
� = (�0, �1,…) ∈ YF ,
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Here we use the fact that f corresponds to f (x) ∈ C(X0) by (i). Since �j is the image 
of the projection of � to the (j + 1)-th coordinate, one concludes that �j ∈ C(YF) . 
From �j(�n) = f (zn+j) = f (n + j) , we obtain �(�j) = (�A)

jf  . Thus AF ⊆ 𝜋(C(YF)).
Given distinct points � = (�0, �1,…) and �� = (��

0
, ��

1
,…) ∈ YF  , there is an l ∈ ℕ 

such that �l ≠ �
′
l
 in X0 . Then by (i), there is an f1 ∈ A0 so that f1(�l) ≠ f1(�

�
l
) . Let �l 

be the function defined in Eq. (3) replacing j by l and f by f1 . Then �l(�) ≠ �l(�
�) . 

Combining with �l = �
−1((�A)

lf1) , we conclude that �−1(AF) separates points in YF  . 
Note that �−1(AF) is a closed *-subalgebra of C(YF) . By the Stone-Weierstrass theo-
rem, �−1(AF) = C(YF) . Thus AF ≅ C(YF).

(iii) Recall that the map A on XF  sends �(n) , the multiplicative state of point 
evaluation at n, to �(n + 1) . From the definition of � in the above proof of (ii), it is 
not hard to check that the map XF → YF  extended by �(n) ↦ �n , denoted as F, is a 
homeomorphism. Note that BF◦F = F◦A . Thus the additive map A on XF  coincides 
with the restriction of B to YF  . 	�  ◻

In the following, we treat XF the same as YF and call (XF,BF) the canoni-
cal representation of the anqie AF . By the definition of anqie entropy, we see that 
Æ (F) = h(BF) . Next, we show an example to help us understand the above theorem.

Example  Let f (n) = e2��n
2
� , for n ≥ 0 and � irrational. Denote by Af  the anqie gener-

ated by f and Xf  the maximal ideal space of Af  . Then Xf  is homeomorphic to S1 × S1 
and Æ (f ) = 0 , where S1 is the unit circle.

The proof of the above example is more involved. We list below 
some details. Let X0 = f (ℕ) . Theorem  3.4 gives that Xf  is the closure of 
{�n = (e2��n

2
� , e2��(n+1)

2
� ,…) ∶ n ∈ ℕ} in Xℕ

0
 . It is easy to see that for any 

x = (x0, x1,…) ∈ Xf  , the coordinate xl ( l ≥ 2 ) can be determined by the first two coor-
dinates x0 , x1 . In fact,

Define Φ to be the projection from Xf  onto its first two coordinates, i.e., for any 
x = (x0, x1,…) ∈ Xf  , Φ(x) = (x0, x1) . From the above analysis, we see that 
Φ is a homeomorphism from Xf  onto Φ(Xf ) . By Corollary 2.6, the sequence 
{({n2�}, {(n + 1)2�})}∞

n=0
 is uniformly distributed modulo 1. Then Φ(Xf ) = S1 × S1 

and thus Xf  is homeomorphic to S1 × S1.
In addition, the map A (or the Bernoulli shift) on Xf  corresponds to a con-

tinuous map on S1 × S1 , denoted by A again, such that, for any (x0, x1) ∈ S1 × S1 , 
A(x0, x1) = (x1, x2) , where x2 = e4���x2

1
x0 by Eq. (4). If we identify S1 × S1 with 

ℝ∕ℤ ×ℝ∕ℤ , then we can rewrite the map A as

(3)�j(�) = f (�j).

(4)xl = e2��(l
2−l)�x0(x1x0)

l.

A((�1, �2)) =

(
0 1

−1 2

)(
�1

�2

)
+

(
0

2�

)
.



Anqie entropy and arithmetic compactification of natural… Page 13 of 32  11

The map A is an affine linear transformation on the torus and the coefficient matrix 
only has eigenvalue 1. By [25, Theorems 8.11, 8.14], h(A) = 0 and then Æ (f ) = 0.

4 � Anqie‑independence and semi‑continuity of anqie entropy

Additivity for independent objects is one of the most crucial features of all kinds 
of entropies. To state this property for anqie entropy (see Theorem 1.2), we define 
anqie independence by tensor products as follows.

Definition 4.1  We call anqies A
�
 (� ∈ Ξ) anqie independent if the C*-algebra they 

generate, denoted by A , is canonically isomorphic to 
⨂

�∈Ξ A�
 as a C*-algebra ten-

sor product, or equivalently, the space X is homeomorphic to the 
∏

�∈Ξ X�
 , where 

X,X
�
 are the maximal ideal spaces of A,A

�
 , respectively. Families of arithmetic 

functions F
�
 (� ∈ Ξ) are called anqie independent if AF

�
 (� ∈ Ξ) are anqie inde-

pendent. Here the symbolic Ξ is an index set.

Remark 4.2  As far as we are concerned here, all C*-algebras involved are abelian. 
The tensor product of abelian C*-algebras has a unique C*-algebra tensor-product 
norm. Let X1 and X2 be the maximal ideal spaces of A and B , respectively. Then the 
C*-tensor-norm on A⊗ B agrees with the norm on C(X1 × X2).

The following simple example shows how our anqie independence is related to 
certain arithmetic structures of natural numbers.

Example  Let fl = {0, 1,… , l − 1, 0, 1,… , l − 1,…} , for any l ≥ 1 . Here fl is viewed 
as a periodic function of period l. Then fm and fn are anqie independent if and only 
if (m, n) = 1.

In the following, we give detailed argument for the above claim. Let A be the 
anqie generated by {fm, fn} and X the maximal ideal space of A . Denote by Am 
and An the anqies generated by fm and fn , respectively. Then by Theorem 3.4, the 
maximal ideal space of Am , denoted by X1 , is the set fm(ℕ) consisting of m ele-
ments. Similarly we use X2 to denote that of An , which is the set fn(ℕ) consisting 
of n elements. It is not hard to check that X = {(fm(k), fn(k)) ∶ k = 0, 1,…} . Then 
X ⊆ X1 × X2 . It is easy to see that X = X1 × X2 if and only if for any i = 0,… ,m − 1 
and j = 0,… , n − 1 , the linear system of congruences k ≡ i(mod m) , k ≡ j(mod n) 
has one solution. By Chinese remainder theorem, we conclude that X = X1 × X2 if 
and only if (n,m) = 1 . Hence the claim in the above example holds.

For f
�i
(n) = e2��n�i with �i irrational (0 ≤ i ≤ t, t ∈ ℕ) , if �0,… , �t are ℚ-lin-

early independent, then f
�0
,… , f

�t
 are anqie independent. In the following, we 

give a brief explanation to the above fact. From Proposition 2.4 and Lemma 2.5, 
we obtain that the sequence {(n�0,… , n�t)}

∞
n=0

 is uniformly distributed modulo 
1. Then by Theorem  3.4, the maximal ideal space of the anqie generated by 
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f
�0
,… , f

�t
 is the Cartesian product of t + 1 copies of S1 , while that of the anqie 

generated by f
�i
 is S1 , for i = 0,… , t.

Now we prove one of the main results in this section.

Proof of Theorem 1.2  Set F1 = {f1,… , fn} , F2 = {g1,… , gm} and F = F1 ∪ F2 . Let 
(X, A) (or, A ) be the anqie generated by F  . Denoted by (X1,A1) (or A1 ) and (X2,A2) 
(or A2 ) the anqies generated by F1 and F2 , respectively. Then there is a continuous 
injective map, denoted by i, from X to X1 × X2 given by i(�) = (�|A1

, �|A2
) for any 

� ∈ X . In this case (X, A) can be viewed as a subsystem of 
(
X1 × X2,A1 × A2

)
 , that is 

X is a closed subset of X1 × X2 and the restriction of A1 × A2 to X is identified with 
A. Note that h(A1 × A2) = h(A1) + h(A2) (see [2, Theorem 3]). Then

If F1 and F2 are anqie independent, then i is a homeomorphism and thus the equality 
holds. 	�  ◻

Corollary 4.3  For any f , g ∈ l∞(ℕ) , we have

Proof  Since Af±g and Af ⋅g are subanqies of Af ,g , Lemma 3.3(i) and Theorem  1.2 
imply that

The conclusions result from Æ (f ) =Æ((f ± g) ∓ g) ≤ Æ (f ± g)+ Æ(g). 	�  ◻

As a simple application of the above corollary, we obtain the following result.

Proposition 4.4  For any f , g ∈ l∞(ℕ) with Æ (g) = 0 , we always have Æ (f + g) =

Æ(f).

