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Abstract

Remarkable achievements have been attained by deep neural networks in vari-
ous applications. However, the increasing depth and width of such models also
lead to explosive growth in both storage and computation, which has restricted
the deployment of deep neural networks on resource-limited edge devices. To
address this problem, we propose the so-called SCAN framework for networks
training and inference, which is orthogonal and complementary to existing ac-
celeration and compression methods. The proposed SCAN firstly divides neural
networks into multiple sections according to their depth and constructs shallow
classifiers upon the intermediate features of different sections. Moreover, atten-
tion modules and knowledge distillation are utilized to enhance the accuracy of
shallow classifiers. Based on this architecture, we further propose a threshold
controlled scalable inference mechanism to approach human-like sample-specific
inference. Experimental results show that SCAN can be easily equipped on various
neural networks without any adjustment on hyper-parameters or neural networks
architectures, yielding significant performance gain on CIFAR100 and ImageNet.
Codes are be released on https://github.com/ArchipLab-LinfengZhang/
pytorch-scalable-neural-networks.

1 Introduction

Recently deep learning has evolved to become one of the dominant techniques in areas like natural lan-
guage processing [6, 2] and computer vision [23, 22]. To achieve higher accuracy, over-parameterized
models [26, 32] have been proposed at the expense of explosive growth in storage and compu-
tation, which is not available for certain application scenes such as self-driving cars and mobile
phones. Various techniques have been utilized to address this problem, including pruning [8, 9],
quantization [4, 24], lightweight neural networks [12] design and knowledge distillation [11, 25, 1].

Another rising star in this domain named scalable neural networks has attracted increasing attention
due to its effectiveness and flexibility [37, 20, 17]. The scalability of neural networks refers to its
ability to adjust the trade-offs between response time and accuracy on the fly. As a result, scalable
neural networks can always accomplish inference in budgeted and limited time, which is important
for real-world applications. Researchers have explored scalability through the lens of depth (layers)
and width (channels). Built upon DenseNet [14], MSDNet [13] directly trains multiple classifiers
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from features at different levels according to their depths. Yu et al. proposes switchable batch
normalization which enables neural networks to work with arbitrary channels [34]. However, most
existing scalable neural networks still suffer from two drawbacks. Firstly, in MSDNet, multiple
classifiers which share the same backbone neural network interfere with each other, leading to
accuracy loss compared with training them individually. Secondly, in slimmable neural networks,
computation of narrow classifiers can’t be reused by wide classifiers, which means the inference of
wide classifiers has to predict from scratch, increasing the inference time.

In this paper, we propose SCAN, a scalable neural network framework to overcome aforementioned
difficulties. By dividing neural networks according to its own depth straightforwardly, the compu-
tation of each classifier can be shared. Through knowledge distillation and attention mechanism,
multiple classifiers in the same backbone networks can benefit from each other instead of creating
negative interaction. Substantial experimental results show that SCAN is a generic and effective
neural networks framework which can be easily equipped with various neural networks without any
adjustment in architectures or hyper-parameters.

The proposed SCAN framework is inspired by human vision systems. When a human being is asked
to identify some images, most of easy images can be recognized instantly. Only fuzzy or easy-to-mix
challenging images require further consideration. In SCAN framework, images which are easy to
be classified are predicted by shallow (shallow classifier) classifiers, consuming extremely little
computation. Deep classifiers only involve in the prediction of challenging samples. Compared to
traditional neural networks in which all the samples are treated with equal efforts, SCAN can obtain
a high ratio acceleration through human-like sample-specific dynamic inference.

The contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first work combining model compression and
acceleration with attention mechanism, which provides a novel choice for lightweight models
design. Compared to existing lightweight design, the proposed mechanism is more hardware
friendly with features of input-specific adaptive networks and reuse of the backbone. To
verify its effectiveness and generalization, SCAN is evaluated on various neural networks
and datasets without adjustment in hyper-parameters and networks architectures.

• Through this method, a two-fold improvement can be achieved on either accuracy or
acceleration. Firstly, significant accuracy gain can be observed, especially on the shallow
classifiers. Secondly, a high ratio of acceleration can be obtained via scalable inference
mechanism.

2 Related work

Adaptive computation graph: Adaptive computation graph is proposed to attain flexible and dy-
namic neural networks acceleration [13, 15, 29, 31]. Compared with constant and static computation
graph, it can meet various demands from diverse application scenes and inputs. SkipNet [29] targets
to skip redundant layers in over-parameterized models like ResNet. A reinforcement learning based
on auxiliary gating module is proposed to decide whether to skip or not. BlockDrop [31] refines this
method by producing a sample-specific dropping strategy, further enhancing acceleration.

