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MDS Codes With Galois Hulls of
Arbitrary Dimensions and the Related

Entanglement-Assisted Quantum
Error Correction

Meng Cao

Abstract— Let q = pe be a prime power and � be an integer
with 0 � � � e � 1. The �-Galois hull of classical linear codes
is a generalization of the Euclidean hull and Hermitian hull.
We provide a necessary and sufficient condition under which
a codeword of a GRS code or an extended GRS code belongs
to its �-Galois dual code, generalizing both the Euclidean case
and Hermitian case in the literature. By using four different
tools: 1) the norm mapping from F�

q to F�
p� ; 2) the direct

product of two cyclic subgroups; 3) the coset decomposition of
a cyclic group; 4) an additive subgroup of Fq and its cosets,
we construct eleven families of q-ary MDS codes with �-Galois
hulls of arbitrary dimensions, and give the related eleven families
of [[n, k, d; c]]q entanglement-assisted quantum error-correcting
codes (EAQECCs) with relatively large minimum distance in the
sense that 2d = n � k + 2 + c. We show that developing
the theory on �-Galois hulls of q-ary MDS codes in this paper
enables us to obtain new q-ary EAQECCs with different kinds
of length sets via different �, where 2� | e.

Index Terms—�-Galois hull, MDS code, generalized
Reed-Solomon (GRS) code, entanglement-assisted quantum
error-correcting code (EAQECC).

I. INTRODUCTION

QUANTUM error-correcting codes are essential to quan-
tum computation and quantum communication due to

their crucial role in dealing with the problem of quantum
decoherence. In 1995, Shor [50] discovered the world’s first
quantum error-correcting code with parameters [[9, 1, 3]] by
using the quantum analog of the repetition code. Since then,
the theory of quantum codes has achieved rapid development
(e.g., see [1], [4], [5], [7], [8], [12], [21], [23], [25], [27],
[28], [33], [35], [43], [44], [47], [48], [51]). As we know,
the construction of quantum codes with good parameters is
important in quantum information processing. However, it is
very difficult to give a general method for acquiring more
good quantum codes. In 1996, the famous CSS construction
proposed by Calderbank and Shor [6] and Steane [52] offers
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us an effective way to construct quantum stabilizer codes from
classical linear codes with certain self-orthogonality. By this
method, a q-ary quantum stabilizer code can be derived from a
q-ary self-orthogonal or dual-containing classical linear code.

Nevertheless, the CSS construction is inapplicable to gen-
eral classical linear codes. In other words, a classical linear
code which is neither self-orthogonal nor dual-containing can
not generate a quantum stabilizer code by CSS construction.
To avoid this problem, Brun et al. [2] proposed an interesting
concept called entanglement-assisted quantum error-correcting
codes (EAQECCs), which can be regarded as a generalization
of the quantum stabilizer codes. According to their discovery,
the EAQECCs can be generated by the classical linear codes
without the restriction of self-orthogonality by utilizing the
pre-shared entanglement between the sender and receiver.
Usually, we denote by [[n, k, d; c]]q a q-ary EAQECC which
encodes k logical qubits into n physical qubits by means of
c copies of maximally entangled states (i.e., c ebits). To be
specific, let L be the space of linear operators defined in
the qubit Hilbert space H. Let us consider the isometric
operator U : H⊗n1 → H⊗n2 and its completely positive,
trace preserving (CPTP) map Û : L⊗n1 → L⊗n2 defined by
Û(χ) = UχU †. As shown in [3], the quantum communication
scenario involves two spatially separated parties, Alice and
Bob, owning the following resources at their disposal:

• A noisy quantum channel defined by a CPTP map N :
L⊗n → L⊗n taking density operators on Alice’s system
to those on Bob’s system;

• The c ebit state |Υ�⊗c shared between Alice and Bob.
Through these resources, Alice wants to send k qubits to Bob
perfectly. Then, an [[n, k, d; c]]q EAQECC is made up of

• An encoding operation E : L⊗k ⊗ L⊗c → L⊗n;
• A decoding operation D : L⊗n ⊗ L⊗c → L⊗k

with D◦N ◦E ◦ V̂ = id⊗k, where V appends the state |Υ�⊗c,
namely, V |Ξ� = |Ξ�|Υ�⊗c, and id is the identity map on a
single qubit from L to L. The “entanglement-assisted” setting
described above simplifies the theory of quantum channels and
makes quantum error correction easier in a way, which helps
us to create many different kinds of quantum codes in quan-
tum communication. For example, Hsieh et al. [30] utilized
classical quasi-cyclic low-density parity-check (LDPC) codes
to obtain some entanglement-assisted quantum LDPC codes
with good performance. In [54], Wilde and Brun developed a
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useful theory of entanglement-assisted quantum convolutional
coding by exploiting pre-shared entanglement and a convo-
lutional coding structure. They showed that a Calderbank-
Shor-Steane (CSS) entanglement-assisted quantum convolu-
tional code can be constructed by two arbitrary classical
binary convolutional codes. In [56], Wilde et al. revealed that
entanglement assistance can simplify the theory of quantum
turbo codes in several important manners and they also exam-
ined the effect on the performance of these codes with the
help of entanglement assistance. For more information about
EAQECCs, we refer the reader to [17]–[20], [22], [24], [31],
[32], [37]–[39], [55], [57].

In [3], Brun et al. showed that EAQECCs can be linked
with the related idea of catalytic quantum error correction in
quantum communication. More concretely, one can imagine
that Alice and Bob are allowed to send c qubits error-free
through a noiseless quantum channel that serves as a catalyst
and is returned at the end of the protocol, apart from a
noisy quantum channel N . Then, the encoding operation
E and decoding operation D mentioned above will define
an [[n, k − c, d; c]]C catalytic quantum error-correcting code
(CQECC), where D ◦ (N ⊗ id⊗c) ◦ E = id⊗k−c ⊗ id⊗c.

In [53], Wilde and Brun proposed a useful method for
constructing EAQECCs from binary classical linear codes.
In 2019, Galindo, Hernando, Matsumoto and Ruano [19]
extended the binary case to the general one and obtained
many important results on EAQECCs over arbitrary finite
fields. By these results, an [n, k, d]q linear code with parity
check matrix H produces an [[n, 2k − n + c, d; c]]q EAQECC
with c = rank(HHT ). Denote by HullE(C) = C ⋂ C⊥E

(resp. HullH(C) = C ⋂ C⊥H ) the Euclidean hull (resp.
Hermitian hull) of a classical linear code C, where C⊥E

(resp. C⊥H ) is the Euclidean dual (resp. Hermitian dual)
code of C. Guenda et al. [29] proved that the parameter
c of an [[n, 2k − n + c, d; c]]q EAQECC is related to the
dimension of the Euclidean hull (or Hermitian hull) of an
[n, k, d]q linear code. Based on these facts, Luo et al. [46]
constructed several families of MDS codes with Euclidean
hulls of arbitrary dimensions and obtained the corresponding
EAQECCs with flexible parameters. Soon after, Fang et al.
[16] presented several families of MDS codes with Euclidean
hulls and Hermitian hulls of arbitrary dimensions, and then
they also supplied the corresponding EAQECCs with flexible
parameters. Note that the �-Galois dual code C⊥� introduced
by Fan and Zhang [14] generalizes both the Euclidean dual
code C⊥E and the Hermitian dual code C⊥H . Consequently,
the �-Galois hull of C, denoted by Hull�(C) = C ⋂ C⊥� , is
a generalization of the Euclidean hull and Hermitian hull of
C. Naturally, we may wonder how to construct MDS codes
with �-Galois hulls of arbitrary dimensions. Once such MDS
codes are constructed, some new families of EAQECCs may
be obtained subsequently.

In this paper, our goal is to construct q-ary MDS codes
with �-Galois hulls of arbitrary dimensions and obtain new
[[n, k, d; c]]q EAQECCs with relatively large minimum dis-
tance in the sense that 2d = n−k+2+c. Compared with [16]
and [46], the research scope is extended from the Euclidean
hulls and Hermitian hulls to the �-Galois hulls. To achieve

this goal, we first provide a necessary and sufficient condition
under which a codeword of a GRS code or an extended GRS
code belongs to its �-Galois dual code (see Propositions II.1
and II.2), which generalizes both the Euclidean case in [9] and
the Hermitian case in [15]. By utilizing this condition, we then
construct eleven families of MDS codes with �-Galois hulls of
arbitrary dimensions by means of: (i) the norm mapping from
F∗

q to F∗
p� (see Theorems III.1-III.3); (ii) the direct product of

two cyclic subgroups (see Theorems III.4-III.6); (iii) the coset
decomposition of a cyclic group (see Theorems III.7-III.9);
and (iv) an additive subgroup of Fq and its cosets
(see Theorems III.10 and III.11). Using these MDS codes,
we give eleven families of EAQECCs with relatively large
minimum distance as follows.

Let q = pe with p being an odd prime number and let � be
an integer with 0 ≤ � ≤ e− 1. Let x1 and x2 be two positive
integers. Then, there exists an [[n, k−h, n−k+1; n−k−h]]q
EAQECC with relatively large minimum distance if one of the
following eleven conditions holds:

(a) n = t(q−1)
p�−1

, 1 ≤ t ≤ p� − 1, 1 ≤ k ≤ �p�+n
p�+1

�, 2� | e

and 0 ≤ h ≤ k − 1 (see Theorem IV.1 (1));
(b) n = t(q−1)

p�−1
+1, 1 ≤ t ≤ p� −1, 1 ≤ k ≤ �p�+n

p�+1
�, 2� | e

and 0 ≤ h ≤ k (see Theorem IV.1 (2));
(c) n = t(q−1)

p�−1
+2, 1 ≤ t ≤ p� − 1, 1 ≤ k ≤ �p�+n

p�+1
�, 2� | e

and 0 ≤ h ≤ k − 1 (see Theorem IV.1 (3));
(d) n = r(q−1)

gcd(x2,q−1) , q−1
p�−1

| x1, (q − 1) | lcm(x1, x2), 1 ≤
r ≤ q−1

gcd(x1,q−1) , 1 ≤ k ≤ �p�+n
p�+1

�, 2� | e and 0 ≤ h ≤ k − 1
(see Theorem IV.2 (1));

(e) n = r(q−1)
gcd(x2,q−1) + 1, q−1

p�−1
| x1, (q − 1) | lcm(x1, x2),

1 ≤ r ≤ q−1
gcd(x1,q−1) , 1 ≤ k ≤ �p�+n

p�+1
�, 2� | e and 0 ≤ h ≤ k

(see Theorem IV.2 (2));
(f) n = r(q−1)

gcd(x2,q−1) + 2, q−1
p�−1

| x1, (q − 1) | lcm(x1, x2),

1 ≤ r ≤ q−1
gcd(x1,q−1) , 1 ≤ k ≤ �p�+n

p�+1 �, 2� | e and 0 ≤ h ≤
k − 1 (see Theorem IV.2 (3));

(g) n = rm, m | (q − 1), 1 ≤ r ≤ p�−1
m1

, m1 = m
gcd(m,y) ,

y = q−1
p�−1

, 1 ≤ k ≤ �p�+n
p�+1

�, 2� | e and 0 ≤ h ≤ k − 1 (see
Theorem IV.3 (1));

(h) n = rm+1, m | (q−1), 1 ≤ r ≤ p�−1
m1

, m1 = m
gcd(m,y) ,

y = q−1
p�−1

, 1 ≤ k ≤ �p�+n
p�+1

�, 2� | e and 0 ≤ h ≤ k (see
Theorem IV.3 (2));

(i) n = rm+2, m | (q−1), 1 ≤ r ≤ p�−1
m1

, m1 = m
gcd(m,y) ,

y = q−1
p�−1 , 1 ≤ k ≤ �p�+n

p�+1 �, 2� | e and 0 ≤ h ≤ k − 1 (see
Theorem IV.3 (3));

(j) n = tpaw, 1 ≤ t ≤ pa, 1 ≤ w ≤ e
a − 1, 1 ≤ k ≤

�p�+n−1
p�+1 �, a | �, 2� | e and 0 ≤ h ≤ k (see Theorem IV.4 (1));

(k) n = tpaw + 1, 1 ≤ t ≤ pa, 1 ≤ w ≤ e
a − 1,

1 ≤ k ≤ �p�+n−1
p�+1

�, a | �, 2� | e and 0 ≤ h ≤ k − 1 (see

Theorem IV.4 (2)).
For each theorem of Theorems IV.1-IV.4, we show that

the variables � with 2� | e correspond to different kinds
of EAQECCs in the sense that they have different kinds of
length sets, by providing some examples and several tables
for � = 1, 2, 3 (see Tables V and VIII) and � = 1, 2
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(see Tables VI and VII). This is an important advantage of
developing the theory on �-Galois hulls of MDS codes in this
paper. We also show that some lengths coming from the set
of length n in Theorem IV.1 cannot be obtained by the set of
length n in Theorem IV.2, and vice versa, by providing a table
(see Table IX) for p = 3, e = 8 and � = 2.

The remainder of this paper is organized as follows.
In Sect. II, we recall and give some results about �-Galois
dual codes, GRS codes and extended GRS codes. In Sect. III,
we construct eleven families of q-ary MDS codes with �-Galois
hulls of arbitrary dimensions. In Sect. IV, by applying these
MDS codes constructed in Sect. III we obtain eleven families
of [[n, k, d; c]]q EAQECCs with relatively large minimum
distance in the sense that 2d = n − k + 2 + c. Sect. V
makes a detailed discussion on the lengths of our EAQECCs
for different variables �. Finally, Sect. VI gives a summary of
this paper and offers two open problems.

II. PRELIMINARIES

Throughout this paper, we always assume that q = pe is a
prime power, where p is a prime number and e is a positive
integer. Denote F∗

q = Fq\{0}, where Fq is the finite field
with q elements. For any finite set S, we denote by |S| its
cardinality, namely, the number of all the elements in S.

As usual, we denote by [n, k, d]q a classical linear code
over Fq with length n, dimension k and minimum distance d.
The minimum distance d of a linear code must satisfy the
well-known Singleton bound d ≤ n + 1 − k. If the minimum
distance achieves the bound, i.e., d = n + 1 − k, then such
a linear code is called a maximum distance separable (MDS)
code.

We need to recall the following important concepts intro-
duced by Fan and Zhang [14].

Definition II.1 ([14]): (1) Let x = (x1, x2, . . . , xn), y =
(y1, y2, . . . , yn) ∈ Fn

q . For each integer � with 0 ≤ � ≤ e − 1,
the inner product

(x,y)� =
n∑

i=1

xiy
p�

i

is called the �-Galois inner product (i.e., p�-inner product) of
x and y.

(2) Let C be a linear code with length n over Fq . For each
integer � with 0 ≤ � ≤ e − 1, the code

C⊥� = {x ∈ Fn
q |(y,x)� = 0 for each y ∈ C}

is called the �-Galois dual code (i.e., p�-dual code) of C.
In particular, in the above definition,

• If � = 0, then (x,y)0 is just the Euclidean inner product
of x and y. Besides, C⊥0 is the Euclidean dual code of
C.

