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Abstract We explain an algorithm to calculate Arthur’s weighted orbital integral in terms of the number
of rational points on the fundamental domain of the associated affine Springer fiber. The strategy is to
count the number of rational points of the truncated affine Springer fibers in two ways: by the Arthur—
Kottwitz reduction and by the Harder—Narasimhan reduction. A comparison of results obtained from
these two approaches gives recurrence relations between the number of rational points on the fundamental
domains of the affine Springer fibers and Arthur’s weighted orbital integrals. As an example, we calculate
Arthur’s weighted orbital integrals for the groups GL2 and GL3.
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1. Introduction

Let F, be the finite field with ¢ elements. Let F' =F,((¢)) be the field of Laurent series
with coefficients in F,, O = F[¢] the ring of integers of F, and p = eF,[¢] the maximal
ideal of 0. We fix an algebraic closure F, of F, and also a compatible separable algebraic
closure F of F. Let val : F~ — Q be the discrete valuation normalized by val(e) = 1.

Let G be a connected split reductive algebraic group over F,, and assume that
char (F,) > |W|, W being the Weyl group of G. Let Gp be the base change of G to
F. Let T be a maximal torus of Gr. We make the assumption that the splitting field
of T is totally ramified over F. Let S C T be the maximal F-split subtorus of T, and
let My = Z¢g,.(S) be the centralizer of S in Gp; then My is a Levi subgroup of Gr and
T is elliptic in My. Given an algebraic group, we use the Gothic letter to denote its Lie
algebra.

Let v € t(F) be a regular element, elliptic in mo(F). Let L(My) be the set of Levi
subgroups of G containing My. For M € L£(M;), consider Arthur’s weighted orbital
integral

dg

i) =T (ko) = [ 140 (Adlg) M) valo) (1)
T(F)\G(F)

N
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2 Z. Chen

where 140y is the characteristic function of the lattice g(O) in g(F), vas(g) is Arthur’s
weight factor, and dg and dt are Haar measures on G(F') and T(F), respectively. One
of our main results states that it can be expressed in terms of the number of rational
points of the fundamental domains F,YL of the affine Springer fiber %VL, L e L(My). The
main idea is to count the number of rational points of the truncated affine Springer fibers
in two different ways: by the Arthur—Kottwitz reduction and by the Harder—Narasimhan
reduction.

Before entering into the details of our approach, we give examples of results that can
be obtained in this way. The calculations for the group G = GLs are easy; the results are
summarized in Theorems 5.1 and 5.2. But for the group G = GL3, the calculations are
already quite nontrivial. There are three cases to deal with: the element v can be split,
mixed, or elliptic. When + is split, we can find a set of simple roots {a1,a3} in the root
system ®(G,T) of G with respect to T such that

val(ai(y)) = val((en +az2) (7)) < val(az(7))-
We call (nq,n9) = (val(ay (7)), val(as(7))) the root valuation of ~.
Theorem 1.1. Let G = GL3 and T the maximal torus of diagonal matrices. Let y € t(O)

be a regular element with root valuation (nq,m2) € N2, with n1 < no. Up to an explicit
volume factor, we have

ny 2ni1+ns—1
Jr(y) = Zz (@ "+ )+ Z (4n142ny — 4i — 3)¢" + (n] 4 2n1no) ¢*™ 772,
=1 i=ni+no

For a € ®(G,T), let M, be the unique Levi subgroup containing T with root system {+a};
then, up to an explicit volume factor,

JMal (fy) = JMa1+a2 (fy) = (nl +n2)q2n1+n2 _qn1+n2 (1 +q+-- ._|_qn1—1)
_q2n1 (1+q+...+qnz—1)

and

Ity (7) = 200¢7 02 =202 (T g g™ ).

When 7 is mixed - that is, 7" is isomorphic to F* x Resg,,pE5 , where Fy = Fq((e%))
is the unique totally ramified extension of F' of degree 2 — it can be conjugate to a matrix
of the form

v = b|. (1.2)

Let m = val(a) and n = val(b); then we have the following:
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Theorem 1.2. Let G = GL3 and let v be a matrix in the form of equation (1.2). When
val(a) =m <n, up to an explicit volume factor,

2m+n—1 ) 2m—1 ] )
Tao) =2mam s a(i—mem = 3 ([§]41) @

j=mantl =0

Similarly, when val(a) =m >n, up to an explicit volume factor,

Ig) = G+ D Y @i n - (|3]+1)«

j=2n+1 j=0

where |x] denotes the mazimal integer less than or equal to x.

When ~ is anisotropic, Arthur’s weighted orbital integral is just the orbital integral,
and the result was essentially obtained by Goresky, Kottwitz, and MacPherson [16]. See
Theorems 8.1 and 8.2 for the counting result.

Now we explain our approach to calculating Arthur’s weighted orbital integrals using
the geometry of the affine Springer fibers. For simplicity, we restrict to Jaz, (7). The affine
Springer fiber 27, is the closed subscheme of the affine Grassmannian 2" = G(F')/G(O)
defined by the equation

2, = {g € G(F)/G(0) | Ad (s7) 7€ 0(0) }.

They can be used to geometrize Arthur’s weighted orbital integrals. The group T'(F') acts
on 2., by left translation. For p € X, (S5), we write € for u(e) € S(F'). The map p — €*
identifies X, (S) with a subgroup of S(F) C T'(F), which we denote by A. It acts freely
on 2, and the quotient A\ 2, is a projective scheme of finite type over F, (see [17, §3]).
A simple reformulation shows that

- dg
/ ]lg(O) (Ad(g) 17) VMo (g)a =c- Z VM, (g)7
TENG(F) [g]€A\Z (Fyg)

where [g] denotes the point ¢G(O) € £ and c is a volume factor.

But this expression does not facilitate the calculations of Arthur’s weighted orbital
integral. We have to proceed in an indirect way. Let & € a%ﬂ be a generic element (for
the definition of af; , see §1.1). Chaudouard and Laumon [8] introduce a variant of the
weighted orbital integral

dg

T (1) = T3r, (1 Lg(0)) =/ Lo(o) (Ad(g) ™) why, (Q)E’ (1.3)
T(F)\G(F)

with a slightly different weight factor W§\40 (g9)- The two weight factors are closely related

to each other. When G is semisimple, Chaudouard and Laumon show that

Jato (7) = vol (ang, /X (Mp)) - T3y (7).
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The variant JIEM,0 (7) has a better geometric interpretation. In fact, we can introduce a
notion of &-stability on the affine Springer fiber 27, and show that

| ZE®)|.

T34 (7) = volae (T(F)*)
The advantage of this variant is clear: it is a plain count rather than a weighted count.
Moreover, we can use the Harder—Narasimhan reduction to get |3£”$ (Fq)| recursively
from |2, (Fy)|, if only the latter is finite. Unfortunately this is not the case, as can be
seen from the fact that the free abelian group A acts freely on Z,.

Let IT be a positive (G, Mp)-orthogonal family. We can introduce a truncation 27, (II) to
overcome the finiteness issue. When II is sufficiently regular, we can reduce the calculation
of the rational points on 27 (II) to that of the fundamental domains FVL, by the Arthur-
Kottwitz reduction. Recall that the fundamental domain F, is introduced in [11] to
play the role of an irreducible component of %7,. (All the irreducible components of
&, are isomorphic, because T'(F') acts transitively on a dense open subscheme of it.)
The Arthur-Kottwitz reduction is a construction that decomposes %% (II) into locally
closed subschemes, which are iterated affine fibrations over the fundamental domains Ff,
L € L(My). The counting result is summarized in Corollary 3.7. In particular, it shows
that 27, (II) depends quasi-polynomially on the truncation parameter.

On the other hand, the Harder—-Narasimhan reduction does not behave well on 27, (II).
In fact, near the boundary, the Harder—Narasimhan strata are generally not affine
fibrations over truncations of BK,YL’EL. To overcome this difficulty, we cut 27 (II) into
two parts: the tail and the main body. Roughly speaking, the tail is the union of the
‘boundary irreducible components’ of £, (II), and the main body is its complement.
The Harder—Narasimhan reduction works well on the main body, and we can use it to
count the number of rational points. The result is summarized in Theorem 4.8; it can be
expressed in terms of |3&”7L’5L (Fy)|, L € L(Mp). Counting points on the tail proceeds by
the Arthur-Kottwitz reduction, and can be expressed in terms of |F(F,)[s. But we are
not able to obtain an explicit expression; we get a recursion.

These two different approaches to counting rational points on £, (II) give us a recursive
equation that involves the |FX(F,)[s and the |3{7L75L (Fg)ls. Solving it, we can express
the latter in terms of the former. The problem of calculating Jpy, () is thus reduced to
counting points on F,.

The geometry of F, is simpler than that of f%’f : Goresky, Kottwitz, and MacPherson
[14] have conjectured that the cohomology of 27, is pure in the sense of Deligne. As we
have shown in [11], this is equivalent to the cohomological purity of F,. In fact, it is even
expected that F., admits a Hessenberg paving. (This notion was introduced by Goresky,
Kottwitz, and MacPherson [16].) On the contrary, %f is generally not cohomologically
pure, as one can see in case G = SLy or from the appearance of a minus sign in the
counting-points result of Theorems 6.6, 6.10, and 6.14. Although one can still look at the
quotient t%”,f /A, , where Ay, is the maximal F-split torus of the center of My, it is clear
that the quotient no longer admits a torus action, and hence it has much less structure
to explore than F,.
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When the torus 7' splits, we make a conjecture on the Poincaré polynomial of F,
[12], assuming the cohomological purity of F.. This gives a conjectural expression for
|Fy (Fg)|. We reproduce it here for the convenience of the reader. Following Chaudouard
and Laumon [7], under the purity assumption the cohomology of F, can be expressed
in terms of its 1-skeleton under the T-action. Indeed, the T-equivariant cohomology
H3 (Fy,Qg)" will then be a free Hj (pt,Q,)-algebra, and we have

H* (Fmée) :H;" (F'yvaz) ®H,}(pt,6[)6£' (1'4)

The torus T acts on F, with finitely many fixed points, but the 1—dimensiorial T-orbits
form a higher-dimensional variety which we denote by F:{ 1. The bigger torus T =T x G,,,,
where G, is the rotational torus, acts on Ff 1 with finitely many 1-dimensional T-orbits;
let F:;F’l be their union. Let F;f be the set of T-fixed points on F,, and let

H% (FWMQZ) = H’} (F’WQZ) ®H;(Pt»62) H% (ptaaé) . (15)

Then the localization theorem of Goresky, Kottwitz, and MacPherson [13] implies an
exact sequence of equivariant cohomology

0 HE (F,,Q,) — Hy (FT,Q,) = Hx (FILFTQ, ). (1.6)

Let T be the graph with vertices F,YT and edges Ff 1. Two vertices are linked by an edge

if and only if they lie on the closure of the corresponding 1-dimensional T-orbit. We call
it the moment graph of F., with respect to the action of T. The foregoing result implies
that the information about the cohomology of F, is encoded in I'. A direct calculation
of the cohomology via formulas (1.4), (1.5), and (1.6) turns out to be very hard, and we
look for a combinatorial way to get around it.

Let o be a total order among the vertices of the graph I'; it will serve as the paving
order. We associate to it an acyclic oriented graph (I',0) such that the source of each
arrow is greater than its target with respect to 0. For v € I'; denote by n{ the number of
arrows having source v.

Definition 1.1. The formal Betti number bS; associated to the order o is defined as
by, =g{vel:n)=1i}.
We call
Po(t) =) bg;t*
the formal Poincaré polynomial associated to the order o.

Definition 1.2. For P;(t),Ps(t) € Z[t], we say that P;(t) < Py(t) if the leading coefficient
of Pa(t) — Py(t) is positive.

Here we actually mean the geometric H}‘«F (Fv Fq761)3 to simplify the notation, we do not
PRSI

specify the base change to F,. A similar convention applies for the other cohomology groups.
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Conjecture 1.1. Let P(t) be the Poincaré polynomial of F.. Then
P(t) = min {P°(1)}.

where o runs through all the total orders among the vertices of T'.

The conjecture can be thought of as a kind of Morse inequality; it has been verified
in a lot of examples. For the group G = GLy and v = diag(y1,72), with 1,72 € F and
val(y1 —72) =n € N, the moment graph of F, contains n+ 1 vertices, which are pairwise
connected by an edge. It is clear that the conjecture holds in this case. In general, the
moment graph of F, is easy to describe, and we have an algorithm to find an order o
which conjecturally should attain the minimum. Although we are not able to prove both
conjectures at the moment, they have been very helpful in constructing affine pavings of
F, in concrete examples.

Under the purity assumption, Conjecture 1.1 implies a point-counting result for
F,. Indeed, the formulas (1.4), (1.5), and (1.6) are Gal(F,/F,)-equivariant, and the

Frobenius endomorphism acts on H%’(F7T ,Qy) by ¢ (the odd-degree cohomologies

vanish), and hence it acts on H* (FW,QZ) in the same way and so
I, ()| = min{ P*(¢"/%)}.
0

Together with the recurrence relation between |3£”,§ (Fy)| and |F, (F,)|, it gives a
conjectural complete answer to the calculation of Arthur’s weighted orbital integrals in
the split case.

1.1. Notation

We fix a split maximal torus A of G over F,. Without loss of generality, we suppose that
A C My. Let & = ®(G,A) be the root system of G with respect to A and let W be the
Weyl group of G with respect to A. For any subgroup H of G which is stable under the
conjugation of A, we write ®(H,A) for the roots appearing in Lie(H). We fix a Borel
subgroup By of G containing A. Let A = {aj,...,a,} be the set of simple roots with
respect to By and let {w;}}_; be the corresponding fundamental weights. For an element
a € A, we have a unique maximal parabolic subgroup P, of G containing By such that
®(Np,,A)NA = {a}, where Np_ is the unipotent radical of P,. This gives a bijective
correspondence between the simple roots in A and the maximal parabolic subgroups of
G containing By. Any semistandard maximal parabolic subgroup P of G is conjugate to
certain P, by an element w € W; when the element ww, does not depend on the choice
of w, we denote it by wp.

We use the (G, M) notation of Arthur. Let F(A) be the set of parabolic subgroups of
G containing A and let £(A) be the set of Levi subgroups of G containing A. For every
M € L(A), we denote by P(M) the set of parabolic subgroups of G whose Levi factor
is M, by L(M) the set of Levi subgroups of G containing M, and by F(M) the set of
parabolic subgroups of G containing M. For P € P(M), we denote by P~ € P(M) the
opposite of P with respect to M.
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Let X*(M) =Hom(M,G,,) and X.(M) =Hom(X*(M),Z). Let a}, = X*(M)®R and
ay = X« (M)®R. The restriction X*(M) — X*(A) induces an injection a3, < a*. Let
(a% )* be the subspace of a* generated by ®(M,A). We have the decomposition in direct
sums

af = (o) @i,
The canonical pairing X, (A) x X*(A) — Z can be extended bilinearly to ag x a* — R.

For M € L£(A), we can embed a7 in a4 as the orthogonal subspace to (aX)". Let a’f C au
be the subspace orthogonal to a},. We have the dual decomposition

ag=ay ®all.

Let mar, 7™ be the projections to the two factors. More generally, for L, M € F(A),M C L,
we also have a decomposition

ajcg} = ag 2] aﬁ/[.
Let may, ,7E, be the projections to the two factors. If the context is clear, we also simplify
them to mp,wL.