However, serious complication hides behind. Complex construction of skipping or dropping path
severely prevents hardware from better coordination, which makes aforementioned algorithm coun-
terproductive. To address this problem, the proposed SCAN simply divides the neural networks into
3 or 4 sections, which can be constructed as static graphs individually. The scalability and flexibility
only exist among them instead of inside them, which is not only harmonious with hardware but also
gains a higher acceleration ratio.

Attention mechanism: Attention mechanism of neural networks has been extensively utilized in
various fields of deep learning, yielding state-of-the-art results. It facilitates neural networks to
focus on valuable information of inputs, aiming to avoid interference from redundant messages.
Firstly, proposed in machine translation, attention mechanism aims to align the words in the source
language and target language [2]. Then, it has been applied in other application of natural lan-
guage processing [27, 30, 6], evolving to an indispensable module in neural networks architectures.
Motivated by its success in NLP, attention mechanism has also been employed in computer vision
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tasks. Conspicuous performance gain has also been observed in images recognition [28], images
caption [33], and fine-grained classification [7].

In this paper, a simplified squeezing-expansion attention module has been proposed to facilitate the
training of shallow classifiers, improving the accuracy of shallow classifiers in various networks.

Model compression: The phenomenon that over-parameterized models can’t be deployed on edge
devices for their excessive requirements of storage and computation has stimulated research of
models compression and acceleration. The typical methods include pruning, quantization, compact
models design and knowledge distillation. Pruning [8, 9] is to cut off the redundant connections or
channels in pre-trained neural networks. Quantization [24, 4] targets at replacing the 32 bits float
numbers with fewer bits. Knowledge distillation [11, 3, 39, 36, 1] aims to transfer the knowledge
of over-parameterized models to a small model in order to approach higher accuracy with fewer
parameters and computation. In addition, some researchers try to design compact models [12, 16]
which has fewer parameters yet still a high accuracy.

Aforementioned work has thoroughly exploited the redundancy in weights and neural networks
architectures yet ignored the drawback that samples with diverse difficulty are treated equally. The
proposed SCAN framework is orthogonal and complementary to aforementioned work, targeting at
exploring more acceleration possibility through unbalanced sample-specific disposal.

Figure 1: The architecture of ResNet18 equipped with SCAN. (i) The whole neural networks can be
divided into three sections: backbone, attention modules and shallow classifiers. (ii) The backbone
section is just identical to the origin model. (iii) Additional attention modules are attached after the
intermediate features of backbone.(iv) Features refined by attention modules will be feed into the
shallow classifiers, which consist of a bottleneck layer and a fully connected layer.

3 SCAN framework

In this section, we introduce the proposed SCAN architecture as 3 parts, as shown in Figure 1. Firstly,
to obtain human-like scalable inference, classifiers with varying response time are indispensable.
According to self distillation [38], a bottleneck layer and a fully connected layer are organized as
shallow classifiers. In addition, knowledge distillation is utilized to facilitate the training of shallow
classifiers, which will be further introduced in Section 3.1.

Secondly, although shallow classifiers permit instant prediction, it also leads to dramatic decline on
accuracy. To address this problem, a simplified attention module is proposed to compensate for the
accuracy of shallow classifiers, which will be further introduced in Section 3.2.

We further propose a threshold-based strategy to manage all the shallow classifiers to corporate
together. Moreover, a genetic algorithm is designed to search for proper thresholds, which will be
brought forth in Section 3.3.
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Figure 2: The accuracy of classifiers trained with different methods.

3.1 Self distillation

Self distillation provides an effective method to construct and train shallow classifiers which share
the same backbone neural network. It firstly divides neural networks into several sections depending
on their depth. Then a bottleneck layer and fully connected layer are attached after the intermediate
features as shallow classifiers, which are regarded as the student models in knowledge distillation. In
the training period, the knowledge of the deepest classifier is distilled into each shallow classifier,
whose function loss can be written as

loss =

C∑
i=1

lossi =

C∑
i=1

(
(1−α) ·CrossEntropy(qi, y) +α ·KL(qi, qC) +λ · ||Fi−FC ||22

)
(1)

where C denotes the number of classifiers. qi and qC represent the outputs of softmax in the ith
classifier and the deepest classifier respectively. y represents corresponding labels. Fi and FC signify
the feature maps in the ith classifier and the deepest classifier respectively. CrossEntropy, KL
denote the well-known cross entropy loss and Kullback–Leibler divergence respectively. Experiments
results show that significant performance gain can be observed on not only shallow classifier but
also the deepest classifiers. Motivated by its impressive achievement, self distillation is utilized to
construct and train the shallow classifiers in SCAN.

