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Abstract In his monograph Arthur (The endoscopic classification of representations:
orthogonal and symplectic groups, Colloquium Publications, American Mathematical
Society, Providence, 2013) characterizes the L-packets of quasisplit symplectic groups
and orthogonal groups. By extending his work, we characterize the L-packets for the
corresponding similitude groups with desired properties. In particular, we show these
packets satisfy the conjectural endoscopic character identities.
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1 Introduction

Let F be a local field of characteristic zero and Wr be the Weil group, then the local
Langlands group is defined as follows

Lo— Wr if F is archimedean,
F= Wg x SL(2,C) if F is nonarchimedean.

Let G be a quasisplit connected reductive group over F and 5 be its complex dual
group, the Langlands dual group LG is a semidirect product G x W, where the
action of Wy on G factors through the absolute Galois group I'r = Gal(F/F). A
local Langlands parameter ¢ is a G- -conjugacy class of admissible homomorphisms
from Ly to G (see [8]). In particular, it respects the projections on W from both
Lr and “G. We denote a representative of ¢ by ¢: L — LG. Let ®(G) be the
set of local Langlands parameters and I1(G (F)) be the set of isomorphism classes
of irreducible admissible representations of G(F). The local Langlands conjecture
asserts a correspondence between ®(G) and IT(G(F)). The correspondence is not
necessarily a bijection. In fact, it is conjectured that each ¢ € ®(G) is associated with
a finite set I1y of IT(G(F)), such that they give a partition of TT(G (F))

NGF) = | | M.

pe®(G)

Such sets Iy are called L-packets. The local Langands conjecture has been proved
for GL(N) by Harris-Taylor [16], Henniart [14] and Scholze [36], in which case one
does get a bijection. Arthur [7] extended their results to Sp(N) and SO (N) through
the theory of twisted endoscopy, and in his case the packets are not always singletons.
By the Langlands classification of irreducible admissible representations of G(F),
one can reduce this correspondence to the tempered case, namely one can replace
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L-packets of quasisplit GSp(2n) and G O (2n) 73

IT(G(F)) by the subset 1/, (G(F)) of tempered representations, and ®(G) by the
subset ®pz4(G) of bounded parameters (i.e., the closure of the image of ¢|w, is
compact). The tempered L-packets can be characterized by “stability”. To explain this
concept, we need to introduce the Harish-Chandra characters. For any 7 € I1(G(F)),
the associated Harish-Chandra character is a distribution on G (F') defined by

fo(m) == trace / f(g)m(g)dg
G(F)

for f € C°(G(F)). Harish-Chandra showed this distribution can be represented
by a G (F)-conjugate invariant locally integrable function ®, over G (F). Moreover,
©®y is smooth over the strongly regular semisimple elements G, (F'). Later on, we
will simply call them characters. We say a finite linear combination ® of Harish-
Chandra characters is stable if it is G(F )-conjugate invariant over G,¢g (F'), namely
O(y) = O(y') for any y,y" € Gyeg(F) such that y = g ly'g for some g €
G (F). Then the tempered L-packets are conjectured to be the minimal subsets of
irreducible tempered representations, within which some linear combination of the
Harish-Chandra charactqzs is stable (cf. Conjecture 9.2, [38]).

Let D be a torus and G be a quasisplit connected reductive group over F, which is
an extension of D by G

1 G G—=D 1
Dual to this exact sequence, we have
1 D GG 1.

The projection p: 8 — G can be extended to an L-homomorphism, so it induces
a map d>bdd(G) — ®pqa(G). Labesse ([19], Theorem 8.1) showed this map is in
fact surjective. For ¢ € Qded(G) and ¢ = p o @, it is believed that the restriction
Mjlc = Mg. Motivated by this, we want to construct the L-packets of G from that of

G, when G = Sp(2n) (resp. SO (2n)) and G = GSp(2n) (resp. GSO(2n)). In fact,
one can also consider the case when G = SO(2n + 1) and G = GO(2n + 1). Note
GO2n + 1) is connected. Since GO2n +1) = S0(2n + 1) x G,,, this case would
be trivial. To give the precise statement of our result, we need to first recall Arthur’s
results about G. We fix an outer automorphism 6y of G, such that it is trivial when

