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Whole Brain Susceptibility Mapping Using Harmonic Incompatibility Removal\ast 

Chenglong Bao\dagger , Jae Kyu Choi\ddagger , and Bin Dong\S 

Abstract. Quantitative susceptibility mapping (QSM) uses the phase data in magnetic resonance signals to vi-
sualize a three-dimensional susceptibility distribution by solving the magnetic field to susceptibility
inverse problem. Due to the presence of zeros of the integration kernel in the frequency domain,
QSM is an ill-posed inverse problem. Although numerous regularization-based models have been
proposed to overcome this problem, incompatibility in the field data, which leads to deterioration
of the recovery, has not received enough attention. In this paper, we show that the data acquisi-
tion process of QSM inherently generates a harmonic incompatibility in the measured local field.
Based on this discovery, we propose a novel regularization-based susceptibility reconstruction model
with an additional sparsity-based regularization term on the harmonic incompatibility. Numerical
experiments show that the proposed method achieves better performance than existing approaches.

Key words. quantitative susceptibility mapping, magnetic resonance imaging, deconvolution, partial differential
equation, harmonic incompatibility removal, two system regularization
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1. Introduction. Quantitative susceptibility mapping (QSM) [13] is a novel imaging tech-
nique that visualizes the magnetic susceptibility distribution from the measured field data
associated with magnetization M = (M1,M2,M3) induced in the body by an MR scanner.
The magnetic susceptibility \chi is an intrinsic property of the material which relates M and the
magnetic field H = (H1, H2, H3) through M = \chi H [45]. As physiological and/or pathological
processes alter tissues' magnetic susceptibilities, QSM has been widely applied in biomedical
image analysis [45]. Applications include demyelination, inflammation, and iron overload in
multiple sclerosis [8]; neurodegeneration and iron overload in Alzheimer's disease [1]; Hunt-
ington's disease [50]; changes in metabolic oxygen consumption [25]; hemorrhage, including
microhemorrhage and blood degradation [28]; bone mineralization [14]; and drug delivery
using magnetic nanocarriers [34].

QSM uses the phase data of a complex gradient echo (GRE) signal as the phase linearly
increases with respect to the field perturbation induced by the magnetic susceptibility distri-
bution in an MR scanner [52]. More concretely, assume that an object is placed in an MR
scanner with the main static magnetic field B0 = (0, 0, B0), where B0 is a positive constant.
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Figure 1. Schematic diagram of QSM reconstruction process.

Then, for any \bfitx \in \BbbR 3, the observed complex GRE signal I(\bfitx , TE) at an echo time TEsec is
modeled as

I(\bfitx , TE) = m(\bfitx ) exp \{  - i (b(\bfitx )\omega 0B0TE + \theta 0(\bfitx ))\} ,(1.1)

where \omega 0 = 42.577MHz/T is the proton gyromagnetic ratio, b is the total field induced by the
susceptibility distribution in an MR scanner, and \theta 0 is the coil sensitivity--dependent phase
offset. The magnitude image m(\bfitx ) in (1.1) is proportional to the proton density [52], and the
phase \theta (\bfitx ) in I(\bfitx , TE) is written as

\theta (\bfitx ) = b(\bfitx )\omega 0B0TE + \theta 0(\bfitx ).(1.2)

Based on the observations \theta (\bfitx ), QSM aims at visualizing the susceptibility distribution \chi (\bfitx )
in the region of interest (ROI) \Omega which occupies the water and brain tissues. Note that the
ROI \Omega can be readily determined by I(\bfitx , TE) (and thus by m(\bfitx )) as m(\bfitx ) = | I(\bfitx , TE)| \approx 0
whenever \bfitx /\in \Omega [30, 44, 52]. The standard QSM consists of the following four steps: offset
correction, phase unwrapping, background field removal, and dipole inversion (see Figure 1 for
the overview of the process). The first three steps extract the local field bl that is contained in
the total field b: the offset correction removes/corrects \theta 0(\bfitx ) from \theta (\bfitx ) to obtain b(\bfitx )\omega 0B0TE
(the offset corrected phase) lying in ( - \pi , \pi ]; the phase unwrapping removes the artificial jumps
in the offset corrected phase when estimating the total field b; the background field removal
eliminates the field induced by the susceptibility outside \Omega such as skulls and nasal cavities.
Interested readers may refer to [24, 44, 52] and references therein for more details.

Given the local field bl, the dipole inversion recovers the susceptibility distribution \chi in \Omega 
by solving the following convolution relation [31, 32, 33]:

bl(\bfitx ) = pv

\int 
\Omega 
d(\bfitx  - \bfity )\chi (\bfity )d\bfity ,(1.3)

where pv denotes the principal value [48] of the singular integral with the kernel d:

d(\bfitx ) =
2x23  - x21  - x22

4\pi | \bfitx | 5
.
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494 CHENGLONG BAO, JAE KYU CHOI, AND BIN DONG

In the frequency domain, (1.3) reads

F(bl)(\bfitxi ) = \scrD (\bfitxi )F(\chi )(\bfitxi ) =

\biggl( 
1

3
 - \xi 23

| \bfitxi | 2

\biggr) 
F(\chi )(\bfitxi ),(1.4)

where \scrD = F(d) is the Fourier transform of d and \scrD (0) = 0 by the definition of pv [13, 24].
From (1.4), it is easy to see that recovering the susceptibility distribution \chi is ill-posed as
\scrD = 0 on the critical manifold \Gamma 0 =

\bigl\{ 
\bfitxi \in \BbbR 3 : \xi 21 + \xi 22  - 2\xi 23 = 0

\bigr\} 
. This ill-posedness leads to

the streaking artifacts unless the data bl satisfies a proper compatibility condition [9].

1.1. Existing QSM reconstruction methods. In the literature, various QSM reconstruc-
tion methods have been explored to deal with the ill-posed nature of the inverse problem (1.4).
Early attempts mainly focus on the direct methods based on the modification of (1.4) near
\Gamma 0 [27]. One benchmark method, called the truncated K-space division (TKD) [47], finds the
approximate solution to (1.4) via

\chi \hbar = F - 1(\scrX \hbar ), where \scrX \hbar (\bfitxi ) =
sign(\scrD (\bfitxi ))

max \{ | \scrD (\bfitxi )| , \hbar \} 
F(bl)(\bfitxi ),(1.5)

with a threshold level \hbar > 0. Another method recovers \chi by solving the following Tikhonov
regularization [29]:

min
\chi 

1

2
\| A\chi  - bl\| 22 + \varepsilon \| \chi \| 22 ,(1.6)

where \varepsilon > 0 and A denotes the forward operator that is obtained by discretizing the kernel \scrD .
Recently, some other direct methods have been proposed, e.g., iterative susceptibility weighted
imaging and susceptibility mapping [49], analytic continuation [39], and so on. Even though
these direct methods are simple to implement, they can introduce additional artifacts due to
the modification of 1/\scrD near \Gamma 0 in the frequency domain [9, 27, 40].

In recent years, regularization-based methods have been proposed and have shown superior
performance over the direct method [27, 51]. Mathematically, it is formulated as solving the
minimization problem

min
\chi 

F (bl| \chi ) +R(\chi ),(1.7)

where F (bl| \chi ) denotes the data fidelity term and R(\chi ) is the regularization term which mostly
promotes the sparse approximation of \chi under some linear transformation such as total varia-
tion and wavelet frames. According to the choices of F (bl| \chi ), the regularization-based meth-
ods can be classified under integral approaches and differential approaches [27]. The most
widely used integral approaches are based on the convolution relation (1.3). For example,
F (bl| \chi ) = 1

2 \| A\chi  - bl\| 22 when the data is corrupted by a white Gaussian noise. Even though
the integral approach is capable of suppressing streaking artifacts, it is empirically reported
in [27] that the reconstructed image can contain the shadow artifacts in the region of piece-
wise constant susceptibility. The differential approaches are based on the partial differential
equation (PDE)

 - \Delta bl(\bfitx ) = P (D)\chi (\bfitx ) =

\biggl( 
 - 1

3
\Delta +

\partial 2

\partial x23

\biggr) 
\chi (\bfitx ), \bfitx \in \Omega ,(1.8)
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which is derived from Maxwell's equation [23, 45]. In this case, one typical fidelity term
is F (bl| \chi ) = 1

2 \| P (D)\chi +\Delta bl\| 22 by considering  - \Delta bl as a measurement. Compared with
the integral approach, the differential approach is able to restore the susceptibility image with
fewer shadow artifacts. However, the noise in the data can be amplified by  - \Delta , which leads to
the streaking artifacts [52]. In [27], the differential approach is implemented by incorporating
the spherical mean value (SMV) filter Sr with a radius r > 0 [30] into the integral approach:

min
\chi 

1

2
\| Sr (A\chi  - bl)\| 22 +R(\chi ).(1.9)

Since the implementation of Sr causes the erosion of \Omega according to the choice of r, the loss of
anatomical information near \partial \Omega is inevitable at the cost of the shadow artifact removal [27].

