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EFFICIENT NUMERICAL METHODS FOR COMPUTING THE
STATIONARY STATES OF PHASE FIELD CRYSTAL MODELS\ast 

KAI JIANG\dagger , WEI SI\dagger , CHANG CHEN\dagger , AND CHENGLONG BAO\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Finding the stationary states of a free energy functional is an important problem in
phase field crystal (PFC) models. Many efforts have been devoted to designing numerical schemes
with energy dissipation and mass conservation properties. However, most existing approaches are
time-consuming due to the requirement of small effective step sizes. In this paper, we discretize
the energy functional and propose efficient numerical algorithms for solving the constrained noncon-
vex minimization problem. A class of gradient-based approaches, which are the so-called adaptive
accelerated Bregman proximal gradient (AA-BPG) methods, is proposed, and the convergence prop-
erty is established without the global Lipschitz constant requirements. A practical Newton method
is also designed to further accelerate the local convergence with convergence guarantee. One key
feature of our algorithms is that the energy dissipation and mass conservation properties hold dur-
ing the iteration process. Moreover, we develop a hybrid acceleration framework to accelerate the
AA-BPG methods and most of the existing approaches through coupling with the practical New-
ton method. Extensive numerical experiments, including two three-dimensional periodic crystals
in the Landau--Brazovskii (LB) model and a two-dimensional quasicrystal in the Lifshitz--Petrich
(LP) model, demonstrate that our approaches have adaptive step sizes which lead to a significant
acceleration over many existing methods when computing complex structures.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . phase field crystal models, stationary states, adaptive accelerated Bregman proxi-
mal gradient methods, preconditioned conjugate gradient method, hybrid acceleration framework

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35J60, 35Q74, 65N35

\bfD \bfO \bfI . 10.1137/20M1321176

1. Introduction. The phase field crystal (PFC) model is an important approach
for describing many physical processes and material properties, such as the formation
of ordered structures, the nucleation process, crystal growth, elastic and plastic de-
formations of the lattice, and dislocations [9, 31]. More concretely, letting the order
parameter function be \phi (\bfitr ), the PFC model can be expressed by a free energy func-
tional

E(\phi ; \Theta ) = G(\phi ; \Theta ) + F (\phi ; \Theta ),(1.1)

where \Theta are the physical parameters, F [\phi ] is the bulk energy with polynomial-type
or log-type formulation, and G[\phi ] is the interaction energy that contains higher-order
differential operators to form ordered structures [6, 26, 36]. A typical interaction
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EFFICIENT NUMERICAL METHODS FOR PFC MODELS B1351

potential function for a domain \Omega is

(1.2) G(\phi ) =
1

| \Omega | 

\int 
\Omega 

\Biggl[ 
m\prod 
j=1

(\Delta + q2j )\phi 

\Biggr] 2

d\bfitr , m \in \BbbN ,

which can be used to describe the pattern formation of periodic crystals, quasicrystals,
and multipolynary crystals [26, 28]. In order to understand the theory of PFC models,
as well as predict and guide experiments, it requires finding stationary states \phi s(\bfitr ; \Theta )
and constructing phase diagrams of the energy functional (1.1). Denote V as a feasible
space; then the phase diagram is obtained via solving the minimization problem

min
\phi 
E(\phi ; \Theta ) s.t. \phi \in V(1.3)

with different physical parameters \Theta , which brings the tremendous computational
burden. Therefore, within an appropriate spatial discretization, the goal of this paper
is to develop efficient and robust numerical methods for solving (1.3) with guaranteed
convergence while keeping the desired dissipation and conservation properties during
the iterative process.

Most existing numerical methods for computing the stationary states of PFC
models can be classified into two categories. One is to solve the steady nonlinear
Euler--Lagrange equations of (1.3) through different spatial discretization approaches.
The other class aims at solving the nonlinear gradient flow equation by using the nu-
merical PDE methods. In these approaches, there have been extensive works on
energy stable numerical schemes for the time-dependent PFC model and its various
extensions, such as the modified PFC (MPFC) [40, 22, 15] and square PFC (SPFC)
models [11]. Typical energy stable schemes to gradient flows include convex split-
ting methods [41, 35], stabilized factor methods in both the first- and second-order
temporal accuracy orders [33], the exponential time differencing schemes [13], and
the recently developed invariant energy quadrature [46] and scalar auxiliary variable
approaches [32] for a modified energy. It is noted that the gradient flow approach
is able to describe the quasi-equilibrium behavior of PFC systems. Numerically, the
gradient flow is discretized in both space and time domain via different discretization
techniques and the stationary state is obtained with a proper choice of initialization.
Many popular spatial approximations have been used, such as the finite difference
method [41, 40, 17], the finite element method [14, 12], and the Fourier pseudospec-
tral method [10, 20, 11].

Under an appropriate spatial discretization scheme, the infinite-dimensional prob-
lem (1.3) can be formulated as a minimization problem in a finite-dimensional space.
Thus, there may exist alternative numerical methods that can converge to the steady
states quickly by using modern optimization techniques. For example, similar ideas
have shown success in computing steady states of the Bose--Einstein condensate [42]
and the calculation of density functional theory [38, 27]. In this paper, in order to
keep the mass conservation property, an additional constraint is imposed in (1.3)
and the details will be given in the next section. Inspired by the recent advances
in gradient-based methods, which have been successfully applied in image processing
and machine learning, we propose an adaptive accelerated Bregman proximal gradient
(AA-BPG) method for computing the stationary states of (1.3). In each iteration, the
AA-BPG method updates the estimation of the order parameter function by solving
linear equations which have closed form when using the pseudospectral discretiza-
tion and chooses step sizes by using the line search algorithm initialized with the
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Barzilai--Borwein (BB) method [1]. Meanwhile, a restart scheme is proposed such
that the iterations satisfy the energy dissipation property and it is proved that the
generated sequence converges to a stationary point of (1.3) without the assumption
of the existence of the global Lipschitz constant of the bulk energy F . Moreover, a
regularized Newton method is applied for further accelerating the local convergence.
More specifically, a preconditioned conjugate gradient method is designed for solv-
ing the regularized Newton system efficiently. Extensive numerical experiments have
demonstrated that our approach can quickly reach the vicinity of an optimal solution
with moderately accuracy, even for very challenge cases.

The rest of this paper is organized as follows. In section 2, we present the PFC
models considered in this paper and the projection method discretization. In section 3,
we present the AA-BPG method for solving the constrained nonconvex optimization
with proved convergence. In section 4, two choices of Bregman distance are pro-
posed and applied for the PFC problems. In section 5, we design a practice Newton
preconditioned conjugate gradient (Newton-PCG) method with gradient convergence
guarantee. Then, a hybrid acceleration framework is proposed to further accelerate
the calculation. Numerical results are reported in section 6 to illustrate the efficiency
and accuracy of our algorithms. Finally, some concluding remarks are given in sec-
tion 7.

1.1. Notations and definitions. Let Ck be the set of kth continuously dif-
ferentiable functions on the whole space. The domain of a real-valued function f is
defined as domf := \{ x : f(x) < +\infty \} . We say f is proper if f >  - \infty and domf \not = \emptyset .
For \alpha \in \BbbR , let [f \leq \alpha ] := \{ x : f(x) \leq \alpha \} be the \alpha -(sub)level set of f . We say that
f is level bounded if [f \leq \alpha ] is bounded for all \alpha \in \BbbR . f is lower semicontinuous
if all level sets of f are closed. For a proper function f , the subgradient [8] of f at
x \in domf is defined as \partial f(x) = \{ u : f(y)  - f(x)  - \langle u, y  - x\rangle \geq 0 \forall y \in domf\} . A
point x is called a stationary point of f if 0 \in \partial f(x).

2. Problem formulation.

2.1. Physical models. Two classes of PFC models are considered in the paper.
The first one is the Landau--Brazovskii (LB) model, which can characterize the phase
and phase transitions of periodic crystals [6]. It has been discovered in many different
scientific fields, e.g., polymeric materials [34]. In particular, the energy functional of
LB model is

ELB(\phi ) =
1

| \Omega | 

\int 
\Omega 

\left\{       
\xi 2

2
[(\Delta + 1)\phi ]2\underbrace{}  \underbrace{}  

G(\phi )

+
\tau 

2!
\phi 2  - \gamma 

3!
\phi 3 +

1

4!
\phi 4\underbrace{}  \underbrace{}  

F (\phi )

\right\}       d\bfitr ,(2.1)

where \phi (\bfitr ) is a real-valued function which measures the order of system in terms of
order parameter. \Omega is the bounded domain of the system, \xi is the bare correlation
length, \tau is the dimensionless reduced temperature, and \gamma is the phenomenological
coefficient. Compared with double-well bulk energy [36], the cubic term in the LB
functional helps us study the first-order phase transition.

The second one is the Lifshitz--Petrich (LP) model, which can simulate quasiperi-
odic structures, such as the bifrequency excited Faraday wave [26], and explain the
stability of soft-matter quasicrystals [25, 18]. Since quasiperiodic structures are space-
filling without decay, it is necessary to define the average spacial integral over the
whole space as  - 

\int 
= limR\rightarrow \infty 

1
| BR| 

\int 
BR
, where BR \subset \BbbR d is the ball centered at the
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origin with radii R. The energy functional of the LP model is given by

ELP (\phi ) =  - 
\int \left\{       

c

2
[(\Delta + q21)(\Delta + q22)\phi ]

2\underbrace{}  \underbrace{}  
G(\phi )

+
\varepsilon 

2
\phi 2  - \kappa 

3
\phi 3 +

1

4
\phi 4\underbrace{}  \underbrace{}  

F (\phi )

\right\}       d\bfitr ,(2.2)

where c is the energy penalty, and \varepsilon and \kappa are phenomenological coefficients.
Furthermore, we impose the following mean zero condition of order parameter on

the LB and LP systems, respectively, to ensure the mass conservation:

(2.3)
1

| \Omega | 

\int 
\Omega 

\phi (\bfitr )d\bfitr = 0 or  - 
\int 
\phi (\bfitr )d\bfitr = 0.

