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MDS Codes With Galois Hulls of
Arbitrary Dimensions and the Related
Entanglement-Assisted Quantum
Error Correction

Meng Cao

Abstract—Let g = p® be a prime power and [be an integer
with O 1 e 1. The [-Galois hull of classical linear codes
is a generalization of the Euclidean hull and Hermitian hull.
We provide a necessary and sufficient condition under which
a codeword of a GRS code or an extended GRS code belongs
to its [-(ralois dual code, generalizing both the Euclidean case
and Hermitian case in the literature. By using four different
tools: 1) the norm mapping from F, to Fp 3 2) the direct
product of two cyclic subgroups; 3) the coset decomposition of
a cyclic group; 4) an additive subgroup of Fy and its cosets,
we construct eleven families of g-ary MDS codes with [-Galois
hulls of arbitrary dimensions, and give the related eleven families
of [[n, K, d; c]]q entanglement-assisted quantum error-correcting
codes (EAQECCs) with relatively large minimum distance in the
sense that 2d = n k 4+ 2 4+ c. We show that developing
the theory on [-Galois hulls of g-ary MDS codes in this paper
enables us to obtain new g-ary EAQECCs with different kinds
of length sets via different [, where 2[Jle.

Index Terms— [=Galois hull, MDS code, generalized
Reed-Solomon (GRS) code, entanglement-assisted quantum
error-correcting code (EAQECC).

I. INTRODUCTION

UANTUM error-correcting codes are essential to quan-

tum computation and quantum communication due to
their crucial role in dealing with the problem of quantum
decoherence. In 1995, Shor [50] discovered the world’s first
quantum error-correcting code with parameters [[9, 1, 3]] by
using the quantum analog of the repetition code. Since then,
the theory of quantum codes has achieved rapid development
(e.g., see [1], [4], [5], [71, [8], [12], [21], [23], [25], [27],
[28], [33], [35], [43], [44], [47], [48], [51]). As we know,
the construction of quantum codes with good parameters is
important in quantum information processing. However, it is
very difficult to give a general method for acquiring more
good quantum codes. In 1996, the famous CSS construction
proposed by Calderbank and Shor [6] and Steane [52] offers
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us an effective way to construct quantum stabilizer codes from
classical linear codes with certain self-orthogonality. By this
method, a g-ary quantum stabilizer code can be derived from a
g-ary self-orthogonal or dual-containing classical linear code.

Nevertheless, the CSS construction is inapplicable to gen-
eral classical linear codes. In other words, a classical linear
code which is neither self-orthogonal nor dual-containing can
not generate a quantum stabilizer code by CSS construction.
To avoid this problem, Brun et al. [2] proposed an interesting
concept called entanglement-assisted quantum error-correcting
codes (EAQECCs), which can be regarded as a generalization
of the quantum stabilizer codes. According to their discovery,
the EAQECCs can be generated by the classical linear codes
without the restriction of self-orthogonality by utilizing the
pre-shared entanglement between the sender and receiver.
Usually, we denote by [[n, k, d;c]]; a g-ary EAQECC which
encodes k logical qubits into n physical qubits by means of
¢ copies of maximally entangled states (i.e., ¢ ebits). To be
specific, let £ be the space of linear operators defined in
the qubit Hilbert space H. Let us consider the isometric
operator U : H®" — H®" and its completely positive,
trace preserving (CPTP) map U : £®™ — £®"2 defined by
U(x) = UxU*. As shown in [3], the quantum communication
scenario involves two spatially separated parties, Alice and
Bob, owning the following resources at their disposal:

o A noisy quantum channel defined by a CPTP map N :
LE™ — L7 taking density operators on Alice’s system
to those on Bob’s system;

o The c ebit state |T)®¢ shared between Alice and Bob.
Through these resources, Alice wants to send k qubits to Bob
perfectly. Then, an [[n, k, d; ¢]]; EAQECC is made up of

« An encoding operation £ : L% @ L&¢ — L£®7;

o A decoding operation D : L& ® LZ¢ — LOF
with DoN oEoV = id®*, where V appends the state |T)®¢,
namely, V|Z) = |Z)|T)®¢, and id is the identity map on a
single qubit from £ to £. The “entanglement-assisted” setting
described above simplifies the theory of quantum channels and
makes quantum error correction easier in a way, which helps
us to create many different kinds of quantum codes in quan-
tum communication. For example, Hsieh et al. [30] utilized
classical quasi-cyclic low-density parity-check (LDPC) codes
to obtain some entanglement-assisted quantum LDPC codes
with good performance. In [54], Wilde and Brun developed a
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useful theory of entanglement-assisted quantum convolutional
coding by exploiting pre-shared entanglement and a convo-
lutional coding structure. They showed that a Calderbank-
Shor-Steane (CSS) entanglement-assisted quantum convolu-
tional code can be constructed by two arbitrary classical
binary convolutional codes. In [56], Wilde et al. revealed that
entanglement assistance can simplify the theory of quantum
turbo codes in several important manners and they also exam-
ined the effect on the performance of these codes with the
help of entanglement assistance. For more information about
EAQECCs, we refer the reader to [17]-[20], [22], [24], [31],
[32], [37]-[39], [55], [57].

In [3], Brun et al. showed that EAQECCs can be linked
with the related idea of catalytic quantum error correction in
quantum communication. More concretely, one can imagine
that Alice and Bob are allowed to send c qubits error-free
through a noiseless quantum channel that serves as a catalyst
and is returned at the end of the protocol, apart from a
noisy quantum channel N. Then, the encoding operation
& and decoding operation D mentioned above will define

n [[n,k — ¢,d; c]]¢ catalytic quantum error-correcting code
(CQECC), where D o (N ®1id®°) o & =1d®* ¢ @ 1d®°.

In [53], Wilde and Brun proposed a useful method for
constructing EAQECCs from binary classical linear codes.
In 2019, Galindo, Hernando, Matsumoto and Ruano [19]
extended the binary case to the general one and obtained
many important results on EAQECCs over arbitrary finite
fields. By these results, an [n, k, d], linear code with parity
check matrix H produces an [[n, 2k —n + ¢, d; ]|, EAQECC
with ¢ = rank(HHT). Denote by Hullg(C) = C(\C**?
(resp. Hully(C) = C(Ct#) the Euclidean hull (resp.
Hermitian hull) of a classical linear code C, where C+~
(resp. C+#) is the Euclidean dual (resp. Hermitian dual)
code of C. Guenda et al. [29] proved that the parameter
¢ of an [[n,2k — n + ¢,d;c]], EAQECC is related to the
dimension of the Euclidean hull (or Hermitian hull) of an
[n, k,d], linear code. Based on these facts, Luo et al. [46]
constructed several families of MDS codes with Euclidean
hulls of arbitrary dimensions and obtained the corresponding
EAQECCs with flexible parameters. Soon after, Fang et al.
[16] presented several families of MDS codes with Euclidean
hulls and Hermitian hulls of arbitrary dimensions, and then
they also supplied the corresponding EAQECCs with flexible
parameters. Note that the /-Galois dual code C¢ introduced
by Fan and Zhang [14] generalizes both the Euclidean dual
code C+# and the Hermitian dual code C+#. Consequently,
the (-Galois hull of C, denoted by Hull,(C) = C(C, is
a generalization of the Euclidean hull and Hermitian hull of
C. Naturally, we may wonder how to construct MDS codes
with ¢-Galois hulls of arbitrary dimensions. Once such MDS
codes are constructed, some new families of EAQECCs may
be obtained subsequently.

In this paper, our goal is to construct g-ary MDS codes
with ¢-Galois hulls of arbitrary dimensions and obtain new
[[n, k,d; c]], EAQECCs with relatively large minimum dis-
tance in the sense that 2d = n— k+ 2+ ¢. Compared with [16]
and [46], the research scope is extended from the Euclidean
hulls and Hermitian hulls to the /-Galois hulls. To achieve
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this goal, we first provide a necessary and sufficient condition
under which a codeword of a GRS code or an extended GRS
code belongs to its ¢-Galois dual code (see Propositions II.1
and I1.2), which generalizes both the Euclidean case in [9] and
the Hermitian case in [15]. By utilizing this condition, we then
construct eleven families of MDS codes with /-Galois hulls of
arbitrary dimensions by means of: (i) the norm mapping from
]F; to ]F;,, (see Theorems III.1-I11.3); (ii) the direct product of
two cyclic subgroups (see Theorems II1.4-111.6); (iii) the coset
decomposition of a cyclic group (see Theorems II1.7-111.9);
and (iv) an additive subgroup of [F, and its cosets
(see Theorems III.10 and III.11). Using these MDS codes,
we give eleven families of EAQECCs with relatively large
minimum distance as follows.

Let ¢ = p© with p being an odd prime number and let ¢ be
an integer with 0 < ¢ <e — 1. Let 27 and z2 be two positive
integers. Then, there exists an [[n,k—h,n—k+1;n—k—hl,
EAQECC with relatively large minimum distance if one of the
following eleven conditions holds:

@n="201<r<p —L1<k< (B2 20 e
and 0 < h <k — 1 (see Theorem IV.1 (1));

Myn=""0411<t<p ~11<k<[BE2] 20 e
and 0 < h < k (see Theorem IV.1 (2));

@n=""0421<t<p' ~1,1<k<[BE2] 20 e
and 0 < h < k(— T)(see Theorem IV.1 (3));

q

dn= o p, 1 | x1, (¢ — 1) | lem(zq,x2), 1 <
q—1 +7
(see Theorem V2 (1)),
©n = qilds +1, 4= le1 (a=1) |lem(a, z2).
1 +n
1<TSW 1<k<|_pe+1J 2€|eand0§h§k
(see Theorem IV.2 (2));
®n= % + 2, ;1 |ex1, (¢ — 1) | lem(zq, z2),
—+n
1<7"<W71<k<LZZ+1J,2€|€andOShS
— 1 (see Theorem IV.2 (3));
(g)nzrmm|(q;1),1§r_ = edtma)
y = 1= < |BEA7) 20 eand 0 < h <k —1 (see
Theorem IV3 (1)) ,
—1 m
(h) n =rm+1,m | (q_]‘)’ I<r< pml s = Sedtmyy)

¥4
y:;zl,lgkgL’;J?J,2£|eand0§h§k(see

Theorem 1V.3 2)); ’
. — J— p _1
(1) n= rm+2 m|(g—1),1<r<E= ged(my)

L%J,%Mandoghgk_l(see

, M1 =

y =
Theorem IV3 (3))

(J)n—tp‘“” 1<t<p’1<w< e-1,1<k<
|2 til 1J al|l,20|eand 0 < h <k (see Theorem IV.4 (1));

Kn=1t"+11<t<p"1 <w 2 -1,
1<k< L”ij_:j;lj,aw, 20 | eand 0 < h < k—1 (see
Theorem IV.4 (2)).

For each theorem of Theorems IV.1-IV.4, we show that
the variables ¢ with 2¢ | e correspond to different kinds
of EAQECCs in the sense that they have different kinds of
length sets, by providing some examples and several tables

for ¢ = 2,3 (see Tables V and VIII) and ¢ = 1,2
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(see Tables VI and VII). This is an important advantage of
developing the theory on /-Galois hulls of MDS codes in this
paper. We also show that some lengths coming from the set
of length n in Theorem IV.1 cannot be obtained by the set of
length n in Theorem IV.2, and vice versa, by providing a table
(see Table IX) for p =3, e=8 and ¢ = 2.

The remainder of this paper is organized as follows.
In Sect. II, we recall and give some results about ¢-Galois
dual codes, GRS codes and extended GRS codes. In Sect. III,
we construct eleven families of g-ary MDS codes with /-Galois
hulls of arbitrary dimensions. In Sect. IV, by applying these
MDS codes constructed in Sect. III we obtain eleven families
of [[n,k,d;c]]; EAQECCs with relatively large minimum
distance in the sense that 2d = n — k + 2 + ¢. Sect. V
makes a detailed discussion on the lengths of our EAQECCs
for different variables ¢. Finally, Sect. VI gives a summary of
this paper and offers two open problems.

II. PRELIMINARIES

Throughout this paper, we always assume that ¢ = p°© is a
prime power, where p is a prime number and e is a positive
integer. Denote F; = F,\{0}, where I, is the finite field
with ¢ elements. For any finite set S, we denote by |S] its
cardinality, namely, the number of all the elements in S.

As usual, we denote by [n,k,d], a classical linear code
over I, with length n, dimension £ and minimum distance d.
The minimum distance d of a linear code must satisfy the
well-known Singleton bound d < n + 1 — k. If the minimum
distance achieves the bound, i.e., d = n + 1 — k, then such
a linear code is called a maximum distance separable (MDS)
code.

We need to recall the following important concepts intro-
duced by Fan and Zhang [14].

Definition I1.1 ([14]): (1) Let x = (21, %2,...,%,), ¥y =
(Y1,2,---,yn) € Fy. For each integer £ with 0 </ < e —1,
the inner product

n

¢

(X, y)f = Z xlyf
i=1

is called the ¢-Galois inner product (i.e., p’-inner product) of
x and y.

(2) Let C be a linear code with length n over FF,. For each
integer ¢ with 0 < ¢ < e — 1, the code

ctr={xe F (v, x)¢ = 0 for each y € C}

is called the ¢-Galois dual code (i.e., p*-dual code) of C.
In particular, in the above definition,

o If £ =0, then (x,y)o is just the Euclidean inner product
of x and y. Besides, C1o is the Euclidean dual code of
C.

o Ifeisevenand ¢ = 5, then (x,y) is just the Hermitian
inner product of x and y. Besides, C 5 is the Hermitian
dual code of C.

As usual, we use the notations C+# and C1# to denote C+°

and C Ls (if e is even), respectively. Further, for each integer
¢ with 0 < ¢ < e—1, we call Hully(C) := C(C** the

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

{-Galois hull of C. Naturally, the concept of the ¢-Galois hull
is a generalization of the Euclidean hull and Hermitian hull.

For a vector v = (v1,02,...,v,) € Fy, we define v =
(v§,vg,...,v%) for any integer a. Let M be a subset of F7,
then M is defined as the set {v®|v € M}.

The following useful lemma given by Liu et al. characterizes
the ¢-Galois dual code of a linear code.

Lemma II.1 ([41]): For an [n, k, d], linear code C, we have
cte = (CPWZ)J‘E for0</<e-—1.

Now let us recall and study the generalized Reed-Solomon
(GRS) codes and the extended GRS codes. Take a =
(a1,az,...,a,) with ay, as, ..., a, being distinct elements in
Fg, and put v = (v1,v2,...,v,) with vy, va,... v, € F}.
Suppose k < n < g, then the k-dimensional GRS code with
respect to a and v is defined as

GRSi(a,v) = {(v1f(a1),vaf(az),...,vnf(an))]
f(x) € Fylz], deg(f(z)) <k —1}.

Itis an [n, k,n—k+ 1], MDS code whose generator matrix
is

’Ul fU2 ... ’Un
v1a1 V202 s UnQnp
Grlav)=| T
k—1 k—1 k—1
v1ay Vo ly Cee UpQ,

Moreover, the k-dimensional extended GRS code with
respect to a and v is defined as

GRSk(a,v,00) = {(v1f(a1), ..., vnf(an), fr-1)|
f(x) € Fylz], deg(f(x)) <k —1},
where f;,_1 denotes the coefficient of z*~1 in f(z). It is not
difficult to verify that GRSy (a, v, c0) is an [n+1, k, n—k+2],
MDS code whose generator matrix is

U1 Vg e Up, 0
v1ay Voas vpan, 0
Gk (37 v, OO) = : :
vm’ff2 v2a§72 vpak=2 0
vla’f_l vgalg_l vnaf;_l 1
(2)
From now on, for each i = 1,2,...,n, we shall denote by
u; = H (a; —aj;)~ "t 3)
1<) <n.jti
Let 1 = (1,1,...,1) be the all one vector. By the

above basics, the Euclidean dual codes GRSy (a,1)+# and
GRS (a,1,00)F can be expressed as follows.

