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a b s t r a c t 

Learning rate is arguably the most important hyper-parameter to tune when training a neural network. As 

manually setting right learning rate remains a cumbersome process, adaptive learning rate algorithms aim 

at automating such a process. Motivated by the success of the Barzilai–Borwein (BB) step-size method in 

many gradient descent methods for solving convex problems, this paper aims at investigating the po- 

tential of the BB method for training neural networks. With strong motivation from related convergence 

analysis, the BB method is generalized to adaptive learning rate of mini-batch gradient descent. The ex- 

periments showed that, in contrast to many existing methods, the proposed BB method is highly in- 

sensitive to initial learning rate, especially in terms of generalization performance. Also, the BB method 

showed its advantages on both learning speed and generalization performance over other available meth- 

ods. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Background 

In the last decade, deep learning has emerged as one lead-

ng machine learning tool in computer vision. Particularly, deep

eural network (DNN) based learning, including supervised ap-

roaches [1,2] and unsupervised approaches [3,4] , has been used

or solving many long-lasting problems in computer vision with re-

arkable success, e.g. image classification, action recognition and

emantic segmentation. DNN-based learning enables an artificial

eural network (NN) to capture intricate structures of visual data

ith multiple levels of abstraction. 

In DNN, once the architecture of an NN has been designed for

olving a specific problem, the remaining task is to learn or train

he weights of the NN. In the so-called supervised approach to NN

raining, the weights of an NN are adjusted with respect to input

ata (i.e. training samples) such that the error between the output

f the NN and the preferred output is minimized. More specifically,

et θ denote the set of the weights of an NN. Consider a training

et { (x i , y i ) } N i =1 
containing N samples, where x i denotes the input

ata and y denotes its preferred output. The learning process is
i 
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hen to estimate θ that minimizes the following cost function: 

in 

θ
L (θ ) = 

1 

N 

N ∑ 

i =1 

L i (θ ) , (1)

here L i (θ ) = L (x i , y i ; θ ) . 

An efficient and effective method to find a good solution of the

roblem (1) is critical to the success of DNN. Unfortunately, the

roblem (1) is often a very large-scale non-smooth and non-convex

roblem. For such a large-scale problem, first-order methods such

s gradient descent are usually preferred. Among them, the so-

alled stochastic gradient descent (SGD) method is dominant in NN

raining. Instead of using the batch gradient which leverages over

he cost gradients of all training samples 1 
N 

∑ N 
i =1 ∇ θ L i (θ ) , classic

GD methods only call the cost gradient of one sample, which

ould be overly noisy. Therefore, a prominent approach is using

he so-called mini-batch gradient descent method [5] , which uses a

mall portion of training samples for gradient estimation. The up-

ate of a mini-batch gradient descent method reads as follows: 

t+1 = θt − ηt 

|B t | 
∑ 

i ∈B t 
∇ θ L i (θt ) , (2) 

here θ t denotes the estimate at Iteration t , B t denotes the index

et of the samples randomly chosen from the training set at Iter-

tion t , |B t | denotes the cardinality of the set B t , and the value

t > 0 is called learning rate . Mini-batch gradient descent is of

ore practical importance to NN training. In practice, the gradient

https://doi.org/10.1016/j.patrec.2019.08.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.08.029&domain=pdf
mailto:csyhquan@scut.edu.cn
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∇ θ L i ( θ ) is calculated by using a technique called back-propagation .

When training a DNN, the learning rate ηt is arguably the most

important hyper-parameter for achieving good performance, which

requires rigorous tune-up [6] . Learning rate has profound effect on

the convergence of NN training, as well as generalization perfor-

mance of the trained NN. In order to make the algorithm converge,

one often seen practice is to set learning rate to be decreasing over

time. 