• If e is even and � = e
2 , then (x,y) e

2
is just the Hermitian

inner product of x and y. Besides, C⊥ e
2 is the Hermitian

dual code of C.

As usual, we use the notations C⊥E and C⊥H to denote C⊥0

and C⊥ e
2 (if e is even), respectively. Further, for each integer

� with 0 ≤ � ≤ e − 1, we call Hull�(C) := C ⋂ C⊥� the

�-Galois hull of C. Naturally, the concept of the �-Galois hull
is a generalization of the Euclidean hull and Hermitian hull.

For a vector v = (v1, v2, . . . , vn) ∈ Fn
q , we define va =

(va
1 , va

2 , . . . , va
n) for any integer a. Let M be a subset of Fn

q ,
then Ma is defined as the set {va|v ∈ M}.

The following useful lemma given by Liu et al. characterizes
the �-Galois dual code of a linear code.

Lemma II.1 ([41]): For an [n, k, d]q linear code C, we have
C⊥� = (Cpe−�

)⊥E for 0 ≤ � ≤ e − 1.
Now let us recall and study the generalized Reed-Solomon

(GRS) codes and the extended GRS codes. Take a =
(a1, a2, . . . , an) with a1, a2, . . . , an being distinct elements in
Fq, and put v = (v1, v2, . . . , vn) with v1, v2, . . . , vn ∈ F∗

q .
Suppose k ≤ n ≤ q, then the k-dimensional GRS code with
respect to a and v is defined as

GRSk(a,v) = {(v1f(a1), v2f(a2), . . . , vnf(an))|
f(x) ∈ Fq[x], deg(f(x)) ≤ k − 1}.

It is an [n, k, n−k+1]q MDS code whose generator matrix
is

Gk(a,v) =

⎡⎢⎢⎢⎢⎣
v1 v2 · · · vn

v1a1 v2a2 · · · vnan

...
...

. . .
...

v1a
k−1
1 v2a

k−1
2 · · · vnak−1

n

⎤⎥⎥⎥⎥⎦ . (1)

Moreover, the k-dimensional extended GRS code with
respect to a and v is defined as

GRSk(a,v,∞) = {(v1f(a1), . . . , vnf(an), fk−1)|
f(x) ∈ Fq[x], deg(f(x)) ≤ k − 1},

where fk−1 denotes the coefficient of xk−1 in f(x). It is not
difficult to verify that GRSk(a,v,∞) is an [n+1, k, n−k+2]q
MDS code whose generator matrix is

Gk(a,v,∞) =

⎡⎢⎢⎢⎢⎢⎢⎣

v1 v2 · · · vn 0

v1a1 v2a2 · · · vnan 0
...

...
. . .

...
...

v1a
k−2
1 v2a

k−2
2 · · · vnak−2

n 0

v1a
k−1
1 v2a

k−1
2 · · · vnak−1

n 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

(2)

From now on, for each i = 1, 2, . . . , n, we shall denote by

ui =
∏

1≤j≤n,j �=i

(ai − aj)−1. (3)

Let 1 = (1, 1, . . . , 1) be the all one vector. By the
above basics, the Euclidean dual codes GRSk(a,1)⊥E and
GRSk(a,1,∞)⊥E can be expressed as follows.

Lemma II.2 ([34]): Let u = (u1, u2, . . . , un), where each
ui is defined by Eq. (3). Then,

GRSk(a,1)⊥E = GRSn−k(a,u).

Lemma II.3 ([15]):

GRSk(a,1,∞)⊥E = {(u1g(a1), . . . , ung(an),−gn−k)|
g(x) ∈ Fq[x], deg(g(x)) ≤ n − k},

where gn−k denotes the coefficient of xn−k in g(x).
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Based on Lemma II.2, the following proposition provides a
necessary and sufficient condition under which a codeword c
of GRSk(a,v) belongs to GRSk(a,v)⊥� .

Proposition II.1: For c = (v1f(a1), v2f(a2), . . . , vn

f(an)) ∈ GRSk(a,v), we have c ∈ GRSk(a,v)⊥� if
and only if there exists a polynomial g(x) ∈ Fq[x] with
deg(g(x)) ≤ n − k − 1 such that

(vp�+1
1 fp�

(a1), v
p�+1
2 fp�

(a2), . . . , vp�+1
n fp�

(an))
= (u1g(a1), u2g(a2), . . . , ung(an)). (4)

Proof: By Eq. (1), we know that

Gk(a,v) = Gk(a,1)D,

where D = diag(v1, v2, . . . , vn). Then, by Lemmas II.1
and II.2, we have that

c ∈ GRSk(a,v)⊥� ⇔ c ∈ (GRSk(a,v)⊥E )pe−�

⇔ cp� ∈ GRSk(a,v)⊥E

⇔ Gk(a,v)(cp�

)T = 0

⇔ Gk(a,1)D(cp�

)T = 0

⇔ cp�

D ∈ GRSk(a,1)⊥E

⇔ cp�

D ∈ GRSn−k(a,u).

Thus, the proof is completed.
Remark II.1: Proposition II.1 generalizes both the Euclid-

ean case (i.e., � = 0) in [9, Lemma 2] and the Hermitian case
(i.e., � = e

2 for even e) in [15, Lemma 6].
For the extended GRS code GRSk(a,v,∞), we give the

following proposition by using Lemma II.3.
Proposition II.2: For c = (v1f(a1), v2f(a2), . . . , vnf(an),

fk−1) ∈ GRSk(a,v,∞), we have c ∈ GRSk(a,v,∞)⊥�

if and only if there exists a polynomial g(x) ∈ Fq[x] with
deg(g(x)) ≤ n − k such that

(vp�+1
1 fp�

(a1), . . . , vp�+1
n fp�

(an), fp�

k−1)
= (u1g(a1), . . . , ung(an),−gn−k). (5)

Proof: According to Eq. (2), we have that

Gk(a,v,∞) = Gk(a,1,∞)D̃,

where D̃ = diag(v1, . . . , vn, 1). Then, by Lemma II.1, we have
that

c ∈ GRSk(a,v,∞)⊥� ⇔ c ∈ (GRSk(a,v,∞)⊥E )pe−�

⇔ cp� ∈ GRSk(a,v,∞)⊥E

⇔ Gk(a,v,∞)(cp�

)T = 0

⇔ Gk(a,1,∞)D̃(cp�

)T = 0

⇔ cp�

D̃ ∈ GRSk(a,1,∞)⊥E .

Applying Lemma II.3, we finish the proof.
Remark II.2: Proposition II.2 generalizes both the Euclid-

ean case (i.e., � = 0) in [9, Lemma 3] and the Hermitian case
(i.e., � = e

2 for even e) in [15, Lemma 7].
Propositions II.1 and II.2 provide us with an effective

method for deriving the expression of the polynomial f(x).

By virtue of them, in the next section, we can determine
the dimensions of the �-Galois hulls of some GRS codes and
extended GRS codes in a convenient way.

III. CONSTRUCTIONS OF MDS CODES WITH �-GALOIS

HULLS OF ARBITRARY DIMENSIONS

In this section, we will construct several families of MDS
codes with �-Galois hulls of arbitrary dimensions. The phrase
‘arbitrary dimensions’ appeared previously in [16] and [46]
when describing the MDS codes with Euclidean hulls and
Hermitian hulls therein. Here, it represents that the �-Galois
hulls of our MDS codes can take all or almost all possible
dimensions. More precisely, the dimensions of the �-Galois
hulls in this section run through the integers from 0 to k,
or k − 1 (in fact, 0 ≤ dim(Hull�(C)) ≤ k), where k is the
dimension of the MDS code C.

As can be seen in Propositions II.1 and II.2, an impor-
tant point of our constructions is to take n suitable dis-
tinct elements a1, a2, . . . , an as the coordinates of the vec-
tor a in GRSk(a,v) or GRSk(a,v,∞). Further, for the
convenience of calculating the values of u1, u2, . . . , un

(see Eq. (3)), we find several kinds of suitable elements
a1, a2, . . . , an related to (i) the norm mapping from F∗

q to F∗
p�

(see Theorems III.1-III.3); (ii) the direct product of two cyclic
subgroups (see Theorems III.4-III.6); (iii) the coset decompo-
sition of a cyclic group (see Theorems III.7-III.9); and (iv) an
additive subgroup of Fq and its cosets (see Theorems III.10
and III.11). By utilizing these tools, we present eleven families
of MDS codes with �-Galois hulls of arbitrary dimensions in
the following four subsections.

A. MDS Codes Related to the Norm Mapping From F∗
q to F∗

p�

Let q = pe with p being a prime number, 0 ≤ � ≤
e − 1. Assume that � | e. Consider the following surjective
homomorphism called the norm mapping:

Norm : F∗
q → F∗

p�

x �→
e
� −1∏
i=0

xpi�

= x
q−1

p�−1 .

Denote by F∗
p� = {b1, b2, . . . , bp�−1}. For each bi ∈ F∗

p� ,
i = 1, 2, . . . , p� − 1, define

Ni = {x ∈ F∗
q | Norm(x) = bi}.

Then Ni = βiKer(Norm), where Norm(βi) = bi holds for
some βi ∈ F∗

q since Norm is surjective, and Ker(Norm) =
{x ∈ F∗

q | Norm(x) = 1} is the kernel of Norm. This
yields that |Ni| =

∣∣Ker(Norm)
∣∣. On the one hand, by the

fundamental homomorphism theorem, we have that

F∗
q/Ker(Norm) ∼= Im(Norm) ≤ F∗

p� ,

where Im(Norm) is the image of Norm. Then, we have∣∣F∗
q/Ker(Norm)

∣∣ ≤ p� − 1. On the other hand, since∣∣Ker(Norm)
∣∣ ≤ q−1

p�−1
, we know that

∣∣F∗
q/Ker(Norm)

∣∣ ≥
p�−1. Hence,

∣∣F∗
q/Ker(Norm)

∣∣ = p�−1, i.e.,
∣∣Ker(Norm)

∣∣ =
q−1
p�−1

. Therefore, |Ni| = q−1
p�−1

.
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Now, denote by

N =
t⋃

i=1

Ni = {a1, a2, . . . , an}, (6)

where 1 ≤ t ≤ p� − 1. Then, n = t(q−1)
p�−1

for 1 ≤ t ≤ p� − 1,
and Ni ∩ Nj = ∅ hold for all i �= j. Therefore, we have the
following lemma.

Lemma III.1: Let ai and ui be defined as in Eqs. (6) and (3),
respectively. Assume that � | e. Then, a−1

i ui ∈ F∗
p� holds for

each i = 1, 2, . . . , n.
Proof: For any ai ∈ N , i = 1, 2, . . . , n, we may assume

ai ∈ Ns for some 1 ≤ s ≤ t. Then Norm(ai) = bs = a
q−1

p�−1
i .

By Eq. (3), we see that

ui =
∏

cj∈Ns,cj �=ai

(ai − cj)−1 ·
∏

1≤s′≤t,s′ �=s

∏
dj′∈Ns′

(ai − dj′)−1.

(7)

Let u(x) =
∏

cj∈Ns
(x− cj), then u(x) = Norm(x)− bs =

x
q−1

p�−1 − bs. Since ai ∈ Ns, then∏
cj∈Ns,cj �=ai

(ai − cj) = u�(ai) =
q − 1
p� − 1

a
q−1

p�−1
−1

i .

Noticing that q−1
p�−1 ≡ 1 mod p, we obtain∏

cj∈Ns,cj �=ai

(ai − cj)−1 = a
1− q−1

p�−1
i .

Hence,

a−1
i

∏
cj∈Ns,cj �=ai

(ai − cj)−1 = a
− q−1

p�−1
i ∈ F∗

p� . (8)

By
∏

dj′∈Ns′
(x − dj′) = Norm(x) − bs′ , we have that∏
1≤s′≤t,s′ �=s

∏
dj′∈Ns′

(ai − dj′ )−1

=
∏

1≤s′≤t,s′ �=s

(
Norm(ai) − bs′

)−1

=
∏

1≤s′≤t,s′ �=s

(bs − bs′)−1 ∈ F∗
p� . (9)

It follows from Eqs. (7)-(9) that a−1
i ui ∈ F∗

p� . Therefore,
the proof is completed.

As shown in Lemma III.1, a−1
i ui ∈ F∗

p� holds under some
suitable conditions. Now, for any u ∈ F∗

p� , observing Eq. (4)
in Proposition II.1 and Eq. (5) in Proposition II.2, we wonder
if there exists v ∈ F∗

q such that vp�+1 = u. If such a relation
exists, then it will help us to explore the structure of the
polynomial f(x) in Propositions II.1 and II.2, which makes
it easy to determine the dimensions of the �-Galois hulls of
some GRS codes and extended GRS codes.

In the following lemma, we give a necessary and sufficient
condition under which the relation vp�+1 = u holds.

Lemma III.2: Let q = pe with p being an odd prime number
and let 0 ≤ � ≤ e − 1. Then, for any u ∈ F∗

p� , there exists

v ∈ F∗
q such that vp�+1 = u if and only if 2� | e.

Proof: First of all, as Fp� is required to be a subfield of Fq,
we immediately obtain � | e. Let e = ��� for some integer ��.
Assume F∗

q = �ε�, then ord(εp�+1) = q−1
gcd(q−1,p�+1) . Denote

by

H := {xp�+1|x ∈ F∗
q},

then H is a subgroup of F∗
q with ord(H) = q−1

gcd(q−1,p�+1)
.

Besides, F∗
p� is a subgroup of F∗

q with ord(F∗
p�) = p� − 1.

Therefore, we have that

F∗
p� ⊆ H ⇔ (p� − 1)

∣∣∣ q − 1
gcd(q − 1, p� + 1)

⇔ (p� − 1) · gcd(q − 1, p� + 1) | (q − 1).

Note that

gcd(q − 1, p� + 1) = gcd(((p� + 1) − 1)�′ − 1, p� + 1)

= gcd((−1)�′ − 1, p� + 1)

=

{
2, if �� is odd;
p� + 1, if �� is even.

Case (i): If �� is odd, then (p� − 1) · gcd(q − 1, p� + 1) =
2(p� − 1). Besides, we know that q − 1 = p��′ − 1 = (p� −
1)

∑�′−1
i=0 p�i. Observing that

∑�′−1
i=0 p�i is odd, we obtain that

(p� − 1) · gcd(q − 1, p� + 1) � (q − 1).

Case (ii): If �� is even, assume �� = 2��� for some integer ���.
Then q − 1 = p��′ − 1 = p2��′′ − 1. Combining this with the
fact (p� − 1) · gcd(q − 1, p� + 1) = p2� − 1, we obtain that

(p� − 1) · gcd(q − 1, p� + 1) | (q − 1).

Thus, we conclude that F∗
p� ⊆ H ⇔ 2� | e, which completes

the proof.
By using the previous lemmas, we give the following [n, k]q

MDS codes with �-Galois hulls of arbitrary dimensions.
Theorem III.1: Let q = pe with p being an odd prime

number. Assume 2� | e. Let n = t(q−1)
p�−1

for each 1 ≤ t ≤
p� − 1. Then, for any 1 ≤ k ≤ �p�+n

p�+1
� and 0 ≤ h ≤ k − 1,

there exists an [n, k]q MDS code with h-dimensional �-Galois
hull.