= Sp(2n), and itis induced from the conjugate action of O (2n) when G = § 0(2n)
Let 20 = (6y), then X acts on IT(G(F)). Note 6y 1nduces a dual automorphism 90
on G so X also acts on d>(G) through the action of 90 on G. We denote the set of
Xo-orbits in [iemp (G(F)) by H,me(G(F)) and the set of Xo-orbits in ®pgq(G) by
®p44(G). The act10n of X can be extended to G so we can also define the analogues
of these sets for G.
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74 B. Xu

Theorem 1.1 (Arthur)

1. The_re is a canonical way to associate any ¢ € Dpaa(G) with a finite subset l:I¢,
of Utemp(G(F)) such that

Miemp(G(F)) = || Ty
$€Ppaa(G)

2. For¢ € &)bdd(G),

Y (Ox+6,4)

[r1elly

is stable.

When G = SO (2n), we let Hgo be the set of all irreducible representations of
O (2n), whose restriction to SO (2n) have irreducible constituents contained in ITg,
and we call Hgo an L-packet of O(2n). In this sense, the sets I:I¢ really determine
the L-packets of Sp(2n) and O(2n). But for simplicity, we will still call the sets Iy
L-packets of G in this paper.

Suppose ¢> € <I>bdd(G) and ¢> po ¢ Since 1'I¢, admits a stable linear comb1nat1on
of Harish-Chandra characters, G (F)actson H¢, by conjugation. We fix a character ; of
the centre Zg (F') of G(F) such that its restriction to Zg (F) = Zg(F) N G(F) is the
central character of 1'[¢. Let 1'[ 0.7 = be the subset of representations of L om » (5(F )) with
central character ¢, whose restriction to G (F') have irreducible constjtuents contained
in [y. Let X = Hom(G(F)/Zz(F)G(F), C*). Note X acts on ﬁ¢,2 by twisting.
In Corollary 4.2 we show there exists a subgroup «(S f %) of X such that for any
[7] € lEI¢’E, 7 ®w = 7Y for some § € X if and only if w € a(S¢Z°). Now we can
state our main result.

Theorem 1.2 Suppose ¢ € paq(G), there exists a subset 1:143 of 1214,’2 unique up to
twisting by X, such that it satisfies the following properties:

1.
Myr= || Moo
weX/a(S,0)
2.
- 1
0; = 3 (®z + Oz40)
[7]ell

is stable.
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L-packets of quasisplit GSp(2n) and G O (2n) 75

In this paper, we call the sets IT 3 in this theorem L-packets of G, although they
really determine the L-packets of GSp(2n) and G O (2n) for the same reason as we
have discussed above. When F is archimedean, this theorem is known due to Langlands
[20] and Shelstad [39]. In fact this case could also follow from Theorem 1.1 directly.
So in this paper, we will focus on the case when F' is nonarchimedean. Note if 1:I¢ is
a singleton, then IT F is also a singleton by part (1) of the theorem, but it is still by no

means clear that part (2) will hold for such IT Fe Our proof of this theorem is by global
means, and it is certainly interesting to know if one can establish it by purely local
methods.

The main idea of the proof is to realize the L-packet as the local component of
some global L-packet. To describe the global picture, we let F' be a number field and
A be the adele ring of F. We define the automorphic representations of G to be the
irreducible constituents of the regular representation of G (A ) on L2(G(F) \G(AF)).
If 7 is an irreducible admissible representation of G (A ), it can be decomposed as a
restricted tensor product

/
T =®,Ty

of irreducible admissible representations 7, of G(F;) over all the places v. These
local representations i, are unramified for almost all places, which is the necessary
condition to form the restricted tensor product. We assume the global Langlands group
L F exists and it is equipped with embeddings L, — L for all places v. Then we
can define the global Langlands parameters as in the local case. We denote the set of
¥-orbits of bounded global Langlands parameters by ®(G), for this is the set relevant
in the classification of automorphic representations of G. For any ¢ € ®(G), we can
associate a family of local Langlands parameter ¢, € Dp14(Gy) for all places by the
following diagram

Ly, — LG,

Ly — LG

So one can define the global L-packet to be the restricted tensor product of the local
L-packets

1:I¢ = ®; 1:[¢,U.
Theorem 1.3 (Arthur) There exist automorphic representations in l:I¢.

