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Abstract

Training process is crucial for the deployment of the net-

work in applications which have two strict requirements on

both accuracy and robustness. However, most existing ap-

proaches are in a dilemma, i.e. model accuracy and robust-

ness forming an embarrassing tradeoff – the improvement

of one leads to the drop of the other. The challenge remains

for as we try to improve the accuracy and robustness si-

multaneously. In this paper, we propose a novel training

method via introducing the auxiliary classifiers for training

on corrupted samples, while the clean samples are normally

trained with the primary classifier. In the training stage, a

novel distillation method named input-aware self distilla-

tion is proposed to facilitate the primary classifier to learn

the robust information from auxiliary classifiers. Along with

it, a new normalization method - selective batch normal-

ization is proposed to prevent the model from the negative

influence of corrupted images. At the end of the training pe-

riod, a L2-norm penalty is applied to the weights of primary

and auxiliary classifiers such that their weights are asymp-

totically identical. In the stage of inference, only the pri-

mary classifier is used and thus no extra computation and

storage are needed. Extensive experiments on CIFAR10,

CIFAR100 and ImageNet show that noticeable improve-

ments on both accuracy and robustness can be observed

by the proposed auxiliary training. On average, auxiliary

training achieves 2.21% accuracy and 21.64% robustness

(measured by corruption error) improvements over tradi-

tional training methods on CIFAR100. Codes have been

released on github.

1. Introduction

Dramatic achievements have been attained with the help

of deep learning in various domains, including computer vi-

sion [17, 25, 35, 26], natural language processing [2, 40, 7]

and so on. However, image corruption, which can be widely

observed in real-world application scenarios like rotation,
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blurring, raining, and noises, leads to a severe accuracy

degradation due to the vulnerability of neural networks. A

simple and effective method to improve model robustness is

data augmentation [21, 38]. However, directly adding cor-

rupted images into training set always leads to unacceptable

accuracy drop on clean images [47]. Moreover, model ro-

bustness for different kinds of corruptions always influences

each other. For instance, Gaussian noise data augmentation

leads to robustness increment on noise corruption but re-

duces model robustness on the images with different con-

trast and saturation [43]. Most recently, one research trend

is to improve model robustness without scarifying accuracy

on clean data [16, 27], yet, it’s still challenging to develop a

training approach that improves both accuracy and robust-

ness simultaneously.

In this work, we propose a novel neural networks train-

ing framework named auxiliary training which consists of

two types of training samples. One is the clean images

from a dataset and the other is the corrupted images which

are generated by adding corruptions to clean images. The

corruptions in this paper consist of noise, blur and other

formats of image corruption. In our training framework,

given a network, the feature extraction layer is kept but aux-

iliary classifiers which are copies of the final classifier layer

(denoted as primary classifier) are introduced for helping

training the primary classifier. In the first stage of train-

ing, both two kinds of images are fed into the same con-

volutional layers to obtain representative features but each

individual classifier is only trained by samples from a cer-

tain kind of corruption. In the second stage, a L2-norm loss

is applied for penalizing the weights between the primary

classifier and auxiliary classifiers such that they attain the

identical weights. As a result, the auxiliary classifiers can

be dropped and only the primary classifier is kept. There-

fore, the original network architecture does not change and

extra computations and parameters are needless in the infer-

ence period. Figure 1 illustrates the flow of our approach.

Moreover, we propose the input-aware self distillation

and selective batch normalization to facilitate model train-

ing. The input-aware self distillation regards the primary

classifier as the teacher model, and auxiliary classifiers as
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Figure 1. Details of the proposed auxiliary training. (a)Training Period 1: (i) The images involved in the training include the clean images

from datasets, and corrupted (e.g. blurring, noise) images generated from data augmentation. (ii) All of the images are fed into the same

convolutional layers with the proposed selective batch normalization to obtain representative features. (iii) The features of clean images

are then fed into the primary classifiers, which is composed of one fully connected layer. The features of corrupted images are then fed

into the auxiliary classifiers, which consist of an attention module and a fully connected layer. (b) Training Period 2: (iv) At the end of the

training period, a L2 loss is utilized to force weights of auxiliary classifiers to orientate the primary classifier until they have the exactly

identical weights. (c) Testing Period: (v) In testing period, all the inputs images are classified by the primary classifier, and the auxiliary

classifiers can be dropped to reduce model parameters.

students models, transferring knowledge from clean images

to corrupted images and enabling the primary classifier to

learn robust information from auxiliary classifiers. The se-

lective batch normalization computes the mean and variance

of clean images and corrupted images respectively and up-

dates its parameters only by clean images, avoiding the neg-

ative influence from corrupted images. An ablation study of

the aforementioned techniques is introduced in Table 9 to

show their effectiveness respectively.