1.2. Motivations and contributions of our approach. Even though (1.3) and (1.8) are
known to be equivalent [9, 27, 40], it is observed that the local field bl defined as (1.3) is a
particular solution of the PDE (1.8). Whenever the data acquisition is based on the PDE
(1.8), the measured local field data will be written as the superposition of bl in (1.3) and
the ambiguity of  - \Delta , which will be referred to as the harmonic incompatibility. Therefore,
there is a need to identify/remove the harmonic incompatibility from the measured local field
data for better reconstruction results as it is smooth and analytic and satisfies the mean value
property in an open set [19], which are different from the noise properties.

It is noted that the background field removal aims at obtaining the local field bl via solving
a Poisson equation with certain boundary condition as the background field is harmonic in
\Omega [30, 43, 52, 57]. In this case, the measured local field bl is represented by the Green's
function associated with the boundary condition [9]. Thus, it is inevitable that bl contains the
incompatibility associated with the imposed boundary condition. In this paper, we investigate
the incompatibility of the local field data in QSM and establish that this incompatibility
consists of two harmonic functions inside and outside \Omega , respectively, and its (distributional)
Laplacian defines a surface measure on \partial \Omega (see Theorem 2.2 for details and Figures 2 to 5
for illustrations). Therefore, we can establish a new forward model in QSM by taking this
harmonic incompatibility into account.

Based on this discovery, we impose a constraint on the harmonic incompatibility term
in the susceptibility reconstruction model. Since our theoretical results suggest that the
incompatibility is harmonic except on \partial \Omega , one straightforward approach is to penalize its
(discrete) Laplacian on points \bfitx /\in \partial \Omega . However, it is in general difficult to explicitly model
this harmonic incompatibility and/or to directly impose its property onto the susceptibility
reconstruction model due to the complicated geometries of human brains and the limited
spatial resolution in real MRI data. Instead, we impose the sparse regularization of the
incompatibility, as the support of its Laplacian is small compared to the size of the image.
Combining it with traditional regularization on the susceptibility image, we propose a novel
regularization-based QSM model by imposing additional constraints on the incompatibility
term. Within the new model, we can suppress the incompatibility other than the noise,
achieving the whole brain imaging with fewer artifacts together with the regularization of the
susceptibility image. Experiments on both brain phantom and in vivo MR data consistently
show the advantages of the proposed harmonic incompatibility removal (HIRE) model, which
achieves state-of-the-art performance. In addition, our experiments suggest that tight frameD
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regularization of the susceptibility image can avoid the constant offset [27] and lead to efficient
computation.

1.3. Organization of paper. In section 2, we introduce our HIRE model for whole brain
susceptibility imaging. More precisely, we first briefly review the biophysics forward model of
QSM in subsection 2.1 and characterize the harmonic incompatibility in the local field data
in subsection 2.2. Based on the characterization, we introduce the proposed HIRE model
in subsection 2.3, followed by an alternating minimization algorithm in subsection 2.4. In
section 3, we present experimental results for both brain phantom and in vivo MR data, and
concluding remarks are given in section 4.

2. Harmonic incompatibility removal (HIRE) model for whole brain imaging.

2.1. Preliminaries on biophysics of QSM. In an MRI scanner with the main static mag-
netic field B0 = (0, 0, B0), where B0 is a positive constant, objects gain a magnetizationM(\bfitx ).
This magnetization generates a macroscopic field B(\bfitx ) satisfying the following magnetostatic
Maxwell equation [23, 45]:

\nabla \cdot B = 0,

\nabla \times B = \mu 0\nabla \times M,
(2.1)

where \mu 0 = 8.854\times 10 - 12F/m is the vacuum permittivity. Since the MRI signal is generated
by the microscopic field B\ell (\bfitx ) experienced by the spins of water protons [27], to relate B(\bfitx )
and B\ell (\bfitx ) we use the following Lorenz sphere correction model [23]:

B\ell (\bfitx ) = B(\bfitx ) - 2

3
\mu 0M(\bfitx ).(2.2)

Note that since M(\bfitx ) is generated by the B0 field, we have M(\bfitx ) = (0, 0,M(\bfitx )). More-
over, since we consider the linear magnetic materials with | \chi | \ll 1, \chi can be approximated
as

\chi (\bfitx ) \approx \mu 0
B0
M(\bfitx ).(2.3)

Finally, we introduce the total field b(\bfitx ) as

b(\bfitx ) =
B\ell 3(\bfitx ) - B0

B0
,(2.4)

where B\ell 3(\bfitx ) denotes the third component of B\ell (\bfitx ).
Combining (2.1)--(2.4) and taking only the third component into account, we obtain the

following relation between \chi and b in the frequency domain:

| \bfitxi | 2F(b)(\bfitxi ) =
\biggl( 
1

3
| \bfitxi | 2  - \xi 23

\biggr) 
F(\chi )(\bfitxi ),(2.5)

which gives

 - \Delta b = P (D)\chi :=

\biggl( 
 - 1

3
\Delta +

\partial 2

\partial x23

\biggr) 
\chi .(2.6)
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Then for a given susceptibility distribution \chi (in \BbbR 3), the general solution b, which is bounded
everywhere in \BbbR 3, is expressed as

b(\bfitx ) =

\int 
\BbbR 3

\Phi (\bfitx  - \bfity )

\biggl( 
 - 1

3
\Delta \bfity +

\partial 2

\partial y23

\biggr) 
\chi (\bfity )d\bfity + b0,(2.7)

where b0 is some constant, and \Phi (\bfitx ) = 1/ (4\pi | \bfitx | ).
In MRI, the phase of a complex GRE MR signal is linear with respect to the total field

b in (2.7) [52], and the constant b0 is determined by the coil sensitivity of an MR scanner
as the coil sensitivity--dependent phase offset is in general assumed to be a constant [24, 44].
However, since we can remove it during the phase estimation from the multiecho GRE signal
[12], we assume that b0 = 0 and

b(\bfitx ) =

\int 
\BbbR 3

\Phi (\bfitx  - \bfity )

\biggl( 
 - 1

3
\Delta \bfity +

\partial 2

\partial y23

\biggr) 
\chi (\bfity )d\bfity (2.8)

in the rest of this paper. Note that b defined as above is induced by the susceptibility distri-
bution in the entire space, which is different from bl in (1.3).

Remark 2.1. Since [9, Proposition A.1] has discussed the equivalence between (2.8) and
the representation

b(\bfitx ) = pv

\int 
\BbbR 3

d(\bfitx  - \bfity )\chi (\bfity )d\bfity (2.9)

in the literature, we shall use (2.8) in the rest of this paper. Note that (2.8) avoids the
singularity of the kernel d(\bfitx  - \bfity ) in (2.9) as \Phi (\bfitx  - \bfity ) is locally integrable near \bfitx = \bfity .

2.2. Characterization of harmonic incompatibility in local field data. In QSM, the total
field b(\bfitx ) is obtained from the phase data of a complex GRE MR signal [44, 52]. In fact, if
the information of b is available over the entire space, then we can directly solve the inverse
problem from the knowledge of b without the background field removal step. However, since
the GRE signal is not available outside \Omega , the information of b is available only inside \Omega .
Moreover, even if \chi is compactly supported, the support of b may not necessarily coincide
with that of \chi , which inevitably leads to the information loss outside \Omega [44, 52].

Since the total field b depends on the susceptibility distribution throughout the entire space
[44], it consists of the background field induced from the susceptibility outside \Omega , which is of
no interest, and the local field bl by the susceptibility in \Omega which we aim to visualize. Since the
substantial susceptibility sources are usually located outside \Omega , which makes the background
field dominant in b compared to the local field bl, we need to remove the background field
from the (incomplete) total field prior to the dipole inversion [44, 52].

In the literature, given that the background field is harmonic in \Omega [52, 57], the background
field removal methods take the form of the following Poisson equation in [57]:\biggl\{ 

 - \Delta bl =  - \Delta b in \Omega ,

bl = 0 on \partial \Omega .
(2.10)
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Under this setting, we present Theorem 2.2, which characterizes the relation between (2.10)
and the PDE (2.6), and the measured local field obtained by solving (2.10) contains an in-
compatibility which consists of two harmonic functions both inside and outside \Omega due to the
imposed boundary condition.