For any irreducible admissible representation = of G(AF), one can associate a
family of Satake parameters c(r) = {c ()} for all unramified places of . If we define
an equivalence relation on the families of Satake parameters attached to irreducible
admissible representations of G(Ap) by requiring c(w) ~ c(z’) if c(my) is Zo-
conjugate to ¢(rr]) for almost all places, then another way of characterizing l:[¢ is
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76 B. Xu

through the equivalence class c¢(¢) of family of Satake parameters associated with the
representatlons in 1'[¢ If we take the standard embedding £ : LG — GL(N, C), where

= 2n + 1 (resp. 2n) if G = Sp(2n) (resp. G = SO(2n)), then £(c(¢)) defines a
family of Satake parameters for irreducible admissible representations of GL(N, AFr).
By the conjectural Langlands principle of functoriality and strong multiplicity one for
automorphic representations of GL(N), &(c(¢)) determines a unique automorphic
representation of GL(N). In practice, Arthur gets around the assumption on global
Langlands group by reversing our discussion here. To be more precise, he substituted
for ®(G) by the subset of self-dual automorphic representations of G L(N), which are
induced from cuspidal automorphic representations of the Levi subgroups of GL(N).
Then ¢, will correspond to the representations of GL(N, Fy). Since we do not have
the generalized Ramanujan conjecture, now we can only conclude ¢, € mm(G) )
®p44(G) (see Proposition 3.10). Nonetheless, the local packet 1:[¢ can still be defined
in this case. In this way, Theorem 1.3 should really be viewed as a statement about
Langlands principle of functoriality with respect to the embedding &. To summarize,
the global L-packet 1:I¢ can be uniquely characterized by either an equivalence class
of family of Satake parameters c(¢) or an automorphic representation of GL(N)
associated with £(c(¢)). We call this the strong multiplicity one property for the
global L-packets of G.

The main tool in our proof is the stabilized twisted Arthur-Selberg trace formula.
The ordinary stable trace formula has been established by Arthur in [4-6]. The twisted
case results from a long project of Mceglin and Waldspurger [32] which has been
finished recently. All of these also rest upon Ngo’s celebrated proof [34] of the Funda-
mental Lemma. To give some ideas of the proof of our theorem, we would like to briefly
describe two typical kinds of trace formulas used in this paper. Let E be a character
of Z&(F)\Zg(AF). The space of E-equivariant L2-functions over a(F)\a(AF) can
be decomposed into a discrete part and a continuous part:

LYG(F)\G(AR), 7)) = L%, (G, D) ® L2, (G, 7).

If we take a §_ -equivariant smooth compactly _supported function f = ®, f, over
G(A) then we can define an operator on L d”C(G g“) by

(Rcho) = [ oty ¢ e L G.D.
Z5(Ap\G(AF)

Miiller [31] showed this operator RG ( f ) is of trace class, so we can write

disc

RS () = Y m(@) fz ).

where the sum is over all irreducibls admissible representations of 5(A r) and m(7T)
is the multiplicity of 7 in Lfli (G, £). We define the discrete part of the trace formula
to be the following distribution
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L-packets of quasisplit GSp(2n) and G O (2n) 77

Igsc(f) = tng’;sc(f) + “ symmetric part in Lfon,(c?, E)”,

where the symmetry on the continuous spectrum is given by the action of the regular
elements of the relative Weyl groups (see Sect. 5.1). The stable trace formula gives a
stabilization of this distribution Iﬁsc( f ), and it relates the “error terms” to the stable
distributions on some smaller groups, i.e, elliptic endoscopic groups of G. We state it
in the following theorem.

Theorem 1.4 (Arthur) By induction, one can define a stable distribution

SGo()) = 1G,.()) = S u@G. GG (7O, (L)

G’

where the sum is over elliptic endoscopic groups G * G of G, L(é, G ) are some
constants (see (5.3)), and f — f G is the Langlands—Shelstad—Kottwitz transfer.

The relation between Sgsc( f) and L-packets can be described in the following
conjecture.

Conjecture 1.5 (Stable multiplicity formula)

Sgsc(f): Z alﬁsg(f),

Vev(G)
and

SAGES | FACH

where fy(V,) is a linear combination of Harish-Chandra characters in some finite
subset Hxﬂv of TI(G(Fy)), which defines a stable distribution on G(Fy). Moreover,
there is an explicit formula for the constants aj.

