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Diffusion Mechanism in Residual Neural
Network: Theory and Applications

Tangjun Wang, Zehao Dou, Chenglong Bao, and Zuogiang Shi

Abstract—Diffusion, a fundamental internal mechanism emerging in many physical processes, describes the interaction among different
objects. In many learning tasks with limited training samples, the diffusion connects the labeled and unlabeled data points and is a critical
component for achieving high classification accuracy. Many existing deep learning approaches directly impose the fusion loss when
training neural networks. In this work, inspired by the convection-diffusion ordinary differential equations (ODEs), we propose a novel
diffusion residual network (Diff-ResNet), internally introduces diffusion into the architectures of neural networks. Under the structured data
assumption, it is proved that the proposed diffusion block can increase the distance-diameter ratio that improves the separability of
inter-class points and reduces the distance among local intra-class points. Moreover, this property can be easily adopted by the residual
networks for constructing the separable hyperplanes. Extensive experiments of synthetic binary classification, semi-supervised graph
node classification and few-shot image classification in various datasets validate the effectiveness of the proposed method.

Index Terms—Diffusion, residual neural network, ordinary differential equation, semi-supervised learning, few-shot learning

1 INTRODUCTION

ESNET [1]] and its variants, containing skip connections
Ramong different layers, are promising network architec-
tures in deep learning. Compared to non-residual networks,
ResNet significantly improve the training stability and the
generalization accuracy. To understand the success of ResNet,
a recent line of works build up its connection with ordinary
differential equations (ODEs) [2], [3]], [4]. Let x € R™ be a
data point, the ODE model of a ResNet is

dx(t)

T = 1(a().6())
where f(z,0) is a map parametrized by 6. It is straightfor-
ward that the forward Euler discretization of (1) recovers
the residual connection, which motivates the connections
between ResNets and ODE. Based on the above observation,
many recent works are proposed from two perspectives:
the ODE inspired neural networks and the neural network
based ODE. In concrete, the attempts for the ODE inspired
neural networks can be classified into two directions. One
approach for designing networks is to unroll the ODE system
via different discretization schemes, which build up an
end-to-end mapping. Typical networks include PolyNet [5],
FractalNet [6] and linear multi-step network [7]. The other
approach is to add some new blocks into the current network
architecture by the modification of the ODE model, e.g. noise
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injection [8]], stochastic dynamic system [9]], adding a damp-
ing term [10]. Due to the strong mathematical foundation of
ODE, the network architectures proposed in the above works
have shown the improved explainability and performance.
On the other hand, the neural network based ODE model
parametrizes the velocity f by a neural network and finds the
parameters 6 via the optimal control formulation [11], [12].
These methods improves the expressive ability of a tradi-
tional ODE method and exhibit promising results in various
problems, including systems with irregular boundaries [13]],
[14], PDEs in the field of fluid mechanics [15], and high-
dimensional differential equations [16]. Thus, connection
between ResNets and ODE deserves deep exploration.
Success of deep learning methods highly depends on a
large amount of training samples, but collecting training data
requires intensive labor works, and is sometimes impossible
in many application fields due to the privacy or safety issues.
To alleviate the dependency of training data, semi-supervised
learning (SSL) [17], [18] and few-shot learning (FSL) [19], [20]
have received great interests in recent years. Semi-supervised
learning typically uses a large amount of unlabeled data,
together with the labeled data, to construct better classifiers.
Few-shot learning is a more recent paradigm which is
closely related to semi-supervised learning, and the main
difference lies in that the the size of support set (labeled
points) is much smaller. One common feature in SSL and
FSL is to make use of the unlabeled samples to address
the limited labeled set issue. See [18], [21] for the review of
SSL and FSL. In this work, we focus on the deep learning
based approaches for solving SSL problems. In general, the
deep SSL methods can fall into two categories: consistency
regularization and entropy minimization [22]. Consistency
regularization demands that minor perturbation on the input
does not change the output significantly. II-Model [23],
[24] and its more stable version Mean Teacher [25] are
based on this idea, which require the stochastic network
predictions over different passes have little disturbance.



VAT [26] replaces stochastic perturbation with the “worst”
perturbation which can most significantly affect the output
of the prediction function. Entropy minimization, which is
closely related to self-training, encourages more confident
predictions on unlabeled data. EntMin [27] impose the
low entropy requirements on the predictions of unlabeled
examples. Pseudo label [28] feeds unlabeled samples with
high prediction confidence into the network as labeled ones
to train better classifier. Besides, some holistic approaches
try to unify the current effective methods in SSL in a single
framework, e.g. MixMatch [29], FixMatch [30]. Despite the
existence of many deep SSL methods that achieve impressive
results in various tasks, the internal mechanism of the
consistency regularization or entropy minimization methods
remains unclear in SSL/FSL classification.

To demystify this mystery in SSL and FSL, we propose an
ODE inspired deep neural network that is based on the
connection between ODE and ResNet. As shown in ,
current ODE counterpart of ResNet is a convection equation.
Each point governing by (I) is evolved independently. This
evolution process is acceptable when a large amount of
training samples are available, but the performance is sig-
nificantly deteriorated as the number of supervised samples
decreases. Thus, it may be problematic when directly apply-
ing (1) for SSL/FSL. To solve this problem, we introduce
diffusion mechanism in , leading to a convection-diffusion
equation. After the discretization, we obtain a diffusion based
residual neural network. The imposed diffusion to enforce
the interactions among samples (include labled and unlabled)
that is a key component in the regime of limited training
data. In fact, it is worth mentioning that the convection
and diffusion mechanisms always appear simultaneously
in complex systems such as fluid dynamics [31], building
physics [32]], semiconductors [33], which strongly motivates
the integration of diffusion into deep ResNets.

Imposing the interactions among samples is a classical
idea and has appeared in many existing SSL approaches [34],
[35], [36], but the combination of convection and diffusion
in the network architecture is underexplored. In addition,
most methods introduce the diffusion by adding a Laplacian
regularizer in the loss function, which is widely used in
graph-based SSL [37], [38]]. In this case, tuning the weight
of the Laplacian regularizer is not an easy task and often
sensitive to tasks. Different from the above methods, we
explicitly add diffusion layers into the ResNet. The proposed
diffusion layers internally impose the interactions among
samples and have shown to be more effective in SSL/FSL.
More importantly, we theoretically analyze the diffusive ODE
and show its advantage in terms of distance-diameter ratio
among data samples, which provides a solid foundation the
proposed method. In summary, we list our main contribu-
tions as follows.

o We propose a convection-diffusion ODE model for
solving SSL/FSL, leading to the addition of diffu-
sion layers into ResNets after proper discretization.
The proposed diffusion based ResNet strengthen
the relationships among labeled and unlabeled data
points via a designed network architecture, rather
than imposing the diffusion loss in the total. To the
best of our knowledge, this is the first attempt that
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internally incorporates diffusion mechanism into deep
neural network architecture.

e Under the structured data assumption [39], it is
proved that diffusion mechanism is able to accelerate
the classification process in the sense that samples
from different subclasses can be driven apart, while
samples from the same subclass will be brought
together. Using such property, we can theoretically
construct a residual network that ensures that output
features are linearly separable. This analysis provides
the mathematical foundation of our method.

o Extensive experiments on various tasks and datasets
validate our theoretical results and the advantages of
the proposed Diff-ResNet.

The rest of this paper is organized as follows. The related
work is given in Section 2. Section 3 presents the formulation
and details of our diffusion residual network, and Section
4 provides theoretical the analysis of diffusion mechanism.
Experimental results on various tasks are reported in Section
5. We conclude the paper in Section 6.

2 RELATED WORKS
2.1 Diffusion Mechanism

The idea of diffusion is widely used in various fields. In
graph neural networks, [40] concludes a unified framework
for graph diffusion, and proposes a preprocessing method
that create a new graph based on diffusion. With spectral
analysis of the new graph, they show that local clusters
can be amplified while noise can be suppressed. Diffusion-
Convolutional neural networks [41] learn diffusion-based
representations from graph and use them as an effective basis
for node classification. Diffusion is also used in diffusion
map or eigenmap [42], [43], which uses linear diffusion
PDEs with closed form solutions for dimension reduction.
Different from linear dimensional reduction methods like
principal component analysis (PCA), diffusion maps belongs
to nonlinear methods that focus on the underlying manifold
of data. It constructs a Markov chain based on diffusion
process, which can capture the geometric structure of man-
ifold at larger scales as the diffusion goes on. Diffusion is
used by previous work to deal with data insufficiency. [44]
diffuses the label information to propose an efficient criterion
for switching between exploration and refinement in active
learning. Recently, diffusion has been proposed to design
new network architectures. DifNet [45] constructs a diffusion
process on a single image for semantic segmentation, and
approximates the process by a cascade of random walks. [46]
also adds a diffusion term into ODE induced by ResNet, but
its diffusion is in the Euclidean space while ours is in the
embedded manifold. To the best of our knowledge, this is the
first work that applies the diffusion mechanism to ResNet
with rigorous mathematical analysis.