3.2 Attention modules

Figure 2 provides accuracy comparison of four methods training shallow classifiers in ResNet50
on CIFAR100. The X axis is the depth of classifiers, where x=5 indicates the ensemble of all the
classifiers [19], and Y axis denotes accuracy. It’s observed that evident accuracy decay can be
observed as the depth of classifiers decreases. For example, 13% and 8% drop on accuracy exists
on the shallowest and second shallowest classifier in self distillation. Moreover, as depicted in
Figure 2, the 3th classifier of self distillation and DSN [21] is lower than individual training, which
may be caused by the negative interaction among classifiers in one backbone neural network [13].
Features desired by different classifiers are mixed up in the sharing backbone neural network. It’s
unattainable for each classifier to detach its own features automatically. To address this problem

Algorithm 1 Scalable Inference
Input: Samples X , Thresholds Σ = {σi}N , Classifiers C = {ci}N , Multi-classifiers model M
Output: Predicted labels Y
1: Y := None
2: for i from 1 to N do
3: logit = M .getSoftmaxOutputs(X , i)
4: if max(logits) > σi then
5: Y := argmax(logits)
6: Break
7: if Y = None then
8: Y := M .getEnsemblePrediction()
9: return Prediction
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and further enhance the performance of shallow classifiers, attention modules are utilized to obtain
classifier-specific features from the sharing backbone neural network. Inspired by RAN [28], we
propose a simplified attention modules including one convolution layer for downsampling and one
deconvolution layer for upsampling. A sigmoid activation is attached after attention modules to obtain
attention maps between 0 and 1. Then, the attention maps are involved in a dot product operation
with origin features, yielding classifier-specific features. Its forward computation can be formulated
as

Attention Maps(Wconv,Wdeconv, F ) = σ(φ(ψ(F,Wconv)),Wdeconv) (2)
where ψ and φ denote convolution function and deconvolution function respectively. F represents the
input features and σ signifies a sigmoid function. Notes that batch normalization and ReLU activation
function after convolution and deconvolution layers are omitted here.

Experiments results demonstrate that attention modules in SCAN lead to dramatic accuracy boost in
shallow classifiers. For instance, 5.46%, 4.13% ,and 5.16% accuracy gain can be observed on the
shallow classifiers in ResNet50 on CIFAR100, compared with self distillation [38].

3.3 Scalable inference mechanism

It is generally acknowledged that the prediction of neural networks with a higher confidence (softmax
value) is more likely to be right. In this paper, we exploit this observation to determine whether a
classifier gives a right or wrong prediction. As described in Algorithm 1, we set different thresholds
for shallow classifiers. If the maximal output of softmax in shallow classifier is larger than the
corresponding threshold, its results will be adopted as the final prediction. Otherwise, the neural
networks will employ a deeper classifier to predict, until the deepest one or the ensemble prediction.
Because most of the computation for shallow classifiers is included by that for deep classifiers, there
is no much extra computation introduced.

However, threshold controlled scalable inference causes another problem, that is the choice of
thresholds for difference classifiers. Thresholds matters: (i) A lower threshold for shallow classifiers
results in that most samples will be predicted by shallow classifiers, indicating more rapid response
yet lower accuracy. (ii) Similarly, a higher threshold leads to a phenomenon that most samples will
be determined by deeper classifiers, indicating precise prediction yet longer response time. (iii) By
adjusting the value of thresholds, flexible accuracy-response time trade-offs can be approached on
the fly. Instead of designing thresholds manually, we propose a genetic algorithm based method to
search the most optimal thresholds as is depicted in Algorithm 1.

Genes Coding: Genes, a binary sequence is ought to be decoded into its corresponding threshold.
To guarantee the accuracy of the model, we empirically restrict the lower bound for thresholds as
0.70. Its decode function can be formulated as

σi = 1− 0.3

N
·

N∑
n=1

S(n) = 1 (3)

Here S(n) indicates the nth bit in the sequence of genes. σ denotes the threshold of ith gene. N is
the length of binary sequence utilized to express one threshold. The more bits "1" there are in this
sequence, the lower the threshold is.