The equality constraint condition is from the definition of the order parameter which
is the deviation from average density.

2.2. Projection method discretization. In this section, we introduce the
projection method [20], a high-dimensional interpretation approach which can avoid
the Diophantine approximation error in computing quasiperiodic systems, to discretize
the LB and LP energy functionals. It is noted that the stationary state in the LB
model is periodic, and thus it can be discretized by the Fourier pseudospectral method,
which is a special case of the projection method. Therefore, we only consider the
projection method discretization of the LP model (2.2). We immediately have the
following orthonormal property in the average spacial integral sense:

 - 
\int 
ei\bfitk \cdot \bfitr e - i\bfitk \prime \cdot \bfitr d\bfitr = \delta \bfitk \bfitk \prime \forall \bfitk ,\bfitk \prime \in \BbbR d.(2.4)

For a quasiperiodic function, we can define the Bohr--Fourier transformation as [21]

\^\phi (\bfitk ) =  - 
\int 
\phi (\bfitr )e - i\bfitk \cdot \bfitr d\bfitr , \bfitk \in \BbbR d.(2.5)

In this paper, we carry out the above computation in a higher dimension using the
projection method, which is based on the fact that a d-dimensional quasicrystal can
be embedded into an n-dimensional periodic structure (n \geqslant d) [16]. The dimension n
is the number of linearly independent numbers over the rational number field. Using
the projection method, the order parameter \phi (\bfitr ) can be expressed as

(2.6) \phi (\bfitr ) =
\sum 
\bfith \in \BbbZ n

\^\phi (\bfith )ei[(\scrP \cdot \bfB \bfith )\top \cdot \bfitr ], \bfitr \in \BbbR d,

whereB \in \BbbR n\times n is invertible, related to the n-dimensional primitive reciprocal lattice.
The corresponding computational domain in physical space is 2\pi B - T \tau , \tau \in [0, 1)n.
The projection matrix \scrP \in \BbbR d\times n depends on the property of quasicrystals, such
as rotational symmetry [16]. If we consider periodic crystals, the projection matrix
becomes the d-order identity matrix, and then the projection reduces to the common
Fourier spectral method. The Fourier coefficient \^\phi (\bfith ) satisfies

X :=

\Biggl\{ 
(\^\phi (\bfith ))\bfith \in \BbbZ n : \^\phi (\bfith ) \in \BbbC ,

\sum 
\bfith \in \BbbZ n

| \^\phi (\bfith )| <\infty 

\Biggr\} 
.(2.7)
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In practice, let \bfitN = (N1, N2, . . . , Nn) \in \BbbN n, and let

X\bfitN := \{ \^\phi (\bfith ) \in X : \^\phi (\bfith ) = 0 \forall | hj | > Nj/2, j = 1, 2, . . . , n\} .(2.8)

The number of elements in the set is N = (N1 + 1)(N2 + 1) \cdot \cdot \cdot (Nn + 1). Together
with (2.4) and (2.6), the discretized energy function (2.2) is

(2.9) E\bfith (\^\Phi ) = G\bfith (\^\Phi ) + F\bfith (\^\Phi ),

where Gh and Fh are the discretized interaction and bulk energies:
(2.10)

G\bfith (\^\Phi ) =
c

2

\sum 
\bfith 1+\bfith 2=0

\bigl[ 
q21  - (\scrP B\bfith )\top (\scrP B\bfith )

\bigr] 2 \bigl[ 
q22  - (\scrP B\bfith )\top (\scrP B\bfith )

\bigr] 2 \^\phi (\bfith 1)\^\phi (\bfith 2),

F\bfith (\^\Phi ) =
\varepsilon 

2

\sum 
\bfith 1+\bfith 2=\bfzero 

\^\phi (\bfith 1)\^\phi (\bfith 2) - 
\kappa 

3

\sum 
\bfith 1+\bfith 2+\bfith 3=\bfzero 

\^\phi (\bfith 1)\^\phi (\bfith 2)\^\phi (\bfith 3)

+
1

4

\sum 
\bfith 1+\bfith 2+\bfith 3+\bfith 4=\bfzero 

\^\phi (\bfith 1)\^\phi (\bfith 2)\^\phi (\bfith 3)\^\phi (\bfith 4),

and \bfith j \in \BbbZ n, \^\phi j \in X\bfitN , j = 1, 2, . . . , 4, \^\Phi = (\^\phi 1, \^\phi 2, . . . , \^\phi N ) \in \BbbC N . It is clear that
the nonlinear terms in Fh are n-dimensional convolutions in the reciprocal space. A
direct evaluation of these convolution terms is extremely expensive. Instead, these
terms are simple multiplication in the n-dimensional physical space. Similar to the
pseudospectral approach, these convolutions can be efficiently calculated through the
FFT. Moreover, the mass conservation constraint (2.3) is discretized as

(2.11) e\top 1 \^\Phi = 0,

where e1 = (1, 0, . . . , 0)\top \in \BbbR N . Therefore, we obtain the following finite-dimensional
minimization problem:

(2.12) min
\^\Phi \in \BbbC N

E\bfith (\^\Phi ) = G\bfith (\^\Phi ) + F\bfith (\^\Phi ) s.t. e\top 1 \^\Phi = 0.

For simplicity, we omit the subscription in G\bfith and F\bfith in the following context. Ac-
cording to (2.10), denoting \scrF N \in \BbbC N\times N as the discretized Fourier transformation
matrix, we have

\nabla G(\^\Phi ) = D\^\Phi , \nabla F (\^\Phi ) = \scrF  - 1
N \Lambda \scrF N

\^\Phi ,(2.13)

\nabla 2G(\^\Phi ) = D, \nabla 2F (\^\Phi ) = \scrF  - 1
N \Lambda (\prime )\scrF N ,(2.14)

where D is a diagonal matrix with nonnegative entries c
\bigl[ 
q21  - (\scrP B\bfith )\top (\scrP B\bfith )

\bigr] 2 \times \bigl[ 
q22  - (\scrP B\bfith )\top (\scrP B\bfith )

\bigr] 2
and \Lambda ,\Lambda (\prime ) \in \BbbR N\times N are also diagonal matrices but related

to \^\Phi . In the next section, we propose the adaptive accelerated Bregman proximal
gradient (AA-BPG) method for solving the constrained minimization problem (2.12).

3. The AA-BPG method. Consider the minimization problem that has the
form

(3.1) min
x
E(x) = f(x) + g(x),

where f \in C2 is proper but nonconvex and g is proper, lower semicontinuous, and
convex. Let the domain of E be domE = \{ x | E(x) < +\infty \} ; then we make the
following assumptions.
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Assumption 3.1. E is bounded below, and for any x0 \in domE, the sublevel set
\scrM (x0) := \{ x| E(x) \leq E(x0)\} is compact.

Let h be a strongly convex function such that domh \subset domf and domg \cap 
intdomh \not = \emptyset . Then, it induces the Bregman divergence [7] defined as

Dh(x, y) = h(x) - h(y) - \langle \nabla h(y), x - y\rangle \forall (x, y) \in domh\times intdomh.(3.2)

It is noted that Dh(x, y) \geq 0 and Dh(x, y) = 0 if and only if x = y due to the strong
convexity of h. Furthermore, Dh(x, \=x) \rightarrow 0 as x \rightarrow \=x. In recent years, Bregman
distance--based proximal methods [2, 5] have been proposed and applied for solving
(3.1) in a general nonconvex setting [24]. Basically, given the current estimation
xk \in intdomh and step size \alpha k > 0, it updates xk+1 via

(3.3) xk+1 = argmin
x

\biggl\{ 
g(x) + \langle x - xk,\nabla f(xk)\rangle + 1

\alpha k
Dh(x, x

k)

\biggr\} 
.

Under suitable assumptions, it is proved in [24] that the iterate \{ xk\} has a convergence
property similar to that of the traditional proximal gradient method [3], while iteration
(3.3) does not require the Lipschitz condition on \nabla f . Motivated by the Nesterov
acceleration technique [37, 3], we add an extrapolation step before (3.3), and thus the
iterate becomes

(3.4)

yk = xk + wk(x
k  - xk - 1),

xk+1 = argmin
x

\biggl\{ 
g(x) + \langle x - yk,\nabla f(yk)\rangle + 1

\alpha k
Dh(x, y

k)

\biggr\} 
,

where wk \in [0, \=w]. It is noted that the minimization problems in (3.3) and (3.4) are
well defined and single valued as g is convex and h is strongly convex. Although the
extrapolation step accelerates the convergence in some cases, it may generate the oscil-
lating phenomenon of the objective value E(x) that slows down the convergence [30].
Therefore, we propose a restart algorithm that leads to a convergent algorithm for
solving (3.1) with the energy dissipation property. Given \alpha k > 0, define

(3.5) zk = argmin
x

\biggl\{ 
g(x) + \langle x - yk,\nabla f(yk)\rangle + 1

\alpha k
Dh(x, y

k)

\biggr\} 
,

and reset wk = 0 if the following does not hold:

(3.6) E(xk) - E(zk) \geq c\| xk  - xk+1\| 2

for some constant c > 0. In the next section, we will show that (3.6) holds when
wk = 0. Overall, the AA-BPG algorithm is presented in Algorithm 3.1.

Step size estimation. In each step, \alpha k is chosen adaptively by the backtracking
linear search method, which is initialized by the BB step [1] estimation, i.e.,

\alpha k =
\langle sk, sk\rangle 
\langle sk, vk\rangle 

or
\langle vk, sk\rangle 
\langle vk, vk\rangle 

,(3.7)

where sk = xk  - xk - 1 and vk = \nabla f(xk) - \nabla f(xk - 1). Let \eta > 0 be a small constant
and zk be obtained from (3.5); then we adopt the step size \alpha k whenever the following
inequality holds:

(3.8) E(yk) - E(zk) \geq \eta \| yk  - zk\| 2.

The detailed estimation method is presented in Algorithm 3.2.
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Algorithm 3.1. AA-BPG algorithm.