2.2 Neural ODEs

The deep learning models and dynamical systems have
closed relationship, which is firstly introduced in a proposal
of E. et al. [2]. Using this connection, many works have been
proposed for improving deep learning models. [47], [48]
propose several training algorithms based on Pontragyn’s



Minimum Principle condition and successive approximation
method. Neural ODE [3] treats ResNet as the forward Euler
discretization of an ordinary differential equation and adopt
adjoint method to train the ODE model, which inspires a long
list of work considering the relationship between ordinary
differential equations and deep residual networks. These
papers interpret ResNets as a discretization of dynamical
systems, where the dynamics at each step is a linear trans-
formation followed by a non-linear activation function. [4]
treats deep networks as a parameter estimation problem
of nonlinear dynamical systems, and propose new forward
propagation techniques that relieve exploding or vanishing
gradients problem. [49] provides a unified framework for
interpreting ResNets and its derivatives, such as PolyNet [5]
and FractalNet [6]. Based on the framework, the author
proposes a linear multi-step architecture. However, most
ODE inspired residual networks cannot be directly applied to
the semi-supervised problems as they need many supervised
samples.

2.3 Graph-based semi-supervised learning

Graph-based SSL algorithms have received much atten-
tion [17], [34] because graph structure can effectively encode
the relationship among data points. Graph-based semi-
supervised learning is based on the assumption that nearby
nodes tend to have the same labels. In graph, each sample
is denoted by a vertex, and the weighted edge measures
the similarity between samples. [34] initially proposes the
Gaussian Fields and Harmonic Functions (GFHF) algorithm,
which aims to minimize the graph Laplacian objective
function with the constraint on labeled points. After that, [50]
introduces Local and Global Consistency (LGC) algorithm,
which differs from GFHF model in that the label for each
sample is penalized to ensure regularity, and the hard label
constraint is turned into a soft constraint using Laplacian
multiplier. Belkin et al. [51], [52] proposes the manifold
regularization framework, which employs a kernel-based
regularization term. Such kernels are often derived from
the graph Laplacian, which becomes a general extension of
graph Laplacian regularization [53], [54]. Semi-supervised
embedding [37] extends the Laplacian regularizer from
labels to network outputs, which imposes constraints on the
parameters of a neural network. . Nonetheless, our paper em-
beds the Laplacian regularization intrinsically in the neural
network structure through diffusion layers, which is different
from methods that use iterative approach to minimize the
loss function, or those that adds a regularization term based
on graph Laplacian to the objective function and uses vanilla
networks to optimize.

2.4 Few-shot learning

To address the limited training samples problem, few-shot
learning, a new learning paradigm [19], [55], has been
proposed and become an important topic in machine learning.
The few-shot learning has been extensively explored in
recent years, and there are many different kinds of methods.
Among existing few-shot learning methods, embedding
learning is a typical approach, which maps each sample
to a low dimensional spaces such that similar samples are
close while dissimilar samples are far away. The embedding
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method maps data samples to a feature space by training
an embedding function from a large-scale dataset. In the
feature space, another classifier is applied for classifying
query data. Typical methods include Matching Network [20],
which uses LSTM [56] with attention mechanism and ex-
ternal memory to construct the embedding mappings for
the query set and the support set. It firstly introduce the
episode-based training method to match the training and
testing condition. Prototypical Network [57] compares the
embedding of the query point with the prototype of each
class and assign the query point to the same class of the
nearest prototype. The work in [58] introduces Relation
Network that concatenates features of training and test
samples as the embedding, and feeds it to another CNN to
output a similarity score. It also introduces a deep distance
metric instead of hand-crafted metrics like cosine distance.
TADAM [59] changes the metric for different tasks in order
to use the specific information of each task. It introduces
new parameters to scale the gradient and fine-tune the
output of each convolutional blocks. Recently, Wang et
al. [60] shows that merely pretraining an embedding function
on base classes along with nearest neighbor clustering in
ly distance can achieve competitive results. This line of
work avoid complicated training strategies and get back
on simple yet effective manipulations on embedded features.
Following that, Laplacian regularized clustering [61] adopts
a regularizer based on graph Laplacian. [62] rectifies the
features to reduce the cross-class and intra-class bias, and
use the rectified prototype to help clustering. Compared to
the existing works, our method adopts similar embedding
training procedure with different attached classifier that has
good performance in various few-shot learning tasks. More
importantly, under the suitable assumption, we establish a
thorough theoretical analysis of the propose method.

3 DIFFUSION RESIDUAL NETWORKS

In this section, we introduce the diffusion mechanism from
the ODE perspective and present the Diff-ResNet based on
the numerical scheme for the diffusive ODE.

3.1 The ODE formulation

In ResNet [1], the feature map of a specific data point z; after
the k-th residual block is defined as z¥. Residual connection
means z¥ is added to 27! via a skip identity link. If we
gather convolutional layers, batch normalization layers and
other layers together, and denote them as function f, each

residual block can be written as
ot =l + faf, 05, )

where 6% is the parameters of k-th block. From ODE per-
spective, f can be seen as the velocity, while 2 and
can be treated as the start position and end position of x;.
Introducing a time step At which can be absorbed in f, the
ResNet can be seen as the forward Euler discretization of the
following ODE model, which depicts the evolution of z;:

dei(t) . -
o = (@i?),0)), ®)

Time forms a continuous analogy to the layer index, where
each layer corresponds to an iteration of the evolution. This

x;(0) = x;.
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Fig. 1. lllustration of our Diff-ResNet. Left: network structure; middle: details in each convection-diffusion block; right: movements of data points with

convection or diffusion.

ODE contains only the convection term, and each point
moves independently without collision. To enhance the
interactions among data points especially for unlabeled
samples, we introduce an additional diffusion term in (3),
which leads to the following convection-diffusion ODE
system:

i) .00 1> w0~ 5,0, @
j=1

forall ¢ = 1,2,..., N, where N is the number of points,
v > 0 is a parameter that controls the strength of diffusion
and w;; > 0 is the weight between x; and x;. By designing
a weight matrix that can depict the similarity between
points, we can expect similar points are brought together,
while dissimilar points are driven apart. In this paper, the
convection term f is set to be a simple 2-layer network with
width w, i.e.

Fa),00) =Y alo(w -z(t) +b").  (©)
=1

Here z(t) € R4, b € R, !, w!” € R?and f: R? — R
The activation function o(-) is chosen to be ReLU. 6(t) =
(w57 alP1% | is the collection of network weights at time
t. In the next section, we will derive a practical algorithm
based on the new ODE equation (4).

3.2 Algorithm

We discretize the convection-diffusion equation () using the
classic Lie-Trotter splitting scheme [63]]. After absorbing the
time step At into f and 7, it leads to

xf+1/2 — l‘f + f($§79k)’ (6)
N

xi_c+1 _ xi_c+1/2 . VZwij(ff—’—lﬂ . I?+1/2). @)
7j=1

The convection step () is nearly identical to the residual
block , only differs in the time step, which is not essential
as the implementation is the same. The added diffusion
step (7) can be seen as the stabilization of the convection
step (6). If the weight matrix is pre-computed, the diffusion

step is parameter free, thus the proposed diffusion term can
be easily combined with any existing networks or algorithms
in a plug-and-play manner. To construct the weight matrix,
we use the Gaussian kernel k(z,y) = exp(—||z — y||3/0?) to
measure the similarity between data points. ¢ is a parameter
to adjust the distribution of weight. Next, we introduce two
operators, Sparse and Normalize, and one hyperparameter,
Ntop, t0 Obtain a sparse and balanced weight matrix. Sparse
is a truncation operator to make the weight matrix sparse.
In each row, it keeps the largest n., entries and truncate
other entries to 0. Normalize symmetrically normalize the
weight matrix. Once constructed, the weight matrix remains
unchanged during the training process.

Using the Lie-Trotter scheme, we get one diffusion step
(7) after convection step (6). However, in our implementation,
there are often several diffusion steps followed by each
convection step. The reason is that the diffusion term has
strong numerical stiffness as proved in Appendix[A] The step
size vy should be small enough to keep numerical stability
when the simple explicit Euler discretization method is used.
Consequently, in order to maintain certain diffusion strength,
we will use simple forward Euler scheme to discretize the
diffusion term. Moreover, even if the total strength is small,
multiple diffusion layers also give slightly better results in
experiments. Thus, in the networks, we add r diffusion layers
after each residual block, each with a fixed step size . The
illustration of our Diff-ResNet can be found in Figure |1} We
summarize our method in Algorithm

Remark 1. In diffusion step (7), the feature map of the i-th data
point depends on the feature map of all data points at previous
layer, which is not realistic in tasks when the total number of data
points is too large. In our implementation, we adopt the mini-batch
training strategy. That is, the weights in each batch are sparsified
and normalized correspondingly.

4 ANALYSIS OF DIFFUSION MECHANISM

In this section, the effectiveness of diffusion mechanism will
be analyzed in theory. For the sake of simplicity, we only
consider the binary classification problem and our analysis
can be naturally extended to multi-class case.



Algorithm 1 Training algorithm for Diff-ResNet

1. Input: Labeled data points {(z;,y;)}.",. Unlabeled data
points {z J} 21- Number of blocks s. Number of diffusion
steps 7. Step size 7.