Proof  From Corollary 4.3, we have Æ (f + g)+Æ(−g) ≥ Æ(f) and Æ (f + g) ≤ Æ (f )+
Æ(g). It follows that Æ (f + g) =Æ(f). 	�  ◻

Write �A(F) = {�Af ∶ f ∈ F} . Since A
𝜎A(F)

⊆ AF  , one has Æ (A
�A(F)

) ≤ Æ (AF) 
by Lemma 3.3. From Theorem 3.4, it is not hard to see that XF⧵X�A(F)

 contains at 
most one element. Thus the following corollary holds.

Corollary 4.5  For any family F ⊆ l∞(ℕ) , we have Æ (�A(F)) =Æ(F).

The following lemma considers the anqie entropy of the inverse of an arithmetic 
function.
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Lemma 4.6  Let c be a positive constant. Then for any f ∈ l∞(ℕ) with |f (n)| > c for 
all n ∈ ℕ , one has Æ (1∕f ) =Æ(f).

Proof  Let (Xf ,Bf ) and (X1∕f ,B1∕f ) be the canonical representations of Af  and 
A1∕f  , respectively. Applying Theorem  3.4, the map � ∶ Xf → X1∕f  defined by 
�((�0,�1,…)) = (1∕�0, 1∕�1,…) , for (�0,�1,…) ∈ Xf  , is a homeomorphism sat-
isfying �◦Bf = B1∕f◦� . Then the topological entropy of Bf  equals that of B1∕f  and 
thus Æ (f ) =Æ(1/f). 	�  ◻

Now we prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3  From Example 3, we see that E∞(ℕ) ≠ � . Choose a g ∈ E∞(ℕ) 
such that g ≠ 0 and Æ (cg) = +∞ for any complex number c ≠ 0 . For each f ∈ l∞(ℕ) 
with Æ (f ) < +∞ , we have ‖(f + � ⋅ g) − f‖l∞ = � ⋅ ‖g‖l∞ → 0 (� → 0+) . It follows 
from Corollary 4.3 that Æ (f + � ⋅ g) ≥ Æ (� ⋅ g)−Æ(f ) = +∞.

Proof of Theorem  1.4  Without loss of generality, we assume supi∈ℕ ‖fi‖l∞ ≤ 1∕2 . 
Then for any G = {g0, g1,…} ⊆ l∞(ℕ) with supi≥0 ‖gi − fi‖l∞ < 𝛿 < 1∕2 , all fi(ℕ) 
and gi(ℕ) (i ∈ ℕ) lie in the closed unit disc � on the complex plane. Write 
�n =

(
fi(n + j)

)
i,j∈ℕ

 and �n =
(
gi(n + j)

)
i,j∈ℕ

 , viewed as matrices of infinite dimension 

with columns given by elements in 
∏∞

i=0
fi(ℕ) and 

∏∞

i=0
gi(ℕ) , respectively. The shift 

map B on (𝔻ℕ)ℕ sends � = (�i,j)i,j∈ℕ to B(�) = (�i,j+1)i,j∈ℕ . Recalling Theorem 3.4, 
we consider the canonical representation (XF,BF) and (XG,BG) of AF  and AG , 
respectively, where BF = B|XF

 and BG = B|XG
 . There is a metric d on (𝔻ℕ)ℕ given by

for any � = {�i,j}i,j∈ℕ and �� = {��
i,j
}i,j∈ℕ . It is not hard to see that d(𝜄n, 𝜏n) < 𝛿 for 

any n ∈ ℕ whenever supi≥0 ‖fi − gi‖l∞ < 𝛿 . Define open sets 
Un,m =

{
𝜔 ∈ XF ∶ d(𝜔, 𝜄n) < 10−m

}
 and Vn,m =

{
𝜔 ∈ XG ∶ d(𝜔, 𝜏n) < 10−m

}
 . Then 

Um = {Un,m ∶ n ∈ ℕ} and Vm = {Vn,m ∶ n ∈ ℕ} (m ∈ ℕ) are refining sequences of 
open covers for XF  and XG , respectively. By [2, Property 12], we obtain

Moreover, the sequences on the right side of above equalities are non-decreasing. 
Now for any 𝜖 > 0 , there is a sufficiently large m′ such that

For any s ≥ 1 , let �s be a subcover of 
⋁

0≤j≤s−1 B
−j

G
(Vm� ) of XG satisfying that the car-

dinality of �s is equal to N(
⋁s−1

j=0
B
−j

G
(Vm� )) (the minimal cardinality of all possible 

subcovers). Suppose that

d(�,��) =
∑

j∈ℕ

∑

i∈ℕ

2−j−i−2|�i,j − �
�
i,j
|

h(BF) = lim
m→∞

h(BF,Um), h(BG) = lim
m→∞

h(BG,Vm).

h(BF,Um�−1) > h(BF) − 𝜖.
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where Sm′ is some subset of the Cartesian product of s copies of ℕ.
We next show that

denoted by �s , is an open cover for XF  . Indeed, for any � ∈ XF  , there is an n� ∈ ℕ 
such that d(𝜔, 𝜄n� ) < 10−m

�−s+1 . One may verify that

for 0 ≤ j ≤ s − 1 . Assume further that

which is an open set in the cover �s . For 0 ≤ j ≤ s − 1 , the condition �n� ∈ B
−j

G
(Vnj,m

� ) 
implies d

(
𝜏n�+j, 𝜏nj

)
< 10−m

� . It follows that

provided that 𝛿 < 10−m
� (this choice is independent of s). Therefore,

for any s ≥ 1 . So �s is an open cover of XF  and a subcover of 
⋁

0≤j≤s−1 B
−j

F
(Um�−1) . 

Hence one has

Letting s tend to infinity, we then have

It follows that h(BG) ≥ h(BG,Vm� ) > h(BF) − 𝜖 , i.e., Æ (G) >Æ(F) − � . 	�  ◻

Remark 4.7  In the statement of Theorem  1.4, if F = {f0, f1,…} is a family of 
bounded arithmetic functions with Æ (F) = +∞ , by similar proof to above, for any 
N > 0 , there is a 𝛿 > 0 , such that Æ (G) > N whenever G = {g0, g1,…} ⊆ l∞(ℕ) sat-
isfies supi≥0 ‖gi − fi‖l∞ < 𝛿.

�s =
{
Vn0,m

� ∩ B−1
G
(Vn1,m

� ) ∩ ⋅ ⋅ ⋅ ∩ B−s+1
G

(Vns−1,m
� ) ∶ (n0,… , ns−1) ∈ Sm�

}
,

{
Un0,m

�−1 ∩ B−1
F
(Un1,m

�−1) ∩⋯ ∩ B−s+1
F

(Uns−1,m
�−1) ∶ (n0,… , ns−1) ∈ Sm�

}
,

d
(
B
j

F
𝜔, 𝜄n�+j

)
= d

(
B
j

F
𝜔,B

j

F
𝜄n�

)
≤ 2j ⋅ d(𝜔, 𝜄n� ) < 2j ⋅ 10−m

�−s+1
< 10−m

�

�n� ∈ Vn0,m
� ∩ B−1

G
(Vn1,m

� ) ∩ ⋅ ⋅ ⋅ ∩ B−s+1
G

(Vns−1,m
� ),

d
(
B
j

F
𝜔, 𝜄nj

)
≤ d

(
B
j

F
𝜔, 𝜄n�+j

)
+ d(𝜄n�+j, 𝜏n�+j) + d(𝜏n�+j, 𝜏nj ) + d(𝜏nj , 𝜄nj)

< 10−m
�

+ 𝛿 + 10−m
�

+ 𝛿 < 10−m
�+1, (0 ≤ j ≤ s − 1),

� ∈ Un0,m
�−1 ∩ B−1

F
(Un1,m

�−1) ∩ ⋅ ⋅ ⋅ ∩ B−s+1
F

(Uns−1,m
�−1)

N
(⋁s−1

j=0
B
−j

F
(Um�−1)

)
≤ N

(⋁s−1

j=0
B
−j

G
(Vm� )

)
.

h(BG,Vm� ) = lim
s→∞

logN(
⋁s−1

j=0
B
−j

G
(Vm� ))

s

≥ lim
s→∞

logN(
⋁s−1

j=0
B
−j

F
(Um�−1))

s
= h(BF,Um�−1) > h(BF) − 𝜖.
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Corollary 4.8  View Æ ∶ l∞(ℕ) → [0,+∞] as a map defined on the set of all bounded 
arithmetic functions. It is lower semi-continuous. Equivalently, if {fk}∞k=0 ⊆ l∞(ℕ) is 
a sequence of functions that converges to f ∈ l∞(ℕ) , i.e., lim

k→∞
‖fk − f‖l∞ = 0 , then 

Æ (f ) ≤ lim inf
k→∞

 Æ (fk).