Theorem 2.2. Let \Omega \subseteq \BbbR 3 be an open and bounded set with C1 boundary \partial \Omega . Let b satisfy
(2.8) for a given \chi compactly supported in \BbbR 3, and let bl : \Omega \rightarrow \BbbR be obtained from (2.10). If
we extend bl into \BbbR 3 by assigning bl(\bfitx ) = 0 for \bfitx /\in \Omega , then we have the following:

1. There exists v(x) such that

bl(\bfitx ) =

\int 
\Omega 
\Phi (\bfitx  - \bfity )

\biggl( 
 - 1

3
\Delta \bfity +

\partial 2

\partial y23

\biggr) 
\chi (\bfity )d\bfity + v(\bfitx )(2.11)

for \bfitx \in \BbbR 3, and v(\bfitx ) satisfies\int 
\BbbR 3

v(\bfitx ) ( - \Delta \varphi ) (\bfitx )d\bfitx =

\int 
\partial \Omega 

\biggl[ 
\partial v\mathrm{i}
\partial \bfitn 

(\bfitx ) - \partial v\mathrm{e}
\partial \bfitn 

(\bfitx )

\biggr] 
\varphi (\bfitx )d\bfitsigma (\bfitx )(2.12)

for \varphi \in C\infty 
0 (\BbbR 3), where v\mathrm{i} and v\mathrm{e} denote the restriction of v in \Omega and \BbbR 3 \setminus \Omega , respec-

tively, and \bfitn denotes the outward unit normal vector of \partial \Omega .
2. Moreover, we have

\partial v\mathrm{i}
\partial \bfitn 

 - \partial v\mathrm{e}
\partial \bfitn 

\not = 0 almost everywhere on \partial \Omega (2.13)

whenever P (D)\chi \not = 0 in \Omega . Hence,  - \Delta v = 0 in \BbbR 3 \setminus \partial \Omega , and  - \Delta v \not = 0 on \partial \Omega in this
case.

Proof. Since  - \Delta b = P (D)\chi , the governing equation in (2.10) becomes\biggl\{ 
 - \Delta bl = P (D)\chi in \Omega ,

bl = 0 on \partial \Omega .

Let G(\bfitx ,\bfity ) denote the Green's function in \Omega :

G(\bfitx ,\bfity ) = \Phi (\bfity  - \bfitx ) - H(\bfitx ,\bfity ),

where for each \bfitx \in \Omega the corrector function H(\bfitx ,\bfity ) satisfies\biggl\{ 
 - \Delta \bfity H(\bfitx ,\bfity ) = 0 if \bfity \in \Omega ,

H(\bfitx ,\bfity ) = \Phi (\bfity  - \bfitx ) if \bfity \in \partial \Omega .

Note that since G(\bfitx ,\bfity ) = G(\bfity ,\bfitx ) for \bfitx ,\bfity \in \Omega and \Phi (\bfity  - \bfitx ) = \Phi (\bfitx  - \bfity ), we have H(\bfitx ,\bfity ) =
H(\bfity ,\bfitx ) for \bfitx ,\bfity \in \Omega . Consequently, we have

 - \Delta \bfitx H(\bfitx ,\bfity ) =  - \Delta \bfitx H(\bfity ,\bfitx ) = 0, \bfitx \in \Omega .(2.14)

Then the solution to (2.10) is represented by

bl(\bfitx ) =

\int 
\Omega 
G(\bfitx ,\bfity )P (D\bfity )\chi (\bfity )d\bfity =

\int 
\Omega 
\Phi (\bfitx  - \bfity )P (D\bfity )\chi (\bfity )d\bfity +\scrH (\bfitx ),
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where we used the fact that \Phi (\bfity  - \bfitx ) = \Phi (\bfitx  - \bfity ), and \scrH (\bfitx ) is defined as

\scrH (\bfitx ) =  - 
\int 
\Omega 
H(\bfitx ,\bfity )P (D\bfity )\chi (\bfity )d\bfity 

for \bfitx \in \Omega . Then we can see that \scrH (\bfitx ) satisfies\Biggl\{ 
 - \Delta \scrH = 0 in \Omega ,

\scrH =  - \widetilde bl on \partial \Omega ,
(2.15)

where the first equation of (2.15) comes from (2.14). Here, \widetilde bl is induced by the information
of \chi only in \Omega :

\widetilde bl(\bfitx ) = \int 
\Omega 
\Phi (\bfitx  - \bfity )P (D\bfity )\chi (\bfity )d\bfity =

\int 
\BbbR 3

\Phi (\bfitx  - \bfity )1\Omega (\bfity )P (D\bfity )\chi (\bfity )d\bfity ,(2.16)

with 1\Omega being the characteristic function of \Omega .
Based on the fact that bl(\bfitx ) = 0 for \bfitx \in \BbbR 3 \setminus \Omega , we define

v(\bfitx ) =

\Biggl\{ 
v\mathrm{i}(\bfitx ) = \scrH (\bfitx ) if \bfitx \in \Omega ,

v\mathrm{e}(\bfitx ) =  - \widetilde bl(\bfitx ) if \bfitx /\in \Omega .

Hence, we obtain (2.11), and we can further see that v\mathrm{i} and v\mathrm{e} satisfy

 - \Delta v\mathrm{i} = 0 in \Omega ,(2.17)

 - \Delta v\mathrm{e} = 0 in \BbbR 3 \setminus \Omega ,(2.18)

v\mathrm{i} = v\mathrm{e} =  - \widetilde bl on \partial \Omega ,(2.19)

respectively, where (2.18) comes from (2.16);  - \Delta \widetilde bl = 1\Omega P (D)\chi , i.e.,  - \Delta \widetilde bl = P (D)\chi in \Omega ,
and  - \Delta \widetilde bl = 0 in \BbbR 3 \setminus \Omega .

To prove (2.12), let \varphi \in C\infty 
0 (\BbbR 3), and we consider\int 

\BbbR 3

v(\bfitx ) ( - \Delta \varphi ) (\bfitx )d\bfitx =

\int 
\Omega 
v\mathrm{i}(\bfitx ) ( - \Delta \varphi ) (\bfitx )d\bfitx +

\int 
\BbbR 3\setminus \Omega 

v\mathrm{e}(\bfitx ) ( - \Delta \varphi ) (\bfitx )d\bfitx 

= I1 + I2.

Using (2.17) and (2.19) and the Green's identity (see, e.g., [19]), we have

I1 =

\int 
\Omega 
[\varphi (\bfitx ) (\Delta v\mathrm{i}) (\bfitx ) - v\mathrm{i}(\bfitx ) (\Delta \varphi ) (\bfitx )] d\bfitx 

=

\int 
\partial \Omega 

\biggl[ 
\varphi (\bfitx )

\partial v\mathrm{i}
\partial \bfitn 

(\bfitx ) - v\mathrm{i}(\bfitx )
\partial \varphi 

\partial \bfitn 
(\bfitx )

\biggr] 
d\bfitsigma (\bfitx ) =

\int 
\partial \Omega 

\biggl[ 
\varphi (\bfitx )

\partial v\mathrm{i}
\partial \bfitn 

(\bfitx ) +\widetilde bl(\bfitx )\partial \varphi 
\partial \bfitn 

(\bfitx )

\biggr] 
d\bfitsigma (\bfitx ).

Similarly using (2.18) and (2.19), we also have

I2 =

\int 
\BbbR 3\setminus \Omega 

[\varphi (\bfitx ) (\Delta v\mathrm{e}) (\bfitx ) - v\mathrm{e}(\bfitx ) (\Delta \varphi ) (\bfitx )] d\bfitx 

=

\int 
\partial \Omega 

\biggl[ 
 - \varphi (\bfitx )\partial v\mathrm{e}

\partial \bfitn 
(\bfitx ) + v\mathrm{e}(\bfitx )

\partial \varphi 

\partial \bfitn 
(\bfitx )

\biggr] 
d\bfitsigma (\bfitx ) =  - 

\int 
\partial \Omega 

\biggl[ 
\varphi (\bfitx )

\partial v\mathrm{e}
\partial \bfitn 

(\bfitx ) +\widetilde bl(\bfitx )\partial \varphi 
\partial \bfitn 

(\bfitx )

\biggr] 
d\bfitsigma (\bfitx ),
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500 CHENGLONG BAO, JAE KYU CHOI, AND BIN DONG

where the second equality comes from the fact that we need to compute the inward normal
derivatives on \partial \Omega . Hence, combining these two equalities, we obtain (2.12).

To prove statement 2, we assume on the contrary that there exists \bfitx \in \partial \Omega such that

\partial v\mathrm{i}
\partial \bfitn 

=
\partial v\mathrm{e}
\partial \bfitn 

for some open and connected set U \subseteq \partial \Omega such that \bfitx \in U and \bfitsigma (U) > 0. Choose r > 0 such
that B(\bfitx , r) \cap \partial \Omega is contained in U , where B(\bfitx , r) denotes an open ball centered at \bfitx with
radius r. Then, since  - \Delta v = 0 in B(\bfitx , r) and v = v\mathrm{e} =  - \widetilde bl in B(\bfitx , r) \cap 

\bigl( 
\BbbR 3 \setminus \Omega 

\bigr) 
, it follows

that v =  - \widetilde bl in B(\bfitx , r) by the analyticity of v in B(\bfitx , r). Since this means that v = v\mathrm{i} =  - \widetilde bl
in B(\bfitx , r) \cap \Omega , together with the fact that v\mathrm{i} is harmonic in \Omega , we have v\mathrm{i} =  - \widetilde bl in \Omega by the
analyticity of v\mathrm{i} in \Omega . Since v =  - \widetilde bl on \partial \Omega , we have v =  - \widetilde bl in \BbbR 3. Hence,  - \Delta \widetilde bl = 0 in \BbbR 3,
and thus P (D)\chi = 0 in \Omega , which is a contradiction.