In this conjecture, \11(5) is the set of so-called global Arthur parameters of G,
which generalizes the set ®(G) of bounded global Langlands parameters. The global

packet I[1; = ®; HJID associated with the stable distribution Sg ( f ) is called a global

Arthur packet. One can view the global L-packets as a special case of global Arthur
packets, and the local L-packets that we are looking for will be the local components

of some global L-packets, which contribute to Sgsc (f). Before we can talk about how

to isolate a global L-packet from S‘g se( f). we want to introduce the twisted version
of (1.1) first. ~ ~

Let w be a character of G(Ar)/G(F)G(AF) and 6 € 3¢, we define the discrete
part of the (6, w)-twisted trace formula to be

1809 (f) = 1r(R©®) " 0 R(@) 0 RG,.(F))

disc

+“(6, w) — twisted symmetric part in L?om (G.7)",
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78 B. Xu

where R () isinduced by action on G(A r)byéo, and R (w) isinduced by multiplication

on th P c(G e ) by w. Then the stabilization of / tg
theorem.

w)( f) is given by the following

Lsc
Theorem 1.6 (Moeglin and Waldspurger)

1819y = 3 4@, GG, (79, (1.2)

G
where the sum is over (6, w)-twisted elliptic endoscopic groups G’ of G.

One application of (1.2) is it gives a multiplicity formula for the automor-
phic representatlons of G. Let X = Hom(G(Ap)/ZG(AF)G(AF) C* and Y =
Hom(G(AF)/G(F)ZG (Ap)G(AF), C*).If 77 is an irreducible admissible represen-
tation of G(AF), we write Y (7) = {w € Y : 7 = 7 ® w}, which is finite.

Proposition 1.7 1. Suppose 7 is a discrete automorphic representation of G, and 7t
is an irreducible constituent of 7t restricted to G(Ar). If [] € Ty for ¢ € ®(G),
then

m() = mglY () /a(Sp)l, (1.3)

where a(Sy) (see (2.15)) is a subgroup of Y (77), mg = 1 or 2. Moreover, mg = 2
only when G is special even orthogonal, ¢ ¢ ®(G%) (see Sect. 3.1), and 7 @ w =
7% for some w € Y.

2. Suppose 7t and ' are discrete automorphic representations of G, and there exists
w € X such that T, is Lo-conjugate to T, @ w, Jorall places. If 7 is an irreducible
constituent of 7t restricted to G (Ar) and [71] € I'I(p for¢ € ®(G), then there exists
some ' €Y and 0 € o suchthat#' = #% @ o'

Back to the proof of Theorem 1.2, a key step is to isolate the global L-packets from
the stable distribution Sfm,( f) for f = ®, f, such that f, is Tg-invariant. By the
theory of multipliers, one can isolate the parts associated with different equivalence
classes of families of Satake parameters. For ¢ € ®(G), the equivalence class c¢(¢)
determines the packet Iy of G uniquely from our previous discussion. But this may
not be the case for G. In view of part (2) of Proposition 1.7, this means if the global
L-packet H exists for ¢ € CID(G) there might exist w € Y such that H #= H R w,
whereas IT b = H , ®w, for almost all places. For our proof, we only need somethlng
weaker, that is we w1ll fix anonarchimeadan place u, and we require if l'I b = 1'[ b Rwy
for all places v # u, then IT; = IT; ® w. Such global parameters can be constructed
using the result of Shin [41] on automorphic plancherel density. At last, we prove the
following global result, which is parallel with Theorem 1.3.

Theorem 1.8 For ¢ € ®(G) satisfying Sq; = 1 (see Sect. 2.2), there exists a global
L-packet

o
Mg = ®,Ig,
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L-packets of quasisplit GSp(2n) and G O (2n) 79

of G unique up to twisting by Y, such that if & is an automorphic representation of G
whose irreducible constituents in the restriction to G(Ar) are contained in Ty, then
[7T] is contained in l_Iq; ® w for some w € Y.

The local and global results of this paper will be proved together by a complicated
induction argument. For the purpose of giving a clear proof of the local results, we have
minimized the global assumptions needed in our induction arguments by imposing
very restrictive conditions on the global results (like in Theorem 1.8). In a sequel to
this paper, we will prove the global results of this paper in a more general setting.