5 � The arithmetic compactification of natural numbers

In this section, we shall use properties of anqie entropy to construct a new compacti-
fication of natural numbers which is comparable to the Stone-Čech compactification. 
The function space of our compactification is described by the following theorem.

Theorem  5.1  Let E0(ℕ) be the set of all functions in l∞(ℕ) with vanishing anqie 
entropy, i.e.,  . Then E0(ℕ) is a subanqie of l∞(ℕ).

Proof  Corollary 4.3 shows that E0(ℕ) is an algebra closed under complex conjuga-
tion. Suppose that f ∈ l∞(ℕ) and {fk}

∞
k=0

 is a sequence in E0(ℕ) with 
lim
k→∞

‖fk − f‖l∞ = 0 . By Corollary 4.8, one has 0 ≤ Æ (f ) ≤ lim inf
k→∞

 Æ (fk) = 0 . This 
implies f ∈ E0(ℕ) . Hence, the algebra E0(ℕ) is closed under l∞-norm. By Corollary 
4.5, it is also �A-invariant. Thus E0(ℕ) is an anqie. 	�  ◻

Definition 5.2  Let E0(ℕ) be the set of all functions f in l∞(ℕ) with Æ (f ) = 0 . Denote 
by E0(ℕ) the maximal ideal space of E0(ℕ) , and call it the arithmetic compactifica-
tion of natural numbers.

By definition, E0(𝕓ℕ) ≅ C(E0(𝕓ℕ)) . Define �m(n) to be 1 when n = m , and 0 oth-
erwise. Clearly, for any m ∈ ℕ the function �m(n) has zero anqie entropy. Denote 
C0(ℕ) by {f ∶ limn→∞ f (n) = 0} . Then C0(ℕ) ⊆ E0(ℕ) . Each �(m) ∈ �(ℕ) is an iso-
lated point in E0(ℕ) . In fact, the set {𝜔 ∈ E0(ℕ) ∶ |𝜔(𝛿m) − 𝜄(m)(𝛿m)| <

1

2
} is a 

neighborhood of �(m) in E0(ℕ) , which has only the point �(m).
The following lemma is a generalization of [2, Theorem 3], where a finite product 

is replaced by an infinite one. The proof is similar. We omit the details here.

Lemma 5.3  Let (X
�
, T

�
) (� ∈ Ξ) be topological dynamical systems and (X, T) be the 

product system (
∏

�∈Ξ X�
,
∏

�∈Ξ T�) indexed by Ξ . Then

Lemma 5.4  With the notation given in Theorem 5.1, we have Æ (E0(ℕ)) = 0.

Proof  Choose F = E0(ℕ) in Theorem 3.4, then (E0(ℕ),A) can be viewed as a subsys-

tem of 
�∏

f∈E0(ℕ)
Xf ,

∏
f∈E0(ℕ)

Af

�
 , where Xf  is the maximal ideal space of Af  and Af  

is the continuous map on Xf  extended by the map �(n) ↦ �(n + 1) on �(ℕ) . By Lemma 
5.3, Æ (E0(ℕ)) = 0 . 	�  ◻

h(T) =
∑

�∈Ξ

h(T
�
).
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Each topological system has at least a maximal zero entropy factor [27, Theo-
rem 6.2.7]. Indeed, for (�ℕ,A) , where �ℕ is the Stone-Čech compactification of ℕ , 
the system (E0(ℕ),A) is exactly the one.

Proposition 5.5  The following universal properties hold.

(i) If A is an anqie with Æ (A) = 0 , then A ⊆ E0(ℕ).

(ii) The topological dynamical system (E0(ℕ),A, �(0)) satisfies the following 
property: for any point transitive dynamical system (X, T , x0) with h(T) = 0 , there 
is a factor map � ∶ (E0(ℕ),A, �(0)) → (X, T , x0) such that �(�(0)) = x0 . Moreover, if 
another point transitive system (Z,K, z0) with h(K) = 0 satisfies this property, then it 
is equivalent to (E0(N),A, �(0)).

Proof  (i) For any f ∈ A , the anqie Af  is a subanqie of A . It follows that Æ (f ) ≤ 
Æ (A) = 0 . Thus A ⊆ E0(ℕ).

(ii) Since x0 is a transitive point for (X, T), the map n ↦ Tnx0 gives rise to a map 
from ℕ to X with a dense range. It induces an injective homomorphism, denoted 
by � , from C(X) into l∞(ℕ) , i.e., (�f )(n) = f (Tnx0) for any f ∈ C(X) and n ∈ ℕ . 
So �(C(X)) is a C*-subalgebra of l∞(ℕ) . Note that f◦T ∈ C(X) for any f ∈ C(X) . 
Thus �(C(X)) is �A-invariant and an anqie of ℕ . Suppose that Y is the maximal ideal 
space of �(C(X)) . It is easy to see that �(n) ↦ Tnx0 extends to a homeomorphism 
from Y to X, also denoted by � . Hence (Y ,A, �(0)) and (X, T , x0) are equivalent. Since 
Æ (�(C(X))) = h(T) = 0 , it follows from (i) that �(C(X)) is a subanqie of E0(ℕ) . Thus 
(Y, A) is a topological factor of (E0(ℕ),A) . The factor map � can be chosen as in Eq. 
(2). Therefore, the map � = �◦� ∶ (E0(ℕ),A, �(0)) → (X, T , x0) is a factor map with 
�(�(0)) = x0.

Let (Z,K, z0) be another point transitive dynamical system with h(K) = 0 satisfy-
ing the above properties. Then there is a continuous surjective map � ∶ E0(ℕ) → Z 
such that �◦A = K◦� and �(�(0)) = z0 . It follows that �◦An(�(0)) = Kn

◦�(�(0)) and 
�(�(n)) = Knz0 . Symmetrically, there is a continuous surjective map � ∶ Z → E0(ℕ) 
such that �◦K = A◦� and �(z0) = �(0) . It follows that �◦Kn = An

◦� and 
�(Knz0) = �(n) . It is easy to see that � is the inverse of � . Thus � is a homeomor-
phism. Therefore, (Z,K, z0) and (E0(ℕ),A, �(0)) are equivalent. 	� ◻

To get a better understanding of functions with zero anqie entropy, we show some 
properties of the arithmetic compactification below.

Proposition 5.6  The arithmetic compactification E0(ℕ) has the following properties.

(i) It is not extremely disconnected.
(ii) Let R be an infinite subset of ℕ . The closure of the set �(R) in E0(ℕ) is 

uncountable.
(iii) The space E0(ℕ) is not metrizable.
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Proof  (i) Assume on the contrary that E0(ℕ) is extremely disconnected. Then the 
closure of any open set is still open. It is not hard to construct a characteristic func-
tion �S1

(n) defined on a certain subset S1 of ℕ with Æ (�S1
) ≠ 0 . For example, choose 

(�S1
(0),�S1

(1),…) ∈ {0, 1}ℕ containing every finite sequences of 0’s and 1’s. Then 
by Lemma 6.1, Æ (�S1

) = log 2 . Let S0 = ℕ⧵S1 . Since each point �(n) (n ∈ ℕ) is iso-
lated in E0(ℕ) , �(S1) is an open set in E0(ℕ) . Let �(S1) be the closure of �(S1) in E0(ℕ) . 
Then by the assumption, we have that �(S1) in E0(ℕ) is clopen and thus 
�
�(S1)

∈ C(E0(ℕ)) . Since �(S1) ∩ �(S0) = � , the preimage of �
�(S1)

 under the inverse of 
the Gelfand transform (see Eq. (1)) in E0(ℕ) is �S1

 . This contradicts the fact 
Æ (�S1

) ≠ 0.
(ii) Write R = {nk}

∞
k=0

 with n0 < n1 < n2 < … . Note that the sequence {nk�}∞k=0 is 
uniformly distributed modulo 1 for almost all � ∈ (0, 1) (see [18, Theorem 11.2.5]). 
Choose one such � , and consider the transitive dynamical system (S1,R

�
, 1) with 

zero topological entropy, where R
�
 is the irrational rotation with the angle � on 

S1 . By Proposition 5.5, there is a factor map � from (E0(ℕ),A) onto (S1,R
�
) such 

that �(�(0)) = 1 . Moreover, {�(�(nk))}∞k=0 = {e2�ink�}∞
k=0

 . The closure of the lat-
ter is S1 , which is uncountable. Therefore, the closure of {�(nk)}∞k=0 in E0(ℕ) is also 
uncountable.