1.2. Challenges on learning rate setting 

The sequence of learning rates has great impact on training ef-

ficiency and generalization performance. If learning rates are too

large, the training process is not stable. In such a case, the es-

timate can either overshoot the desired minimum such that they

just osculate around the minimum, or does not converge. If learn-

ing rates are too small, there are also undesired outcomes. One

is related to training inefficiency. Small learning rates make the

training process unnecessarily time-consuming, as it only slowly

updates the estimates. Another is related to poor generalization

performance [7–11] . Such an issue comes from the highly non-

convexity of the problem. Although training an NN does not re-

quire the sequence converges to a global minimum, those local

minima with good generalization performance are usually far away

from a random initialization. When using a small learning rate,

the sequence tends to be trapped into a local minimum close to

the initial. In other words, small learning rates might make the

sequence converge to some local minimum whose generalization

performance is poor [10,11] . 

From the discussions above, it can be seen that choosing right

learning rates is very important for training an NN with good

performance. While there are some good guidelines for manually

setting learning rates, it remains a very cumbersome process. In

the past, there have been several adaptive learning rate meth-

ods proposed for automating such a process, e.g. the widely-used

Adam [12] and its improved version AMSGrad [13] . These meth-

ods still have a lot of room for improvement when compared to

the performance achieved by rigorous manual tune-up. It is empir-

ically observed that these methods are sensitive to the initial value

of learning rate. As a result, many trials on setting initial learning

rate need to be done when training NNs, which is very time con-

suming. In short, there is certainly the need to have an automated

way of setting good learning rates such that we can efficiently train

an NN with good generalization performance. 

1.3. Main ideas and contributions 

Motivated by the importance of learning rate, this paper aims

at developing an adaptive learning rate algorithm for significantly

reducing computational effort to train an NN with good generaliza-

tion performance. In this paper, we transferred the concept of the

well-known Barzilai-Borwein (BB) technique [14] in convex opti-

mization to the setting of adaptive learning rate for training NNs.

The motivation comes from the fact that for the objective func-

tion with second-order continuous derivative, a good step size for

the gradient descent is closely related to the eigenvalues of the

Hessian matrix at current iteration. For training an NN, estimating

these quantities are not only difficult but also expensive in terms

of time and storage. The BB method is a well-known technique in

optimization that approximates the secant equation by two con-

secutive points to find a nearly Newton step size. In the bi-variate

case, the BB method estimates the curvature along the gradient

orientation to obtain appropriate step sizes. 

In this paper, the concept of BB method is generalized to the

mini-batch gradient descent method for training NNs. There are
everal advantages of the proposed BB-based adaptive learning rate

ver the existing ones: 

1. The proposed BB method is insensitive to initial learning

rate, i.e., in a wide range, different initial learning rates do

not impact generalization performance. 

2. The proposed BB method has significant gain on the learning

speed over other methods in most cases, as well as modest

gain on generalization performance in some cases. 

. Related work 

Learning rate is known as one of the most important hyper-

arameters when training an NN. However, it is also a difficult and

umbersome process to find the right learning rate. Before pro-

eeding, we first introduce some terms used in training NNs. One

poch refers to one forward pass and one backward pass of all the

raining examples. Batch size is the total number of training ex-

mples present in a one forward/backward pass. Iteration is the

umber of batches needed to complete one epoch. 

In the past, several heuristics have been proposed to set learn-

ng rates, including how to initialize the learning rate and how

o schedule it afterward. The common practice for the initializa-

ion of learning rate takes a trial-and-error strategy. One simple

ay for scheduling learning rate is decreasing it after a fixed pe-

iod of epochs (step decay) or after the validation accuracy reaches

he plateau for several epochs. Another commonly used trick is to

hange the learning rate with respect to the time t or the epoch k ,

hich includes inverse linear decay over epoch. 