Besides, the formulation of the proposed auxiliary train-

ing is motivated from the connections of perturbations be-

tween the input space and parameter space. As the cor-

rupted image can be seen as a small perturbation in the fea-

ture space, it is equivalent to a small perturbation of param-

eters by using first order approximation. Thus, it naturally

leads to the soft constraints between primary classifier and

auxiliary classifier which guarantee the mathematical ratio-

nale of our approach. A detailed analysis is given in Sec-

tion 3.1. In summary, our main contributions are as follows:

• A neural network’s training framework named auxil-

iary training is proposed, achieving noticeable accu-

racy and robustness improvements with no additional

computation or storage requirements during infer-

ence. Experiments on CIFAR100 show that 2.21% ac-

curacy and 21.64% robustness improvements can be

observed compared to traditional training methods.

• Two effective techniques including input-aware self

distillation and selective batch normalization are pro-

posed to further improve the performance of the pro-

posed auxiliary training, which provides fruitful in-

sights in multi-exits neural network design.

• The mathematical formulation of the auxiliary training

is derived from the perspective of perturbation analysis

and its rationality is further explained by the context

of knowledge distillation and learning with privileged

information.

The rest of the paper is organized as follows. Section 2

introduces related work in model robustness and multi-task

training. The formulation of the proposed training frame-

work, input-aware self distillation and selective batch nor-

malization are presented in Section 3. Experiments and the

discussions are shown in Section 4 and 5 respectively. The

conclusion is given in Section 6.

2. Related work

2.1. Model robustness

Model robustness, which indicates the stability of model

performance to the perturbations in input data, is one of

the most challenging topics in machine learning. Gener-

ally speaking, these perturbations can be divided into two
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Algorithm 1 Auxiliary Training

Input: Training Data X , Model M with weights θ
Data Augmentation Transformation T , Labels Y
Loss function L from Equ.7, Learning Rate σ

Output: Model M with weights θ

1: while not converged do

2: sample a batch of samples x, y from X,Y
3: p := M .predict({x, T (x)}; y; θ)

4: θ := θ − σ · ∂L(p;θ)
∂θ

, γ = 0
5: end while

6: while not converged do

7: sample a batch of samples x, y from X,Y
8: p := M.predict({x, T (x)}; y; θ)

9: θ := θ − σ · ∂L(p;θ)
∂θ

, γ = 1
10: end while

11: Drop the auxiliary classifiers in M

Return M and θ

groups by their source: the adversarial perturbations from

manual attack algorithm [11, 30] and common images cor-

ruption from nature such as noise, blurring, and rotation.

As introduced by Laugros et al., there is a significant differ-

ence and little connection between the two kinds of pertur-

bations [23]. In this paper, we mainly focus on the robust-

ness of common images corruption. Recently, more and

more attention has been paid to improve the robustness of

neural networks. Fruitful benchmarking datasets have been

released to estimate the robustness of neural networks on

image classification [15], object detection [33], semantic

segmentation [19] and video processing [37]. To improve

model robustness, Zheng et al. proposed stability training,

which forces the corrupted images to have similar predic-

tion results with the clean images [46]. Hendrycks et al.

exploited self-supervised learning by predicting the rotation

angels, improving model robustness on 19 kinds of common

corruption [16]. Galloway et al. found that the batch nor-

malization may be the cause of model accuracy degradation

on corrupted images [10]. Gontijo Lopes et al. combined

the “cut out” [8] methods with Gaussian noise, improv-

ing model robustness from a data augmentation perspective.

Yin et al. explained the trade-offs among models perfor-

mance of various corruption by Fourier spectrum [43], then

proposed a method to improve model robustness on com-

mon corruptions based on Auto-augmentation [5]. Com-

pared to the above works, our work is an alternative train-

ing framework by introducing corruption-specific auxiliary

classifiers that help improve both accuracy and robustness

for the primary classifier.