2: Output: Trained network parameters {6*}

3: Construct weight matrix W by w;; = exp(—|z; —
z;|3/0?) for all i, j € [N]

4 W = Normalize(Sparse(W, niop))

5: while epoch < MAX_ITER do

6: 2) = 2;(0) = x;

7: fork=0,1,--- ,s—1do

8: xfﬂ/z =zF + f(aF,0%) > Convection Step

9: form=20,1,--- ,r—1do

10: $§+1/2 = x?+1/2 - Zj‘v—l;_Nz Wij (xk+1/2
x?H/ %) > Diffusion Step

11: ghtl = ghtt/2

12: xi(1) = af

13:  Feed x;(1) into a classification layer, compute loss

function using {y; }._,, back propagate, and update {6} }
using gradient descent.
14: epoch = epoch+1

e I
o~
w
N
N

©)
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e

2,

Fig. 2. lllustration of Structured Data Assumption: S; ; stands for different
subsets. D is the upper bound of diameters of subclasses and L is the
lower bound of distances among subclasses.

4.1 Structured Data Assumption

Our dataset is generated as follows. Suppose all the data
pomts come from S = Hl 1 Si. Symbol [ [ means that S =
UZ 1 S;and S;, N Si, = @, Vi1 # iz. Each set S; contains
the points from the i-th class We further assume that each
set .S; can be divided into several non-overlap and bounded
subsets S; = ]_[] 1
In the binary classification, k = 2 and S = S [[ Ss. [ is the

number of subclasses, which may vary with class. However,

we can set [ to be the maximum across all classes, and let
S; ; = @ for those nonexistent subclasses. Denote M = kl
as the total number of subsets. The distance between two
disjoint sets A, B is defined as

dist(4,B) = inf

2
ef e —yl”

S ;j, each S; ; corresponding to a subclass.

The diameter of a set A is defined as

diam(A) = sup ||z — yl*.

z,yeA

Remark 2. The reason we introduce subclass instead of directly
using class is that it can relieve our separability assumption. We
do not need two classes to be well apart, which is not realistic in
real-world scenario. Rather, we only need local subclasses to form
clusters.

We are now ready to state the structured data assumption.
(A) (Upper Bound of Diameters) There exists D > 0 such
that for each (4, 5) € [k] x [l], we have: S, ; € B(a:O,D/2)F_]
for some z , then:

diam(Si,j) < D.

(B) (Lower Bound of Distances) There exists L > 0 such that
for each (i1, 71) # (i2,42) € [k] x [l], we have:

diSt(Sihjl?Siz,jz) > L.

Here, L and D are similar to inter-class distance and intra-
class distance, which are terminologies widely used in the
field of clustering. The difference lies in that the diameter
used in our analysis is the upper bound for the points in the
subclass, corresponding the local intra-class distance. In this
sense, the Structured Data Assumption may be more practical
for dealing with complex datasets. For example, in MNIST
dataset, every digit number may have different handwriting
styles, which corresponds to different subclasses and fits to
our analysis framework. The intuition behind the Structured
Data Assumption is simple: similar samples should be close
while dissimilar samples should be far away.

4.2 Theoretical Analysis

We present the theoretical results of this paper so as to explain
the role of diffusion mechanism in binary classification. Due
to the space limit, we defer all the proofs to the Appendix.

Definition. A set {(z;,4:)}Y,, z: € R, y; € [k] is called
linear separable if and only if there exists a hyperplane that
cuts the full space R% into 2 half-spaces and data points in each
half-space have a common corresponding label.

Theorem 1. (Approximation Property of ResNet Flow) If all
the S; j, (i,7) € [k] x [l] can be separated by a set of M — 1
parallel hyperplanes, i.e., there exists a unique S; ; that lies in
the region between each pair of adjacent parallel hyperplanes.
Then we can construct the time-dependent parameters 0(t) =

(w5 alP1% ., in the ResNet flow:

f Z a(l)

such that all the final steﬁﬂregions Fy={z(1):2(0) € S, ;,j €
(1]}, ¢ € [k] are linear separable. We need 2M + O(d) different
variables and M /w layers.

Voa(t) + b))

We give a sketch of proof. Consider the simplest case in
which each §; ; only contains one point and the width w

1. B(zo, D/2) is defined as a ball centered at z¢ with radius D/2

2. Time only forms a continuous analogy to the layer index, where
each layer corresponds to forward propagation of the flow. Without loss
of generality, we assume the final time step is 7" = 1.



is also 1. Our main idea is to construct a ResNet flow such
that each subclass is moved to a proper position with better
separability. We split the total time into NV intervals and deal
with points one by one. After solving the simplest case, we
extend to case w > 1, i.e., the network width is larger. Lastly,
we prove the case when there are multiple points in each
subclass S; ;.

In the classical XOR dataset, the original data points
x;(0) = x; are not linear separable. However, Theorem
tells us that: through the ODE flow, we can make the output
features z;(1) become linear separable, so that a proper fully-
connected layer can achieve accurate classification.

Our next step is to show that the condition in Theorem
can be satisfied by introducing diffusion mechanism. First,
we give a sufficient condition that is related to the Distance-
Diameter ratio.

Theorem 2. If the Distance-Diameter Ratio is large enough:
L - MM —1)/7
D~ 4

then all the S; ;, (i,7) € [k] x [I] can be separated by a set of

M — 1 parallel hyperplanes.

d,

This proof relies on comparing the surface area of a
specific set with the unit sphere. It is noted that M is
the number of subclasses that has M < N in most cases.
Thus the constant in the inequality is achievable. The next
proposition shows that the diffusion step can increase this
ratio with exponential rate.

The diffusion of each data point x; is modeled as

, N
dz(;t(t) = _Vsz‘j(xqz(t) —2;(t)), 7;(0) = @,

for i € [N]. Thus, all points change their positions subject to
mutual interactions, and the distances between subsets and
diameters of subsets are changed accordingly. Let .S; ;(t) be
the subset at time ¢, we define lower bound of distances L(t)
and upper bound of diameters D(t) at time ¢ as

diam(S; ;(t)) < D(t), ¥(i,4) € [k] x [1],
dist(Si, j, (t), Sin o (t)) = L(t), V(i1, j1) # (i2, j2) € [K]x[I].

Let G = (V, E) be a graph, where V is the set of data points,
and FE is the set of edges corresponding to non-zero weights
wj;. Then we have the following proposition describing the
diffusion effects.

Proposition 1. Suppose the data points in each subset
Sij, (i,7) € [k] x [I] form a connected component in the graph
G, and each S; ; is convex. Then, the Distance-Diameter Ratio
grows to infinity, i.e.

L(?)

lim =
Moreover, the growth rate is exponential.

The basic idea for proving Proposition 1| is to show
that L(t) is nonincreasing while D(t) converges to zero at
exponential rate. Using the spectral clustering theory, it is
proved that each subclass converges to its center along with
the diffusion process.
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To meet the assumption that points in each subset form
a connected component in the graph, we should ensure
(1) there is no edge that connect points among different
subsets (2) any two vertices in the same subset S; ; are
connected to each other. By the construction of weight matrix,
each vertex in graph G is only connected to its n,, nearest
neighbors. Thus the first argument is satisfied when the
nearest neighbors only contain points from the same subclass,
which requires that n,, should not be too large. On the
other hand, the threshold for the connectivity of a k-nearest
neighbor graph is O(logn) [64], where n in our setting should
be the number of points in each subset.

The above analysis reveals that the diffusion mechanism
is helpful for organizing data points by making data points
from the same subclass region closer to each other while
others relatively further away. As the Distance-Diameter
ratio increases, it is easy for distinguishing data points
using ResNet flow. This property is important for SSL/FSL
problems as it deeply explores the relationship among points.

5 EXPERIMENTS

In this section, we show the efficacy of diffusion mechanism
on synthetic data, and report the performance of the Diff-
ResNet on semi-supervised graph learning and few-shot
learning tasksﬂ

5.1 Synthetic Data

We conduct experiments on four classical synthetic datasets:
XOR, moon, circle and spiral. In XOR dataset, we directly ap-
ply diffusion without any convection. Then we can clearly see
the evolution process of points that verifies the Proposition
[l The other three datasets are used to show the effectiveness
of diffusion in classification tasks. In this section, we only
show results of XOR and circle datasets. Due to the space
limitation, please refer to Appendix [E.1.4 for more results.

We randomly collect 100 points each in four circles cen-
tered at (0,0), (0,2), (2,0), (2,2), respectively, with radius 0.75.
These four circles are treated as the subsets corresponding to
four subclasses. The circles centered at (0,0) and (2,2) belong
to the same class, and points from them are colored red.
The blue ones are generated similarly. Here, we show the
evolution of points as diffusion strength goes to infinity. As
stated in the Section 3.2 we stack diffusion steps with small
step size 7y to ensure stability. In Figure[3], points distribution
after 1, 10, 20 and 200 diffusion steps are given. In the above
example, the initial diameter is D = 1.5 while the distance
is L = 0.5, which does not meet the sufficient condition
L > D in Proposition 1. However, as shown in Figure
this diffusion still works well. Data points in same subclass
converge to a single point. We also observe from Figure 3] (b)
that the Distance-Diameter Ratio indeed grows exponentially
to infinity.