There has been a enduring effort on developing the techniques

hat automate the process of setting learning rates when training

NNs [13] . Most existing adaptive learning rate methods, including

he well-known AdaGrad [15] , RMSProp [16] , Adam [12] and AMS-

rad [13] , can be expressed in the following form: 

t+1 = θt − ηt √ 

v t 
m t , for t = 1 , 2 , . . . . (3)

here m t is a descent direction derived from the gradients at sub-

equent time-steps { g 1 , . . . , g T } for updating θ t , and the value ηt √ v t 
s the learning rate at time-step t where v t is derived from the

orresponding squared gradients { g 2 
1 
, g 2 

2 
, . . . , g 2 

T 
} . However, it is ob-

erved that the performance of these adaptive learning rate meth-

ds are sensitive to initial learning rate. In other words, differ-

nt initial learning rates lead to noticeable different training loss

nd test accuracy. See Fig 1 for an illustration. As a result, it re-

uires many trials on setting right initial learning rates to have an

N trained with fast convergence and good generalization perfor-

ance, which is a very time-consuming process. 

Barzilai and Borwein [14] proposed a strategy to determine the

tep size for gradient descent methods, which is often called BB

tep size in the literature. It has been successfully used to solve

arious types of optimization problems arising from a wide range

f applications, including sparse reconstruction [17] and coherence

etrieval [18] . The Plain BB method also has been introduced for

raining NNs [19,20] , which are restricted to the non-stochastic

radient descent method. The BB method is introduced in [21] to

he SGD and its variance reduced variants SVRG [22] for solving

onvex problems. It is also extended in [23] for solving non-convex

roblems. 

It is noted that all existing works on the application of the BB

ethod for solving non-convex problems are based on the SVRG,

hich needs to perform a full gradient evaluation over the entire

ataset per epoch. Such a practice is not used in practical deep

earning for its computational cost, and it is indeed high inefficient

hen training a DNN [24] . Different from these existing works,

his paper considers the mini-batch version of SGD, the most often
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Fig. 1. Performance comparison of four existing methods when using different initial learning rates for training ResNet18 on CIFAR10. It is noted that for RMSProp, the 

accuracy curves of η0 = 1 and η0 = 0 . 1 have very close values that leads to occlusion. 
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een one used in practical deep learning. To the best of our knowl-

dge, this paper is the first one that studies the application of the

B method in practical DNN training, including the modifications

or fitting practical training procedures in deep learning, conver-

ence analysis and extensive experimental evaluations on several

epresentative NN architectures. 

. BB-based adaptive learning rate 

.1. Preliminaries on BB method 

Main idea of the BB method is to use information from the last

terations to determine the step size in the current iteration. Con-

ider an unconstrained optimization problem: 

in 

x ∈ R n 
f (x ) , 

here f : R 

n → R has second-order continuous derivatives. Let

 x 1 , x 2 , . . . , } denote the sequence generated by the method: 

 t+1 = x t − ηt ∇ f ( x t ) , (4) 

here ηt > 0 is the step size and the gradient ∇f ( x t ) is the search

irection. The gradient descent method is simple, but only has

inear convergence rate when solving strongly convex problems.

o achieve quadratic convergence rate, Newton’s method uses the

earch direction H 

−1 ∇ f where H denotes the Hessian matrix of

 . As it is very computationally expensive to calculate the inverse

f Hessian matrix of a large-scale problems, Quasi-Newton meth-

ds replace Hessian matrix by an approximate B ≈ H 

−1 . In Quasi-

ewton methods, the approximation matrix B satisfies the follow-

ng secant equation: 

 t s t = y t , 

here 

s t = x t − x t−1 , 

y t = ∇ f (x t ) − ∇ f (x t−1 ) . 
The Barzilai–Borwein (BB) method [14] is motivated from the

dea of Quasi-Newton methods, which replaces the approximate

atrix B t by an identity matrix multiplied by a scale, i.e. η−1 
t I.

hen the optimal value of ηt minimizes the least square error of

ecant equation: 

η−1 
t s t − y t 

∥∥2 

2 
, 

nd its explicit solution is 

t = 

‖ 

s t ‖ 

2 
2 

s 	 t y t 
. 