Proof: Let a1, a2, . . . , an be defined by Eq. (6). For each
1 ≤ i ≤ n, by Lemma III.1, we have a−1

i ui ∈ F∗
p� . Further,

in terms of Lemma III.2, there exists vi ∈ F∗
q such that

vp�+1
i = a−1

i ui. Set z := k − 1 − h and take β ∈ F∗
q

such that γ := βp�+1 �= 1. Put a = (a1, a2, . . . , an) and
v = (βv1, . . . , βvz , vz+1, . . . , vn). Consider the �-Galois hull
of the [n, k]q MDS code C := GRSk(a,v). Then for any
c = (βv1f(a1), . . . , βvzf(az), vz+1f(az+1), . . . , vnf(an)) ∈
Hull�(C) with deg(f(x)) ≤ k−1, in terms of Proposition II.1,
there exists a polynomial g(x) ∈ Fq[x] with deg(g(x)) ≤
n − k − 1 such that

(βp�+1vp�+1
1 fp�

(a1), . . . , βp�+1vp�+1
z fp�

(az), v
p�+1
z+1 fp�

(az+1),

. . . , vp�+1
n fp�

(an)) = (u1g(a1), u2g(a2), . . . , ung(an)).

Authorized licensed use limited to: Tsinghua University. Downloaded on May 17,2022 at 11:10:11 UTC from IEEE Xplore.  Restrictions apply. 



CAO: MDS CODES WITH GALOIS HULLS OF ARBITRARY DIMENSIONS AND RELATED EAQEC 7969

That is,

(γa−1
1 u1f

p�

(a1), . . . , γa−1
z uzf

p�

(az), a−1
z+1uz+1f

p�

(az+1),

. . . , a−1
n unfp�

(an)) = (u1g(a1), u2g(a2), . . . , ung(an)).
(10)

Comparing the last n− z coordinates of Eq. (10), we have
a−1

i uif
p�

(ai) = uig(ai), i.e., fp�

(ai) = aig(ai) for i = z +
1, . . . , n. Hence the number of the distinct roots of fp�

(x) −
xg(x) is at least n − z ≥ n − k + 1. Since k ≤ �p�+n

p�+1
�, we

have deg(fp�

(x)) ≤ p�(k − 1) ≤ n − k, which, together with
deg(xg(x)) ≤ n−k, derives that deg(fp�

(x)−xg(x)) ≤ n−k.
This implies that fp�

(x) = xg(x) and hence x | f(x).
Observing the first z coordinates of Eq. (10), we know that

γa−1
i uif

p�

(ai) = uig(ai) = uia
−1
i fp�

(ai)

for i = 1, . . . , z. Hence fp�

(ai) = 0, i.e., f(ai) = 0 for
i = 1, . . . , z. Then we can express f(x) as

f(x) = xc(x)
z∏

i=1

(x − ai)

for some c(x) ∈ Fq[x] with deg(c(x)) ≤ k − z − 2. Thus,
dim(Hull�(C)) ≤ k − z − 1.

Conversely, let f(x) = xc(x)
∏z

i=1(x − ai), where
c(x) ∈ Fq[x] with deg(c(x)) ≤ k − z − 2. Taking
g(x) = x−1fp�

(x), then deg(g(x)) ≤ p�(k−1)−1 ≤ n−k−1
and Eq. (10) holds. By Proposition II.1, we have
(βv1f(a1), . . . , βvzf(az), vz+1f(az+1), . . . , vnf(an)) ∈
Hull�(C), which means that dim(Hull�(C)) ≥ k − z − 1.

Therefore, we obtain dim(Hull�(C)) = k − z − 1 = h,
which completes the proof.

Next, based on Theorem III.1, we proceed to construct a
family of MDS codes of length n + 1 from GRS codes with
�-Galois hulls of arbitrary dimensions as follows.

Theorem III.2: Let q = pe with p being an odd prime
number. Assume 2� | e. Let n = t(q−1)

p�−1
for each 1 ≤ t ≤

p� − 1. Then, for any 1 ≤ k ≤ �p�+n
p�+1

� and 0 ≤ h ≤ k, there
exists an [n + 1, k]q MDS code with h-dimensional �-Galois
hull.

Proof: Let a1, a2, . . . , an be defined as in Eq. (6) and let
an+1 = 0. For each 1 ≤ i ≤ n, in view of Lemma III.1, we
have that∏
1≤j≤n+1,j �=i

(ai − aj)−1 = a−1
i

∏
1≤j≤n,j �=i

(ai − aj)−1 ∈ F∗
p� .

For i = n + 1, we know that
n∏

j=1

(an+1 − aj)−1 = (−1)n

[ t∏
i=1

( ∏
aj∈Ni

aj

)]−1

. (11)

Let us compute
∏

aj∈Ni
aj . Denote by

Ni =
{
ai,1, ai,2, . . . , ai, q−1

p�−1

}
,

then for each aj ∈ Ni, i.e., for each ai,r ∈ Ni, where r =

1, 2, . . . , q−1
p�−1

, we have Norm(ai,r) = bi = a
q−1

p�−1
i,r , and thus

x
q−1

p�−1 − bi = (x − ai,1)(x − ai,2) · · ·
(
x − ai, q−1

p�−1

)
,

which implies that
∏ q−1

p�−1
r=1 ai,r = (−1)

p�−q

p�−1 bi. Substituting this
into Eq. (11), we obtain that

n∏
j=1

(an+1 − aj)−1 = (−1)n

[ t∏
i=1

(−1)
p�−q

p�−1 bi

]−1

= (−1)n+ t(q−p�)
p�−1

t∏
i=1

b−1
i ∈ F∗

p� .

Denote wi =
∏

1≤j≤n+1,j �=i(ai − aj)−1, i = 1, . . . , n + 1.
Then, from Lemma III.2, there exists vi ∈ F∗

q such that

vp�+1
i = wi for i = 1, . . . , n + 1. Set z := k − h

and take β ∈ F∗
q such that γ := βp�+1 �= 1. Put a =

(a1, a2, . . . , an+1) and v = (βv1, . . . , βvz, vz+1, . . . , vn+1).
Consider the �-Galois hull of the [n + 1, k]q
MDS code C := GRSk(a,v). Then for any c =
(βv1f(a1), . . . , βvzf(az), vz+1f(az+1), . . . , vn+1f(an+1)) ∈
Hull�(C) with deg(f(x)) ≤ k − 1, by Proposition II.1, there
exists a polynomial g(x) ∈ Fq[x] with deg(g(x)) ≤ n − k
such that

(βp�+1vp�+1
1 fp�

(a1), . . . , βp�+1vp�+1
z fp�

(az), v
p�+1
z+1 fp�

(az+1),

. . . ,vp�+1
n+1 fp�

(an+1))=(w1g(a1),w2g(a2), . . . ,wn+1g(an+1)).

That is,

(γw1f
p�

(a1), . . . , γwzf
p�

(az), wz+1f
p�

(az+1),

. . . , wn+1f
p�

(an+1))
= (w1g(a1), w2g(a2), . . . , wn+1g(an+1)). (12)

From the last n − z + 1 coordinates of Eq. (12), we have
wif

p�

(ai) = wig(ai), i.e., fp�

(ai) = g(ai) for i = z +
1, . . . , n+1. Hence the number of the distinct roots of fp�

(x)−
g(x) is at least n− z + 1 ≥ n− k + 1. Since k ≤ �pl+n

p�+1
�, we

have deg(fp�

(x)) ≤ p�(k − 1) ≤ n − k, which, together with
deg(g(x)) ≤ n− k, derives that deg(fp�

(x)− g(x)) ≤ n− k.
Hence fp�

(x) = g(x).
Observing the first z coordinates of Eq. (12), we have that

γwif
p�

(ai) = wig(ai) = wif
p�

(ai)

for i = 1, . . . , z. Hence fp�

(ai) = 0, i.e., f(ai) = 0 for
i = 1, . . . , z. Then we can write f(x) as

f(x) = c(x)
z∏

i=1

(x − ai)

for some c(x) ∈ Fq[x] with deg(c(x)) ≤ k − z − 1. Thus
dim(Hull�(C)) ≤ k − z.

Conversely, similar to the proof of Theorem III.1, we have
dim(Hull�(C)) ≥ k − z.

Therefore, dim(Hull�(C)) = k − z = h, which completes
the proof.

Now, if we consider the extended GRS code
GRSk(a,v,∞) of length n + 2 with a and v being
defined as in the proof of Theorem III.2, then a new family
of MDS codes with �-Galois hulls of arbitrary dimensions
can be yielded as follows.

Theorem III.3: Let q = pe with p being an odd prime
number. Assume 2� | e. Let n = t(q−1)

p�−1 for each 1 ≤ t ≤
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p� − 1. Then, for any 1 ≤ k ≤ �p�+n
p�+1

� and 0 ≤ h ≤ k − 1,
there exists an [n + 2, k]q MDS code with h-dimensional �-
Galois hull.

Proof: Set z := k − 1 − h and take β ∈ F∗
q such

that γ := βp�+1 �= 1. Let a = (a1, a2, . . . , an+1),
v = (βv1, . . . , βvz , vz+1, . . . , vn+1) and wi be defined
as in the proof of Theorem III.2. We can consider
the �-Galois hull of the [n + 2, k]q MDS code C :=
GRSk(a,v,∞). Then for any c = (βv1f(a1), . . . , βvz

f(az), vz+1f(az+1), . . . , vn+1f(an+1), fk−1) ∈ Hull�(C)
with deg(f(x)) ≤ k − 1, by Proposition II.2, there exists a
polynomial g(x) ∈ Fq[x] with deg(g(x)) ≤ n − k + 1 such
that

(βp�+1vp�+1
1 fp�

(a1), . . . , βp�+1vp�+1
z fp�

(az),

vp�+1
z+1 fp�

(az+1), . . . , v
p�+1
n+1 fp�

(an+1), f
p�

k−1)

= (w1g(a1), . . . , wn+1g(an+1),−gn−k+1).

That is,

(γw1f
p�

(a1), . . . , γwzf
p�

(az), wz+1f
p�

(az+1),

. . . , wn+1f
p�

(an+1), f
p�

k−1)

= (w1g(a1), . . . , wn+1g(an+1),−gn−k+1). (13)

For i = z+1, . . . , n+1, by comparing the i-th coordinate of
Eq. (13), we have wif

p�

(ai) = wig(ai), i.e., fp�

(ai) = g(ai).
Hence the number of the distinct roots of fp�

(x) − g(x) is
at least n − z + 1 ≥ n − k + 2. Since k ≤ �p�+n

p�+1
�, we

have deg(fp�

(x)) ≤ p�(k − 1) ≤ n − k, which, together with
deg(g(x)) ≤ n − k + 1 derives that deg(fp�

(x) − g(x)) ≤
n − k + 1. Hence fp�

(x) = g(x).
Moreover, we have fp�

k−1 = −gn−k+1 from Eq. (13).

Assume that fk−1 �= 0. By deg(fp�

(x)) = deg(g(x)), we have
p�(k − 1) = n − k + 1, which yields a contradiction since
p�(k − 1) ≤ n − k. Hence, fk−1 = 0, implying that
deg(f(x)) ≤ k − 2.

According to the first z coordinates of Eq. (13), we have
that

γwif
p�

(ai) = wig(ai) = wif
p�

(ai)

for i = 1, . . . , z. Hence fp�

(ai) = 0, i.e., f(ai) = 0 for
i = 1, . . . , z. Then f(x) can be written as

f(x) = c(x)
z∏

i=1

(x − ai)

for some c(x) ∈ Fq[x] with deg(c(x)) ≤ k − 2 − z. Thus
dim(Hull�(C)) ≤ k − 1 − z.

Conversely, similar to the proofs of Theorems III.1 and III.2,
we get dim(Hull�(C)) ≥ k − 1 − z.

Therefore, dim(Hull�(C)) = k−1−z = h, which completes
the proof.

Remark III.1: Note that the lengths n of the
MDS codes in Theorems III.1, III.2 and III.3 are
q−1
p�−1

, 2(q−1)
p�−1

, . . . , (p�−2)(q−1)
p�−1

, q − 1, which are related

to � except the last one. Substituting these lengths n = t(q−1)
p�−1

into the upper bound p�+n
p�+1

of the dimension k gives

rise to p�+n
p�+1

=
p�+ t(q−1)

p�−1
p�+1

= p2�−p�+t(q−1)
p2�−1

. Then, for
a fixed t (there always exist some fixed t for different
�1 and �2, for example, take t = 1, 2), the derivative

(p2�−p�+t(q−1)
p2�−1

)� = p2�[p�−2t(q−1)]lnp+(p�−2p2�)lnp
(p2�−1)2

< 0. This
together with the condition 2� | e (means 1 ≤ � ≤ e

2 ) reveals
that the range of the dimension k for any 1 ≤ � < e

2 with
2� | e is wider than the range of the dimension k for the
Hermitian case � = e

2 . Therefore, the [n, k]q, [n + 1, k]q and
[n + 2, k]q MDS codes in Theorems III.1, III.2 and III.3 with

dimension k satisfying �p
e
2 +n

p
e
2 +1

� + 1 ≤ k ≤ �p�+n
p�+1

� for any

1 ≤ � < e
2 with 2� | e cannot be obtained by the Hermitian

case � = e
2 . For example, take p = 5, e = 4, � = 1 and

t = 1 in Theorems III.1, III.2 and III.3, then n = 156, and
hence � 51+156

51+1 � = 26 and � 52+156
52+1 � = 6. Therefore, we can

obtain [156, k]54 , [157, k]54 and [158, k]54 MDS codes for
each 1 ≤ k ≤ 26, while for the same length, MDS codes
with dimension k satisfying 7 ≤ k ≤ 26 cannot be produced
from those by considering the Hermitian case � = 2.

B. MDS Codes Related to the Direct Product of Two Cyclic
Subgroups

In this subsection, we will present another three families of
MDS codes with �-Galois hulls of arbitrary dimensions. The
coordinates of the vector a in GRSk(a,v) or GRSk(a,v,∞)
are obtained via the direct product of two cyclic subgroups.

First, let us give the following lemma, which is useful for
constructing the coordinates of the vector a in GRSk(a,v).

Lemma III.3: Let x1 and x2 be two positive integers. Denote
by ξ1 = αx1 and ξ2 = αx2 , where α is a primitive element of
Fq. Then,

gcd(ord(ξ1), ord(ξ2)) = 1 ⇔ (q − 1) | lcm(x1, x2),

where ord(x) denotes the order of the element x in F∗
q .

Proof: Since ord(ξ1) = q−1
gcd(x1,q−1) and ord(ξ2) =

q−1
gcd(x2,q−1) , then gcd(ord(ξ1), ord(ξ2)) = 1 if and only if

gcd
(

q − 1
gcd(x1, q − 1)

,
q − 1

gcd(x2, q − 1)

)
= 1. (14)

Let S be the set consisting of all the prime divisors of q−1,
x1 and x2. Assume q − 1 =

∏
pi∈S pαi

i , x1 =
∏

pi∈S pβi

i and
x2 =

∏
pi∈S pγi

i , where αi, βi, γi ∈ N, then we have that

gcd(x1, q − 1) =
∏

pi∈S

p
min(αi,βi)
i ,

which implies that

q − 1
gcd(x1, q − 1)

=
∏

pi∈S

p
αi−min(αi,βi)
i .