Remark 2.3. From the proof of Theorem 2.2, the incompatibility v in (2.11) is from the
boundary condition of (2.10), which is not related to the regularity of \chi . More precisely, v\mathrm{i}
inside \Omega is generated by the information of the unknown true local field \widetilde bl on \partial \Omega so that the
boundary condition of (2.10) is matched. In addition, it is obvious that v\mathrm{e} outside \Omega is due
to the information loss outside \Omega .

Remark 2.4. Notice that P (D) is a ``wave-type"" differential operator (by considering x3
as the time variable). Indeed, the proof of (2.13) tells us that if P (D)\chi = 0 in \Omega , such \chi 
has a wave-type structure in \Omega regardless of its regularity, whereas the susceptibility of the
human brain does not have such a wave-type structure [9]. Hence in QSM, it follows that
 - \Delta v defined as (2.12) is a nonvanishing surface measure on \partial \Omega , i.e.,  - \Delta v = 0 in \BbbR 3 \setminus \partial \Omega , but
 - \Delta v \not = 0 on \partial \Omega .

We present Figures 2 to 5 to illustrate Theorem 2.2 by using the Shepp--Logan phantom
(Figures 2 and 3) and the brain phantom (Figures 4 and 5). Using the limited total field b
in Figures 2(d), 3(d), 4(d), and 5(d), which are derived from (2.8) by placing strong suscep-
tibilities outside \Omega , we solve (2.10) using the multigrid-based finite difference method [57] to
obtain the measured local field bl in Figures 2(f), 3(f), 4(f), and 5(f), which are used for the
susceptibility reconstruction. We also display the true local field \widetilde bl obtained from (2.16) in
Figures 2(e), 3(e), 4(e), and 5(e) for comparison with the measured bl. Finally, v = bl  - \widetilde bl
and |  - \Delta v| are displayed in Figures 2(g), 3(g), 4(g), and 5(g) and Figures 2(h), 3(h), 4(h),
and 5(h), respectively, for better illustration. Compared to the Shepp--Logan phantom, the
brain phantom shows the artifacts as shown in Figure 4(h). There are two possible reasons
for the artifacts. First, since the boundary of the human brain is more complicated than
the Shepp--Logan phantom, the erroneous boundary values may have affected the background
field removal in the case of the brain phantom, as pointed out in [57]. Second, unlike the
Shepp--Logan phantom with isotropic spatial resolution (1 \times 1 \times 1mm3), the brain phantom
has an anisotropic spatial resolution of 0.9375\times 0.9375\times 1.5mm3. As pointed out in [20], the
multigrid method has the limitation that errors in certain directions (the x3 direction in our
case) are not smoothed by standard relaxation, and as a consequence it is inappropriate to
coarsen in these directions, which may lead to artifacts in Figure 4(h) along the x3 direction.
Since the real spatial resolution of phase data is not necessarily isotropic, an efficient and
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(a) ROI \Omega (b) \chi in \Omega (c) \chi in \BbbR 3 \setminus \Omega (d) Simulated total field b

(e) True local field \widetilde bl (f) Measured local field bl (g) v = bl  - \widetilde bl (h) |  - \Delta v| 

Figure 2. Sagittal slice images of 256\times 256\times 256 Shepp--Logan phantom with 1\times 1\times 1mm3. \chi in \BbbR 3 \setminus \Omega 
is displayed in the window level [0, 550], \widetilde bl, bl, and v in the window level [ - 0.025, 0.025], and |  - \Delta v| in the
window level [0, 0.001].

(a) ROI \Omega (b) \chi in \Omega (c) \chi in \BbbR 3 \setminus \Omega (d) Simulated total field b

(e) True local field \widetilde bl (f) Measured local field bl (g) v = bl  - \widetilde bl (h) |  - \Delta v| 

Figure 3. Axial slice images of Figure 2. The images of \chi in \BbbR 3 \setminus \Omega , \widetilde bl, bl, v, and |  - \Delta v| are displayed in
the same window level as in Figure 2.
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(a) ROI \Omega (b) \chi in \Omega (c) \chi in \BbbR 3 \setminus \Omega (d) Simulated total field b

(e) True local field \widetilde bl (f) Measured local field bl (g) v = bl  - \widetilde bl (h) |  - \Delta v| 

Figure 4. Sagittal slice images of 256 \times 256 \times 98 brain phantom images with 0.9375 \times 0.9375 \times 1.5mm3.
Image of \chi in \BbbR 3 \setminus \Omega is displayed in the window level [0, 500], \widetilde bl and bl in the window level [ - 0.05, 0.05], v in
the window level [ - 0.025, 0.025], and |  - \Delta v| in the window level [0, 0.01], respectively.

(a) ROI \Omega (b) \chi in \Omega (c) \chi in \BbbR 3 \setminus \Omega (d) Simulated total field b

(e) True local field \widetilde bl (f) Measured local field bl (g) v = bl  - \widetilde bl (h) |  - \Delta v| 

Figure 5. Axial slice images of Figure 4. The images of \chi in \BbbR 3 \setminus \Omega , \widetilde bl, bl, v, and |  - \Delta v| are displayed in
the same window level as in Figure 4.

effective numerical solver of (2.10) needs to be investigated in the future, which is beyond the
scope of this paper at this point.

2.3. Proposed HIRE susceptibility reconstruction model. We begin by introducing some
notation. Let \BbbO = \{ 0, . . . , N1  - 1\} \times \{ 0, . . . , N2  - 1\} \times \{ 0, . . . , N3  - 1\} denote the set of indices
of N1 \times N2 \times N3 grids, and let \Omega \subseteq \BbbO denote the set of indices corresponding to the ROI.
Denote \partial \Omega to be the indices of the boundary of ROI \Omega . Finally, the space of real-valued
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functions defined on \BbbO is denoted as \scrI 3 \simeq \BbbR N1\times N2\times N3 .
Let bl \in \scrI 3 be the (noisy) measured local field data obtained from (2.10), which satisfies

bl = 0 in \BbbO \setminus \Omega . From the viewpoint of Theorem 2.2, we can model it as

bl = A\chi + v + \eta ,

where A = F - 1\scrD F denotes the discretization of the forward operator in (2.11). Here, \chi \in \scrI 3
is the unknown true susceptibility image supported in \Omega , v \in \scrI 3 is the incompatibility arising
from solving (2.10), and \eta is the additive noise.

We observe that in the discrete setting, (2.12) in Theorem 2.2 can be understood as

Lv = 0 in \BbbO \setminus \partial \Omega and Lv \not = 0 on \partial \Omega (2.20)

with the discrete Laplacian L, as Lv is supported on \partial \Omega . However, it is in general diffi-
cult to directly impose (2.20) onto the susceptibility reconstruction model (e.g., penalizing
\| (Lv)\BbbO \setminus \partial \Omega \| 22) for the following reasons: (1) the estimation of \Omega always contains error due
to the complicated geometry of the human brain; (2) the real MRI data may not exactly
satisfy (2.20) due to its spatial resolution [23]; (3) the discretization can introduce the error
on the boundary of \Omega . However, it is a fact that the support of Lv is small compared to
| \BbbO | = N1N2N3; i.e., Lv is sparse. Consequently, we penalize the \| Lv\| 1 for the incompatibility
term v. Although the \| Lv\| 1 does not necessarily satisfy the harmonic constraints on \BbbO \setminus \partial \Omega , it
is a good relaxation approach when considering the error source of the forward model in QSM.
In addition, motivated by the successful results on the wavelet frame--based image restoration
(e.g., [3, 4]), we assume the sparse approximation of \chi under a given wavelet transformation
W and propose our HIRE model as follows:

min
\chi ,v\in \scrI 3

1

2
\| A\chi + v  - bl\| 2\Sigma + \lambda \| Lv\| 1 + \| \gamma \cdot W\chi \| 1,2 ,(2.21)

where \| \cdot \| 2\Sigma = \langle \Sigma \cdot , \cdot \rangle with the SNR weight \Sigma which is estimated from the MRI [32, 38]. Here,
\| \gamma \cdot W\chi \| 1,2 is the isotropic \ell 1 norm of the wavelet frame coefficients [4] defined as

\| \gamma \cdot W\chi \| 1,2 :=
\sum 
\bfitk \in \BbbO 

L - 1\sum 
l=0

\gamma l[\bfitk ]

\Biggl( \sum 
\bfitalpha \in \BbbB 

| (Wl,\bfitalpha \chi ) [\bfitk ]| 2
\Biggr) 1/2

.(2.22)

(See Appendix A for the brief introduction on the wavelet frames.)
There are many variational regularizations for the susceptibility image, including total

variation (TV) [42], total generalized variation (TGV) [2, 55], and weighted TV for morpho-
logical consistency [26]. However, since \scrD (0) = 0, the \chi subproblem is a rank deficient system
matrix, when using the alternating direction method of multipliers (ADMM) methods [18] to
solve the regularization model. As a consequence, we may need additional prior information
such as the zero susceptibility value in the cerebrospinal fluid region [36] for stable reconstruc-
tion. In contrast, by using tight frame regularization, the system matrix of \chi subproblem has
a full column rank, which can lead to better computational efficiency than that of existing
variational methods.
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504 CHENGLONG BAO, JAE KYU CHOI, AND BIN DONG

Remark 2.5. For a better understanding of our HIRE model, we temporarily assume that
\Sigma = I and consider

min
\chi ,v\in \scrI 3

1

2
\| A\chi + v  - bl\| 22 + \lambda \| Lv\| 1 + \| \gamma \cdot W\chi \| 1,2 .