A full description of the discrete spectrum of G will also require the Arthur pack-
ets. Unfortunately, the technique in this paper will not be sufficient for that. This is
somehow reflected by the fact that the Arthur packets of G can have more compli-
cated structure than its L-packets. To be able to construct the Arthur packets of G in
the nonarchimedean case, one will need to extend the works of Maeglin [24,25] on
explicit construction of the Arthur packets of G. The global case could be even more
challenging, because that would require certain description of the residue spectrum
for both G and G. So we would like to keep that as a project for the future.

This paper is organized as follows. In Sect. 2, we discuss various group theoretic
properties about G and G. We introduce their Levi subgroups and twisted endoscopic
groups. We also discuss the relation between ®(G) and @(é) both in the local and
global cases. We recall some known results about restricting the local representations
of G to G, in particular we have restriction multiplicity one in this case. In Sect. 3,
we review Arthur’s endoscopic classification theory for G in the tempered case. In the
local theory, we describe the 6-twisted endoscopic character identities (or character
relations) for G and 6 € Xy. In the global theory, we give Arthur’s multiplicity formula
for automorphic representations of G. In Sect. 4, we state our main local theorem
(Theorem 4.6). In this theorem, we formulate the (6, w)-twisted endoscopic character
identities for G and w € X, which are natural extensions of the -twisted endoscopic
character identities for G. Similarly we also formulate the natural extensions of the
twisted local intertwining relations from G to G. In Sect. 5, we introduce various
stable trace formulas used in this paper. We prove Proposition 1.7 as an application of
the twisted stable trace formula. We also state some global conjectures, whose special
versions have to be proved together with our main local theorem. In particular, we give
the precise statement of Conjecture 1.5 in the tempered case. In the end of this section,
we make a comparison of both sides of the twisted stable trace formulas for G, which
is analogous to what Arthur did for G. In the final section, we give the proofs of our
main local theorem together with all the global theorems by an induction argument.
In particular, we address the issue of lack of strong multiplicity one as we mentioned
above.

Some standard notations If G is a reductive group over a field F, let G° be the identity
component, G4, be the derived group of G, Gy, be the simply connected cover
of Gger, and G4 be the adjoint group of G4.-. We denote the centre of G by Zg or
Z(G), the split connected component of Zg by Ag. If G is connected, let X*(G) be the
group of algebraic characters of G over F and ag = Homyz(X*(G), R).If F is alocal
field, there is a homomorphism Hg : G(F) — ag defined by 168 X) = |y ()|
for g € G(F) and x € X*(G). If G is abelian and 0 is an automorphism of G, let
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80 B. Xu

GY be the f-invariant subgroup of G, and Gy be the 6-coinvariant group of G, i.e.,
Gy = G/(0 — 1)G. If A is alocally compact abelian group, we denote its Pontryagin
dual by A*.

2 Preliminary
2.1 Groups
2.1.1 Similitude groups

Let F be a local or global field of characteristic zero and F be its algebraic closure.
When F is global, let us denote the adele ring over F by A, and the ideéle group by
Ir. The absolute Galois group over F is written as I'r or I" for abbreviation. Let G
be a quasisplit connected reductive group over F and D be a torus. We denote by G
an extension of D by G

A

1 G G D 1. 2.1

Let us denote the centres of G and G by Z and Z respectively. Sometimes we need to
distinguish A for different groups, so we will also write Ag = A. The primary example
that we are going to consider in this paper is when G is a special even orthogonal
group or a symplectic group, and G is the corresponding similitude group, in which
case A is called the similitude character.

A split general symplectic group (or symplectic similitude group) is defined as
follows

GSp(2n) = {g €GL(2n):g (2 _OJ"> ‘g =1(2) Gn _OJ")} ,

1
1
where J, = . and A(g) is a scalar. It is connected as an algebraic group.

1
A split general even orthogonal group (or orthogonal similitude group) is defined by

GO@2n) = {g eGLOn) : g (}’ {)> g = A(g) <}’ g)} .