Hence, Eq. (14) holds if and only if for each i,

0 = min(αi − min(αi, βi), αi − min(αi, γi))
= αi − max(min(αi, βi), min(αi, γi)).
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That is,

αi = max(min(αi, βi), min(αi, γi))
⇔ αi = min(αi, βi) or αi = min(αi, γi)
⇔ αi ≤ βi or αi ≤ γi

⇔ αi ≤ max(βi, γi)
⇔ (q − 1) | lcm(x1, x2).

This completes the proof.
Remark III.2: By Lemma III.3, we know that for two

positive integers x1 and x2, the group �ξ1�⊗�ξ2� for ξ1 = αx1

and ξ2 = αx2 is a subgroup of F∗
q with order ord(ξ1)·ord(ξ2) if

(q− 1) | lcm(x1, x2). This implies that the elements ξi1
1 ξj1

2 �=
ξi2
1 ξj2

2 for any (i1, j1) �= (i2, j2), where 1 ≤ i1, i2 ≤ ord(ξ1)
and 1 ≤ j1, j2 ≤ ord(ξ2). Therefore, these elements can be
taken as the coordinates of the vector a in GRSk(a,v) or
GRSk(a,v,∞).

Let α be a primitive element of Fq . Consider ξ1 = αx1 and
ξ2 = αx2 for two positive integers x1 and x2. Let n = r1r2,
where 1 ≤ r1 ≤ ord(ξ1), r2 = ord(ξ2). Denote by

R =
r1⋃

i=1

Ri = {a1, a2, . . . , an}, (15)

where Ri = {ξi
1ξ

j
2|j = 1, 2, . . . , r2} for i = 1, 2, . . . , r1. Then

by Lemma III.3 and Remark III.2, we derive the following
lemma.

Lemma III.4: Let ai and ui be defined as in Eqs. (15)
and (3), respectively. Assume that (q − 1) | lcm(x1, x2) and
gcd(x2, q − 1) | x1(p� − 1) for two positive integers x1 and
x2. Then, a−1

i ui ∈ F∗
p� holds for each i = 1, 2, . . . , n.

Proof: For (q − 1) | lcm(x1, x2), it follows from
Lemma III.3 and Remark III.2 that ai �= aj for any 1 ≤ i �=
j ≤ n. For any i = 1, 2, . . . , n, we may assume ai ∈ Rs for
some 1 ≤ s ≤ r1. Then there exists t ∈ {1, 2, . . . , r2} such
that ai = ξs

1ξ
t
2.

By Eq. (3), we see that

ui =
∏

aj∈Rs,ai �=aj

(ai − aj)−1 ·
∏

1≤s′≤r1,s′ �=s

∏
aj′∈Rs′

(ai − aj′ )−1.

(16)

Note that
∏

1≤t′≤r2−1(x − ξt′

2 ) =
∑r2−1

i=0 xi, then∏
aj∈Rs,ai �=aj

(ai − aj) =
∏

1≤t′≤r2,t′ �=t

(ξs
1ξ

t
2 − ξs

1ξ
t′

2 )

= (ξs
1ξ

t
2)

r2−1
∏

1≤t′≤r2−1

(1 − ξt′

2 )

= a−1
i ξsr2

1 r2. (17)

Besides, in light of
∏

1≤t′≤r2
(x−bξt′

2 ) = xr2−br2 , we have
that∏

aj′∈Rs′

(ai−aj′) =
∏

1≤t′≤r2

(ξs
1ξ

t
2−ξs′

1 ξt′

2 ) = ξsr2
1 −ξs′r2

1 . (18)

Substituting Eqs. (17) and (18) into Eq. (16), we obtain that

ui = aiξ
−sr2
1 r−1

2

∏
1≤s′≤r1,s′ �=s

(ξsr2
1 − ξs′r2

1 )−1. (19)

Further, since gcd(x2, q − 1) | x1(p� − 1), it is easy to
check that ξr2

1 ∈ F∗
p� . From this and Eq. (19), the desired

result follows.
We notice that for � | e, the condition (q − 1) | lcm(x1, x2)

and gcd(x2, q − 1) | x1(p� − 1) in Lemma III.4 is equivalent
to a simpler form as follows.

Lemma III.5: Let q = pe with p being a prime number and
let � | e. Then, for any two positive integers x1 and x2, the
following statements are equivalent:

(1) (q − 1) | lcm(x1, x2), gcd(x2, q − 1) | x1(p� − 1);
(2) (q − 1) | lcm(x1, x2), q−1

p�−1
| x1.

Proof: (2)⇒(1): When q−1
p�−1

| x1, we have that (q − 1) |
x1(p� − 1), which immediately yields that gcd(x2, q − 1) |
x1(p� − 1).

(1)⇒(2): Note that for any a, b, c ∈ N, we have the fact

a | lcm(b, c) ⇔ a | lcm(b, gcd(a, c)).

Now, for (q − 1) | lcm(x1, x2), we have that

(q − 1) | lcm(x1, gcd(x2, q − 1)). (20)

Besides, it follows from the condition gcd(x2, q − 1) |
x1(p� − 1) that

lcm(x1, gcd(x2, q − 1)) | lcm(x1, x1(p� − 1)).

That is,

lcm(x1, gcd(x2, q − 1)) | x1(p� − 1). (21)

Combining Eq. (20) with Eq. (21), we obtain (q − 1) |
x1(p� − 1), i.e., q−1

p�−1
| x1. This completes the proof.

By using the previous lemmas, we give the following [n, k]q
MDS codes with �-Galois hulls of arbitrary dimensions.

Theorem III.4: Let q = pe with p being an odd prime
number. Assume 2� | e, (q − 1) | lcm(x1, x2) and q−1

p�−1
| x1

for two positive integers x1 and x2. Let n = r(q−1)
gcd(x2,q−1) for

each 1 ≤ r ≤ q−1
gcd(x1,q−1) . Then, for any 1 ≤ k ≤ �p�+n

p�+1
�

and 0 ≤ h ≤ k − 1, there exists an [n, k]q MDS code with
h-dimensional �-Galois hull.

Proof: Let a1, a2, . . . , an be defined by Eq. (15). For each
1 ≤ i ≤ n, by Lemmas III.4 and III.5, we have a−1

i ui ∈ F∗
p� .

Further, in terms of Lemma III.2, there exists vi ∈ F∗
q such

that vp�+1
i = a−1

i ui. Set z := k − 1 − h and take β ∈ F∗
q

such that γ := βp�+1 �= 1. Put a = (a1, a2, . . . , an) and
v = (βv1, . . . , βvz , vz+1, . . . , vn). Consider the �-Galois hull
of the [n, k]q MDS code C := GRSk(a,v). Then, working
in a similar manner as in Theorem III.1, the desired result
follows.

Next, based on Theorem III.4, we proceed to construct a
family of MDS codes of length n + 1 from GRS codes with
�-Galois hulls of arbitrary dimensions as follows.

Theorem III.5: Let q = pe with p being an odd prime
number. Assume 2� | e, (q − 1) | lcm(x1, x2) and q−1

p�−1
| x1

for two positive integers x1 and x2. Let n = r(q−1)
gcd(x2,q−1) for

each 1 ≤ r ≤ q−1
gcd(x1,q−1) . Then, for any 1 ≤ k ≤ �p�+n

p�+1 �
and 0 ≤ h ≤ k, there exists an [n + 1, k]q MDS code with
h-dimensional �-Galois hull.
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Proof: Let a1, a2, . . . , an be defined as in Eq. (15) and
let an+1 = 0. For each 1 ≤ i ≤ n, in view of Lemma III.4,
we have that∏
1≤j≤n+1,j �=i

(ai − aj)−1 = a−1
i

∏
1≤j≤n,j �=i

(ai − aj)−1 ∈ F∗
p� .

For i = n + 1, a direct calculation derives that
n∏

j=1

(an+1 − aj)−1 = (−1)n

[ r2∏
j=1

( r1∏
i=1

ξi
1ξ

j
2

)]−1

= (−1)nξ
− r1(r1+1)r2

2
1 ξ

− r2(r2+1)r1
2

2

∈ F∗
p� .

Denote wi =
∏

1≤j≤n+1,j �=i(ai − aj)−1, i = 1, . . . , n + 1.

Then, from Lemma III.2, there exists vi ∈ F∗
q such that

vp�+1
i = wi for i = 1, . . . , n + 1. Set z := k − h and take

β ∈ F∗
q such that γ := βp�+1 �= 1. Put a = (a1, a2, . . . , an+1),

v = (βv1, . . . , βvz , vz+1, . . . , vn+1) and consider the �-Galois
hull of the [n + 1, k]q MDS code C := GRSk(a,v). Similar
to the proof of Theorem III.2, the desired result follows.

Now, if we consider the extended GRS code
GRSk(a,v,∞) of length n + 2 with a and v being
defined as in the proof of Theorem III.5, then a new family
of MDS codes with �-Galois hulls of arbitrary dimensions
can be yielded as follows.

Theorem III.6: Let q = pe with p being an odd prime
number. Assume 2� | e, (q − 1) | lcm(x1, x2) and q−1

p�−1
| x1

for two positive integers x1 and x2. Let n = r(q−1)
gcd(x2,q−1) for

each 1 ≤ r ≤ q−1
gcd(x1,q−1) . Then, for any 1 ≤ k ≤ �p�+n

p�+1
� and

0 ≤ h ≤ k − 1, there exists an [n + 2, k]q MDS code with
h-dimensional �-Galois hull.

Proof: Set z := k − 1 − h and take β ∈ F∗
q such

that γ := βp�+1 �= 1. Let a = (a1, a2, . . . , an+1), v =
(βv1, . . . , βvz, vz+1, . . . , vn+1) and wi be defined as in the
proof of Theorem III.5. We can consider the �-Galois hull
of the [n + 2, k]q MDS code C := GRSk(a,v,∞). Then,
working in a similar manner as in Theorem III.3, the desired
result follows.

Remark III.3: For the MDS codes in Theorems III.4, III.5
and III.6, we can verify that the value of the length n is
related to � (namely, depends on �), for example, we may take
x2 = p�−1, then (q−1) | lcm(x1, p

�−1) and q−1
p�−1

| x1. In this

case, one easily finds that there always exists x1 = q−1
p�−1s for

some positive integer s such that (q−1) | lcm
(

q−1
p�−1

s, p�−1
)
,

then the length n can be written as n = r(q−1)
p�−1

, where

1 ≤ r ≤ q−1

gcd
(

q−1
p�−1

s,q−1
) = p�−1

gcd(s,p�−1)
. Hence, the upper

bound p�+n
p�+1

of the dimension k is
p�+ r(q−1)

p�−1
p�+1

= p2�−p�+r(q−1)
p2�−1

.

Then, for a fixed r (there always exist some fixed r for
different �1 and �2, for example, take r = 1), the derivative
(p2�−p�+r(q−1)

p2�−1 )� = p2�[p�−2r(q−1)]lnp+(p�−2p2�)lnp
(p2�−1)2 < 0. This

together with the condition 2� | e (means 1 ≤ � ≤ e
2 ) reveals

that the range of the dimension k for any 1 ≤ � < e
2 with 2� | e

is wider than the range of the dimension k for the Hermitian
case � = e

2 . Therefore, the [n, k]q , [n + 1, k]q and [n + 2, k]q

MDS codes in Theorems III.4, III.5 and III.6 with dimension
k satisfying �p

e
2 +n

p
e
2 +1

� + 1 ≤ k ≤ �p�+n
p�+1

� for any 1 ≤ � < e
2

with 2� | e cannot be obtained by the Hermitian case � = e
2 .

For example, take p = 7, e = 4, � = 1, x1 = 2400, x2 = 6
and r = 1 in Theorems III.4, III.5 and III.6, then n = 400, and
hence � 71+400

71+1 � = 50 and � 72+400
72+1 � = 8. Therefore, we can

obtain [400, k]74 , [401, k]74 and [402, k]74 MDS codes for each
1 ≤ k ≤ 50, while for the same length, MDS codes with
dimension k satisfying 9 ≤ k ≤ 50 cannot be produced from
those by considering the Hermitian case � = 2.

C. MDS Codes Related to the Coset Decomposition of a
Cyclic Group

In this subsection, we will construct another three families
of MDS codes with �-Galois hulls of arbitrary dimensions. The
coordinates of the vector a in GRSk(a,v) or GRSk(a,v,∞)
are obtained via the coset decomposition of a cyclic group.

Let q = pe with p being a prime number. Assume � | e
and set y := q−1

p�−1
. Let m | (q − 1). We know m can be

labeled as m = m1m2, where m1 = m
gcd(m,y) and m2 =

gcd(m, y). Let F∗
q = �α�. Denote H = �ϑ1� and G = �ϑ2�,

where ϑ1 := α
q−1
m and ϑ2 = α

y
m2 . Then we have ord(H) = m

and ord(G) = (p� − 1)m2.
Next, it follows from m2 = gcd(m, y) that

gcd(m1,
y

m2
) = 1. Combining it with m1 | q−1

m2
, we

obtain m1 | (p� − 1), which implies that H is a subgroup
of G. Thus the left coset decomposition of G with respect

to H can be written as G =
⋃ p�−1

m1
i=1 ηiH , where ηi is the left

coset representative of G/H for i = 1, 2, . . . , p�−1
m1

.

Let n = rm, where 1 ≤ r ≤ p�−1
m1

. Denote

H =
r⋃

i=1

ηiH = {a1, a2, . . . , an}. (22)

We give the following lemma.
Lemma III.6: Let ai and ui be defined by Eqs. (22) and (3),

respectively. Assume � | e and m | (q−1). Then, a−1
i ui ∈ F∗

p�

holds for each i = 1, 2, . . . , n.
Proof: For any i = 1, 2, . . . , n, there exists s ∈

{1, 2, . . . , r} such that ai ∈ ηsH . Then ai = ηsϑ
t
1 for some

1 ≤ t ≤ m. By Eq. (3), we know that

ui =
∏

aj∈ηsH,ai �=aj

(ai−aj)−1·
∏

1≤s′≤r,s′ �=s

∏
aj′∈ηs′ H

(ai−aj′)−1.

First, we have that∏
aj∈ηsH,ai �=aj

(ai − aj) =
∏

1≤t′≤m,t′ �=t

(ηsϑ
t
1 − ηsϑ

t′

1 )

= (ηsϑ
t
1)

m−1
∏

1≤t′≤m−1

(1 − ϑt′

1 )

= a−1
i ηm

s m.

Besides, we obtain that∏
aj′∈ηs′H

(ai − aj′) =
∏

1≤t′≤m

(ηsϑ
t
1 − ηs′ϑt′

1 ) = ηm
s − ηm

s′ .
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Thus, we get that

ui = aiη
−m
s m−1

∏
1≤s′≤r,s′ �=s

(ηm
s − ηm

s′ )−1.