If v \equiv 0, our model reduces to the integral approach model:

min
\chi \in \scrI 3

1

2
\| A\chi  - bl\| 22 + \| \gamma \cdot W\chi \| 1,2 .

In addition, if we fix v = bl  - A\chi , our model reduces to the \ell 1 fidelity version of the following
differential approach model:

min
\chi \in \scrI 3

1

2
\| Lbl  - LA\chi \| 22 + \| \gamma \cdot W\chi \| 1,2

as LA\chi = Lbl discretizes the PDE (2.6) in the sense of [9, Proposition A.1].

From Remark 2.5, we can see that our model considers the incompatibility v and noise
separately, thereby providing a more precise forward model for QSM. This is because bl is
obtained from the Poisson equation (2.10), and it inevitably contains the harmonic incompat-
ibility related to the imposed boundary condition, as described in Theorem 2.2. Even though
more rigorous theoretical analysis is needed, we can somehow explain the effect of harmonic
incompatibility in this manner; since the standard arguments on the harmonic functions (see,
e.g., [19]) tell us that v is smooth and satisfies the mean value property except on \partial \Omega , it
has slow variations on this region. As a consequence, it mostly affects the low frequency
components in bl compared to the noise which mainly affects the high frequency components.
Together with the fact that the critical manifold \Gamma 0 forms a conic manifold in the frequency
domain, the harmonic incompatibility v in bl mainly leads to the loss of F(\chi ) in low frequency
components.

As empirically observed in [27], the incompatibility in low frequency components of bl leads
to shadow artifacts in the reconstructed image, while that in high frequency components leads
to streaking artifacts. Therefore, a simultaneous consideration of the incompatibilities in both
components is crucial for better susceptibility imaging. The integral approach does not take
the harmonic incompatibility in bl into account, which may not be capable of suppressing
the incompatibility in low frequency components of bl, and leads to shadow artifacts in the
reconstructed images. The differential approach can be viewed as a preconditioned integral
approach since the harmonic incompatibility in bl has been removed in advance. However,
the noise in bl can be amplified by L at the cost of harmonic incompatibility removal, and
this leads to the streaking artifacts propagating from the noise in the final image [52]. In
contrast, the HIRE model takes the form of an integral approach, which explicitly considers
the incompatibility v other than the noise by incorporating its sparsity under L. By doing so,
we expect that the HIRE model can suppress both the noise (cause of streaking artifacts) and
the harmonic incompatibility (cause of shadow artifacts), so that we can achieve the whole
brain imaging with fewer artifacts.

We would like to mention that the formulation of the HIRE model is not limited to (2.21).

In fact, we can use the nonlinear fidelity term F (bl| \chi , v) = 1
2

\bigm\| \bigm\| ei(A\chi +v)\omega 0B0TE  - eibl\omega 0B0TE
\bigm\| \bigm\| 2
\Sigma D
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to further compensate for the errors in phase unwrapping, which will be more coincident with
the GRE signal model [27, 35]. However, we will not discuss the details of such nonlinear
variants as this is beyond the scope of this paper. We will focus on (2.21) throughout this
paper.

2.4. Numerical algorithm. In the literature, there are numerous algorithms which can
solve the proposed HIRE model (2.21). In this paper, we adopt the split Bregman algorithm
given in [38] in the framework of ADMM [18] as we can convert (2.21) into several subproblems
which can be solved efficiently. More precisely, let d = W\chi , e = Lv, f = A\chi , and g = v.
Then (2.21) is reformulated as follows:

min
\chi ,v,d,e,f,g

1

2
\| f + g  - bl\| 2\Sigma + \lambda \| e\| 1 + \| \gamma \cdot d\| 1,2

subject to d =W\chi , e = Lv, f = A\chi , and g = v.

Under this reformulation, we summarize the split Bregman algorithm for (2.21) in Algorithm 1.
It is easy to see that each subproblem has a closed form solution. The solutions to (2.29)

and (2.30) can be written as

\chi k+1 =
\bigl( 
ATA+ I

\bigr)  - 1\bigl[ 
AT (fk  - rk) +W T (dk  - pk)

\bigr] 
,(2.23)

vk+1 =
\bigl( 
I + LTL

\bigr)  - 1\bigl[ 
gk  - sk + LT (ek  - qk)

\bigr] 
.(2.24)

Since we use the periodic boundary conditions, both (2.23) and (2.24) can be easily solved by
using the fast Fourier transform. In addition, the solutions to (2.31) and (2.32) are expressed
in terms of soft thresholding:

dk+1 = \scrT \gamma /\beta 
\bigl( 
W\chi k+1 + pk

\bigr) 
,(2.25)

ek+1 = max
\bigl( 
| Lvk+1 + qk|  - \lambda /\beta , 0

\bigr) 
sign

\bigl( 
Lvk+1 + qk

\bigr) 
.(2.26)

Here, \scrT \gamma is the isotropic soft thresholding in [4]: given d defined as

d = \{ dl,\bfitalpha : (l,\bfitalpha ) \in (\{ 0, . . . , L - 1\} \times \BbbB ) \cup \{ (L - 1,0)\} \} 

and \gamma = \{ \gamma l : l = 0, 1, . . . , L - 1\} with \gamma l \geq 0, \scrT \gamma (d) is defined as

(\scrT \gamma (d))l,\bfitalpha [\bfitk ] =

\left\{   
dl,\bfitalpha [\bfitk ], (l,\bfitalpha ) = (L - 1,0),

max (Rl[\bfitk ] - \gamma l[\bfitk ], 0)
dl,\bfitalpha [\bfitk ]

Rl[\bfitk ]
, (l,\bfitalpha ) \in \{ 0, . . . , L - 1\} \times \BbbB ,

where Rl[\bfitk ] =
\Bigl( \sum 

\bfitalpha \in \BbbB | dl,\bfitalpha [\bfitk ]| 
2
\Bigr) 1/2

for \bfitk \in \BbbO . Finally, the solutions to (2.33) and (2.34) are

expressed as

fk+1 =
\bigl( 
\Sigma + \beta I

\bigr)  - 1\bigl[ 
\Sigma (bl  - gk) + \beta (A\chi k+1 + rk)

\bigr] 
,(2.27)

gk+1 =
\bigl( 
\Sigma + \beta I

\bigr)  - 1\bigl[ 
\Sigma (bl  - fk+1) + \beta (vk+1 + sk)

\bigr] 
,(2.28)

where \Sigma + \beta I is simply a diagonal matrix, and thus no matrix inversion is needed.
Note that since our model (2.21) is convex, it can be verified that Algorithm 1 converges

to the minimizer of (2.21) by following the framework of [7, Theorem 3.2] whenever it has the
unique global minimizer.
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Algorithm 1 Split Bregman Algorithm for (2.21).