Require: x1 = x0, \alpha 0 > 0, w0 = 0, \rho \in (0, 1), \eta , c, \=w > 0, and k = 1.
1: while the stop criterion is not satisfied do
2: Update yk = xk + wk(xk  - xk - 1)
3: Estimate \alpha k by Algorithm 3.2
4: Calculate zk via (3.5)
5: if (3.6) holds then
6: xk+1 = zk and update wk+1 \in [0, \=w].
7: else
8: xk+1 = xk and reset wk+1 = 0.
9: end if

10: k = k + 1.
11: end while

Algorithm 3.2. Estimation of \alpha k at yk.

Require: xk, yk, \eta > 0 and \rho \in (0, 1) and \alpha min, \alpha max > 0
1: Initialize \alpha k by BB step (3.7).
2: for j = 1, 2 . . . do
3: Calculate zk via (3.5)
4: if (3.8) holds or \alpha k < \alpha min then
5: break
6: else
7: \alpha k = \rho \alpha k

8: end if
9: end for

10: Output \alpha k = max(min(\alpha k, \alpha max), \alpha min).

3.1. Convergence analysis. In this section, we focus on the convergence analy-
sis of the proposed AA-BPG method. Before proceeding, we introduce a significant
definition used in analysis.

Definition 3.1. A function f \in C2 is Rf -relative smooth if there exists a strongly
convex function h \in C2 such that

Rf\nabla 2h(x) - \nabla 2f(x) \succeq 0 \forall x \in intdomh.(3.9)

Throughout this section, we impose the next assumption on f .

Remark 3.2. If h = \| \cdot \| 2/2, the relative smoothness becomes the Lipschitz
smoothness.

Assumption 3.3. There exists Rf > 0 such that f is Rf -relative smooth with
respect to a strongly convex function h \in C2.

Remark 3.4. In the LB model (2.1) and LP model (2.2), their bulk energies are
fourth degree polynomials and their gradients are not Lipschitz continuous. However,
we will show that relative smoothness constant Rf can be O(1) through appropriately
choosing the strongly convex function h in Lemma 4.4.

3.2. Convergence property. In this subsection, we will prove the convergence
property of Algorithm 3.1. The outline of the proof is given in Figure 1. Under
Assumption 3.3, we have the following useful lemma as stated in [2].
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Assum 3.6

Assum 3.1AA-BPG
method

Energy dissipation 
(Coro 3.4)

Bounded the 
subgradient 
(Lem 3.5)

Subsequence 
convergence property 

(Thm 3.6)

Sequence 
convergence property 

(Thm 3.7)

Assum 3.3

Well-definedness 
of the linesearch 

(Lem 3.3)

Fig. 1. The flow chart of the convergence proof of Algorithm 3.1.

Lemma 3.2 (see [2]). If f is Rf -relative smooth with respect to h, then

f(x) - f(y) - \langle \nabla f(y), x - y\rangle \leq RfDh(x, y) \forall x, y \in intdomh.(3.10)

Based on the above lemma, the descent property of the iteration generated by
Bregman proximal operator (3.5) is established as follows.

Lemma 3.3. Let \alpha > 0, and suppose Assumption 3.3 holds. If

(3.11) z = argmin
x

\biggl\{ 
g(x) + \langle x - y,\nabla f(y)\rangle + 1

\alpha 
Dh(x, y)

\biggr\} 
,

then there exists some \sigma > 0 such that

E(y) - E(z) \geq 
\biggl( 
1

\alpha 
 - Rf

\biggr) 
\sigma 

2
\| z  - y\| 2.(3.12)

Proof. Since h is strongly convex, there exists some constant \sigma > 0 such that
h(x) - \sigma \| x\| 2/2 is convex. Then, \nabla 2h(x) - \sigma I \succeq 0 and we have

(3.13) Dh(z, x) = h(z) - h(y) - \langle \nabla h(y), z  - y\rangle \geq \sigma 

2
\| z  - y\| 2.

From the optimal condition of (3.11), we have

E(y) = f(y) + g(y) =

\biggl[ 
f(y) + \langle \nabla f(y), x - y\rangle + 1

\alpha 
Dh(x, y) + g(x)

\biggr] 
x=y

\geq f(y) + \langle \nabla f(y), z  - y\rangle + 1

\alpha 
Dh(z, y) + g(z)

\geq f(z) - RfDh(z, y) +
1

\alpha 
Dh(z, y) + g(z)

= E(z) +

\biggl( 
1

\alpha 
 - Rf

\biggr) 
Dh(z, y) \geq E(z) +

\biggl( 
1

\alpha 
 - Rf

\biggr) 
\sigma 

2
\| z  - y\| 2,

where the second inequality follows from (3.10) and the last inequality follows from
(3.13).
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Remark 3.5. Lemma 3.3 shows that the nonrestart condition (3.6) and the linear
search condition (3.8) are satisfied when

(3.14) 0 < \alpha < \=\alpha := min

\biggl( 
1

2c/\sigma +Rf
,

1

2\eta /\sigma +Rf

\biggr) 
and 0 < \alpha min \leq \=\alpha .

Therefore, the line search in Algorithm 3.2 stops in finite iterations, and thus Algo-
rithm 3.1 is well defined.

In the following analysis, we always assume that the parameter \alpha min satisfies
(3.14) for simplicity. Therefore, we can obtain the sufficient decrease property of the
sequence generated by Algorithm 3.1.

Corollary 3.4. Suppose Assumptions 3.1 and 3.3 hold. Let \{ xk\} be the sequence
generated by Algorithm 3.1. Then, \{ xk\} \subset \scrM (x0) and

(3.15) E(xk) - E(xk+1) \geq c0\| xk  - xk+1\| 2,

where c0 = min(c, \eta ).

The proof of Corollary 3.4 is a straightforward result, as the AA-BPG algorithm
is well defined and condition (3.6) or (3.8) holds at each iteration. Let \scrB (x0) be the
closed ball that contains \scrM (x0). Since h, F \in C2, there exist \rho h, \rho f > 0 such that

\rho h = sup
x\in \scrB (x0)

\| \nabla 2h(x)\| , \rho f = sup
x\in \scrB (x0)

\| \nabla 2f(x)\| .(3.16)

Thus, we can show that the subgradient of each step generated by Algorithm 3.1 is
bounded by the movement of xk.

Lemma 3.5 (bounded by the subgradient). Suppose Assumptions 3.1 and 3.3
hold. Let \{ xk\} be the sequence generated by Algorithm 3.1. Then, there exists c1 =
\rho f + \rho h/\alpha min > 0 such that

dist(0, \partial E(xk+1)) \leq c1(\| xk+1  - xk\| + \=w\| xk  - xk - 1\| ),(3.17)

where dist(0, \partial E(xk+1)) = inf\{ \| y\| : y \in \partial E(xk+1)\} , \rho h, \rho f are defined in (3.16), and
\=w,\alpha min are constants defined in Algorithms 3.1 and 3.2, respectively.

Proof. By the first-order optimality condition of (3.4), we get

0 \in \nabla f(yk) + 1

\alpha k

\bigl( 
\nabla h(xk+1) - \nabla h(yk)

\bigr) 
+ \partial g(xk+1)

\Leftarrow \Rightarrow  - \nabla f(yk) - 1

\alpha k

\bigl( 
\nabla h(xk+1) - \nabla h(yk)

\bigr) 
\in \partial g(xk+1).

Since f \in C2, we know [39, Theorem 5.38] that

(3.18) \partial E(x) = \nabla f(x) + \partial g(x).

From Lemma 3.3, we have xk, xk - 1 \in \scrM (x0); then yk = (1+wk)x
k - wkx

k - 1 \in \scrB (x0).
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Together with (3.18), we have

dist(0, \partial E(xk+1)) = inf
y\in \partial g(xk+1)

\| \nabla f(xk+1) + y\| 

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| \nabla f(xk+1) - \nabla f(yk) - 1

\alpha k

\bigl( 
\nabla h(xk+1) - \nabla h(yk)

\bigr) \bigm\| \bigm\| \bigm\| \bigm\| 
\leq \| \nabla f(xk+1) - \nabla f(yk)\| + 1

\alpha k
\| \nabla h(xk+1) - \nabla h(yk)\| 

\leq 
\biggl( 
\rho f +

\rho h
\alpha k

\biggr) 
\| xk+1  - yk\| 

\leq c1(\| xk+1  - xk\| + \=w\| xk  - xk - 1\| ),

where the last inequality is from yk = xk + wk(x
k  - xk - 1) and wk \in [0, \=w].

Now, we are ready to establish the subconvergence property of Algorithm 3.1.

Theorem 3.6. Suppose Assumptions 3.1 and 3.3 hold. Let \{ xk\} be the sequence
generated by Algorithm 3.1. Then, for any limit point x\ast of \{ xk\} , we have 0 \in \partial E(x\ast ).

Proof. From Corollary 3.4, we know that \{ xk\} \subset \scrM (x0) \subset \scrB (x0) and thus
bounded. Then, the set of limit points of \{ xk\} is nonempty. For any limit point
x\ast , there exists a subsequence \{ xkj\} such that xkj \rightarrow x\ast as j \rightarrow \infty . We know that
\{ E(xk)\} is a decreasing sequence. Together with the fact that E is bounded below,
there exists some \=E such that E(xk) \rightarrow \=E as k \rightarrow \infty . Moreover, it has

(3.19) E(x0) - \=E = lim
K\rightarrow \infty 

K\sum 
j=0

\bigl( 
E(xj) - E(xj+1)

\bigr) 
\geq c0 lim

K\rightarrow \infty 

K\sum 
j=0

\| xj  - xj+1\| 2

and implies that \| xk  - xk - 1\| \rightarrow 0 as k \rightarrow \infty . As a result,

lim
k\rightarrow \infty 

\| xk  - yk - 1\| \leq lim
k\rightarrow \infty 

(\| xk  - xk - 1\| + \=\omega \| xk - 1  - xk - 2\| ) = 0.