Fitness: Another crucial issue is to choose the metrics for computing the fitness for thresholds.
Targeting at accelerating the models and improving the performance at the same time, these two
elements are taken into consideration for the fitness metrics, which can be formulated as

fitness = acceleration ratio+ β · (accuracy − baseline) (4)

where β is a hyper-parameter to balance the impact of these two elements. Adjustment of β leads to
trade-offs between accuracy and acceleration.

4 Experiments

We evaluate SCAN on two benchmark datasets: CIFAR100 [18] and ImageNet (ILSVRC2012) [5]
and three kinds of neural networks with difference depth and width: VGG [26], ResNet [10] and
Wide ResNet [35]. During training periods, common techniques like data argumentation (random
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Algorithm 2 Threshold Searching
Input: Genes G, Multi-classifiers model M , Dataset D , Generations g
Output: Optimal Thresholds Σ = {σi}N
1: RandomlyInitialize(G)
2: for i from 1 to g do
3: fitness = getFitness(G, D, M ) // Calculate fitness of each gene according to Equation 4.
4: G := weightedSelect(G, fitness) // Drop the genes with low fitness.
5: G := crossover(G) // Each two genes cross over, generating new genes.
6: G := mutate(G) // Each bit of genes may mutate with a low possibility.
7: Σ := decode(G) // Decode the genes into thresholds according to Equation 3.
8: return Σ

Figure 3: Accuracy and computation of
each classifier on CIFAR100.

Figure 4: Accuracy and storage of each clas-
sifier on CIFAR100.

cropping and horizon flipping), learning rate decay, l2 regularization are equipped. To fit the size of
tiny images in CIFAR, we slightly adjust the kernel size and strides of convolution and pooling layers.
The recommended value for hyper-parameters λ and α in Equation 1, and N in Equation 3 are 0.5,
5e-7 and 30, respectively. Note that the reported ImageNet (ILSVRC2012) accuracy is evaluated on
validation set. All the experiments are conducted by PyTorch1.0 on GPU devices.

4.1 Results on CIFAR100

Experiments results on CIFAR100 are depicted in Figure 3 and 4. The squares connected in the
same line from left to right denote the classifier1/4 to classifier4/4 and their ensemble. All of them
share the same backbone neural network. The triangle with the same color out of lines denotes the
corresponding baseline.

It is observed that (i) In all the situations, the classifier2/4 equipped with SCAN outperforms its
baseline. (ii) 2.17X acceleration and 3.20X compression have been achieved on average with no
accuracy drop. (iii) Compared with the corresponding baseline, 4.05% accuracy increment can be
obtained with 4.4% relative computation increment on average. (iv) The ensemble of all classifiers in
one neural network leads to 1.11% performance gain with almost no incremental computation and
storage. (v) Shallow classifiers benefit more from SCAN than deeper classifiers. (vi) Deeper or wider
neural networks benefit more from SCAN than shallower or thinner neural networks.

4.2 Results on ImageNet

As shown in Table 4.1, the same tendency of accuracy increment on all the classifiers can also be
observed: (i) On average, 1.26% accuracy gain on ImageNet can be achieved, varying from 1.41% on
ResNet50 as maximum to 1.08% on ResNet101 as minimum. (ii) The depth of classifiers impacts
their accuracy more significantly, which indicates there is less redundancy in ImageNet compared
with CIFAR100.
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Table 1: Experiments results of accuracy (%) on CIFAR100.
Models Baseline Classifier1/4 Classifier2/4 Classifier3/4 Classifier4/4 Ensemble

VGG16(BN) 72.46 71.29 74.92 75.18 75.29 76.80
VGG19(BN) 72.25 71.52 74.02 74.15 74.43 75.43

ResNet18 77.09 71.84 77.74 78.62 79.13 80.46
ResNet50 77.68 73.69 78.34 80.39 80.45 81.78

ResNet101 77.98 72.26 79.26 80.95 81.12 82.06
ResNet152 79.21 73.14 80.40 81.73 81.62 82.94
WRN20-8 74.61 74.52 78.17 79.25 / 80.04
WRN44-8 76.22 76.02 78.74 79.67 / 80.35

Table 2: Experiments results of accuracy (%) on ImageNet.
Models Baseline Classifier1/4 Classifier2/4 Classifier3/4 Classifier4/4

ResNet18 68.02 48.25 58.00 65.32 69.32
ResNet50 74.47 53.86 66.54 73.57 75.88
ResNet101 75.24 52.32 65.33 74.51 76.32

4.3 Results of scalable inference

Experiments results for scalable inference are depicted in Figure 5. The X axis is the acceleration
ratio compared to its baseline. The Y axis is the top 1 accuracy evaluated on CIFAR100 and ImageNet.
The squares connected in the same line denotes the results of different thresholds for the same neural
network. The triangles on x=1 denote the baselines of different models.