Remark 3. Some may doubt the use of terminology, diffusion, as
it actually draws similar points together and create high density
regions visually. However, the phenomenon shown in [3|is not
contradictory to the definition of diffusion. The energy of a point is
represented by its coordinate. We expect that neighboring elements

3. Code at https:/ /github.com/shwangtangjun/Diff-ResNet,


https://github.com/shwangtangjun/Diff-ResNet
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Fig. 3. Visualization of diffusion Mechanism on XOR dataset. (a) is raw
data. (b) shows the evolution of D and L/D with diffusion steps. (c)(d)(e)(f)
depicts the evolution of points.

in the graph will exchange enerqy until that energy is spread out
evenly throughout all of the elements that are connected to each
other. As a result, the diffusion mechanism acts as gathering points
together.

Next, we show the effectiveness of diffusion in residual
networks on binary classification tasks containing 1000
planar data points forming two circles. Two classes are
marked with different colors. We use residual networks with
hidden dimensions 2 (so that it will be convenient for us
to visualize the features). The details of experiment settings
can be found in Appendix During training residual
networks with or without diffusion mechanism, we plot
the features before the final classification layer in Figure [
Note that what we plot are not the input data points. Thus,
even without diffusion, the points have to pass through a
randomly initialized residual block. So in subfigure (c) of
Figure |4} features are different from raw input points in (a).
The results of circle dataset is shown in Figure [4

As shown in Figure [4] diffusion can reduce the noise.
In Figure |4 (f),(g),(h), the features are very clean while in
Figure@ (£),(g),(h), features are still noisy. Moreover, diffusion
step makes the final feature much easier to separate. In
Figure[d] (h), features can be easily separated by a straight line
while the features are not linear separable without diffusion
as shown in Figure[d] (e). It is not surprise that in this example
ResNet fails to give correct classification considering it only
has 18 parameters in total. With the help of diffusion step,
even this small network with only 18 parameters can give
correct classification which demonstrates that diffusion is
very useful in classification problem.

5.2 Graph Learning

We investigate the effect of diffusion on semi-supervised
learning problems in graph. In diffusion step, a key point is
how to determine the weights that can properly depict the
relationship between data points. Nonetheless, in graph this
is not a problem since the weights have already been given
in the form of adjacent matrix. We report results for the most
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Fig. 4. ResNet and DiffResNet on circle dataset, (a) shows the position
of raw data points. (b) figures the accuracy of classification tasks with
the training epoch. (c)(d)(e) are features before the final classification
layer without diffusion from different epochs. (f)(g)(h) are features with
diffusion.

widely used citation network benchmarks including Cora,
Citeseer and Pubmed. These datasets are citation networks
in which nodes are documents, edges are citation links
and features are sparse bag-of-words vectors. The concrete
dataset statistics is given in Appendix Moreover, rather
than using the fixed Planetoid [38] split, we follow [65] and
report results for all datasets using 100 random splits with
20 random initializations each.

The mainstream approach in graph learning, such as
GCN [66], GraphSAGE [67] and GAT [68], contains aggrega-
tion steps, which aggregate feature information from neigh-
bors using the adjacent matrix, and then predict labels with
aggregated information. Different from these conventional
paradigm, our method is composed of convection-and-then-
diffusion step. The convection step make full use of the label
information, while the diffusion step exchange the feature
information among data samples. The adjacent matrix is only
used in the diffusion step.

We compare our method with three graph learning
methods: GCN, GraphSAGE (its two variants) and GAT. The
detailed network structure and parameter settings can be
found in Appendix[E.2] The classification results are reported
in Table [1] Diff-ResNet is significantly better than ResNet
without diffusion. It achieves more than 15% accuracy boost
on average, which is a strong evidence for the benefit of
diffusion. Moreover, despite the large discrepancy between
our diffusion network and mainstream networks, our method
still achieves competitive results with respect to classical
methods in graph learning. Thus, we propose an alternative



path for semi-supervised graph learning problems.

TABLE 1
The mean accuracy and std (%) of node classification over 100 random
dataset splits and 20 random initializations each.

Cora Citeseer Pubmed
GCN [66] 815+13 719+19 778429
GraphSAGE-mean [67] 792+77 71.6+19 774+22
GraphSAGE-maxpool [67] 76.6+19 675+23 761+23
GAT [68] 81.8+13 714419 787+23
No-Diff-ResNet 589+19 619+21 701421
Diff-ResNet(ours) 821+ 11 746+18 80.1+20

Additionally, it is reported that methods based on aggre-
gation of neighboring information suffers over-smoothing
problems with increasing depth [69], [70]]. As is observed in
Figure 5] the performance of GCN drops more than 50% on
average when the network depth increases to 32. Different
from GCN, our Diff-ResNet does not use aggregation, thus
the representations of the nodes will not converge to a certain
value and become indistinguishable. When the number of
layers increases to 32, performance of Diff-ResNet only drops
less than 10%, which is partly due to the deep network
training burden. This serves as an evidence that our network
structure is far different from mainstream architectures.

80 |

70 | e

50 | 5 ..

401 '

30| '

0] e ommena T TR
2 4 8 16 32

Layers

Fig. 5. Performance of architectures of different depth. The x-axis
represents number of layers, y-axis is the accuracy.

5.3 Few-shot Learning

Given a dataset X = X, U X,, where X; = {(x;, yi) 1 s
the support set with label information and X, = {z;},2, is
the query set without labels, the goal of few-shot learning
is to find the labels of points in the query set when the
size of support set | V| is very small. Among existing few-
shot learning methods, embedding learning is a typical
approach, which maps each sample to a low dimensional
spaces such that similar samples are close while dissimilar
samples are far away. The embedding function can be
learned by a deep neural network (a.k.a. backbone), which
is pretrained using a large number of labeled examples
over base classes. In the few-shot learning problems, the

8

pretrained embedding function is fixed and maps all data
samples into the embedded space.

We conduct experiments on three benchmarks for few-
shot image classification: minilmageNet, tieredlmageNet and
CUB. The minilmageNet and tieredImageNet are both subsets
of the larger ILSVRC-12 dataset [71], with 100 classes and
608 classes respectively. CUB-200-2011 [72] is another fine-
grained image classification dataset with 200 classes. We
follow the standard dataset split as in previous papers [60],
[73], [74]. All images are resized to 84 x 84, following [20].

We choose two widely used networks, ResNet-18 [1]
and WRN-28-10 [75] as our backbone: the latter widens
the residual blocks by adding more convolutional layers
(28 layers) and feature planes (10 times). First, we train
the backbone on the base classes using cross-entropy loss,
SGD optimizer, standard data augmentation and a mini-
batch size of 256 to train all models. Note that our training
procedure does not involve any meta-learning or episodic-
training strategy. The model is trained for 7' = 100 epochs
for minilmageNet and tieredlmageNet, and 7' = 200 epochs
for CUB. We use a multi-step scheduler, which decays the
learning rate by 0.1 at 0.57" and 0.757. We evaluate the
nearest-prototype classification accuracy on the validation
set and obtain the best model. The embedding training
process is in general similar to that in SimpleShot [60]
and LaplacianShot [61], but details are slightly different.
Eventually we get an embedding function which maps the
original data point to RM where M = 512 for ResNet-18 and
M = 640 for WRN-28-10.

After we obtain a feature vector for every data point, we
compare the performance of 5 typical classification methods
to emphasize the effectiveness of diffusion mechanism.

(1) Nearest Prototype. The prototype m,. of each class ¢
is the average of support set X

Me = —
|Xg
Then the query sample is classified as class c if it is closest
to prototype m. in Euclidean distance. It is the most natural
classification method, and serves as a baseline.

(2) Diffusion. We try to minimize an objective function
with Laplacian regularizer in an iterative way. In Laplacian-
Shot [61], the author optimizes the loss function below

Ny C A No )
L= yicd(x; —me) + 5 > w(xix;) llyi — il

i=1c=1 i,j=1
Ny = |X,| is the number of query samples. y; =
[Yi1,  ¥ic) € {0,1}C is in the C-dimensional simplex,

which assigns label to each query point. d is Euclidean
distance. w (x;, x;) is the weight between x; and x;.

The first loss term functions similar to nearest prototype
classification. The second loss term is the well-known Lapla-
cian regularizer. We use the iterative algorithm provided
by LaplacianShot [61] to minimize the objective function
miny, £. Since there is no neural network, or manipulations
on features, rather just label propagation, we name this
method as Diffusion.

(3) Convection. We minimize cross entropy loss

N1 C
£==3"3 yidog(f(z).)

i=1c=1



TABLE 2
Ablation Study of Diffusion Mechanism. Table shows average classification accuracy (%).

minilmageNet tieredlmageNet CUB

Backbone Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Nearest Prototype 57.09 7930 6346 83,53  66.53  86.03

Diffusion 57.81 79.54 64.38 83.83 67.96 86.49

ResNet-18 Convection 53.04 79.58 56.17 82.79 58.68 86.10
External Convection-Diffusion  55.30 79.55 65.15 83.74 70.00 86.92

Internal Convection-Diffusion  68.47 80.02 75.31 84.19 79.12 87.18

Nearest Prototype 5954 7981 65.60 8476 6856  86.13

Diffusion 60.30 80.31 66.59 85.17 69.70 86.58

WRN Convection 57.07 80.92 58.79 84.69 62.84 87.51
External Convection-Diffusion  59.46 80.70 68.10 85.31 73.08 87.08

Internal Convection-Diffusion  69.77 81.17 77.44 85.50 80.31 87.76

on the support set using gradient descent and a simple
2-layer residual network f. N3 = |X;| is the number of
support samples. The detailed network structure can be
found in Appendix There is no relationship between
data points during training, and the residual network is the
counterpart of a convection ODE, so we refer to this method
as Convection.