(iii) Assume on the contrary that E0(ℕ) is metrizable. Choose � ∈ E0(ℕ)⧵�(ℕ) . 
Since E0(ℕ) is a metric space by the assumption, there is a sequence of integers 
{�(nk)}

∞
k=0

 such that �(nk) converges to � in E0(ℕ) as k → ∞ . This contradicts the fact 
in (ii) that the set {�(n0), �(n1),…} has infinite limit points. 	�  ◻

In general, for a compact Hausdorff space X, if X is extremely disconnected, 
then it is totally disconnected. However, the converse may not be true. We have 
proved that E0(ℕ) is not extremely disconnected. So it is interesting to ask if 
E0(ℕ) is totally disconnected. We shall prove that E0(ℕ) is totally disconnected 
in the next section. At the end of this section, we show an equivalent condition 
about the statement that E0(ℕ) is totally disconnected.

Proposition 5.7  Suppose that F0(ℕ) is the set of all arithmetic functions with zero 
anqie entropy and finite ranges. Then E0(ℕ) is totally disconnected if and only if 
E0(ℕ) = F0(ℕ) , where F0(ℕ) is the closure of F0(ℕ) in l∞(ℕ).

Proof  Assume that E0(ℕ) is totally disconnected. Then for any x, y ∈ E0(ℕ) with 
x ≠ y , there is a clopen set U such that x ∈ U, y ∉ U . Then �U ∈ C(E0(ℕ)) and 
�U(x) = 1,�U(y) = 0 . This implies that the *-subalgebra �(F0(ℕ)) in C(E0(ℕ)) sepa-
rates the points in E0(ℕ) , where � is the Gelfand transform (see Eq. (1)). Then by 
the Stone–Weierstrass theorem, we have �(F0(ℕ)) is dense in C(E0(ℕ)) , and thus 
E0(ℕ) = F0(ℕ).

Conversely, suppose that E0(ℕ) = F0(ℕ) . Given distinct points x, y ∈ E0(ℕ) , 
by Urysohn’s lemma, there is an f ∈ C(E0(ℕ)) such that f (x) ≠ f (y) . Then by 
the assumption, there is a g ∈ F0(ℕ) such that g̃ = �(g) in C(E0(ℕ)) satisfying 
g̃(x) ≠ g̃(y) . Note that the continuous function g̃ has a finite range. It is not hard to 
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check that g̃−1({g̃(x)}) is a clopen set in E0(ℕ) . Thus x, y can be separated by a clo-
pen set. It follows that E0(ℕ) is totally disconnected. 	�  ◻

6 � Approximation method for arithmetic functions

In this section, we shall develop an approximation method for any map f from ℕ to 
X, where X is a compact Hausdorff space. Recall that in Sect. 2, the anqie entropy of 
f is defined to be the topological entropy of the Bernoulli shift B (on Xℕ ) restricted 
to the space Xf  , where Xf  is the closure of the set {(f (n), f (n + 1),…) ∶ n ∈ ℕ} in 
X
ℕ
.

In the approximation process, we need to compute anqie entropies of maps 
with finite ranges. First let us recall some basic concepts in symbolic dynami-
cal systems. For a finite set � , a block over � is a finite sequence of symbols from 
� . An m-block is a block of length m. For any given (finite or infinite) sequence 
x = (x0, x1,…) of symbols from � , we say that a block w occurs in x or x contains 
w if there are natural numbers i, j with i ≤ j , such that (xi,… , xj) = w . A concat-
enation of two blocks w1 = (a1,… , ak) and w2 = (b1,… , bl) over � is the block 
w1w2 = (a1,… , ak, b1,… , bl).

Now suppose that f ∶ ℕ → X has a finite range. We can view f as a sequence 
{f (n)}∞

n=0
 in f (ℕ)ℕ . Let Bm(f ) denote the set of all m-blocks occurring in f, i.e., 

Bm(f ) = {(f (n), f (n + 1),… , f (n + m − 1)) ∶ n ≥ 0}.

Lemma 6.1  Let X be a compact Hausdorff space and f a map from ℕ to X with finite 
range. Then the anqie entropy of f equals limm→∞

log |Bm(f )|
m

.

Proof  Let Xf  be the closure of the set {(f (n), f (n + 1),… , ) ∶ n ∈ ℕ} in f (ℕ)ℕ . Then 
by the definition of anqie entropy, we have that the anqie entropy of f equals the top-
ological entropy of Bf  , the Bernoulli shift B restricted to Xf  . We assume that 
f (ℕ) = {a1,… , ak} for k ≥ 1 . Let Di = {(x0, x1,…) ∈ Xf ∶ x0 = ai} for 1 ≤ i ≤ k . 
Denote by � = {D1,… ,Dk} , an open cover of Xf  . Define 
�n = � ∨ B−1

f
� ∨ ⋅ ⋅ ⋅ ∨ B−n+1

f
� . Then � = {�n ∶ n ≥ 1} is a refinement cover family of 

Xf  . Thus h(Bf ) = limn→∞ h(Bf , �n) (see [2, Property 12]). Here the notation h(Bf , �n) 
is introduced in Definition 3.1. Let Φm(f ) be the image of the projection map from 
Xf  onto its first m coordinates. It is not hard to check that 
h(Bf , �n) = limm→∞

log |Φm+n−1(f )|
m

= limm→∞
log |Φm(f )|

m
 . Note that the convergence of a 

sequence in Xf  is coordinate-wise. Then |Φm(f )| = |Bm(f )| and the claim in this 
lemma holds. 	�  ◻

Lemma 6.2  Let X be a compact Hausdorff space and f a map from ℕ to X with finite 
range. Denoted by Rm(f ) = {f (lm), f (lm + 1),… , f (lm + m − 1) ∶ l ≥ 0} . Then the 
anqie entropy of f equals
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Proof  On one hand, since |Rm(f )| ≤ |Bm(f )| we have lim supm→∞
log |Rm(f )|

m
≤ Æ(f). 

On the other hand, for any given m ≥ 1 and any km-block w with k ≥ 1 occurring 
in f, there is a concatenation of certain k + 1 successive m-blocks in Rm(f ) such 
that the concatenation contains w. Thus |Bkm(f )| ≤ m(|Rm(f )|)k+1 , which implies 
Æ (f ) = limk→∞

log |Bkm(f )|
km

≤
log |Rm(f )|

m
. We then have Æ (f ) ≤ lim infm→∞

log |Rm(f )|
m

 . 

Hence Æ (f ) = limm→∞
log |Rm(f )|

m
 . 	�  ◻

Now we prove a stronger version of Theorem 1.9.

Theorem 6.3  Suppose that (X, d) is a compact metric space and f a map from ℕ to X 
with anqie entropy � (0 ≤ 𝜆 < +∞) . Then for any N ≥ 1 , there is a map fN from ℕ to 
f (ℕ) with finite range such that the anqie entropy of fN is less than or equal to � and 
supn d(fN(n), f (n)) ≤

1

N
.

Proof  Given N ≥ 1 , suppose that {Ui = Bd(xi,
1

N
) ∶ i = 0, 1,… , k} is an open cover 

of f (ℕ) , where Bd(xi,
1

N
) = {x ∈ X ∶ d(xi, x) <

1

N
} . We may assume that xi = f (mi) . 

For simplicity, we use X0 to denote f (ℕ) . Suppose that Xf  is the closure of the set 
{(f (n), f (n + 1),…) ∶ n ∈ ℕ} in Xℕ

0
 . Let Bf  be the Bernoulli shift on Xℕ

0
 restricted to 

Xf  , given by (�0,�1,…) ↦ (�1,�2,…) . For s ≥ 1 , denote Ws by

which is an open cover for Xf  . Set t0 = 1 and U(0) = W1.
We use iteration on l for l = 0, 1, 2,… . At the beginning of the l-th step, we 

always assume that there is a natural number tl and an open cover U(l) of Xf  which is 
a subcover of Wtl

 . From the definition of the anqie entropy of f, we have that the 
topological entropy of Bf  , denoted by h(Bf ) , is equal to � . So h(Btl

f
) = tl� . For each 

s ≥ 1 , write U(l)
s
=
⋁s−1

j=0
(B

tl
f
)−jU(l) . Then lim

s→∞
s−1 logN(U(l)

s
) ≤ tl� . Here, for an open 

cover U of Xf  , recall that N(U) denotes the minimal number of open sets in U that 
cover Xf  . So there is a sufficiently large natural number sl such that 
s−1
l

logN(U(l)
sl
) < tl𝜆 + 2−l . Set tl+1 = tlsl . Then U(l)

sl
 is a subcover of Wtl+1

 . Now 

choose a subcover V(l) = {V
(l)

1
,V

(l)

2
,… ,V

(l)

kl
} of U(l)

sl
 which satisfies 

|V(l)| = N(U(l)
sl
) = kl.