Lemma I1.2 ([34]): Let u = (u1,uz,...,uy), where each
u; is defined by Eq. (3). Then,

GRSi(a,1)*# = GRS, _1(a,u).
Lemma 11.3 ([15]):
GRSk(aa 17 OO)LE = {(ulg(al)v s 7ung(an)a _gnfk)|
g(z) € Fylz],deg(g(z)) < n — k},

where g,,_;. denotes the coefficient of 2"~ * in g(z).
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Based on Lemma II.2, the following proposition provides a
necessary and sufficient condition under which a codeword ¢
of GRS(a,v) belongs to GRSk(a, v)Le.

Proposition II.1: For ¢ = (vif(a1),v2f(az),...,vn
fla,)) € GRSL(a,v), we have ¢ € GRSi(a,v)*¢ if
and only if there exists a polynomial g(z) € TF,[x] with
deg(g(x)) <m —k — 1 such that

(7 (@), o8 T @),
= (u1g(a1),u2g(az), ...,
Proof: By Eq. (1), we know that
Gr(a,v) = Gr(a,1)D,

W (a,))
Ung(an))' (4)

where D = diag(vy,v2,...,v,). Then, by Lemmas ILI

and II.2, we have that
c € GRSy(a,v)*

e—¢

& c € (GRSy(a,v)te)P
& ¢ € GRSy(a,v)*®
& Gi(a,v)(c?)T =0
& Gr(a, 1)D(c”)" =0
s De GRSi(a,1)*7
& ¢ D € GRS, _(a,u).

Thus, the proof is completed. [ ]

Remark I1.1: Proposition II.1 generalizes both the Euclid-
ean case (i.e., £ = 0) in [9, Lemma 2] and the Hermitian case
(ie., £ = % for even €) in [15, Lemma 6].

For the extended GRS code GRSy(a,v,00), we give the
following proposition by using Lemma II.3.

Proposition I1.2: For ¢ = (vif(a1),v2f(a2),...,vnf(an),
fr—1) € GRSk(a,v,00), we have ¢ € GRSk(a,v, o)t

if and only if there exists a polynomial g(x) € Fy[x] with
deg(g(z)) < n — k such that

2 £ (4
(o P @)l (), D)
= (U’lg(al)a e 7ung(an)7 _gn—k’)- (5)
Proof: According to Eq. (2), we have that
Gk(aa Va OO) = Gk(aa 17 00)57

where D = diag(vy, ...,
that

Up, 1). Then, by Lemma II. 1, we have

c € GRSy(a,v,00) " & c € (GRS, (a,v,00)17 )"
s e GRSk(a,v,00)t”
< Gr(a,v, oo)(cpk)T =0
& Gr(a, 1,00)D(c? )T =0
& e’ D € GRSy(a, 1,00)*"
Applying Lemma I1.3, we finish the proof. [ ]
Remark I1.2: Proposition I1.2 generalizes both the Euclid-
ean case (i.e., £ = 0) in [9, Lemma 3] and the Hermitian case
(i.e., £ = 5 for even e) in [15, Lemma 7].

Propositions II.1 and II.2 provide us with an effective
method for deriving the expression of the polynomial f(x).
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By virtue of them, in the next section, we can determine
the dimensions of the /-Galois hulls of some GRS codes and
extended GRS codes in a convenient way.

III. CONSTRUCTIONS OF MDS CODES WITH /-GALOIS
HULLS OF ARBITRARY DIMENSIONS

In this section, we will construct several families of MDS
codes with ¢-Galois hulls of arbitrary dimensions. The phrase
‘arbitrary dimensions’ appeared previously in [16] and [46]
when describing the MDS codes with Euclidean hulls and
Hermitian hulls therein. Here, it represents that the ¢-Galois
hulls of our MDS codes can take all or almost all possible
dimensions. More precisely, the dimensions of the ¢-Galois
hulls in this section run through the integers from 0 to k,
or k—1 (in fact, 0 < dim(Hull,(C)) < k), where k is the
dimension of the MDS code C.

As can be seen in Propositions II.1 and II.2, an impor-
tant point of our constructions is to take n suitable dis-
tinct elements aq,as,...,a, as the coordinates of the vec-
tor a in GRSk(a,v) or GRSk(a,v,00). Further, for the
convenience of calculating the values of wuj,us,...,u,
(see Eq. (3)), we find several kinds of suitable elements
ai,asz,...,a, related to (i) the norm mapping from IFZ to IF;Z
(see Theorems III.1-II1.3); (ii) the direct product of two cyclic
subgroups (see Theorems II1.4-111.6); (iii) the coset decompo-
sition of a cyclic group (see Theorems III.7-111.9); and (iv) an
additive subgroup of [F, and its cosets (see Theorems III.10
and III.11). By utilizing these tools, we present eleven families
of MDS codes with ¢-Galois hulls of arbitrary dimensions in
the following four subsections.

A. MDS Codes Related to the Norm Mapping From I} to F;z

Let ¢ = p° with p being a prime number, 0 < ¢ <
e — 1. Assume that ¢ | e. Consider the following surjective
homomorphism called the norm mapping:

Norm : IFZ — F;/,

e_q
£ . —
T H xpi[ = J,‘:e—ll
i=0
Denote by IF;Z = {b1,b2,...,bpe_1}. For each b; € IF*[,
i=1,2,...,p" — 1, define

N; = {x € F}| Norm(z) = b;}.

Then N; = ;Ker(Norm), where Norm(8;) = b; holds for
some 3; € Iy since Norm is surjective, and Ker(Norm) =
{z € Fy Norm( ) = 1} is the kernel of Norm. This
yields that |N;| = |Ker(Norm)|. On the one hand, by the
fundamental homomorphism theorem, we have that

I, /Ker(Norm) = Im(Norm) < F,,

where Im(Norm) is the image of Norm. Then, we have
|F;/Ker(Norm)| < p’ — 1. On the other hand, since
|Ker Norm)‘ < q—11, we know that |IF;/Ker(Norm)| >
./ Ker( Norm ‘ =pt (Norm)| =

NIl = =

—1,1.e.,
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Now, denote by

t
N:UNi:{alaaQa"'a

i=1

an}, (6)

where 1 <t < p’ — 1. Then, n = tl();%j) for1 <t<pl—1,
and N; N N; = () hold for all i # j. Therefore, we have the
following lemma.

Lemma Ill.1: Let a; and u; be defined as in Egs. (6) and (3),
respectively. Assume that ¢ | e. Then, a;lui S IF;,, holds for
eachi=1,2,...,n.

Proof: For any a; e N, i=1,2,...,

a; € N, for some 1 < s < ¢t. Then Norm(a;) = bs = a’

By Eq. (3), we see that
-1, H H (ai — djljil.

c;ENg,c;j#a; 1<st, 555 dre N0

n, we may assume
g—1
pf—1

u; = (ai —cj)

@)

Let u(z) = [.,en, (@ = ¢;), then u(x) = Norm(z) — bs =

xp »’=1 — b,. Since a; € N, then

II

cjENs,cj#a;

(a; = ¢j) = u'(a;) =

H (a;

¢;€ENs,c;#a;

Hence,

— — _
a;t H (ai—¢;)" ' =a, "' €Fy. (8)
¢;ENs,cj#a;

By [I4 cen (2 — dj) = Norm(z) — bs; we have that

11 I (@—di™

1<st,sBs dre N, o
—b @7

= I
L eF. )

(Norm a;)
1<st<t,sts

It follows from Egs. (7)-(9) that a;lui S IF;Z. Therefore,
the proof is completed. [ ]

As shown in Lemma III.1, a; 1ui S IF;( holds under some
suitable conditions. Now, for any u € IF;@, observing Eq. (4)
in Proposition II.1 and Eq. (5) in Proposition II.2, we wonder
if there exists v € F} such that vP'+1 = y. If such a relation
exists, then it will help us to explore the structure of the
polynomial f(z) in Propositions II.1 and II.2, which makes
it easy to determine the dimensions of the ¢-Galois hulls of
some GRS codes and extended GRS codes.

In the following lemma, we give a necessary and sufficient
condition under which the relation v?'*! = u holds.

Lemma II1.2: Let ¢ = p® with p being an odd prime number
and let 0 < ¢ < e — 1. Then, for any u € IF;Z, there exists

v € F: such that v 1 = u if and only if 2/ e.
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Proof: First of all, as F )¢ is required to be a subfield of Fy,
we immediately obtain ¢ | e. Let e = £¢' for some integer ¢'.
bAssume [y = (e), then ord(e? +1) = Wl,lp“—l)' Denote
y

H:= {z" |z € F3},

. . . - 1
then H is a subgroup of F; with ord(H) = m.
Besides, IF[*),, is a subgroup of Iy with ord(IFI*)/,) =pt -1

Therefore, we have that
q—1
ng(q - 1ap€ + 1)
& (p' = 1) ged(g—1,p" +1) | (g —1).

Fro CH & (p' 1)

Note that
ged(q — 1,p" +1) = ged(((p +1) = 1) = 1,p" + 1)
= ged((-1)" = 1,p + 1)

2, if /' is odd;
P+

if ¢/ is even.
Case (i): If /' is odd, then (p’ — 1) - gcd(q —1,p" + 1)
2(p* — 1) Besides, we know that q —1=p" —1=(p* -
)Y 01 p*’. Observing that Zz o' p" is odd, we obtain that

(P —1)-ged(g—1,p" + 1) (g —1).

Case (ii): If £’ 1s even, assume ¢’ = 2¢” for some integer £”.
Then ¢ — 1 =p* — 1= pQM — 1. Combining this with the
fact (p* — 1) - ged(q — 1,p° + 1) = p* — 1, we obtain that

(p" —1)-ged(qg—1,p" +1) | (g —1).

Thus, we conclude that IF;( C H < 2/ | e, which completes
the proof. |

By using the previous lemmas, we give the following [n, k|,
MDS codes with ¢-Galois hulls of arbitrary dimensions.

Theorem III.1: Let ¢ = p° with p being an odd prime
number. Assume 2/ | e. Let n = t]()q D for each 1 < t <

p’ — 1. Then, for any 1 < k < Lizirfj and 0 < h < k-1,
there exists an [n, k], MDS code with h-dimensional ¢/-Galois
hull.

Proof: Let a1, as,...,a, be defined by Eq. (6). For each
1 <4 < n, by Lemma III.1, we have a;lui c IF;Z. Further,
in terms of Lemma III.2, there exists v; € IF; such that

vf’ul = a;'u;. Set z := k —1— h and take 3 € Fy
such that y := B*'*1 % 1. Put a = (ay,as,...,a,) and
v =(0v1,...,00:,V241,...,0,). Consider the ¢-Galois hull
of the [n, k], MDS code C := GRSy(a,v). Then for any
c=(Buif(ar),...,0v.f(az),vep1f(azs1), - onf(an)) €
Hully(C) with deg(f(x)) < k—1, in terms of Proposition II.1,
there exists a polynomial g(x) € Fy[z] with deg(g(z)) <
n — k — 1 such that

¢ ¢ ¢ ¢ ¢ ¢
(B T (), B P (00), 0f B (aas),

PP (a,)) = (ung(ar), usg(as), - - - tng(an)).
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That is,
£ 2 £
(’yaflulfp (al)v cee 77a;1u2fp (az)v a;jluerlfp (aerl);
¢
oty U fP (an)) = (urg(ar), uzg(az), .. ., ung(an)).
(10)

Comp%ring the last n — 2 coorglinates of Eq. (10), we have
a; tui P (a;) = wig(ay), ie., fP (a;) = a;g(a;) fori = z +

1,...,n. Hence the number of the distinct roots of fpz (x) —
A
xzg(x) is at least n — z > n — k + 1. Since k < L’;,,im, we

have deg(f? (z)) < p*(k — 1) < n — k, which, together with

deg(zg(z)) < n—k, derives that deg(fpz (x)—zg(z)) < n—k.

This implies that f?* (x) = xzg(z) and hence z | f(x).
Observing the first z coordinates of Eq. (10), we know that

lfp (ai)

,z. Hence f*' (a;) = 0, ie., f(a;) = 0 for
z. Then we can express f(x) as

ya; uzfp (ai) = uzg(az) = u;a

for i = 1,...
i=1,...,
#(w) = wea) [[ (@ — a)

i=1
for some c(z) € Fylx] with deg(c(x)) < k — z — 2. Thus,
dim(Hull(C)) <k —z—1.

ze(z) [T, (z — a;), where

Conversely, let f(z) =
c(x) € TFylx] with deg(c(x)) < k — z — 2. Taking
g(z) = =1 f" (), then deg(g(z)) < p’(k—1)—1 < n—k—1
and Eq. (10) holds. By Proposition II.I, we have
(ﬂvlf(al)a ce 6vzf(az)vvz+1f(az+1)v R Unf(an)) €
Hully(C), which means that dim(Hull,(C)) > k — z — 1.

Therefore, we obtain dim(Hull,(C)) = k—z—1 = h,
which completes the proof. [ |

Next, based on Theorem III.1, we proceed to construct a
family of MDS codes of length n + 1 from GRS codes with
¢-Galois hulls of arbitrary dimensions as follows.

Theorem II1.2: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e. Let n = t;q_? foreach 1 <t <

p’ — 1. Then, for any 1 < k < Lpi’” and 0 < h < k, there
exists an [n + 1, k], MDS code with h-dimensional (-Galois
hull.

Proof: Let ay,as,...,a, be defined as in Eq. (6) and let

an+1 = 0. For each 1 <4 < n, in view of Lemma IIL.1, we

have that
H (ai — aj)_l = a;l H (ai — aj)_l S F;z.
1<j<n+1,j#i 1<j<n,j#i

For i = n + 1, we know that

ﬁ(an+1—a3 [H( 11 aﬂ)}

J=1 i=1 ajEN;

Y
Let us compute [, ¢y, a;. Denote by

N; = {ai,laai,Q;--wai q;l}7

Ypl—1

then for each a; € N, ie., for each a;, € N;, where r =
qg—1

q—1
f—1
]., 2, ceey IT*I’ we have Norm(ai’r) = bi =a?l
q—1

7,7
xr’=1 — b = (v —a;1)(x

—a;2) - (m — a%qkj1 ),

, and thus
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a—1
which implies that [[*;" @i, = (—
into Eq. (11), we obtain that

l_
1)7"~1 b;. Substituting this

n

[T —ap= = (=1)" [H(—nif—‘f bz} h

j=1
t
—1 *
[o:" €.
i=1

Denote w; = [[;<jcpiq i@ — aj) li=1,...,n+1.
Then, from Lemma III.2, there exists v; € IF* such that

t(a—p®)

= (-)"

v”“:wzforz:l n+1 Set z := k —h
and take B € F; such that 'y = Bl £ 1. Put a =
(a1,aq,... anH) and v = (Bu1,..., 00,0501, Unt1)-
Consider the (-Galois hull of the [n + 1,k
MDS code C := GRSk(a,v). Then for any ¢ =
(Burf(ar), ..., Bvzfaz), vogrf(az41), - vngr fantr)) €

Hully(C) with deg(f(x)) < k — 1, by Proposition II.1, there
exists a polynomial g(z) € Fy[z] with deg(g(z)) < n —k

such that
pt+1, pi+1pt p’+1, pt+1pp’ p*
(ﬁ U1 (Lh),...,ﬁ Uz f ( )v z+1f (a2+1)
¢ ¢
W8 5P (ang1)) = (wig(ar) wag(as), . . wni19(ani1))-
That is,
2 2 4
(walfp (al)a o a’szfp (az); werlfp (aerl)a
¥4
o Wnt 1 [P (ant1))
- (wlg(al); TUQQ(GQ), LR wnJrlg(anJrl))' (12)

From the last n — z + 1 coordinates of Eq. (12), we have
wif? (a;) = wig(ai). ie. ¥ (a;) = gla;) for i = z +
1,...,n+1. Hence the number of the distinct roots of fpz (x)—
g(x)is atleast n —z+1>n—k+ 1. Since k < Li;f”, we
have deg(f7' (z)) < p’(k — 1) < n — k, which, together with
deg(g(z)) < n — k, derives that deg(fpz () —g(x)) <n—k.
Hence f7' (x) = g(x).