2.2. Learning with auxiliary tasks

Since the tasks in the real world are usually closely re-

lated, neural networks are always designed and expected to

solve various related tasks at the same time, which is named

multi-task learning [1, 29, 34, 4]. As one of the classical ex-

amples, mask RCNN [13] targets to localize, classify and

segment an object with one shared backbone neural net-

work. During the training period, the three tasks benefit

from each other, leading to a dramatic accuracy increment

for all. An effective method in multi-task learning is to con-

struct additional auxiliary tasks to facilitate the training of

the primary task. In this situation, the auxiliary classifiers

are meaningless in the application but helpful in models

training. Meyerson et al. proposed pseudo tasks augmen-

tation, in which several pseudo classifiers are trained based

on the same features [32]. In Self supervised GAN method,

an auxiliary classifier for the discriminator was proposed to

predict the rotation angles of images, facilitating the train-

ing of GAN [3]. The proposed auxiliary training can be un-

derstood from the perspective of multi-task learning when

corruption samples are auxiliary tasks and it partially ex-

plains the success of our training approach. Moreover, a

technique for imposing the identical weight constraints is

specially designed during the training process.

3. Auxiliary training

3.1. Formulation

Let XC = {(xi, yi)}
m
i=1 be a set of clean training sam-

ples, T = {T1, T2, . . . , Tt} be a set of corruption operations

and Xj = {(xj
i , yi)|x

j
i = Tj(xi), (xi, yi) ∈ Xc} to be the

corrupted training set by j-th corruption. Thus, the whole

training set consists of

X = XC ∪ (∪tj=1Xj) = ∪
t
j=0 ∪

m
i=1 {(x

j
i , yi)},

where xj
i = Tj(xi) and assume T0 is the identity map. Let

f(x; θf ) be the feature extractor which can be a convolu-

tional neural network and g(x; θg) be the classifier and the

feature map associated with the j-th corruption be

x̂j = f(Tj(x), θf ), ∀j = 0, 1, . . . , t.

The traditional augmentation training method seeks for the

best parameters via the following minimization:

min
θf ,θg

1

t+ 1

t∑

j=0

{
1

m

m∑

i=1

ℓ(g(x̂j
i (θf ); θg), yi)

}
, (1)

where ℓ(·, ·) is the loss function, e.g. L2-norm, cross

entropy and Kullback-Leibler (KL) divergence and where

x̂j
i (θf ) = f(Tj(xi), θf ) denotes the feature map of i-th

sample corrupted by j-th corruption. In (1), all the corrup-

tions are treated equally which might not be consistent with

the true distribution. Thus, assume the probability of the

j-th corruption is αj = p(Tj) and introduce the auxiliary
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classifier g(x; θjg) for each corruption, the minimization (1)

can be formulated as

min
θf ,{θ

j
g}

t
j=0

t∑

j=0

αj

{
1

m

m∑

i=1

ℓ(g(x̂j
i (θf ); θ

j
g), yi)

}
, L1,

s.t. θ0g = θ1g = · · · = θtg.
(2)

Due to the existence of nonconvexity in (2), finding a sta-

tionary point of (2) with high accuracy and robustness is

difficult. In order to facilitate training for obtaining a de-

sired classifier, we train the primary classifier by only clean

samples and propose to introduce auxiliary classifiers such

that each one is only trained by specific corruption samples.

Finally, we merge the information from the auxiliary classi-

fiers by the regularization. More concretely, assume g(·; θ0g)

is our desired primary classifier and the classifier g(·; θjg) is

well trained for j-th corruption, then it implies

g(x̂0; θ0g) = g(x̂j ; θjg). (3)

Let j-th corruption be parameterized by ξ, then in feature

space, we have δxj = x̂j − x̂0 in a neighborhood of x̂0.

When the capacity of the feature extraction network is large

enough such that it can learn certain invariant features for

the corruptions, i.e. δxj is small, the first order Taylor ex-

pansion implies that

g(x̂j ; θjg) ≈ g(x̂0; θjg) +
∂g

∂x
δxj . (4)

If there is a small perturbation δθjg such that

∂g

∂x
δxj ≈

∂g

∂θ
δθjg. (5)

Together with (3), (4), (5), we arrive at a necessary condi-

tion for robust primary classifier g(·; θf ):

g(x̂j , θ0g) ≈ g(x̂j , θ0g + δθjg),

by the first-order approximation, i.e. our auxiliary classi-

fiers are θjg = θ0g + δθjg and the perturbation is implicitly

given by the corruption for the input images. Therefore, the

trajectory of the corruptions for clean samples corresponds

to a trajectory of the robust classifier. Therefore, to achieve

the robustness of the primary classifier, it could be better to

choose it smooth along the tangent direction of the trajec-

tory of corruption. However, it is hard to analyze the tangent

direction of the perturbations in feature space. Instead, we

impose the smoothness of the primary classifier around θ0g ,

i.e.