Note that a point (f (j), f (j + 1),…) (j ∈ ℕ) may lie in many open sets 
in V(l) . We employ the following strategy to chose a particular one. Let 
�l ∶ {0, 1,… , k}tl+1 → Wtl+1

 be the bijection defined by

(5)lim
m→∞

log |Rm(f )|
m

.

{
Ui0

× Ui1
×… × Uis−1

× X
ℕ⧵{0,1,…,s−1}

0
∶ {i0, i1,… , is−1} ∈ {0, 1,… , k}s

}
,

�l

(
(i0, i1,… , itl+1−1)

)
= Ui0

× Ui1
× ⋅ ⋅ ⋅ × Uitl+1−1

× X
ℕ⧵{0,1,…,tl+1−1}

0
.
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Define

and gl to be the map from ℕ to {0, 1,… , k} by

for each j ≥ 0 . Then we set U(l+1) = V(l) and iterate on l + 1.
Now, by the above construction 𝜋−1

l+1
(V(l+1)) ⊆

(
𝜋
−1
l
(V(l))

)sl+1 for all l ≥ 0 . It fol-
lows that for any r ≥ 0 , the sequence (gr(0), gr(1),…) can be viewed as an infinite 
concatenation of at most e(tl�+2−l)sl different tl+1-blocks for each l ≤ r.

Next we construct a map g ∶ ℕ → {0, 1, 2,… , k} by g(m) = g0(m) for 0 ≤ m < t1 
and g(m) = gl(m) for tl ≤ m < tl+1 (l ≥ 1) . It is not hard to verify that

for all l ≥ 0 . Here the term +1 counts the possibility that (g(0),… , g(tl+1 − 1)) does 
not belong to �−1

l
(V(l)) . It follows from Lemma 6.2 that

Finally, define fN(n) = xg(n) = f (mg(n)) . From the above construction of g, we see 
f (n) ∈ Ug(n) . Note that Ug(n) = Bd(xg(n),

1

N
) . Then d(f (n), fN(n)) = d(f (n), xg(n)) <

1

N
 . 

By Lemma 6.1, we conclude that the anqie entropy of fN is equal to Æ (g) ≤ � . 	�  ◻

Theorem 1.9 is a consequence of the above theorem. Now we are ready to prove 
Theorem 1.5.

Proof of Theorem 1.5  Applying Theorem 6.3 and Proposition 5.7, we obtain that the 
space E0(ℕ) is totally disconnected. From Proposition 5.6(i), we know that E0(ℕ) is 
not extremely disconnected. The proof is completed. 	�  ◻

As an application of Theorem 6.3, we now prove Proposition 1.10.

Proof of Proposition 1.10  Let x be a given point in X and g be the map from ℕ to X 
defined by g(n) = Tnx . Let Ox denote the orbit of x, i.e., Ox = {Tnx ∶ n = 0, 1, 2,…} . 
We use Ox to denote the closure of Ox in X. Then the topological entropy of T 
restricted to Ox is less than or equal to � . By the definition of anqie entropy, we 
have that the anqie entropy of g equals the topological entropy of T restricted on Ox , 
which is less than or equal to � . Then by Theorem 6.3, the claim in the proposition 
holds. 	�  ◻

At the end of this section, we prove the following result, which is crucial to prove 
Theorems 1.6 and 1.7 in the next section. The proof of this result is similar to that in 
Theorem 6.3.

ij = min{1 ≤ i ≤ kl ∶
(
f (jtl+1),… , f ((j + 1)tl+1 − 1), f ((j + 1)tl+1),…

)
∈ V

(l)

i
}

(gl(jtl+1),… , gl((j + 1)tl+1 − 1)) = �
−1
l
(V

(l)

ij
)

|
{(

g(jtl+1),… , g((j + 1)tl+1 − 1)
)
∶ j ≥ 0

}
| < e(tl𝜆+2

−l)sl + 1
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Lemma 6.4  Suppose that X is a compact Hausdorff space and f a map from ℕ to 
X with anqie entropy � (0 ≤ 𝜆 < +∞) . Let U1 be an open set in X, and K ⊆ U1 be 
a closed set in X. Then there is a set C ⊆ ℕ with f −1(K) ⊆ C ⊆ f −1(U1) such that 
Æ (�C) ≤ �.

Proof  Let U0 = X⧵K , then X = U0 ∪ U1 . Suppose that Xf  is the closure of the set 
{(f (n), f (n + 1),…) ∶ n ∈ ℕ} in Xℕ . For s ≥ 1 , let

which is an open cover for Xf  . Then similar to the proof of Theorem  6.3, we 
can construct an arithmetic function g ∶ ℕ → {0, 1}ℕ such that Æ (g) ≤ � and 
f (n) ∈ Ug(n) . Moreover, for n ∈ f −1(K) , we have f (n) ∈ U1⧵U0 and then g(n) = 1 . 
For n ∉ f −1(U1) , we have f (n) ∈ U0⧵U1 , then g(n) = 0 . The lemma follows by tak-
ing C = {n ∶ g(n) = 1} . 	�  ◻

7 � The K‑groups of E
0
(ℕ)

Recall that E0(ℕ) is the C*-algebra of all arithmetic functions with zero anqie 
entropy. It is *-isomorphic to C(E0(ℕ)) . In this section, we shall prove that 
K0(E0(ℕ)) ≅ {f ∈ E0(ℕ) ∶ f (ℕ) ⊆ ℤ} (Theorem  1.6) and K1(E0(ℕ)) = 0 (Theo-
rem 1.7). Lemma 6.4 is an essential tool to prove the above results. The following 
proposition follows from Lemma 6.1 that will be used in our proof.

Proposition 7.1  Let f ∈ F0(ℕ) , i.e., f has zero anqie entropy and finite range. For 
any c ∈ f (ℕ) , let fc ∈ l∞(ℕ) be the characteristic function defined on f −1({c}) . Then 
Æ (fc) = 0 . In particular, any function in F0(ℕ) is a linear combination of {0, 1}-val-
ued functions with zero anqie entropy.

We first list some notation and recall the definition of K0-group of unital C*-alge-
bras. Let A be a unital C*-algebra. Denote Mk,l(A) as the set of all k × l matrices 
with entries in A . In particular, Mk,k(A) , also denoted by Mk(A) , is a C*-algebra. 
For a1,… , ak ∈ A , the expression diag(a1, a2,… , ak) stands for the k × k diagonal 
matrix with diagonal elements a1, a2,… , ak in order. Denote by P(A) the set of all 
projections in A , i.e.,

Set

Here we view Pk(A) , k = 1, 2,… , as being pairwise disjoint. For any p ∈ Pk(A) 
and q ∈ Pl(A) , we say p ∼0 q if and only if there is a u ∈ Ml,k(A) , such that 
p = u∗u, q = uu∗. It is known that ∼0 is an equivalence relation on P∞(A) . Define 

Ws = {Ui0
× Ui1

× ⋅ ⋅ ⋅ × Uis−1
× Xℕ⧵{i0,i1,…,is−1} ∶ {i0, i1,… , is−1} ∈ {0, 1}s},

P(A) = {p ∈ A ∶ p2 = p∗ = p}.

Pk(A) = P(Mk(A)) and P∞(A) = ∪∞
k=1

Pk(A).
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D(A) = P∞(A)∕ ∼0 , and let [p]D ∈ D(A) be the equivalence class of p ∈ P∞(A) . 
The formula

gives a binary operation on D(A) such that (D(A),+) forms an abelian semigroup. 
Recall that the K0-group K0(A) is defined to be the Grothendieck group of the semi-
group D(A) . More specifically, define an equivalence relation ∼ on D(A) ×D(A) by 
([p1]D, [q1]D) ∼ ([p2]D, [q2]D) if there is some [p]D ∈ D(A) such that

Then K0(A) = (D(A) ×D(A))∕ ∼.
Now, let us return to the computation of K0(E0(ℕ)) . Recall that E0(ℕ) ≅ C(E0(ℕ)) 

and E0(ℕ) is totally disconnected by Theorem 1.5. We remark that Exercise 3.4 in 
[21] gives a general result for the K0-group of C(X), where X is a totally discon-
nected space. Here for the specific object E0(ℕ) , we present a different method to 
compute the K0 group, from which we obtain a result (Lemma 7.2) that can not be 
deduced from the general K-theory.

For simplicity, we use E0 to denote E0(ℕ) in this section. We first prove that each 
projection in Pk(E0) can be “diagonalized”.