Initialization: \chi 0, v0, d0, e0, f0, g0, p0, q0, r0, s0

for k = 0, 1, 2, . . . do
Update \chi and v:

\chi k+1 = argmin
\chi 

\beta 

2
\| A\chi  - fk + rk\| 22 +

\beta 

2
\| W\chi  - dk + pk\| 22,(2.29)

vk+1 = argmin
v

\beta 

2
\| v  - gk + sk\| 22 +

\beta 

2
\| Lv  - ek + qk\| 22.(2.30)

Update d, e, f , and g:

dk+1 = argmin
d

\| \gamma \cdot d\| 1,2 +
\beta 

2
\| d - W\chi k+1  - pk\| 22,(2.31)

ek+1 = argmin
e

\lambda \| e\| 1 +
\beta 

2
\| e - Lvk+1  - qk\| 22,(2.32)

fk+1 = argmin
f

1

2
\| f + gk  - bl\| 2\Sigma +

\beta 

2
\| f  - A\chi k+1  - rk\| 22,(2.33)

gk+1 = argmin
g

1

2
\| g + fk+1  - bl\| 2\Sigma +

\beta 

2
\| g  - vk+1  - sk\| 22.(2.34)

Update p, q, r, and s:

pk+1 = pk +W\chi k+1  - dk+1,(2.35)

qk+1 = qk + Lvk+1  - ek+1,(2.36)

rk+1 = rk +A\chi k+1  - fk+1,(2.37)

sk+1 = sk + vk+1  - gk+1.(2.38)

end for

3. Experimental results. In this section, we present some experimental results on brain
phantoms in [54] and in vivo MR data in [52], both of which are available on the Cornell MRI
Research Lab webpage,1 to compare the wavelet frame HIRE model (2.21) (Frame-HIRE)
to several existing approaches. In this paper, we choose to compare with the TKD method
(1.5) in [47], the Tikhonov regularization (1.6) in [29], the wavelet frame integral approach
(Frame-Int)

min
\chi \in \scrI 3

1

2
\| A\chi  - bl\| 2\Sigma + \| \gamma \cdot W\chi \| 1,2 ,(3.1)

1http://www.weill.cornell.edu/mri/pages/qsm.html
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and the wavelet frame differential approach (Frame-Diff)

min
\chi \in \scrI 3

1

2
\| LA\chi  - Lbl\| 2\Sigma + \| \gamma \cdot W\chi \| 1,2 ,(3.2)

where the signal-to-noise ratio (SNR) weight for (3.2) is estimated by the method described
in [27]. Moreover, in order to highlight the main focus of this paper---to propose a two-
system regularization model by identifying a harmonic incompatibility in the measured local
field data---we also test the models by placing \| \gamma \cdot W\chi \| 1,2 in (2.21), (3.1), and (3.2) into the
following TGV term:

TGV2
\alpha 1,\alpha 0

(\chi ) = \alpha 1 \| \nabla \chi  - p\| 1 + \alpha 0 \| \scrE p\| 1 , where \scrE =
1

2

\bigl( 
\nabla +\nabla T

\bigr) 
,(3.3)

which will be denoted by TGV-HIRE, TGV-Int, and TGV-Diff, respectively. All experiments
are implemented on MATLAB R2015a running on a platform with 16GB RAM and Intel Xeon
CPU E5-2609 0 at 2.40GHz with 4 cores.

In (2.21), (3.1), and (3.2), we choose W to be the tensor product Haar framelet transform
with 1 level of decomposition to avoid a memory storage problem. Note, however, that the
decomposition level and the choice of W will affect the restoration results. In addition, we
use the standard difference for the TGV term and the standard centered difference for L in
the HIRE approaches. The stopping criterion for Algorithm 1 is

\| \chi k+1  - \chi k\| 2
\| \chi k+1\| 2

\leq 5\times 10 - 3,

and (3.1) and (3.2) as well as the TGV models are solved using the split Bregman algorithm
presented in [7, 22], with the same stopping criterion as above. For the parameters, we choose
\gamma in (2.22) as \gamma =

\bigl\{ 
\nu 2 - l : l = 0, . . . , L  - 1

\bigr\} 
with \nu > 0 according to [4]. Empirically, we

observe that \alpha 0 = 2\alpha 1 for (3.3), \lambda = 5\nu for Frame-HIRE, and \lambda = 8\alpha 1 for TGV-HIRE are
good choices. Parameters \nu and \alpha 1 vary case by case, and are chosen manually to promote
an optimal balance between indices and visual qualities; even though the parameters have
few effects on the indices, the reconstructed images contain more and more artifacts as the
parameters become smaller. Finally, we compute the root mean square error (RMSE), the
structural similarity index map (SSIM) [53], and the computation time of the brain phantom
experimental results for a quantitative comparison of each reconstruction model.

3.1. Experiments on brain phantom. For the brain phantom experiments, we use a
256 \times 256 \times 98 image with spatial resolution 0.9375 \times 0.9375 \times 1.5mm3 to simulate the 11
equispaced multiecho GREs at 3T with TE ranging from 2.6msec to 28.6msec. We first
simulate the true total field by adding four background susceptibility sources in the true
susceptibility image to provide the background field. Then we generate the multiecho complex
GRE signal by

I(\bfitk , t) = \widetilde m(\bfitk ) exp
\bigl\{ 
 - i\widetilde b(\bfitk )\omega 0B0TE(t)

\bigr\} 
, \bfitk \in \BbbO and t = 1, . . . , 11,

with a given true magnitude image \widetilde m and true total field \widetilde b. Then the white Gaussian noise
with standard deviation 0.02 is added to both the real and the complex part of each GRE
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(a) True \chi (b) Magnitude (c) ROI

(d) Phase (e) Total field (f) Local field

Figure 6. Sagittal slice images of synthesized data sets for the brain phantom experiments.

(a) True \chi (b) Magnitude (c) ROI

(d) Phase (e) Total field (f) Local field

Figure 7. Axial slice images of synthesized data sets for the brain phantom experiments.

signal. Using the simulated noisy multiecho GRE signal, we estimate the magnitude image
and phase data using the method in [12], and the phase is further unwrapped by the method
in [21] to obtain the noisy and incomplete total field b. Finally, we solve the Poisson equation
(2.10) using the method in [57] to obtain the noisy local field data bl. (See Figures 6 and 7.)

All regularization-based models are initialized with \chi 0 = 0, and both Frame-HIRE and
TGV-HIRE are also initialized with v0 = 0. For the parameters, we choose \hbar = 0.125 for
(1.5), \varepsilon = 0.01 for (1.6), \nu = 0.0005 for Frame-Int and Frame-HIRE, \nu = 0.004 for Frame-Diff,
\alpha 1 = 0.00025 for TGV-Int and TGV-HIRE, and \alpha 1 = 0.002 for TGV-Diff. In addition, we
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Table 1
Comparison of relative error, and structural similarity index map, for the direct approaches and the wavelet

frame regularization approach in the brain phantom experiments. Boldface numbers indicate the best result.

Indices
Direct approach Regularization
TKD Tikhonov Integral Differential HIRE

RMSE 0.5579 0.5546 0.4516 0.6143 \bfzero .\bffour \bfone \bfeight \bfthree 

SSIM 0.6546 0.6474 0.7485 0.6188 \bfzero .\bfseven \bffive \bfeight \bfsix 

choose \beta = 0.05 for all split Bregman algorithms to solve the regularization-based models
including Algorithm 1.

Table 1 summarizes the relative error and the SSIM of the direct approaches ((1.5) and
(1.6)) and the wavelet frame regularization approaches, and Figures 8 and 9 present visual
comparisons of the results. In addition, Table 2 summarizes the aforementioned indices of the
direct approaches and the TGV regularization approaches, and Figures 10 and 11 depict the
visual comparisons. We can see that both Frame-HIRE and TGV-HIRE consistently outper-
form the existing direct approaches, the integral approaches, and the differential approaches
in both cases. At first glance, this verifies the convention that the regularization-based mod-
els in general perform better in solving the ill-posed inverse problem of QSM than the direct
methods [27, 51]. Most importantly, this result demonstrates that the measured local field
data obtained from the phase of a complex GRE MR signal contains harmonic incompati-
bility other than the noise, which agrees with our theoretical discovery, and the performance
gain mainly comes from taking both the noise in the measured data and the harmonic in-
compatibility (the incompatibility other than the noise) at the same time. Meanwhile, since
this harmonic incompatibility is not taken into account in the integral approaches, the recon-
structed susceptibility images contain the shadow artifacts as shown in Figures 8(d), 9(d),
10(d), and 11(d). The differential approaches can remove the harmonic incompatibility in the
measured data in advance, leading to the shadow artifact removal compared to the integral
approach. However, since the noise in bl was amplified by L, the final reconstructed images
contain the streaking artifacts as shown in Figures 8(e), 9(e), 10(e), and 11(e), leading to the
degradation in indices at the same time.

Finally, we mention that even though TGV-HIRE performs slightly better than Frame-
HIRE from the viewpoint of indices, compared to Frame-HIRE in Figures 8(f) and 9(f), the
TGV-HIRE yields an overly smoothed restoration result, as shown in Figures 10(f) and 11(f).
In addition, since \scrD (0) = 0, the \chi subproblem of TGV-HIRE has a rank deficient system
matrix due to the constant offset, unlike Frame-HIRE, whose system matrix has a full column
rank due to W TW = I. As a consequence, the CPU time of TGV-HIRE becomes approx-
imately 3 times longer than the approximately 11.5 minutes of Frame-HIRE, as shown in
Table 3, which shows that the TGV regularization approach may not be suitable for real clin-
ical applications. Therefore, even though it is approximately 1.9 times slower than Frame-Int,
we can nevertheless conclude that, compared to TGV-HIRE, Frame-HIRE is able to achieve
the efficiency of its split Bregman algorithm as well as the shadow and streaking artifact
removal.
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(a) True \chi (b) TKD (c) Tikhonov

(d) Frame-Int (e) Frame-Diff (f) Frame-HIRE

Figure 8. Sagittal slice images comparing QSM reconstruction methods for the brain phantom experiments.
All sagittal slice images of brain phantom experimental results are displayed in the window level [ - 0.03, 0.07]
for a fair comparison.