θ0g ≈ θjg, g(x̂0, θ0g) ≈ g(x̂j , θjg).

This motivates us to relax the equality constraints by the

penalty function Ω as:

Ω(θ0g , θ
j
g) = ℓKL(g(x̂

0; θ0g), g(x̂
j ; θjg))+γ‖θ1−θ2‖

2
2. (6)

Therefore, the total loss in our auxiliary training is:

min
θf ,{θ

j
g}

t
j=0

L1 + λ

t∑

j=1

Ω(θ0g , θ
j
g). (7)

There are three hyperparameters α, λ, γ in (7) and all of

them are fixed for all the experiments in this paper. Our ex-

periments demonstrate that the proposed auxiliary train-

ing is not sensitive to the value of hyperparameters.

3.2. Rationality of auxiliary training

In this section, we further analyze the auxiliary training

from the following two perspectives.

Input-aware self distillation. The knowledge distillation

consisting of the teacher-student structure has proved to

be a useful method for the accuracy improvement. How-

ever, the performance depends on how “smart” the teacher

is. In practice, it is difficult to find a universal “smart”

teacher. In the proposed auxiliary training, the “decentral-

ization” idea is applied for encouraging knowledge commu-

nication among classifiers. More concretely, each classifier

is only trained by the data with certain augmentation and

the penalty term Ω defined in (6) imposes the knowledge

transfer between primary classifier and auxiliary classifiers

under the simultaneous training strategy. In other words,

each classifier can be seen as a domain expert and they are

learned from each other. Therefore, instead of the teacher-

student structure, the auxiliary training approach is more

likely to be a “student⇄student” framework which is more

efficient for knowledge transfer.

Privileged information. The framework of learning us-

ing privileged information is first introduced in [39] and

it is connected to the knowledge distillation in [28]. Let

(xi, x
∗
i , yi) be the i-th training sample where (xi, yi) be the

feature-label pair and x∗
i is the additional information of xi

provided by the teacher network. In our proposed auxiliary

learning framework, as both clear sample x0
i and corrupted

samples xj
i , j = 1, 2, . . . , t share the same label informa-

tion, the privileged information can be x∗
i = f(x0

i ; θf )
where f is a feature extractor. In the generalized distilla-

tion framework [28], the primary classifier is the teacher

and the auxiliary classifiers are students. As a good feature

extractor f can provide certain invariant property for the

corrupted images, it is reasonable that the auxiliary classi-

fier is relatively easy to learn in feature space which leads

to better generalization error [28]. From this perspective, it

motivates that the proposed architecture contains a common

feature extractor but different classifiers for corruptions.

3.3. Techniques for auxiliary Training

Figure 1 and Algorithm 1 show the details of the pro-

posed auxiliary training. Two techniques are proposed to
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Model Our approach Baseline Increment

AlexNet 91.43 88.28 +3.15

ResNet18 96.02 94.75 +1.27

ResNet50 96.31 95.22 +1.09

ResNet101 96.47 95.27 +1.20

WRN50 96.49 95.42 +1.07

ResNeXt50 96.34 95.59 +0.75
Table 1. Comparison of accuracy (%) between models trained

by auxiliary training and standard training on CIFAR10 dataset.

WRN indicates wide ResNet.

Model Our approach Baseline Increment

AlexNet 70.09 68.44 +1.65

ResNet18 79.47 77.09 +2.38

ResNet50 80.16 77.42 +2.74

ResNet101 80.51 77.81 +2.70

WRN50 80.84 79.08 +1.76

ResNeXt50 81.51 79.49 +2.02
Table 2. Comparison of accuracy (%) between models trained

by auxiliary training and standard training on CIFAR100 dataset.

WRN indicates wide ResNet.

facilitate both the robustness and accuracy of neural net-

works, which are introduced as follows.

Auxiliary classifiers. Different from the primary classifier

which is a single fully connected layer, the auxiliary classi-

fiers in this paper are constructed by three components: an

attention module, a bottleneck layer, and a fully connected

layer, according to the shallow classifiers in SCAN [45].