We identify X, (A) with A(F')/A(O) by sending x to x(e). With this identification, the
canonical surjection A(F') — A(F')/A(O) can be viewed as

A(F) = X.(A). (1.7)

We use Ag to denote the quotient of X, (A) by the coroot lattice of G (the subgroup of
X.(A) generated by the coroots of A in G). It is independent of the choice of A; this is
the algebraic fundamental group introduced by Borovoi [6]. According to Kottwitz [18],
we have a canonical homomorphism

Vg G(F) —>AG, (1.8)

which is characterized by the following properties: it is trivial on the image of Gy (F) in
G(F) (Gsc is the simply connected cover of the derived group of G), and its restriction
to A(F) coincides with the composition of formula (1.7) with the projection of X, (A) to
Ag. Since the morphism (1.8) is trivial on G(0O), it descends to a map

Vgie%—)Ag,

whose fibers are the connected components of Z". For 1 € Ag, we denote the connected
component v (u) by 2.

Finally, we suppose that v € t(O) satisfies v = 0 mode, to avoid unnecessary
complications.

2. (Weighted) orbital integrals and the affine Springer fibers

We recall briefly the geometrization of the (weighted) orbital integrals using the affine
Springer fibers. We fix a regular element « € t(O) as in the introduction. Let Py = MyNy
be the unique element in P(My) which contains By.
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2.1. Orbital integrals

We begin by fixing the Haar measures. Let dg be the Haar measure on G(F') normalized
by the condition volgy (G(O)) = 1. For the group T'(F), the definition is more involved,
as there is no natural O-structure on 7. Let F"" =F,((¢)); it is the completion of the
maximal unramified extension of F. Let o be the Frobenius automorphism of both F,/F,
and F"/F. We fix a separable algebraic closure F'"* of F' and let Ip = Gal (F™ /F"") —
this is the inertia subgroup of I' = Gal (F//F). According to Kottwitz [19, §7.6], we have
an exact sequence

1= T(F™); = T(F™) 25 X, (1), — 1, (2.1)
which implies another exact sequence if we take the (o)-invariants:

1= T(F)y = T(F) % (X (T)1,) = 1, (2.2)
with T(F); := T(F)NT(F");. We fix the Haar measure dt on T(F) by setting

volg (T(F)1) = 1. The group A is discrete and cocompact in T'(F). The volume of the
quotient A\T'(F) is calculated in [14, §15.3]:
_|eoker[ X, (S)r — X.(T)r]|

|ker[ X, (S)r = X.(T)r]

vola: (A\T(F))

Consider the orbital integral
_ dg
19 = / Loy (Ad(g™1)) 2. (2.3)
T(F)\G(F)
It can be interpreted as counting points on the affine Springer fiber:

Proposition 2.1 (Goresky, Kottwitz, MacPherson [14]).

o |ker[X,(S)r = X, (T)r]|
T |coker[ X, (S)r — X.(T)r]| [A\ (25 (Fg))|-

The T'(F)-action on 27, can be exploited to further simplify the computations. Let
Z.,°¢ be the open subscheme of 27, consisting of the points [g] € £ such that the image
of Ad(g"') v under the reduction g(O) — g is regular nilpotent.

=

Proposition 2.2 (Bezrukavnikov [5]). The group T(F') acts transitively on 2.

Proposition 2.3 (Ngo [20, Proposition 3.10.1]). The open subscheme 27 is dense in
2.

Consequently, all the irreducible components of 2, are isomorphic to each other, and
they are parametrized by mo(T(F)). In particular, all the connected components of 2,
are isomorphic and can be translated to each other under the T'(F)-action. In calculating
the orbital integral (2.3), we can thus restrict to the central connected component of 27,
which often simplifies calculations.

The calculation of I$ can be reduced to that of I,IYVIO; it dates back at least to Harish-
Chandra that

IG = ghvelldet(ad()lar/mo.e) . Mo, (2.4)
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Geometrically, this is a reflection of the existence of an affine fibration fp: 2., — &V,YMO
for each P € P(My). Recall that for Q = LNg € F(A), we have the retraction
fo: % —2F,

which sends [g] = gK to [h] := hL(O), where g = nhk,n € No(F),h € L(F),k € K, is the
Iwasawa decomposition. We want to point out that the retraction fg is not a morphism
between ind-F, -schemes, but its restriction to the inverse image of each connected
component of 2%,

fQ:fol(%L’”)%%L”, veAr
is actually a morphism over F, between ind-F,-schemes. Moreover, these retractions
satisfy the obvious transitivity property.

Restricted to the affine Springer fibers, the retraction fg sends 27, to %WL. To see this,
for [g] € 2, let g =nhk be the Iwasawa decomposition as before. We can write g = hn'k,
with n’ = h='nh € No(F). Now that Ad (h™1)~ € [(F), we have

Ad(n " Ad(h ') y=Ad (R ") y+n"
for some n” € ng(F'). This implies that

Ad(h)™'y € [8(0) +nqr] NI(F) = (O),
which means that fo([g]) = [h] € 2.

Proposition 2.4 (Kazhdan and Lusztig [17, §5, Proposition 1]). For any v € Ap, the
retraction

fo: 20 it () = 2

Y

is an iterated affine fibration over ¥, of relative dimension val(det(ad(y) | ng(F))).

The reader can also consult [11, Proposition 3.2] for a proof.

2.2. Arthur’s weighted orbital integral

2.2.1. The weight factor vy;. Set M € £L(My). Roughly speaking, the weight factor
var(g) is the volume of a polytope in aps generated by the point [g] € 2. Let Hyy :
M(F) — aps be the unique map? satisfying

X(Har(m)) = val(x(m)), Vx € X*(M),m e M(F).

Notice that it is a group homomorphism. Moreover, it is invariant under the right K-
action, so it induces a map from 2™ to ayy, still denoted by Hy;. For P=MN € F(A),
let Hp : 2" — ajp; be the composition

Hp:%fi)%MM)aM.

20ur definition differs from the conventional one by a minus sign. But as we will see, it simplifies
computations.
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As shown in [7, Lemma 6.1], the map Hjs is constant on each connected component
of M 50 it has a factorization Hy; : Z7M 25 Apyr — apr. A simple calculation of the
restriction of the map to 24 € 2™ shows that the map Aj; — ayy is just the one induced
from the natural inclusion X, (A4) = a4 = X.(A) @ R. Hence Hp is also the composition

Hp:%g%Mﬂ)AM—)aM.

The map Hp has the following remarkable property. There is a notion of adjacency
among the parabolic subgroups in P(M): two parabolic subgroups Py = M Ny, Py =
MN;y € P(M) are said to be adjacent if both of them are contained in a parabolic
subgroup @ = LNg such that L D M and rk(L) = rk(M) + 1. Given such an adjacent
pair, we define an element Bp, p, € Ajs in the following way: consider the collection of
elements in Aj; obtained from coroots of A in ny Nn; . We define Sp,, p, to be the minimal
element in this collection — that is, all the other elements are positive integral multiples
of it. Note that 8p, p, = —fp,,p,, and if M = A, then Bp, p, is the unique coroot which
is positive for P, and negative for P,. We also denote its image in ap; by Bp,,p, if no
confusion is caused.

Proposition 2.5 (Arthur [1, Lemma 3.6]). Let Py, Py € P(M) be two adjacent parabolic
subgroups. For any x € Z°, we have

HP1 (.73) —sz(.lﬁ) = n(xvplaPQ)'BPth
with n(x,Pl,P2) S ZZO'

The reader can consult [11, Proposition 2.1] for a proof. For any point « € 2", we write
Ecp () for the convex hull in ays of the Hp(z),P € P(M). For any Q € F(M), we denote
by Ec% (z) the face of Ecps(x) whose vertices are Hp(z),P € P(M),P C Q. When M = A,
we omit the subscript A to simplify the notation.

To define the volume, we need to choose a Lebesgue measure on af/[. We fix a W-
invariant inner product (-,-) on the vector space aﬁ. Notice that a’f and a,s are orthogonal
to each other with respect to the inner product for any M € L£(A). We fix a Lebesgue
measure on a%} normalized by the condition that the lattice generated by the orthonormal
bases in a% has covolume 1.

The weight factor vas(g) is the volume of the projection 7§ (Ecas(g)) C af;. We have to
pass to a§; because the polytope Ecys(g) will lie in a hyperplane of aj; if G has nontrivial
connected center. The weight factor vs(g) has the following invariance properties: it is
invariant under the right action of K — that is,

vu(gk) =vulg), VkeK.
This is evident from the definition of v/ (g). It is not so evident, but also true, that
vau(mg) =val(g),  Vme M(F).

Indeed, for any P € P(M), we have fp(mg) =mfp(g). As Hys is a group homomorphism,
this implies

Hp(mg) = Hn(m)+ Hp(g),
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so Ecps(mg) is just the translation of Ecys(g) by Has(m). In particular, they have the
same volume.
Similar to Proposition 2.1, we can interpret Arthur’s weighted orbital integral as

dg _ |ker[X,(S)r = X.(T)r]|

Lyo) (Ad(g)™"y) v (9) = = var(g).
/T<F>\G<F> s©) ) di Jeoker[X.(S)r = Xu(D)rll | (5 )y

That is, it is a weighted count of the rational points on the affine Springer fiber. Notice
also that Ja(v) = IY, as va(g) =1 for all g € G(F).

2.2.2. A variant. In their work on the weighted fundamental lemma [8], Chaudouard
and Laumon introduce a variant of the weighted orbital integral.

Assume that G is semisimple and let £ € aps be a generic element. For g € G(F), they
introduce the weight factor

Wi (9) = [{\ € Xo(M) | A +€ € Ecar(g)}.-

It is the number of integral points in the polytope Ecps(g) —&. Similar to vas(g), the
weight factor wi[(g) is invariant under the right K-action and the left M (F)-action.
In particular, it descends to a function on 2 . Consider the following weighted orbital

integral:
_ dg
Jir(y) = / Lg0) (Ad(g)~1y) W%Ag)a-
T(F)\G(F)

Remark 2.1. For a general reductive algebraic group G, ¢ € a{}, as G(F) = M(F)-
Ger(F), we can define the weight factor Wﬁ/[ uniquely by requiring it to be invariant under
the left M (F')-action and the right K-action, and that as a function on £ its restriction
to 2 Cder coincide with the given definition for Ger. In other words, for generic ¢ € a§;,

we define
wis(9) = |{) € X. (Mg,,,) | A\+€ € 8 (Bea(9)) }],

where Mg,., = M NGger- Notice that the weight factor v, satisfies these conditions as
well, and this justifies our definition in the general case.

The variant wa (7) has a better geometric interpretation.

Lemma 2.6. Let T(F)' =T(F)Nker(Hyy,). Then it is of finite volume and we have an
exact sequence

H
1= T(F)! = T(F) —2 X, (M) — 1.
Proof. The first assertion is due to the fact that T is anisotropic modulo the center of
M. For the second assertion, only the surjectivity is nontrivial. Recall that we have the

exact sequence
1= T(F); = T(F) 2% (X.(T)1,)" =1,

and that the map wr is defined via a map vy : T(F™) — Hom (X*(T')'*,Z), similar to
the definition of Hjy,. Hence the morphism Hyy, factors through wy, and the surjectivity
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results from those of wr and the homomorphism
(X (T)1,)"" = X (T)1, — Hom(X* (M), Z) = X.(Mp).
O

As a consequence, let T(F)}, = T(F)Nker(Hy) and let AHv = AN ker(Hys). Then
the quotient AZM\T(F)}, is of finite volume and we have an exact sequence

1= T(F)}, - T(F) 2% X, (M) — 1.
Proposition 2.7. We have the equality
Tir(7) = volay (ASAT(E)},) - [A™\ {[g] € 2 (B) | € € Eear(g)}].
In particular,
T4, () = volar (T(F)') ™ -[{lg] € 25 (Fy) | € € Bear, ()}
Proof. Let 1, 4 be the characteristic function of Ecps(g). As
Ecn(tg) = Eca(9) + Hu (1), Vi€ T(F),g € G(F),

we have

Y. Luw(§) = A€ Xu(M) | € € Ecu(g) + A}

teT(F)3,\T(F)
= W?v[(g)
Now we can rewrite
_ dg
K= [ o) (Ad) ) v (0)
T(F)\G(F)
_ dg
~[ Lo @de ) Y Lus©F
TFNG(F) te T(F)L,\T(F)
-1 dg
= ]Lg((’)) (Ad(g) '7) ]llw,g(g)a
T(F)j\G(F)
1 B
= volg; (A\T(F)}y) / g0y (Ad(g) ") 1ar,(£)dg
AHM\G(F)

= volgs (A\T(F),) - [AF0\ {[g] € 25, (F,) | € € Eear(9)} -
O

In particular, wa(v) is a plain count of a subset of 27, (Fy). In §4.1, we will see that
the condition £ € Ecps(g) behaves as a stability condition. (We believe that it is in fact a
stability condition in the sense of Mumford.) In particular, there is a Harder—Narasimhan-
type decomposition of 27, associated with it.

Remark 2.2. It is time to explain why we have imposed the assumption that T is
totally ramified over F. Without it, the Frobenius o € Gal (Fq / Fq) acts nontrivially on
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X.(T)1,, and the morphism T(F) — X, (Mp) in Lemma 2.6 might fail to be surjective.
(Indeed, it does fail for T' an unramified maximal torus in GL,,.) As a consequence, the
interpretation of wa (7) as in Proposition 2.7 no longer holds.

For completeness, we compute the volume factors in Proposition 2.7. We have the exact
sequence

1= AP o (R, = A\T(F) 225 X, (M) /Hy () — 1.

Because A is of finite index in X, (Mp) and the morphism X, (Mg) — X. (M) is surjective,
the quotient X, (M)/Hy(A) is finite, and so
volgr (AT (F)}y) = vola (NT(F)) - | X (M) / Har ()|
B |coker[ X, (S)r = X.(T)r]|
[ker[X, (S)r — Xu(T)rl| - [ X (M) / Har (X (S)

(2.5)

2.2.3. Comparison of weighted orbital integrals. The weight factors v,; and W?w
are closely related, so we can compare the associated weighted orbital integrals.

Theorem 2.8 (Chaudouard and Laumon [8]). We have the equality
Tn () = vol (ang /X (M)) - T3, (7).

Remark 2.3. For a general reductive algebraic group G, with the definition of wa as
explained in Remark 2.1, the comparison theorem becomes

T () =vol (affer /X, (M) ) - T5(),
as can be seen from the proof below.

Chaudouard and Laumon work over the ring of adeles, but their proof carries over
to the local setting. We reproduce their proof here, but to simplify the exposition, we
assume moreover that G is simply connected. The key is to rewrite the convex polytope
Eca(g) as alternating differences of translations of cones. We need some notation. For
P = MNp € F(A), take a Borel subgroup B € P(A) contained in P. Let Ap be the
simple roots of ®(G,A) with respect to B, and let Ag p = ApN®(Np,A) and AE’P be
the associated coroots. The restriction X*(A) — X*(Ay) induces a bijection from Apg p
to a subset of X*(Ajs) denoted A p. Similarly, the projection as — aps induces a bijection
from A} p to a subset A}, Obviously, the definition of Ap and A}, is independent of
the choice of B. Moreover, they form bases of a}, and ayy, respectively. Let (wq)aeca, be
the basis of a}, dual to A}.

For a generic element \ € aj,, let

Ar={aeAp|(\a) <0},
and let ¢ be the characteristic function of the cone

{a€ay|mala) >0, Vace Ad:wa(a) <0, Vo e AP\A)I‘D}.
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According to Arthur [3], the characteristic function of the convex polytope Ecps(g) is
equal to the function

acayr— Y. ()N (~Hp(g) +a).