Observing the first z coordinates of Eq. (12), we have that

yw, f7 (a;) = wig(a;) = w; f7 (ai)

z. Hence fpg(ai) =0, ie., f(a;)
,z. Then we can write f(x) as

for: = 1,..., = 0 for
i=1,...
f(@) = c@) [[ (= — a0)
i=1

for some c(x) € Fylx] with deg(c(z)) < k — z — 1. Thus
dim(Hully(C)) < k — z.

Conversely, similar to the proof of Theorem III.1, we have
dim(Hully(C)) > k — z.

Therefore, dim(Hully(C)) = k — z = h, which completes
the proof. |

Now, if we consider the extended GRS code
GRSy(a,v,00) of length n + 2 with a and v being
defined as in the proof of Theorem IIL.2, then a new family
of MDS codes with ¢-Galois hulls of arbitrary dimensions
can be yielded as follows.

Theorem II1.3: Let ¢ = p° with p being an odd prime
number. Assume 2/ | e. Let n = t(‘ij) foreach 1 <t <
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p’ — 1. Then, for any 1 < k < LI’;;i?J and 0 < h < k-1,

there exists an [n + 2, k], MDS code with h-dimensional ¢-
Galois hull.

Proof: Set z := k — 1 — h and take 3 € [ such
that v := pr+t # 1. Let a = (a1,a2,...,0n41),
v = (Bui,...,B05,0:01,...,05+1) and w; be defined

as in the proof of Theorem III.2. We can consider

the ¢-Galois hull of the [n + 2,k], MDS code C :=

GRSk(a,v,00). Then for any ¢ = (Bvif(a1),...,0 v,

f(az);szrlf(aerl) UnJrlf(anJrl) fk 1) € Hu”f(c)

with deg(f(z)) < k — 1, by Proposition IL.2, there exists a
(

polynomial g(z) € Fy[x] with deg(g(x)) < n — k + 1 such
that
(B T (@), ﬁpf“ o (a2),
1 (4
EJI fp ( )7-~~7 n+1 f (an+1))f]€_1)
= (wlg(al)a oy W 19(ny1), —Gn—kt1)-
That is,
(4 (4 (4
(ywrf? (a1), ..., ywz P (az), weqr f¥ (az41),
2 4
. awn+1fp (Cln+1), f}€)71)
= (wig(ar), ..., wns19(an+1), —gn—k+1).  (13)
Fori = z+1,...,n+1, by comparing the 7- th coordinate of

Eq. (13), we have wi /7' (a;) = wig(ai). ie. 7' (a;) = g(ai).
Hence the number of the distinct roots of f?* () — g(x) is

atleast n — z+ 1 > n—k+2 Since k < |Z22] we

have deg(fpz (z)) < p(k — 1) < n — k, which, together with
deg(g(z)) < n — k + 1 derives that deg(f? (z) — g(z)) <
n —k + 1. Hence fp/'( )= g( ).

Moreover, we have fk 1 = —9n—k+1 from Eq. (13).
Assume that f,_1 # 0. By deg(fp/' (x)) = deg(g(x)), we have
p‘(k — 1) = n — k + 1, which yields a contradiction since
p‘(k — 1) < n — k. Hence, fr_1 = 0, implying that
deg(f(x)) < kb —2.

According to the first z coordinates of Eq. (13), we have
that

yw, f7 (a;) = wig(a;) = w; f7 (ai)

,z. Hence f”l(ai) =0, ie., f(a;) = 0 for
z. Then f(z) can be written as

for i = 1,...
i=1,...,
z
f(z) = (@) [ [ (e - i)
i=1

for some c(x) € Fy[z] with deg(c(z)) < k — 2 — z. Thus
dim(Hull,(C)) <k —1-—z.

Conversely, similar to the proofs of Theorems III.1 and I11.2,
we get dim(Hully(C)) > k—1— z.

Therefore, dim(Hull,(C)) = k—1—z = h, which completes
the proof. [ ]

Remark 1II.1: Note that the lengths n of the

MDS codes in Theorems III.1, III.2 and III.3 are
g-1 2(¢—1) (' =2)(g-1) — 1, which are related
pl—17 pl—1 7 "> pf—1 »q >

to ¢ except the last one. Substltutlng these lengths n = (qfl)
pl—1

of the dimension k gives

pitn
[Jrl

into the upper bound
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£ t(g—1) .
pt+—= 20l at(g—1
rise to ’Z’),iyf = p/jrll = %f%q). Thf':n, for
a fixed t (there always exist some fixed t for different
{1 and (o, for example, take ¢t = 1,2), the derivative

2[
(p —]zj)zj_tﬁq 1)) [p*—2t(¢— ;)]lili;rz(p —2p**)lnp < 0. This
together with the condition 2/ | e (means 1 < ¢ < 5) reveals
that the range of the dimension k for any 1 < ¢ < § with
2¢ | e is wider than the range of the dimension & for the
Hermitian case ¢ = §. Therefore, the [n, k|,, [0+ 1,k|, and

[n+2, k], MDS codes in Theorems IIL1, 1.2 and 1113 with
dimension k satisfying L%J +1<k< Lf}ii’fj for any
1 < ¢ < § with 2/ | e cannot be obtained by the Hermitian
case { = 5. For example, take p = 5, ¢ = 4, £/ = 1 and
t = 1 in Theorems III.1, III. 2 and II1.3, then n = 156, and
hence Lif‘i?ﬁj = 26 and L5 =58 | = 6. Therefore, we can
obtain [156, k|54, [157,k]sa and [158, k|52« MDS codes for
each 1 < k < 26, while for the same length, MDS codes
with dimension £ satisfying 7 < k£ < 26 cannot be produced

from those by considering the Hermitian case ¢ = 2.

B. MDS Codes Related to the Direct Product of Two Cyclic
Subgroups

In this subsection, we will present another three families of
MDS codes with ¢-Galois hulls of arbitrary dimensions. The
coordinates of the vector a in GRSy (a, v) or GRSk (a, v, 00)
are obtained via the direct product of two cyclic subgroups.

First, let us give the following lemma, which is useful for
constructing the coordinates of the vector a in GRSk (a, v).

Lemma II1.3: Let 1 and x2 be two positive integers. Denote
by & = o™ and & = a2, where « is a primitive element of
F,. Then,

ged(ord(&y),0rd(&2)) =1 < (¢ —1) | lem(zy, 22),

where ord(z) denotes the order of the element x in IF}.
Proof: Since ord(&;) = WE_D and ord(&) =
q—1 '

Zod(rag—T)- then ged(ord(&y), ord(€2)) = 1 if and only if

g—1 qg—1 )
cd , =1. (14
& <ng(xla q— 1) ng(an q— 1)
Let S be the set consisting of all the prime divisors of g—1,
z1 and 2. Assume ¢ — 1 =[] _op", 21 = Hpiespf"' and
T = Hp,,espi%’ where oy, 3;,7v; € N, then we have that

H m1n (evi,Bi )

pi€S

ged(xy,qg— 1)

which implies that

_gq-1
ged(zy,q—1)

_ H pzo“ —min(a;,B3;) .

pi€S

Hence, Eq. (14) holds if and only if for each i,

0 = min(a; — min(ay, 3;), a; — min(ay, v;))

= o; — max(min(a;, 5;), min(a;, v;)).
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That is,

a; = max(min(a;, 5;), min(a;, i)

< «; = min(ay, §;) or oy = min(a;, ;)
Sa; < fiora; <

& a; < max(B;, i)

< (¢g—1) | lem(z, z2).

This completes the proof. [ ]

Remark II1.2: By Lemma III.3, we know that for two
positive integers 21 and x2, the group (£1) ® (&) for & = o™
and {2 = a2 is a subgroup of F; with order ord(&1)-ord(&2) if
(¢ —1) | lem(xq,x2). This implies that the elements ghelr +

2 %2 for any (il,jl) 75 (ig,jg), where 1 S il,ig S 0rd(§1)
and 1 < j1,j2 < ord(&2). Therefore, these elements can be
taken as the coordinates of the vector a in GRSk(a,v) or
GRSy(a,v,00).

Let o be a primitive element of IF,. Consider &; = o** and
& = o™ for two positive integers x1 and zo. Let n = riro,
where 1 < ry < ord(§), r2 = ord(&2). Denote by

1
R = URi:{al,ag,...

i=1

where R; = {€i€]]j =1,2,...,m} fori=1,2,...,7.. Then
by Lemma III.3 and Remark III.2, we derive the following
lemma.

Lemma 111.4: Let a; and u; be defined as in Egs. (15)
and (3), respectively. Assume that (¢ — 1) | lem(z1,22) and
ged(z2,q — 1) | z1(p* — 1) for two positive integers x; and
5. Then, a;lui S IF;( holds for each i =1,2,...,n

Proof: For (¢ — 1) | lem(zy,x2), it follows from
Lemma III.3 and Remark III.2 that a; # a; for any 1 <7 #
7 <n.Forany:=1,2,...,n, we may assume a; € R for
some 1 < s < ry. Then there exists ¢ € {1,2,...,7r2} such
that a; = £&L.

By Eq. (3), we see that

H R H H (a; — a0t

a; ER;,a;7#aj 1<stLry s #s a, € R0

7an}7 (15)

u; = (a; — aj)

(16)

— 553 =3 01 2%, then

Note that [, ;e (=

[T @-a)= [ €&-¢ge)
a;ERs,a;#a; 1<t g 1041
=gyt I a-¢)
1<tro—1

= a7ty (17)

Besides, in light of [ [, ;= (z—bey ) = 2™ —b", we have
that -

[I (@-a0= [] ©a-eé)=¢m-

a;r€R,0 1<t Lry

ST (18)

Substituting Eqgs. (17) and (18) into Eq. (16), we obtain that

GT‘Q —1
Ty

Sl:rlg)—l

1 @ -

1<stry,st#s

Ui = iy 19)

7971

Further, since ged(z2,q — 1) | o1(p® — 1), it is easy to
check that &2 € IF[*)/,. From this and Eq. (19), the desired
result follows. [ ]

We notice that for ¢ | e, the condition (¢ — 1) | lem(z1, x2)
and ged(z2,q — 1) | 21(p® — 1) in Lemma I11.4 is equivalent
to a simpler form as follows.

Lemma II1.5: Let ¢ = p® with p being a prime number and
let ¢ | e. Then, for any two positive integers z; and x2, the
following statements are equivalent:

(1) (g = 1) [lem(z1,22), ged(wz, g — 1) [ 21(p* = 1);

(2) (q — 1) | lcm(atl,arg) pi | Zq.

Proof: (2)=-(1): When q@ — | 1, we have that (¢ — 1) |
z1(p® — 1), which 1mmed1ately yields that ged(xa,q — 1) |
zy(pf —1).

(1)=-(2): Note that for any a, b, c € N, we have the fact

a | lem(b, ¢) < a | lem(b, ged(a, ¢)).
Now, for (¢ — 1) | lem(x1,x2), we have that
(g —1) | lem(z1, ged (a2, g — 1)).

Besides, it follows from the condition ged(z2,q¢ — 1) |
x1(p® — 1) that

(20)

lem(x1, ged(ze, g — 1)) | lem(ay, 21 (pf — 1)).

That is,

lem(z1, ged(za, g — 1)) | 21 (p* — 1). Q1)

Combining Eq. (20) with Eq. (21), we obtain (¢ — 1) |
z1(p — 1), ie., 1;1[_11 | 1. This completes the proof. [ ]

By using the previous lemmas, we give the following [n, k|,
MDS codes with ¢-Galois hulls of arbitrary dimensions.

Theorem II1.4: Let ¢ = p° with p being an odd prime
number. Assume 2/ | e, (¢ — 1) | lem(z1,22) and ]% | 21
r(g=1)

for two positive integers x; and zo. Let n = for

ged(z2,9— 1)
each1 <r < % Then, for any 1 < k < Lp +"J
ged(z1,9—1)°
and 0 < h < k — 1, there exists an [n, k], MDS code w1th
h-dimensional /-Galois hull.
Proof: Letay,as,...,a, bedefined by Eq. (15). For each
1 <4 < n, by Lemmas II1.4 and III.5, we have a;lui S IE‘;,Z.

Further, in terms of Lemma III.2, there exists v; € IE‘;; such
that vful = a; 'u;. Set z := k — 1 — h and take 3 € F;
such that v := B*'*1 # 1. Put a = (a1, as,...,a,) and
v = (fv1,..., 00,0241, ..,0,). Consider the ¢-Galois hull
of the [n, k], MDS code C := GRSj(a,v). Then, working
in a similar manner as in Theorem III.1, the desired result
follows. [ |

Next, based on Theorem III.4, we proceed to construct a
family of MDS codes of length n + 1 from GRS codes with
¢-Galois hulls of arbitrary dimensions as follows.

Theorem IIL.5: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e, (¢ — 1) | lem(x1,x2) and z% | 21

for two positive integers 21 and zo. Let n = % for
each1l <r < W Then, for any 1 < k < Liu’f

and 0 < h < k, there exists an [n + 1, k], MDS code with
h-dimensional ¢-Galois hull.
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Proof: Let ay1,as,...,a, be defined as in Eq. (15) and
let ap41 = 0. For each 1 < ¢ < n, in view of Lemma III.4,

we have that
a) t=at ] (ai-

S
1<j<n,j#i

1<j<n+1,j#i

aj)_l S ]F;;/

For ¢ = n + 1, a direct calculation derives that

[t e = 0 TT ([T6)]
j=1 i=1
1 (r1 417

j=1
_ro(ratl)ry
2

=(-1"§

€ IF;(.
Denote w; = [[;<jcp 1 jzi(@i — aj) Li=1,...,n+1.
Then, from Lemma III.2, there exists v; € IFZ such that

vf’ul =w; fori =1,...,n+ 1. Set z := k — h and take
8 € Iy such that y := B+l £ 1. Puta = (a1,a2, ..., Qn1)s
v =(fv1,...,00;,0:41,...,0,+1) and consider the /-Galois
hull of the [n + 1, k], MDS code C := GRSk(a, v). Similar
to the proof of Theorem II1.2, the desired result follows. H

Now, if we consider the extended GRS code
GRSy(a,v,00) of length n + 2 with a and v being
defined as in the proof of Theorem IIL.5, then a new family
of MDS codes with ¢-Galois hulls of arbitrary dimensions
can be yielded as follows.

Theorem II1.6: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e, (¢ — 1) | lem(z1,z2) an

T(q 1)
gcd(zzjq 1) for

for two positive integers x1 and x9. Let n =
each 1 <7 < W Then, for any 1 < k < | %% | and
0 < h < k — 1, there exists an [n + 2, k], MDS code with
h-dimensional ¢-Galois hull.