The attention modules consist of one convolutional layer

and one deconvolutional layer, aiming at helping the auxil-

iary classifiers obtain the useful features [41, 24]. A bottle-

neck layer [14], which is composed of 1x1, 3x3, 1x1 con-

volutional layers, is attached after the attention modules.

Since all the auxiliary classifiers are only utilized in the

training period, they don’t bring additional storage and

computation in inference period.

Selective batch normalization. Batch normalization [18]

is widely utilized in all kinds of convolutional neural net-

works to stabilize the training of models. However, re-

cently, Galloway et al. found that batch normalization re-

duces model robustness on both adversarial attacks and cor-

rupted images [10]. Zhou et al. show that models with

batch normalization may not outperform models without

batch normalization, especially when data augmentation is

utilized in the training period. Their experiments demon-

strate that batch normalization leads to 2.9% accuracy drop

on ResNet32 trained on CIFAR10 with data augmenta-

tion [47].

To alleviate the accuracy degradation from batch normal-

ization on corrupted data, we propose the selective batch

normalization (SBN), aiming at eliminating the influence

from corrupted data in batch normalization. The proposed

Model Our approach Baseline Increment

AlexNet 69.98 100.00 +30.02

ResNet18 57.01 85.91 +28.90

ResNet50 58.15 84.26 +26.11

ResNet101 50.03 87.08 +37.05

WRN50 59.43 87.19 +27.76

ResNeXt50 52.96 84.50 +31.54
Table 3. Comparison of robustness between models trained by

auxiliary training and normal training on CIFAR10-C dataset.

WRN indicates Wide ResNet. Model robustness is measured by

corruption error (CE) in Equation (8). Less is better.

SBN is based on the observation that the statistics param-

eters of batch normalization are vulnerable to the shift in

inputs data, i.e., the corruption in inputs images. With the

proposed SBN, the mean and variance of corruption data

and clean data are computed respectively in both training

and inference period.

Let X b be a training batch sampling from X . The

training batch is composed of clean samples X b
C and cor-

rupted samples X b
j , which can be formulated as X b =

X b
C ∪ (∪tj=1X

b
j ). In traditional batch normalization meth-

ods, the features of clean samples and corrupted samples

are computed together, which can be formulated as

x̃ = γ ·
x̃− E[X b]√
V ar[X b] + ε

+ β, x ∈ X b,

where γ and β are two parameters for scaling and shifting

trained by back propagation. ε is a number with small value

to avoid zero-division error and x̃ denotes the features in

convolutional layers of sample x. Comared with traditional

batch normalization, the proposed SBN computes clean and

corrupted samples respectively, which can be formulated as

x̃ = γ ·
x̃− E[X b

C ]√
V ar[X b

C ] + ε
+ β, x ∈ X b

C

x̃ = γ ·
x̃− E[X b

j ]√
V ar[X b

j ] + ε
+ β, x ∈ X b

j

In inference period, the E[·] and V ar[·] are replaced by

statistics means µ and variance σ2. In the training period of

traditional batch normalization, µ and σ2 are updated by the

both clean and corrupted samples in the batch, which can be

formulated as

µ←−
1

n

n

Σ
i=1

x, σ2 ←−
1

n

n

Σ
i=1

(x− µ)2, x ∈ X b, n = |X b|

In contrast, the proposed SBN updates µ and σ2 by only

the clean samples, which can be formulated as

µ←−
1

n

n

Σ
i=1

x, σ2 ←−
1

n

n

Σ
i=1

(x− µ)2, x ∈ X b
C , n = |X b

C |
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Model Our approach Baseline Increment

AlexNet 80.03 100.00 +19.97

ResNet18 69.34 92.21 +22.87

ResNet50 69.13 92.28 +23.15

ResNet101 66.10 88.35 +22.25

WRNet50 68.89 87.33 +18.44

ResNeXt50 69.13 92.29 +23.16
Table 4. Comparison of robustness between models trained by

auxiliary training and normal training on CIFAR100-C dataset.

WRN indicates Wide ResNet. Model robustness is measured by

corruption error (CE) in Equation (8). Less is better.

Model Top-1 Top-5

ResNet18-Standard Training 69.21 89.01

ResNet18-Auxiliary Training 69.94 89.51

ResNet34-Standard Training 73.17 91.24

ResNet34-Auxiliary Training 74.14 91.94
Table 5. Comparison of accuracy (%) between models trained by

auxiliary training and normal training on ImageNet.