Together with (3.17), it implies that there exists ukj \in \partial g(xkj ) such that

(3.20) lim
j\rightarrow \infty 

\| \nabla f(xkj ) + ukj\| = 0 \Rightarrow lim
j\rightarrow \infty 

ukj =  - \nabla f(x\ast ),

as \nabla f is continuous and xkj \rightarrow x\ast when j \rightarrow \infty .
Next, we prove limj\rightarrow \infty g(xkj ) = g(x\ast ). It is easy to know that limj\rightarrow \infty xkj - p = x\ast 

for finite p \geq 0 since limk\rightarrow \infty \| xk  - xk - 1\| = 0. Thus, we have ykj - 1 = xkj - 1 +
wkj - 1(x

kj - 1  - xkj - 2) \rightarrow x\ast as j \rightarrow \infty . From (3.4), we know that

g(xkj ) + \langle xkj  - ykj - 1,\nabla f(ykj - 1)\rangle + 1

\alpha k
D(xkj , ykj - 1)

\leq g(x) + \langle x - ykj - 1,\nabla f(ykj - 1)\rangle + 1

\alpha k
D(x, ykj - 1) \forall x.

(3.21)

Let x = x\ast and j \rightarrow \infty ; then we get lim supj\rightarrow \infty g(xkj ) \leq g(x\ast ). By the fact that

g(x) is lower semicontinuous, it has limj\rightarrow \infty g(xkj ) = g(x\ast ).
Thus, by the convexity of g, we have

(3.22) g(x) \geq g(xkj ) + \langle ukj , x - xkj \rangle \forall x \in domg.

Let j \rightarrow \infty in (3.22); then, using the fact that xkj \rightarrow x\ast , g(xkj ) \rightarrow g(x\ast ) as j \rightarrow \infty ,
and (3.20), we have  - \nabla f(x\ast ) \in \partial g(x\ast ), and thus 0 \in \partial E(x\ast ).
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Furthermore, the subsequence convergence can be strengthened by imposing the
next assumption on E, which is known as the Kurdyka--Lojasiewicz (KL) property [4].

Assumption 3.6. E(x) is the KL function; i.e., for all \=x \in dom\partial E := \{ x : \partial E(x) \not =
\emptyset \} , there exist \eta > 0, a neighborhood U of \=x, and \psi \in \Psi \eta := \{ \psi \in C[0, \eta ) \cap 
C1(0, \eta ), where \psi is concave, \psi (0) = 0, and \psi 

\prime 
> 0 on (0, \eta )\} such that for all x \in 

U \cap \{ x : E(\=x) < E(x) < E(\=x) + \eta \} , the following inequality holds:

(3.23) \psi 
\prime 
(E(x) - E(\=x)) dist(0, \partial E(x)) \geq 1.

Theorem 3.7. Suppose Assumptions 3.1, 3.3, and 3.6 hold. Let \{ xk\} be the se-
quence generated by Algorithm 3.1. Then, there exists a point x\ast \in \scrB (x0) such that

lim
k\rightarrow +\infty 

xk = x\ast , 0 \in \partial E(x\ast ).(3.24)

Proof. The proof is in Appendix A.

It is known from [4] that many functions satisfy Assumption 3.6, including the
energy function in PFC models. In the following context, we apply the AA-BPG
method for solving the PFC models (2.12) by introducing two Bregman distances.

4. AA-BPG method for solving PFC models. The problem (2.12) can be
reduced to (3.1) by setting

(4.1) f(\^\Phi ) = F (\^\Phi ), g(\^\Phi ) = G(\^\Phi ) + \delta \scrS (\^\Phi ),

where \scrS = \{ \^\Phi : e\top 1
\^\Phi = 0\} and \delta \scrS (\^\Phi ) = 0 if \^\Phi \in \scrS and +\infty otherwise. The main

difficulty of applying Algorithm 3.1 is solving the subproblem (3.5) efficiently. In this
section, two different strongly convex functions h are chosen as

(4.2) h(x) =
1

2
\| x\| 2 (P2) and h(x) =

a

4
\| x\| 4 + b

2
\| x\| 2 + 1 (P4),

where a, b > 0 and (P2) and (P4) represent the highest order of the \ell 2 norm.
Case (P2). The Bregman distance of Dh is reduced to the Euclidean distance,

i.e.,

(4.3) Dh(x, y) =
1

2
\| x - y\| 2.

The subproblem (3.5) is reduced to

(4.4) min
\^\Phi 

G(\^\Phi ) + \langle \nabla F ( \^\Psi k), \^\Phi  - \^\Psi k\rangle + 1

2\alpha k
\| \^\Phi  - \^\Psi k\| 2 s.t. e\top 1 \^\Phi = 0,

where \^\Psi k = \^\Phi k + wk(\^\Phi 
k  - \^\Phi k - 1). Although (4.4) is a constrained minimization

problem, it has a closed form solution based on our discretization which leads to a
fast computation.

Lemma 4.1. Given \alpha k > 0, if e\top 1
\^\Psi k = 0, the minimizer of (4.4), denoted by

\^\Phi k+1, is given by

\^\Phi k+1 = (I + \alpha kD)
 - 1

\Bigl( 
\^\Psi k  - \alpha k\scrP 1\nabla F ( \^\Psi k)

\Bigr) 
,(4.5)

where D is defined in (2.13) and \scrP 1 = I  - e1e
\top 
1 is the projection into the set \scrS .
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Proof. The KKT conditions for this subproblem (3.5) can be written as

\nabla G(\^\Phi k+1) +\nabla F ( \^\Psi k) +
1

\alpha k

\Bigl( 
\^\Phi k+1  - \^\Psi k

\Bigr) 
 - \xi ke1 = 0,(4.6)

e\top 1
\^\Phi k+1 = 0,(4.7)

where \xi k is the Lagrange multiplier. Taking the inner product with e1 in (4.6), we
obtain

\xi k = e\top 1

\biggl( 
\nabla G(\^\Phi k+1) +\nabla F (\^\Phi k) - 1

\alpha k

\^\Psi k

\biggr) 
.

Using (4.7) and (2.13), we know that

e\top 1 \nabla G(\^\Phi k+1) = e\top 1 (D\^\Phi k+1) = 0.

Together with e\top 1
\^\Psi k = 0, we have \xi k = e\top 1 \nabla F ( \^\Psi k). Substituting it into (4.6), it

follows that

\^\Phi k+1 = (\alpha kD + I)
 - 1

\Bigl( 
\^\Psi k  - \alpha k\scrP 1\nabla F ( \^\Psi k)

\Bigr) 
.

It is noted that from the proof of Lemma 4.1, the feasibility assumption e\top 1
\^\Psi k = 0

holds as long as e\top 1
\^\Phi 0 = 0, which can be set in the initialization. The detailed

algorithm is given in Algorithm 4.1 with K = 2.
Case (P4). In this case, the subproblem (3.5) is reduced to

(4.8) min
\^\Phi 
G(\^\Phi ) + \langle \nabla F ( \^\Psi k), \^\Phi  - \^\Psi k\rangle +Dh(\^\Phi , \^\Psi 

k) s.t. e\top 1 \^\Phi = 0,

where \^\Psi k = \^\Phi k + wk(\^\Phi 
k  - \^\Phi k - 1). The next lemma shows the optimal condition of

minimizing (4.8).

Lemma 4.2. Given \alpha k > 0, if e\top 1
\^\Psi k = 0, the minimizer of (4.8), denoted by

\^\Phi k+1, is given by

\^\Phi k+1 = [\alpha kD + (ap\ast + b)I] - 1(\nabla h( \^\Psi k) - \alpha k\scrP 1\nabla F ( \^\Psi k)),(4.9)

where D is given in (2.13) and p\ast is a fixed point of p = \| \^\Phi k+1\| 2 := r(p).

Proof. The KKT conditions of (4.8) imply that there exists a Lagrange multiplier
\xi k such that (\^\Phi k+1, \xi k) satisfies

\alpha k\nabla G(\^\Phi k+1) + \alpha k\nabla F ( \^\Psi k) +\nabla h(\^\Phi k+1) - \nabla h( \^\Psi k) - \xi ke1 = 0,(4.10)

e\top 1
\^\Phi k+1 = 0.(4.11)

Since e\top 1
\^\Phi k = 0 and \nabla h(x) = (a\| x\| 2 + b)x, (4.11) and (2.13) imply

e\top 1 \nabla G(\^\Phi k+1) = e\top 1 (D\^\Phi k+1) = 0, e\top 1 \nabla h( \^\Psi k) = (a\| \^\Psi k\| 2 + b)e\top 1 \^\Psi k = 0,

where D is defined in (2.13). Substituting the above equalities into (4.10) implies
\xi k = \alpha ke

\top 
1 \nabla F ( \^\Psi k). Denote

p := \| \^\Phi k+1\| 2 \geq 0, \beta := \nabla h( \^\Psi k) - \alpha k\nabla F ( \^\Psi k) + \xi e1 = \nabla h( \^\Psi k) - \alpha k\scrP 1\nabla F ( \^\Psi k).
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From (4.10), we obtain a fixed point problem with respect to p:

p = \| \^\Phi k+1\| 2 = \| [D + (ap+ b)I] - 1\beta \| 2 := r(p).(4.12)

Let R(p) = r(p) - p. Then R(0) = \| (D + bI) - 1\beta \| 2 \geq 0, R(p) \rightarrow  - \infty as p\rightarrow \infty , and

R\prime (p) =  - 2a

n\sum 
i=1

\beta 2
i

(Dii + ap+ b)3
 - 1 < 0 \forall p \geq 0,

and there is a unique zero p\ast \geq 0 of R(p), i.e., p\ast = r(p\ast ). Thus,

\^\Phi k+1 = [\alpha kD + (ap\ast + b)I] - 1(\nabla h( \^\Psi k) - \alpha k\scrP 1\nabla F ( \^\Psi k)).

It is noted that the fixed point equation (4.12) is a nonlinear scalar equation
which can be efficiently solved by many existing solvers. The detailed algorithm is
given in Algorithm 4.1 with K = 4.

Algorithm 4.1. AA-BPG-K method for PFC model.