It is observed that:(i) Compared with deploying one of the shallow classifier individually, scalable
inference leads to a higher acceleration ratio. (ii) Compared with baselines on CIFAR100, 4.41X
acceleration can be achieved with no drop on accuracy on average, varying from 2.41X on ResNet18
as minimum to 6.23X on ResNet152 as maximum. (iii) Compared with baselines on ImageNet, 1.99X
acceleration can be achieved with no accuracy drop on average, varying from 1.54X on ResNet50 as
minimum to 2.43X on ResNet101 as maximum. (iv) More accuracy gain can be observed on deeper
neural networks which is in accordance with the general observation that over-parameterized models
have more potential to be compressed and accelerated.

5 Discussion

What have attention modules learned? In SCAN, attention modules are introduced to obtain
classifier-specific features, leading to significant performance gain on shallow classifiers. We further
visualize the spatial attention maps as depicted in Figure 7. The heat maps indicate learned attention
maps, where the value of each pixel is computed as the mean value of pixels in the same position of
all channels.

Figure 5: Acceleration ratio and accuracy
of different thresholds.

Figure 6: Statistics of samples predicted in
each classifier on three kinds of datasets.
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Figure 7: Visualization of attention maps in shallow classifiers.

As is depicted in Figure 7, all the classifiers pay their attention on the same spatial position - the
bodies of a shark and a cat, while ignoring the backgrounds, which indicates that all of the attention
modules have learned to find the most informative pixels. The attention maps in classifiers 1/4 seems to
concentrate on the details of shark’s and cat’s features such as their outlines. In contrast, the attention
maps in deeper classifiers 3/4 focus more on the texture features, which indicates deep classifiers that
have a larger receptive filed are more likely to predict based on global and low frequency information
while shallow classifiers incline to be dominated by local and high frequency information.

How many samples are predicted by shallow classifiers? The determinants of the acceleration
ratio in SCAN is the number of samples predicted by shallow classifiers, which varies from thresholds,
datasets and neural networks. Figure 6 shows the statistics of samples predicted by each classifier of
ResNet18 on CIFAR10, CIFAR100 and ImageNet with the same thresholds. It’s observed that:(i)
More than half samples in CIFAR10 and CIFAR100 can be classified in the shallowest classifier,
which consumes the least computation compared with others. (ii) In ImageNet, more samples have to
be predicted in the last two classifiers, which indicates the classification of ImageNet data is beyond
the capacity of shallow classifiers. Based on these observation, two possible usage are proposed as
follows:

Firstly, the number of samples predicted in different classifier can be utilized as a guidance of models
compression. For example, the classifier4/4 in Figure 6 provides extremely little valid prediction in
CIFAR10 and CIFAR100, indicating there is much more redundancy and compression potential.

Secondly, it also can be utilized as a metric if datasets difficulty. It’s not rigorous to measure the
difficulty of datasets by prediction accuracy because different datasets consist of different numbers of
categories. SCAN provides a possible solution - the ratio of samples predicted by shallow classifiers.

Future works: Although SCAN has achieved significant acceleration and boost on accuracy, we
still believe it has more potential. Firstly, more creditable judgement of whether the prediction of
shallow classifiers should be adopted remains to be explored. This issue can be formulated as a binary
classification problem which may be addressed by machine learning algorithms.

Secondly, continued optimization on the structure of shallow classifiers is necessary. The success of
attention modules in SCAN proves that tiny adjustment on shallow classifiers can lead to dramatic
accuracy boost, indicating that more compact and efficient shallow classifiers can be achieved by a
well designed structure.
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6 Conclusion

We have proposed a novel neural networks training and inference framework named SCAN, whose
benefits can be seen in three folds: Firstly, self distillation and attention modules are utilized to train
compact and efficient shallow classifiers to achieve static acceleration and compression. Secondly,
SCAN exploits the diversity in prediction difficulty to accomplish human-like sample-specific
conditional execution, yielding scalability and a high acceleration ratio. Thirdly, compared with self
distillation and its corresponding baseline, more significant accuracy gain can be achieved on the
ensemble of all classifiers with a negligible growth on computation and storage.
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