Model Training Method Accuracy CE

ResNet18 Baseline 94.75 85.91

ResNet18 Self-Supervised [16] 95.23 63.09

ResNet18 Gaussian Patch [27] 95.13 63.17

ResNet18 Data Augmentation 93.53 60.03

ResNet18 Auxiliary Training 96.02 57.01

Wide ResNet50 Baseline 95.42 87.19

Wide ResNet50 Self-Supervised [16] 95.47 63.77

Wide ResNet50 Gaussian Patch [27] 95.66 66.63

Wide ResNet50 Data Augmentation 93.86 60.64

Wide ResNet50 Auxiliary Training 96.49 55.41

ResNeXt50 Baseline 95.59 84.50

ResNeXt50 Self-Supervised [16] 95.67 61.86

ResNeXt50 Gaussian Patch [27] 95.52 60.13

ResNeXt50 Data Augmentation 93.72 50.52

ResNeXt50 Auxiliary Training 96.34 49.37

Table 6. Comparison between the proposed auxiliary training with

other robustness training methods on CIFAR10 and CIFAR10-C.

Model robustness is measured by corruption error (CE) in Equa-

tion (8).(less is better). Numbers in bold are the best.

4. Experiments results

4.1. Experiments settings

Experiments of the proposed auxiliary training are con-

ducted on four kinds of convolutional neural networks,

including AlexNet [21], ResNet [14], Wide ResNet [44]

and ResNeXt [42] and three kinds of datasets, includ-

ing CIFAR10, CIFAR100 [20] and ImageNet [6]. More-

over, robustness benchmark datasets including CIFAR-C

and ImageNet-C [15] datasets are utilized to evaluate model

robustness in 19 kinds of common image corruption, con-

taining all kinds of noise, blur, weather and so on.

In the training period, normal data augmentation con-

sisting of random cropping and horizontal flipping are uti-

lized to improve the performance of neural networks. The

SGD optimizer with weight decaying and momentum is ex-

ploited to train the models. Models on both CIFAR10 and

CIFAR100 are trained by 300 epochs, with learning rate

divided by 10 in the 100th, 200th, 290th epoch. Mod-

els on ImageNet are trained by 90 epochs, with learning

rate divided by 10 in the 30th, 60th epoch. The default

hyper-parameters setting in this paper is: α0 = 1, α 6=0 =
0.05, λ = 0.05, γ ∈ {0, 1}. All the experiments are con-

ducted by PyTorch1.2.0, running on RTX 2080 and Tesla

V100 GPU devices. There are total four data augmentations

in the experiments in this paper and they are Gaussian noise,

Gaussian blur, rotation and images’ contrast and brightness.

In this paper, the robustness of neural networks is mea-

sured by the relative value between the error rate of neu-

ral networks and AlexNet. It’s named the corruption error

(CE) [15], which is computed by the following formula

CENetwork = ErrorNetwork/ErrorAlexNet (8)

where Error denotes the error rates. A lower CE indicates

that neural networks have more robustness.

4.2. Experiments on CIFAR and CIFARC

Improvements on accuracy. Table 1 and Table 2 show the

accuracy of neural networks by auxiliary training on CI-

FAR10 and CIFAR100, respectively. It can be observed

that: (i) In CIFAR10, 1.43% accuracy increment can be ob-

served on the models trained with auxiliary training, rang-

ing from 0.75% on ResNeXt50 as the minimum to 3.15% on

AlexNet as the maximum. (ii) In CIFAR100, 2.21% accu-

racy increment can be detected on the models with the pro-

posed auxiliary training, ranging from 2.74% on ResNet50

as the maximum to 2.74% on Wide ResNet50 as the min-

imum. (iii) Compared with the advanced models such as

ResNeXt and Wide ResNet, more accuracy gain can be ob-

served on the ResNet and AlexNet models.

Improvements on robustness. Table 3 and 4 show the

experiments results of six neural networks on CIFAR10-

C and CIFAR100-C. It can be observed that (i) The pro-

posed auxiliary training leads to consistent and significant

robustness improvements. On average, there are 30.15%

and 21.64% CE improvements on CIFAR10-C, CIFAR100-

C respectively. (ii) Although many kinds of corruption such

as snow, fog, and JPEG compression are not involved in the

training period, experiments show auxiliary training also

improves model robustness in these corrupted images, in-

dicating there is a good generalization ability of the pro-

posed auxiliary training to various corruption.