Require: \^\Phi 1 = \^\Phi 0, \alpha 0 > 0, w0 \in [0, 1], \rho \in (0, 1), \eta , c, \=w > 0, and k = 1.
1: while stop criterion is not satisfied do
2: Update \^\Psi k = \^\Phi k  - wk(\^\Phi 

k  - \^\Phi k - 1)
3: Estimate \alpha k by Algorithm 3.2
4: if K = 2 then
5: Calculate zk = (\alpha kD + I)

 - 1
\Bigl( 
\^\Psi k  - \alpha k\scrP 1\nabla F ( \^\Psi k)

\Bigr) 
6: else if K = 4 then
7: Calculate the fixed point of (4.12).
8: Calculate zk = [\alpha kD + (ap\ast + b)I] - 1(\nabla h( \^\Psi k) - \alpha k\scrP 1\nabla F ( \^\Psi k))
9: end if

10: if E(\^\Phi k) - E(zk) \geq c\| \^\Phi k  - zk\| 2 then
11: \Phi k+1 = zk and update wk+1 \in [0, \=w].
12: else
13: \Phi k+1 = \Phi k and reset wk+1 = 0.
14: end if
15: k = k + 1.
16: end while

4.1. Convergence analysis for Algorithm 4.1. The convergence analysis can
be directly applied for Algorithm 4.1 if the assumptions required in Theorem 3.6 hold.
We first show that the energy function E in PFC model satisfies Assumptions 3.1 and
3.6. Then, Assumption 3.3 is analyzed for Cases (P2) and (P4) independently.

Lemma 4.3. Let E0 = F (\^\Phi )+G(\^\Phi ), and let E(\^\Phi ) = E0(\^\Phi )+\delta \scrS (\^\Phi ) be the energy
functional which is defined in (4.1). Then, it satisfies the following:

1. E is bounded below, and the sublevel set \scrM (\^\Phi 0) is compact for any \^\Phi 0 \in \scrS .
2. E is a KL function and thus satisfies Assumption 3.6.

Proof. From the continuity and the coercive property of F , i.e., F (\^\Phi ) \rightarrow +\infty 
as \^\Phi \rightarrow \infty , the sublevel set \scrS 0 := \{ \^\Phi : E0(\^\Phi ) \leq E0(\^\Phi 

0)\} is compact for any \^\Phi 0.
Together with \scrS being closed, it follows that \scrM (\^\Phi 0) = \scrS \cap \scrS 0 is compact for any \^\Phi 0.

Moreover, according to Example 2 in [4], it is easy to know that E(\^\Phi ) is a semi-
algebraic function, and then it is a KL function by Theorem 2 in [4].
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Lemma 4.4. Let F (\^\Phi ) be defined in (2.12). Then, we have the following:
1. If h is chosen as Case (P2) in (4.2), then F is relative smooth with respect

to h in \scrM for any compact set \scrM .
2. If h is chosen as Case (P4) in (4.2), then F is relative smooth with respect

to h.

Proof. Denote \^\Phi \otimes k := \^\Phi \otimes \^\Phi \otimes \cdot \cdot \cdot \otimes \^\Phi , where \otimes is the tensor product. Then,
F (\^\Phi ) is the 4th-degree polynomial, i.e., F (\^\Phi ) =

\sum 4
k=2\langle \scrA k, \^\Phi 

\otimes k\rangle , where the kth-degree
monomials are arranged as a kth-order tensor \scrA k. For any compact set \scrM , \nabla 2F is
bounded, and thus F is relative smooth with respect to any polynomial function in
\scrM which includes Case (P2). When h is chosen as Case (P4), according to Lemma
2.1 in [24], there exists RF > 0 such that F (\^\Phi ) is RF -relative smooth with respect to
h(x).

Combining Lemmas 4.3 and 4.4 with Theorem 3.7, we can directly establish the
convergence of Algorithm 4.1.

Theorem 4.5. Let E(\^\Phi ) = F (\^\Phi )+G(\^\Phi )+ \delta \scrS (\^\Phi ) be the energy function which is
defined in (4.1). The following results hold:

1. Let \{ \^\Phi k\} be the sequence generated by Algorithm 4.1 with K = 2. If \{ \^\Phi k\} is
bounded, then \{ \^\Phi k\} converges to some \^\Phi \ast and 0 \in \partial E(\^\Phi \ast ).

2. Let \{ \^\Phi k\} be the sequence generated by Algorithm 4.1 with K = 4. Then, \{ \^\Phi k\} 
converges to some \^\Phi \ast and 0 \in \partial E(\^\Phi \ast ).

It is noted that when h is chosen as Case (P2), we cannot bound the growth of
F , as F is a fourth-order polynomial. Thus, the boundedness assumption of \{ \^\Phi k\} is
imposed, which is similar to the requirement in the semi-implicit scheme [33].

5. Newton-PCG method. Despite the fast initial convergence speed of the
gradient-based methods, the tail convergence speed becomes slow. Therefore, it can
be further locally accelerated by the feature of Hessian-based methods. In this section,
we design a practical Newton method to solve the PFC models (2.12) and provide a
hybrid accelerated framework.

5.1. Our method. Define Z := [0, IN - 1]
\top . Any vector \^\Phi that satisfies the

constraint e\top 1
\^\Phi = 0 has the form of \^\Phi = ZU with U \in \BbbC N - 1. Since Z\top Z = IN - 1, we

can also obtain U from \^\Phi by U = Z\top \^\Phi . Therefore, the problem (2.12) is equivalent
to

min
U\in \BbbC N - 1

E(ZU) = G(ZU) + F (ZU).(5.1)

Let \~E(U) := E(ZU), \~G(U) := E(ZU), \~F (U) := F (ZU); then we have the following
facts:

(5.2)
\~g := \nabla \~E(U) = Z\top \nabla E(ZU) = Z\top g,

\~\scrJ := \nabla 2 \~E(U) = Z\top \nabla 2E(ZU)Z = Z\top \scrJ Z,

where g = \nabla E(ZU) and \scrJ = \nabla 2E(ZU). Therefore, finding the steady states of PFC
models is equivalent to solving the nonlinear equations

(5.3) \nabla \~E(U) = 0.

Due to the nonconvexity of \~E(U), the Hessian matrix \~\scrJ may not be positive definite,
and thus a regularized Newton method is applied.
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Computing the Newton direction. Denote \~\scrJ k := \nabla 2 \~E(Uk) and \~gk :=
\nabla \~E(Uk); then we find the approximated Newton direction dk by solving

(5.4) ( \~\scrJ k + \mu kI)dk =  - \~gk,

where regularized parameter \mu k is chosen as

(5.5)  - c1 min\{ 0, \lambda min( \~\scrJ k)\} + c2\| \~gk\| \leq \mu k \leq \=\mu < +\infty (c1 \geq 1, c2 > 0).

Thus, (5.4) is a symmetric, positive definite linear system. To accelerate the conver-
gence, a preconditioned conjugate gradient (PCG) method is adopted. More specifi-
cally, in the kth step, we terminate the PCG iterates whenever \| ( \~\scrJ k+\mu kI)dk+\~gk\| \leq 
\eta k, in which \eta k is set as

\eta k = \tau min\{ 1, \| \~gk\| \} , 0 < \tau < 1,(5.6)

and the preconditioner Mk is adaptively obtained by setting

Mk = Z(Hk + \mu kI)
 - 1Z\top with Hk = D + \delta kI,(5.7)

where D is from (2.13) and some \delta k > 0. Let A = \~\scrJ k + \mu kI, b =  - \~gk, and M =Mk;
then the PCG method is given in Algorithm 5.1, where \| x\| A := \langle x,Ax\rangle .

Algorithm 5.1. PCG(\eta ) for solving Ax = b.

Require: A, b, \eta , kmax, preconditioner M .
1: Set x0 = 0, r0 = Ax0  - b =  - b, p0 =  - M - 1r0, i = 0.
2: while \| ri\| > \eta or i < kmax do

3: \alpha i+1 =
\| ri\| 2M - 1

\| pi\| 2A
4: xi+1 = xi + \alpha i+1pi
5: ri+1 = ri + \alpha i+1Api

6: \beta i+1 =
\| ri+1\| 2M - 1

\| ri\| 2M - 1

7: pi+1 =  - M - 1ri+1 + \beta i+1pi
8: i = i+ 1
9: end while

Computing the step size \bfitt \bfitk . Once the Newton direction dk is obtained, the
line search technique is applied for finding an appropriate step size tk that satisfies
the following inequality:

\~E(Uk + tkdk) \leq \~E(Uk) + \nu tk\langle \~gk, dk\rangle , 0 < \nu < 1.(5.8)

The existence of tk > 0 that satisfies (5.8) is given in Lemma 5.3. Then, Uk+1 is up-
dated by Uk+1 = Uk+tkdk. Our proposed algorithm is summarized in Algorithm 5.2.

5.2. Convergence analysis for Algorithm 5.2. We first establish several
properties related to the direction dk computed by the PCG method.

Lemma 5.1. Consider a linear system Ax = b, where A is symmetric and positive
definite. Let \{ xi\} be the sequence generated by Algorithm 5.1; then it satisfies

1

\lambda max(A)
\leq \langle xi, b\rangle 

\| b\| 2
\leq 1

\lambda min(A)
\forall i = 1, 2, . . . .(5.9)
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Algorithm 5.2. Newton-PCG method.

Require: U0, \varepsilon , \=\mu , c1 \geq 1, c2 > 0, 0 < \nu , \rho , \tau < 1;
1: k = 0, \~g0 = \nabla \~E(U0);
2: while stop criterion is not satisfied do
3: Choose  - c1 min\{ 0, \lambda min( \~\scrJ k)\} + c2\| \~gk\| \leq \mu k \leq \=\mu ;
4: Update \eta k = \tau min(1, \| \~gk\| ).
5: Find direction dk by solving (5.4) via PCG(\eta k) using Algorithm 5.1;
6: for n = 0, 1, 2, . . . do
7: tk = \rho n;
8: if \~E(Uk + tkdk) \leq \~E(Uk) + \nu tk\langle \~gk, dk\rangle then
9: Break;

10: end if
11: end for
12: Uk+1 = Uk + tkdk;
13: k = k + 1;
14: end while

Proof. The proof is in Appendix B.

Then, we know that the dk is a descent direction from the next lemma.