.2. The BB method for adaptive learning rate 

.2.1. Definition of BB-based learning rate 

Let ∇L B (θ ) denote the mini-batch gradient used in training

eural networks: 

L B (θ ) = 

1 

|B| 
∑ 

i ∈B 
∇ θ L i (θ ) . (5)

Let k denote the epoch index, and t denote the index of time-

tep inside each epoch starting from 1 to T . Then, the sequence

 θ k,t } k,t generated from the training is 

 θ0 , 1 , θ0 , 2 , . . . , θ0 ,T ︸ ︷︷ ︸ 
k =0 

, θ1 , 1 , θ1 , 2 , . . . , θ1 ,T ︸ ︷︷ ︸ 
k =1 

, · · · } . (6) 

In the proposed BB method, the learning rate is only updated

fter finishing one epoch, i.e., the update rule is 

k, 0 = θk −1 ,T , θk,t+1 = θk,t − ηk ∇L B k,t 
(θk,t ) , (7)

or t = 0 , 1 , . . . , T − 1 and k = 0 , 1 , . . . . There are two quantities in

he BB-method for determining the value ηk : the difference of

oints s and the difference of gradients y . 
k k 
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Algorithm 1 BB-based adaptive learning rate. 

Require: max epochs K, steps per epoch T , batch size |B| , weight- 

ing parameter β ∈ (0 , 1] , initial point θ0 , 0 , learning rate η0 = 

η1 , τ0 , τmin and τmax . 

1: for k ← 0 to K − 1 do 

2: if k > 1 then 

3: y k −1 ← g k −1 ,T − g k −2 ,T 

4: s k −1 ← 

1 
T (θk −1 ,T − θk −2 ,T ) 

5: ηk ← 

‖ s k −1 ‖ 2 
| s 	 

k −1 
y k −1 | 

6: ˆ ηk = 

{
ηk if ηk ∈ 

[ τmin 
k +1 

, τmax 
k +1 

]
, 

τ0 
k +1 

, otherwise. 

7: g k, 0 ← 0 

8: for t ← 0 to T − 1 do 

9: Randomly draw a batch B k,t 

10: θk,t+1 ← θk,t − ˆ ηk ∇L B k,t 
(θk,t ) 

11: g k,t+1 ← (1 − β) g k,t + β∇L B k,t 
(θk,t ) 

12: θk +1 , 0 ← θk,T 
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2 http://yann.lecun.com/exdb/mnist/ . 
3 https://www.cs.toronto.edu/ ∼kriz/cifar.html . 
The gradient for estimating ηk is defined in the same way

as the Adam method, i.e. the exponential moving average of the

stochastic gradients over the epoch: 

g k,t+1 = (1 − β) g k,t + β∇L B t (θk,t ) , (8)

for t = 0 , 1 , . . . , T − 1 and g k, 0 = 0 , where β is a predefined con-

stant smoothing factor within (0,1] that controls the degree of ex-

ponential decay. Then, we define the difference of gradients be-

tween two epochs by 

y k = g k,T − g k −1 ,T . (9)

The difference of points over two epochs is defined as the dif-

ference of the last one of two epochs normalized by the iterations:

s k = T −1 (θk,T − θk −1 ,T ) . (10)

Now, we have the BB-based learning rate 1 : 

ηk +1 = 

‖ s k ‖ 

2 

| s 	 
k 

y k | , (11)

3.2.2. Related convergence analysis 

The randomness of stochastic gradient could make BB step size

sometimes too large or too small, and thus it is often used together

with line search. It is suggested in [25] to restrict the BB step

size when being applied in practice to guarantee the convergence

of stochastic gradient descent based algorithms. Indeed, based on

Bertsekas and Tsitsiklis [26 , Proposition 3], we have the following

convergence analysis of the mini-batch stochastic gradient descent

method. 

Proposition 1. Let L i s defined in Eq. (1) be continuous and differen-

tiable. Given θ0 , let { θ t } be the sequence generated by the mini-batch

stochastic gradient descent scheme, i.e. 