For any 1 ≤ i ≤ r, we know that ηi = ϑj
2 holds for some

1 ≤ j ≤ (p�−1)m2. Then, ηm
i = αjm1y ∈ F∗

p� , which derives
that a−1

i ui ∈ F∗
p� . This completes the proof.

Now, by applying the above lemma, we obtain a new family
of MDS codes of length n with �-Galois hulls of arbitrary
dimensions as follows.

Theorem III.7: Let q = pe with p being an odd prime
number. Assume 2� | e and m | (q − 1). Let n = rm for
each 1 ≤ r ≤ p�−1

m1
with m1 = m

gcd(m,y) for y = q−1
p�−1

. Then,

for any 1 ≤ k ≤ �p�+n
p�+1

� and 0 ≤ h ≤ k − 1, there exists an
[n, k]q MDS code with h-dimensional �-Galois hull.

Proof: Let a1, a2, . . . , an be defined by Eq. (22). For each
1 ≤ i ≤ n, by Lemma III.6, we have a−1

i ui ∈ F∗
p� . Further,

in terms of Lemma III.2, there exists vi ∈ F∗
q such that

vp�+1
i = a−1

i ui. Set z := k− 1−h and take β ∈ F∗
q such that

βp�+1 �= 1. We can consider the �-Galois hull of the [n, k]q
MDS code C := GRSk(a,v), where a = (a1, a2, . . . , an)
and v = (βv1, . . . , βvz , vz+1, . . . , vn). Similar to the proof of
Theorem III.1, we can obtain dim(Hull�(C)) = k−z−1 = h.
From this, the desired result follows immediately.

Next, based on Theorem III.7, we proceed to construct a
family of MDS codes of length n + 1 from GRS codes with
�-Galois hulls of arbitrary dimensions as follows.

Theorem III.8: Let q = pe with p being an odd prime
number. Assume 2� | e and m | (q − 1). Let n = rm for
each 1 ≤ r ≤ p�−1

m1
with m1 = m

gcd(m,y) for y = q−1
p�−1

. Then,

for any 1 ≤ k ≤ �p�+n
p�+1

� and 0 ≤ h ≤ k, there exists an
[n + 1, k]q MDS code with h-dimensional �-Galois hull.

Proof: Let a1, a2, . . . , an be defined by Eq. (22) and let
an+1 = 0. For each 1 ≤ i ≤ n, it follows from Lemma III.6
that ∏
1≤j≤n+1,j �=i

(ai − aj)−1 = a−1
i

∏
1≤j≤n,j �=i

(ai − aj)−1 ∈ F∗
p� .

For i = n + 1, a direct calculation derives that
n∏

i=1

(an+1 − ai)−1 = (−1)n

[ r∏
i=1

( m∏
j=1

ηiϑ
j
1

)]−1

= (−1)nϑ
− rm(m+1)

2
1

r∏
i=1

η−m
i ∈ F∗

p� .

Further, we write wi =
∏

1≤j≤n+1,j �=i(ai − aj)−1, i =
1, . . . , n + 1. In light of Lemma III.2, there exists vi ∈ F∗

q

such that vp�+1
i = wi for i = 1, . . . , n + 1.

Next, we set z := k − h and take β ∈ F∗
q such that

βpl+1 �= 1. We can consider the �-Galois hull of the [n+1, k]q
MDS code C := GRSk(a,v), where a = (a1, a2, . . . , an+1)
and v = (βv1, . . . , βvz , vz+1, . . . , vn+1). Working in a similar
way to the proof of Theorem III.2, we can deduce that
dim(Hull�(C)) = k − z = h. Therefore, the desired result
follows.

Now, if we consider the extended GRS code
GRSk(a,v,∞) of length n + 2 with a and v being
defined as in the proof of Theorem III.8, then a family of
MDS codes with �-Galois hulls of arbitrary dimensions can
be yielded as follows.

Theorem III.9: Let q = pe with p being an odd prime
number. Assume 2� | e and m | (q − 1). Let n = rm for
each 1 ≤ r ≤ p�−1

m1
with m1 = m

gcd(m,y) for y = q−1
p�−1 . Then,

for any 1 ≤ k ≤ �p�+n
p�+1 � and 0 ≤ h ≤ k − 1, there exists an

[n + 2, k]q MDS code with h-dimensional �-Galois hull.
Proof: Let a1, a2, . . . , an be defined by Eq. (22) and

let an+1 = 0. For each 1 ≤ i ≤ n + 1, write wi =∏
1≤j≤n+1,j �=i(ai − aj)−1. Then wi ∈ F∗

p� . By Lemma III.2,

there exists vi ∈ F∗
q such that vp�+1

i = wi for i = 1, . . . , n+1.
Next, we set z := k − h − 1 and take β ∈ F∗

q such

that βp�+1 �= 1. Put a = (a1, a2, . . . , an+1) and v =
(βv1, . . . , βvz , vz+1, . . . , vn+1). We can consider the �-Galois
hull of the [n + 2, k]q MDS code C := GRSk(a,v,∞).
Similar to the proof of Theorem III.3, we deduce that
dim(Hull�(C)) = k − 1 − z = h, completing the proof.

Remark III.4: Note that when e is even, the MDS
codes in Theorems III.7, III.8 and III.9 generalize those in
[16, Theorems 3.8-3.10] which consider the Hermitian case
(i.e., � = e

2 ). More importantly, observing the condition 2� | e
(as shown in Lemma III.2, this condition is necessary since it
enables us to find a vi ∈ F∗

q such that vp�+1
i = ui holds for

any ui ∈ F∗
p� , which means that 1 ≤ � ≤ e

2 ) and using the fact

(p�+n
p�+1

)� = (1−n)p�lnp
(p�+1)2

< 0 for n ≥ 2, we know that when n is
fixed (for example, take r = 1, then n = m is fixed), the range
of the dimension of the MDS codes in Theorems III.7, III.8
and III.9 for any 1 ≤ � < e

2 with 2� | e is wider than the
range of the dimension of those in [16, Theorems 3.8-3.10].
In other words, for the same length n, the [n, k]q, [n + 1, k]q
and [n + 2, k]q MDS codes in Theorems III.7, III.8 and III.9

with dimension k satisfying �p
e
2 +n

p
e
2 +1

� + 1 ≤ k ≤ �p�+n
p�+1

�
for any 1 ≤ � < e

2 with 2� | e cannot be obtained by the
Hermitian case � = e

2 considered in [16, Theorems 3.8-3.10].
For example, take p = 5, e = 6, � = 1, m = 126 and r = 1 in
Theorems III.7, III.8 and III.9, then n = 126 and � 51+126

51+1 � =
21. Hence, we can obtain [126, k]56 , [127, k]56 and [128, k]56

MDS codes for each 1 ≤ k ≤ 21, while for the same lengths,
Theorems 3.8-3.10 of [16] only produce [126, 1]56, [127, 1]56

and [128, 1]56 MDS codes since � 53+126
53+1 � = 1.

D. MDS Codes Related to an Additive Subgroup of Fq and
Its Cosets

We will construct another two families of MDS codes with
�-Galois hulls of arbitrary dimensions. The coordinates of the
vector a in GRSk(a,v) or GRSk(a,v,∞) are related to an
additive subgroup of Fq and its cosets.

Let q = pe with p being an odd prime number. Let a | e
and K be a Fpa-subspace of Fq of dimension w satisfying
{0} � K � Fq. Then, 1 ≤ w ≤ e

a − 1. Take η ∈ Fq\K
and put Fpa = {β1, β2, . . . , βpa}. For 1 ≤ i ≤ pa, denote by
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K i = K + � i 
 . For 1 � t � pa, denote by
t

i =1

K i = { a1, a2, . . . , an } .

Then, we haven = tpaw . By [16, Lemma 3.1], there exists
� 	 F�

q such that�u i 	 F�
pa for eachi . Let a | � and 2� | e.

Then, we have�u i 	 F�
p� . According to Lemma III.2, there

existsvi 	 F�
q such that�u i = vp� +1

i .
Based on the above analysis, we are able to give another two

families of MDS codes with� -Galois hulls of arbitrary dimen-
sions in the following two theorems. Since their construc-
tion procedures are similar to those of Theorems III.1-III.9,
we omit the proofs.

Theorem III.10: Let q = pe with p being an odd prime
number. Assume2� | e and a | � . Let n = tpaw for each
1 � t � pa and each1 � w � e

a Š 1. Then, for any1 � k �

� p� + n Š 1
p� +1 � and 0 � h � k, there exists an[n, k]q MDS code

with h-dimensional� -Galois hull.
Theorem III.11: Let q = pe with p being an odd prime

number. Assume2� | e and a | � . Let n = tpaw for each
1 � t � pa and each1 � w � e

a Š 1. Then, for any1 � k �

� p� + n Š 1
p� +1 � and0 � h � k Š 1, there exists an[n +1 , k]q MDS

code withh-dimensional� -Galois hull.
Remark III.5: Note that whene is even, the MDS codes

in Theorems III.10 and III.11 generalize those in [16, The-
orem 3.6] which consider the Hermitian case (i.e.,� = e

2 ).
What’s more, the condition2� | e (this means that1 � � � e

2 )

and the fact( p� + n Š 1
p� +1 )� = (2Š n )p� ln p

(p� +1) 2 < 0 for n � 3 imply that
when n is �xed, the range of the dimensionk of the MDS
codes in Theorems III.10 and III.11 for any1 � � < e

2 with
2� | e is wider than the range of the dimensionk of those in
[16, Theorem 3.6]. Hence, for the same lengthn, the [n, k]q
and[n +1 , k]q MDS codes in Theorems III.10 and III.11 with

dimensionk satisfying � p
e
2 + n Š 1
p

e
2 +1

� + 1 � k � � p� + n Š 1
p� +1 � for

any 1 � � < e
2 with 2� | e cannot be produced by [16, Theo-

rem 3.6]. For example, takep = 3 , a = 2 , e = 8 , � = 2 , w = 2
and t = 2 in Theorems III.10 and III.11, thenn = 162, and
hence we can obtain[162, k]38 and[163, k]38 MDS codes for
each1 � k � 17. Since� 34 +161

34 +1 � = 2 , thesek-dimensional
MDS codes of the same length with3 � k � 17 cannot
be produced by considering the Hermitian case, i.e.,� = 4 ,
in [16, Theorem 3.6].

IV. CONSTRUCTIONS OFEAQECCS WITH RELATIVELY

LARGE MINIMUM DISTANCE

As the applications of theq-ary MDS codes constructed in
Section III, this section aims to provide several families of
[[n, k, d; c]]q entanglement-assisted quantum error-correcting
codes (EAQECCs) with relatively large minimum distance in
the sense that2d = n Š k + 2 + c.

First, let us review some basic concepts and notations about
quantum codes. For the complex �eldC, let Cq denote the
q-dimensional complex Hilbert space overC. For a pure
n-qudit state, it can be written as|v � =

�
a� Fn

q
va |a� , where

va 	 C with
�

a� Fn
q

|va |2 = 1 and {| a� = |a1� � · · · �

|an � : (a1, . . . , an ) 	 Fn
q } being a basis ofCqn

. Let � be a

complex primitivep-th root of unity. Fora = ( a1, . . . , an ),
b = ( b1, . . . , bn ) 	 Fn

q , let T (a) = T(a1) � · · · � T (an ) and
R(a) = R(a1) � · · · � R(an ) be the tensor products ofn error
operators, whereT(ai ) andR(ai ) are de�ned asT(ai )|x� =
|x + ai � and R(ai )|x� = � Tr( ai x ) |x� , respectively, in which
Tr( x) :=

� eŠ 1
i =0 xpi

is the trace function fromFq (q = pe)
to Fp. Then,T(a) and R(a) satisfy T(a)|x � = |x + a� and
R(a)|x � = � Tr(( a,x )E ) |x � , respectively. Therefore, the error
set

En = { � i T (a)R(b)|0 � i � p Š 1, a, b 	 Fn
q }

forms an error group. For any errore = � i T (a)R(b) 	 En ,
its quantum weight is de�ned bywQ (e) = � { i |(ai , bi ) �=
(0, 0)} . Denote En (i ) = { e 	 En |wQ (e) � i } .
For a q-ary quantum codeQ, if d is the largest pos-
itive integer such that� x |e|y � = 0 holds for any
|x� , |y � 	 Q with � x|y � = 0 and e 	 En (d Š 1),
thenQ has minimum distanced.

Usually, we use the notation[[n, k, d]]q to denote aq-ary
quantum code of lengthn, dimensionqk and minimum dis-
tanced. It has the abilities to detect up tod Š 1 quantum
errors and correct up to� dŠ 1

2 � quantum errors. The minimum
distance d of a quantum code must satisfy thequantum
Singleton bound, i.e., 2d � n + 2 Š k. Further, if 2d =
n + 2 Š k, then such a quantum code is called aquantum
MDS code.

In 2006, Brun et al. [2] introduced an interesting concept
called entanglement-assistedquantum error-correcting codes
(EAQECCs), which turns out to be signi�cant progress in
the �eld of quantum error correction. These codes can be
regarded as a generalization of the quantum stabilizer codes
generated by CSS construction. As shown in [2], we can
obtain EAQECCs from any classical linear codes with the
help of the pre-shared entanglement between the sender and
receiver. Furthermore, we denote by[[n, k, d; c]]q a q-ary
EAQECC which encodesk logical qubits into n physical
qubits by means ofc copies of maximally entangled states
(i.e.,c ebits). Whenc = 0 , the EAQECCs are just the standard
quantum stabilizer codes.

For an[[n, k, d; c]]2 EAQECC, the authors in [3] gave the
following Singleton bound on its parameters:

2d � n Š k + 2 + c.

It is very exciting to know that Grassl [24] presented a
new entanglement-assisted quantum communication scheme
with parameters violating this bound in certain ranges. The
scheme in [24] shows better parameters than the one proposed
in [2] in some range. For more information on the counter
examples of quantum Singleton bound, we refer the reader to
the latest results obtained by Grassl, Huber and Winter in [26].
Considering these facts, from now on, if an[[n, k, d; c]]q
EAQECC satis�es2d = n Š k + 2 + c, then we call it an
EAQECC with relatively large minimum distancerather than
a MDS EAQECC.

The following lemmas tell us how to construct EAQECCs
from the classical linear codes.

Lemma IV.1 ([19], [53]): Let C1 : [n, k1, d1]q and C2 :
[n, k2, d2]q be two linear codes with parity check matricesH1
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andH2, respectively. Then, there exists an[[n, k1 + k2 Š n +
c,min{ d1, d2} ; c]]q EAQECC, wherec = rank( H1H T

2 ) is the
required number of maximally entangled states.

Lemma IV.2 ([19]): Let C1 : [n, k1, d1]q2 and C2 :
[n, k2, d2]q2 be two linear codes with parity check matrices
H1 andH2, respectively. Then, there exists an[[n, k1 + k2 Š
n + c,min{ d1, d2} ; c]]q EAQECC, wherec = rank( H1H •

2)
is the required number of maximally entangled states with
H • := ( hq

ji ) for H = ( hij ).
Remark IV.1: The binary case for the EAQECCs in

Lemma IV.1 was given by Wilde and Brun [53] in 2008.
In 2019, Galindo, Hernando, Matsumoto and Ruano [19]
extended the binary case to the general one and they also
obtained several important results on EAQECCs.