The proof is best illustrated by [4, Figure 11.1, p. 63]. It relies on the combinatorial
identity

S (1) - {1 if =0,

Feg 0 otherwise,

for any finite set S. Now we can rewrite

i)=Y Y ()P (—Hp(g) +x+), (2.6)

XEX.(M)PeP(M)

VM(g):/ > (1A (- Hp(g) +a)da. (2.7)
M peP(M)

We introduce an extra exponential factor to treat the infinite sum in equation (2.6):
Se(N) = Y ¢p(—Hp(g)+x+&eMX.
XEX (M)
The series converges absolutely for generic A, and hence
¢ (g) = Ii —1)la3]
wiilo)=lm 3 (1350,
PEP(M)

where the limit is taken for generic A € aj,.
We can calculate Sp(\) explicitly. Let £ = [£]p +{&}p, with [{]p € X.(M) and {}p =
ZO&GAP rqaV for some 0 < r, < 1. After a simple change of variables, we get

Sp(\) = eMHP@TR) 3 A (4 (g} p)e)
XEX. (M)

— N HP(9)-[EP) Z e<’\’ SamaaY)

(ma)OtEAP

)

where (mq)aca, runs over the integers satisfying m, >0 for o € Aj\p and m, < —1 for
a € Ap\A%. The geometric series can be calculated to be

Sp(A) = (~1)lAHleOHr @) TT
acAp

1
e<)‘70‘v> — ]_ ’

Let cp(A) = [[oen, (6<)\’av> — 1). Taking everything together, we get

wh,(g) = ili% Z cp(N) e Hr@)[Er) (2.8)
PeP(M)
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Similarly, we can rewrite equation (2.7) as

=1 AR (Aa)
vu(g) = lim wpgp(:M)( D&} (~Hp(g) + a)e™ da
= lim (—1)‘A?’|/ ¢p(—Hp(g) +a)e™da
A—=0 a
PeP(M) M

= lim Z eMNHP@) ol (aps/ X W (M) H <)\7av>71.
PEP(M) a€Ap

Letting dp(\) = vol (ar/Xs(M)) ' [Taca, (M), we get
vam(g) = hm Z dp(A 1. eNHp(9)), (2.9)
PeP(M

To deal with limits of the form in equations (2.8) and (2.9) systematically, we need
Arthur’s notion of a (G, M)-family [2]. It is a family of smooth functions (rp()))pep(ar)
on a}, which satisfy, for any adjacent parabolic subgroups (P,P’), the property that
rp(A) =rp/(A) for any A on the hyperplane defined by the unique coroot in A, N(—AY,).
For any such family, we define

(V)= Y dp(N)re(N),

PeP(M)

for generic A € a};. Arthur has shown in [2] that the function extends smoothly over all
ays- Let

I'n = )I\ILI%)I”M()\)
It generalizes equation (2.9). Indeed, the functions
VP()‘vg) = €</\,Hp(g))7 Pe P(M)v

form a (G,M)-family, and the resulting vas(g) is exactly Arthur’s weight factor. From
this point of view, we call ras the volume of the (G,M)-family (rp(\)) pep(ar)-
Notice that the summands in equations (2.8) and (2.9) differ by a factor

dr() —onlelr),
CP()\)

wp(AE) =

and that they form a (G,M)-family. Letting wp(\g,£) = vp(A\g)wp(\E), P € P(M),
they form a (G,M)-family and equation (2.8) can be rewritten as

wis(9) =war(g,€). (2.10)

In other words, we have expressed the lattice point-counting weight factor wa (g) as the
volume of the product of two (G, M)-families.
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We need a result of Arthur on the volume of the product of two (G,M)-families. Let
{rp(N)}pepary and {sp(A)} pep(ar) be two (G, M)-families. For Q = LNg € F(M), let

19\ =1rN,(\),  VREPE(M).

It is easy to see that rg()\), R € PL(M), form an (L,M)-family. The function r%()\)
and the volume r%[ are defined in a similar way. From the (G, M)-family {sp()\)}pep(ar),
Arthur has defined a smooth function s (A) on ag,. The definition is quite involved, and

we refer the reader to [2, §6]. Let s =s5(0).

Lemma 2.9 (Arthur [2, Lemma 6.3 and Corollary 6.4]). Let {rp(\)}pcp) and
{sp(N)} per ) be two (G, M)-families, and let r-s be their product. Then for any X € aj;,
we have

(romN) = > N0
QEF (M)

In particular,

PEP(M)
In our situation, this implies
wig(9) = (v(9)-w(©)(0) = > vi(9wp(©) (2.11)
QEF(M)
and
wa(€)= D wh(©). (2.12)
PEP(M)

Similar results hold for Levi subgroups L containing M:

wit(g)= > vi(9)Wr(sL), (2.13)
ReF(L)
wi(én)= Y woln), (2.14)
QeP(L)

with w/;(£1) deduced from the (G,L)-family

do(A

wo(\EL) = do i) vge P(L).
cQ(A)

Setting g = e € G in equation (2.13), and noting that

r )_{1 if Re P(L),

vrle .
0 otherwise,
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we get
wit(e)= Y wplén) =wi(ép), (2.15)
QeP(L)

where the second equality is just equation (2.14).

Lemma 2.10.

Z / (f)_M~w£L(e): {VOl(aM/X*(M))l if L=G,

QeP ) ~ vol(ay /XL (M) T F 0 otherwise.

Proof. Recall that given a (G, M)-family {sp()\)}pep(ar), we can define a (G, L)-family
by setting

SQ()\) = Sp()\), Ve Cl*L C a}“w,

for any P € P(M), P C Q. Moreover, the function s (A) deduced from the (G, M)-family
{sp(A)} pep(ar) is the same as that from the (G,L)-family {sq(A)}gep(r), by [2, formula
6.3]. In this way, we get the (G,L)-family {wq(A€)}gep(r) and the equality

Y wo)=wi(¢)=lim > dQ(A)l.‘j}f((i;.e<A,mp>7

QeP(L) QEP(L)

by the second assertion of Lemma 2.9, where for each Q € P(L) we take P € P(M),

P C @, and the limit is taken for A € a} generic. Now that
dp(\) _ vol(ay/X.(L) dg(N)

cp(A)  vol(an /X (M) cq(N)
and (X [€]p) = (A [€L]g) for any A € a}, we get

T i) vol(ag/Xu(L)) | ooy VOLOL/Xu(L)) ey )

= Sol(anr /X, (M) ) T Sollan X, () N E

QeP(L)
where the last equality follows from equation (2.15). O

By equation (2.11), we can rewrite qu (7) as

_ dg
K= [ o) (Ad) ) whs(0)
T(F)\G(F)

= Ly(o) (Ad(9)™"v) Vi (9wo©)| =
A(F)\G(F) ’ Qe;(M) R KL

As v¥, is also left T(F)-invariant, we can define

_ dg
T3 () = / 140y (Ad(g)™"y) V%(g)a-
T(F)\G(F)

Let @ = LN be the standard Levi decomposition. Let dl be the Haar measure on L(F)
normalized by volg (L(O)) =1 and let dn be the Haar measure on Ng(F') normalized by
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volagn (Ng(O)) = 1. Using Iwasawa decomposition, we can rewrite Jﬁ(v) as

T3 (y) = / / / ) (Ad(nlk)™1y) v (nik)dk - dn - %
T(F)\L(F) /Nq(F)
dl

/(F)\L(F /N (F/ () (Ad(nD) 1) v, (k- dn - 5
Q

dn|v¥ ﬂ
/ T(F)\L(F) l/NQ(F / (Ad(nl)~"y) dk- d ] M(l)dt, (2.16)

where in the second and third lines we have used the equalities Vjc\?/l(nlk:) = V?/[ (1) and

v% (1) = vE; (1) respectively, which follow directly from definitions. Notice that

/ / Loy (Ad(nd)~'y) dk -dn = |{[nl] € No(F)IK/K | Ad(nl)~'y € g(O)}|
Ngo(F)JK

= (2" 2 ®y)|

_ qval(det(ad'yan,p)) . 1[((9) (Ad(l)_lfy),

where the last equality follows from Proposition 2.4. Continuing the calculation of
equation (2.16), we get

Je _ val(det(ady|ng, r)) / 1 Ad(D -1 L&
() =4 O~ o) (Ad() ) vy (D
_ qval(dct(ad'y|nQ,F)) . J]\L/[ ('Y)

Combining all the foregoing calculations, we get

wa Z Z JQ / Z Z val(det(ad'ﬂnQ,F))J]\Ll(,y) Wé;)(g)

LeL(M)QeP(L) LeL(M)QeP(L)
Z gzvel(det(adylor/1r)) JL () Z Wi (£)
LeL(M) QeP(L)

= VOl(CLM/X*(M))_l I (7)),

where the last equality follows from Lemma 2.10. This finishes the proof of Theorem 2.8.

3. Counting points by Arthur—Kottwitz reduction

From now on, we will assume that Gge, is simply connected. The general case can be
reduced to this one by focusing on each connected component. This extra assumption
gives some technical convenience — for example, M qor Will be simply connected, Ay, will
be torsion-free, and we get an inclusion Ajps, < apz,. Moreover, we have X, (My) = Ay,
according to [8, Lemma 11.6.1].

Fix M € £(My) and let II be a sufficiently regular positive (G, M )-orthogonal family. We
count the number of points on AF™ \Z (1), v € Ag. Generalizing our previous work
[11], we show that it can be reduced to counting points on the intermediate fundamental
domains F,YL’M, L € £L(M), and the counting result depends quasi-polynomially on the
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truncation parameter. Moreover, counting points on Af \F,YLM can be further reduced

to counting points on the fundamental domains F. " for some M’ € L(My) ‘transversal’
to M.

3.1. Truncations on the affine Grassmannian

Recall the following definition of Arthur [1], which is a formalization of the orthogonal
properties in Proposition 2.5:

Definition 3.1. A family IT = (Ap) pep(nr) of elements in a§; is called a positive (G, M)-
orthogonal family if it satisfies

G .
/\Pl_)‘PzznPth'ﬂ-M (/BPLPz)? with npy,p, ERZOa

for any two adjacent parabolic subgroups Py, P € P(M).

Given such a positive (G, M )-orthogonal family, we will denote again by II the convex
hull of the Aps. For Q = LNg € F(M), parallel to Ec% (z), we denote by II¥ the face of
II whose vertices are Ap, P € P(M),P C Q. With the projection 7%, it can be seen as a
positive (L, M)-orthogonal family. This sets up a bijection between the set (M) and the
set of the faces of II. Moreover, we denote by Ag or Ag(II) the element mas 1, (Aps) for any
P"e P(M),P' C Q. One can show that (Aq(I1)) e p () forms a positive (G, L)-orthogonal
family. Later on, we also use the notation (Ag)sew/w,, for (Ae.p)oew,/w,,, and we use
the notation A, (II) or A,.p(II) to indicate the vertex of II indexed by w- P.

Following Chaudouard and Laumon [7], we define the truncated affine Grassmannian
Z (II) to be

2 M) ={ze 2 |75 (Ecp(z)) CII}.

We want to point out that its connected components are also parametrized by Ag,
but they are not isomorphic in general. However, there is periodicity in the connected
components: let G2 be the adjoint group of G and let cg : Ag — Agaa be the projection
induced by the natural projection T'— T'/Z¢. For v,v’ € Ag, we have

2V =27 0D,  if ca(v) =ca(V),

because they can be translated to each other by elements in Zg(F).
For a regular element v € t(0), we can truncate the affine Springer fiber .27, similarly
by defining

2,(1) = 2,0 27 (1),

and the same observation on the connected components of 2 (II) holds also for % (II).

3.2. The intermediate fundamental domain

We generalize our construction of the fundamental domain F., in [11].3

3In [11], we confused A, A, , and mo(T(F')). With our current notation, there are morphisms
A — Ay, and A — mo(T(F)). Generally, they are not isomorphic. In particular, F, is

https://doi.org/10.1017/51474748021000529 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000529

20 Z. Chen

Let P, = MN; and P, = M Ny € P(M) be two adjacent parabolic subgroups. Let m,,
be the unique positive integer such that the image of @ in Ay is equal to my - Bp,, P,
and let

n(y, P, Pe) = Z val(a(y)) -mq.
ae@(Nl,T?)WP(N;,T?)

It can be verified that n(y, Py, P>) is an integer.
Proposition 3.1 (Goresky-Kottwitz-MacPherson, [15]). Set x € Z,.
(1) For any two adjacent parabolic subgroups Py,Py € P(M), we have
n(x, Py, Pe) < n(vy,P1,P).

(2) The point x is reqular in Z~ if and only if the following two conditions hold:
(a) The point fp(x) is regular in ZM for all P € P(M).
(b) For any two adjacent parabolic subgroups Py, Py in P(M), one has

n(:r,Pl,Pg) = n('y,Pl,Pg).

Notice that although Goresky, Kottwitz, and MacPherson work over the field F' = C((¢)),
their proof works for any field F' = k((¢)) with char(k) > |W/|. Their result motivates our
definition:

Definition 3.2. Take a regular point zo € Z7°¢. Let
Ff’M ={ze 2, |Ecu(x) C Ecp(xo), va(r) =va(zo)}.
We call it an intermediate fundamental domain of 2., with respect to M.

We should have used the notation Ffzjy to indicate the dependence on xg, but they
are isomorphic to each other for any choice of the regular point zy. Indeed, for any two
regular points x1,x2, we can find t € T(F) such that 1 =t-z2. Now that Ecys(tz) =
Ecar(z) + Hps(t), Vo € 2, the intermediate fundamental domain given by x; is just the
translation by ¢ of that given by x5. Notice that for M = My, we recover the fundamental
domain F,. For simplicity, we assume that vg(zg) = 0.

Unlike the fundamental domain, the intermediate F$ M is no longer of finite type for
M 2 My. Nonetheless, we have the following:

not a fundamental domain for the A-action — that is, 2% # [Uycp A+ Fy. Moreover, the
group mo(T'(F)) may have a complicated torsion subgroup, which implies that F,, may have
complicated irreducible components as well, contrary to our expectation there. Actually, there
should be a bijection between 7o (F,) and 7o (FéVID), and both are isomorphic to 7o (T'(F))tor-
Nevertheless, other results of [11] hold if we assume that Gger is simply connected, and the
general case can be reduced to that one. This extra assumption is to make sure that for any
Levi subgroup M € L£(My) we have Aps being torsion-free and we get an inclusion A < aps;
they hold, as Mge, is simply connected. Moreover, we have X, (M) = A, according to [8,
Lemma 11.6.1].
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Proposition 3.2. The free discrete abelian group AF™ acts freely on F,?’M, and the
quotient AHWI\Ff’M is of finite type.

Proof. Recall that A = ANker(Hys) by definition, and hence it preserves FWG’M
because left translation by m € ker(Hjys) does not change the polytope Ecps(x), due
to the property

Hp(mx) = Hy(m)+ Hp(z), Vme M(F), x€ Z, PeP(M).