Lemma 5.2 (descent direction). Let dk be generated by the PCG(\eta k) method
(Algorithm 5.1). If \| \~gk\| > 0, then we have

 - \langle dk, \~gk\rangle \geq lk :=
\| \~gk\| 2

\lambda max( \~\scrJ k + \mu kI)
and \| dk\| \leq \=d :=

\tau + 1

c2
,(5.10)

where \tau , K, and c1, c2 are defined in (5.6), (5.15), and (5.5), respectively.

Proof. The first inequality is a direct consequence of Lemma 5.1. Moreover, let
rk = ( \~\scrJ k + \mu kI)dk + \~gk. By Algorithm 5.1 and (5.6), we have \| rk\| \leq \eta k \leq \tau \| \~gk\| .
Then,

\| dk\| = \| ( \~\scrJ k + \mu kI)
 - 1(rk  - \~gk)\| \leq \| rk  - \~gk\| 

\lambda min( \~\scrJ k + \mu kI)
\leq \| rk\| + \| gk\| 

c2\| gk\| 
\leq \tau + 1

c2
,

where the second inequality is from (5.5).

Lemma 5.3 (lower bound of tk). Let dk be generated by the PCG(\eta k) method
(Algorithm 5.1). If \| \~gk\| \geq \varepsilon > 0, then for any \nu \in (0, 1), there exists Mk > 0 and

tkmax := min

\biggl\{ 
2(1 - \nu )lk
Mk

\=d2
, 1

\biggr\} 
,(5.11)

such that the inequality (5.8) holds for tk \in (0, tkmax], where lk is defined in (5.10).

Proof. By the Taylor expansion, we have

(5.12) \~E(Uk + tdk) = \~E(Uk) + t\langle \~gk, dk\rangle +
t2

2
\langle dk,\nabla 2 \~E(\xi t)dk\rangle ,

where \xi t \in \scrV k = \{ V | V = Uk + tdk, t \in [0, 1]\} . As \~E \in C2, there exists Mk > 0 such
that Mk = sup\{ \| \nabla 2 \~E(V )\| | V \in \scrV k\} . Then, (5.12) and (5.10) imply that

\~E(Uk + tdk) \leq \~E(Uk) + \nu t\langle \~gk, dk\rangle  - (1 - \nu )lkt+
Mk

\=d2

2
t2.(5.13)
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Define Q(t) = (1 - \nu )lkt - 
Mk

\=d2

2
t2; then we know that Q(t) \geq 0 for all t \in [0, 2(1 - \nu )lk

Mk
\=d2 ],

which implies that (5.8) holds for all t \in (0, tkmax].

Theorem 5.4. Let \~E be defined in (5.1), and let \{ Uk\} be the infinite sequence
generated by Algorithm 5.2. Then, \{ Uk\} is bounded and has the following property:

lim
k\rightarrow +\infty 

\| \~gk\| = 0.(5.14)

Proof. Due to the continuity of \~F , \~G in (5.1) and the coercive property of \~F , the
sublevel set \scrM 0 = \{ U : \~E(U) \leq \~E(U0)\} is compact for any U0. By the inequality
(5.8), it is easy to know that \{ \~E(Uk)\} is a decreasing sequence, and thus \{ Uk\} \subset \scrM 0

and there exists some \=E such that \~E(Uk) \rightarrow \=E as k \rightarrow \infty . Moreover, from (5.10)
and tk \in (0, 1], we know that there exists a compact set \scrB 0 such that \{ Uk + tdk| t \in 
(0, 1]\} \subset \scrB 0, and thus there exists M > 0 such that

\| \nabla 2 \~E(U)\| \leq M \forall U \in \scrB 0.(5.15)

From the proof of Lemma 5.3, we know thatMk \leq M for all k. Moreover, there exists
some \=\lambda > 0 such that \lambda max( \~\scrJ k+\mu kI) \leq \=\lambda for all k. We prove (5.14) by contradiction.
Assume lim supk\rightarrow +\infty \| \~gk\| = \varepsilon > 0, and define the index set

\scrI =

\infty \bigcup 
k=1

\scrI k := \{ j \in \BbbN : j \leq k, \| \~gj\| \geq \varepsilon /2\} .(5.16)

Then, we know that | \scrI | = \infty , where | \scrI | denotes the number of the elements of \scrI .
Moreover, for all j \in \scrI , we know that

(5.17) lj \geq \varepsilon /2\=\lambda and tjmax \geq \=t = min

\biggl\{ 
(1 - \nu )\varepsilon 

M \=\lambda \=d2
, 1

\biggr\} 
.

Thus, \=t is a uniform lower bound for the step size t at U j for j \in \scrI , i.e., tj \geq t for all
j \in \scrI , and we have

\~E(U0) - \~E(Uk+1) =

k\sum 
j=0

( \~E(U j) - \~E(U j+1)) \geq 
\sum 
j\in \scrI k

( \~E(U j) - \~E(U j+1))(5.18)

\geq 
\sum 
j\in \scrI k

 - \nu tj\langle \~gj , dj\rangle \geq 
\nu \=t\varepsilon 

2\=\lambda 
| \scrI k| .(5.19)

Let k \rightarrow \infty in (5.18); then we know that \~E(U0)  - \=E \geq +\infty , which leads to a
contradiction.

5.3. Hybrid acceleration framework. Many gradient-based methods have a
good convergent performance at the beginning but often show slow tail convergence
near the stationary states. In this case, the Newton-like method is a natural choice
and has a better convergence speed when the iteration is near the stationary states.
It is noted that the Hessian-based method is sensitive to the initial point. A key step
of mixing two methods is designing a proper criterion to determine when to launch
the Hessian-based method. It is difficult to develop a perfect strategy for all kinds of
PFC models. In our experiments, we switch to the Newton-PCG algorithm when one
of the following criteria is met:

(5.20) | E(\^\Phi k) - E(\^\Phi k - 1)| < \varepsilon 1 or \| gk  - gk - 1\| < \varepsilon 2,
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where \varepsilon 1, \varepsilon 2 > 0. Our proposed hybrid accelerated framework is summarized in
Algorithm 5.3. The M method stands for a certain existing method, such as our
AA-BPG method.

Algorithm 5.3. Hybrid acceleration framework (N-M method).

Require: \Phi 0, \varepsilon 1, \varepsilon 2, and k = 0.
1: while stop criterion is not satisfied do
2: if switching condition is satisfied then
3: Perform Newton-PCG method (Algorithm 5.2);
4: else
5: Perform M method;
6: end if
7: k = k + 1;
8: end while

Remark 5.1. The idea of a hybrid method provides a general framework for local
acceleration. Our Newton-PCG methods cannot only combine with the AA-BPG
methods but also with many existing methods. It is worth noting that directly using
the Newton-PCG method may converge to a bad stationary point or lead to slow
convergence since the initial point is not good.

6. Numerical results. In this section, we present several numerical examples
for our proposed methods and compare the efficiency and accuracy with existing meth-
ods. Our approaches contain AA-BPG-2 and AA-BPG-4 (see Algorithm 4.1) and a
hybrid method (see Algorithm 5.2), and the comparison methods [45, 33, 46, 32]
include the first-order temporal accuracy semi-implicit scheme (SIS), the first-order
temporal accuracy stabilized semi-implicit scheme (SSIS1), the second-order tempo-
ral accuracy stabilized semi-implicit scheme (SSIS2), the invariant energy quadrature
scheme (IEQ) and scalar auxiliary variable (SAV) approaches. All methods are em-
ployed to calculate the stationary states of finite-dimensional PFC models, including
the LB model for periodic crystals and the LP model for quasicrystals. Note that
these methods all guarantee mass conservation. The step sizes \alpha k in our approaches
are obtained adaptively by the linear search technique, while the fixed step sizes \alpha of
others are chosen to guarantee the best performance on the premise of energy dissipa-
tion. In efficient implementation of the Newton-PCG method, the parameters in (5.6)

and (5.7) are set with \tau = 0.01, \delta k = 0.7max\Lambda 
(\prime )
k , and \mu k is chosen as [43]. To show

the energy tendency obviously, we calculate a reference energy Es by choosing the
invariant energy value as the grid size converges to 0. From our numerical tests, the
reference energy has 14 significant decimal digits. All experiments were performed on
a workstation with a 3.20 GHz CPU (i7-8700, 12 processors). All code was written
in MATLAB language without parallel implementation.

6.1. AA-BPG method.

6.1.1. Periodic crystals. For the LB model, we use three-dimensional periodic
crystals of the double gyroid and the sigma phase, as shown in Figure 2, to demon-
strate the performance of our approach. In the hybrid method of Algorithm 5.2, we
choose the gradient difference \| gk  - gk - 1\| < 10 - 3 as the measurement to launch the
Newton-PCG algorithm.
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Fig. 2. The stationary periodic crystals in the LB model. (a) Double gyroid phase with \xi =
0.1, \tau =  - 2.0, \gamma = 2.0. (b) Sigma phase with \xi = 0.1, \tau = 0.01, \gamma =  - 2.0 from two perspectives.

Double gyroid. The double gyroid phase is a continuous network periodic phase
whose initial values can be chosen as

\phi (\bfitr ) =
\sum 

\bfith \in \Lambda DG
0

\^\phi (\bfith )ei(\bfB \bfith )\top \cdot \bfitr ,(6.1)

where initial lattice points set \Lambda DG
0 \subset \BbbZ 3 only on which of the Fourier coefficients

located are nonzero. The corresponding \Lambda DG
0 of the double gyroid phase can be

found in Table 1 in [19]. The double gyroid structure belongs to the cubic crystal
system; therefore, the 3-order invertible matrix can be chosen as B = (1/

\surd 
6)I3.

Correspondingly, the computational domain in physical space is \Omega = [0, 2
\surd 
6\pi )3.

The parameters in LB model (2.1) are set as \xi = 0.1, \tau =  - 2.0, and \gamma = 2.0. 1283

wavefunctions are used in these simulations. Figure 2(a) shows the stationary solution
of the double gyroid profile.