Proof: Set z := k — 1 — h and take 3 € [ such
that v := 5’)(“ # 1. Let a = (a1,a2,...,an41), V =
(Bv1y...y fU2,V41, ..., Unt1) and w; be defined as in the
proof of Theorem III.5. We can consider the ¢-Galois hull
of the [n + 2,k], MDS code C := GRSk(a,v,c0). Then,
working in a similar manner as in Theorem II1.3, the desired
result follows. [ |

Remark I11.3: For the MDS codes in Theorems III.4, II1.5
and III.6, we can verify that the value of the length n is
related to ¢ (namely, depends on /), for example we may take
xy = pt—1, then (¢—1) | lem(z1, p*—1) and q In this

case, one easily finds that there always ex1sts xl

.. . q—1 V]
some positive integer s such that (g—1) | 1cm(pe_1s p—1),
then the length n can be written as n = %, where
V4
< < q 1 _ p —1

1 <r< gcd( . 1) eed(s.p =D Hence, the upper
+ 0 7‘(;71) Jr ( 1)

p'4n —1 _ p*'—p'+r(g—

bound pra) of the dimension k& is pfil = P

Then, for a fixed r (there always exist some fixed r for

different ¢y and {5, for example, take r = 1), the derivative
(et — 2l e Sl < o, This
together with the condition 2/ | e (means 1 < £ < §) reveals
that the range of the dimension & forany 1 < ¢ < § with 2¢ | e
is wider than the range of the dimension k for the Hermitian

case ¢ = 5. Therefore, the [n, k],, [n+ 1,k]|; and [n + 2, k],
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MDS codes in Theorems IIL.4, 1IL.5 and II1.6 with dimension
k satisfying Lin”J +1<k< |5 +”J forany 1 </ < %
with 2¢ | e cannot be obtained by the Hermitian case ¢ = §.
For example, take p = 7, e = 4, ¢ = 1, 1 = 2400, 22 = 6
andr = 11 in Theorems I11.4, IgI.S and II1.6, then n = 400, and
hence |TH19¢| = 50 and [ T8 | = 8. Therefore, we can
obtain [400, k|4, [401, k]74 and [402, k]« MDS codes for each
1 < k < 50, while for the same length, MDS codes with
dimension k£ satisfying 9 < k£ < 50 cannot be produced from
those by considering the Hermitian case ¢ = 2.

C. MDS Codes Related to the Coset Decomposition of a
Cyclic Group

In this subsection, we will construct another three families
of MDS codes with ¢-Galois hulls of arbitrary dimensions. The
coordinates of the vector a in GRSy (a, v) or GRSk (a, v, c0)
are obtained via the coset decomposition of a cyclic group.

Let ¢ = p°® with p being a prime number. Assume ¢ | e
and set y = qf_ll. Let m | (g —1). We know m can be
labeled as m = mims, where m; = m and mo =
ged(m,y). Let F) = (a). Denote H = (¢1) and G = (¥2),

where ¥, := a“+ and ¥, = o™ . Then we have ord(H) =m
and ord(G) = (p* — 1)ma.
Next, it follows from mo = gced(m,y) that
| o

gcd(ml,miz) = 1. Combining it with m; =
obtain m; | (p* — 1), which implies that H is a subgroup
of G. Thus the left coset decomposmon of G with respect

p‘—l
™1

to H can be written as G = J,}

—, W€

n;H, where n; is the left

coset representative of G/H for i =1,2,. p;—:l.
Let n = rm, where 1 <r < p —L_ Denote
r
H=|JnH ={ar,a2,...,a,}. (22)

i=1

We give the following lemma.

Lemma I11.6: Let a; and u; be defined by Egs. (22) and (3),
respectively. Assume /¢ | e and m | (¢—1). Then, a; 'u; € B
holds for each i =1,2,...,n

Proof: For any ¢« = 1,2,...,n, there exists s &€
{1,2,...,7r} such that a; € nsH. Then a; = ns} for some
1 <t < m. By Eq. (3), we know that

u; = H (ai—aj)~* H H (ai—aj0) "
ajENsH,a;#aj 1<s"Lr 55 a;c€n,
First, we have that
[T @-a)= T[] O%-n9t)
a;ENsH,a;#a; 1<ttm, 4
= @)™t [ a-9)
1<ttm—1
= a; 'n'm.

Besides, we obtain that

H (a; — a;0) = H (ns0

a;c€n,cH 1<ttm

m

— ) = —
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Thus, we get that

_ -m, —1 m my—1
Ui = ainlg M H (775 - 7755') .
1<s<r,sts

For any 1 < ¢ < r, we know that n; = 19% holds for some
1 <j < (p*—1)ma. Then, N = al™y e IE‘;,Z, which derives
that a; Lu; € IF;Z. This completes the proof. [ |

Now, by applying the above lemma, we obtain a new family
of MDS codes of length n with ¢-Galois hulls of arbitrary
dimensions as follows.

Theorem II1.7: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e and m | (¢ — 1). Let n = rm for

-1 . -1
eachl <r< pm—1 :’Vlth mi = ﬁ for y = 1%’ Then,
forany 1 < k < Liei’” and 0 < h < k — 1, there exists an

[n, k], MDS code with h-dimensional ¢-Galois hull.
Proof: Letay,as,...,a, bedefined by Eq. (22). For each
1 < ¢ < n, by Lemma III.6, we have a;lui IS IE‘;,Z. Further,
in terms of Lemma III.2, there exists v; € IFZ such that
vful =a; 'u;. Set 2 := k—1—h and take 3 € F}; such that
3P +1 £ 1. We can consider the (-Galois hull of the [n, klq
MDS code C := GRSk(a,v), where a = (ai,az,...,a,)
and v = (Bv1,..., B0z, U041, ..., 0y,). Similar to the proof of
Theorem III.1, we can obtain dim(Hully(C)) = k—z—1 = h.
From this, the desired result follows immediately. [ |
Next, based on Theorem III.7, we proceed to construct a
family of MDS codes of length n + 1 from GRS codes with
¢-Galois hulls of arbitrary dimensions as follows.
Theorem II1.8: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e and m | (¢ — 1). Let n = rm for
eachlgrgp;—:lwithmlz

—1
m for Yy = Iﬁ Then,

forany 1 < k < Ll’jii’” and 0 < h < k, there exists an
[n + 1, k], MDS code with h-dimensional ¢-Galois hull.
Proof: Let ay,aq,...,a, be defined by Eq. (22) and let

an+1 = 0. For each 1 < i < n, it follows from Lemma II1.6

that
11

1<j<n+1,j#i

(a; —ap) "t =a;t ]

1<j<n,ji

(ai — aj)fl S F;e.

For ¢ = n + 1, a direct calculation derives that
n r m ) —1
[[(ans1 —a)™ = (—1)n[H ( 771'19]1)]
i=1 i=1  j=1

Hn[m € F..
i=1

Further, we write w; = [],c;c, 1 (a0 —aj)7" i =
I,...,n+ 1. In light of Lemma III.2, there exists v; € I}
such that vful =w; fori=1,...,n+ 1.

Next, we set z := k — h and take § € IFZ such that
BP'+1 £ 1. We can consider the ¢-Galois hull of the [n+1, k],
MDS code C := GRSi(a,v), where a = (a1, az2,...,an+1)
andv = (Bu1,..., 00,041, ..., Un41). Working in a similar
way to the proof of Theorem III.2, we can deduce that
dim(Hully(C)) = k — z = h. Therefore, the desired result
follows. [ ]

_ rm(m+1)
2

= (-1)"9,

7973

Now, if we consider the extended GRS code
GRSk(a,v,00) of length n + 2 with a and v being
defined as in the proof of Theorem IIL8, then a family of
MDS codes with ¢-Galois hulls of arbitrary dimensions can
be yielded as follows.

Theorem II1.9: Let ¢ = p° with p being an odd prime
number. Assume 2¢ | e and m | (¢ — 1). Let n = rm for

-1 . -1
eachl <r < ”TT with m; = for y = 1%71. Then,

forany 1 < k < L’;Zi’” and 0 < h < k — 1, there exists an

[n + 2, k], MDS code with h-dimensional ¢-Galois hull.
Proof: Let ay,as,...,a, be defined by Eq. (22) and

let a4 = 0. For each 1 < ¢ < n + 1, write w; =

ngjgnJrL#i(ai —a;)~!. Then w; € IF;/,. By Lemma II1.2,

there exists v; € F such that vf’ul =w;fori=1,...,n+1.

Next, we set z := k — h — 1 and take 8 € IF; such
that B +! # 1. Put a = (a1, as,...,an41) and v =
(Bv1, ..., B0z, V241, ..., Unt1). We can consider the (-Galois
hull of the [n + 2,k], MDS code C := GRSk(a,v,0).
Similar to the proof of Theorem III.3, we deduce that
dim(Hully(C)) = k — 1 — z = h, completing the proof. M

Remark II1.4: Note that when e is even, the MDS
codes in Theorems III.7, III1.8 and III.9 generalize those in
[16, Theorems 3.8-3.10] which consider the Hermitian case
(ie., £ = §). More importantly, observing the condition 2/ | e
(as shown in Lemma III.2, this condition i§ necessary since it
enables us to find a v; € IF; such that vffﬂ = u; holds for
any u; € IE‘;,Z, which means that 1 < /¢ < %) and using the fact

? ot .
(ZJT)’ - (1(pf}r’1)lfp < 0 for n > 2, we know that when n is

fixed (for example, take » = 1, then n = m is fixed), the range
of the dimension of the MDS codes in Theorems III.7, IIL.8
and 1.9 for any 1 < £ < § with 2/ | e is wider than the
range of the dimension of those in [16, Theorems 3.8-3.10].
In other words, for the same length n, the [n, k|, [0+ 1, k],

and [n + 2, k], MDS codes in Theorems II1.7, 111.8 and II1.9
with dimension k satisfying |22 +1 < k < | Bt
for any 1 < ¢ < § with 2 | e cannot be obtained by the
Hermitian case £ = 5 considered in [16, Theorems 3.8-3.10].
For example, take p =5,¢=6,¢ =1, m =126 and r = 1 in
Theorems I11.7, 1I1.8 and II1.9, then n = 126 and Lf’;fﬁ(jj =
21. Hence, we can obtain [126, k56, [127, k|56 and [128, k|56
MDS codes for each 1 < k < 21, while for the same lengths,
Theorems 3.8-3.10 of [16] only produce [126, 1]56, [127, 1]56

and [128,1]56 MDS codes since LE’S.“%J =1.

D. MDS Codes Related to an Additive Subgroup of F, and
Its Cosets

We will construct another two families of MDS codes with
¢-Galois hulls of arbitrary dimensions. The coordinates of the
vector a in GRSy (a,v) or GRSy (a, v, 00) are related to an
additive subgroup of [, and its cosets.

Let ¢ = p® with p being an odd prime number. Let a | e
and K be a F,.-subspace of IF, of dimension w satisfying
{0} € K C F,. Then, 1 < w < %—1.Taken6Fq\K
and put Fpe = {1, 02,...,0pa}. For 1 < i < p®, denote by
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Ki=K+ ; .Forl t p? denote by complex primitivep-th root of unity. Fora = (ag,...,an),
t b=(by,...,bn) Fg letT(a)= T(a)) --- T(an) and
Ki={a,a...,an}. R(a) = R(a1) -+ R(an) be the tensor products aferror

i=1 operators, wherd& (a;) andR(a;) are de ned asT (g)|x =
Then, we have = tpa¥. By [16, Lemma 3.1], there exists X + & andR(a)[x = Taix)|x , respectively, in which
Fq such thatu; F. for eachi. Leta| and2 |e Tr(x) := *S xP"is the trace function fronFq (g = p°)
Then, we haveu; F, . According to Lemma II1.2, there o Fp. The”,Ir(((ag Xe)m)dR(a) satisfy T(a)[x = |x +a and

existsv,  F, such thatu; = VP 1 R(@)|x = XJe)|x , respectively. Therefore, the error

Based on the above analysis, we are able to give another t%% i ) . N
families of MDS codes with-Galois hulls of arbitrary dimen- En={ T(@R®)0 T pSlab Fg}
sions in the following two theorems. Since their construgorms an error group. For any errer= ' T(a)R(b)  En,
tion procedures are similar to those of Theorems IIL.1-11l.9s quantum weight is de ned bwo(e) = {il(a,h) =
we omit the proofs. (0,0)}. Denote E,(i) = {e Enlwo(€) i}.
Theorem [11.10:Let q = p® with p being an odd prime For a g-ary quantum codeQ, if d is the largest pos-
number. Assume | eanda | .Lletn = tp® for each jtve integer such that xjely = 0 holds for any
1 t p*andeacll w 7 S1 Then foranyl K X,y Q with xly = 0 ande En(d S 1),
pp+2131 and0 h k, there exists afin,k]; MDS code thenQ has minimum distanc.
with h-dimensional -Galois hull. Usually, we use the notatiofin, k, d]]q to denote ag-ary
Theorem IIl.11:Let g = p® with p being an odd prime quantum code of length, dimensiong< and minimum dis-
number. Assume | eanda | .Letn = tp® for each tanced. It has the abilities to detect up @S 1 quantum
1 t p*andeacll w ¢S 1 Then, foranyl K errors and correct up to?3*  quantum errors. The minimum
pp+21él and0 h kS 1, there exists afn +1,k]qg MDS distanced of a quantum code must satisfy thguantum
Singleton boundi.e., 2d n+2 S k. Further, if2d =

code withh-dimensional -Galois hull. - ]
Remark 111.5: Note that whene is even, the MDS codes " ¥ 2 S Kk, then such a quantum code is calledj@antum

in Theorems 111.10 and 1ll.11 generalize those in [16, Thé\-/IDS code . ) .
orem 3.6] which consider the Hermitian case (i.ez ¢). In 2006, Brun et al. [2] introduced an mterestmg concept
What's more, the conditio@ | e (this means that ) called entanglement-assstqduantum er.ror?correctmg code§
p+nS1y _ (25n)p Inp : (EAQECCS), which turns out to be signi cant progress in
and the fac( p +1 ) = (p +1) 2 <_0f°rf‘ 3 imply that the eld of quantum error correction. These codes can be
when nis xed, the range of the dimensiok of thee MPS regarded as a generalization of the quantum stabilizer codes
codes in Theorems 11l.10 and Ill.11 foraly < 5 With  onarated by CSS construction. As shown in [2], we can
2 | eis wider than the range of the dimensikrof those in o in EAQECCS from any classical linear codes with the
[16, Theorem 3.6]. Hencez for the same lengtfthe [, k]q_ help of the pre-shared entanglement between the sender and
and[n+1,k]q MDS code§ in Theorems [11.10 and IVII.11 W'threceiver. Furthermore, we denote hfn,k,d;cll, a g-ary
dimensionk satisfying p::flsl +1 k PriPt for EAQECC which encode& logical qubits inton physical
anyl < § with 2 |e cannot be produced by [16, Theo-qubits by means ot copies of maximally entangled states
rem 3.6]. For example, take=3,a=2,e=8, =2,w=2 (i.e.,cebits). Wherc =0, the EAQECCs are just the standard
andt = 2 in Theorems 111.10 and Ill.11, then = 162, and quantum stabilizer codes.
hence we can obtaifi62 k] and[163 k];s MDS codes for ~ For an[[n, k, d; c[]. EAQECC, the authors in [3] gave the
eachl k 17 Since 3‘;;1? = 2, thesek-dimensional following Singleton bound on its parameters:
MDS codes of the same length with  k 17 cannot =
be produced by considering the Hermitian case, i.es, 4, 2d nSk+2+c.
in [16, Theorem 3.6]. It is very exciting to know that Grassl [24] presented a
IV. CONSTRUCTIONS OFEAQECGCS WITH RELATIVELY new entanglement_—ass_isted _quantum _commu_nication scheme
L ARGE MINIMUM DISTANCE with pargmeters violating this bound in certain ranges. The
L ._scheme in [24] shows better parameters than the one proposed
AS. the appl[catlong of thq—ary MDS .COdeS construc?gd n; [2] in some range. For more information on the counter
Section lll, this section aims to provide several families g xamples of quantum Singleton bound, we refer the reader to

[[n. k. d; cllq entanglement—as_sisted quant_ur_n error_—correcti_tﬁge latest results obtained by Grassl, Huber and Winter in [26].
codes (EAQECCSs) with relatively large minimum distance 'P:onsidering these facts, from now on, if dm,k, d;cllq

the sense thatd=nS k+2+ c. EAQECC satises2d = nS k+ 2+ ¢, then we call it an

First, let us review some basic concepts and notations ab%‘AtQECC with relatively large minimum distancather than
guantum codes. For the complex eld, let C9 denote the a MDS EAQECC

g-dimensional complex Hilbert space ové€. For a pure
n-qudit state, it can be V\éfltte” 48 =, g Vala, where o0 ihe classical linear codes.