(a) True \chi (b) TKD (c) Tikhonov

(d) Frame-Int (e) Frame-Diff (f) Frame-HIRE

Figure 9. Axial slice images comparing QSM reconstruction methods for the brain phantom experiments
with the wavelet frame regularization. All axial slice images of brain phantom experimental results are displayed
in the window level [ - 0.03, 0.19] for a fair comparison.

3.2. Experiments on in vivo MR data. The in vivo MR data experiments are conducted
using a 256 \times 256 \times 146 image with spatial resolution 0.9375 \times 0.9375 \times 1mm3 which can
be downloaded from the Cornell MRI Research Lab webpage. Using the wrapped phase
image presented in Figures 12(c) and 13(c), we unwrap the phase using the method in [21] to
obtain the total field b in Figures 12(d) and 13(d). Then the measured local field data bl in
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Table 2
Comparison of relative error, and structural similarity index map for the direct approaches and the TGV

regularization approach in the brain phantom experiments. Boldface numbers indicate the best result.

Indices
Direct approach Regularization
TKD Tikhonov Integral Differential HIRE

RMSE 0.5579 0.5546 0.4129 0.4568 \bfzero .\bfthree \bffive \bfeight \bfnine 

SSIM 0.6546 0.6474 0.7861 0.7147 \bfzero .\bfseven \bfnine \bfzero \bfthree 

(a) True \chi (b) TKD (c) Tikhonov

(d) TGV-Int (e) TGV-Diff (f) TGV-HIRE

Figure 10. Sagittal slice images comparing QSM reconstruction methods for the brain phantom experiments
with the TGV regularization. All sagittal slice images of brain phantom experimental results are displayed in
the window level [ - 0.03, 0.07] for a fair comparison.

(a) True \chi (b) TKD (c) Tikhonov

(d) TGV-Int (e) TGV-Diff (f) TGV-HIRE

Figure 11. Axial slice images comparing QSM reconstruction methods for the brain phantom experiments
with the TGV regularization. All axial slice images of brain phantom experimental results are displayed in the
window level [ - 0.03, 0.19] for a fair comparison.D
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Table 3
Comparison of the CPU time for the brain phantom with respect to the choice of regularization term.

Indices
Wavelet frame TGV

Integral Differential HIRE Integral Differential HIRE

CPU time 366.55 350.33 685.32 1327.66 365.42 2020.29

(a) Magnitude (b) ROI (c) Phase (d) Total field (e) Local field

Figure 12. Sagittal slice images of data sets for the in vivo MR data experiments.

(a) Magnitude (b) ROI (c) Phase (d) Total field (e) Local field

Figure 13. Axial slice images of data sets for the in vivo MR data experiments.

Figures 12(e) and 13(e) is obtained by solving the Poisson equation (2.10) using the method
in [57].

As in subsection 3.1, all regularization-based models are initialized with \chi 0 = 0, and both
Frame-HIRE and TGV-HIRE are also initialized with v0 = 0. For the parameters, we choose
\hbar = 0.1 for (1.5), \varepsilon = 0.01 for (1.6), \nu = 0.0005 for Frame-Int and Frame-HIRE, \nu = 0.005 for
Frame-Diff, \alpha 1 = 0.00025 for TGV-Int and TGV-HIRE, and \alpha 1 = 0.0025 for TGV-Diff. In
addition, we choose \beta = 0.05 for all split Bregman algorithms to solve the regularization-based
models including Algorithm 1.

Figures 14 and 15 display the visual comparisons of the direct approaches and the wavelet
frame regularization approaches, and the zoom-in views of Figure 14 are provided in Figure 16.
We also provide visual comparisons of the direct approaches and the TGV regularization
approaches in Figures 17 to 19. Since the reference image is not available for in vivo MR data,
it is in general more difficult to provide quantitative evaluations than for the numerical brain
phantom. Nonetheless, we can see from the viewpoint of visual comparison that the pros and
cons are almost the same as the numerical brain phantom experiments. It is also worth noting
that the HIRE models can reduce the streaking artifacts which propagate from \partial \Omega into \Omega as
well as the shadow artifacts. As pointed out in [52], the in vivo local field data is prone to
outliers near \partial \Omega because the GRE signal lacks information outside \Omega . Hence, we can see that
most streaking artifacts propagate from these outliers near \partial \Omega into the ROI. However, thanks
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(a) TKD (b) Tikhonov (c) Frame-Int (d) Frame-Diff (e) Frame-HIRE

Figure 14. Sagittal slice images comparing QSM reconstruction methods for the in vivo MR data experi-
ments with the wavelet frame regularization. All images of in vivo MR data experimental results are displayed
in the window level [ - 0.2, 0.2] for a fair comparison.

(a) TKD (b) Tikhonov (c) Frame-Int (d) Frame-Diff (e) Frame-HIRE

Figure 15. Axial slice images comparing QSM reconstruction methods for the in vivo MR data experiments
with the wavelet frame regularization.

(a) TKD (b) Tikhonov (c) Frame-Int (d) Frame-Diff (e) Frame-HIRE

Figure 16. Zoom-in views of Figure 14.

to the sparsity promoting property of the \ell 1 norm, the term \lambda \| Lv\| 1 in the HIRE approaches
can somehow capture and remove them, leading to the suppression of artifacts propagating
from \partial \Omega into \Omega as well as the shadow and streaking artifact removal. Finally, even though
we may also note that the Tikhonov regularization can somehow reduce the artifacts, there is
some loss of features due to the smoothness prior of the susceptibility image.

Finally, similar to the brain phantom experiments, TGV-HIRE restores an overly smoothed
susceptibility image as shown in Figures 17(e), 18(e), and 19(e), compared to Frame-HIRE in
Figures 14(e), 15(e), and 16(e). In addition, the split Bregman algorithm of TGV-HIRE is
approximately 7 times slower than Frame-HIRE, as shown in Table 4, which again shows that
the TGV regularization approach may not be suitable for real clinical applications. Hence, as
in the brain phantom experiments, we can conclude that, compared to TGV-HIRE, Frame-
HIRE is able to achieve the efficiency of its split Bregman algorithm as well as the shadow
and streaking artifact removal.
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(a) TKD (b) Tikhonov (c) TGV-Int (d) TGV-Diff (e) TGV-HIRE

Figure 17. Sagittal slice images comparing QSM reconstruction methods for the in vivo MR data experi-
ments with TGV regularization. All images of in vivo MR data experimental results are displayed in the window
level [ - 0.2, 0.2] for a fair comparison.

(a) TKD (b) Tikhonov (c) TGV-Int (d) TGV-Diff (e) TGV-HIRE

Figure 18. Axial slice images comparing QSM reconstruction methods for the in vivo MR data experiments
with TGV regularization.

(a) TKD (b) Tikhonov (c) TGV-Int (d) TGV-Diff (e) TGV-HIRE

Figure 19. Zoom-in views of Figure 17.

Table 4
Comparison of the CPU time for the in vivo data with respect to the choice of regularization term.

Indices
Wavelet frame TGV

Integral Differential HIRE Integral Differential HIRE

CPU time 628.25 353.32 953.10 3330.51 775.60 6776.12

4. Conclusion. In this paper, we proposed a new regularization-based susceptibility re-
construction model. The proposed HIRE model is based on the identification of the harmonic
incompatibility in the measured local field data arising from the underlying PDE (1.8). The
harmonic property is imposed as a prior of incompatibility via the sparsity under the Lapla-
cian into the integral approach so that we can apply the idea of a two-system regularization
model. By doing so, we can take into account the incompatibility in the data which is other
than the additive noise, achieving the susceptibility image reconstruction with fewer artifacts.
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Finally, the experimental results show that our proposed approach (2.21) outperforms the
existing approaches in both brain phantom and in vivo MR data.

Appendix A. Preliminaries on wavelet frame. Provided here is a brief introduction to
the tight wavelet frame. Briefly speaking, it is a generalization of the orthogonal wavelet basis
(see, e.g., [37]) to the redundant system, and due to the redundancy, it is more robust to
errors than the traditional orthonormal basis [17]. Interested readers may consult [10, 11, 41]
for frame and wavelet frame theories, [46] for a short survey on the theory and applications
of frames, and [15, 16] for more detailed surveys.