Figure 3 gives the iteration process of the above-mentioned approaches, includ-
ing the relative energy difference and the gradient changes with iterations, and the
CPU time cost. The reference energy value Es =  - 12.94291551898271 is the finally
convergent value. As is evident from these results, our AA-BPG methods are most ef-
ficient among these approaches under the premise of ensuring energy dissipation. The
AA-BPG-4 and AA-BPG-2 approaches have nearly the same numerical behaviors;
however, the AA-BPG-4 method spends a little more CPU time than the AA-BPG-2
scheme does. The reason is attributed to the cost of solving the subproblem (3.5) at
each step. For AA-BPG-2 scheme, (3.5) can be solved analytically, while for the AA-
BPG-4 method, (3.5) is required to numerically solve a nonlinear system. In Figure 4,
we give the step sizes of the AA-BPG-2/4 scheme.

The SIS, SAV, and IEQ approaches have almost the same iterations. Theoreti-
cally, the convergence of SIS is based on the assumption of global Lipschitz constants,
while the SAV method always has a modified energy dissipation through adding an
arbitrary scalar auxiliary parameter C which guarantees the boundedness of the bulk
energy term. The original energy dissipation property of the SAV method depends
on the selection of C. For computing the double gyroid phase, we find that when
C is smaller than 106, the SAV scheme cannot keep the original energy dissipation
property even if we adopt a small step size 0.001. Further increasing C to 108, we
can use a large step size \alpha = 0.2 to obtain the original energy dissipation feature.
Note that there exists a gap between the modified energy and the original energy no
matter what the auxiliary parameters are. Like in the SAV method, similar results
and phenomena have been also found in the IEQ approach. Among the three meth-
ods, SIS spends the fewest CPU times. The reason is that the SAV and IEQ methods
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Fig. 3. Double gyroid phase: comparisons of numerical behaviors of the AA-BPG-2/4 ap-
proaches with the following: First row: SIS, SAV, and IEQ. Second row: SSIS1 and SSIS2. Left
column: Relative energy over iterations. Middle column: Relative energy over CPU times. Right
column: Gradient over iterations. The blue and yellow \times s mark where restarts occurred.

Fig. 4. Double gyroid phase: the step sizes of the following: Left: AA-BPG-2. Right: the
AA-BPG-4 approach.

require one to solve a subsystem at each step while SIS does not.
SSIS1 is an unconditionally stable scheme through imposing a stabilized term on

SIS. Its energy law holds under the assumption of the stabilizing parameter being
greater than half of the global Lipschitz constant. The step size \alpha can be arbitrarily
large, while the effective step size has a limit. From the numerical results, SSIS1
with \alpha = 104 shows a slower convergent rate than SIS with \alpha = 0.2 does. An
interesting scheme is the conditionally stable SSIS2 proposed in [33] that introduces
a center difference stabilizing term to guarantee the second-order temporal accuracy.
From the point of continuity, SSIS2 actually adds an inertia term onto the original
gradient flow system. The inertia term can accelerate the convergent speed but often
accompanied with some oscillations if the step size is large. As Figure 3 shows, when
\alpha = 0.1, SSIS2 has almost the same convergent speed as SSIS1 and holds the energy
dissipation property. If increasing \alpha , such as 0.3, SSIS2 obtains an accelerated speed
but with oscillations.
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Sigma phase. The second periodic structure considered here is the sigma phase,
which is a spherical packed phase recently discovered in a block copolymer experi-
ment [23], and in the self-consistent mean-field simulation [44]. The sigma phase
has a larger, much more complicated tetragonal unit cell with 30 atoms. For such
a pattern, we implement our algorithm on bounded computational domain \Omega =
[0, 27.7884) \times [0, 27.7884) \times [0, 14.1514). Correspondingly, the initial values can be
found in [44]. When computing the sigma phase, the parameters are set as \xi =
1.0, \tau = 0.01, and \gamma = 2.0, and 256\times 256\times 128 wavefunctions are used to discretize
the LB energy functional. The stationary morphology is shown in Figure 2(b). As far
as we know, it is the first time such a complicated sigma phase in such a simple PFC
model has been found.

Fig. 5. Sigma phase: Comparisons of numerical behaviors of the AA-BPG-2/4 approaches with
other numerical methods. The information in these plots is the same as in Figure 3.

Figure 5 compares our proposed methods with other numerical schemes. We still
use the reference energy value Es =  - 0.93081648457086 as the baseline to observe
the relative energy changes of various numerical approaches. Again, as shown in
these results, on the premise of energy dissipation, the new developed gradient-based
approaches demonstrate a better performance over the existing methods in computing
the sigma phase. Among these methods, the AA-BPG-2 method is the most efficient.

6.1.2. Quasicrystals. For the LP free energy (2.2), we take the two-dimensional
dodecagonal quasicrystal as an example of examining the performance of our proposed
approach. For dodecagonal quasicrystals, two length scales q1 and q2 are equal to 1
and 2 cos(\pi /12), respectively. Two-dimensional dodecagonal quasicrystals can be em-
bedded into four-dimensional periodic structures; therefore, the projection method is
carried out in four-dimensional space. The 4-order invertible matrixB associated with
four-dimensional periodic structure is chosen as I4. The corresponding computational
domain in real space is [0, 2\pi )4. The projection matrix \scrP in (2.6) of the dodecagonal
quasicrystals is

(6.2) \scrP =

\biggl( 
1 cos(\pi /6) cos(\pi /3) 0
0 sin(\pi /6) sin(\pi /3) 1

\biggr) 
.
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The initial solution is

\phi (\bfitr ) =
\sum 

\bfith \in \Lambda QC
0

\^\phi (\bfith )ei[(\scrP \cdot \bfB \bfith )\top \cdot \bfitr ], \bfitr \in \BbbR 2,(6.3)

where initial lattice points set \Lambda QC
0 \subset \BbbZ 4 can be found in Table 3 in [20] on which of

the Fourier coefficients \^\phi (\bfith ) located are nonzero.

Fig. 6. The stationary dodecagonal quasicrystal phase in the LP model with c = 24, \varepsilon =
 - 6, \kappa = 6. Left: physical morphology. Right: Fourier spectral points whose coefficient intensity is
larger than 0.001.

The parameters in LP models are set as c = 24, \varepsilon =  - 6, and \kappa = 6, and 384

wavefunctions are used to discretize the LP energy functional. The convergent sta-
tionary quasicrystal is given in Figure 6, including its order parameter distribution
and Fourier spectrum. The numerical behavior of different approaches can be found
in Figure 7. To better observe the change tendency, we use the convergent energy
value Es =  - 15.97486323815640 as a baseline to show the relative energy changes
versus iterations. We find again that our proposed approaches are more efficient than
others.

6.2. Local acceleration. The motivation of the hybrid method is providing a
framework to locally accelerate the existing methods. Certainly, the Newton-PCG
method is suitable for all alternative methods mentioned above. In Figure 8, we give
a detailed comparison of our Newton-PCG method applied to alternative methods.
For method M, the acceleration ratio is defined as

(6.4) Acceleration ratio :=
CPU times of original method M

CPU times of hybrid method N-M
.

All numerical parameters, such as step size, of all alternative approaches are kept
the same as the former to guarantee the best performance. To launch the Newton-
PCG method, we choose the gradient difference \| gk - gk - 1\| < 10 - 3 in computing the
crystal and energy difference | E(\^\Phi k) - E(\^\Phi k - 1)| < 10 - 4 in computing the quasicrystal
as the measurement. As shown in our numerical results, our Hessian-based methods
can accelerate all the existing methods with the acceleration ratio ranging from 2--
14. After using the proposed local acceleration, we observe that all the compared
approaches have similar performance in terms of the CPU time. Moreover, it is noted
that the acceleration ratio for the AA-BPG-2 method is the smallest one, as it shows
the best performance without coupling the Newton-PCG method.
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Fig. 7. Dodecagonal quasicrystal: Comparisons of numerical behaviors of the AA-BPG-2/4
approaches with other numerical methods. The details of these images are the same as in Figure 3.

Fig. 8. The acceleration ratio of applying the Newton-PCG algorithm to existing methods
compared with original ones for computing periodic crystals and quasicrystals.

7. Conclusion. In this paper, efficient and robust computational approaches
have been proposed to find the stationary states of PFC models. Instead of formu-
lating the energy minimization as a gradient flow, we applied the modern optimiza-
tion methods directly on the discretized energy with mass conservation and energy
dissipation. Moreover, the AA-BPG methods with a suitable choice of h overcome
the global Lipschitz constant requirement in theoretical analysis and the step sizes
are adaptively obtained by the line search technique. We also propose a practical
Newton-PCG method and introduce a hybrid framework to further accelerate the lo-
cal convergence of gradient-based methods. Extensive results in computing periodic
crystals and quasicrystals show their advantages in terms of computation efficiency.
Thus, it motivates us to continue finding the deep relationship between the gradient

D
ow

nl
oa

de
d 

06
/1

3/
22

 to
 1

83
.1

72
.1

71
.2

34
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFICIENT NUMERICAL METHODS FOR PFC MODELS B1373

flow and the optimization, applying our methods to many related problems, such as
SPFC and MPFC models, and extending to more spatial discretization methods.

Appendix A. Proof of Theorem 3.6. Before we prove the convergent prop-
erty, we first present a useful lemma for our analysis.

Lemma A.1 (uniformized KL property [4]). Let \Omega be a compact set and E be a
constant on \Omega . Then, there exist \epsilon > 0, \eta > 0, and \psi \in \Psi \eta such that for all \=u \in \Omega 
and all u \in \Gamma \eta (\=u, \epsilon ), one has

(A.1) \psi 
\prime 
(E(u) - E(\=u))dist(0, \partial E(u)) \geq 1,

where \Psi \eta = \{ \psi \in C[0, \eta ) \cap C1(0, \eta ), \psi is concave, \psi (0) = 0, \psi 
\prime 
> 0 on (0, \eta )\} and

\Gamma \eta (x, \epsilon ) = \{ y| \| x - y\| \leq \epsilon , E(x) < E(y) < E(x) + \eta \} .
Now, we show the proof of Theorem 3.6, which is similar to the framework in [2].