Va  Cwith , Vel =1 and{la = Ja - Lemma IV.1 ([19], [53]): Let G : [n,ki,di]q and G
lan :(a1,...,an) Fq} being a basis ofd . Let be a [n, k2, d2]q be two linear codes with parity check matridés

The following lemmas tell us how to construct EAQECCs
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andH,, respectively. Then, there exists fin, ki + ko S n + (1) there exists afin, kSh,nSk+1; nSkS h]]; EAQECC
¢, min{d, do}; ]l EAQECC, wherec = rank( H1HJ ) is the with relatively large minimum distance fora®y h kS1;
required number of maximally entangled states. (2) there exists afin+1,kSh,nSk+2;nSkSh+1]],
Lemma V.2 ([19]): Let G : [n,ky,di]ee and G : EAQECC with relatively large minimum distance for a@ly
[n, k2, d2]2 be two linear codes with parity check matrice$1 k; 3 5 o
H1 andH,, respectively. Then, there exists fin, k1 + k2 S (3) there exists afin+2,kS h,nSk+3; nSkS h+2]]
n + c,min{dy, d2};c]ly EAQECC, wherec = rank( H;H;) EAQECC with relatively large minimum distance for afy
is the required number of maximally entangled states with kS 1.
= (h ) for H =(hy ). Remark [V.3: By Remark 1.1, we know that the
Remark IV.1: The binary case for the EAQECCs in[[n,k,nSk+1;nS Kllq. [[n +1,k,knSk+2;nSk+ 1lq
Lemma IV.1 was given by Wilde and Brun [53] in 2008and[[n+2,k,nS k+3; n S k+2]]q EAQECCs (takeh 0)
In 2019, Galindo, Hernando, Matsumoto and Ruano [1§] Theorem IV.1 with dimensionf satisfying p““ +1
extended the binary case to the general one and they also *1

+
obtained several important results on EAQECCs. ko i foranyl < S with2 |eecannot be obtained
For a matrixA = (a; ) over Fq, we de ne A ) = Dby considering the Hermitian case. For example, as shown in
: N Remark Ill.1, by takingp =5,e=4, =1 andt=1 in

p° = (p°S )T = =
gc?llow?n;:iefﬁnlgtrﬁ?na [A 717 Then, we have the o0 om 1.1 we know that thEL56 k, 1575 k; 156 kjes,

) . [[157 k, 158S k; 157S Kk]]s» and[[158 k, 159S k; 158S k]]s«
pal;i?;?cr?]zcllll';;t[:ﬂ)' ItfheCnls ann, k, dlq linear code with EAQECCs for eaclv k 26 derived from Theorem IV.1
' cannot be produced by considering the Hermitian case.
rank(HH ') = n & k § dim(Hull (C)). Note that ife is evenvin Theorem V.1, ther1 bx Remark V.2,
there exisf[n+ n ,kSh,nSk+n +1;nSkSh+n]] q

Based on the above facts, we obtain the following"d[ln+n,n SkSh+n k+1;kSh] q EAQECCs for
proposition. n=t( g+1) andn =0,1,2, wherel t qS 1and

Proposition IV.1:If Cis an[n, k, d], linear code, then there1  k qqiln

exists ar{[n, k S dim(Hull (C)),d;nS kS dim(Hull (C)]]q Next, in terms of Theorems IIl.4-11.6 and

EAQECC. Corollary V.1, we obtain three families of EAQECCs
Proof: TakingG = CandG = & in Lemma IV.1, with relatively large minimum distance in the following

we obtain an[[n,2k S n + c,d; cllq EAQECC, wherec = theorem.

rank(|_|(|_|(peS NT). By Lemma IV.3, we know that Theorem IV.2:Let g = p°® with p being an odd prime
number. Assume | e, (qS 1) | lem(x1,X2) andpq | X1
=rank(HH )= nS kS dim(Hull (C)), for two positive integers;; andx,. Letn = gcg((fj;; y for
S1
which completes the proof. eachl r 3 qsy)- Th?”! for enyl k 5 b -:-]2 :
By Proposition 1V.1, we immeditely obtain the following (1) there exists ar{[n,k S h,n S k+1;n S k S h]]q
corollary. EAQECC with relatively large minimum distance for any

Corollary IV.1: If Cis an[n, k] MDS code, then exists an0 h k S1;
[[n,k S dim(Hull (C),nSk+1;nSkSdim(Hull (O)llq (2) there exists affn +1,kS h,nSk+2; nSkS h+1]]4
EAQECC. EAQECC with relatively large minimum distance for afy
Remark IV.2:Given an[n, k], (9= p®) MDS codeC. If eis h  k; 3 3 o
even, therC * (i.e.,C %)is an[n,nSk]y MDS code. Hence, (3) there exists afin+2,kSh,nSk+3;nSkS h+2]]q
it follows from Lemma IV.2 and Corollary IV.1 that there existEAQECC with relatively large minimum distance for a@y
[[n,kSdim(Hull 4 (0),nSk+1; nSkSdim(Hull 4 (O)]] 4 h kS1 3
and[[n, nSkSdim(Hull 4 (Q), k+1; kSdim(Hull 1 (O)]] q Remarlg IV.4:By Remark III.:§, we know 'Ehat thfn,k,n S
EAQECC:s. k+1nSk]]q,[[n+1ank+2nSk+1]]qand
Generally speaking, the comparison of the QECCs (inclulin +2,k,n S k +3; n S k + 2]]¢ EAQECCs (takeh = 0)
ing the EAQECCs) over different elds makes no sensén Theorem IV.2 with dimension satisfying p“” +1
Therefore, from now on, when we compare the EAQECCs f&r pn 1 R h 2 “ b
different , the EAQECCs for the Hermitian case= § refer _p+ Orany. S 2 .V\.”t |e cannot be
to theg-ary EAQECCs produced by thgary MDS codes (see obtained by considering the Hermitian case. For example,
Corollary I1V.1) rather than the g-ary EAQECCs produced by as shown in Remark IIl.3, by taking =7, e=4, =1,
the grary MDS codes (see Remark 1V.2). X1 = 2400, x; = 6 andr = 1 in Theorem V.2 we
By combining Theorems Il11.1-111.3 with Corollary V.1, know that thef[400 k, 401S k; 4005 k]]74 [[401, k, 402S k;

: o 01S k]« and[[402 k, 403S k;402S k]];« EAQECCs for
we can construct the following three families of EAQECCé1
with relatively large minimum distance. ch9 k 50 derived from Theorem IV.2 cannot be

Theorem IV.1:Let g = p® with p being an odd prime PrOdPCQd by considering the Hermitian case 2. Note that
number. Assume | g Letpn V:VI t(qgl) florgeachl ?I if e is even in Theorem V.2, then by Remark IV.2, there
T : p+nps;l exist[n+n,kShnSk+n+1nSkSh+n] 4

p S1 Then foranyt k D0, and[n+ n,nSKSh+n k+1lkh]] o EAQECCS for
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n= gCJ((qu;)él) andn =0,1,2, wherel k g:ln ,
1 r ng(?(?,:(LZ]S 1) (qS l) | |Cm(X1,X2) and( q+1) |Xl-

Now, by Theorems 111.7-111.9 and Corollary IV.1, we have
the following three families of EAQECCs with relatively large
minimum distance.

Theorem IV.3:Let g = p® with p being an odd prime
number. Assume& | e andm | (qS 1). Letn = rm for

pS1,,, _ m _ gS1
eachl r g with mq = ged(my ) fory = D51 Then,

foranyl k Fr; I

(1) there exists affn,k Sh,nSk+1; nSkS h]]; EAQECC
with relatively large minimum distance forafly h kS1;

(2) there exists affn+1,kSh,nSk+2;nSkSh+1]],
EAQECC with relatively large minimum distance for a@y
h k;

(3) there exists affn +2,kS h,nSk+3; nSkS h+2]]
EAQECC with relatively large minimum distance for a@y
h kS1

Remark IV.5:By Remark lll.4, for the same length,
the[[n,k,n Sk+1; nSkK]lg, [[n+1,k,nSk+2; nSk+1]]q
and[[n+2,k,nSk+3; nSk+2]]4 EAQECC:s (takéh = 0) in

Theorem 1V.3 with dimensiogt satisfying P *1“ +1 Kk

e
p2+

NEw EAQECCs FROM THEOREMIV.1 FORp =5,

e=4,

=1 ANDt=2,3

New EAQECCs for n = 312

New EAQECCs for n = 468

[[312, 13, 300; 299]]54
[[312, 14, 299; 298] 54
[[312, 15, 298; 297]] 54

(312,51, 262; 261]]54
(312,52, 261; 260]] 54

[[468, 19, 450; 449] 54
[[468, 20, 449; 448]] 54
[[468, 21, 448; 447]] 54

468, 77, 392; 391]]54
468, 78, 391; 390]] 54

[ Il

[ I

([313,13,301; 300] |54
(313, 14, 300; 299]] 54
([313, 15, 299; 298]] 54
313,51, 263; 262]] 54
313,52, 262; 261]] 54

([ ]

Il ]

[[469, 19, 451; 450]] 54
[[469, 20, 450; 449]] 54
[[469, 21, 449; 448]] 54
469,77, 393; 392]]54
469,78, 392; 391]]54

[ 1l

[ 1]

[[314, 13, 302; 3015
(314, 14, 301; 300] |54
(314, 15, 300; 299] |54
(314, 51, 264; 263]]54
[314, 52, 263; 262]]54

([ ]

Il ]

[[470, 19, 452; 451]] 54
[[470,20, 451; 450]|54
[[470, 21, 450; 449] 54
[[470, 77, 394; 393]] 54
[[470, 78, 393; 392]] 54

‘; :1“ for any 1 < 5 with 2 | e cannot be produced by

the Hermitian case. For example, as shown in Remark 1.4,

by takingp = 5,e=6, =1, m =126 andr =1 in same lengths, these EAQECCs wdh k 17 cannot be
Theorem IV.3 we know that thg§126 k, 127S k; 126S k]]ss, obtained by the Hermitian case= 4. Note that ife is even
[[127k, 128S k; 1275 k]]ss and[[128 k, 1295 k; 1285 k]]se  in Theorem V.4, then by Remark 1V.2, there exjBt + n ,
EAQECCs for2 k 21 derived from Theorem IV.3 cannotk Sh,nSk+n +1;nSkSh+n]] gand[[n+n,nS
be produced by the Hermitian case= 3. Note that ife kS h+ n,k+1;kS h]] 4 EAQECCs forn = tp@ and

is even in Theorem IV.3, then by Remark 1V.2, there exist = 0,1, wherel k q*ff'l .1t p*aléand

[Nn+n,kShnSk+n+1LnSkSh+n]l qand 1 ¢S 1. The latter grary EAQECCs are identical to
[[n+n,nSkSh+n, k+1; kSh]] ¢ EAQECCs fom = rm  those shown in [16, Theorem 4.8].

andn =0,1,2, wherel k giln ,m|(qS 1) and Remark IV.7:As we know, it is not easy to construct an
1 r 91 with my = ged(m” g1 - The latter g-ary [[n .k .,d:c]lq EAQECC with2d = n Sk +2+ ¢

EAQECCs are identical to those shown in [16, Theorem 4.gjuch that the value of the copies of maximally entangled
Finally, by Theorems I11.10-11l.11 and Corollary IV.1, weStaésC is exible. Note that the parametec of many

obtain the following two families of EAQECCs with relatively EAQECCS constructed in the literature is xed (for example,
large minimum distance. see [10], [11], [13], [29], [36], [42], [45], [49]). Observing the

Theorem IV.4:Let q = p° with p being an odd prime EAQECCs in T'hleorems. IV.1-I\r<.4., WeI k'n0\|N tlhat thei.r para-
number. Assume& | e anda | . Letn = tp? for each meters are exible. Besides, their relatively arge minimum
1 t p® and eachl W ¢ § 1. Then, for any dlstanc_e means tht they have good error detection and error
1 K p+nd1 correction capabilities.