For the finiteness issue, let Aﬁff C Ay, be the kernel of the natural projection Az, —
A . By definition, we have

T (Bear(zo)) = | (v+Eeas, (20)),
UGAZ?
which implies that
Ff’M = U 2 (v+Eca, (0)).-
I/GA}I;I/II[\)/I

Now that A = X,(S) and X.(S) < Ay, is of finite index, the quotient Afm \A]\Hj(‘f is of
finite cardinality. Hence the quotient Af \F$M is dominated by the union of finitely
many translations of F, under the natural projection Ff’M — A \FEM As F, is of
finite type, so is the quotient AH™ \FfM O

A similar proof applies to the following:

Proposition 3.3. Let II be a regular positive (G, M)-orthogonal family. For any v € Ag,
the free discrete abelian group A"™ acts freely on 277 (I1), and the quotient AT\ 2 (1)
is of finite type. In particular,

|(APMA\ 220 (1)) (Fyg)| < oc.

Remark 3.1. In the definition of the (weighted) orbital integral, we are concerned more
about analogues of A\ (277(II) (F,)), but notice that there is bijection between

(A2 () (Fy)  and  AM\ (27(I1) (F,)),

because AfM acts freely on Z (1) and the Galois group Gal (Fq / Fq) acts trivially on
A We will decompose the scheme AHM \ 277 (IT) in different ways, and the bijection
given here implies that we can deduce equality of rational points over F, from the
decomposition of schemes.

In the following, we simplify the notation Ecps(xg) to ESM. For v € Ag, let
G,M,v .__ v G,M
EMy = 27 (850

As we have explained before, it depends only on the class c¢g(v) € Agaa. For M = My, we
simplify E$7M0 to 3, and F$7M°’” to F.
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RB*

Figure 1. Partition of a%" for GL3.

3.3. The Arthur—Kottwitz reduction

Recall that we can reduce the geometry of 27, to that of its fundamental domain by
the Arthur-Kottwitz reduction [11]. The construction can be generalized to our current
setting.

Let Qo be the unique parabolic subgroup in P(M) which contains Py. Let s € a§; be
such that a(c) is positive but almost equal to 0 for any o € Ag,. Let Dy = (Ap) pep(an)
be the (G, M )-orthogonal family given by

)\p:Hp($0)+’w-§, (31)
where w € W is any element satisfying P = w-Qo. For Q = LNg € F(M), define RS’M
to be the subset of a§; satisfying the conditions

mi(a) € D,
a(ma,n(a)) > a(ma,r (M), Ya € Ag.
This gives us a partition which dates back at least to Arthur [3]:
G, M
o= |J R (3.2)
QEF(M)

It induces a disjoint partition of Ay; via the map Ay — a%, as we have perturbed
(Hp(x0)) pep(ary With ¢. Figure 1 gives an illustration of the partition for the group GL3
and My =T = A.

Similar to [11, Lemma 3.1], we have the following result due to Proposition 3.1:

Lemma 3.4. For any x € 27, there exists a unique Q € F(M) such that
< (Ec%(x)) C RS’M.

The referee has suggested an equivalent form of the lemma, which is much easier
to understand and to prove: let af/[ = UQ€ F(M) R’Q be the partition attached to the
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positive (G, M )-orthogonal family (Hp(xo) — Hp(x) +w-<S)pep(ar), then the statement is
equivalent to the existence of a unique @ € (M) such that 0 € Ry,. Here the positiveness
of the (G, M)-orthogonal family is due to Proposition 3.1. Let

SS’M = {x e, |75 (Ec%(x)) C RS’M}.
We thus get a disjoint partition

2, =2,0mu |J S5 (3.3)

QeF(M)
Q#G

For each parabolic subgroup @@ = LNg € F (M), consider the restriction of the retraction
fo: 2 — 271 to SS’M; its image is Sg’M N 2L Recall that the connected components
of %,YL are fibers of the map vy, : %WL —Ap. Forve Ay, let %WLJ’ be its fiber at v. Letting

Sg’,M,y _ SS,M me—l (%7L7”)7

we have

sgMrnabe = 2k ().

Proposition 3.5. The strata

retraction fq : Sg’M’V — ,%”VL”’ (D]%) is an iterated affine fibration over Fy of dimension

SS’M’" are locally closed subschemes of %7, and the

val (det (ad (7 | ng,7)))-

Indeed, by the bound on Ecys(z) given by Proposition 3.1, we get
sgMr =20 fgt (2 (D))

~

It is an iterated affine fibration over %WL’” (DAQ/[) by Proposition 2.4.
The decomposition (3.3) can thus be refined to

2, =2,D0Dmu | U S, (3.4)

Q=LNoEF(M)veA,nm,(RG™M)
Q%G

where we have loosely used A;, N7y, (Rg’M) to mean elements in Aj, whose projection to

a¢ lies in 7, (RS’M). Similar notations will be used later on. The decomposition (3.4)

v

will also be called the Arthur—Kottwitz reduction. Notice that the stratum SS’M’ is an

iterated affine fibration over %,YL"’ (DAQ/I) = F,YL’M”’, and the latter is related to FWL’M

again by the Arthur-Kottwitz reduction, similar to what is explained in [11, Lemma 3.4].
As in [11], the existence of Arthur-Kottwitz reduction implies the following:

Corollary 3.6. For any v € t(O), suppose that F,YL’M is cohomologically pure for any
proper Levi subgroup L € L(M). Then 2, is cohomologically pure if and only if Ff’M 18.
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We can restrict the Arthur—Kottwitz reduction to the truncated affine Springer fibers.
A positive (G, M)-orthogonal family IT = (up) pep(ary is said to be regular with respect
to Dy if up € Rg’M, VP € P(M). In this case, each SS’M’” is either contained in 277 (II)
or disjoint from it. So we have

2= 2,000 U - sg >
Q=LNqeF(M)veA,nr(RG™M)
Q#G N7, (IT)

The reduction can be further restricted to each connected component of 27, (II):

v vV G,M,v
220(I1) = 27 (Dar) U U U Sg . (3.6)
Q=LNQ€EF(M)ycAOnn, (RGM
QiG © Lﬂr:rLlil(_[)Q )

As we have explained, left translation by elements in ker(Hjs) does not change the
polytope Ecys(x), and hence the group A acts on each item of equation (3.6). Now
that we have finiteness results — Propositions 3.2 and 3.3, combined with Proposition 3.5
and the periodicity of F,YL’M ¥ in v € Ap, — equation (3.6) implies equality of counting
points:

Corollary 3.7. We have the equality

(A2 D) ()| = [(AMAFFM) @]+ 3T FT geiedinar)
Q:ngéEG]:(M)HEALad

(A ERMY (F,)| ’AE‘) N (RgvM> NI Neg(w)].

Notice that the term ‘Azo Nrp, (RS’M) N7 (IT) ﬂczl(,u)’ counts the number of lattice

points in a polytope. Well-known techniques from toric geometry tells us that the counting
result depends quasi-polynomially on the size of the polytope.

Remark 3.2. As the foregoing constructions rely ultimately on the bound of Ecy(z)
given by Proposition 3.1, they continue to work if we replace E,CY:’M from the beginning
by any integral positive (G, M )-orthogonal family ¥ which satisfies

)\P1 (E) — /\P2 (Z) =Nnp,pP, '6P1,P2, with np,,p, Z n(’y,P1,P2), (37)

for any two adjacent parabolic subgroups Py, P, € P(M). The resulting decomposition
will also be called the Arthur-Kottwitz reduction.

3.4. Counting points on the intermediate fundamental domains

Although the intermediate fundamental domains F,YG’M look like something new, it
turns out that counting points of Af \F,YGM can be reduced to counting points of the
fundamental domains.
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As explained in the proof of Proposition 3.2, we have

b (5 = | wen,)

vEA J\H/OVI
and

FOM= | ) 20(w+%,).

Hpp
I/EAMO

Let PM = PyNM, and let BY,...,8) € Aﬁﬁ’ be a basis of ayf which is positive with

1

respect to P({V . For py,p0 € AI;I];’, we say that p; <p 2 if g — p11 is a linear combination

of ;s with positive coeflicients. This defines a partial order < pa on Aﬁg’. For € Aﬁ‘(‘;’ ,
define

a,M
AJ\H/[K<# = {VEA?X | v < pu u} and I, = U (v+%,).
veAM_,

H
AMJK%M
Similar definitions hold for AJ_ ~and II$"2). But notice that II5°2, is not a semi-
infinite polytope: it is the union of finitely many semi-infinite polytopes of the form

G,.M H
IS, 1" € Ayt Define

Then Hsévi is a semi-infinite polytope in agjo and is the integral points in it.

FOM .= 90 (HG’M) = U 20w+s)

V=spt V<

Hpp
VGAM@,#;L

and similarly

G,M  _ 0
Frdn=|J 220+x,).
H
VGAMIXI,«;L

It is the union of finitely many ngMw, we AZ’(‘:’ Define

G,M ._ nG,M G, M
F%H '_F%#u v, =pt

Being a difference of closed subschemes, F,YG }LM is locally closed in 5&”70. As F ,YG jj
infinite unions of translations of the fundamental domains, they are all isomorphic, and

similarly for FM Hence F,?}LM are all isomorphic. Moreover,

v =pe
G,M _ G,M
F%#u - I_l F%'/

veA

is semi-

Hpr
Mo, 5n
by induction, and
G,M _ 1; G,M _ |_| G,M
BT = m F = ELT
VEAAH/OVI

From all these we conclude the following:
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Proposition 3.8. Ff}tM is isomorphic to each other for all p € Aﬁ‘g’ In particular,

[(AP\FE) ()| = [ AT\ Al

'}Fvcth (Fy)l-

Counting points on F,th can be reduced to the fundamental domains via a process
G, M
v
only in directions that are positive with respect to P} . Indeed, its vertices are indexed by

P € P(My) satisfying PN M = P}, and its faces by Q € F(My) such that QN M D PM.
Then we define a semi-infinite polytope Hfi\i which is a translation of H,ﬁ’iﬂ: let AM

similar to the Arthur—Kottwitz reduction. To begin with, notice that II is bounded

Py
be the set of simple roots in ®(M,A) with respect to By N\ M, and let AM,, = AMn

M
PO

o (NPOM,A>, with Npu the unipotent radical of PM. For a € AM, let {w)} be the

Pd\l bl
corresponding fundamental coweights. Let

== (Sacay, o ). (338)
where 75 is the projection to the second factor in the orthogonal decomposition uﬁ =
a%“ &) a%o @ a§;. Then Hg’:’i\i, is a translation of HSQ/L by the same vector. Now let
S afdo be a generic element such that a(s) is positive but almost equal to 0 for any

o € Ap,. We perturb the semi-infinite polytope HS’%F to a similar one IT’, with vertices

Ap(IT) = Ap (HG»M )+w~§, VP € P(My), PNM = P,

Y, =SpT

where w € W is any element satisfying P = w - Py. Both HSQ{L and II' can be seen
as limits of positive (G, My)-orthogonal families containing ¥, hence we can apply an

analogue of the Arthur—Kottwitz reduction to get a decomposition of the complement
2.0 (HG’M) \%VO(H’). For Q = LN € F(M,) satisfying QM > PM, define Ry g to

7 =B
be the subset of af\;/lo satisfying conditions
T, (@) C e,
a(ma,p(a) = a(m,L (A1), Vo€ Aq.
This gives us a partition
afy, =1'U U R g (3.9)
QEF(Mo),Q#G

M
QNM>OP]

It induces a disjoint partition of A,z. For G = GL3, v split, and M = M,,,, we get
Figure 2.

Running the same construction as in §3.3, for Q@ = LNg € F(My), Q # G and QNM D
P}, define

Stiq = {w € 23 | i, (Befl, (@) € Ruva},
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Ry B,

Figure 2. Arthur-Kottwitz reduction for HS'%.

and let
S’ﬁ/’Q:SH/’Qﬁfél ((9//:%,1/)7 VVEAL.

We get a disjoint partition

0 G,M\ _ 0 / v
2 (H% w) —22amu Y U Sk o (3.10)
QEF(Mo),Q#G yeA® Nrr (R
QNM>OPM erL (ééi\z)a))

The strata Sy, o are locally closed subschemes of 27, and the retraction fq : Sty o —
&V,YL’”(HlQ) is an iterated affine fibration over Fy of dimension val(det (ad (v | ng,7))).

Proposition 3.9. We have the equality

aG,M __
F'wt - U U Sﬁ’,Q'
QGJ‘—(MOLQ#GVEA%DWL(RH/'Q)

QM=RT o (52

%Qu
and is nonempty if and only if Q is not contained in any Q' € F(M).

Moreover, the index set AY Nwp, (R q) N7y (HG M) consists of at most one element,

Proof. For the first assertion, by construction, the points x € F$ ’#M are characterized by
the property

Ec§y, () € (u+32,)?

for some Q € F(My), Q # G,QN M = P}. Since this is also the property characterizing
points on the right-hand side of the equality, we get the equality as claimed. The second

assertion follows from the observation that IT’ is a slight expansion of Hf’i\i_, and hence

https://doi.org/10.1017/51474748021000529 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000529

28 Z. Chen

the regions R, ¢, @ contained in some maximal parabolic subgroup in F (M), contain

no elements in AY Ny, (Hfﬁi) O

If the index set AY N7y, (R o) N7y, (Hfiﬁ

element in it. Let ug € AY be the unique element such that a(ug) =1 for all a € Ag;
then we have

) is nonempty, we denote by vg the unique

2 bva (H’Q> =~ plna,
Combining with the fact that
Ja: 518 g — 27k (W)
is an iterated affine fibration, we get the following:
Corollary 3.10. For M € L(My), M # My, we have the equality

|FG,M (Fq)| _ Z q%val(det(adv\gF/lF)) . |F7L,uce (Fq)|

K
Q=LNqQ€F(Myp),Q#G
satisfying (*)

where (x) refers to the condition that QN M = PM and Q ¢ Q'.VQ' € F(M).

9

Notice that the equation does not involve the fundamental domain F,. Together with
Corollary 3.7 and Proposition 3.8, we get an expression of |(AHM\3@V,Y”0 (H)) (Fq)} in

FPHQ(F,)|, L € £(My),L # G. Recalling that counting points on F."*? can be
reduced to counting points on F,{’,, L' € L(My),L’ C L, by the Arthur-Kottwitz reduction
we get an expression of ’(AHM\E&”V”O (IT)) (Fy)| in terms of ‘Ff/ (Fy)|, L' € L(Mp).

terms of

4. Counting points by Harder—Narasimhan reduction

The number of points |(Af \ 2o (M) (Fy) |, o € Ag, can also be counted by the Harder—
Narasimhan reduction. Comparison with results from the last section gives us a recursive
relation between Arthur’s weighted orbital integrals and the number of rational points
on the fundamental domains.

4.1. Harder—Narasimhan reduction on the affine Springer fibers

We have introduced a notion of &-stability on the affine Grassmannian and constructed
the associated Harder—Narasimhan reduction in [10]. In this section, we generalize it to a
broader setup. The following lemma is an analogue of [8, Proposition 5.6.1]. Let S be an
affine Fg-scheme and set x € 27(S). For every point s € S, let z;, € Z'(k(s)) be the base
change of z to the residue field k(s) of S at s. Let C,, be the map on S which sends every
point s € S to the convex polytope Ec(xy).

Lemma 4.1. Suppose that S is noetherian. The map C, from S to the set of conver
polytopes in ug ordered by inclusion is lower semicontinuous. In other words, for any
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convex polytope =, the set
{s€eS|C:(s) DE}
s open.