Lemma 7.2  For any k ≥ 1 and any P ∈ Pk(E0) , there is a diagonal matrix 
Q ∈ Pk(E0) , such that P ∼0 Q.

Proof  For any k ≥ 1 and r with 0 ≤ r ≤ k , define

Claim: For any P ∈ Rk(r) , there is a diagonal matrix Q ∈ Rk(r) such that P ∼0 Q.
First we show how to prove this lemma if the claim holds. Let 

P = (pij)1≤i,j≤k ∈ Pk(E0) . Define

where P(n) = (pij(n))1≤i,j≤k . Then by Corollary 4.3 we have r(n) ∈ E0 . Note that 
r(n) has a finite range. For any i = 0, 1,… , k , set Ri = {n ∈ ℕ ∶ r(n) = i} . Then 
Æ (�Ri

) = 0 by Proposition 7.1. Let Ei = diag(1i, 0k−i) ∈ Mk(ℂ) . Consider the 
projections

Then P̃i ∈ Rk(i) . From the assumption of the claim, there is a Vi ∈ Mk,k(E0) , 
such that ViV

∗
i
= P̃i and V∗

i
Vi is a diagonal matrix in Rk(i) . Note that 

P =
∑k

i=0
�Ri

P =
∑k

i=0
�Ri

P̃i . Choose U =
∑k

i=0
�Ri

Vi . Then UU∗ = P and U∗U is a 
diagonal matrix in Pk(E0).

Next, we prove the correctness of the claim. We use induction on k with 
k = 1, 2,… . For k = 1 , the proof is trivial. Assume inductively that the claim holds 

[p]D + [q]D ∶= [diag(p, q)]D

[p1]D + [q2]D + [p]D = [q1]D + [p2]D + [p]D.

Rk(r) = {(pij)1≤i,j≤k ∈ Pk(E0) ∶
∑k

i=1
pii(n) = r for any n ∈ ℕ}.

r(n) = p11(n) + p22(n) + ⋅ ⋅ ⋅ + pkk(n) = rank(P(n)),

P̃i = �Ri
P + (1 − �Ri

)Ei, i = 0, 1,… , k.
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for some k − 1 and any r with 0 ≤ r ≤ k − 1 , where k ≥ 2 . In the following, we show 
that the claim holds for Rk(r) with 0 ≤ r ≤ k.

When r = 0 , the proof is trivial. In the following, we assume that r ≥ 1 . Sup-
pose that P = (pij)1≤i,j≤k ∈ Rk(r) . Since P is a projection, it follows from P∗P = P 
that 0 ≤ pii ≤ 1 (1 ≤ i ≤ k) . Let p1 = p11 . By Lemma 6.4, there is a C1 ⊆ ℕ with 
Æ (�C1

) = 0 , such that

In the following, we use iteration on l to construct a function pl and a set Cl 
(2 ≤ l ≤ k) . Let pl = pll ⋅

∏l−1

j=1
(1 − �Cj

) . Equivalently,

Note that Æ (pl) = 0 . Applying Lemma 6.4 again, one obtains a set Cl ⊆ ℕ with 
Æ (�Cl

) = 0 such that

Since pl(n) > r∕2k > 0 for n ∈ Cl (2 ≤ l ≤ k) , one sees that the sets C1,… ,Ck are 
pairwise disjoint. Moreover, we have ∪k

i=1
Ci = ℕ . Actually, if ∪k

i=1
Ci ≠ ℕ , then 

choose n ∈ ℕ⧵ ∪k
i=1

Ci . Since pi(n) = pii(n) <
r

k
 (1 ≤ i ≤ k) , this contradicts the fact 

that 
∑k

i=1
pii(n) = r . Thus ∪k

i=1
Ci = ℕ and P =

∑k

i=1
�Ci

P.
As matrices in Mk(E0) , let F1 = ⋅ ⋅ ⋅ = Fr = diag(1r, 0k−r) and Fi = diag(0i−r, 1r, 

0k−i) for r + 1 ≤ i ≤ k . Let Pi = �Ci
P + (1 − �Ci

)Fi for 1 ≤ i ≤ k . Then 
P =

∑k

i=1
�Ci

Pi . Suppose that Pi = (f i
hl
)1≤h,l≤k ∈ Rk(r) . It is not hard to check that 

f i
ii
(n) > r∕2k for all n by the construction of Ci . Let Vi = (vi

hl
)1≤h,l≤k be given by 

vi
hl
= f i

hi
∕
√

f i
ii
 for l = i and vi

hl
= 0 otherwise. By Lemma 4.6, we have Vi ∈ Mk(E0).

By the relations P∗
i
Pi = Pi and P∗

i
= Pi , we obtain that 

∑k

h=1
�f i
hl
�2 = f i

ll
 , 1 ≤ l ≤ k . 

Now a simple calculation leads to V∗
i
Vi =diag(0i−1, 1, 0k−i) , which belongs to Rk(1) , 

and ViV
∗
i
∈ Rk(1) as well. Since Range(ViV

∗
i
) ⊆ Range(Vi) ⊆ Range(Pi) , we have 

Pi − ViV
∗
i
∈ Rk(r − 1) . It is not hard to check that every element in the i-th row and 

the i-th column of Pi − ViV
∗
i
 is zero. By inductive hypothesis for k − 1 case, there 

is a Ui ∈ Mk(E0) with every element in the i-th row and the i-th column of Ui being 
zero, such that UiU

∗
i
= Pi − ViV

∗
i
 and U∗

i
Ui is a diagonal matrix Qi in Pk(E0).

Note that UiV
∗
i
ViU

∗
i
= Uidiag(0i−1, 1, 0k−i)U∗

i
= 0 . So UiV

∗
i
= 0 . By the 

fact that V∗
i
UiU

∗
i
Vi = V∗

i
(Pi − ViV

∗
i
)Vi = 0 , we obtain U∗

i
Vi = 0 . Finally, set 

U =
∑k

i=1
�Ci

(Ui + Vi) . Then UU∗ = P and U∗U is a diagonal matrix Q in Pk(E0) . 	
� ◻

When a diagonal matrix diag(f1,… , fk) in Mk(E0) is a projection, it satisfies that 
f 2
l
= fl = fl for all 1 ≤ l ≤ k . So f1,… , fk all take values in {0, 1} and they are char-

acteristic functions.

p−1
11
([r∕k, 1]) ⊆ C1 ⊆ p−1

11
((r∕2k, 1]).

pl(n) =

{
0, if n ∈ C1 ∪… ∪ Cl−1,

pll(n), if n ∉ C1 ∪… ∪ Cl−1.

p−1
l
([r∕k, 1]) ⊆ Cl ⊆ p−1

l
((r∕2k, 1]).
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Lemma 7.3  Let k ≥ 1 . Suppose that diag(f1,… , fk) ∈ Pk(E0) . Then there are 
characteristic functions g1, g2,… , gk ∈ E0(ℕ) with g1 ≥ g2 ≥ ⋯ ≥ gk , such that 
diag(g1,… , gk) ∼0 diag(f1,… , fk) . Moreover 

∑k

i=1
fi(n) =

∑k

i=1
gi(n) for all n ∈ ℕ.

Proof  Assume inductively that the claim holds for some k with k ≥ 1 . Then we 
may assume that diag(f1, f2,… , fk+1) ∼0 diag(f1, h2,… , hk+1) , where hi = �Ai

 , for 
i = 2,… , k + 1 , satisfying A2 ⊇ A3 ⊇ ⋅ ⋅ ⋅ ⊇ Ak+1 and 

∑k+1

i=2
fi(n) =

∑k+1

i=2
hi(n) . Sup-

pose that f1 = �A1
 for some A1 . Let

Note that �A1∩A2
= f1h2 and �A2⧵A1

= h2 − f1h2 . So U ∈ Mk+1(E0) and

It is easy to see that

By induction on the k case, we further assume that

where g2 ≥ g3 ≥ ⋯ ≥ gk+1 and �A1∩A2
(n) +

∑k+1

i=3
hi(n) =

∑k+1

i=2
gi(n) . Observe 

that �A1∪A2
(n) = 0 implies hi(n) = 0 for i = 2,… , k + 1 . Thus 

∑k+1

i=2
gi(n) = 0 , and 

gj(n) = 0 for all j with j = 2,… , k + 1 . Let g1 = �A1∪A2
 . Then g1 ≥ g2 ≥ ⋯ ≥ gk+1 . 

Now we obtain the k + 1 case of the claim. 	�  ◻

From Lemma 7.2 and Lemma 7.3, we see that

The following theorem gives a more simple description of D(E0).

Lemma 7.4  The semigroup D(E0) is isomorphic to the additive semigroup 
{f ∈ E0 ∶ f (ℕ) ⊆ ℕ}.