1 th p+l KSh NS kel nSKS Tl EAOECC From Theorems IV.1-IV.4, we can expect a myriad of
.( )t ere exists ar[n,. Shnsk+ln lla EAQ new EAQECCs with relatively large minimum distance. Here,
with relatively large minimum distance for ay h k;

~ o 2 s id les of EAQECCs with exibl -
(2) there exists afin+1,kS h,n S k+2; n& k& h+1]lq we provide some examples of EAQ s with exible parame

ith relativelv | L di f ters in Tables I-IV. The relatively large minimum distance of
EAQkEgi with relatively large minimum distance for afly these EAQECC:s indicates that they have good error detection

Remark 1V.6: By Remark l111.5, for the same length and error correction capabilities,
S ° ~ - ' Apart from the example given in Remark IV.3, Table | gives
the [nk,n S k+1;n S kllq and [[n + 1,k,n S k + b xample given | giv

some new EAQECCs from Theorem IV.1 fpr=5,e = 4,

2;n Sk + g EAQ!ECQS in Theorem V.4 Witl:] dimen-  _ 1 andt=2,3.

sion ¢ satisfying ngflsl +1 k PrIpt for  Apart from the example given in Remark 1V.4, Table Il lists
any 1 < 2 with 2 |e cannot be obtained by thesome new EAQECCs from Theorem IV.2 fpr= 3,e = 6,
Hermitian case. For example, as shown in Remark II1.5=1,X; =364, X2 =24 andn =91,182

by takingp = 3,a=2,e=8, =2,w =2 and Apart from the example shown in Remark IV.5, Table I
t = 2 in Theorem IV.4 we know that Theorem IV.4 canprovides some new EAQECCs from Theorem V.3 for
produce[[162 k, 163S k;162S k]lss and[[163k,164S k; p = 5,e = 6, = 1,m = 186,r = 1,n = 186 and

163S k]];: EAQECCs for eachl k17, while for the p=7,e=4, =1,m=50,r =4,n =200, respectively.
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TABLE Il

NEw EAQECCsFROM THEOREMIV.2 FORp=3,e=6,
=1,x1 =364 AND X2 =24

TABLE IV

NEw EAQECCsFROM THEOREMIV.4 FORp=7,e=6, =1,
a=1l,w=2,t=4ANDp=13,e=4, =l,a=1,w=2,t=2

New F[ngEngC; SfZ]r]n =91 New[[lié%QQgClC% f‘l);ﬁ}— 182 New EAQECCs for n = 196 || New EAQECCs for 1 = 338
H91’6’86j85n32 H18279’1743173H32 [[196, 2, 195; 194]] 76 (338, 3, 336; 335]] 134
H91,7’85z84H3- H182716 17§~172]f ' [[196, 3, 194; 193]]76 ([338, 4, 335; 334]] 134

2 159 =186 i 3¢ [[196, 4, 193; 192]] 76 [[338, 5, 334; 333]] 13
E gg gg 22H32 Eigg’jg’}gifiggﬂ3ﬁ [[196, 24, 173; 172]] 76 [[338, 24, 315; 314]] 34
H92 55 57] i Hlsé 8’1767175H : [[196, 25, 172; 171]] 76 [[338, 25, 314; 313]] 134
[92.6.87. 86n36 u183797175j174ﬂ36 [[197,2,196; 195]]76 (339, 3, 337; 336]] 134
H92’ 786, 85”36 H183’ld 174.173}36 (197, 3,195; 194]] 76 [[339, 4, 336; 335]] 134

’ 3 A 3 [[197, 4,194; 193]] ;¢ [[339, 5, 335; 334]]134
Egg’gg’;éjggﬂ3z &122’12’12231§§H36 [[197, 24, 174; 173]] 76 [[339, 24, 316; 315]] ;34

22 Lo s =2 o [[197,25,173;172]] 76 [[339, 25, 315; 314]] 134
[[93, 5, 89; 88|36 [[184,8,177;176]] 36
[[93, 6, 88; 87]]36 [[184,9,176;175]]56
[[93,7,87;86]]36 [[184, 10, 175; 174]] 56

: 1 codes in the previous sections to construct new families of

(93,22, 72; 71]] 56 [[184, 45, 140; 139]] 36 EAQECCs. To be speci c, the main advantages of this work
[[93, 23, 71; 70]] 56 [[184, 46, 139; 138]]56

are re ected in the following two aspects:

Advantage 1 As revealed in Sections Il and IV (e.g., see
Remarks IV.3-1V.6), the range of the dimensighof the [[n+
aknSk+a+1;nSk+ a]y (a=0,1,2and takeh = 0)
EAQECCs in Theorems IV.1-1V.3 and tHfn + b, k,nS k +
b+1;nSk+ by (b=0,1 and takeh = 0) EAQECCs in
Theorem V.4 for anyl < 5 with 2 | eis wider than

those for the Hermitian case= 3. In particular, when =1,

the upper bound® *"S1 or P ' ofk attains a maximum.

Advantage 2 Ig)or each theorem of Theorems IV.1-IV.4,
the variables with 2 | e correspond to EAQECCs with
different kinds of lendt sets because the length therein
is related to . This allows us to obtain different kinds of
EAQECCs in each theorem of Theorems IV.1-1V.4 through
different variables . More speci cally, in each theorem of
Theorems IV.1-1V.4:

(1) For each =1, 7, the corresponding kind of EAQECCs
has some EAQECCs whose lengths cannot be obtained by
those derived from =1;

(2) For certain = 1 = 1,3, the corresponding kind
: of EAQECCs has some EAQECCs whose Iengths cannot be
202, 24, 179; 178]} obtained by those derived from certaire , = 1, ¢, where
[[202,25,178; 17774 1= 2.

To nish this section and verify our statement Advan-
Finally, apart from the example shown in Remark v glage 2 we will provide some examples and several tables

Table IV also lists some new EAQECCs from Theorem v.4see Tables V, VI, VIl and VIll) containing parameters of
forp=7,e=6, =1l,a=1,w=2,t=4,n=19 EAQECCs derived from Theorems [V.1-IV.4 that possess

andp=13,e=4, =l,a=1,w=2,t=2,n = 338, different. kinds of length sets by considering= 1,2,.3 (see
respectively. Subsections V-A and V-D) an_d: 1 ,_2 (see Subsections \_/—B
and V-C), and have larger dimension that cannot be yielded
from those by considering the Hermitian case.

It seems that the sets of lengthin Theorems IV.1 and V.2
are either identical, or, one of the two sets is contained in the

Inspired by the reviewers’ insightful comments, it is mearsther one. In fact, that is not the case. As a samplepfoi3,
ingful and necessary to make a detailed explanation for wey=8 and =2, Table IX will supply some lengths coming
we further develop the theory on-Galois hulls of MDS from the set of lengtim in Theorem IV.1 (resp. Theorem IV.2)

TABLE IlI
NEw EAQECCsFROM THEOREMIV.3 FORp=5,e=6, =1,
m=186,r =1 ANDp=7,e=4, =1, m=50,r =4
New EAQECCs for n = 186 || New EAQECCs for n = 200
[[186, 3,184; 183]]56 [[200, 5, 196; 195]] 74
[[186,4, 183; 182]]56 [[200, 6, 195; 194]] 74
[[186, 5, 182; 181]]56 [[200, 7, 194; 193]] 74

[[186, 30, 157; 156]56 [[200, 24, 177; 176]] 74
[[186, 31, 156; 155]56 [[200, 25, 176; 175]] 74

] [
] [
[[187, 3, 185; 184]] 56 [201, 5, 197; 196]] 14
] [
] [

([187, 4, 184; 183]] 56 201, 6, 196; 195]] 74
(187, 5, 183; 182]] 56 201, 7, 195; 194]] 4

[[187, 30, 158; 157]56 [[201, 24, 178; 177]] 4
(187,31, 157; 156] |56 [[201, 25, 177; 176]] 74
[[188, 3, 186; 185]] 56 [[202, 5, 198; 197]]74
] [
] [

(188, 4, 185; 184]] 56 202, 6, 197; 196]] 4
(188, 5, 184; 183]] 56 202, 7, 196; 195]] 74

[[188, 30, 159; 158] 56
(188,31, 158; 157]] 56

121

V. DISCUSSION ON THELENGTHS OFOUR EAQECCGCs
IN THEOREMSIV.1-1V.4
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that cannot be obtained by the set of lengtim Theorem IV.2 by the Hermitian case = 6. From Table V, we see th&0

(resp. Theorem IV.1). of the 24 kinds of lengths inX,(t) for = , =2 cannot be
We need to x some notations which will be used in theroduced byX(t) for = ; =1, and120 of the 124 kinds
sequel. For any two integersy with x <y, denote by[x,y] of lengths inX3(t) for = 3 = 3 cannot be produced by
the set consisting of the integexsx +1,...,y. Forany two X(t) for = 1 =1. Moreover20 of the 24 kinds of lengths
setsA and B, de ne their differenceby A\B = {x|x in X,(t) for = , =2 cannot be produced b} ;(t) for
A, x/ B}. The symbolA; A, --- Ap represents the = 3=3, and120 of the 124 kinds of lengths inX 3(t) for

union of the mutually disjoint set&;, Az, ..., An. = 3 =3 cannot be produced by ,(t) for = ,=2.
— t@S1) . ;
I'/_r\HeLc?rTa?;hR/_l psy forl t pSland2]ein B. Lengthn = .[@51 for (5 1)| lem(xy, x2). 3% | xa,
I ~ r gcd(‘jfés y and 2 | ein Theorem IV.2
n this subsection, let us considpr=5, e=12 and =
i =i fori=1,23in Theorem IV.1. In this case, we have Since q 1 | X1, there exists a positive integef such

thath 1= 5128 1=2%.32.7.13-31-60L In what follows, that x; = pq51 . Then, we obtain thagcd(xl,q S1) =

t(qS1
let us compute the sets of length = {937 for the cases %S god(ty, p S 1). Hence, the upper boung, 15, of

= i = i, wherei = 1,2,3. For convemence we denote”

by X1(t), X2(t) and X3(t) the corresponding sets of Iengthb Comesgcd(t P Sl) Therefore, the length in Theorem IV.2

n="SYfor = ;=1, = ,=2and = ,=3, can be expressed as = gcJ((fi;)él)’ where (q $ 1) |
respectlvely o Icm( 2t x2) andl ot gcd(‘t’l]splg b
1. For = 1= % we haven = t-2°-3°-7-13-31-601  |p th|s subsection, let us considpr= 3, e = 8 and =
foreachl t 27 then i =i fori=1,2in Theorem IV.2. In this case, we obtain
& — 128 & — 95 H
Xi(t)= {t-22.32.7-13-31-6041 t 2?}. gS1=3°S1=2°.5. 41_. For convenience, Wergjqeérl?te by
Y1 and Y, the corresponding sets of length= ged(x2 05 1)
2.For = ;=2,wehaven=1-2-3-7-13-31-601for for = ;=1 and = , =2, respectively. '
eachl t 23.3, then 1. For = ;=1, we have that
Xo(t)y={t-2-3-7-13-31-6011 t 2°.3}. r.25.5.41
n = 1
3.For = 3=3,we haven=1-22.3%2.7-.13-601 for gcd(xz2, 25 -5-41)
2,
eachl t 2731 then where2®-5.41 lcm(2*5-41-t1,x2) andl 1 2 .
Xa(t)= {t-22-32.7.13.6011 t 22-31}. Case (1.1) Whengcd(ts, 2) = 1, we have2® | x,. Write
—n5 e i — r-5-41
In order to determine the length s¥t (t)\ X; (t) for each 1)‘(02r_12 ;(2 f(;r \?\/?llcﬁolfr:tl\ll:?esmttﬁgtetﬁze sT;e(?fr:en tﬁ(éegétl()ad
1 i=j 3, we need to compute the seg(t) Xx(t), by Y1 1 is P 9
X1(t)  Xa(t) andXo(t) Xsa(t). We rst considerX (t) MRERY
X»(t). Suppose there exigt t; 22 andl t, 28 Yii={r-58°.411 r 20 bc 1}. 23)
3 such thatt; -22-32.7-.13-31-601 = t,-2-3-7 - ’ ’ ’
13-31-601, thent, = 6ty, i.e., (t1,t2) = (i, 6i) for i = Case (1.2) Whengcd(ty,2) = 2, we have2 | t1, implying

1,2,3,4. Therefore X1(t) Xoz(t) = Xy(t), which implies thatx, can be taken as any positive integer. Then, the set of
that X1(t)  Xz(t). Similarly, we obtainX1(t) X3(t) = lengthn, denoted byY; », is
X1(t) and henceX1(t)  X3(t).
Now, let us computeX»(t) Xs(t). Suppose there exist Yi2={22-5°-41°0 a 50 boc 1}. (24)
1 t, 28.3andl tz3 22.31such thatt, -2-3- o )
7-13-31-601 =t3-22-32-7-13- 601 hence3lt, = 6t Combining Eq. (23) with Eq. (24), we know that the set of

i.e., (t2,t3) = (61, 31i) fori = 1,2, 3,4 and therefore lengthn for = 1 =1 s
Xa(t)  Xa(t) = {X2(6), X2(12), X 2(18), X 2(24)} Yi=VYia Yi2= Y2
= {X3(31), X3(62), X3(93), X 3(124)} 2. For = ,=2,we have that
= Xl(t)
r-25.5.41
Remark V.1:For = 1,23, Table V lists the corre-

r S ~ ged(xz, 25 -5-41)°
sponding [[n.k.n § k + 1:n S klls» EAQECCs derived ged(xz )

from Theorem IV.1 with length sets1(t), X2(t) andX3(t), where2®.5-41|lcm(22-5-41-t1,x,) andl r

d(t1,8
respectively. Moreover, Table V also gives the correspondingcase (2.1) Whengcd(t;,8) = 1, we have2® | ngc (\th%e
[[n,k,nSk+1; nSk]ls> EAQECCs of lengtm coming from x, = 25x,, for any positive integek,. Thenn = gcdn Ba1)
Xa(O\ X1 (t), Xa(\ X3(t), Xa(t)\ X1(t) and X3(t)\ Xa(t), for1 r 8. Thus, the set of the length, denoted byYs 1,
respectively, with dimensios?¥ satisfying 2511” +1 K is

2 or 2511” +1 k2227 that cannot be obtained Yor={r-5°.411 r 80 bc 1. (25)
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TABLE V
PARAMETERS OF THE[[n,k,n  k+1; n k]lsi2 EAQECCsIN THEOREMIV.1
l Length set Cardinality Length n t k
1 X1(t) 4 t-22.32.7.13-31-601 (1,4] 1, [22]]
2 Xa(t) 24 t-2-3-7-13-31-601 [1,24] [1, |25t ]
3 X3(t) 124 t-22.32.7.13-601 1,124] [1, |22t ]]
2 Xo(H)\X1(2) 20 t-2-3-7-13-31-601 [1,23]\{6, 12,18} [L“?,Zi’fj +1,[ 355 ]]
2 Xo()\X3(t) 20 t-2.3.7-13-31-601 [1,23]\{6, 12,18} [LEZiﬁ +1,[ 3]
3 X3(H)\X1(t) 120 t-22.32.7.13-601 [1,123]\{31,62,93} [L?,Zi’fj +1, [ 28]
3 X3(t)\Xa(t) 120 t-22.32.7.13-601 [1,123]\{31, 62,93} [Lgiﬁj +1, [ 125 ]
TABLE VI
PARAMETERS OF THE[[n,k,n  k+1; n K]]zs EAQECCsIN THEOREMIV.2
¢  Length set  Cardinality Length n a,b,c k
1 Yi 24 20.5Y.41¢  a€[0,5;b,ce(0,1] [1,|22]]
2 Ya 38 2¢.5Y.41¢  a€[0,5;b,ce(0,1] [1,| %]
3.50.41¢ b,c€0,1] e
52 .41¢ ce[0,1] [1, | 22 ]]
6-5°-41¢ b,ce[0,1] (1, %2 )]
7-5b . 41¢ b,c € [0,1] (1,1 %==]]
2 Yo\n 14 3.50.41° b,c € [0,1] [1, | 22 ]]
52 .41°¢ celo,1] e
6-5° . 41° b,c € [0,1] e
7-5°.41¢ b,ce[0,1] e

Case (2.2) Whengcd(t1,8) = 2, we have2 | t; and4 tq,
and hence® | x,. Similarly, the set of lengtm, denoted by
Y2’2, is

Yoo = {r-5°-41°1 4,0 b,c 1}. (26)

Case (2.3) Whengcd(t1,8) = 4, we haved | t; and8 t,
and hence® | x,. Thus, the set of length, denoted by 3,
is

r

Yo3={r-5°-42°)1 r 2,0 b,c 1}. (27)

Case (2.4) Whengcd(t,, 8) = 8, we have8 | t;, implying
that X, can be taken as any positive integer. Then the set
lengthn, denoted byY 4, is

Ya4 = {2%-5°-41°0 1}. (28)
By Eqgs. (25)-(28), we know that the set of lengthfor

a 5 0 b,c

= ,=2 is
Yo= i Yei=Ya1r Yas4=Ya1 Yio.
Then, we know thatY; Y,. To determineY,\ Yy,

it suf ces to computeYz 1 Y1 2. Now, comparing the elements
in setsYz1 andYy » gives rise to

Yo1 Yio={22-5°.41°0 a 3,0 b,c 1}.