For a matrix A = ( aij ) over Fq, we de�ne A(peŠ � ) =
(apeŠ �

ij ) and denoteA‚ = [ A(peŠ � ) ]T . Then, we have the
following useful lemma.

Lemma IV.3 ([41]): If C is an [n, k, d]q linear code with
parity-check matrixH , then

rank(HH ‚ ) = n Š k Š dim(Hull � (C)) .

Based on the above facts, we obtain the following
proposition.

Proposition IV.1: If C is an[n, k, d]q linear code, then there
exists an[[n, k Š dim(Hull � (C)) , d; n Š k Š dim(Hull � (C))]] q

EAQECC.
Proof: Taking C1 = C and C2 = CpeŠ �

in Lemma IV.1,
we obtain an[[n, 2k Š n + c, d; c]]q EAQECC, wherec =
rank(H (H (peŠ � ) )T ). By Lemma IV.3, we know that

c = rank( HH ‚ ) = n Š k Š dim(Hull � (C)) ,

which completes the proof.
By Proposition IV.1, we immediately obtain the following

corollary.
Corollary IV.1: If C is an[n, k]q MDS code, then exists an

[[n, k Š dim(Hull � (C)) , n Š k + 1; n Š k Š dim(Hull � (C))]] q

EAQECC.
Remark IV.2:Given an[n, k]q (q = pe) MDS codeC. If e is

even, thenC� H (i.e.,C� e
2 ) is an[n, n Š k]q MDS code. Hence,

it follows from Lemma IV.2 and Corollary IV.1 that there exist
[[n, k Š dim(Hull H (C)) , nŠ k+1; nŠ kŠ dim(Hull H (C))]] 	

q

and[[n, nŠ kŠ dim(Hull H (C)) , k+1; kŠ dim(Hull H (C))]] 	
q

EAQECCs.
Generally speaking, the comparison of the QECCs (includ-

ing the EAQECCs) over different �elds makes no sense.
Therefore, from now on, when we compare the EAQECCs for
different � , the EAQECCs for the Hermitian case� = e

2 refer
to theq-ary EAQECCs produced by theq-ary MDS codes (see
Corollary IV.1) rather than the

�
q-ary EAQECCs produced by

the q-ary MDS codes (see Remark IV.2).
By combining Theorems III.1-III.3 with Corollary IV.1,

we can construct the following three families of EAQECCs
with relatively large minimum distance.

Theorem IV.1:Let q = pe with p being an odd prime
number. Assume2� | e. Let n = t (qŠ 1)

p� Š 1 for each1 � t �

p� Š 1. Then, for any1 � k � � p� + n
p� +1 � ,

(1) there exists an[[n, k Š h, nŠ k+1; nŠ kŠ h]]q EAQECC
with relatively large minimum distance for any0 � h � kŠ 1;

(2) there exists an[[n + 1 , k Š h, n Š k + 2; n Š k Š h + 1]] q

EAQECC with relatively large minimum distance for any0 �
h � k;

(3) there exists an[[n + 2 , k Š h, n Š k + 3; n Š k Š h + 2]] q

EAQECC with relatively large minimum distance for any0 �
h � k Š 1.

Remark IV.3: By Remark III.1, we know that the
[[n, k, n Š k + 1; n Š k]]q, [[n + 1 , k, n Š k + 2; n Š k + 1]] q

and[[n + 2 , k, n Š k + 3; n Š k + 2]] q EAQECCs (takeh = 0 )

in Theorem IV.1 with dimensionqk satisfying� p
e
2 + n

p
e
2 +1

� + 1 �

k � � p� + n
p� +1 � for any1 � � < e

2 with 2� | e ecannot be obtained
by considering the Hermitian case. For example, as shown in
Remark III.1, by takingp = 5 , e = 4 , � = 1 and t = 1 in
Theorem IV.1 we know that the[[156, k, 157Š k; 156Š k]]54 ,
[[157, k, 158Š k; 157Š k]]54 and[[158, k, 159Š k; 158Š k]]54

EAQECCs for each7 � k � 26 derived from Theorem IV.1
cannot be produced by considering the Hermitian case� = 2 .
Note that ife is even in Theorem IV.1, then by Remark IV.2,
there exist[[n + n� , k Š h, n Š k + n� + 1; n Š k Š h + n� ]]	 q

and[[n + n� , n Š k Š h + n� , k + 1; k Š h]]	 q EAQECCs for
n = t(

�
q + 1) and n� = 0 , 1, 2, where1 � t �

�
q Š 1 and

1 � k � �
	

q+ n
	

q+1 � .
Next, in terms of Theorems III.4-III.6 and

Corollary IV.1, we obtain three families of EAQECCs
with relatively large minimum distance in the following
theorem.

Theorem IV.2:Let q = pe with p being an odd prime
number. Assume2� | e, (q Š 1) | lcm(x1, x2) and qŠ 1

p� Š 1 | x1

for two positive integersx1 and x2. Let n = r (qŠ 1)
gcd( x 2 ,qŠ 1) for

each1 � r � qŠ 1
gcd( x 1 ,qŠ 1) . Then, for any1 � k � � p� + n

p� +1 � ,

(1) there exists an[[n, k Š h, n Š k + 1; n Š k Š h]]q
EAQECC with relatively large minimum distance for any
0 � h � k Š 1;

(2) there exists an[[n + 1 , k Š h, n Š k + 2; n Š k Š h + 1]] q

EAQECC with relatively large minimum distance for any0 �
h � k;

(3) there exists an[[n + 2 , k Š h, n Š k + 3; n Š k Š h + 2]] q

EAQECC with relatively large minimum distance for any0 �
h � k Š 1.

Remark IV.4:By Remark III.3, we know that the[[n, k,n Š
k + 1; n Š k]]q, [[n + 1 , k, n Š k + 2; n Š k + 1]] q and
[[n + 2 , k, n Š k + 3; n Š k + 2]] q EAQECCs (takeh = 0 )

in Theorem IV.2 with dimensionqk satisfying� p
e
2 + n

p
e
2 +1

� + 1 �

k � � p� + n
p� +1 � for any 1 � � < e

2 with 2� | e cannot be
obtained by considering the Hermitian case. For example,
as shown in Remark III.3, by takingp = 7 , e = 4 , � = 1 ,
x1 = 2400, x2 = 6 and r = 1 in Theorem IV.2 we
know that the[[400, k, 401Š k; 400Š k]]74 , [[401, k, 402Š k;
401Š k]]74 and [[402, k, 403Š k; 402Š k]]74 EAQECCs for
each 9 � k � 50 derived from Theorem IV.2 cannot be
produced by considering the Hermitian case� = 2 . Note that
if e is even in Theorem IV.2, then by Remark IV.2, there
exist [[n + n� , k Š h, n Š k + n� + 1; n Š k Š h + n� ]]	 q

and[[n + n� , n Š k Š h + n� , k + 1; k Š h]]	 q EAQECCs for
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n = r (qŠ 1)
gcd( x 2 ,qŠ 1) and n� = 0 , 1, 2, where1 � k � �

	
q+ n

	
q+1 � ,

1 � r � qŠ 1
gcd( x 1 ,qŠ 1) , (qŠ 1) | lcm(x1, x2) and(

�
q+ 1) | x1.

Now, by Theorems III.7-III.9 and Corollary IV.1, we have
the following three families of EAQECCs with relatively large
minimum distance.

Theorem IV.3:Let q = pe with p being an odd prime
number. Assume2� | e and m | (q Š 1). Let n = rm for
each1 � r � p� Š 1

m 1
with m1 = m

gcd( m,y ) for y = qŠ 1
p� Š 1 . Then,

for any 1 � k � � p� + n
p� +1 � ,

(1) there exists an[[n, k Š h, nŠ k+1; nŠ kŠ h]]q EAQECC
with relatively large minimum distance for any0 � h � kŠ 1;

(2) there exists an[[n + 1 , k Š h, n Š k + 2; n Š k Š h + 1]] q

EAQECC with relatively large minimum distance for any0 �
h � k;

(3) there exists an[[n + 2 , k Š h, n Š k + 3; n Š k Š h + 2]] q

EAQECC with relatively large minimum distance for any0 �
h � k Š 1.

Remark IV.5: By Remark III.4, for the same lengthn,
the [[n, k, n Š k +1; n Š k]]q, [[n +1 , k, n Š k +2; n Š k +1]] q

and[[n+2 , k, n Š k+3; nŠ k+2]] q EAQECCs (takeh = 0 ) in

Theorem IV.3 with dimensionqk satisfying� p
e
2 + n

p
e
2 +1

� +1 � k �

� p� + n
p� +1 � for any 1 � � < e

2 with 2� | e cannot be produced by
the Hermitian case. For example, as shown in Remark III.4,
by taking p = 5 , e = 6 , � = 1 , m = 126 and r = 1 in
Theorem IV.3 we know that the[[126, k, 127Š k; 126Š k]]56,
[[127, k, 128Š k; 127Š k]]56 and[[128, k, 129Š k; 128Š k]]56

EAQECCs for2 � k � 21 derived from Theorem IV.3 cannot
be produced by the Hermitian case� = 3 . Note that if e
is even in Theorem IV.3, then by Remark IV.2, there exist
[[n + n� , k Š h, n Š k + n� + 1; n Š k Š h + n� ]]	 q and
[[n + n�, n Š kŠ h+ n�, k+1; kŠ h]]	 q EAQECCs forn = rm
and n� = 0 , 1, 2, where1 � k � �

	
q+ n

	
q+1 � , m | (q Š 1) and

1 � r �
	

qŠ 1
m 1

with m1 = m
gcd( m,

	
q+1) . The latter

�
q-ary

EAQECCs are identical to those shown in [16, Theorem 4.9].
Finally, by Theorems III.10-III.11 and Corollary IV.1, we

obtain the following two families of EAQECCs with relatively
large minimum distance.

Theorem IV.4:Let q = pe with p being an odd prime
number. Assume2� | e and a | � . Let n = tpaw for each
1 � t � pa and each1 � w � e

a Š 1. Then, for any
1 � k � � p� + n Š 1

p� +1 � ,
(1) there exists an[[n, k Š h, nŠ k+1; nŠ kŠ h]]q EAQECC

with relatively large minimum distance for any0 � h � k;
(2) there exists an[[n + 1 , k Š h, n Š k + 2; n Š k Š h + 1]] q

EAQECC with relatively large minimum distance for any0 �
h � k Š 1.

Remark IV.6: By Remark III.5, for the same lengthn,
the [[n, k, n Š k + 1; n Š k]]q and [[n + 1 , k, n Š k +
2;n Š k + 1]] q EAQECCs in Theorem IV.4 with dimen-

sion qk satisfying � p
e
2 + n Š 1

p
e
2 +1

� + 1 � k � � p� + n Š 1
p� +1 � for

any 1 � � < e
2 with 2� | e cannot be obtained by the

Hermitian case. For example, as shown in Remark III.5,
by taking p = 3 , a = 2 , e = 8 , � = 2 , w = 2 and
t = 2 in Theorem IV.4 we know that Theorem IV.4 can
produce[[162, k, 163Š k; 162Š k]]38 and [[163, k, 164Š k;
163Š k]]38 EAQECCs for each1 � k � 17, while for the

TABLE I

NEW EAQECCS FROM THEOREMIV.1 FORp = 5 ,
e = 4 , � = 1 AND t = 2 , 3

same lengths, these EAQECCs with3 � k � 17 cannot be
obtained by the Hermitian case� = 4 . Note that ife is even
in Theorem IV.4, then by Remark IV.2, there exist[[n + n� ,
k Š h, n Š k + n� + 1; n Š k Š h + n� ]]	 q and [[n + n� , n Š
k Š h + n� , k + 1; k Š h]]	 q EAQECCs forn = tpaw and
n� = 0 , 1, where1 � k � �

	
q+ n Š 1
	

q+1 � , 1 � t � pa, a | e
2 and

1 � w � e
a Š 1. The latter

�
q-ary EAQECCs are identical to

those shown in [16, Theorem 4.8].
Remark IV.7:As we know, it is not easy to construct an

[[n�� , k�� , d�� ; c�� ]]q EAQECC with 2d�� = n�� Š k�� + 2 + c��

such that the value of the copies of maximally entangled
statesc�� is �exible. Note that the parameterc�� of many
EAQECCs constructed in the literature is �xed (for example,
see [10], [11], [13], [29], [36], [42], [45], [49]). Observing the
EAQECCs in Theorems IV.1-IV.4, we know that their para-
meters are �exible. Besides, their relatively large minimum
distance means that they have good error detection and error
correction capabilities.

From Theorems IV.1-IV.4, we can expect a myriad of
new EAQECCs with relatively large minimum distance. Here,
we provide some examples of EAQECCs with �exible parame-
ters in Tables I-IV. The relatively large minimum distance of
these EAQECCs indicates that they have good error detection
and error correction capabilities.

Apart from the example given in Remark IV.3, Table I gives
some new EAQECCs from Theorem IV.1 forp = 5 , e = 4 ,
� = 1 andt = 2 , 3.

Apart from the example given in Remark IV.4, Table II lists
some new EAQECCs from Theorem IV.2 forp = 3 , e = 6 ,
� = 1 , x1 = 364, x2 = 24 andn = 91, 182.

Apart from the example shown in Remark IV.5, Table III
provides some new EAQECCs from Theorem IV.3 for
p = 5 , e = 6 , � = 1 , m = 186, r = 1 , n = 186 and
p = 7 , e = 4 , � = 1 , m = 50, r = 4 , n = 200, respectively.
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TABLE II

NEW EAQECCS FROM THEOREM IV.2 FORp = 3 , e = 6 ,
� = 1 , x1 = 364 AND x2 = 24

TABLE III

NEW EAQECCS FROM THEOREMIV.3 FORp = 5 , e = 6 , � = 1 ,
m = 186 , r = 1 AND p = 7 , e = 4 , � = 1 , m = 50 , r = 4

Finally, apart from the example shown in Remark IV.6,
Table IV also lists some new EAQECCs from Theorem IV.4
for p = 7 , e = 6 , � = 1 , a = 1 , w = 2 , t = 4 , n = 196
and p = 13, e = 4 , � = 1 , a = 1 , w = 2 , t = 2 , n = 338,
respectively.