θt+1 = θt − ηt ∇L B (θt ) , 

where ∇L B (θt ) is defined in Eq. (5) . Define w t = ∇L (θt ) − ∇L B (θt ) .

Assume E (‖ w t ‖ 2 ) ≤ A (1 + ‖∇L (θt ) ‖ 2 ) for some constant A and the

learning rate satisfies 

∞ ∑ 

t=1 

ηt = ∞ and 

∞ ∑ 

t=1 

(ηt ) 
2 < ∞ . (12)

Then, we have lim t→∞ 

∇L (θt ) = 0 . 

The proof is done by directly checking the conditions of

Bertsekas and Tsitsiklis [26 , Proposition 3]. In order to guaran-

tee the convergence of the mini-batch stochastic gradient descent

method, one sufficient condition is letting the sequence of learning

rates satisfies the decay property (12) . 

Therefore, when we apply the BB method to generate learning

rates, we impose a bound constraint on the BB-based learning rate

ηk as follows. 

ˆ ηk = 

{
ηk , if ηk ∈ 

1 
k +1 [ τmin , τmax ] , 

1 
k +1 

τ0 , otherwise, 
(13)

where k denotes the index of epoch, τmin , τmax , τ 0 are pre-

defined constants. Clearly, the learning rate { ̂  ηk } determined by

Eq. (13) satisfies constraint (12) for convergence. See Algorithm 1

for the description of the BB method for adaptive learning rate. 

Remark. In practice, it is very rare that the learning rates gener-

ated from the BB-method is out of the bound interval with default

values. For instance, when training VGG on the dataset CIFAR10

with τmax = 10 and τmin = 0 . 1 , only 1/150 of the BB-based learning

rates are out of the bound interval. 
1 In stochastic setting, the calculated learning rate η might be negative. Therefore, 

we use the absolute value for the BB formula. 
. Experiments 

This section is devoted to performance evaluation of the pro-

osed BB method for adaptive learning rate on several representa-

ive NN architectures on the task of classification. 

.1. Configuration of experiments 

All the experiments are conducted in PyTorch, using the default

arameters if no specifications are provided. 

.1.1. Datasets 

For evaluation, the proposed BB methods are used for train-

ng neural networks for the task of classification. Five benchmark

atasets are used in the experiments, namely, MNIST 2 [27] , CI-

AR10 and CIFAR100 3 [28] , ImageNet(a.k.a. ILSVRC-2012) [29] and

ts downsampled variant ImageNet-32-32 4 [30] . The configuration

f these five datasets is summarized in Table 1 . For all the five

atasets, the input images are normalized by mean and standard

eviation per channel. In the CIFAR10 and CIFAR100 datasets, we

erformed data augmentation with random horizontal flipping ad-

itionally. The training-test splitting in our experiment was based

n official requirements. 

.1.2. NN Models 

The methods are applied on several representative NN mod-

ls. For classic and shallow NNs, the following models are tested:

 multilayer perceptron (MLP) with two fully connected layers

n MNIST, and a convolutional neural network (CNN) named

eNet [27] with ReLU activation function on CIFAR10. For deep

Ns, the following models are tested 

5 : VGG [31] and Residual Neu-

al Networks (ResNet) [32] (We useResNet18 for CIFAR datasets and

esNet50 for ImageNet datasets). The configuration of the mod-

ls used in the experiments is summarized in Table 2 . For MLP

nd LeNet, we initialized the weights with the method proposed

y [33] . As for VGG and ResNet, we follow the same weight ini-

ialization strategy as the original paper, except the weights of
4 http://image- net.org/download- images . 
5 The models used in this paper is a reduced version with less layers and less 

nodes for computational efficiency, which has been implemented in official release 

of PyTorch and are widely used in the study of deep learning. 

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
http://image-net.org/download-images
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Table 1 

The characteristics of the datasets. 