Proof. To begin with, we show that C, is constructible and takes only finitely many
values. Passing to the irreducible components of S, we can suppose that S is irreducible.
Let 1 be the generic point of S, and let g, € G(k(n)((¢))) be a representative of . For
B = AN € P(A), we have the Iwasawa decomposition

Gn = Npnkn,

where n,, € N (k(n)((€))), a, € A(k(n)((€))), and k, € G(k(n)[€]). Because n is the generic
point and the map v4 : 24 — X,(A) is essentially the valuation map, there exists an
open subscheme U of S such that Hg(zs) = va(a,) for any z € U. As Ec(z;) is the
convex hull of Hg(x;), B € P(A), the map C, takes the constant value Ec(x,) on the
intersection of all such open subschemes U. This proves the constructibility of C,. By
noetherian induction, the map C, takes only finitely many values.

To finish the proof, we only need to show that the map C, decreases under specialization.
In other words, let S be the spectrum of a discrete valuation ring and let s be its special
point and 7 its generic point. Then

Ec(zs) C Ec(xy).
This is equivalent to the assertion that
fB(xs) =B fB (.In), VBE,P(A)v (41)

where <p is the order on X, (A) such that py <p pe if and only if pg — py is a positive
linear combination of positive coroots with respect to B.
Let p= fg(z,) € X.(A). By definition, we have

zy € Up((€))e"Gle]l/Gle],
where Up is the unipotent radical of B. So

s €Ty CUp(@)erGI/Gll = |J Us((€)e Gle]/Glel,
AEX, (A)
A<Bu

which implies the relation (4.1). O

Definition 4.1. Let £ € a]\G/I be a generic element. A point z € 2 is said to be &-stable
if the polytope 7¢ (ECM(x)) contains &.

As Ecps(z) = mar (Ec(z)), the subset
Z¢={re X |¢en®Eeu(x))}

is an open sub-ind-F,-scheme of 2" by Lemma 4.1. This being shown, all the other
constructions of [10] generalize.
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Remark 4.1. When M = A, we recover the ¢-stability of [10]. In that work, we prove
that the notion of &-stability coincides with the notion of stability for a twisted action
of A on 2. We believe that this holds also in the current setting, with the torus Ay,
playing the role of A. If this holds, we can conclude that the quotient 2°¢/A s exists as
an ind-F ;-scheme.

Harder—Narasimhan reduction works as well in this setting. For Q LNg € F(M), let
@Q(G L) be the image of ®(Ng,A) in (af)". For any point a € a¥, we define a cone in

CLL,
Dg(a)={y€af |a(y—a) >0, Vo€ ®o(G,L)}.

Definition 4.2. For any geometric point « € £, we define a semicylinder Cg(x) in a$,
by

Co(x) =my; " (Eciy (fo(x))) Nyt (Do (Ho(x))).-
By definition, we get a partition

af/f =T (ECM U CQ
QEF(M)
Q#G

for which the interior of any two parts does not intersect. The picture is similar to Figure 1.
Hence for any z ¢ 2°¢, there exists a unique parabolic subgroup @ € F(M) such that
£ € Cq(x), as € is generic. In this case, fo(z) € 2L is L-stable, where ¢& = 7k, (€) € af;.
Let
Xo=1{re 2 |£cCo)}.
We have the decomposition of the affine Grassmannian
2 =2 || Xq (4.2)

QEF(M)
Q#G

For Q € P(L), let Q~ be the parabolic subgroup opposite to @ with respect to L. Let
AgL’Q = (Wf)fl (Dg-(é)) N AL, we have the disjoint partition

= || A%
QEP(L)

For A€ Ap, let LN = g L&" | LA The stratum X¢ can be further decomposed
into Ng((€))-orbits

Xo= || No(@)zt™.
AEAS o

Each orbit is locally closed in %, and they are infinite-dimensional homogeneous
L

affine fibrations on 2 “*¢" under the retraction fq- The foregoing discussions can be

summarized as follows:
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Theorem 4.2. The affine Grassmannian can be decomposed as

r=20 || || No(e)ztre".
Q=LNqeF (M) xeA}
Q#G ’

Each stratum NQ((G))%L’)"EL 18 an infinite-dimensional homogeneous affine fibration
over 2 LA

Now that v € m(F'), we can restrict these constructions to 2. Let %f =2,NZ¢ it is

an open subscheme of Z7,. As T'(F') RN X, (M) is surjective, the connected components

of E&ﬂf can be translated to each other by elements of T'(F'). Moreover, for different choices

of generic element &, &' € a%, the corresponding 3&”,5 , t%”,f/ can be translated to each other
by elements of T'(F'). Hence %f does not depend on the choice of €.
The Harder-Narasimhan reduction restricts to

2, =20 || | (%mNQ((e))%fML). (4.3)

Q=LNqe€F(M)xeA}
Q#C :

By Proposition 2.4, the retraction
L\ &L L&k
fo: ZNNg(e) 2 — 2. e

is an iterated affine fibration over F, of relative dimension val (det (ad(v) | ng(F))).

Coming back to the weighted orbital integrals, with the definition for general reductive
algebraic groups as explained in Remark 2.1, Proposition 2.7 can be reformulated as
follows:

Proposition 4.3. Let ¢ € a$; be a generic element. Then
-1
IS4 () = volas (AP\T(E)) ™[4\ (2% 1 228) (F,)|.
In particular, let & € a%ilo be a generic element. Then
-1
JIE\/?O (7) = vola (T(F)l) ’ |(3’/VGder n ‘%VE) (Fq)| .

Proof. When G is semisimple, the proposition is a reformulation of Proposition 2.7. The
complexity arises when G has nontrivial connected center.

As T is totally ramified over F, with the exact sequence (2.2) we see that the morphism
T(F) 2% Ag is surjective, hence G(F) = T(F)Gger(F), and so

_ dg
K= [ o) (Adl) ) whs(0)
T(\G(F)
dg

Lyo) (Ad(9) ™) Wiy, ()

/Tcder (F)\Gaer (F)

with Tg,,, = TNGaer and Mg,,, = M NG4er. Following calculations in Proposition 2.7, we
get a result similar to what we claim, with A™ replaced by AN Gqer(F) Nker (H MGder)
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and T(F)}, replaced by Tg,..(F)},
Lemma 6.1], we have

. Noting that ker(Hps) = Mae:(F) - M(O) by [7,

Gder

ANGaer(F)Nker (HMcde,. ) = ANker(Hys) = AHm
and
T (Fhrg, =T (F)NGaer(F) Nker (HMGder ) = T(F)Nker(Hy) = T(F),,
and the proposition is proved. O

The volume factors have been calculated in equation (2.5).

4.2. Harder—Narasimhan reduction for the truncated affine Springer fibers

In contrast to the Arthur-Kottwitz reduction, the Harder—Narasimhan reduction does
not work well on the truncated affine Springer fiber 27, (II). We need to cut it into two
parts, the tail and the main body. The Harder—Narasimhan reduction works well on the
main body, and we can handle the tail with the Arthur—-Kottwitz reduction.

For Q € F(M), Q # G, we define the positive (G, M)-orthogonal family Eq(II),
which as a polytope is the union of the translations ¢ (ZS’M + /\), A € Ay, such that

G (26:M 4 \)? CTI9. Let

‘= J 25 (Ben),  m2n(I) = 25\ 25 (1),

We call them the tail and the main body of 2, (II), and they are respectively closed and
open subschemes of %2 (II). Figure 3 gives an example of Eq(II) for the group G = GL3
when M = A.

Before proceeding, we make precise the condition of II being sufficiently regular. We
would like it to satisfy the following conditions:

(1) II is ¥,-regular.
(2) For all P,Q € F(M), Ep(I)NEq(I1) = Epng(IT).
(3) The complement IT\ UQE;(M) Eq(II) is a polytope associated to a positive (G, M)-

orthogonal family; let HO be a slight shrinking of it (the definition is similar
to equation (3.1), with plus sign replaced by a minus). We require that IIy be
sufficiently large: for all @ = LNg € F(M), the face Hé? contains the translations
of E? in af, which have £& as one of their vertices.

Remark 4.2. As Il is convex, condition (3) implies that for any v € AEL’Q N7 (), the
intersection Il ﬁw&t? (V) contains translations of fo in the hyperplane 77174%)’ . (v) which
have £¥ as one of their vertices. By the definition of £-stability, this implies

%A/L””fL C %A/L”’ (HO ﬂﬂ';/[t}L(u)) ) Vv e AfL’Q N7 (Io).

Actually, this is the reason to impose condition (3).
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EH(H) <<—>’u(

Figure 3. Eq(II) for GL3 when Mo = A.

4.2.1. The main body. By definition, a Harder-Narasimhan stratum
L
Nog ((6))£7L’V’§ NZ,, ve A§L7Q7

intersects nontrivially with 27, (II) if and only if v € AfL’Q N7 (II). So, after restriction,
the Harder-Narasimhan reduction becomes

2,m=250 || | (%W(H)QNQ((E))%,YL’)"E )
Q=LNQEF (M) NeAS N (10)
Q#G ’

The problem is that the retraction
fo: Z,(I0) ﬂNQ((e))gbV,YL’)\,EL N %WL’)\’SL

is not necessarily an iterated affine fibration. This problem disappears on the main body
™ 27 (II). We begin by analyzing the polytope Ec(z), x € 25 (II).

Lemma 4.4. For x € Z,(II), suppose that

7 (Een(z)) C | Eq(m).
QEF (M)
Q#G

Then 7% (Ecpr(w)) C Eg(IT) for some Q € F(M),Q #G.

Proof. By Proposition 3.1, it is enough to prove the lemma for z € 27°¢. In this case,
the polytope 7 (Ecps()) is a translation of Zg’M. As Ugeruy Eq(IT) is the union of
Q#AG

translations of Eg’M along the facets of II, there must be a maximal parabolic subgroup
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Q € F(M)max such that WG(EC% (z)) C TI¥. By definition, this means that 7% (Ecy; (7)) C
Eq(1D). O

Lemma 4.5. Let Q=LN € F(M), v e A%,Q- Suppose that
2NN () 2577 #0.
Then v € AgQ N ().

Proof. We only need to show that v € mp(Ily). Set = € ™2, (IN) N N((e)) 2", As x €
" 2 (1), we have

(EC]\/[ ,¢_ EQ VQ/ S ]:(M), Q/ 7é G
By Lemma 4.4, this is equivalent to
“Eem(z) ¢ | Eo@m (4.4)
Q'EF (M)
Q'#G

Suppose that v ¢ 7 (Ilp). Then v € 7y, (Eg,(II)) for some Qo € F(M),Qo D L. As
veE A 1. the parabolic subgroup Qo needs to satisfy Qo O Q. Now that x € N((e)) %A/L’”
and ECL( ) is a positive (G, L)-orthogonal family, we have

a(Hg (z)—v) >0, Vae Ag, Q € P(L).
As Qo D Q~, this implies that
Hq(z) Cmp (Eg,(IM),  VQ'€P(L).
Hence 71, (Ecp () C 7, (Eg, (IT)), so
Beu(s) c il (o (B, c  |J  Eo().

Q' CF(M),Q'#G
Q'NQo#0

This is in contradiction to the relation (4.4), hence v must lie in 7, (Ily). O

Restricting the Harder—Narasimhan reduction (4.3) to the main part ™27, (II), we have

ma =20 || L (m#mnNg(e)2:).
Q= Lgief(M),\eAL N7 (o)

The retraction fg behaves much better on the stratum ™% (II) N Ng((€)) EKYL”WL:
Proposition 4.6. Let Q= LNg € F(M), v e AfL’Q N7 (Ily). We have
™ 25,(I) N No((€) 217" = 2, nNg((e) 22 7<".
Hence the retraction
o™ () No((€) 2" — 27kns"

is an iterated affine fibration over F.
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Proof. Notice that the second assertion is the corollary of the first one, as follows from
Proposition 2.4. It is thus enough to show the first one. In particular, it is enough to show

25NN ((€) k€5 ¢ ™ 2, N No((e) 22E¢",

as the inclusion in the other direction is obvious.
L
Let v € 2 ﬁNQ((e))Q”,YL””€ . We claim that Ecps(z) C II. According to Remark 4.2,
condition (3) of II being sufficiently regular implies

Eck (fo(@)) € oy (v) (4.5)

because fo(z) € %A/L’”’&L. This implies that Ecps(2) C IT by Proposition 3.1, because of
the inclusion

U (+=9")con,

ANEA N
satisfying (x)

where the condition (x) refers to
(A+E5MY NI # 0.

The inclusion (4.5) also implies that

Ecn(z) € | Eo(i).
QEF (M)
Q#G

So xz € ™%, (II), and the proof is concluded. O

We summarize the foregoing discussions in a proposition.

Proposition 4.7. The main body has a decomposition

ma=2fu | L ("mmnNg(@ 2 ),

Q:Lgi%f(M)AGAi,Qm”L(HO)
and the retraction fg on each stratum
L, gl L,v,gr
fo i ™2, ()N Ng((e) 217" = 251
is an iterated affine fibration over ¥, of dimension val(det (ad(y) | ng, r))-

Of course, we can restrict the decomposition to each connected component ™ 277 (II),

vy € Ag. Let Azocg = Ai’Q NA'°. The decomposition implies
[ (AT2\™ 2720 (1)) (F )
— ‘(AHM\%"YllOy&) (Fq)’ + Z Z q%val(det(ad('y)mp/[p))

= v0,§
Q Lg&%}—(M))\GAL‘?QﬁwL(HO)

[\ 7))
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= |(AHM\%’YO,£) (Fy)|+ Z g3 velldet(adrlar/ir) ’(AHA{\(%’YL,QéL) (Fq)‘
Q=LNgeF(M)

Q#AG
(a8 o)
= ’(AH}VI\%”YO,f) (Fy)|+ Z g3 valldet(adylor /tr) _’(AHM\%'WL,OfL) (Fq)‘
LeL(M)
L#G
. Z ’Aféﬁ’fr[‘(ﬂo))
QeP(L)
— [(AT\ 2296) (F,)| + Z q%val(det(adﬂg,v/rp)).‘(AHM\%WL,%L) (Fq)‘
LeL(M)
LAG

AL N (o)

Here for the second equality we have used the fact that all the connected components
of 2= are isomorphic. Moreover, the last term in the equation counts the number
of lattice points in a polytope; it can be calculated effectively with methods from toric
geometry. The following theorem summarizes:

Theorem 4.8. For any vy € Ag, the number of rational points on the main body is

|(AHM \m%’Yuo (H)) (Fq)| _ | (AHNI\%WOaf) (Fq)| + Z qéval(dEt(adv\gF/[F))
LeL(M)
LAG

. ‘ (AHM\EKA/L,O,gL) (F,)| - 1A% A (1)

4.2.2. The tail. As the polytope II satisfies
Ep(II)NEq(II) = Epng (1), VP,Q € F(M),

by the inclusion-exclusion principle we have

(A 20 () (By)| = S (—1) Ok (A 270 (o (1)) (F,)|, (4.6)
QEF (M)
Q#G

where the notation rk means the semisimple rank. Although the polytope Eq(II) is
not Z%M -regular, we can use the general Arthur—Kottwitz reduction, as explained
in Remark 3.2, repeatedly to decompose 27, (Eq(II)) into locally closed subschemes
which are iterated affine fibrations over FLM, L € L(M). This gives a formula for
‘(AHM\EKV”O (Eq(10))) (Fq)’ in terms of the ’(AHM \FLM) (Fy)|s, which can be further
reduced to counting points on the fundamental domains by Proposition 3.8 and Corollary
3.10. This process applies to a large family of truncated affine Springer fibers.