V. DISCUSSION ON THELENGTHS OFOUR EAQECCS

IN THEOREMSIV.1-IV.4

Inspired by the reviewers’ insightful comments, it is mean-
ingful and necessary to make a detailed explanation for why
we further develop the theory on� -Galois hulls of MDS

TABLE IV

NEW EAQECCS FROM THEOREM IV.4 FORp = 7 , e = 6 , � = 1 ,
a = 1 , w = 2 , t = 4 AND p = 13 , e = 4 , � = 1 , a = 1 , w = 2 , t = 2

codes in the previous sections to construct new families of
EAQECCs. To be speci�c, the main advantages of this work
are re�ected in the following two aspects:

Advantage 1: As revealed in Sections III and IV (e.g., see
Remarks IV.3-IV.6), the range of the dimensionqk of the[[n+
�a, k, n Š k + �a + 1; n Š k + �a]]q (�a = 0 , 1, 2 and takeh = 0 )
EAQECCs in Theorems IV.1-IV.3 and the[[n + �b, k, n Š k +
�b+ 1; n Š k + �b]]q (�b = 0 , 1 and takeh = 0 ) EAQECCs in
Theorem IV.4 for any1 � � < e

2 with 2� | e is wider than
those for the Hermitian case� = e

2 . In particular, when� = 1 ,

the upper bound� p� + n Š 1
p� +1 � or � p� + n

p� +1 � of k attains a maximum.
Advantage 2: For each theorem of Theorems IV.1-IV.4,

the variables� with 2� | e correspond to EAQECCs with
different kinds of length sets because the lengthn therein
is related to� . This allows us to obtain different kinds of
EAQECCs in each theorem of Theorems IV.1-IV.4 through
different variables� . More speci�cally, in each theorem of
Theorems IV.1-IV.4:

(1) For each� �= 1 , e
2 , the corresponding kind of EAQECCs

has some EAQECCs whose lengths cannot be obtained by
those derived from� = 1 ;

(2) For certain� = � 1 �= 1 , e
2 , the corresponding kind

of EAQECCs has some EAQECCs whose lengths cannot be
obtained by those derived from certain� = � 2 �= 1 , e

2 , where
� 1 �= � 2.

To �nish this section and verify our statement inAdvan-
tage 2, we will provide some examples and several tables
(see Tables V, VI, VII and VIII) containing parameters of
EAQECCs derived from Theorems IV.1-IV.4 that possess
different kinds of length sets by considering� = 1 , 2, 3 (see
Subsections V-A and V-D) and� = 1 , 2 (see Subsections V-B
and V-C), and have larger dimension that cannot be yielded
from those by considering the Hermitian case.

It seems that the sets of lengthn in Theorems IV.1 and IV.2
are either identical, or, one of the two sets is contained in the
other one. In fact, that is not the case. As a sample, forp = 3 ,
e = 8 and � = 2 , Table IX will supply some lengths coming
from the set of lengthn in Theorem IV.1 (resp. Theorem IV.2)
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that cannot be obtained by the set of lengthn in Theorem IV.2
(resp. Theorem IV.1).

We need to �x some notations which will be used in the
sequel. For any two integersx, y with x < y , denote by[x, y]
the set consisting of the integersx, x + 1 , . . . , y. For any two
sets A and B , de�ne their differenceby A\ B = { x|x 	
A, x /	 B } . The symbolA1 � A2 � · · · � Am represents the
union of the mutually disjoint setsA1, A2, . . . , Am .

A. Lengthn = t (qŠ 1)
p� Š 1 for 1 � t � p� Š 1 and 2� | e in

Theorem IV.1

In this subsection, let us considerp = 5 , e = 12 and � =
� i = i for i = 1 , 2, 3 in Theorem IV.1. In this case, we have
thatqŠ 1 = 512 Š 1 = 24 ·32 ·7·13·31·601. In what follows,
let us compute the sets of lengthn = t (qŠ 1)

p� Š 1 for the cases
� = � i = i , where i = 1 , 2, 3. For convenience, we denote
by X 1(t), X 2(t) and X 3(t) the corresponding sets of length
n = t (qŠ 1)

p� Š 1 for � = � 1 = 1 , � = � 2 = 2 and � = � 3 = 3 ,
respectively.

1. For � = � 1 = 1 , we haven = t · 22 · 32 · 7 · 13· 31· 601
for each1 � t � 22, then

X 1(t) = { t · 22 · 32 · 7 · 13· 31· 601|1 � t � 22} .

2. For � = � 2 = 2 , we haven = t · 2 · 3 · 7 · 13· 31· 601 for
each1 � t � 23 · 3, then

X 2(t) = { t · 2 · 3 · 7 · 13· 31· 601|1 � t � 23 · 3} .

3. For � = � 3 = 3 , we haven = t · 22 · 32 · 7 · 13 · 601 for
each1 � t � 22 · 31, then

X 3(t) = { t · 22 · 32 · 7 · 13· 601|1 � t � 22 · 31} .

In order to determine the length setX i (t)\ X j (t) for each
1 � i �= j � 3, we need to compute the setsX 1(t) � X 2(t),
X 1(t) � X 3(t) andX 2(t) � X 3(t). We �rst considerX 1(t) �
X 2(t). Suppose there exist1 � t1 � 22 and 1 � t2 � 23 ·
3 such thatt1 · 22 · 32 · 7 · 13 · 31 · 601 = t2 · 2 · 3 · 7 ·
13 · 31 · 601, then t2 = 6 t1, i.e., (t1, t2) = ( i, 6i ) for i =
1, 2, 3, 4. Therefore,X 1(t) � X 2(t) = X 1(t), which implies
that X 1(t) � X 2(t). Similarly, we obtainX 1(t) � X 3(t) =
X 1(t) and henceX 1(t) � X 3(t).

Now, let us computeX 2(t) � X 3(t). Suppose there exist
1 � t2 � 23 · 3 and 1 � t3 � 22 · 31 such thatt2 · 2 · 3 ·
7 · 13· 31 · 601 = t3 · 22 · 32 · 7 · 13· 601, hence31t2 = 6 t3,
i.e., (t2, t3) = (6 i, 31i ) for i = 1 , 2, 3, 4 and therefore

X 2(t) � X 3(t) = { X 2(6), X 2(12), X 2(18), X 2(24)}

= { X 3(31), X 3(62), X 3(93), X 3(124)}

= X 1(t).

Remark V.1: For � = 1 , 2, 3, Table V lists the corre-
sponding [[n, k, n Š k + 1; n Š k]]512 EAQECCs derived
from Theorem IV.1 with length setsX 1(t), X 2(t) andX 3(t),
respectively. Moreover, Table V also gives the corresponding
[[n, k, n Š k+1; nŠ k]]512 EAQECCs of lengthn coming from
X 2(t)\ X 1(t), X 2(t)\ X 3(t), X 3(t)\ X 1(t) and X 3(t)\ X 2(t),
respectively, with dimension512k satisfying

�
56 + n
56 +1

�
+1 � k �

�
25+ n

26

�
or

�
56 + n
56 +1

�
+1 � k �

�
125+ n

126

�
that cannot be obtained

by the Hermitian case� = 6 . From Table V, we see that20
of the 24 kinds of lengths inX 2(t) for � = � 2 = 2 cannot be
produced byX 1(t) for � = � 1 = 1 , and120 of the 124 kinds
of lengths inX 3(t) for � = � 3 = 3 cannot be produced by
X 1(t) for � = � 1 = 1 . Moreover,20 of the24 kinds of lengths
in X 2(t) for � = � 2 = 2 cannot be produced byX 3(t) for
� = � 3 = 3 , and120 of the 124 kinds of lengths inX 3(t) for
� = � 3 = 3 cannot be produced byX 2(t) for � = � 2 = 2 .

B. Lengthn = r (qŠ 1)
gcd(x 2,qŠ 1) for (qŠ 1) | lcm(x1, x2), qŠ 1

p� Š 1 | x1,
1 � r � qŠ 1

gcd(x 1,qŠ 1) and 2� | e in Theorem IV.2

Since qŠ 1
p� Š 1 | x1, there exists a positive integert1 such

that x1 = qŠ 1
p� Š 1 t1. Then, we obtain thatgcd(x1, q Š 1) =

qŠ 1
p� Š 1 gcd(t1, p� Š 1). Hence, the upper bound qŠ 1

gcd( x 1 ,qŠ 1) of r

becomes p� Š 1
gcd( t 1 ,p� Š 1) . Therefore, the lengthn in Theorem IV.2

can be expressed asn = r (qŠ 1)
gcd( x 2 ,qŠ 1) , where (q Š 1) |

lcm( qŠ 1
p� Š 1 t1, x2) and1 � r � p� Š 1

gcd( t 1 ,p� Š 1) .
In this subsection, let us considerp = 3 , e = 8 and � =

� i = i for i = 1 , 2 in Theorem IV.2. In this case, we obtain
q Š 1 = 38 Š 1 = 25 · 5 · 41. For convenience, we denote by
Y1 and Y2 the corresponding sets of lengthn = r (qŠ 1)

gcd( x 2 ,qŠ 1)
for � = � 1 = 1 and� = � 2 = 2 , respectively.

1. For � = � 1 = 1 , we have that

n =
r · 25 · 5 · 41

gcd(x2, 25 · 5 · 41)
,

where25 · 5· 41 | lcm(24 · 5· 41· t1, x2) and1 � r � 2
gcd( t 1 ,2) .

Case (1.1): When gcd(t1, 2) = 1 , we have25 | x2. Write
x2 = 2 5x�

2 for any positive integerx�
2. Thenn = r ·5·41

gcd( x �
2 ,5·41)

for 1 � r � 2, which implies that the set of lengthn, denoted
by Y1,1, is

Y1,1 = { r · 5b · 41c|1 � r � 2, 0 � b, c� 1} . (23)

Case (1.2): Whengcd(t1, 2) = 2 , we have2 | t1, implying
that x2 can be taken as any positive integer. Then, the set of
lengthn, denoted byY1,2, is

Y1,2 = { 2a · 5b · 41c|0 � a � 5, 0 � b, c� 1} . (24)

Combining Eq. (23) with Eq. (24), we know that the set of
lengthn for � = � 1 = 1 is

Y1 = Y1,1 � Y1,2 = Y1,2.

2. For � = � 2 = 2 , we have that

n =
r · 25 · 5 · 41

gcd(x2, 25 · 5 · 41)
,

where25 · 5· 41 | lcm(22 · 5· 41· t1, x2) and1 � r � 8
gcd( t 1 ,8) .

Case (2.1): When gcd(t1, 8) = 1 , we have25 | x2. Write
x2 = 2 5x�

2 for any positive integerx�
2. Thenn = r ·5·41

gcd( x �
2 ,5·41)

for 1 � r � 8. Thus, the set of the lengthn, denoted byY2,1,
is

Y2,1 = { r · 5b · 41c|1 � r � 8, 0 � b, c� 1} . (25)
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TABLE V

PARAMETERS OF THE[[n, k, n � k + 1; n � k]]512 EAQECCS IN THEOREM IV.1

TABLE VI

PARAMETERS OF THE[[n, k, n � k + 1; n � k]]38 EAQECCS IN THEOREM IV.2

Case (2.2): Whengcd(t1, 8) = 2 , we have2 | t1 and4 � t1,
and hence25 | x2. Similarly, the set of lengthn, denoted by
Y2,2, is

Y2,2 = { r · 5b · 41c|1 � r � 4, 0 � b, c� 1} . (26)

Case (2.3): Whengcd(t1, 8) = 4 , we have4 | t1 and8 � t1,
and hence25 | x2. Thus, the set of lengthn, denoted byY2,3,
is

Y2,3 = { r · 5b · 41c|1 � r � 2, 0 � b, c� 1} . (27)

Case (2.4): Whengcd(t1, 8) = 8 , we have8 | t1, implying
that x2 can be taken as any positive integer. Then the set of
lengthn, denoted byY2,4, is

Y2,4 = { 2a · 5b · 41c|0 � a � 5, 0 � b, c� 1} . (28)

By Eqs. (25)-(28), we know that the set of lengthn for
� = � 2 = 2 is

Y2 = � 4
i =1 Y2,i = Y2,1 � Y2,4 = Y2,1 � Y1,2.

Then, we know thatY1 � Y2. To determineY2\ Y1,
it suf�ces to computeY2,1� Y1,2. Now, comparing the elements
in setsY2,1 andY1,2 gives rise to

Y2,1 � Y1,2 = { 2a · 5b · 41c|0 � a � 3, 0 � b, c� 1} .

Remark V.2:As is clear from above, one can verify that
|Y2,1| = 30, |Y1,2| = 24 and |Y2,1 � Y1,2| = 16. Hence,

we deduce that14 of the 38 kinds of lengths inY2 for
� = � 2 = 2 cannot be produced byY1 for � = � 1 = 1 .
These14 kinds of lengths are: (i)n = 3 · 5b · 41c for each
0 � b, c � 1 (take r = 3 in Y2,1); (ii) n = 5 2 · 41c for each
0 � c � 1 (taker = 5 andb = 1 in Y2,1); (iii) n = 6 · 5b · 41c

for each0 � b, c� 1 (taker = 6 in Y2,1); (iv) n = 7 · 5b · 41c

for each0 � b, c� 1 (taker = 7 in Y2,1). In Table VI, we list
the corresponding[[n, k, n Š k + 1; n Š k]]38 EAQECCs for
� = 1 , 2 derived from Theorem IV.2 with lengthn coming
from Y1, Y2 and Y2\ Y1, respectively. We note that all the
EAQECCs of lengthn (exceptn = 3 , 6, 7) taken fromY2\ Y1

with dimension38k satisfying
�

81+ n
82

�
+ 1 � k � � 9+ n

10

�

cannot be produced by considering the Hermitian case� = 4 .

C. Lengthn = rm for 1 � r � p� Š 1
m 1

, m1 = m
gcd(m, qŠ 1

p � Š 1
)
,

m | (q Š 1) and 2� | e in Theorem IV.3

First, we give the following lemma.
Lemma V.1:Let q = pe with p being a prime number.

Assume that� | e. De�ne

F (� ) = ( p� Š 1)gcd
�

m,
q Š 1
p� Š 1

�
,

where m is a �xed positive integer. For any two positive
integers� 1, � 2 satisfying � 1 | e and � 2 | e, if � 1 | � 2, then
F (� 1) � F (� 2) holds.
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Proof: Since� 1 | e, � 2 | e and � 1 | � 2, we obtain that

F (� 1) = ( p� 1 Š 1)gcd
�

m,
q Š 1

p� 2 Š 1
·

p� 2 Š 1
p� 1 Š 1

�

� (p� 1 Š 1)gcd
�

m,
q Š 1

p� 2 Š 1

�
·

p� 2 Š 1
p� 1 Š 1

= ( p� 2 Š 1)gcd
�

m,
q Š 1

p� 2 Š 1

�

= F (� 2),

which completes the proof.
Observing the conditions in Theorem IV.3, we can rewrite

the length asn = rm , where1 � r �
(p� Š 1)gcd

�
m, qŠ 1

p � Š 1

�

m , m |
(qŠ 1) and2� | e. Hence, for a �xedm satisfyingm | (qŠ 1)
and for any two positive integers� 1, � 2 satisfying 2� 1 | e,
2� 2 | e and � 1 | � 2, it follows from Lemma V.1 that the upper

bound
(p� Š 1)gcd

�
m, qŠ 1

p � Š 1

�

m of r for � = � 2 is wider than the one
for � = � 1. Therefore, our EAQECCs with lengthn = rm for
(p� 1 Š 1)gcd

�
m, qŠ 1

p � 1 Š 1

�

m + 1 � r �
(p� 2 Š 1)gcd

�
m, qŠ 1

p � 2 Š 1

�

m coming
from the case� = � 2 cannot be generated by the case� = � 1.