(4) External Convection-Diffusion. We minimize cross
entropy loss on the support set plus Laplacian regularizer
using gradient descent and simple 2-layer residual network.
The difference from (3) is that we add a Laplacian regularizer

Ny C
- Z Z Yiclog(f(@i)c)

i=1c=1
N
%Z (i 3) () = £ ())II

to the loss function. N = N; + Ny = |X; U X,| is the total
number of support samples and query samples. The first
variation of the Laplacian term coincides with the diffusion
term of our convection-diffusion ODE. The residual network
structure corresponds to convection, while the Laplacian
regularizer corresponds to diffusion. As diffusion appears
in the loss function externally, we refer to this method as
External Convection-Diffusion.

(5) Internal Convection-Diffusion. We minimize cross
entropy loss

N, C
=3 > wiclog(f(@i)e)

i=1c=1

on the support set using gradient descent and simple 2-layer
diffusion residual network (Diff-ResNet). The loss term is
the same as (3), while the difference is that we add diffusion
layers internally in the network structure. By comparing (4)
and (5), we want to verify the necessity of incorporating
diffusion as part of network structure, rather than as part of
loss function.

Following the standard evaluation protocol [60], we
randomly sample 1000 5-way-1-shot and 5-way-5-shot clas-
sification tasks from the test classes, with 15 query samples
in each class, and report the average accuracy of 5 methods

above in Table Internal Convection-Diffusion, which
uses our proposed Diff-ResNet, achieves best results in
all tasks. In 1-shot tasks, it has a performance boost of
nearly 20% compared to Convection, which clearly states
the effectiveness of diffusion. Additionally, compared to Ex-
ternal Convection-Diffusion, it also has approximately 10%
increase, indicating that embedding diffusion in the network
structure is far more efficient than adding diffusion in the
loss term. In 5-shot tasks, as the nearest prototype method
has already provided competitive baseline, the increase is
not remarkable, but still has about 1% improvement against
Convection.

We use T-SNE [76] to visualize the features before and
after diffusion in 1-shot and 5-shot task in Figure[6] Labeled
data are marked as stars, and unlabeled data are marked
as circles. In 1-shot scenario, we can observe that points are
hard to separate at first. However, with the help of diffusion
mechanism, points in the same subclass are driven closer,
making it easier to classify. In 5-shot tasks, since the sample
points already have nice separability, the improvement
with diffusion mechanism is not so remarked as that in
1-shot tasks. Nonetheless, we could verify the necessity of
introducing subclass in Structured Data Assumption, as the
blue points are indeed divided into two subsets.

Furthermore, we study the effect of several important
parameters in diffusion mechanism: weight truncation pa-
rameter n.p, diffusion step number r and step size 7.
We conduct experiments on 1000 5-way-1-shot tasks on
minilmageNet with ResNet-18 and WRN as backbone, and
report the average accuracy with different parameters.

First, we tune n.p in the Sparse operator. We choose
o = [Ngop/ QE} The results are depicted in Figure @ From
the flgure, we notice that ny,p should be neither too small
nor too large. Small n,, may break up large local clusters,
while large n., will include points from different classes
into neighborhood. However, the classification accuracy is
not very sensitive to n.p, compared to diffusion strength.

Next, we study the effect of total diffusion strength, which
is step size times step numbers ry. We fix v = 0.5 and adjust

4. o(z;) = k means o is chosen to be the k-th closest distance from a
specific point z; , so it varies with points.
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Fig. 6. T-SNE visualization of features before and after diffusion steps.
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points(query data).
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Fig. 7. The effect of nop 0n minilmageNet with ResNet-18 and WRN as
backbone. The x-axis represents niop, y-axis is the accuracy.
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Fig. 8. The effect of total diffusion strength on minilmageNet with ResNet-
18 and WRN as backbone. The x-axis is total strength r+, y-axis is the
accuracy.
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r, ranging from 0 to 20. The results are shown in Figure
Based on our experiments, we should not push the strength
to infinity as in synthetic data, because real data has much
more complicated geometric structure such that we can not
expect each class converge to a single point.
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(a) ResNet-18
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(b) WRN

Fig. 9. The effect of number of steps » on minilmageNet with ResNet-18
and WRN as backbone. The x-axis represents step number r, y-axis is
the accuracy.

Lastly, we fix total strength ry = 5.0, and change r from
0 to 20, to study the effect of the step size. We require v < 1
for stability. When the total diffusion strength is too large
when r < 5, we set v = 1.0. As shown in Figure @ when the
total diffusion strength is fixed, the accuracy almost keeps
the same. Thus, stacking too many layers will not benefit.

At the end of the section, we want to emphasize that our
Diff-ResNet can achieve state-of-the-art. For fair comparison,
we adopt tricks used in LaplacianShot [61], which we
elaborate in Appendix We randomly sample 10000 5-
way-1-shot and 5-way-5-shot classification tasks and report
the average accuracy and corresponding 95% confidence
interval in Table ] The results of networks for comparison
in Table [3| are collected from [60], [61]], [74]. In all datasets
with various backbones, Diff-ResNets obtains the highest
classification accuracy.

Additionally, we investigate the computational cost of
diffusion mechanism. The implementation of diffusion layers
is simply small-scale matrix multiplication, which is very
efficient using GPU. We run 1000 classification tasks using
Diff-ResNet with different number of diffusion layers r, and
report the average computation time per task and accuracy
in Figure [10] The total diffusion strength is fixed as ry = 2.0,
except when r = 1 we choose v = 1.0 for stability. We
use a single GeForce RTX 2080 Ti to collect the running
time. As stated before in Figure [9] with fixed diffusion
strength, there is no need of stacking too many layers. In both
subfigures, 2 diffusion layers can already achieve the best
result, whereas the increase in time compared to no diffusion
is approximately 25%. Moreover, the time of 10 diffusion
layers roughly doubles that of without diffusion, and 10
layers is enough to achieve desired diffusion strength in all
few-shot tasks. Thus, the computational cost is acceptable.

6 CONCLUSION

In this paper, inspired by the ODE model with diffusion
mechanism, we propose a novel Diff-ResNets by adding a
simple yet powerful diffusion layer to the residual blocks.
We conduct theoretical analysis of the diffusion mechanism



TABLE 3

11

Average accuracy (in %) and 95% confidence interval in minilmageNet, tieredlmageNet and CUB. We mark transductive learning method with 1.

minilmageNet tieredImageNet CUB

Methods Backbone 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
MAML [77] ResNet-18 | 49.61 +0.92 65.72 £ 0.77 - - 69.96 + 1.01 82.70 £ 0.65
Baseline [74] ResNet-18 | 51.87 £ 0.77 75.68 4+ 0.63 - - 67.02 +£0.90 83.58 + 0.54
RelationNet [58] ResNet-18 | 5248 4 0.86 69.83 +-0.68 | 54.48 093 71.324+0.78 | 67.59 +-1.02 82.75 4 0.58
MatchingNet [20] ResNet-18 | 52.91 + 0.88 68.88 &+ 0.69 - - 7236 2090 83.64 £ 0.60
ProtoNet [57] ResNet-18 | 54.16 2 0.82 73.68 £ 0.65 | 53.31 £ 0.89 72.69 £0.74 | 71.88 2091 87.42 4+ 0.48
Gidaris [78] ResNet-15 | 55.454+0.89 70.13 4 0.68 - - - -
SNAIL [79] ResNet-15 | 55.71 +0.99 68.88 + 0.92 - - - -
TADAM [59] ResNet-15 | 58.50 +0.30 76.70 4+ 0.30 - - - -
Transductive [80] ResNet-12 | 62.35 £ 0.66 74.53 4 0.54 - - - -
MetaoptNet [81] ResNet-18 | 62.64 +0.61 78.63 +0.46 | 6599 +0.72 81.56 & 0.53 - -

TPN [82]1L ResNet-12 | 53.75 £ 0.86 69.43 +0.67 | 57.53 £ 0.96 72.85 + 0.74 - -
TEAM [83]" ResNet-18 | 60.07 & 0.59 75.90 4 0.38 - - 80.16 = 0.52 87.17 4 0.39
CAN+T [84]" ResNet-12 | 67.19 +0.55 80.64 +0.35 | 73.21 & 0.58 84.93 4+ 0.38 - -
SimpleShot [6O]Jr ResNet-18 | 63.32 £ 0.20 80.19 +£0.14 | 69.64 £ 0.22 85.00 £0.16 | 71.63 £0.20 87.07 & 0.12
LaplacianShot [61]7  ResNet-18 | 70.66 +0.23 8227 +0.14 | 77.55 + 0.24 86.12 + 0.16 | 80.08 + 0.22  88.38 & 0.12
Diff—ResNet(ours)T ResNet-18 | 71.54 + 0.24 82.80 +£0.14 | 7857 £0.24 86.77 == 0.16 | 80.92 + 0.22 89.01 + 0.12
Qiao [85] WRN 59.60 & 0.41 73.74 £0.19 - - - -