For a given \Psi = \{ \psi 1, . . . , \psi r\} \subseteq L2(\BbbR d) with d \in \BbbN , a quasi-affine system X(\Psi ) generated
by \Psi is the collection of the dilations and the shifts of the elements in \Psi :

X(\Psi ) =
\Bigl\{ 
\psi \alpha ,n,\bfitk : 1 \leq \alpha \leq r, n \in \BbbZ , \bfitk \in \BbbZ d

\Bigr\} 
,(A.1)

where \psi \alpha ,n,\bfitk is defined as

\psi \alpha ,n,\bfitk =

\Biggl\{ 
2

nd
2 \psi \alpha (2

n \cdot  - \bfitk ), n \geq 0,

2nd\psi \alpha (2
n \cdot  - 2n\bfitk ), n < 0.

(A.2)

We say that X(\Psi ) is a tight wavelet frame on L2(\BbbR d) if we have

\| f\| 2L2(\BbbR d) =

r\sum 
\alpha =1

\sum 
n\in \BbbZ 

\sum 
\bfitk \in \BbbZ d

| \langle f, \psi \alpha ,n,\bfitk \rangle | 2(A.3)

for every f \in L2(\BbbR d). In this case, each \psi \alpha is called a (tight) framelet, and \langle f, \psi \alpha ,n,\bfitk \rangle is called
the canonical coefficient of f .

The constructions of (anti)symmetric and compactly supported framelets \Psi are usually
based on a multiresolution analysis (MRA); we first find some compactly supported refinable
function \phi with a refinement mask q0 such that

\phi = 2d
\sum 
\bfitk \in \BbbZ d

q0[\bfitk ]\phi (2 \cdot  - \bfitk ).(A.4)

Then the MRA-based construction of \Psi = \{ \psi 1, . . . , \psi r\} \subseteq L2(\BbbR d) is to find finitely supported
masks q\alpha such that

\psi \alpha = 2d
\sum 
\bfitk \in \BbbZ d

q\alpha [\bfitk ]\phi (2 \cdot  - \bfitk ), \alpha = 1, . . . , r.(A.5)

The sequences q1, . . . , qr are called the wavelet frame mask or the high pass filters of the
system, and the refinement mask q0 is also called the low pass filter.

The unitary extension principle (UEP) of [41] provides a general theory of the construction
of MRA-based tight wavelet frames. Briefly speaking, as long as \{ q0, q1, . . . , qr\} are compactly
supported and their Fourier series \widehat q\alpha (\bfitxi ) =\sum \bfitk \in \BbbZ d q\alpha [\bfitk ]e

 - i\bfitxi \cdot \bfitk satisfy

r\sum 
\alpha =0

| \widehat q\alpha (\bfitxi )| 2 = 1 and
r\sum 

\alpha =0

\widehat q\alpha (\bfitxi )\widehat q\alpha (\bfitxi + \bfitnu ) = 0(A.6)
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0

1

−1

0.5 1

(a) Refinable function \phi 

0

1

−1

0.5 1

(b) Framelet function \psi 1

Figure 20. Illustration of \phi and \psi 1 in Example A.1.

for all \bfitnu \in \{ 0, \pi \} d \setminus \{ 0\} and \bfitxi \in [ - \pi , \pi ]d, the quasi-affine system X(\Psi ) with \Psi = \{ \psi 1, . . . , \psi r\} 
defined by (A.5) forms a tight frame of L2(\BbbR d), and the filters \{ q0, q1, . . . , qr\} form a discrete
tight frame on \ell 2(\BbbZ d) [15].

Example A.1. The piecewise constant B-spline (or the Haar framelet) [11] for L2(\BbbR ) has
one refinable function and one framelet,

\phi (x) =

\biggl\{ 
1 if x \in [0, 1),

0 if x /\in [0, 1)
and \psi 1(x) =

\left\{   
1 if x \in [0, 1/2),

 - 1 if x \in [1/2, 1),

0 if x /\in [0, 1),

as shown in Figure 20. Here, the associated filters are

q0 =
1

2

\bigl[ 
1 1

\bigr] 
and q1 =

1

2

\bigl[ 
1  - 1

\bigr] 
.

Since this \{ q0, q1\} satisfies (A.6), X (\Psi ) with \Psi = \{ \psi 1\} forms a tight frame on L2(\BbbR ).
The tight frame on L2(\BbbR d) with d \geq 2 can be constructed by taking tensor products of

univariate tight framelets [4, 5, 10, 15]. Given a set of univariate masks
\bigl\{ 
q0, q1, . . . , qr

\bigr\} 
, we

define multivariate masks q\bfitalpha [\bfitk ] with \bfitalpha = (\alpha 1, . . . , \alpha d) and \bfitk = (k1, . . . , kd) as

q\bfitalpha [\bfitk ] = q\alpha 1 [k1] \cdot \cdot \cdot q\alpha d
[kd], 0 \leq \alpha 1, . . . , \alpha d \leq r, \bfitk = (k1, . . . , kd) \in \BbbZ d.

The corresponding multivariate refinable function and framelets are defined as

\psi \bfitalpha (\bfitx ) = \psi \alpha 1(x1) \cdot \cdot \cdot \psi \alpha d
(xd), 0 \leq \alpha 1, . . . , \alpha d \leq r, \bfitx = (x1, . . . , xd) \in \BbbR d,

with \psi 0 = \phi for convenience. If the univariate masks \{ q\alpha \} are constructed from UEP, then
we can verify that \{ q\bfitalpha \} satisfies (A.6) and thus X(\Psi ) with \Psi =

\bigl\{ 
\psi \bfitalpha : \bfitalpha \in \{ 0, . . . , r\} d \setminus \{ 0\} 

\bigr\} 
forms a tight frame for L2(\BbbR d).

In the discrete setting, let \scrI d \simeq \BbbR N1\times \cdot \cdot \cdot \times Nd be the space of real-valued functions defined on
a regular grid \{ 0, 1, . . . , N1  - 1\} \times \cdot \cdot \cdot \times \{ 0, 1, . . . , Nd  - 1\} . The fast framelet decomposition,
or the analysis operator with L levels of decomposition, is defined as

Wu = \{ Wl,\bfitalpha u : (l,\bfitalpha ) \in (\{ 0, . . . , L - 1\} \times \BbbB ) \cup \{ (L - 1,0)\} \} ,(A.7)

D
ow

nl
oa

de
d 

06
/1

3/
22

 to
 1

83
.1

72
.1

71
.2

34
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WHOLE BRAIN SUSCEPTIBILITY MAPPING USING HIRE 517

where \BbbB = \{ 0, . . . , r\} d \setminus \{ 0\} is the framelet band. Then the frame coefficients Wl,\bfitalpha u \in \scrI d of
u \in \scrI d at level l and band \bfitalpha are defined as

Wl,\bfitalpha u = ql,\bfitalpha [ - \cdot ]\circledast u,

where \circledast denotes the discrete convolution with a certain boundary condition (e.g., the periodic
boundary condition), and ql,\bfitalpha is defined as

ql,\bfitalpha = \widetilde ql,\bfitalpha \circledast \widetilde ql - 1,\bfzero \circledast \cdot \cdot \cdot \circledast \widetilde q0,\bfzero with \widetilde ql,\bfitalpha [\bfitk ] = \biggl\{ q\bfitalpha [2
 - l\bfitk ], \bfitk \in 2l\BbbZ d,

0, \bfitk /\in 2l\BbbZ d.
(A.8)

We denote byW T , the adjoint ofW , the fast reconstruction (or the synthesis operator). Then
by UEP (A.6), we have W TW = I.

Finally, we mention that among many different choices of framelets, the ones constructed
from the B-spline are the most popular in image processing. This is due to the multiscale
structure of the wavelet frame systems, short supports of the (anti)symmetric framelet func-
tions with varied vanishing moments, and the presence of both low pass and high pass filters
in the wavelet frame filter banks, which are desirable in sparsely approximating images [17].
A tight frame system constructed from the low order B-spline has fewer filters with shorter
supports compared to the ones constructed from the high order B-splines. Hence, low order
B-spline framelet systems are more computationally efficient, while the high order ones are
capable of capturing richer image singularities. Moreover, since high order B-spline framelets
have larger supports, they may introduce more numerical viscosity, often leading to smoother
reconstructions in image restoration tasks. Hence, the choice of framelet systems indeed de-
pends on the task and the computational cost we can afford [56]. In this paper, we fix W to
be the Haar framelet system for the wavelet frame regularization models as the susceptibility
images can be well approximated by piecewise constant functions. In addition, we always
fix L = 1 to avoid memory storage problems, as we are solving a three-dimensional inverse
problem. We also note that the choices of W will indeed affect the reconstruction results. For
example, the use of data driven tight frames in [6] will generate better reconstruction results
due to its adaptivity, even though it requires further numerical studies. Nonetheless, we forgo
further details on the choice of W in order not to dilute the main focus of this paper.
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