In this subsection, let us considerp = 5 , e = 8 and � =
� i = i for i = 1 , 2 in Theorem IV.3. In this case, we know
that qŠ 1 = 58 Š 1 = 25 · 3 · 13· 313. For convenience, when
�xing a positive integerm with m | (58 Š 1), we denote by
Z1(r ) andZ2(r ) the corresponding sets of lengthn = rm for
� = � 1 = 1 and � = � 2 = 2 , respectively. Hence, we obtain
that

Z1(r ) =
�

n = rm
�
�
�1 � r �

4gcd(m, 23 · 3 · 13· 313)
m

�

and

Z2(r ) =
�

n = rm
�
�
�1 � r �

24gcd(m, 22 · 13· 313)
m

�
.

Remark V.3:By Lemma V.1, we know thatZ1(r ) � Z2(r ).
For simplicity, we writer1 = 4gcd( m, 23 ·3·13·313)

m and r2 =
24gcd( m, 22 ·13·313)

m . Based on the previous analysis, for a �xed
m with m | (58 Š 1), we deduce thatr2 Š r1 of the r2

kinds of lengths in setZ2(r ) for � = � 2 = 2 cannot be
produced byZ1(r ) for � = � 1 = 1 . In Table VII, we list
the corresponding[[n, k, n Š k + 1; n Š k]]58 EAQECCs for
� = 1 , 2 derived from Theorem IV.3 with length setsZ1(r )
and Z2(r ), respectively. Moreover, Table VII also gives the
corresponding[[n, k, n Š k + 1; n Š k]]58 EAQECCs of length
n coming from Z2(r )\ Z1(r ) with dimension58k satisfying�

54 + n
54 +1

�
+ 1 � k �

�
25+ n

26

�
that cannot be obtained by

the Hermitian case� = 4 . In particular, for some different
m with m | (58 Š 1), Table VII lists the corresponding
[[n, k, n Š k +1; n Š k]]58 EAQECCs with82 kinds of lengths
n = rm coming from the setZ2(r )\ Z1(r ).

D. Lengthn = tpaw for 1 � t � pa, 1 � w � e
a Š 1, a | �

and 2� | e in Theorem IV.4

In this subsection, let us considerp = 3 , e = 12 and
� = � i = i for i = 1 , 2, 3 in Theorem IV.4. For convenience,
we denote byV1, V2 andV3 the corresponding sets of lengthn

in Theorem IV.4 for� = � 1 = 1 , � = � 2 = 2 and � = � 3 = 3 ,
respectively. Let

S1 = { t · 3w |1 � t � 3, 1 � w � 11} ,

S2 = { t · 32w |1 � t � 32, 1 � w � 5} ,

S3 = { t · 33w |1 � t � 33, 1 � w � 3} .

Though there are some repeated elementst i · 3iw i in each
set Si (i = 1 , 2, 3) for some pairs of elements(t i , wi ) with
distinct t i s (1 � t i � 3i ) and distinctwi s (1 � wi � 12

i Š 1),
one easily veri�es that|S1| = 23, |S2| = 41 and |S3| = 79.
Besides, we note that

V1 = S1, V2 = S1 � S2, V3 = S1 � S3.

To determine which lengths in the setVi are not contained
in the setVj for i �= j , we need to compute the setSi � Sj

for each1 � i �= j � 3.
First, to determineS1 � S2, suppose there exist1 � t1 �

3, 1 � w1 � 11, 1 � t2 � 32, 1 � w2 � 5 such that
t1 · 3w1 = t2 · 32w2 , i.e., t2 = 3 w1 Š 2w2 t1. Moreover, we have
w1 Š 2w2 	 [Š9, 9]. Note that1 � t1 � 3 and 1 � t2 � 32.
This can be divided into four cases below.

(i): When w1 Š 2w2 = Š1, i.e., (w1, w2) = (2 i Š 1, i ) for
i = 1 , 2, . . . , 5, we havet1 = 3 t2. Hence,(t1, t2) = (3 , 1).
In this case, the intersection ofS1 andS2, denoted byM 1, is

M 1 = { 32i |1 � i � 5} .

(ii) : When w1 Š 2w2 = 0 , i.e., (w1, w2) = (2 i, i ) for
i = 1 , 2, . . . , 5, we havet1 = t2. Hence,(t1, t2) = ( i, i )
for i = 1 , 2, 3. In this case, the intersection ofS1 and S2,
denoted byM 2, is

M 2 = { j · 32i |1 � i � 5, 1 � j � 3} .

(iii) : When w1 Š 2w2 = 1 , i.e., (w1, w2) = (2 i + 1 , i ) for
i = 1 , 2, . . . , 5, we havet2 = 3 t1. Hence,(t1, t2) = ( i, 3i ) for
i = 1 , 2, 3. In this case, the intersection ofS1 andS2, denoted
by M 3, is

M 3 = { j · 32i +1 |1 � i � 5, 1 � j � 3} .

(iv): When w1 Š 2w2 = 2 , i.e., (w1, w2) = (2 i + 1 , i ) for
i = 1 , 2, 3, 4, we havet2 = 9 t1. Hence,(t1, t2) = (1 , 9).
In this case, the intersection ofS1 andS2, denoted byM 4, is

M 4 = { 32i +2 |1 � i � 4} .

By the cases(i)-(iv) , we have that

S1 � S2 = � 4
i =1 M i

= { 3i |2 � i � 12} � { 2 · 3i |2 � i � 11} . (29)

Hence,|S1 � S2| = 21. SinceV2\ V1 = ( S1 � S2)\ S1 =
S2\ S1, we know that

V2\ V1 = { j · 32i |j = 4 , 5, 7, 8, 1 � i � 5} .

Hence,|V2\ V1| = 20. Similar to the steps shown in the
cases(i)-(iv) , we get that

S1 � S3 = { 3i |3 � i � 12} � { 2 · 3i |3 � i � 11} . (30)
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TABLE VII

PARAMETERS OF THE[[n, k, n � k + 1; n � k]]58 EAQECCS IN THEOREM IV.3

Fig. 1. Venn diagram of setsS1, S2 andS3.

Then, |S1 � S3| = 19. SinceV3\ V1 = S3\ S1, we obtain
that

V3\ V1 = { j · 33i |j 	 [4, 26], 3 � j, 1 � i � 3}

� { j · 33i +1 |j = 4 , 5, 7, 8, 1 � i � 3} .

Hence,|V3\ V1| = 60. In addition, we also compute that

S2 � S3 = { 3i |3 � i � 12} � { 2 · 3i |i = 3 , 8, 9}

� { j · 3i |j = 2 , 4, 5, 6, 7, 8, i = 4 , 6, 10} .

Then,|S2 � S3| = 31. Hence, we obtain that

S2\ S3 = { 32, 2 · 32} � { j · 3i |j = 4 , 5, 7, 8, i = 2 , 8} , (31)

S3\ S2 = { j · 33|j 	 [4, 26], 3 � j } � { j · 36|j 	 [10, 26], 3 � j }

� { j · 37|j = 4 , 5, 7, 8} � { j · 39|j 	 [4, 26], 3 � j } .
(32)

We also notice thatS1 � S2 � S3 = S1 � S3. This means that
S1 � S3 � S2. Therefore, it will be convenient to determine
the two setsV2\ V3 and V3\ V2 by using the Venn diagram
of setsS1, S2 and S3 (see Fig. 1, where the three ellipses
represent the setsS1, S2 and S3 in which, for convenience,
they are divided into the disjoint subsetsJi for i = 1 , 2, . . . , 7
by using the relationS1 � S3 � S2).

Based on Fig. 1, we know thatV2\ V3 = ( S1 � S2)\ (S1 �
S3) = J6 � J7, S2\ S3 = J2 � J6 � J7, S1 � S2 = J2 � J3 and

S1 � S3 = J3. Hence, we obtain that

V2\ V3 = S2\ S3 Š J2 = S2\ S3 Š (S1 � S2 Š S1 � S3),

which, together with Eqs. (29)-(31), gives rise to

V2\ V3 = { j · 3i |j = 4 , 5, 7, 8, i = 2 , 8} .

Hence,|V2\ V3| = 8 . Finally, it follows from Fig. 1 that

V3\ V2 = ( S1 � S3)\ (S1 � S2) = J5 = S3\ S2,

as shown in Eq. (32). Hence,|V3\ V2| = 48.
Remark V.4:For � = 1 , 2, 3, Table VIII lists the corre-

sponding[[n, k, n Š k + 1; n Š k]]312 EAQECCs derived from
Theorem IV.4 with length setsV1, V2 and V3, respectively.
Moreover, Table VIII also gives the corresponding[[n, k, n Š
k + 1; n Š k]]312 EAQECCs of lengthn coming from the sets
V2\ V1, V2\ V3, V3\ V1 andV3\ V2, respectively, with dimension
312k satisfying

�
36 + n Š 1

36 +1

�
+1 � k �

�
8+ n
10

�
or

�
36 + n Š 1

36 +1

�
+1 �

k �
�

26+ n
28

�
that cannot be obtained by the Hermitian case

� = 6 . From Table VIII, we see that20 of the 43 kinds of
lengths inV2 for � = � 2 = 2 cannot be produced byV1 for
� = � 1 = 1 , and 60 of the 83 kinds of lengths inV3 for
� = � 3 = 3 cannot be produced byV1 for � = � 1 = 1 .
Moreover,8 of the 43 kinds of lengths inV2 for � = � 2 = 2
cannot be produced byV3 for � = � 3 = 3 , and 48 of the
83 kinds of lengths inV3 for � = � 3 = 3 cannot be produced
by V2 for � = � 2 = 2 .

E. Comparison of the Length Sets of the EAQECCs in
Theorems IV.1 and IV.2 forp = 3, e = 8 and� = 2

It seems that the sets of lengthn in Theorems IV.1 and IV.2
are either identical, or, one of the two sets is contained in the
other one. Fortunately, that is not the case. In fact, for the
same� , the corresponding set of lengthn in Theorem IV.1
(resp. Theorem IV.2) has some lengths that cannot be produced
by the set of lengthn in Theorem IV.2 (resp. Theorem IV.1).

To verify this statement, let us consider an example for
p = 3 , e = 8 and � = 2 in Theorems IV.1 and IV.2.
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TABLE VIII

PARAMETERS OF THE[[n, k, n � k + 1; n � k]]312 EAQECCS IN THEOREM IV.4

TABLE IX

COMPARISON OF THELENGTH SETS OF THEEAQECCS IN
THEOREMSIV.1 AND IV.2 FORp = 3 , e = 8 AND � = 2

In this case, we denote byW2(t) the set of lengthn of the
[[n, k, n Š k + 1; n Š k]]38 EAQECCs in Theorem IV.1. Then,
we have that

W2(t) = { t · 22 · 5 · 41|1 � t � 8} .

As shown in Table VI (see also Table IX), the set of
length n of the [[n, k, n Š k + 1; n Š k]]38 EAQECCs
in Theorem IV.2 is Y2 with cardinality |Y2| = 38. One
can check thatW2(1), W2(2), W2(4), W2(8) 	 Y2 and
W2(3), W2(5), W2(6), W2(7) /	 Y2. Hence, we haveW2(t) �
Y2 = { W2(1), W2(2), W2(4), W2(8)} .

Remark V.5:Based on the above analysis, Table IX lists
all the corresponding lengths coming from the setsW2(t), Y2,
W2(t)\ Y2 andY2\ W2(t), respectively. As shown in Table IX,
we know that34 of the38kinds of lengths in the setY2 cannot
be obtained by the setW2(t). At the same time,4 of the 8
kinds of lengths in the setW2(t) cannot be yielded from the
setY2.

VI. CONCLUSION

In this paper, by investigating the GRS codes and extended
GRS codes, we constructed eleven families of MDS codes with
� -Galois hulls of arbitrary dimensions via four different tools,
i.e., (i) the norm mapping fromF�

q to F�
p� ; (ii) the direct prod-

uct of two cyclic subgroups; (iii) the coset decomposition of a
cyclic group; and (iv) an additive subgroup ofFq and its cosets.
Through these MDS codes, we presented eleven families of
EAQECCs with �exible parameters in Theorems IV.1-IV.4.

Based on the analysis in Sections III, IV and V, let us make
a summary on the parameters of our EAQECCs constructed
in Theorems IV.1-IV.4.

€ When� increases, the range of the dimensionqk becomes
smaller. It attains the maximum for� = 1 and the
minimum for � = e

2 (Hermitian case).
€ In general, when� increases, the cardinality of the set

of length n becomes larger. It attains the maximum for
� = e

2 (Hermitian case) and the minimum for� = 1 .
Moreover, for certain� = � 1 �= 1 , e

2 , the corresponding
kind of EAQECCs has some EAQECCs whose lengths
cannot be obtained by those derived from certain� =
� 2 �= 1 , e

2 , where� 1 �= � 2.
All in all, we believe that the approaches shown in

Sections II and III will be very useful for �nding more new
families of EAQECCs with �exible parameters.
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Next, let us look at two problems. Since the dimension
k of the MDS codes constructed in Theorems III.1-III.11
is bounded by� p� + n Š 1

p� +1 � or � p� + n
p� +1 � , one has the following

problem.
Problem VI.1:How to improve the bound of the dimension

k of MDS codes in Theorems III.1-III.11 to a larger value
such thatk > � pl + n Š 1

pl +1 � or k > � pl + n
pl +1 � ?

If this problem is solved, then the dimensions of the
corresponding EAQECCs in Theorems IV.1-IV.4 will have a
broader range.

Note that the� -Galois dual codeC� � of an [n, k]q MDS
codeC is an [n, n Š k]q MDS code (see [40]). So it follows
from Corollary IV.1 that there also exists an

[[n, n Š kŠ dim(Hull � (C� � )) , k+1; kŠ dim(Hull � (C� � ))]] q

(33)

EAQECC. For the Euclidean case (i.e.,� = 0 ) and
Hermitian case (i.e.,� = e

2 for even e), we have
Hull E (C) = Hull E (C� E ) and Hull H (C) = Hull H (C� H )
since (C� E )� E = C and (C� H )� H = C. This implies
that the parameters of the EAQECCs in Eq. (33) are deter-
mined by dim(Hull E (C)) when � = 0 or determined by
dim(Hull H (C)) when� = e

2 (if e is even). However, we usu-
ally have(C� � )� � �= Cfor � �= 0 and� �= e

2 . Naturally, we give
the following problem.

Problem VI.2: (1) How to determine the relationship
betweenHull � (C) andHull � (C� � )?

(2) Further, is there an equation to linkdim(Hull � (C)) with
dim(Hull � (C� � ))?

If this problem is solved, then the parameters in Eq. (33) will
be determined bydim(Hull � (C)) . As a consequence, we will
obtain another eleven families of EAQECCs with �exible
parameters apart from those shown in Theorems IV.1-IV.4.
Then, in terms of [3], the EAQECCs with2k < n in
Eq. (33) will produce many catalytic quantum error-correcting
codes (CQECCs) with �exible parameters determined by
dim(Hull � (C)) .
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