LEO [_86| WRN 61.76 £ 0.08 7759 +£0.12 | 66.33 £ 0.05 81.44 + 0.09 - -
ProtoNet [57] WRN 62.60 =020 79.97 +0.14 - - - -
CC+rot [87] WRN 6293 £045 79.87+0.33 | 7053 £0.51 84.98 +0.36 - -
MatchingNet [20] WRN 64.03 £ 0.20 76.32 +£0.16 - - - -
FEAT [88] WRN 65.10 £ 020 81.11 +£0.14 | 70.41 £ 0.23 84.38 £ 0.16 - -
Transductive [80] WRN 65.73 £0.68 7840+ 052 | 73.34+0.71 85.50 &+ 0.50 - -
BD-CSPN [62]]7 WRN 70.31 2093 81.89+0.60 | 78.74 £ 0.95 86.92 + 0.63 - -
SimpleShot [6O]Jr WRN 6458 £ 020 81.03+0.14 | 7091 £0.22 8593 +£0.15 | 73.24 £0.21 87.61 +0.12
LaplacianShot [61]T WRN 7127 £ 023 8242 +£0.14 | 78.65 £0.24 8692 +0.16 | 81.07 £ 0.22 88.45 + 0.13
Diff—ResNet(ours)T WRN 72.25 + 024 83.12+0.14 | 79.70 £ 0.24 87.55+ 0.16 | 81.43 =022 89.01 &+ 0.12
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Fig. 10. The computation time of each task and accuracy on
minilmageNet with ResNet-18 and WRN as backbone. The x-axis
represents number of diffusion layers, 0 means no diffusion, right y-
axis is the computation time (seconds) of each task, left y-axis is the
average accuracy.

and prove that the diffusion term will significantly increase
the ratio between local intra-class distance and inter-class
distance. The performance of proposed Diff-ResNets is
verified by extensive experiments on few-shot learning and
semi-supervised graph learning problems.
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APPENDIX A
PROOF OF STABILITY CONDITION

In this section, we will give the stability condition of
discretization of the diffusion step. When the convection
term equals zero, the forward Euler discretization of @ is

N

k+1 _ .k k ky s _

&z —xi—VZwij(:Ei—xj),z—l,Q...,N,
j=1

At is again absorbed in 7. Define X* = [2%,...,2%/], the
vectorized update scheme is

XM= YA -W)X 8)
where A = diag(d;) with d; = Z wg; for all ¢ =

1,2,...,N. We demand all the {d;} share the same value
dy = d2 = dy := d. The next proposition shows the
stability condition of iteration (8).

Proposition 2. If vy € (0, é], the iteration is a contraction.

Proof. Matrix with spectral radius smaller than 1 is a contrac-
tion matrix, since

[Az]l2 < [[All2]|z]l2 <

for any x if ||Alj2 = p(A) < 1.

Thus, we are trying to prove that p(I —y(A —W)) < 1
In fact, we will show that p(I — v(A — W)) = 1. Denote
A=T—~vA-W)

First, it is obvious that 1 is an eigenvalue of A. A — W
is a matrix with row sum 0 by construction of A, thus 0 is
an eigenvalue of A — W with 1 its correspoding eigenvector.
Therefore, 1 is an eigenvalue of A =T — y(A — W).

Then, as A is obviously a symmetric matrix, all of its
eigenvalues ) are real. We will show that all the eigenvalues
of A lies in [—1,1] using the Gershgorin disk theorem. In
the i-th row of A, the diagonal entry is 1 — v(d — wy;),
and the off-diagonal entries are yw;; for all j # 4. Thus,
the disk decided by this row is centered at 1 — y(d — wy;),
with radius }_; ,; yw;;. Remind again that d = }_; w;;, so

]2

>z YWij = y(d — w;;). Using v € (0,%), we have
1< 1—2vd
<1 —2vd + 2ywy;
=1-7(d—wi) —y(d — wi)
<A

—(d —wy;) +7(d —wii) =1
The second inequality is because all entries in W are non-

negative. In conclusion, the spectral radius of A is 1. O

In the algorithm, weight matrix is symmetrically nor-
malized, thus d = O(1). Therefore, in our batch diffusion
mechanism, once the step size meets a relatively loose
constraint, the stability can be guaranteed.

APPENDIX B
PROOF OF THEOREM 1

We write the weight of the second layer as a
for proof convenience. )\ € R, 5 () ¢ R Then

ﬂwwm:zwww>

ESNONIO

x(t) + b)) 8y”
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First of all, let us deal with the simplest situation. Each

region S, ;, (¢,7) € [k] x [I] only has 1 point, and the width
of the 2-layer network is also 1.

Lemma 1. Assume:

f(=(1),0(t)) (1) + ) By
Then, given the dataset {(x;,y;)}.,, we can construct the
function f above with 2N + O(d) different variables and N
layers, so that the final-step features of these data points are linear
separable.

= )\tO'(W

Proof. Given N data points 1,22, -+ ,ZN € R¢ with their

corresponding labels.

1) There exists w € R, such that w - 2;, i € [N] are all
distinct. This is obvious since W;; = {w|w -z, = w - z,}
forms a hyperplane of R?, which has 0 measure. Therefore
their finite union

U wiy

1<i<j<N

K =

also has 0 measure. We only need to pick a w* € R?\ K,
so that this w* meets our need. Let w; be a constant value
function and w; = w* holds for all ¢ € [0, 1]. Since the dot
products w* - x; are pairwise distinct, we can assume:

W <W ez << Wy

Denote A; = w* - z; and then A1 < Ay < --- < Apn

2) Without loss of generality, we assume the d-th compo-
nent w}; # 0, then we denote:

B = (1,1

Let (; also be a constant value function and 3; = 8*. Then
we have: w* | 8* and our main function f becomes:

a'(t) = f(x(t),0(t)) = Mo (W™ - z(t) + by) 5"
We notice that:
(w" - a(t))

*
Wa

+ W)
- d71>

=w" - (No(w" - z(t) +b)5")
=No(W*-x(t)+ b)) - (Ww*-5%) =

which means during the flow, w* - z(¢) remains constant.

Thus
w*ez;(t)=w" - 5;(0) =w" - x; = A; Vi€ [0,1],i € [N]

and z}(t) = Mo (4; + by)B*. Using the definition of ReLU
activation function , when A; + by < 0, z;(¢) remains
unchanged.

3) Pick N real numbers By, Bo, - - -
Bi <A <By< Ay <---

, By such that:
< By < An
Now we construct the time-dependent scalar b,:

e

As we can see, b, is piecewise constant with N pieces, or
so-called layers.

b= —B;, Vt € [



4) Finally, we construct suitable time-dependent scalar A,
to make the final-step features z;(1), ¢ € [IV] linear separable.
Pick 2 real numbers C; < C5. We will choose a suitable
position for z;(1) one by one. To be concrete, we will make
the first component of z;(1):

(zi(1))1 = Cy,

Here y; € {1,2} is the corresponding label of data point ;.
Notice that, for each j € [N — 1], when t > £,
x1(t), x2(t),- - - ,x;(t) remains constant, because according
to our construction of b; and sequence {B;}, A; + b, <
Aj —Bjy1 <Owhent > £ and i < j.
In the first time step, ¢ € [0, %), data point z1(0) =
has its corresponding label y; € {1, 2}. Since b, = —B;

z1(t) = M(Ay — B1)B”

Make
Cy, — (.’L‘l (0))1 1
M=N=-"L 2" N Vte |0,
t 1 A1 — B1 € 7N
Then
1
n(1) =n(5)
1
= iL’l(O) + N)\l(Al - Bl)ﬂ*
= 21(0) + (Cy, — (21(0))1)5"
Note that the first component of 3* is 1, so (z1(1))1 = Cy,
Similarly, in the j-th time step, ¢t € [%, % and b; =
—Bj. We choose a suitable position for z;(1). Make

C

i—1
jm sy o= a5

so that:

zj(1) = z; (%

() 6 ((5),

and then its first component (z;(1)); = Cy,.
To sum up, )\ is piecewise constant with N pieces. \; =
\j when t € [IZ1, L), Here:

Cy, — (z; (5 j—1 j
Ty iR Vte[T ,N)

After all these time steps, we can guarantee that for each
i € [N],

A\ =

(zi(1))1 = Cy,

In other words, final-step features with the same correspond-
ing label y; € {1,2} are on the same hyperplane, vectors
with fixed first component {v : (v); = C,, }. Therefore, it is
obvious that they can be easily separated by a hyperplane

{V c(v) = %}

which meets our satisfaction. In this construction of function

f, Wi, B remains constant, and A, b; changes every time
step. In all, there are 2N + O(d) variables. O
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In the setting above, the width of this network is 1. Now
we will deal with a slightly harder situation: network with
width w. And our next lemma can perfectly answer this
question: it’s possible to use fewer layers (but same number
of parameters) to make the final features linear separable
when using wider network.

Lemma 2. Assume:
Fa),00) =3 Ma(wi - a(t) + 0)8"
=1

Here w is the width of the network.