[Y2,1] = 30, [Y12] = 24 and|Y21 Yi2| = 16. Hence,

we deduce thatl4 of the 38 kinds of lengths inY, for
2 = 2 cannot be produced by; for 1 = 1.
Thesel4 kinds of lengths are: (in = 3 - 52 - 41°¢ for each
0 b,c 1(taker =3 in Ya4); (i) n =52 -41° for each
0 c 1(taker =5 andb=1 in Y,,); (i) n =6 -5°-41°
foreachO b,c 1 (taker =6 in Yz1); (iv) n =7 -5°-41°
foreachO b,c 1 (taker =7 inY,,1). In Table VI, we list
the corresponding{n,k,n S k + 1; n S k]];2 EAQECCs for
= 1,2 derived from Theorem IV.2 with length coming
from Y1, Y, and Y2\ Yy, respectively. We note that all the
EAQECCs of lengtm (exceptn = 3,6, 7) taken fromY,\ Y1
With dimension 3% satisfying BLen 4 grn

82 10
cannot be produced by considering the Hermitian casel.

pS1 my =

C. Lengthn = rm for 1 m
m|(gS 1) and 2 | e in Theorem IV.3

First, we give the following lemma.
Lemma V.1:Let q = p® with p being a prime number.

m

qS 1
ged(m, #51)’

r

Assume that | e. De ne

qS 1

F()=(p S 1)gcd Mg

wherem is a xed positive integer. For any two positive
Remark V.2:As is clear from above, one can verify thaintegers ;, » satisfying 1 | e and , | e, if

1| 2, then

F(1) F(») holds.
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Proof: Since 1|e 2|eand 1| 2, we obtain that in Theorem IV4 for = =1, = ,=2and = 3=3,
= = respectively. Let
. qS1 p>S1
F =(p*S1)gcd m,
(1)=(p*S g p281 p:81 Si={t-3"1 t 31 w 11,
- S1 281 = [t.32W 2
(3 1)ged m, 9°° P S={t-31 t 321 w 5,
quésll p:S1 Se={t-3)1 t 31 w 3.
=(p*S1ged m, p:S1 Though there are some repeated elemé&nt8"' in each
= F( ), setS; (i = 1,2,3) for some pairs of element&;, w;) yvith
_ distincttis @t 3') and distinctwis 1w 2 S 1),
which completes the proof. one easily veri es thalS;| = 23, |S;| = 41 and|Ss| = 79.
Observing the conditions in Theorem IV.3, we can rewritgesides, we note that
B (p S1)ged m, pqssll
thqlength as = rm, wherel r o Vm| Vi=S;, V=S, Sy, Va=S; Ss
(gS 1) and2 | e. Hence, for a xedm satisfyingm | (qS 1)
and for any two positive integers, » satisfying2 1 | e, To determine which lengths in the sdt are not contained
2,|eand 1| », it follows from Lemma V.1 that the upperin the setV, fori = j, we need to compute the s&t S
(p S1ged m, 951 L foreachl i=j 3.
?oung L ’ ofrfor = |§r\1/v:der:2§n thefone First, to determineS; S, suppose there exidt t;
or = 1. T egr? ore, our EAQECQS wit engg1 = rm for 31 Wy 11, 1 t, 32, W, 5 such that
(ptS1)ged m, (p2S1)ged m, W1 — 205 w182W2
L P21 coming t1-3"1 =12-3 ,l.e,tp =3 t1. Moreover, we have
from the case = , cannot be generated by the case 1. wi S 2wz [S9, ql. Note thatl t; 3andl t; 3
In this subsection, let us considpr= 5, e= 8 and = This can be divided into four cases below.

. = ifori=1,2in Theorem IV.3. In this case, we know (): Whenw, S 2w, = S1, i.e., (w1, w,) = (2i S 1,i) for
thatqS 1 = 5881 =25.3.13.313 For convenience, wheni = 1,2,...,5, we havet; = 3t,. Hence,(t1,t2) = (3,1).
xing a positive integerm with m | (58 $ 1), we denote by In this case, the intersection 8f andS,, denoted byM 1, is
Z1(r) andZ;(r) the corresponding sets of length= rm for

— 2i H
= ;=1and = 5 =2, respectively. Hence, we obtain My = {371 1 5}
that (i): Whenw; & 2w, = 0, i.e., (Wi, wp) = (2i,i) for
4gcd(m, 23 - 3-13-313) i =1,2,...,5 we havet; = t,. Hence,(t1,t2) = (i,i)
Zy(r)= n=m1 m for i = 1,2,3. In this case, the intersection & and S,
denoted byM, is
and
2 - . i 2| . . )
Zo(r)= n=rm1 r 24ged(m, 2°-13-313) Me= 3Tl bosd 9
m (iii): Whenwy S 2w, = 1, i.e., (W1, Wo) = (2 + 1,i) for
Remark V.3:By Lemma V.1, we know thaZ(r)  Zp(r). 1=1,2,...,5 we havet; = 3t;. Hence(ts, t2) = (i, 3i) for
For simplicity, we writer; = 4ged(m, 2;3 13-313) andr, = 1= 1,2,_3. In this case, the intersection 8f andS,, denoted
24ged(m, 2°:13-313) Based on the previous analysis, for a xed® Ma. is
m with m | (58 S 1), we deduce that, S r; of ther, Ms={j -3%2)1 i 51 | 3.
kinds of lengths in seZ,(r) for = , = 2 cannot be .
produced byZ,(r) for = ; = 1. In Table VII, we list  (iv): Whenwy S 2w, = 2, i.e., (w1, Wp) = (21 +1,i) for
the corresponding{n,k,n S k +1; n S k]Jss EAQECCs for | = 1,2,3,4, we havet, = 9t;. Hence,(t1,t2) = (1,9).

= 1,2 derived from Theorem IV.3 with length seB (r) In this case, the intersection 8 andS;, denoted byMy, is
and Z(r), respectively. MoreO\V/er, Table VII also gives the Ma= {32721 i 4
corresponding[n,k,n S k+1; n S k]]ss EAQECCs of length '
n coming fromZ,(r)\ Z1(r) with dimension5% satisfying By the casegi)-(iv), we have that

SN+l kK 250 that cannot be obtained by .
the Hermitian case = 4. In particular, for some different St S2 = =1 Mi _
m with m | (58 S 1), Table VIl lists the corresponding ={312 i 12 {2-32 i 113. (29

[[n,k,n Sk+1; nSk]lss EAQECCs with82 kinds of lengths

n = rm coming from the seZ,(r)\ Zy(r). Hence,[Sy  Sp| = 21. SinceVo\Vy = (S1 S\ Sy =

S\ Sp, we know that

D.Lengthn=tp® for1 t p®, 1 w ¢S1,a] Vo\Vy = {j -3%]j =4,5,7,8,1 i B5}.

and 2 | ein Theorem IV.4 o )
Hence,|V2\ V1| = 20. Similar to the steps shown in the

In this subsection, let us consider= 3, e = 12 and caseg(i)-(iv), we get that

= ;=1ifori=1,23in Theorem IV.4. For convenience, _ _
we denote by, V> andVs the corresponding sets of length S; S3={33 i 12 { 2-3|3 i 11}. (30)
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Fig. 1. Venn diagram of setS;, S, and S3.

Then,
that
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TABLE VII
PARAMETERS OF THE[[n,k,n  k+1; n k]lszs EAQECCsIN THEOREMIV.3

l Length set Cardinality Length n r m (fixed value) k

1 Z1(r) r1 rm [1,71] m | (58 —1) [1, [22]]

2 Z(n) r rm [1,72] m|(5° —1) [ 1256 )]

2 Za(r)\Zi(r) ro — 11 rm [7’1 + 1,7"2} m| (58 —1) Hgiiﬁ +1, LQZX”J]

2 Za(r)\Zi(r) 4 r-24.13 3, 6] 24.13 ugim +1, 25t ]

2 Za(r)\Z1(r) 20 313 [5, 24] 313 [[322 ] +1, |58 ]

2 Za(r)\Zi(r) 2 r-25.13 [2,3] 25.13 [[gii’” +1, 25t ]

2 Zo(r)\Zi(r) 20 r-2-313 5, 24] 2.313 Hiiﬁj +1,[ 355 ]]

2 Za(r)\Zi(r) 4 r-3-313 5, 8] 3313 ugim +1, 25t ]]

2 Zo(r)\Zi(r) 20 r-22.313 5, 24] 22.313 Hgiﬁj +1,[ 35 ]]

2 Za(r)\Zi(r) 4 r-2-3-313 [5,8] 2-3-313 [[giﬁj +1,[ 3]

2 Za(r)\Zi(r) 8 r-2%.313 [5,12] 23 .313 Hiiﬁj +1,[ 35 ]]
S; Sz = Js. Hence, we obtain that

|S1

Va\Vp = {j - 3%]

Hence,|Vs\ Vi1| = 60. In addition, we also compute that

{j- -3 =4,578 1 i

S3| = 19. SinceV3\ Vi = S3\'S;, we obtain

V2\V3 = Sz\ 53 é Jz = Sz\ 53 S (Sl Sz S Sl
which, together with Eqgs. (29)-(31), gives rise to

Vo\Vs = {j -3|j =4,57,8, i=2,8}.

Ss3),

Hence,|V,\ V3| = 8. Finally, it follows from Fig. 1 that
Va\V2 =(S1 S)\(S1 Sp) = Js = S3\ Sy,

as shown in Eq. (32). Hencf/s\ V,| = 48.

Remark V.4:For = 1,2,3, Table VIII lists the corre-
sponding[[n, k,n S k+1; n'S k]]s:2 EAQECCs derived from
Theorem IV.4 with length set¥;, V., and V3, respectively.
Moreover, Table VIII also gives the correspondiig, k,n S
k+1; nS K]z EAQECCs of lengtin coming from the sets

[4,26} 3 ), 1 1 3 Vo\ Vi, Vo\ V3, Vgé V1 andV3\ Vy, respectively, vsvithvdimension
. iofyiny 3%+ nS1 8 3P%+ns1
3} 3% satisfying 12 +1 k 1o or Siet 41

k 26e"  that cannot be obtained by the Hermitian case
= 6. From Table VIII, we see tha20 of the 43 kinds of

S, S3={3I3 i 12 { 2-31i=3,8,9 lengths inV, for = , =2 cannot be produced by; for
{j-31=2,45,6,78, i=4,610. = 1 =1, and 60 of the 83 kinds of lengths inV; for

= 3 = 3 cannot be produced by; for = 1 = 1.

Then,|S; Sz| =31. Hence, we obtain that Moreover,8 of the 43 kinds of lengths inV, for = , =2

S\S;={3%,2-3} {j-3j=4,578 i=2,8, (31)
[4,26)3 j} { j-3°
{j-3=4,578 {3

53\ Sz =

{i -3

cannot be produced bys; for
83 kinds of lengths inVs for
by V, for 2=2.

3 = 3, and 48 of the
3 = 3 cannot be produced

[10,26] 3 j}

[4,26]3 j}.
(32)

E. Comparison of the Length Sets of the EAQECCSs in

We also notice tha®; S, S3=S; Ss. This means that Theorems V.1 and IV.2 fgp= 3,e= 8 and =2

S1 Ss

S,. Therefore, it will be convenient to determine

It seems that the sets of lengthin Theorems IV.1 and V.2

the two setsV,\ V3 and V3\V, by using the Venn diagram are either identical, or, one of the two sets is contained in the
of setsS;, S; and Sz (see Fig. 1, where the three ellipse®ther one. Fortunately, that is not the case. In fact, for the
represent the setS;, S, and S; in which, for convenience, same , the corresponding set of lengthin Theorem V.1

they are divided into the disjoint subsetsfori =1,2,...,7
by using the relatiors;
Based on Fig. 1, we know that\Vz = (S;

S3) = Js

J7, Sz\ Sg = Jz

S3

(resp. Theorem IV.2) has some lengths that cannot be produced
by the set of lengtm in Theorem IV.2 (resp. Theorem IV.1).

To verify this statement, let us consider an example for
Jzand p = 3, e 8 and 2 in Theorems IV.1 and IV.2.

Sy).
S\ (S
Sz = Jz

Jo J7,.S1
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TABLE VIII
PARAMETERS OF THE[[n,k,n  k+1; n k]]312 EAQECCsIN THEOREMIV.4
Length set  Cardinality  Length n 7 7 k
Vi 23 j-3 [1,3] [1,11] [1, 1242 ]
Va 43 j-3 [1,3] [1,11] (1, |32 )]
j-3% 4,5,7,8 [1,5] [1, [ &)
Vs 83 j-3 [1,3] [1,11] [1, [ 2552 )]
j-3% [4,26],3¢5  [1,3] [1, [ 2552 )
j-3% 4578 [L3] [1, 255 )]
Va\Vi 20 g3 asTs s [[EEmed] 4 B
Va\Va 8 j-3? 4,5,7,8 - SRR B
i asTs - [+ [5))
Va\Vi 60 5o3% 261315 (1,3 [[ZTL] 41,268
j - g3itl 4,5,7,8 [1,3] Hsf;gillJ +1, LQG; ”
Vs\Va 48 i3 263t - [[EERE 41 258 ]
530 o203t - [[EEAR] +1[25)]
i3 asTs - [[EREt 25 ]
j-39 [4,26],3 13 - [Higf;;lj +1, %8t ]
TABLE IX

COMPARISON OF THELENGTH SETS OF THEEAQECGCS IN

THEOREMSIV.1 AND IV.2 FORp =3,e=8 AND

=2

Remark V.5:Based on the above analysis, Table IX lists
all the corresponding lengths coming from the 3&tgt), Y»,
Wo(t)\ Y2 and Yo\ Wo(t), respectively. As shown in Table 1X,
we know that34 of the 38 kinds of lengths in the séf, cannot
be obtained by the sa/,(t). At the same time4 of the 8
kinds of lengths in the set/,(t) cannot be yielded from the
setY,.

VI. CONCLUSION

In this paper, by investigating the GRS codes and extended
GRS codes, we constructed eleven families of MDS codes with
-Galois hulls of arbitrary dimensions via four different tools,

i.e.

, (i) the norm mapping frorf, to Fp

; (ii) the direct prod-

uct of two cyclic subgroups; (iii) the coset decomposition of a
cyclic group; and (iv) an additive subgroupfef and its cosets.
Through these MDS codes, we presented eleven families of
EAQECCs with exible parameters in Theorems IV.1-1V.4.
Based on the analysis in Sections Ill, IV and V, let us make

Length set  Cardinality Length n t,a,b,c
Wa(t) 8 t-22.5.41 tel,8]
Yo 38 20.50.41¢  q € [0,5];b,c € [0,1]
3.5b.41¢ b,c € [0,1]
52.41¢ cel0,1]
6-5° . 41¢ b,c € [0,1]
7.50.41¢ b,c € [0,1]
Wa(t)\Ya 4 t-22.5-41 te {3,567}
Yo \Wa(t) 34 20 a€[0,5]
20.5 a€[o0,5]
20 .41 a €[0,5]
20 .5.41 a€[0,1]
3.5 .41° b,c € [0,1]
52.41¢ ce0,1]
6-5b.41¢ b,c € [0,1]
7.5 .41¢ b,c € [0,1]

In this case, we denote by/,(t) the set of lengtm of the

[[n,k,n Sk+1; nSk]lss EAQECCs in Theorem IV.1. Then,

we have that

Wo(t)= {t-22.5-41]1 t §}.

a summary on the parameters of our EAQECCs constructed

As shown in Table VI (see also Table IX), the set of

length n of the [[n,k,n S k + 1;n S Kk]];s EAQECCs
in Theorem 1V.2 isY, with cardinality |[Yo|] = 38. One
can check thatW,(1), W2(2), W2(4), W»(8) Y, and
W (3), W2 (5), W2(6), W2(7) / Y. Hence, we havaV,(t)
Y2 = {W2(1), W2(2), W2(4), W2(8)} .

All in all,

in Theorems IV.1-1V.4.

¢ When increases, the range of the dimensirbecomes
smaller. It attains the maximum for = 1 and the
minimum for = 5 (Hermitian case).