Dataset MNIST CIFAR-10 CIFAR-100 ImageNet-32-32 ImageNet 

#Training set 60,000 50,000 50,000 1,281,167 1,281,167 

#Test set 10,000 10,000 10,000 50,000 50,000 

Resolution 28 × 28 32 × 32 32 × 32 32 × 32 original size varies; crop to 224 × 244 

#Classes 10 10 100 1000 1000 

Table 2 

The characteristics of the models. 

Model MLP LeNet VGG ResNet18 ResNet50 for ImageNet-32-32 ResNet50 for ImageNet 

#Layer 2 5 11 18 50 50 

#Convolutional layer N/A 2 8 17 49 49 

Convolutional kernel N/A 5 × 5 3 × 3 1 × 1, 3 × 3 1 × 1, 3 × 3 1 × 1, 3 × 3, 7 × 7 

#Fully connected layer 2 3 3 1 1 1 

#Fully connected unit 1024,1024 400, 120, 84 512, 512, 512 512 512 512 

Batch Norm − − + + + + 

#Trainable parameters 1,863,690 62,006 9,756,426 11,173,962 25,549,352 25,557,032 
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Fig. 2. Performance comparison of BB with different initial learning rates for train- 

ing ResNet18 on CIFAR10. For comparison, the result from AdaGrad is shown in 

dashed lines. 
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onvolutional layers, which use the normal initialization proposed

y [34] instead. 

.1.3. Methods for comparison 

The proposed adaptive learning rate method is compared to

everal adaptive learning rate methods that are widely used in

ractice on MNIST and CIFAR datasets: AdaGrad [15] , RMSProp [16] ,

dam [12] and AMSGrad [13] . We also compared the proposed

ethod with the Nesterov Accelerated Gradient (NAG, a.k.a. SGD

ith Nesterov momentum) method [35] , as it has been used as the

referred optimization algorithm for training several representative

eep neural networks [31,32,36] . 

The initialization of the learning rate is best-tuned by densely

rid search in 

[
10 −6 , 10 0 

]
. Following experimental protocols in

rior works [12,13] , fixed learning rates are adopted for training

eural networks. All methods are implemented using weight decay

egularization with the regularization parameter λ = 5 × 10 −4 . In

ddition, we verified the performance of the proposed method for

raining ResNet50 on the large-scale image dataset ImageNet. For

mageNet-32-32, the proposed method is compared with NAG with

earning rate initialized with 0.01 and dropped by a factor of 0.5

very 10 epochs following [30] . For ImageNet, following [32] and

37] , the proposed method is compared with NAG whose learning

ate is initialized with 0.1 and dropped by a factor of 0.1 every

0 epochs. The weight decay regularization with the regularization

arameter λ = 1 × 10 −4 is used. 

.1.4. Configuration of the BB method 

For the proposed BB method, the weighting parameter β = 4 /T .

he parameter τ0 = 1 for all tasks, while τmax = 3 , τmin = 0 . 33 for

hallow networks and τmax = 10 , τmin = 0 . 1 for deep NNs. Consid-

ring that the learning rate to achieve good performance generally

oes not exceed 1 in practice, we could set ηmax = k ∗ + 1 to ensure

hat the maximum learning rate during training is as close as pos-

ible to 1 but not more than 1, where k ∗ is the index of the epoch

hen the learning rate exceeds 1 for the first time. For Example,

 

∗ = 6 for training VGG in CIFAR10. For the lower bound, we sim-

ly set τmin = 

1 
τmax 

. The size of mini-batch is 128 for MNIST and

IFAR datasets [13,38] and 256 for ImageNet datasets [30,32,37] .

e conduct the experiments in the setting of supervised learning.

n fact, the proposed method is also applicable to the related op-

imization problem arising from those unsupervised deep learning

asks such as [3,4] . 
.2. Experimental results 

.2.1. Robustness to initial learning rate 

Most existing adaptive learning rate methods are sensitive to

nitial learning rate. This experiment is to illustrate the robustness

f the proposed BB method to initial learning rate. From Fig. 2 , It

an be seen that the BB method is much less sensitive to the ini-

ial learning rate than other adaptive learning rate do in terms of

earning. More importantly, the BB method is insensitive to initial

earning rate in terms of generalization performance. This property

nables the users to avoid unnecessary many trials on initial learn-

ng rate for achieving high testing accuracy. In the following ex-

eriments, we uniformly use η0 = 0 . 1 throughout all experiments,

hanks to its insensitivity to generalization performance. 