Comparison with related work. The comparison between

the proposed auxiliary training and the other three robust

training methods is shown in Table 6. It’s observed that
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ResNet18 84.11 87 85 89 91 90 85 88 87 84 84 85 79 72 70 81 91 91 80 79

+Aux. Training 78.86 79 78 81 82 89 79 84 83 85 79 80 72 66 74 75 78 89 75 70

ResNet34 85.54 87 86 89 89 93 86 88 90 91 85 87 81 73 72 81 89 93 81 81

+Aux. Training 75.58 78 76 80 81 85 77 82 79 77 75 76 70 64 62 73 77 84 71 66

Table 7. Comparison of robustness between models trained by auxiliary training and normal training on ImageNet-C dataset. Model

robustness is measured by corruption error (CE) in Equation (8).(less is better). “+Aux. Training” indicates that the models are trained by

the proposed auxiliary training.

Training Method Clean PGD-L2 PGD-L∞ BIA-L2 BIA-L∞ FGSM MIA-L2 DDN-L2

Normal Training 94.75 23.37 4.88 24.62 6.49 18.34 24.62 1.42

Adversarial Training [31] 83.90 45.54 43.52 79.94 44.88 51.99 74.04 24.36

Auxiliary Training 85.76 49.35 46.45 82.56 47.07 54.38 76.97 26.53
Table 8. Comparison of adversarial training and the proposed auxiliary training with several adversarial attack, ResNet18 on CIFAR10.

PGD Attack [30], Basic Iterative Attack [22], Fast Gradient Sign Method [12], Momentum Iterative Attack [9], Decoupled Direction and Norm Attack [36].

(i) Data augmentation can improve model robustness at the

expense of model accuracy. (ii) Some robust training meth-

ods such as self supervised training and Gaussian patch can

improve model robustness with almost no sacrificing of ac-

curacy. (iii) In contrast, the proposed auxiliary training

can improve both accuracy and robustness simultaneously

and outperform the other three robust training methods by a

large margin.

4.3. Experiments on ImageNet and ImageNetC

Experiments on ImageNet are also conducted to show

the effectiveness of auxiliary training on large scale

datasets. Table 5 and Table 7 show the accuracy and ro-

bustness of four neural networks on ImageNet. On av-

erage, 0.85% top-1 and 0.60% top-5 accuracy increment

on ImageNet and 7.61% CE (robustness) improvement on

ImageNet-C can be observed.

4.4. Experiments on adversarial attack

Although the proposed auxiliary training is designed for

the robustness to nature corruption, experiments show that

it also leads to accuracy gain on adversarial attack. In this

experiment, the primary classifier is trained on adversarial

samples by PGD [30], and the auxiliary classifiers are still

trained on nature corruption images. PGD attack, basic it-

erative attack [22], FGSM attack [12], momentum iterative

attack [9] and the decoupled direction and norm attack [36]

are utilized to evaluate model accuracy and robustness to

adversarial attack.

As shown in Table 8: (i) The proposed auxiliary training

outperforms the state-of-the-art defense methods - adversar-

ial training [31] by a large margin, on both clean data accu-

racy and adversarial samples accuracy. (ii) 1.86% clean data

accuracy improvements can be observed in the proposed

auxiliary training compared with the adversarial training.

(iii) 3.17% accuracy improvements on 7 kinds of adversar-

ial attack methods can be observed in auxiliary training.

The consistent and significant improvements indicate that

the proposed auxiliary training method can also be utilized

in the defense to the adversarial attack.

5. Discussion

5.1. Ablation study

Besides the auxiliary classifiers, there are mainly four

kinds of techniques utilized in the proposed auxiliary train-

ing, i.e., selective batch normalization, input-aware self dis-

tillation, attention modules, and weights merging. To inves-

tigate their effectiveness, a series of experiments are con-

ducted to show models’ accuracy and robustness when they

are trained by the auxiliary training without one of the above

techniques.

Training Method Accuracy CE

Auxiliary Training 79.47 69.34

w/o Selective BN 76.37 69.52

w/o Self Distillation 78.44 73.67

w/o Attention 77.50 70.79

w/o Weight Merging 78.32 70.43
Table 9. An ablation study of the proposed auxiliary training with

ResNet18 on accuracy (CIFAR100) and robustness (CIFAR100-

C). Model robustness is measured by the corruption error in

Equ.(8). Less is better.