Proof  Let Tr be the map from D(E0) to {f ∈ E0 ∶ f (ℕ) ⊆ ℕ} defined by Tr([p]D)(n) 
=
∑k

i=1
pii(n) , for p = (pij)1≤i,j≤k ∈ Pk(E0) and n ∈ ℕ . We first show that Tr is well-

defined, i.e., for any p, q ∈ P∞(E0) , if [p]D = [q]D , then Tr([p]D) =Tr([q]D) . Since 
p ∼0 q , we have rank(p(n)) = rank(q(n)) for any n. Thus 

∑k

i=1
pii(n) =

∑k

i=1
qii(n).

Now we prove that Tr is one-to-one and onto. On one hand, suppose that 
p, q ∈ P∞(E0) and Tr([p]D) =Tr([q]D) . Using Lemmas 7.2 and 7.3, we assume that 
for some k ≥ 1,

V =

(
f1 �A2⧵A1

0 �A2∩A1

)
and U = diag(V , h3,… , hk).

U∗U = diag(f1, h2, h3,… , hk+1) ∼0 UU
∗ = diag(�A1∪A2

,�A1∩A2
, h3 … , hk+1).

f1(n) +

k+1∑

i=2

hi(n) = �A1∪A2
(n) + �A1∩A2

(n) +

k+1∑

i=3

hi(n).

diag(�A1∪A2
,�A1∩A2

, h3 … , hk+1) ∼0 diag(�A1∪A2
, g2, g3,… , gk+1),

D(E0) = {[diag(f1, f2,… , fk)]D ∶ k ≥ 1, fi ∈ P(E0), i = 1,… , k

and f1 ≥ f2 ≥ ⋯ ≥ fk}.
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where f1 ≥ ⋯ ≥ fk and g1 ≥ ⋯ ≥ gk . Since Tr([p]D) =Tr([q]D) , we have 
∑k

i=1
fi(n) =

∑k

i=1
gi(n) for any n ∈ ℕ . Let Ci = {n ∶

∑k

j=1
fj(n) ≥ i} . Then 

fi = �Ci
= gi for i = 1,… , k . Hence [p]D = [q]D , i.e., the map Tr is injective.

On the other hand, for any g ∈ E0 with g(ℕ) ⊆ {0, 1, 2,… , k} , let 
fi(n) = �{m∶g(m)≥i}(n) for i = 1,… , k . Then Æ( fi) = 0 by Proposition 7.1 and 
g =

∑k

i=1
fi = Tr([diag(f1,… , fk)]D) . Thus Tr is a surjective map. In addition, the 

map Tr is a homomorphism. This is because that for any k, l ≥ 1,

Therefore, Tr is an isomorphism. 	�  ◻

The K0-group K0(E0) is the Grothendieck group of the semigroup D(E0) , i.e., 
K0(E0) = D(E0) ×D(E0)∕ ∼ . We use ⟨[p]D, [q]D⟩ to denote the equivalence class of 
([p]D, [q]D) under ∼.

Proof of Theorem  1.6  Let Φ be the map from K0(E0) to the additive group 
{f ∈ E0 ∶ f (ℕ) ⊆ ℤ} defined by

Here the map Tr is given in Lemma 7.4, that is Tr([p]D) =
∑k

i=1
pii(n) for any 

p = (pij)1≤i,j≤k ∈ Pk(E0) . By Lemma 7.4, we know that Tr is an isomorphism from 
D(E0) to the semigroup {f ∈ E0 ∶ f (ℕ) ⊆ ℕ}.

We first show that Φ is well-defined. Suppose that ⟨[p1]D, [p2]D⟩ = ⟨[p�
1
]D, [p

�
2
]D⟩ , 

where p1, p2, p
�
1
, p�

2
∈ P∞(E0) . Then there is some [q]D such that 

[p1]D + [p�
2
]D + [q]D = [p�

1
]D + [p2]D + [q]D . So Tr([p1]D)+Tr([p�

2
]D) = Tr([p�

1
]D)

+Tr([p2]D) and Φ(⟨[p1]D, [p2]D⟩) = Φ(⟨[p�
1
]D, [p

�
2
]D⟩) . Since Tr is a surjective map, 

it follows that Φ is surjective.
Next, we show that Φ is injective. Suppose that p1, p2, p′1, p

′
2
 are elements in 

P∞(E0) such that Φ
�
⟨[p1]D, [p2]D⟩

�
= Φ

�
⟨[p�

1
]D, [p

�
2
]D⟩

�
 . Then

Note that the map Tr is injective, then [diag(p1, p�2)]D = [diag(p�
1
, p2)]D . Hence Φ is 

injective. It is not hard to check that Φ is a group homomorphism. Thus we conclude 
that Φ is a group isomorphism. 	�  ◻

p ∼0 diag(f1, f2,… , fk) and q ∼0 diag(g1, g2,… , gk),

Tr([diag(f1, f2,… , fk)]D + [diag(g1, g2,… , gl)]D)

= Tr([diag(f1, f2,… , fk, g1, g2,… , gl)]D) =
∑k

i=1
fi +

∑l

j=1
gj

= Tr([diag(f1, f2,… , fk)]D) + Tr([diag(g1, g2,… , gl)]D).

Φ(⟨[p]D, [q]D⟩) = Tr([p]D) − Tr([q]D), p, q ∈ P∞(E0).

Tr([diag(p1, p
�
2
)]D) = Tr([p1]D) + Tr([p�

2
]D)

= Tr([p�
1
]D) + Tr([p2]D)

= Tr([diag(p�
1
, p2)]D).
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Next, we show K1(E0) = 0 . To prove this result, we first recall the definition of K1

-group of unital C*-algebras. Let A be a unital C*-algebra with the unit 1A . We use 
U(A) to denote the group of unitary elements of A , i.e.,

Two elements u, v ∈ U(A) are called homotopic in U(A) , denoted by u ∼h v , if there 
is a continuous map �(t) from [0, 1] into U(A) such that �(0) = u and �(1) = v . It is 
not hard to check that ∼h is an equivalence relation on U(A) . Denote by U(A)0 the 
connected component of 1A in UA , i.e., U(A)0 = {u ∈ U(A) ∶ u ∼h 1A} . It is known 
that U(A)0 is a normal subgroup of U(A).

Let Uk(A) = U(Mk(A)) . Also let U∞(A) = ∪∞
k=1

Uk(A) , which is a disjoint 
union. For u ∈ Un(A) and v ∈ Um(A) , we define u ∼1 v if and only if there is a 
k ≥ max{n,m} such that diag(u, 1k−n) ∼h diag(v, 1k−m) . It is known that ∼1 is an 
equivalence relation on U∞(A) . The K1-group of A is defined to be U∞(A)∕ ∼1.

To prove that K1(E0) is trivial, we need to show Uk(E0) = Uk(E0)0 for all k. That 
is, for any u ∈ Uk(E0) , it satisfies u ∼h Ik , where Ik denotes the k × k diagonal matrix 
in Uk(E0) with diagonal elements all equal 1. We recall some well-known results in 
operator algebra (see, e.g., [21]) in the following lemma.

Lemma 7.5  Let A be a unital C*-algebra with the unit 1A . The following proposi-
tions hold.

(i) Let u ∈ U(A) . Suppose that the spectrum sp(u) of u is not S1 . Then u ∼h 1A.

(ii) Let u, v ∈ U(A) and ‖u − v‖ < 2 , where ‖ ⋅ ‖ is the norm on A . Then u ∼h v.

(iii) U(A)0 = {exp(�v1)⋯ exp(�vn) ∶ n = 1, 2,… , vj = v∗
j
∈ A, j = 1,… , n}.

In the rest of this section, we use Ik to denote diag(1, 1,… , 1) , the unit of 
E0 ⊗Mk(ℂ) for k ≥ 1 . Let E(k)

ij
 be the element in E0 ⊗Mk(ℂ) obtained by exchanging 

the i-th row and the j-th row of Ik . Since sp(E(k)

ij
) is a finite set, E(k)

ij
∼h Ik by Lemma 

7.5(i). First, we consider the case k = 1.

Lemma 7.6  For any f ∈ U(E0) , we have f ∼h 1.