We introduce a family of operators on the set of all positive (G, M )-orthogonal families.
Recall that Qo = MU is the unique parabolic subgroup in P(M) which contains Py.
For L € L(M), let Qf = QonN L. For a positive (L,M)-orthogonal family, we say that

https://doi.org/10.1017/51474748021000529 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000529

Truncated affine Springer fibers and Arthur’s weighted orbital integrals 37

two faces of it are conjugate if their associated parabolic subgroups are conjugate to
each other by the Weyl group W /Wy,. In particular, the edges of the polytope are
parametrized by minimal elements in FL(M)\{M}. An edge is said to be of type a €
Ag?w = ®(L,A)ND(Uy,A)NA if it is conjugate to the edge having vertices /\QL )\QQQO

where s, is the simple reflection associated to a. Let AG ., be the operator on the set of

positive (G, M)-orthogonal families defined as follows: as a polytope it increases by 1 the

length of all the edges whose images in af, under the projection 7%, are of type a, and

keeps the lengths of all the others invariant. To check that it actually sends a positive
(G, M)-orthogonal family to another one, it suffices to verify for the faces of dimension 2,
but this is clear. Then we set the vertex

1
Ao (ASiA () = Mg, () + 5 (),

to make A%LQ(H) symmetric with respect to II. Here @/

is the fundamental coweight
corresponding to «. By definition, we see that the operators Agf’fx commute with each
other. When G = L, we simplify the notation AJ\GJC; to A%,a

L
Given a tuple of nonnegative integers n = (n,), a € Agfw let

se= T (A55)" ). (4.7)

L
aEAig/I

It is easy to see that the polytopes Eg(II) can be made by iterating this process. For
o€ AQ" , let 1, be the tuple taking value 1 at o and 0 otherwhere. By Remark 3.2,

the Arthur-Kottwitz reduction works for the complement 27, (En+1“) \t%”.y (£%). The
process is completely the same as explained in §3.3, so we do not repeat it here. The
resulting strata are iterated affine fibrations over truncated affine Springer fibers of
the form .%”WL’”/ (E%’(ﬂ/)» L e L(M),V € Ap. Tterating this process, 2, (Z%) can be
decomposed as a disjoint union of locally closed subschemes, which are iterated affine
fibrations over FA/L’M’”7 L€ L(M),n € Ap. In particular, counting points on AH» \3&”7 (Z%)
can be reduced to counting points on AHM\Ff’M’“, which can be further reduced to
counting points on the fundamental domains F; L , L' € L(My), as we have explained in
§3.2. This process applies to counting points on AHM\%”D Eq(II)). By equation (4.6),
it gives an expression of |(AfM \! 2o (11)) (Fg)| in terms of |F (Fo)l, (My).

4.3. Application to Arthur’s weighted orbital integral

By Theorem 2.8 and Proposition 4.3, Arthur’s weighted orbital integral Jy () calculates
essentially |(AFM\ 2704) (Fy)|, as 2 Cer 0 2 is the union of |Ag,,, |-copies of 2.0
The two approaches in §3 and §4 to calculating | (AH M \BKYO(H)) (Fq)| give us a recurrence
relation involving | (A \F,YL’M’”) (Fg)| and ‘(AHM\.%”,YL’O’ﬁL) (Fg)|, for Le L(M),p €

Aj.a. If we are able to solve this recurrence relation, we will get an expression for
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‘(AHM\%VO’g) (Fq)’ in terms of ’(AHM\Fvavﬂ) (Fq)|s, which can be further reduced
to counting points on fundamental domains, as explained in §3.2.

5. Calculations for the group GL;

Let G = GL2 and let v € gly(F') be a regular semisimple integral element. Assume that
char(k) > 2 and the splitting field of +y is totally ramified over F. The torus T is isomorphic
either to F'* x F* or to Resg,p E*, where E is a separable totally ramified field extension
over F' of degree 2. We call elements v in these cases split and anisotropic, respectively.

5.1. Split elements
We can take T to be the maximal torus of G of the diagonal matrices and v € t(O) a
regular element. Let

n = val(ai2(7)),

which we call the root valuation of v. The dimension of the affine Springer fiber 27, is
known to be

dim (Z,) =n.

In the remainder of this section, we assume that n > 1, as the case n = 0 reduces to
the group GL;. Recall that we have calculated F, in [11]. Let X,(T) = Z? be the usual
identification, set (n,0) € Z*, and let

Sch(n,0) = K <€n 1) K/K.

We have F., = Sch(n,0), and its number of rational points is

‘Fv (Fo)l = Zqi
i=0

by the Bruhat-Tits decomposition of Sch(n,0). As Apgr, = Z/2, F, has only one variant
F;; we can calculate its number of rational points to be

n—1
Fy(Fy) = Z ¢
i=0
Set a € N and let II be the positive (G,T)-orthogonal family defined by

Aw(ID) = Ay, (B,) +w (ans), Yw e W.

Assume that a > 0. Then II is sufficiently regular in the sense of §4.2. We can easily
calculate

Q(a) = | 27(I) (Fy)| =D ' +2¢"a,
i=0
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by the Arthur—Kottwitz reduction. We see that Qg(a) is polynomial in a. By Theorem
4.8, we have

| 2 (1) (Fy)| = | 23¢ (Fo) | +[2a — (n+1)]g".

The tail is the disjoint union of two fundamental domains, so its number of rational points
is

F 2201 (F,)| =2 ¢,
=0

Because
| 2710 (Fy)| = [ 20 (I0) (Fy) | + |* 27 (1) (F )|,

we get the equation

n

> q' +2aq" = |20 (Fy) |+ 20— (n+1)]g" +2) o'
=0 1=0

Solving it, we get

Now that T(F)! =T(O) = T(F); has volume 1, by Proposition 4.3 we have

n—1

Te() = |22 (Fy)| =ng" =D 4"

i=0
On the other hand, we can use equation (2.4) to easily calculate the orbital integral
G _  n
Iy =4q".
Combined with Theorem 2.8, the foregoing calculations can be summarized as follows:

Theorem 5.1. Let v € gl,(F) be a reqular semisimple integral element of root valuation
n. It has orbital integral If = q"™. The number of rational points on .%”,YO(H) 1

| 20(I) (F)| =Y q' +2aq",
i=0
and Arthur’s weighted orbital integral Jr(v) equals

Jr(vy) = vol (a%; /X* (TSLQ)) . [nq” - nz_:lqll .

5.2. Anisotropic elements
In this case, E = Fq((e%)). Suppose that 7 = a+bez under the isomorphism Zar) () =
Resgp/pE™, with a,b € O. Under the basis {6%71} of E over F,((¢)), the element ~ is of
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_la b
T \be al

It is clear that the affine Springer fibers 27, and £_,1~ are isomorphic, so we can assume
that a =0. Let b = bge™, by € O*. We can write

the form

boﬁn] . (5.2)

Y= |:b0€n+1

Put in this form, it has been shown by Goresky, Kottwitz, and MacPherson [16] that 27,
admits an affine paving which is induced by the standard Bruhat-Tits decomposition of
the affine Grassmannian. More precisely, let I be the standard Iwahori subgroup — that
is, it is the preimage of By under the reduction G(O) — G. Then

2= || 5{701<61 6Q2>K/K,

(a1,a2)€Z?

and each intersection, denoted Sy, is isomorphic to a standard affine space. We calculate
that S, is not empty if and only if

—(n+1)<a;—az <n,
and that

ay—az if a1 > ag,

dim(S,) = {

as—ai1—1 if a; <as.

a1
Notice that this is also the dimension of I <6 6“2) K/K, so they must be the same.

Summarizing the foregoing calculations, and noting that T(F)! = T(O) = T(F); has
volume 1, we get the following:

Theorem 5.2. Let v be matriz (5.2). For (a1,a3) € Z°, we have

€
a1 I K/K if — 1)< ai—as <n,
3&@m[<6 Eaz)K/K < €a2> /K if —=(n+1)<a1—az<n
0 if not.

As a corollary, we have

6. Calculations for GLs-split case

Let G = GL3 and let v € gl5(F') be a regular semisimple integral element. Assume that
char(k) > 3 and the splitting field of «y is totally ramified over F. The torus T is isomorphic
to either F* x F* x F* or F* x Resg, /pE5 or Resg, /pE3 , where Ey, E3 are separable
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totally ramified field extensions over F' of degree 2 and 3, respectively. We call elements
7 in these cases split, mized, and anisotropic respectively. Notice that in all these cases,
T(F)! =T(0O) =T(F); has volume 1; hence by Proposition 4.3 we have

T3 () = | 204 (7)),
and so
Tu() =vol (a3, /X (Msr,)) | 20€ ()|

by Theorem 2.8 and Remark 2.3.

In this section, we restrict ourselves to the split case. After conjugation, we take T to be
the maximal torus of G of the diagonal matrices. Then My =T and the other proper Levi
subgroups in £(T') can be parametrized as follows: for a nonempty subset I C {1,2,3}, let
Py be the parabolic subgroup of G which stabilizes the flag

3
@qui 2 @qui 2 (Z)
i=1 igl
Let Pr = M7 Ny be the standard Levi factorization. We have M7 = GLy x GL1. As M7 =
Me, with I¢ the complement of I, it is enough to calculate Jr(v) and Ingsy (7),1=1,2,3.
Let v € t(O) be a regular element. As we show in the appendix of [9], up to conjugation
by the Weyl group we can suppose that

val(aiz(7)) <val(ags(v)),  val(az(y)) = val(aiz(v))-

In this case, y is said to be in minimal form, and we call

(n1,n2) = (val(ai2(7)),val(ass(7)))

the root valuation of v. The dimension of the affine Springer fiber %27, is known to be
dlm(,%;/) =2n1 +no.

In the remainder of the section, we assume that n; > 1, as the case n; =0 reduces to
the group GLs. Recall that we have calculated the Poincaré polynomial of F, in [11].

Proposition 6.1. The fundamental domain F., admits an affine paving. Its Poincaré
polynomial, which depends only on the root valuation (ni,nsg), is

ny ni+ns—1

P(nl,ng)(t) = Zi(t4i—2+t4i—4) + Z (2n1 +1)t2i

i=1 i=2n1
2n1+no—1
+ ) A@ny g — i) i,

i=ni+nz

In particular, |Fy (Fy)| = P, ny) (q1/2) .
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6.1. Calculation of Jr(v)
Set (a1,a2) € N2, and let II be the positive (G, T)-orthogonal family defined by

Aw(IT) = Ay (24) eriaia;/, Yw e W.
i=1
Assume that II is sufficiently regular in the sense of §4.2, which means that ai,as >0
and
2a1 —ag >0, 2a9 — a1 > 0.
We will calculate
Q5 (ar,a2) := |20 (I1) (Fy) |

following the two approaches that we have explained, and draw conclusions on Arthur’s
weighted orbital integral.

6.1.1. Counting points by Arthur—Kottwitz reduction. We will work out each
term in Corollary 3.7. Look at the summands indexed by the Borel subgroups. Each
stratum contributes ¢>™ "2, so it remains to count the number of lattice points

> [AYnRpNII| =6|AFNRp, NII|,
BeP(T)

where the equality is due to the symmetry of II with respect to .. We identify
A = {(m1,ma,m3) € Z* | mq +ma+ms =0}
in the usual way. Let af, = {a € a§ | a1(a) >0, az(a) >0}, and let
Ry={a€af |wi(a)<a;—1, wa(a) <az—1}.
Up to a suitable translation, we have
|AT N Rp, NTI| = [A7NRo|.
We can express it as the difference of two lattice point-counting problems. Let

Ry = {aeﬁgo | @1(a) <a1—1, wa(a) < 2(a; — 1)},
Ry = {aeﬁgo | @1(a) <a1—1, wa(a) > az}.

Then we have

A9 Ry| = [A% 1 Ry | — [A% N Ro|.
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We count |A% ﬁR1’ as follows:

“+o0
AN R | :Z|Rlﬂ{u€AT|w1 p)=n}|

1) ) i
(31— 2)+ (3i— 1)] 4 =Y <1+3(a1 1))

1112 1

{EJ + (1= (=1)™)(3ar ~1),

|
=]

Q
NG

K2

I
w

where || means the largest integer that is less than or equal to z. Similarly, we have

— 00

‘A%QR2|: Z ’RQQ{MGAO ‘WQ —’I’LH
n=2(a;—1)

2a] —ag—1
2

L 1+(_1)2a17a2 2a1 — as
= ; (t+14)+ 5 S

_ {ml;gw Q2a12a21J+1> E(H( 12102 (20, — aa).

In summary, the summands in Corollary 3.7 indexed by the Borel subgroups contribute

2 2a1 —ag—1 201 —ag—1
6q2n1+n2 |:3 \‘%J L ai 2(12 J <{ ai 202 J+1>

1

%(1—(—1)“1)(3@1—1)— (1+4(=1)**7%) (2a1 —az)|. (6.1)

W |

Now we calculate the contributions of the summands indexed by the maximal parabolic
subgroups. They are parametrized at the beginning of the section by nonempty subsets
I'C{1,2,3}. For i € Apaa =Z/2, let q7 = ‘FM“” )| which projects
to pu € AMad Let ay be the unique element in ®p A, (M7, T). A simple calculation with
the affine Sprmger fibers for the group GL2 shows that

val(ar (7)) val(ar (7)) -1
0 i 1 i
o= > 4 4= 3 d.
=0 =0

For I ={i}, i=1,2,3, it is easy to see that

‘A?WI AT, (RPI) Bkyvs (H) N C]T; (0)|

5]
=2

|AS, N, (Rpy) Ny, (ID) Ny (1)
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The summands indexed by P; in Corollary 3.7 with |I| =1 contribute in total

no ny ’I’szl ’I’Llfl
a 2n 7 nit+n 7 a’1+1 2n 7 nit+n 7
bJ(q ligoq +2¢™ 2§0q>+L 5 " i§70q+2q1 zgoq - (6.2)

1=

Similarly, the summands indexed by P; with |I| =2 contribute in total

a no ni a+1 ng—1 ni—1
2 2n 7 ni+n 7 2 2n 7 ni+n 7
bJ(q DA ZZqH ; J(q DITERI QZq) (63)

i=0 i=0 1=0 i=0

Summing up the contributions from formulas (6.1), (6.2), and (6.3), we obtain the
following:

Proposition 6.2. We have

ni ni+no—1
Qg(ahm) ZZi(qQ’_1+q21_2)+ Z (2n1+1)¢*
i=1 i=2n,
2n1+no—1
+ Z 4(2n1 +ny —1)q' + >

i=ni+nsz

2 |24 —as—1]|(|2a1—as—1
s [ (2

+7(1=(=D")Bar - 1)~ % (1+(—1)%7%) (2a; — aQ)]
SERECONETES )
(5 ) (o S )

In particular, it depends quasi-polynomially on (a1,az).

—_

6.1.2. Counting points by Harder—Narasimhan reduction. We begin by count-
ing points on the main body; we need to work out each term in Theorem 4.8. For L =T,
it is easy to see that ‘%,YT’QET (Fg)| =1, and we need to count the number of lattice
points in A N1Ily. Notice that for this we can shrink Iy to the convex hull of A% NTIy.
We conserve the notation Il for the shrunken polytope. In [11, §6], we calculate Ec(zg)
for a particular choice of regular point zo € 27°; we can adapt the result to our current
setting. Let (010203) be the permutation sending (123) to (o10203). The vertices of X,

are
123 (24) = (0,0,0), A321 (X5) = (=2n1,n1 —ng,n1 +n2),
X213 (E) = (—n1,n1,0), Az12 () = (—n1, —ng,n1 +n2),
A32 (X4) = (0, —ng,n2), X231 (X4) = (—2n1,n1,n1).
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Ty
Ty

11y

T3

Figure 4. Completing the hexagon to a triangle.