As is shown in Table 9, compared with the complete aux-

iliary training: (i) Consistent and significant accuracy and
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robustness drop can be observed on any models trained with

incomplete auxiliary training. (ii) 3.1% accuracy drop and

0.18% corruption error rate increment on CIFAR100 can

be observed if the selective batch normalization is not uti-

lized in auxiliary training. The reason may come from the

fact that joint training of both clean and corrupted images

prevent models training on clean images from better con-

vergence. (iii) 1.03% accuracy drop and 4.33% corruption

error rate increment are observed on the auxiliary training

models without input-aware self distillation, demonstrat-

ing that the primary classifiers can obtain more benefits of

robustness information from the auxiliary classifiers. (iv)

1.93% accuracy drop and 1.45% corruption error rate in-

crement can be observed on the models trained without the

attention module, which might be explained by the reason

that attention modules can facilitate the auxiliary classifiers

to learn the corruption images better. (vi) Models trained by

auxiliary training without weights merging leads to 1.15%

accuracy drop and 0.79% corruption error rate increment,

which may be explained by that loss on classifiers’ weights

that enables the primary classifier to learn from the auxil-

iary classifiers directly. In brief, all the techniques in the

proposed auxiliary training are effective and indispensable.

5.2. Sensitivity study in frequency domain

To further prove the robustness gain by auxiliary train-

ing, a frequency perturbation experiment is conducted [43].

As shown in Figure 2, the frequency perturbation consists

of three steps: At first, a discrete Fourier transformation

(DFT) is applied to the input images and one point in the

frequency domain is perturbed by some constant value. Fi-

nally, we obtain the perturbed image by applying the inverse

Fourier transformation (IDFT).

As a result of the above perturbation in frequency do-

main, the relationship between model robustness and fre-

quency information can be visualized. In Figure 3, two

ResNet18 models are trained with and without the proposed

auxiliary training on CIFAR100 and then evaluated on test-

ing set with frequency perturbation on different frequency.

In Figure 3, the value on the pixel in the ith row and the

jth column of each sub-figure indicates model accuracy on

images with frequency perturbation on the pixel in the ith
row and the jth column. It’s observed that: (i) The ResNet

model trained by auxiliary training outperforms the model

trained by standard training methods by a large margin on

frequency perturbation in all the pixels, indicating that con-

sistent and significant robustness can be obtained by auxil-

iary training. (ii) With both standard training methods and

the proposed auxiliary training, models show more robust-

ness on low frequency perturbation and less robustness on

high frequency perturbation, indicating the models are sen-

sitive to the high frequency perturbation such as noise.

Figure 2. The process of frequency perturbation with 2D discrete

Fourier transformation (DFT). Images are first transformed into

the frequency domain from the spatial domain and then perturbed

by a constant value on one pixel. Finally they’re transformed back

to the spatial domain. The perturbed pixel in the figure is marked

by the black square.

Figure 3. Accuracy heat maps of two ResNet18 models in the fre-

quency perturbation sensitivity study. The value of the pixel in the

ith row and jth column indicates model accuracy on CIFAR100

testing sets with frequency perturbation on the pixel in the ith row

and the jth column.

6. Conclusion

In this paper, we propose an auxiliary training frame-

work, which can improve both model accuracy and robust-

ness with no additional computation and parameters in in-

ference period. In auxiliary training, both clean images and

corrupted images are fed into the neural networks, com-

puted by the shared convolutional layers but with differ-

ent classifiers. At the end of training, all the classifiers are

converged to an identical one due to the L2 loss on their

weights. The proposed auxiliary training is also mathemati-

cally grounded, which can be formulated as a method which

applies the penalty function methods to solve the optimiza-

tion problem of neural networks training.

Moreover, further improvements on model accuracy and

robustness can be achieved by the proposed selective batch

normalization and input-aware self distillation. An ablation

study is conducted to verify the effectiveness of each tech-

nique and a frequency perturbation sensitivity study shows

that the auxiliary training can promote model robustness to

image corruption in all frequency. Substantial experiments

on CIFAR, CIFAR-C, ImageNet, ImageNet-C, and 7 kinds

of adversarial attack methods demonstrate that the signifi-

cance and generality of the proposed auxiliary training.
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