¢ In general, when increases, the cardinality of the set

of lengthn becomes larger. It attains the maximum for
= 5 (Hermitian case) and the minimum for= 1

Moreover, for certain = ;1 =1, 3, the corresponding

kind of EAQECCs has some EAQECCs whose lengths

cannot be obtained by those derived from certain
2:1,2,where 1= 5.

we believe that the approaches shown in

Sections Il and Il will be very useful for nding more new
families of EAQECCs with exible parameters.
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Next, let us look at two problems. Since the dimensions]
k of the MDS codes constructed in Theorems I11.1-111.11
is bounded by P ISt or Pl one has the following
problem.

Problem VI.1: How to improve the bound of the dimension
k of MDS codes in Theorems lIl.1-11l.11 to a larger value!
such thatk > p"ijl ork > pllj” ?

If this problem is solved, then the dimensions of thel8l
corresponding EAQECCs in Theorems IV.1-1V.4 will have a
broader range.

Note that the -Galois dual codeC  of an [n, k] MDS
codeCis an[n,n S k]l MDS code (see [40]). So it follows [10]
from Corollary 1V.1 that there also exists an

el

&l

[N, nSkSdim(Hull (C ), k+1; kSdim(Hull (C ))lq
(33)

(11]

12

EAQECC. For the Euclidean case (i.e., = 0) and 1
Hermitian case (i.e., = 5 for even e), we have
Hullg(C) = Hullg(C &) andHull 4y (C = Hullx(C *#)
since (Ce) 8 = Cand(C+) #® = C This implies
that the parameters of the EAQECCs in Eq. (33) are deté¥l
mined by dim(Hull ¢ (C)) when = 0 or determined by [15]
dim(Hull 4 (C) when = 7 (if eis even). However, we usu-
ally have(C ) = Cfor =0 and = §. Naturally, we give [16]
the following problem.

Problem VI1.2: (1) How to determine the relationship[17]
betweenHull (C) andHull (C )?

(2) Further, is there an equation to lidkn(Hull (C)) with
dim(Hull (C ))? [18]
If this problem is solved, then the parametersin Eq. (33) will
be determined bgim(Hull (C)). As a consequence, we will [19]

obtain another eleven families of EAQECCs with exible
parameters apart from those shown in Theorems IV.1-1V.4.
Then, in terms of [3], the EAQECCs witkk < n in [20
Eqg. (33) will produce many catalytic quantum error-correcting
codes (CQECCs) with exible parameters determined kg1l
dim(Hull (Q).

(23]
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ACKNOWLEDGMENT

The author would like to sincerely thank the two anonymolzfzc,3
referees for their very careful reading and many construc-
tive comments, corrections and suggestions which greatly
improved the quality of this article. He would also like td24!
thank an Associate Editor, Prof. Mark M. Wilde, for his helpful

suggestions and excellent editorial job. [25]

[26]
REFERENCES

[1] A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codedlSEE
Trans. Inf. Theoryvol. 47, no. 7, pp. 3065-3072, Nov. 2001.

[2] T. A. Brun, I. Devetak, and M.-H. Hsieh, “Correcting quantum[28]
errors with entanglement,Science vol. 314, no. 5798, pp. 436-439,
Oct. 2006.

[3] T. A. Brun, I. Devetak, and M.-HHsieh, “Catalytic quantum error [29]
correction,” IEEE Trans. Inf. Theoryvol. 60, no. 6, pp. 3073-3089,
Jun. 2014.

[4] A. K. Calderbank, E. M. RainsP. W. Shor, and N. J. A. Sloane, [30]
“Quantum error correction and orthogonal geometBtys. Rev. Lett.
vol. 78, no. 3, pp. 405-408, 1997.

[27]

7983

A. R. Calderbank, E. M. RainsP. W. Shor, and N. J. A. Sloane,
“Quantum error correction via codes over GF(4)EEE Trans. Inf.
Theory vol. 44, no. 4, pp. 1369-1387, Jul. 1998.

A. R. Calderbank and P. W. Shor, “Good quantum error-correcting
codes exist,’Phys. Rev. A, Gen. Physol. 54, no. 2, pp. 1098-1105,
Aug. 1996.

M. Cao, “Quantum error-correcting codes from matrix-product codes
related to quasi-orthogonal matricaad quasi-unitary matrices,” 2020,
arXiv:2012.15691[Online]. Available: http://arxiv.org/abs/2012.15691
M. Cao, H. Wang, and J. Cui, “@struction of quantum codes from
matrix-product codesJEEE Commun. Lettvol. 24, no. 4, pp. 706-710,
Apr. 2020.

B. Chen and H. Liu, “New constructions of MDS codes with comple-
mentary duals,IEEE Trans. Inf. Theoryvol. 64, no. 8, pp. 5776-5782,
Aug. 2018.

J. Chen, Y. Huang, C. Feng, and R. Chen, “Entanglement-assisted
quantum MDS codes construdtérom negacyclic codesQuantum Inf.
Process. vol. 16, no. 12, pp. 1-22, Dec. 2017.

X. Chen, S. Zhu, and X. Kai, “Entanglement-assisted quantum MDS
codes constructed from constacyclic code®{iantum Inf. Process.
vol. 17, no. 10, pp. 1-18, Oct. 2018.

M.-D. Choi, D. W. Kribs, and KZyczkowski, “Quantum error correcting
codes from the compression formalisrRép. Math. Physvol. 58, no. 1,

pp. 77-91, Aug. 2006.

J. Fan, H. Chen, and J. Xu, “Constructions egfiry entanglement-
assisted quantum MDS codes with minimum distance greatemgthar!
Quantum Inf. Computvol. 16, nos. 5-6, pp. 423-434, 2016.

Y. Fan and L. Zhang, “Galoiseff-dual constacyclic codesDes., Codes
Cryptogr, vol. 84, no. 3, pp. 473-492, 2017.

W. Fang and F.-W. Fu, “Two new classes of quantum MDS codes,”
Finite Fields Appl, vol. 53, pp. 85-98, Sep. 2018.

W. Fang, F.-W. Fu, L. Li, and S. Zhu, “Euclidean and Hermitian hulls
of MDS codes and their applications to EAQECCKEE Trans. Inf.
Theory vol. 66, no. 6, pp. 3527-3537, Jun. 2020.

Y. Fujiwara, D. Clark, P. Vandendriessche, M. De Boeck, and
V. D. Tonchev, “Entanglement-asgdd quantum low-density parity-
check codes,"Phys. Rev. A, Gen. Physvol. 82, no. 4, pp. 1-19,
Oct. 2010.

Y. Fujiwara and V. D. Tonchev, “A characterization of entanglement-
assisted quantum low-density parity-check coddEEE Trans. Inf.
Theory vol. 59, no. 6, pp. 3347-3353, Jun. 2013.

C. Galindo, F. Hernando, R. Matsato, and D. Ruano, “Entanglement-
assisted quantum error-correcting codes over arbitrary nite elds,”
Quantum Inf. Processvol. 18, no. 4, pp. 1-18, Apr. 2019.

C. Galindo, F. Hernando, R. Matmnoto, and D. Ruano, “Asymmetric
entanglement-assisted quantum eworrecting codes and BCH codes,”
IEEE Accessvol. 8, pp. 18571-18579, 2020.

C. Galindo, F. Hernando, and.Ruano, “New quantum codes from
evaluation and matrix-product codesFinite Fields Appl, vol. 36,

pp. 98-120, Nov. 2015.

C. Galindo, F. Hernando, and D. Ru@a “Entanglement-assisted quan-
tum error-correcting codes from RS codes and BCH codes with
extension degree 2Quantum Inf. Processvol. 20, no. 5, pp. 1-26,
May 2021.

D. Gottesman, “Class of quanturarror-correcting codes saturating
the quantum Hamming boundPhys. Rev. A, Gen. Physvol. 54,

pp. 1862-1868, Sep. 1996.

M. Grassl, “Entanglement-asséd quantum communication beating the
quantum singleton boundPhys. Rev. A, Gen. Physiol. 103, no. 2,
Feb. 2021, Art. no. L0O20601.

M. Grassl, T. Beth, and M. Roter, “On optimal quantum codeslht.

J. Quantum Inf.vol. 2, no. 1, pp. 55-64, 2004.

M. Grassl, F. Huber, and A. Winte‘Entropic proofs of singleton bounds
for quantum error-correcting codes,” 2020 Xiv:2010.07902[Online].
Available: http://arxiv.org/abs/2010.07902

M. Grassl and M. Rétteler, “Queéum MDS codes over small elds,” in
Proc. IEEE Int. Symp. Inf. Theory (ISITJun. 2015, pp. 1104-1108.

M. Grassl, P. Shor, G. Smith, J. Smolin, and B. Zeng, “Generalized
concatenated quantum codeBhys. Rev. A, Gen. Physol. 79, no. 5,
May 2009, Art. no. 050306.

K. Guenda, S. Jitman, and T. A. Gulliver, “Constructions of good
entanglement-assisted quantum error correcting codess., Codes
Cryptogr, vol. 86, no. 1, pp. 121-136, Jan. 2018.

M.-H. Hsieh, T. A. Brun, and |. Devetak, “Entanglement-assisted quan-
tum quasicyclic low-density parity-check code®hys. Rev. A, Gen.
Phys, vol. 79, no. 3, Mar. 2009, Art. no. 032340.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 17,2022 at 11:10:11 UTC from IEEE Xplore. Restrictions apply.



7984

(31]

(32

(33]
(34]
[35]

[36]

[37]

(38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

M.-H. Hsieh, I. Devetak, and T. Brun, “General entanglement-assist¢d6]
quantum error-correcting code®hys. Rev. A, Gen. Physol. 76, no. 6,

Dec. 2007, Art. no. 062313.

M.-H. Hsieh, W.-T. Yen, and L.-Y. Hsu, “High performance [47]
entanglement-assisted quantum LDPC codes need little entanglement,”
IEEE Trans. Inf. Theoryvol. 57, no. 3, pp. 1761-1769, Mar. 2011.  [48]
F. Huber and M. Grassl, “Quantum codes of maximal distance and highly
entangled subspacegjduantum vol. 4, no. 284, Jun. 2020. [49]
L. Jin and C. Xing, “A constiction of new quantum MDS codedFEE
Trans. Inf. Theoryvol. 60, no. 5, pp. 2921-2925, May 2014.

E. Knill and R. La amme, “Theory of quantum error-correcting codes,[50]
Phys. Rev. A, Gen. Physol. 55, no. 2, pp. 900-911, Feb. 1997.

M. E. Koroglu, “New entanglemerassisted MDS quantum codes from
constacyclic codes,Quantum Inf. Processvol. 18, no. 2, pp. 1-28, [51]
Feb. 2019.

C.-Y. Lai and A. Ashikhmin, “Linear programming bounds for
entanglement-assisted quantum ewgorrecting codes by split weight [52]
enumerators,"IEEE Trans. Inf. Theoryvol. 64, no. 1, pp. 622—639,
Jan. 2018. [53]
C.-Y. Lai and T. A. Brun, “Entanglement-assisted quantum error-
correcting codes with imperfect ebit$?hys. Rev. A, Gen. Physol. 86,

no. 3, Sep. 2012, Art. no. 032319. [54]
C.-Y. Lai, T. A. Brun, and M. M. Wilde, “Duality in entanglement-
assisted quantum error correctiodEEE Trans. Inf. Theoryvol. 59,

no. 6, pp. 4020-4024, Jun. 2013. [55]

X. Liu, Y. Fan, and H. Liu, “Galois LCD codes over nite eldsFinite

Fields Appl, vol. 49, pp. 227-242, Jan. 2018.

X. Liu, H. Liu, and L. Yu, “New EAQEC codes constructed from Galois[56]
LCD codes,”Quantum Inf. Processvol. 19, no. 1, pp. 1-15, Jan. 2020.

Y. Liu, R. Li, L. L3, and Y. Ma, “Application of constacyclic codes

to entanglement-assisted quantum maximum distance separable codé3]
Quantum Inf. Processvol. 17, no. 8, pp. 1-19, 2018.

S. Lloyd and J.-J. E. Slotine, “Analog quantum error correctiéys.

Rev. Lett. vol. 80, no. 18, pp. 4088—-4091, May 1998.

S. Y. Looi, L. Yu, V. Gheorghiuand R. B. Grifths, “Quantum-error-

G. Luo, X. Cao, and X. Chen, “MDS codes with hulls of arbitrary
dimensions and their quamh error correction,JEEE Trans. Inf. Theory
vol. 65, no. 5, pp. 2944-2952, May 2019.

C. Moore and M. Nilsson, “Pallal quantum computation and quantum
codes,”SIAM J. Comput.vol. 31, no. 3, pp. 799-815, Jan. 2001.

D. Poulin, “Stabilizer formalism fooperator quantumreor correction,”
Phys. Rev. Lettvol. 95, no. 23, Dec. 2005, Art. no. 230504.

J. Qian and L. Zhang, “On MDS lgar complementary dual codes and
entanglement-assisted quantum cod&s5s., Codes Cryptogrvol. 86,
no. 7, pp. 1565-1572, 2018.

P. W. Shor, “Scheme for redugndecoherence in quantum computer
memory,” Phys. Rev. A, Gen. Physol. 52, no. 4, pp. R2493-R2496,
Oct. 1995.

A. Steane, “Multiple-particle interference and quantum error correc-
tion,” Proc. Roy. Soc. London A, Math., Phys. Eng.,Seal. 452,
pp. 2551-2577, Nov. 1996.

A. M. Steane, “Simple quani error-correcting codes,Phys. Rev.
A, Gen. Phys.vol. 54, no. 6, pp. 4741-4751, 1996.

M. M. Wilde and T. A. Brun, “Optimal entanglement formulas for
entanglement-assisted quantum codingfys. Rev. A, Gen. Phys.
vol. 77, no. 6, Jun. 2008, Art. no. 064302.

M. M. Wilde and T. A. Brun, “Entanglement-assisted quantum convo-
lutional coding,” Phys. Rev. A, Gen. Physol. 81, no. 4, Apr. 2010,
Art. no. 042333.

M. M. Wilde and S. Guha, “Polar codes for degradable quantum
channels,”IEEE Trans. Inf. Theoryvol. 59, no. 7, pp. 4718-4729,
Jul. 2013.

M. M. Wilde, M.-H. Hsieh, and Z. Babar, “Entanglement-assisted
quantum turbo codes/IEEE Trans. Inf. Theory vol. 60, no. 2,
pp. 1203-1222, Feb. 2014.

M. M. Wilde and J. M. Renes, “@antum polar codes for arbitrary
channels,” inProc. Int. Symp. Inf. TheoryCambridge, MA, USA,
Jul. 2012, pp. 334-338.

correcting codes using qudit graph stateBlys. Rev. A, Gen. Phys. Meng Cao received the Ph.D. degree in mathematics from Tsinghua Univer-

vol. 78, no. 4, Oct. 2008, Art. no. 042303.

sity, Beijing, China, in 2020. He is cumdy a Post-Doctoral Researcher at

L. Lu, R. Li, L. Guo, Y. Ma, and Y. Liu, “Entanglement-assisted quantunthe Yau Mathematical Sciences Center, Tsinghua University. He is also with

MDS codes from negacyclic codesQuantum Inf. Processvol. 17,
no. 3, pp. 1-23, Mar. 2018.

the Yangi Lake Beijing Institute of Mathematical Sciences and Applications,
Beijing. His research interests include gtiam information and coding theory.

Authorized licensed use limited to: Tsinghua University. Downloaded on May 17,2022 at 11:10:11 UTC from IEEE Xplore. Restrictions apply.