The vertices of Iy can be calculated to be

A123(Ilp) = (a1 —2n1 — Las —ag +n1 —nag, —as +n1 +ng+ 1),
Az21(Ilp) = (—az +1,a2 —ay,a; — 1),

A213(Ip) = (ag —ay —ny,a1 —ng — 1, —ag +n1 +nz +1),
Az12(Ilp) = (ag — a1 —ny, —az +ny +La; — 1),

Az2(Ilp) = (a1 —2n1 — 1, —ag +n1 + 1,a2 —ag +nq),

A231(Ilp) = (—az +1,a1 —n2 — 1,a2 — a1 +na).

We will count the lattice points in Il indirectly. We complete the hexagon IIj to a triangle
Ty, whose vertices are

A23(To) = Mis2(To) = (2a2 —2n1 —n2 —2, —ag+n1 + 1, —as +n1 +na + 1),
A321(To) = Az12(To) = (—az + 1, —az +n1 +1,2a2 —ny —2),
X213(T0) = A231(To) = (—az +1,2a2 —2 —ny —ng, —ag+n1 +ne+1).

Let T1 UT>UT3 be the complement of Ily in Ty, as shown in Figure 4. Notice that the
T;s do not contain their common boundary with Iy, so

3
|AGNTIo| = [AGNTo| =) |AFNT.
i=1
The right-hand side is much easier to calculate.
The length of the edges of Tj is 3as —3 — 2n; —ng, so
3az2—3—2n1—n2+1

|A%QTO|: Z 1

i=1

1
= 5(3@2 —2—2711 —ng)(Sag — 1—27’1,1 —ng).

https://doi.org/10.1017/51474748021000529 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000529

46 Z. Chen

The length of the edges of T} is 2a3 —a; —n; — 1. As we do not count the lattice points
on the common boundary of 77 and IIy, we have

2a27a17n171

ANy = Y
i=1

= %(2(12 —ay—n1 —1)(2a2 —a; —ny).
Similarly, the length of the edges of T5 is 2as —a; —ns — 1 and we have
|A% ﬂTg’ = %(2@2 —a1 —ng —1)(2a2 —a; —na).
The triangle T3 is of the same size as 77, so
’A% ﬁT3’ = %(2@2 —a;—n1—1)(2a2 —a; —nq).

Finally,

3
|AGNTIo| = [ATNTy| =D |AGNT;| (6.4)

i=1

3(12 -2 72”1 7’[12)(3@2 -1 72711 7”2)

N | =

— (2&2 — a1 — Ny — 1)(2&2 —aq —nl)

1
5(2&2 —a; —ng — 1)(2@2 —a] — ’I’Lg).

We go on to calculate ‘A% ﬁﬂ'L(Ho)’ for the other Levi subgroups L € L(T). Let dr, be
the distance between the facets HOQ and HoQi, where P(L) = {Q,Q " }. It is easy to see
that
‘A% ﬂﬂ'L(Ho)‘ = dL + 1.

The set L(T)\{T,G} consists of three elements, Levi factors Mg; of the parabolic
subgroups Py, @ = 1,2,3. Using the explicit expression of the vertices of Ilp, we can

calculate
ASryy Nty (o) = darg,y +1=a1 +as —2n1 — 1, (6.5)
A%/[m OTaL, ()| = Ay, +1=a1+az—n1—na—1, (6.6)
A?W{s} N7 (Mo)| = drggy +1= a1 +ag—n1—na — 1. (6.7)

Now that %WL’O’fL (Fq)’ has been calculated in equation (5.1), we can insert equations
(6.4)—(6.7) into the equation in Theorem 4.8 to get the following:
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Proposition 6.3. The number of rational points on the main body is

1
|m%0 |7|%’O§ q)|+q2n1+n2 [2(3a222n1n2)(3a212n1n2)
—(2a2—a1—n1—1)(2@2—a1—n1)

1
2(2a2a1n21)(2a2a1n2)}
ng — 1
+¢7" (a1 +az —2ny — 1) (nzq Z Q>

ny— 1
+2¢" "2 (a1 +ag —ny —ng —1) (nlq Z q)

Now we proceed to counting points on the tail. To begin with, we write down the
vertices of 1I:

A123(IT) = (a1,a2 — a1, — as),
A321(IT) = (—az — 2n1,a2 — ay +n1 —ng,a1 +ny +ns),
A213(I) = (ag — a1 —ny,a1 +n1, —az),
Az12(II) = (a2 — a1 —nq1, — as —no,a1 +nq +no),
A132(ID) = (a1, — ag —na,a0 — ag +na),

) = (-

Aa3q (11 as —2n1,a1 +ni,a2 — aq +n1)

For nonempty subsets I C {1,2,3}, we simplify the notation Ep, (II) to E;(II). Using the
coordinates of vertices of II, we can calculate the lengths of the edges of Il and find the
following expression for Ey(II): when |I| =1, we have

Er(Il) = (AGM)* 7" (5,). (6.8)
When |I| =2, we have
Ey(IT) = (AGM) ™7 (3,). (6.9)

As explained before, we can use the Arthur—-Kottwitz reduction inductively to count the
number of rational points on 2.(E;(II)). We give the details for I = {3}; the others can

be calculated in the same way.

a a+1
Applying Arthur-Kottwitz reduction to pass from (Afgﬁf“}) (Z,) to (AS}X“})

the picture is similar to Figure 2. We obtain

(E’Y)v
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G, Mg\ 211 G, Mg\ @ o | oMiy,1
‘%’YO <<AO‘{3}{3}> (E’Y)> (Fq) = “%/70 ((Aaw}{?)}) (E’Y)> (Fq)’ +q2 ! F’y o (Fq)’
Jrqn1+n2 F’i\/f{la}’l (Fq)‘ +q2n1+n2
aM a ngo—1 )
(e @) malrn S
i=0
ni—1
_|_qn1+n2 Z qi_’_q2n1+n2.
i=0
From this relation and equation (6.8), we deduce that
’I’Lgfl )
|20 (Egsy(ID) (Fg)| = |E, (Fg)| 4 (2a2 — a1) <q2"1 Yo (6.10)
=0

’I’Llfl
+qn1+n2 Z qi+q2n1+n2>.
=0

Similarly, we have

ni—1
|%70 (Bry(ID) (Fo)| = |Fy (Fo) |+ (2a2 — ax) (2(1””"2 Z q' +q2n1+n2> ,  (6.11)

=0
no—1 )
|20 (B (1)) (Fy)| = |F, (Fy)| + (2a2 — ax) <q2”1 dd (6.12)
i=0
ni—1 )
_|_qn1+n2 Z qz+(]2nl+nZ>7
=0
no—1
| 27 (Biay (ID) (Fy)| = | By (Fy)| + (2a1 — az) <q2”1 g (6.13)
=0

ni—1
+qn1+n2 Z qi+q2n1+n2>7
=0

ni—1
|%’YO (Brosy(I)) (Fy)| = [ (Fy)| + (2a1 —a2) <2q”1+"2 Z q" +q2n1+"2> ,  (6.14)
i=0

n2—1

|2 (Eqsy(I)) (Fy)| = | Fy (Fy)|+ (201 — az) <q2"1 Z q'
=0

ny—1
+qn1+n2 Z qi+q27L1+n2> ) (615)
=0
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Inserting equations (6.10)—(6.15) into equation (4.6), we get the following:

Proposition 6.4. The number of rational points on the tail equals

no—1 ni—1
"2 (10) (Fy)| = (a1 +az) <2q2”1 > +agnt > ql+3q2’“+"2> :
i=0 1=0
The sum of results in Propositions 6.3 and 6.4 gives us another expression for Qg(al,ag):
Corollary 6.5.
1
Qg(al,ag) = |3£”,Y0’§ (Fq)| + gZmtne {2(3@ —2—2n1 —n9)(3az —1—2n1 —ny)
— (2&2 —ay —nyp— 1)(2&2 —aq —nl)

1
—2(2(12—611—TL2—1)(20,2—G1—TL2)j|
no 1
+¢*" (a1 +az —2ny — 1) (ngq Zq)
ny 1
+2qn1+n2(a1—|—a2—n1—ng—1 (nlq Zq)

na—1 ni—1
+ (a1 +a2) (2612711 > g4ty qi+3q2”1+"2> :

=0 =0

In particular, this shows that QO (a1,a) depends polynomially on (a1,as) € N2. As a
corollary, the expression for Q (al,ag) in Proposition 6.2 is also a polynomial in (a1,a2),
although it does not seem to be S0.

6.1.3. Arthur’s weighted orbital integral. Now we can compare the two expres-
sions in Proposition 6.2 and Corollary 6.5 for Qg(ahag). Look at their constant terms

Q?Y(O,O)‘ As J;(v) = ‘%70’5 (Fq)’ in this case, we obtain the following:

Theorem 6.6. Chaudouard and Laumon’s weighted orbital integral for v equals

ny 2n1+no—1
Jjg“(ﬂ}’) — ZZ (qu—l +q2i—2) + Z (4711 +2ng — 4 — 3)qi + (n% +2n1n2) q2n1+n2_
=1 i=ni+nso

By Theorem 2.8 and Remark 2.3, we get Arthur’s weighted orbital integral as well. For
the orbital integral I$ ,as T is split, we can calculate it easily by equation (2.4):

L? _ q2n1 2
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6.2. Calculation of Jy, ()

We parametrize the Levi groups as before, with the further simplification M; := M.
Let v = diag(y1,72,73) and v = diag(y1,73,72); notice that

JMz (7) = JMS (’yl)'

Moreover, 2, and £~ have the same geometry, as they have the same root valuation
(indeed, they have the same affine paving), which implies that

Iat, (1) = Itz (V) = T ()

Hence it is enough to calculate J, () and Jps, (7). Notice that M; corresponds to the
root oy and Ms to the root «q.

As usual, we identify X,(T) = Z* and ag with the hyperplane x4+ 2 + 23 = 0 of
ar = X.(T) ® R = R®. The subspace ai* C a$ becomes the line {(0,2, —x)}, and the
subspace afj, C af becomes {(—z,2/2,2/2)}. The lattice A}, is identified with Z by the

mapping
AY, = Z: (—(a+b),a,b) — a+b.
Its inclusion in a; is described by the mapping
Aly, =, : (= (a+b),a,b) = (=(a+b),(a+b)/2 (a+b)/2).

We identify ctM1 with R by identifying (—z,2/2,2/2) with z; the inclusion A?wl C uﬁh
becomes the natural embedding Z C R. On the other hand, the discrete free abelian
group A 2 X, (T) is naturally identified with Z*, and the morphism Hys, : A — apy, can
be calculated to be

az+asz az+asg
HJVh(alaa%aS)_(ala 5 T 3 )

Hence A1 is freely generated by the element diag (l,e,efl).

According to Proposition 3.1, we can take Zf’Ml to be the interval [0,2n,] in aﬁh ~R.
For N € N, N> 0, let Iy be the interval [—N,2n; + N], regarded as a (G, M; )-orthogonal
family in aJ\G41. We are going to calculate (AHMl\.fK,y(H N)) (Fy) by the two approaches
we have described.

In the Arthur—Kottwitz approach, we need to calculate

(AT \EEAD) (F)| - and - [(AT AR (Fy)|
Combining Proposition 3.8 and Corollary 3.10, we get
’(AHM1\F$1M1 ’ _ ‘FG M1 | q2n1+n2 _|_2qn1+n2 (1_|_q_|_..._~_qn1—1).
For the second calculation, since F,iwl’Ml = &VVML(O) and AHv1 = AMi | we have

(AT \ 200 (B, )| = (Y0 2200 (B,)| = g7
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The reduction process is illustrated by a figure similar to Figure 2. By Corollary 3.7,
we have the following:

Proposition 6.7.

(A2 (Ty)) (Fg)| = [(A \EA0) () [+ 2N g™ [(AT o \ BRI ) () |
:q2n1+n2 +2qn1+n2 (1+q+...+qn1*1)+2Nq2n1+n2
— (2N+1)q2n1+n2 +2qn1+n2 (1+q+..._~_qn1—1).

In the Harder—Narasimhan approach, we begin with counting points on the tail. By
construction,

[ (AT \E 22 (L)) (Fg)| = 2| (A \ BP0 (B )|
=2[g®" T2 4 2¢™ 2 (14 g+ +¢™ )], (6.16)
Then we calculate
(A \ 0 ()| = (Ao \ 2200) (B, | = g
By Theorem 4.8, this implies
A\ 20 (L)) (F)| = | (A9 2260) (B, + 2N = (2 + 1) -
. ) (AH}WI \%7M1707§N11) (Fq)
— (A \ ZE0) (F,) |+ 2N - (2 + D] - g™+, (6.17)

Combining equations (6.16) and (6.17), we obtain the following;:

Proposition 6.8.

|(ATn\ 20(ILy)) (Fg)| = | (AT \2250) (Fg)| + 2N — (2ny + 1)] - ¢*™1 72
49 [q2n1+n2 +2qn1+n2 (1+q+...+qn171)] .

Comparing Propositions 6.7 and 6.8, we get the following:
Proposition 6.9.
|(AHMl \&V’Yi,o) (Fq)| — 2n1q2n1+n2 _ quJrnz (1 g4 -I-q"l*l) )

It remains to calculate the volume factor volg (A#*\T(F)}, ). By equation (2.5),
it equals 1 because S =T and the morphism Hyy, : X, (T) — X.(M) is surjective. The
foregoing calculations can be summarized as follows:

Theorem 6.10. We have

Tin () = [(A\ Z80) (By)| = 200> 72 =247 (14 g4+ 4™ 7).
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6.3. Calculation of Jy,(7)

We make identifications as before. The subspace a:,AfI 8 C a¥ becomes the line {(z, —z,0)},
and the subspace a§;, C af becomes {(z/2,2/2, —x)}; they are identified with R as before.
The lattice AY, is identified with Z by the mapping

A}y, = Z:(a,b,— (a+b))—a+b.

The inclusion A(J)WS - af/js becomes again the natural embedding Z C R. Similarly, the
group AfMs is freely generated by the element diag (6,6*1,1).

By Proposition 3.1, we can take E?MT* to be the interval [0,n1 + ns] in a?@ = R. For
N eN, N> 0,let ITy be the interval [—N,ny +ng+ N|, regarded as a (G, M3)-orthogonal
family in a%s. We calculate (AfMs\ 27, (I1y)) (Fy) in two ways as before.