Then, given the dataset {(x;,y;)}.,, we can construct the
function f above with 2N + O(d) different variables and [N /w]
layers, so that the final-step features of these data points are linear
separable.

Proof. Exactly like Lemma we let wgi) =w" and ﬂt(i) =p*
for Vi € [w]. And we will construct suitable time-dependent
scalars A7, by in order to make:

(zi(1)1 = Cy,

holds for all ¢ € [N].

Define Byy1 = Byt2 = -+ = Any + 1, and denote
L = {%1 Before further analysis, we split the whole time
period [0, 1] into L equal time steps.

In the j-th time step, t € [L71, 1), let:

b = =B - 1)wtis A = AG-1yw+i Vi € [w]

where )\; is undetermined. _

Notice that each b,(f) and )\EZ) is piecewise constant
with L pieces. Similar to Lemma I} after the j-th time
step, x1(t), x2(t), - ,2;w(t) remains unchanged, because
Vi € [jw],t > %, A; + bij) < Ajw — Bjuws1 < 0. Therefore,
our plan is to put z(;_1)y+1(1), ZG—1ywr2(1), -+, Tjw(1)
into suitable positions during the j-th time step, which
means:

-1 1
Cyi = @i (=) ) + 7D AG-1wtk - 0(Ai = BG_1)wtr)
L 1 L k=1
) i—(j—1w
j—1 1
= (a:z (T)) +7 > AG-nwtk - (Ai = B tywin)
1 k=1
Vi—1Dw<i<jw

It is a linear system of equations, and we can solve these
Ai, (7 — Dw < i < jw through the linear functions above
uniquely.

After all of these time steps, we can guarantee that:

(zi(1)1 = Cy,

holds for all ¢ € [V].

In this proceedings, we use only L = [%W layers to meet
our satisfaction. However, the number of variables we use is
also 2N + O(d), which does not change with the increase of
network width. O

At last, we can deal with the original Theorem [I} which
has width w and each region has several points. It is a simple
extension of Lemma [



Proof. For simplicity, we reorganize M = kl subsets and
renumber them as I',,, = S; j, m € [M], (i,7) € [k] x [I], as
we do not have to distinguish whether regions are from the
same class or different classes. Since they can be separated
by a set of M — 1 parallel hyperplanes, there exists a vector
w* € R?, such that the following intervals do not intersect
with each other:

w’* -T e {W* l’l|£L'Z S Fz} xS [M]

We can assume Vz; € I',20 € g, -+ , 20 € Tpg:

W< Wi <o < Wy

Therefore, there exists real numbers B; < A1 < Bs < As <
-+ < By < A osuch that w* - T C [B;, Aj]. Just like the
proof of Lemma |2, we let wil) = w* and 5t(1) = f* for
Vi € [w]. Here, without lack of generality, assume the d-th

component of w* is non-zero, and let

B*:<1’1,"', 1 2 d*l)

Wy

After that, we can treat these M regions just as M data
points. The only difference is: instead of making each final-
step feature with the same corresponding label has the same
first component, we make them in the same interval.

Pick 2 intervals C,, = [ay,, by,]| such that: (1) a1 < b1 <
as < by, therefore these two intervals don’t intersect with
each other. (2) b,, — a,, > D holds for each y; € {1,2}. So
that, each interval can hold a complete region I';. Then we
can use exactly the same way as Lemma to make z;(1) C
C,,, and we only have to change the two real numbers
(1 < C5 into the two intervals above. In the end, we can
separate the final-step feature regions with the following
parallel hyperplane:

{v:(v)1:d1;r62}

Similar to Lemma @ we use L = [%W layers. Moreover,
the number of variables we use decreases to 2M + O(d),
which is a significant change. O

1, -

APPENDIX C
PROOF OF THEOREM 2

Proof. Similar to the last subsection, we reorganize M = ki
subsets and renumber them as I',,, = S; ;, m € [M], (i,j) €
[k] x [1]. According to the definition of upper bound of diam-
eters D, assume I'; C B(O;, D/2) and denote R = D/2.

First we introduce some notations. Denote hypersphere
in d-dimension with radius r as S%~!(r). If r = 1, which is
a unit hypersphere, we simply write S¢~!. Denote A(w) as
the surface area of w. I'(z) is the Gamma Function.

The goal to find a unit normal vector w € .S =1 "such
that V b € R, hyperplane w - x + b = 0 does not intersect
with any two regions I'; and I';.

Denote:

K;; ={w:||w|2 =1, 3b€R,s.t. hyperplane wx +b =10
intersects with both I'; and I'; }
Then we need to prove:

U &;cs? ©)

1<i<j<M
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so that every unit normal vector w which doesn’t belong
to any K;; meets our satisfaction. In order to prove @I), we
compare the surface area of the two sides.

It is well known that on the right side

2’/Td/2
(5)

We are going to calculate the surface area of the left side.
For any i # j € [M], we do the scaling as follows:

A(Sh) =

K;j ={w:|w|s =1, 3b€R,s.t. hyperplane wx + b =0
intersects with both I'; and I'; }
C{w:|lw|l2 =1, 3b € R, s.t. distances from O;, O;
to wx + b = 0 are at most R}
={w:|wl2=1, I3beR,st. |w-0; +b <R,
|w-0; + b <R}
={w:||wl2=1, [w-0;, —w-0;| < 2R}
—— 2R D
- : =1 -0,0;| < — = —
i —
Here, O;0; means the unit vector in the direction of O;0;
and the last step above is because ||0;0;|| > dist(T';,T';) >
L. Denote t = %,ed = (0,0,---,0,1). By our assumption
obviously ¢t < 1. Next we will calculate the surface area of
Kij~

A(Ki) < / ds

oas=

weSd—1 |w-0,0;|<t weSd—1 |w-eq|<t

It is the surface area of a hyperspherical segment: the solid
defined by cutting a hypersphere with a pair of parallel
planes {v : (v)q = t} and {v : (v)q = —t}. It can also
be seen as a complete sphere excluding upper and lower
hyperspherical caps. The area of a hypersherical cap in a d-
dimensional sphere of radius r can be obtained by integrating
the surface area of an (d — 1)-dimensional sphere of radius
rsin(6) with arc element rdf over a great circle arc [89]. Here
r =1, and 0 is integrated over 0 to ¢ = arccos(t), which is
the colatitude angle, i.e., the angle between a vector of the
sphere and its d™ positive axis.

arccos(t)
AU <A =2 [ A(ST 2 sing))ds
0

2 (d—1)/2 arccos(t)
_ASEy / sin2 0do
0

L5

It is obvious that when ¢ = 0, the hyperspherical segment
is just the whole sphere, which means

or(d=1)/2 r%
2 777/ sin?=2 0do
0

(&)

A5 =
Thus

opld=1)/2 r3
A(Ky) <2 5 / T sind20d9
F(?) arccos(t)

:A(Sdfl) 2F(%) /72r

. d—2
sin®™~ 0d6é
ﬁr(%) rccos(t)



Therefore:
A(Kij) 21 (%) /g d2
< — sin' 0de
A(Sdil) \/EF(%) arccos(t)
20'(4)
< ——(m/2 — arccos(t))
vl (45h)
2I'(4)
= arcsin(t)
V(55!

Next we will estimate its upper bound. From the graph
of function, we can obtain the upper bound of arcsin(t) <
ot, ¥t € [0, 1]. The upper bound of the other part containing
Gamma function is given in the following lemma.

Lemma 3.
I'(3)
L%

[V]ISH

Vd € N

<

N QL

Proof. When d < 5, the lemma can be easily verified using
exact values of the Gamma function. Suppose d > 6. Note
that Gamma function I'(x) is monotonically increasing when
x> 2

If d is odd, then % is an integer, and % > 2

In the equation above, we use the property of Gamma
function: I'(z + 1) = zT'(z) if x is an integer.
Similarly, if d is even, then % is an integer, and g —-1>2

NG INES
DI R
F(T) F(§ -1) 2 2
O
Therefore:

A(s1y S m22' T 2
Finally, we are able to calculate the surface area of the left

side of (9):

A U ki) <

> A(Ky)

1<i<j<M 1<i<gj<M
\fth(Sd 1) (];4)
SA(Sdfl)

Here, we use the assumption that:

=D (e

Thus, the correctness of @]) is obvious. O
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APPENDIX D
PROOF OF PROPOSITION 1

Proof. Following proof of Theorem 1 and 2, renumber the
M = kl subsets and denote them I',, = S;;, m €
[M], (i,7) € [k] x [I] for notation convenience. We consider
the forward Euler discretization of the diffusion process:

2kl = g *Vwa

We will first prove that with each update scheme, the new
region Fif”l - Ff’, thus L(t) in monotonic non-decreasing.
For a specific data point x;, suppose x; € I',,. Since
Z;V:l w;; = 1 by normalization, the diffusion is:

N
k k
)of + Y wija
=1

By assumption, points in each subset I',;, forms a con-
nected component in graph G. Thus, the nearest n,p, points
of z; are all from I'y,, i.e. wy; > 0 only if x; € I'y, [} Use
the condition Fm is convex, and Y j=1 wi; = 1 again, the

), Vi € [N]

E4+1 _
;T =

weighted sum Z _, wi;; also lies in the convex region I,
Finally, as (1—v)+v = 1, we get 2™ € I,,,. In other words,
after batch diffusion, the new convex reglon el c Tk,

Then we will show the upper bound of dlameters D(t)
decreases exponentially to 0 with . We may write diffusion
mechanism in the vectorized form:

d)d(it(t) +y(A-W)X(t)=0, X(0)=X. (10
where X (¢) ()], X = [z1,...,2n], A =

= [Il(f')? .
diag(d;) with d; = Zjvlw” for all ¢ = 1,2,...,N,
W(i,j) = wi;. L = A — W is called graph Laplac1arﬂ
Denote the eigenvalues and corresponding eigenvectors
of L as A; and v;, ¢ € [N]. Since L is a positive semi-
definite symmetric matrix, \; are real and non-negative.
Suppose 0 < A1 < A2 < -+ < An. In spectral clustering
literatures [90]], the reliance of graph diffusion on L is
well studied. A well-known result is: the multiplicity of 0
eigenvalue of the Laplacian equals the number of connected
components of graph G.