.2.2. Experiments on training shallow NNs 

Fig. 3 shows the results of training a multilayer perceptron on

NIST. It can be seen that all optimization algorithms achieve

lose to 99% accuracy on MNIST. Among them, the BB method

chieves the lowest training loss and the highest test accuracy.

ig. 4 shows the results of training shallow CNN (LeNet) on CI-

AR10. The NAG, a first-order method, has the best performance

n both training and testing for LeNet. The performance of the BB

ethod is better than that of the AdaGrad, and is comparable to

ther adaptive learning rate algorithms. It is noted that the opti-

ization problem for training a LeNet on MNIST is of quite small

cale. It has only 0.06M parameters to train, which is 1/400 of that

f ResNet50. For such a small-scale problem, it attenuate the ad-

antage of the proposed method over step-size efficiency, since the
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Fig. 3. Performance comparison of different methods for training MLP on MNIST. 

Fig. 4. Performance comparison of different methods for training LeNet on CIFAR10. 

Fig. 5. Performance comparison of different methods for training VGG on CIFAR10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Performance comparison of different methods for training VGG on CIFAR100. 

Fig. 7. Performance comparison of different methods for training ResNet18 on CI- 

FAR10. 

Fig. 8. Performance comparison of different methods for training ResNet18 on CI- 

FAR100. 

Fig. 9. Performance comparison of different methods for training ResNet50 on 

ImageNet-32-32. 
BB method is for approximating second-order method. In addition,

one weakness of second-order methods, such as Newton method,

is that they sometimes attract to saddle points more often than

first-order methods do [39] . 

4.2.3. Experiments on training DNNs 

Figs. 5 and 6 show the results of training VGG on CIFAR10 and

CIFAR100. On both datasets, the training error and testing accu-

racy obtained by VGG are generally worse than ResNet18. It can be

seen that after 25 epochs, the BB still has the lowest training error

and the highest test accuracy than other compared methods. For

other methods, AdaGrad has the lowest training error on CIFAR10;

on CIFAR100, NAG has the lowest training error. In terms of test

accuracy, other methods are comparable. 

Figs. 7 and 8 show the results of training ResNet18 on CIFAR10

and CIFAR100 respectively. It can be seen that on both datasets, the

BB method is significantly better than other methods, as shown in

both the final and the middle results. The results of AdaGrad are

inferior to BB. Figs. 9 and 10 show the results of training ResNet50

on ImageNet-32-32 and ImageNet respectively. Classification task

on ImageNet-32-32 is more difficult than on its original version
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Fig. 10. Performance comparison of different methods for training ResNet50 on Im- 

ageNet. 
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ue to the downsampling from 224 to 32. On both datasets, the

roposed method could achieve lower training loss and higher test

ccuracy than NAG, the widely used method for training DNNs on

mageNet. 

. Conclusions 

In this paper, we proposed an adaptive learning method for

utomating the training of NNs. The paper generalizes the well-

stablished BB method in convex optimization to solve the training

roblem in neural network learning. It is shown that in contrast

o many existing adaptive learning rate methods, the BB method is

nsensitive to initial learning rate, especially in terms of generaliza-

ion performance, which significantly reduces computational effort

o training an NN. The proposed BB method also achieves faster

earning speed as well as better generalization performance in var-

ous scenarios. In conclusion, the BB method has the potential for

utomating the process of setting right learning rate when training

Ns. 
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