Using similar calculations as before, we get

(AT \ EH M) (Fg)| = [(AM\ 2M0) (Fg)| = g™
and
(AT FAE) ()| = [FG ()] = g2 07 7 (1 g ™)
+7 (Tq+- 4.
With Arthur—Kottwitz reduction, we obtain the following:
Proposition 6.11.
(AT 20T )) ()| = [(ATH\F M) (Fy )| - 2Ng™ #m2 [ (AT \ F ) (B )|
=*M Mt (T4 g4 g™ )
+qP" (Lt g™t F2Ng e
= (2N +1)g*™ "2 4 gmt2 (14 g+ + g™ )
+7 (T4q+--+¢m7).
For the Harder—Narasimhan reduction, we count the points on the tail
(A 20(0) ()| = 2] (A0 ESA0) ()
=2[¢"M T 4 g2 (14 g+ +qm )
+" (4q+-+q")]
and the ¢-stable points
(At \ 220875 ) ()| = | (AP0 \ 22200) ()| = g™
Hence the points in the main body are
(A 220(00)) (By)| = | (AF95\ 2259 (B,)| + (2N — (i -+ ma 1)) 4"+

| (A 206 ) @)
= |(AHM3\%’Y€:O) (Fq)| + [QN— (nl +ng+ 1)} .q2n1+n2.
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Combining them gives us the following:

Proposition 6.12.
| (AT 20 () (Fg)| = (AT \™ 220 (Iy)) (F) |+ (AT \* 220 (L) ) ()|
= (A" \2550) (F )| + 2N — (n1 +ma + 1)] - ¢*m 72
) [q2"1+"2 _|_qn1+n2 (1 +q+--- +q”1*1)
+¢*" (14q+--+¢=71)].
Comparing Propositions 6.11 and 6.12, we get the following:

Proposition 6.13.
(A1 \ 2250) (Fg)| = (1 +12)g™ "2 =g F"2 (L g oo g™ )
—" (L4q+-+q=").

As before, the volume factor voly (AHMs \T(F)Jl\/13) equals 1, and so we have the
following:

Theorem 6.14. We have

Tin () = [ (AT \ Z280) (Fy)| = (1 +n2)@®™ ™2 — ™42 (T4 g+ +q™ )
_q2n1 (1+q+_”+qn2—1).

7. Calculations for GL3-mixed case

Let G = GL3 and let v € gl3(F') be a regular semisimple integral element. Assume that
T = F* x Resg, pEy, with E; a separable totally ramified field extension over F' of
degree 2. As before, we can reduce to the case in which « is a matrix of the form

a
v= boe™ |, (7.1)
b0€n+1

with a € O,bp € O*. Let m = val(a).

Let P be the parabolic subgroup P = ByU Bys2 By, and let P = M N be the standard
Levi decomposition. We identify X,(A) = Z? in the usual way. This gives us an
identification Ay =2 Z? and hence Ay ® R 2 R?. We also identify a?/[ with the line
z+y =0 in R?, which can be further identified with R by taking the coordinate z. Under
these identifications, the moment polytope ¥, of the fundamental domain F, can be
taken to be the closed interval

Y, =[-n(y,P,P7),0l CR= a§.
To simplify the notation, we abbreviate n(vy,P,P~) to n,. We have

n, = min{2m,2n+1}.
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(—=n1,n1 + ng,0) (0,n2,0) (n2,0,0)

’
(0,0,n2)

(—n1,0,n1 + n2)

Figure 5. The (G, A)-orthogonal family I, n, and its extension to a triangle.

By definition, we can take
E,=2,n2"(%,).

This can be refined a little bit. For (ni,ng) € N2, let II,,, ,, be the positive (G,A)-
orthogonal family as indicated in Figure 5 (excluding the dashed part).
Consider the positive (G, A)-orthogonal families IT,,_ 5 41. For i € Z, —n, <i <0, let
L 1 = Mo e Ny (0),

where i € Z is considered as an element of a§; by the identification R 2 a§;. By Theorem
5.2, we have

%’YM,(i,nH—i) c @M. (int1-i) (Hi n+1>’ for i = —n.,...,0.

N,
This implies that
E,=2,n2"(2)=2,n2" ! (Hnmnﬂ) .
It is possible, but quite hard, to construct an affine paving of F, and count the
number of rational points with it. Instead, we take an indirect route. Let A, .11 be

the completion of II,,_ ,4+1 into a triangle, as indicated in Figure 5. We can count the
number of rational points on &V,Y"H (Anw,n+1) quite easily, using the affine pavings in

[9, Proposition 3.6]. The complementary 3{7"‘”‘1 (Anmnﬂ) \FA, can be treated by the

Arthur-Kottwitz reduction. Taking their difference, we find |F, (F,)|.
We calculate the number of rational points on ,%,Y"“ (Anﬂ“nJ’,l). For N € N, let

Iy = Ad (diag (", 1,1)) I.
According to [9, Proposition 3.6], when N >> 0, we have an affine paving
%:yn-l-l (An%n-i-l) = U ‘%:yn—"_l (An%n-i-l) ﬂINGaK/K.

e (Any nin)”
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(—=2m,2m +n+1,0) (1,n,0)(n+1—m,m,0) (n+1,0,0)

(=2m,m+n-+1,m) (n+1-m,0,m)

(0,0,n+1)

(—=2m,m,m+n+1)

(=2m,0,2m +n+1)

Figure 6. Counting points in the nonequivalued case.

(—=(2n+1),3n+2,0) (1,n,0) (n+1,0,0)

(=(2n+1),2n+1,n+1)

(0,0,n+1)

(=(2n+1),n,2(n+1)

(=(2n+1),0,3n+2)

Figure 7. Counting points in the equivalued case.

The dimension of the affine paving can be calculated using [9, Lemma 3.1], together with
Theorem 5.2. When m < n — that is, v is not equivalued — the dimension of the paving is

as — as if 0 <as—asz <n,

min{as,m}+ min{as,m} +
{az,m} {ag,m} az—as—1 ifl1<az—ar<n+1.

Otherwise, the intersection is empty. When m > n+1 — that is, v is equivalued — the
dimension of the paving is

as —as if 0<ag—az<n,

min{as,n} +min{asz,n+1}+
{az,n} {as } az—as—1 if1<ag—as <n+1.

Otherwise, the intersection is empty. We summarize the situation in Figures 6 and 7. The
triangle is cut into four parts by the two long red lines, and the dimension of the fibration
fp restricted to the affine pavings in different parts are given by different formulas. The
two dashed lines bound the region where EKYM NIyerK/K is nonempty.
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Proposition 7.1. Let v be a matriz in the form of equation (7.1). When val(a) =m <n,
we have

| 27 (Aomns1) (Fy)| = Qil QJJ + 1) @+ @2m+n+1)g"

= \L2

m—+n 2m—+n
+ > Umtntl-jHd+ Y. (3@m+n—j)+1)¢
j=2m+1 j=m4n+1

n
j=0

In the summation, we use the convention that a summand is empty if its subscript is
greater than its superscript.

Proof. Summing along the dotted blue lines in the four regions of Figure 6, we get

m 2m
‘%yn+1(A2m,n+l)(Fq)’:qu(l—’_q—'_.“—"_ql)"_ Z qz(1+q+...+q2m—z)
i=0 i=m+1
m—1 m—1
+ qi-i-m (qm—l-l—i +.. +qn) + Z qi-i-m (qm—i +. +qn)
i=0 i=
2m+n n
_|_q2m Z (1+q+___+q172m)+q2mzqz.
i=2m+1 i=0
After rearranging the summand, we get the proposition. O

Proposition 7.2. Let v be a matriz in the form of equation (7.1). When val(a) =m > n,

we have
2n J 3n+1 n
n+1 _ j . i 2n41 j
25 Banan) B =Y (] +1) 4 Y @B+ D400 42 S0,
7=0 j=2n+1 7=0
Proof. Summing along the dotted blue lines in the four regions of Figure 7, we get
n 2n+1
|.%7"+1(A2n+1,n+1)(Fq)|:qu(l+q+"'+q’)+ Z qz(1+q+...+q2n+l—z)
i=0 i=n+1
n n—1
+Zqz+n (qn+1—z+___+qn)+zqz+n+l (qn-‘rl—z_"__“_’_qn)
i=1 =1
3n+1 ) n )
i Z <1+q+“.+qu(2n+1)> i qu'
i=2n+2 i=0
After rearranging the summand, we get the proposition. O
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Now we calculate the number of rational points on the complement 3&”7"4‘1 (Anmnﬂ) \
F, ForicZ, 1<i<n+1,let

. .
A:L,Y,’nr‘rl = Ann,,nJrl AT (Z),
where i € Z is considered as an element of a§; by the identification R = a§;.

Proposition 7.3. Let v be a matriz in the form of equation (7.1). We have
e%/"Yn+1 (Ananrl) \F _ U f;l (%’WM,(’unJrl*l) (A;,Y,n—&-l)) N e%/:y,
i=1

where (i,n+1—1) € Z* is regarded as an element in Ayy by the identification Z* = Ay
Its number of rational points over F, equals

n
"y (I4+q+-+¢).
=0

Proof. Observe that the second assertion is a direct consequence of the first one by
Proposition 2.4. It is thus enough to show the first assertion.
Set x € 3&@"“‘1 (Anw7n+1)7 and notice that it does not belong to F, if and only if

Hp(z) € [l,n+1] c R=af), (7.2)

because Hp- () < Hp(x). This implies that
27 (A i) \Fw — s (%M,wﬂfz) (A;Wm)) N2y (Anynin).
i=1
To finish the proof, we only need to show that
£ (%WM,(i,nH—i) (A;%nﬂ)) N2y (A nin) = f7 (:%/WM,(i,nH—i) (A:‘WnH)) N,

for i =1,...,n+1. The inclusion ‘C’ is obvious; we only need to show its inverse. For any
point € fp! (&VWM’ (6,n+1=4) (Af%n“ N &, the inclusion (7.2) holds. By Proposition
3.1, together with the fact that Ec(z) is a positive (G, A)-orthogonal family, we have

Ec(z) C A nt1,
whence the equality we want. O

Summarizing all the foregoing discussions, we get the following:

Theorem 7.4. Let v be a matriz in the form of equation (7.1). When val(a) = m <n,
we have
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2m—1 ] . m+n )
mE)= 3 ([]+1)erenny
7=0 j=2m
2m—+n—1 )
+ > (2@m+n—j)+1)¢ +mn
j=m+n+1

m >n, we have

When val(a) =

3n
> @Bn+1-4)+1)¢ +¢*

|Fy (Fy)| i (BJ +1> ¢ +j:2n+1

Now it is easy to deduce the weighted orbital integral J§4 (7). For Ne N, N >0, let

Iy =[-n,—N,N]Cc R=a§.
We can count the number of rational points |27 (Ily)(F,)| in two ways. By the
Arthur-Kottwitz reduction, we have

|20 (1) (F)| = |y (F)| +2Ng™ - | FM (F,)].

By the Harder-Narasimhan reduction, we have
}%yn+l(HN) (Fq | =2|F, (Fg)| + |’9’/'yn+17£ (Fq)}
+ (2N —ny —1)¢" - |F) (Fy)|,
where we use the fact that %WM e = FWM for any v € Ay because v is anisotropic in

m(F). The comparison of the two expressions implies

|27 (B,)] = (ny + 1) g™ - | EM (B,)| ~ |, (B,
By Theorems 7.4 and 5.2, we have the following
Theorem 7.5. Let v be a matriz in the form of equation (7.1). When val(a) =m <n,
we have
2m+n—1 . 2m—1 j ]
Ty () = |2 )| =2mg®™ Y 2 —m—n)g — > ( 3 +1>q3.
j=m+n+1 3=0 L=
When val(a) =m > n, we have
3n ) 2n j
Ti () =2 F) | = 2n+ 1)+ Y (25— 4n—1)¢ —Z( B +1> ¢
j=2n+1 j=0 \L=

By Theorem 2.8 and Remark 2.3, we get Arthur’s weighted orbital integral. As before
the orbital integral I,YG can be calculated by equation (2.4)
" Yied" ifm<n,

n
Y
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8. Calculations for GLj3-anisotropic case

Let G = GL3 and « € gl3(F) be a regular semisimple integral element. Assume that
char(k) >3 and T'= Resg, /p B3, with E3 = Fq((e%)). As before, take the basis {e%,e%,l}
of E3 over F. We can assume that v is of the form

boe™ coe™?

v = Coen2+1 boe™ |, (81)

b06"1+1 006”2+1

with bg,cog € O* and ni,ns € N. In this case, Arthur’s Weighted orbital integral is the
same as the orbltal integral, and both are equal to ’3&” O( ‘ The matrix 7 is equivalued
of valuation n; + + if n; < ng, and equivalued of Valuatlon N9 + £ if ng < ny. According
to Goresky, Kottw1tz and MacPherson [16], the affine Springer ﬁber Z, admits affine
paving
2, = U 2, NIEK/K.
a=(a1,az,a3)€23

Let Sa be the cell 27, NIe*K/K. Restricted to the connected component 27, we can
calculate that S, is nonempty if and only if

a1 —az <ny, az —az < ng, az—a; <ni+1, (8.2)

and that it is of dimension

1
{(m,a) €ZXxP(G,A)|0<m+a(zx) <n1+§,

with = (1,2/3,1/3),ya = (—a1, — a2, —a3) € X.(4) @ R. The results are summarized in
Figure 8. Summing up, we get the following:

m+a(ya) < 0} :

Theorem 8.1. Let vy € gl3(O) be the matriz in equation (8.1). Suppose that nq < ng; it
is then equivalued of valuation ny + % The orbital integral associated to v equals

| %]
IS = |20 (Fo)| =142 > @ (¢ +q+1)

i=1
ny .
+Z(i—2M —1>q2i—3(q3+2q2+2q+1)
i=1
Gl 20y —1i
+ > (2n1—z— { 13 -‘+1>qi+”1_1(q+2)
i=ni+1

2n; —1 ny —2 ma!
2n1—1 1 1 1 2 2: 3i+1
1 (" 3 -‘ \; 3 J ) . {2n1—1-|q ,
=5

where || denotes the largest integer less than or equal to z, and [x] denotes the smallest
integer greater than or equal to x.
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(n1,0,—n1)

a as n
qM s tny
°

quQ*ul‘Fnl*l q

° . @J:K(j) .

(—n1,m1,0)

(=n1,n1 —1,1)

az—aij+n;—1

q

2(az—ay1)—3 q2(03—az)—2

q

2(az—a1)—3
L]

az—az+ni—1

q 3 2 1

az—az+ni—1

q

(0,—n1,n1)

(1,1 =ny,n1)

Figure 8. Counting points for ramified anisotropic 7 € gl;(O): First case.

The same calculations apply for no < ni, with the differences that S, is nonempty if
and only if

a1 — a3z < no, a2 —a; <nyp+1, az—az <n;+1

and that it is isomorphic to an affine space of dimension
2
H(m,a) EZXP(GA)|0<m+a(x) < ng—i—g, m+a(ya) < OH

These are summarized schematically in Figure 9. Summing up, we get the following:
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(0,m2, —n2)
(—=1,n2,—n2 + 1)
L]
g2 az+na
~. P
~o| 2lo2—az) =1 Plar—a) P
\\ L] L] //
< P
< -
< P
< .
< P
s .-
< P
gAaz—an)=2 \\\ LT Paaz)- guaxtna
o (0 . (n2, —n2,0)

(ng — 1, —ng, 1)

a1—az+ng

q

(—=n2 —1,0,n9 + 1)

Figure 9. Counting points for ramified anisotropic v € gl3(O): Second case.

Theorem 8.2. Let v € gl;(O) be the matriz in equation (8.1). Suppose that ny < mnq; it
is then equivalued of valuation no + % The orbital integral associated to v equals

| %]
IS = |20 (F)| =142 @® D (¢ +q+1)
=1

Y Y
no . ) _1
+Z<i—2H—1>q2"3(q3+2q2+2q+1)+(n2—2[n2 Dq2"2—1(1+2q2)
P 3 3
s 29 — i
+.Z <2n2—i—2{ 23 “+1>qz+”2_1(1+2q)
i1=ng+2
ng—2
g 2ng — 1 Ny — 2
2 3(712—1')—2 1 2 2no _ -1 3712-‘1-1.
+ ; q (1+q)+2q 5 3 +q
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