We start with the simple case, where the graph G only
admits one connected component, i.e. when all data points
belong to the same subclass. In this case, Ay = 0 with v; =
1 its correspoding eigenvector, and A\; > 0, Vi # 1. We
will prove all points converge to their central. The spectral
solution of is [90]:

(11)
Ast — 00, e~ 7t — 0 if \; > 0. Define

x1+x2+...
me = N

+ TN

5. Reverse not necessarily true. z; € I'y, does not necessarily imply
w;; > 0.
6. Abuse of notation with the lower bound of distances L



as the central point of data points. Then

lim X (t) = lim

t—o0

: 7mc]

The result above implies that all data points eventually
lie in the same position, which is their central point, as time ¢
approaches infinity. Moreover, it is obvious from the equation
that the growth rate is exponential. Thus, with the evolution
of our diffusion mechanism, the diameter D(t) decreases
exponentially to 0.

For the more general case where there are M connected
components in the graph, the proof is identical by using the
fact that the multiplicity of 0 eigenvalue of the Laplacian
equals the number of connected components of graph G.
For each connected component, its points will converge to a
specific central, and the diameter of each subset

tlim diam(T',,(¢)) = 0, Vm € [M]

Thus the upper bound of diameters D(t) decreases exponen-
tially to 0. Combining the results L(t) is non-decreasing and
D(t) — 0 exponentially, we get
L)
A By T

the growth rate is exponential. O

APPENDIX E
EXPERIMENT DETAILS AND RESULTS

E.1 Synthetic Data
E.1.1 Dataset

XOR Uniformly collect 100 points each in four circles
centered at (0,0), (0,2), (2,0), (2,2), respectively. Circles are
with radius 0.75.

Moon Uniformly collect 500 points each in two arcs of
semi-circle: one is the upper arc of a circle centered at (0, 0)
with radius 1, the other is the lower arc of a circle centered at
(1, 0.5) also with radius 1. Points are added with a standard
gaussian noise multiplied by 0.05.

Circle Uniformly collect 500 points each in two circumfer-
ence of circles: both are centered at (0, 0), one has radius 1
and the other has radius 2. Points are added with a standard
gaussian noise multiplied by 0.05.

Spiral Uniformly collect 500 points each in two spirals:
both are parametrized by r» = a + bf. One has a = b = 1 and
the other has a = b = —1. Points are added with a standard
gaussian noise multiplied by 0.1.

E.1.2 Network Structure

r=1z+FC2(ReLU (FCl(x)))
2 = Diffusion(x)
y=FC3(x)

for r times
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We use one residual block, ie. s = 1. All the fully
connected layers are of size 2x2 with bias (that is why we
have totally 3x2x3=18 parameters). As for the diffusion
layer, we use a fixed step size 7, and iterate for r times.

E.1.3 Parameters

TABLE 4
Parameters for synthetic data

Ntop o 0 r

XOR 20 05 1.0 /

Moon 25 05 1.0 60
Circle 50 05 1.0 200
Spiral 25 05 1.0 900

For the classification tasks, our optimizer is SGD with
Ir= 1.0, momentum= 0.9 and weight_decay= 5e — 4. For
spiral dataset, we adjust lr= 0.8.

E.1.4 Additional Results

We provide the figures describing the evolution of features
with or without diffusion in residual network on the other
two synthetic datasets in Figure[11|and Figure

100

s
A A A

—— without diffusion
with diffusion

5 10 15 20

(b) accuracy

(c) w/o, epoch=0 (d) w/o, epoch=10 (e) w/o, epoch=20

I/ N/ o
\/’

(h) w, epoch=20

(f) w, epoch=0 (9) w, epoch=10

Fig. 11. ResNet and DiffResNet on moon dataset, figures are arranged
similar to Fig[4]

E.2 Graph Learning
E.2.1 Dataset

Here we give the statistics of each dataset. For each randomly
chosen split, we pick 20 labeled points for training, and 30
points for validation in each class. All of the rest points
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Fig. 12. ResNet and Diff-ResNet on spiral dataset, figures are arranged
similar to Fig[4]

are used as the test set. For all datasets, we treat the
graph as undirected and only consider the largest connected
component.

TABLE 5
Graph Dataset Statistics.

Dataset  Node Edge Class Feature Dim Label Rate
Cora 2485 5069 7 1433 0.057
Citeseer 2120 3679 6 3703 0.056
Pubmed 19717 44324 3 500 0.003

E.2.2 Preprocessing

We follow the normalization technique in GCN [66]: the
adjacent matrix is first added with a self-loop, and then
symmetrically normalized. The feature vectors are row
normalized.

E.2.3 Network Structure

Since we observe severe overfitting problem in graph learn-
ing, we delete FC2 to reduce the number of parameters, and
apply dropout on the feature vectors after each round of
diffusion.The network structure is:

x=x+ReLU (FC1 (x))
x = Dropout ( Diffusion (x))
y=FC3(x)

for r times

The fully connected layers have input and output di-
mension the same as feature dimension. The new structure
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introduces a new parameter compared to toy examples: the
dropout rate. But parameter ngqp and o is unnecessary in
graph learning.

E.2.4 Parameters

Parameters are chosen based on the accuracy on the valida-
tion set.

TABLE 6
Parameters for graph learning

¥ r dropout rate
Cora 20 0.25 0.25
Citeseer 20 0.2 0.35
Pubmed 10 04 0.3

E.3 Few-shot Learning
E.3.1

Following previous works [60], [61], [62]], three additional
feature transformation skills are used to enhance the perfor-
mance.

(1) Centering and Normalization

Preprocessing

r=x—2 then z= Ve € X, UX,

T
llzll2”
Z is the base class average.

(2) Cross-Domain Shift z = z + A, Vz € X, where

1 1
A = -
Fap |xq|xzq"”

is the difference between the mean of features within the

support set and the mean of features within the query set.
we apply the first two transformations to all extracted

features.

(3) Prototype Rectification

. 1 exp(cos(z, m.))
Me = ———— z
© X+ Xl we{xtxe} EZG{XE,XS} exp(cos(z, m.))
Here m, = \Xc\ Zxc x is the mean of features within the

support set of class c. X¢ is the support set with label c. X5 is
a pre-classified set based on nearest neighbors.

Prototype rectification is only applicable to classification
methods that are based on prototype, and cannot be directly
applied to our Cross-Entropy loss. Nonetheless, we observe
in the ablation study [5.3|that in 5-shot tasks, merely nearest
prototype classification can already achieve very competitive
results, indicating the effectiveness of prototype in 5-shot
tasks. So we mimic the first loss term in [61] and propose the
prototypical loss below.

c
Prototypical Loss = Z Z f(z)ed(z

T EXq c=1

i_mc)

The final loss is a weighted sum of Cross-Entropy Loss
and Prototypical Loss, with another parameter « before
Prototypical Loss.



E.3.2 Network Structure

The structure is identical to that in the toy examples, just
changing the input and output dimension of each FC layer
from 2 to M, where M is the dimension of embedded
features.

E.3.3 Parameters

In the few-shot setting, the meaning of o is slightly different:
weight is now calculated by w;; = exp(—|z; —z;||3/0(x:)?),
where o(x;) = k means o is chosen to be the k-th closest
distance from a specific point z; , so it varies with points.

In ablation study, niop = 8, 0 = 4. The diffusion step size
vy is fixed to be 0.5 for all tasks. The diffusion step number
r = 10 for 1-shot learning, » = 5 for 5-shot learning. A = 0.5,
n=0.01.

In experiments with additional tricks, we also choose
Ngop = 8, 0 = 4. The diffusion step size - is fixed to be 0.5 for
all tasks. The diffusion step number r varies with tasks: for
1-shot learning, r = 5 for minilmageNet and tieredImageNet,
r = 6 for CUB; for 5-shot learning, » = 3 for all datasets and
backbones. In addition, the weight before Prototypical Loss
is o = 0 for 1-shot tasks, and o = 0.5 for 5-shot tasks.

The optimizer is SGD with initial learning rate= 0.1,
momentum= 0.9 and weight_decay= le-4. We train T' =
100 epochs. We use a multi-step scheduler, which decays the
learning rate by 0.1 at 0.57 and 0.757.
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