Proof  Note that the spectrum of any function f̃ ∈ l∞(ℕ) is sp(̃f ) = f̃ (ℕ) . Sup-
pose that f ∈ U(E0) , i.e., |f (n)| = 1 for any n ∈ ℕ . If f (ℕ) ≠ S1 , then f ∼h 1 
by Lemma 7.5(i). In the following, we assume that f (ℕ) = S1 . Note that 
Æ (f ) = 0 implies Æ (|Im(f )|) = 0 . Let F1 = {n ∈ ℕ ∶ |Im(f )(n)| ≤ 1∕4} and 
F2 = {n ∈ ℕ ∶ |Im(f )(n)| < 1∕2} . Applying Lemma 6.4, there is a C ⊆ ℕ 
with F1 ⊆ C ⊆ F2 , such that Æ (�C) = 0 . Let g = f�C + 1 − �C . We can check 
that g ∈ U(E0) . It is easy to see sp(g) ≠ S1 . So g ∼h 1 by Lemma 7.5(i). Since 
‖f − g‖l∞ = ‖(1 − f )(1 − 𝜒C)‖l∞ < 2 , f ∼h g by Lemma 7.5(ii). Thus f ∼h 1 . 	�  ◻

U(A) = {u ∈ A ∶ u∗u = uu∗ = 1A}.



Anqie entropy and arithmetic compactification of natural… Page 29 of 32  11

Proof of Corollary 1.8  By Lemmas 7.5(iii) and 7.6, we have, for any f ∈ U(E0) , there 
is a real-valued function g ∈ E0 such that f = exp(�g) , as claimed in Corollary 1.8. 	
� ◻

Next we consider the case k = 2.

Lemma 7.7  For any u ∈ U2(E0) , we have u ∼h I2.

Proof  For any u ∈ U2(E0) , one may assume that u =

(
f1 hf2
f2 − hf1

)
 for some f1, f2 ∈ E0 

with |f1(n)|2 + |f2(n)|2 = 1 for any n, and h ∈ l∞(ℕ) with |h(n)| = 1 such that 
hf2, hf1 ∈ E0 . Thus h = hf2f2 + hf1f1 ∈ E0 and h ∈ U(E0) . By Corollary 1.8, there is a 
real-valued function g ∈ E0 such that h = exp(�g) , i.e., h(n) = exp(�g(n)) for n ∈ ℕ . 

Note that the map � ∶ [0, 1] → U2(E0) defined by �(t) =
(
f1 exp(�tg)f2
f2 − exp(�tg)f1

)
 is con-

tinuous. We obtain that

The eigenvalue functions of u1 are

Then sp(u1) = �1(ℕ) ∪ �2(ℕ) . Note that Æ (|f1|) = 0 . Set

By Lemma 6.4, there is a subset C of ℕ with F1 ⊆ C ⊆ F2 , such that Æ (�C) = 0 . 
Suppose that

This construction ensures that

Note that g1(n) = f1(n)�C(n) + 1 − �C(n) , then |g1(n)| > 1∕4 for all n ∈ ℕ . By 
Lemma 4.6 and Corollary 1.8, we can rewrite g1(n) as |g1(n)| exp(�g̃1(n)) with some 
real-valued function g̃1 ∈ E0 . Now we obtain

u ∼h u1 =

(
f1 f2
f2 − f1

)
.

(6)
�1(n) = � ⋅ Imf1(n) +

√
1 − (Imf1(n))

2, �2(n) = � ⋅ Imf1(n) −

√
1 − (Imf1(n))

2.

F1 = {n ∈ ℕ ∶ 1∕2 ≤ |f1(n)| ≤ 1}, F2 = {n ∈ ℕ ∶ 1∕4 < |f1(n)| < 5∕4}.

v1 = u1�C + (1 − �C) ⋅ diag(1,−1) =

(
g1 g2
g2 − g1

)
,

v2 = u1(1 − �C) + �CE
(2)

12
=

(
h1 h2
h2 − h1

)
.

u1 = u1�C + u1(1 − �C) = v1�C + v2(1 − �C).

v1 ∼h ṽ1 =

(
|g1(n)| g2
g2 − |g1(n)|

)
.
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Note that Im(|g1(n)|) = 0 . A similar argument as in (6) shows that sp(ṽ1) is con-
tained in the real line, which differs from S1 . By Lemma 7.5(i), we conclude 
v1 ∼h I2 . Since |f1(n)| < 1∕2 for n ∉ C , one has |h1(n)| < 1∕2 in the expres-
sion of v2 . Similar argument results in sp(v2) ≠ S1 . So v2 ∼h I2 . Finally, let �i(t) 
(i = 1, 2) be the corresponding path in U2(E0) connecting vi and I2 , respectively. 
Set �(t) = �1(t)�C + �2(t)(1 − �C) . Then �(t) is a continuous map from [0, 1] into 
U2(E0) with �(0) = u1 and �(1) = I2 . Therefore, u ∼h u1 ∼h I2 . 	� ◻

Finally, let us prove Theorem 1.7.

Proof of Theorem  1.7  We prove the claim by induction on k that u ∼h Ik for any 
u ∈ Uk(E0) . By Lemma 7.6, the statement holds for the k = 1 case. Assume induc-
tively that the statement has been proved for the k − 1 case with some k ≥ 2 . Now 
we consider the k case. Let u = (fij)1≤i,j≤k ∈ Uk(E0) . Then 

∑k

i=1
�fi1(n)�2 = 1 for any n. 

We apply the same method as in the proof of Lemma 7.2. Set h1 = f11 and

By Lemma 6.4, there is a C1 ⊆ ℕ with F1 ⊆ C1 ⊆ G1 , such that Æ (�C1
) = 0 . In 

the following, we use iteration on l to construct a function hl and sets Fl,Gl,Cl 
(2 ≤ l ≤ k).

Let hl = fl1 ⋅
∏l−1

j=1
(1 − �Cj

) . Set

Since Æ (hl) = 0 , there is a set Cl with Fl ⊆ Cl ⊆ Gl and Æ (�Cl
) = 0 . It satisfies 

that C1,… ,Ck are pairwise disjoint and ℕ = C1 ∪⋯ ∪ Ck . Moreover, we have that 
�fl1(n)� < 1∕

√
k for n ∉ C1 ∪⋯ ∪ Cl and �fl1(m)� > 1∕(2

√
k) for m ∈ Cl (1 ≤ l ≤ k) . 

For i with 1 ≤ i ≤ k , let vi = u�Ci
+ E

(k)

i1
(1 − �Ci

) . Then vi ∈ Uk(E0) and the i-th ele-
ment in the first column in vi is the function with the range in (1∕2

√
k, 1] . In the fol-

lowing, we show v1 ∼h Ik.
Suppose that v1 = (gij)1≤i,j≤k . Let

and u1 = diag(ũ1, Ik−2) . It follows from Lemmas 3.3, 4.6, and Corollary 4.3 that 
u1 ∈ Uk(E0) . Set u1v1 = (g

(1)

ij
)1≤i,j≤k , then g(1)

11
=
√
�g11�2 + �g21�2 and g(1)

21
= 0 . More-

over, �g(1)
11
(n)� > 1∕(2

√
k) for n ∈ ℕ . So similar to the above process, we can obtain 

u2,… , uk−1 ∈ Uk(E0) , such that uk−1 ⋅ ⋅ ⋅ u2u1v1 = diag(1, ũ) , where ũ ∈ Uk−1(E0) . By 
Lemma 7.7, ui ∼h Ik for i = 1,… , k − 1 . This implies u−1

1
u−1
2

⋅ ⋅ ⋅ u−1
k−1

∼h Ik . 

F1 = {n ∶ 1∕
√
k ≤ �h1(n)� ≤ 1}, G1 = {n ∶ 1∕(2

√
k) < �h1(n)� < 1 + 1∕(2

√
k)}.

Fl = {n ∶ 1∕
√
k ≤ �hl(n)� ≤ 1}, Gl = {n ∶ 1∕(2

√
k) < �hl(n)� < 1 + 1∕(2

√
k)}.

ũ1 =

⎛
⎜
⎜
⎜
⎜⎝

g11√
�g11�2 + �g21�2

g21√
�g11�2 + �g21�2

g21√
�g11�2 + �g21�2

−
g11√

�g11�2 + �g21�2

⎞
⎟
⎟
⎟
⎟⎠
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Together with ũ ∼h Ik−1 from the inductive hypothesis on the k − 1 case, we obtain 
v1 ∼h Ik.

For i with 2 ≤ i ≤ k , applying the above argument to E(k)

1i
vi , we conclude 

E
(k)

1i
vi ∼h Ik and thus vi ∼h Ik . Suppose that �j(t) is the continuous path in Uk(E0) 

from vj to Ik , for j = 1,… , k . Recall that u =
∑k

j=1
u�Cj

=
∑k

j=1
vj�Cj

 . Then the path 

�(t) =
∑k

j=1
�j(t)�Cj

 is continuous such that �(0) = u , �(1) = Ik . The proof is com-
pleted. 	�  ◻
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