Proof. Let S(x0) be the set of limiting points of the sequence \{ xk\} \infty k=0 starting

from x0. By the boundedness of \{ xk\} \infty k=0 and the fact that S(x0) = \cap q\in \BbbN \cup k\geq q\{ xk\} ,
it follows that S(x0) is a nonempty and compact set. Moreover, from (3.15), we know
that E(x) is a constant on S(x0), denoted by E\ast . If there exists some k0 such that
E(xk0) = E\ast , then we have E(xk) = E\ast for all k \geq k0, which is from (3.15). In the
following proof, we assume that E(xk) > E\ast for all k. Therefore, for all \epsilon , \eta > 0,
there exists some \ell > 0 such that for all k > \ell , we have dist(S(x0), xk) \leq \epsilon and E\ast <
E(xk) < E\ast + \eta , i.e.,

(A.2) x \in \Gamma \eta (x
\ast , \epsilon ) \forall x\ast \in S(x0).

Applying Lemma A.1 for all k > \ell , we have

\psi 
\prime 
(E(xk) - E\ast )dist(0, E(xk)) \geq 1.

From (3.17), it implies that

(A.3) \psi 
\prime 
(E(xk) - E\ast ) \geq 1

c1(\| xk  - xk - 1\| + \=w\| xk - 1  - xk - 2\| )
.

By the convexity of \psi , we have

(A.4) \psi (E(xk) - E\ast ) - \psi (E(xk+1) - E\ast ) \geq \psi 
\prime 
(E(xk) - E\ast )(E(xk) - E(xk+1)).

Define \Delta p,q = \psi (E(xp) - E\ast ) - \psi (E(xq) - E\ast ) and C = (1 + \=w)c1/c0 > 0. Together
with (A.3), (A.4), and (3.15), we have for all k > \ell 
(A.5)

\Delta k,k+1 \geq c0\| xk+1  - xk\| 2

c1(\| xk  - xk - 1\| + \=w\| xk - 1  - xk - 2\| )
\geq \| xk+1  - xk\| 2

C(\| xk  - xk - 1\| + \| xk - 1  - xk - 2\| )
.

Therefore,

(A.6) 2\| xk+1  - xk\| \leq 1

2
(\| xk  - xk - 1\| + \| xk - 1  - xk - 2\| ) + 2C\Delta k,k+1,

which is from the geometric inequality. For any k > \ell , summing up (A.6) for i =
\ell + 1, . . . , k, it implies that

2

k\sum 
i=\ell +1

\| xi+1  - xi\| \leq 1

2

k\sum 
i=\ell +1

(\| xi  - xi - 1\| + \| xi - 1  - xi - 2\| ) + 2C

k\sum 
i=\ell +1

\Delta i,i+1

\leq 
k\sum 

i=\ell +1

\| xi+1  - xi\| + \| x\ell +1  - x\ell \| + \| x\ell  - x\ell  - 1\| + 2C\Delta \ell +1,k+1,
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where the last inequality is from the fact that \Delta p,q +\Delta q,r = \Delta p,r for all p, q, r \in \BbbN .
For any k \geq \ell , since \psi \geq 0, we have

k\sum 
i=\ell +1

\| xi+1  - xi\| \leq \| x\ell +1  - x\ell \| + \| x\ell  - x\ell  - 1\| + 2C\psi (E(x\ell +1) - E\ast ).(A.7)

This easily implies that
\sum \infty 

k=1 \| xk+1  - xk\| < \infty . Together with Theorem 3.6, we
obtain

lim
k\rightarrow +\infty 

xk = x\ast , 0 \in \partial E(x\ast ) = 0.

Appendix B. Proof of Lemma 5.1. The proof is similar to the framework
in [47]. Let x\ast be the exact solution, and let ei = x\ast  - xi for all i. We first prove
some important properties of Algorithm 5.1.

Property I: \bfitr \bfiti = \bfitA \bfitx \bfiti  - \bfitb . From step 4 of Algorithm 5.1, we have \alpha iApi - 1 =
Axi  - Axi - 1. Then,

ri = ri - 1 + \alpha iApi - 1 = r0 +

i\sum 
j=1

\alpha jApj - 1 =  - b+
i\sum 

j=1

\alpha jApj - 1

=  - b+
i\sum 

j=1

(Axj  - Axj - 1) =  - b+Axi  - Ax0 = Axi  - b.

Property II: \langle \bfitp \bfiti , \bfitb \rangle = \| \bfitr \bfiti \| \bftwo 
\bfitM  - \bfone (\bfiti = 0, 1, 2, . . . ). By formula (5.40) in [29],

we know that \langle ri, rj\rangle M - 1 = 0 (i \not = j). Together with the definition of \beta i and pi in
Algorithm 5.1, we get

\langle p0, b\rangle = \langle p0, - r0\rangle = \langle M - 1r0, r0\rangle = \| r0\| 2M - 1 ,

\langle pi, b\rangle = \langle pi, - r0\rangle = \langle M - 1ri, r0\rangle + \beta i\langle pi - 1, - r0\rangle = \beta i\langle pi - 1, - r0\rangle =

\Biggl( 
i\prod 

j=1

\beta i

\Biggr) 
\langle p0, - r0\rangle 

=

\Biggl( 
i\prod 

j=1

\beta i

\Biggr) 
\| r0\| 2M - 1 =

\Biggl( 
i\prod 

j=2

\beta i

\Biggr) 
\| r1\| 2M - 1 = \| ri\| 2M - 1 \forall i = 1, 2, . . . .

(B.1)

Property III: \| \bfite \bfiti \| \bfitA \geq \| \bfite \bfiti +\bfone \| \bfitA . According to the iteration of pi, one has

\langle pi, - ri+1\rangle = \langle  - M - 1ri + \beta ipi - 1, - ri+1\rangle = 0 + \beta i\langle pi - 1, - ri+1\rangle 

=

\left(  i\prod 
j=1

\beta j

\right)  \langle p0, - ri+1\rangle =

\left(  i\prod 
j=1

\beta j

\right)  \langle M - 1r0, ri+1\rangle = 0.
(B.2)

By Property I, we have Aei+1 = A(x\ast  - xi+1) = b  - Axi+1 =  - ri+1, which implies
that \langle pi, Aei+1\rangle = 0. Using the fact that ei = ei+1 + xi+1  - xi = ei+1 + \alpha i+1pi, the
following equation holds for all i \geq 0:

\| ei\| 2A = \| ei+1 + \alpha i+1pi\| 2A = \| ei+1\| 2A + 2\alpha i+1\langle pi, Aei+1\rangle + \| \alpha i+1pi\| 2A
= \| ei+1\| 2A + \alpha 2

i+1\| pi\| 2A \geq \| ei+1\| 2A.
(B.3)
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Property IV: \langle \bfitx \bfiti , \bfitb \rangle \geq \langle \bfitx \bfiti  - \bfone , \bfitb \rangle . The definition of \alpha j gives

\| rj - 1\| 2M - 1 = \alpha j\| pj - 1\| 2A.

Together with (B.1) and (B.3), we have

\langle xi, b\rangle = \langle xi - 1, b\rangle + \langle \alpha ipi - 1, b\rangle = \langle x0, b\rangle +
i\sum 

j=1

\langle \alpha jpj - 1, b\rangle =
i\sum 

j=1

\alpha j\| rj - 1\| 2M - 1

=

i\sum 
j=1

\alpha 2
j\| pj - 1\| 2A =

i\sum 
j=1

(\| ej - 1\| 2A  - \| ej\| 2A) = \| e0\| 2A  - \| ei\| 2A,

(B.4)

which implies that \langle xi, b\rangle \geq \langle xi - 1, b\rangle by the monotonicity of \| ei\| 2A.
Now, we can prove the main result. By using the definition of p0 and \alpha 1, we

obtain

\langle xi, b\rangle 
\| b\| 2

\geq \langle x1, b\rangle 
\| b\| 2

=
\langle x0 + \alpha 1p0, b\rangle 

\| b\| 2
= \alpha 1

\langle p0, b\rangle 
\| b\| 2

=
\langle r0, p0\rangle 
\langle p0, Ap0\rangle 

\langle M - 1b, b\rangle 
\| b\| 2

=
\langle Mp0, p0\rangle 
\langle p0, Ap0\rangle 

\langle M - 1b, b\rangle 
\| b\| 2

\geq \langle Mp0, p0\rangle 
\langle p0, Ap0\rangle 

1

\lambda max(M)
.

(B.5)

Since M is positive, we know that M = M1/2M1/2, where M1/2 is still positive. As
a result,

\| M\| = \lambda max(M) = \lambda max(M
1/2M1/2) = \lambda 2max(M

1/2) = \| M1/2\| 2.(B.6)

Let y =M1/2p0; then we get

\langle Mp0, p0\rangle 
\langle p0, Ap0\rangle 

=
\langle y, y\rangle 

\langle y,M - 1/2AM - 1/2y\rangle 
\geq 1

\lambda max(M - 1/2AM - 1/2)
=

1

\| M - 1/2AM - 1/2\| 

\geq 1

\| M - 1/2\| \cdot \| A\| \cdot \| M - 1/2\| 
=

\| M\| 
\| A\| 

=
\lambda max(M)

\lambda max(A)
,

(B.7)

where the second inequality takes the fact that \| AB\| \leq \| A\| \cdot \| B\| . Together with
(B.5), we get

\langle xi, b\rangle 
\| b\| 2

\geq \langle Mp0, p0\rangle 
\langle p0, Ap0\rangle 

1

\lambda max(M)
\geq \lambda max(M)

\lambda max(A)

1

\lambda max(M)
=

1

\lambda max(A)
.(B.8)

To verify another inequality, we use (B.4) and the fact that e0 = x\ast  - x0 =  - A - 1b:

\langle xi, b\rangle 
\| b\| 2

=
\| e0\| 2A  - \| ei\| 2A

\| b\| 2
\leq \| e0\| 2A

\| b\| 2
=

\| A - 1b\| 2A
\| b\| 2

=
\langle b, A - 1b\rangle 

\| b\| 2
\leq 1

\lambda min(A)
.
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