Since (det g)> = A(g)", it has two connected components depending on whether
det g/A(g)" being 1 or —1. Let us denote the identity component by GS O (2n), and we
call it the connected general even orthogonal group. Because SO (2n) (resp.G S O (2n))
has an outer automorphism from the conjugate action by O (2n) (resp.G O (2n)), let us
denote an outer twist of SO (2n) (resp.G SO (2n)) with respect to this outer automor-
phism and an arbitrary quadratic extension E/F by SO(2n, ) (resp.GSO(2n, 1)),
where 7 is the quadratic (idele class) character associated to £/ F by the local (global)
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L-packets of quasisplit GSp(2n) and G O (2n) 81

class field theory. We would like to allow E = F and n = 1, in which case this is the
split group. If G = SO(2n, n), we define ng = n. If G = Sp(2n), we define ng = 1.
These groups that we have defined above give all the quasisplit general symplectic
groups and quasisplit connected general even orthogonal groups.

Another description of quasisplit general symplectic groups and quasisplit con-
nected general even orthogonal groups is given by

GSp(2n) = (Gyy x Sp(2n))/(Z/2Z) and GSO2n,n) = (G x SOQ2n, n))/(Z/27),

where Z /27 is embedded diagonally into the centre of each factor. The similitude
character X is square on G, and trivial on the other factor. More generally we can
define

G(Sp(2ny) x -+ x Sp(2ng) x SOQ2ngy1,m) X -+ x SO2nsie,mp)) (2.2
to be
(GmxSp@2ny) x -+ x Sp2ns) x SO2ngy1, M) X -+ X SORngys, 1))/ (Z)22),

where Z /27 is again embedded diagonally. We can also generalize the similitude
character X to these groups such that it is square on (,, and trivial on all the other
factors. At last let us write GSp(0) = GSO(0) = G, and set A = id in this case.

For any quasisplit connected reductive group G defined over F, we denote by G
its complex dual group, by Z (6) the centre of G, and by LG its L-group, which is
a semidirect product of G with the Weil group Wp, ie., G % Wp. Then dual to the
extension (2.1), we have

p o~

1 D G G 1,

where all the homomorphisms can be extended to L-homomorphisms of L-groups. If
~ ~
G is GSp(2n) or GSO(2n, n), then G is the general Spin group

GSpin2n+1,C) = (C* x Spin(2n + 1, C))/(Z/27Z) or
GSpin(2n, C) = (C* x Spin(2n, C))/(Z/27),

where 7Z/27, is embedded diagonally to the centre of each factor. Here the embedding
needs to be specified. Note that the Spin group is an extension of the special orthogonal
group by Z/27. If we denote the generator of this Z/2Z by z, then in defining the
general Spin group we want Z /27 to be embedded to < z > for the Spin factor. In fact,
Z(Spin(2n 4+ 1,C)) =< z >, and for Z(Spin(2n, C)) there is an exact sequence

1 <z> Z(Spin(2n, C)) — Z(SO(2n, C)) — 1 .

We take a preimage of the generator of Z(SO (2n, C)) = Z/2Zin Z(Spin(2n, C)) and
denote it by w, then it is well-known that w? = lifnisevenand w? = zifnis odd. On
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the other hand, Z(G Spin(2n + 1, C)) = C*, and Z(GSpin(2n, C)) = C* x Z/27.
This is because when n is even u = (1, w) (resp. u = (+/—1, w) when n is odd) splits
the exact sequence

] — C* —— Z(GSpin(2n,C)) —— Z(S0(2n,C)) —— 1.

LG is GSpin(2n +1,C) x Wr or GSpin(2n, C) x Wg where the action of Wr on
GSpin(2n, C) factors through the Galois group I' g/ r of the quadratic extension £/ F
associated with 7, and it acts trivially on C*. It is interesting to see its action on the
centre of GSpin(2n, C). If T is the nontrivial element in 'z, r, then 7 is trivial on the
factor C* and

t(u) = (1) -u, for —1 € C*. (2.3)
If G is type (2.2), then 8 is

(C* x Spin(2n; +1,C) x --- x Spin(2ng + 1,C) x Spin(2ng+1,C) x - -+
x Spin(2ngy,, C))/(Z/2Z)* Y,

where (Z/27)°*" is embedded as the subgroup generated by

k—1 s+t—k

~ ~
for 1 <k < s+ t. For LG, the action of Wy on G factors through the Galois group
Cg/p, where E " is the composite field E| E» - - - E; for the quadratic extensions E; /F
associated with 7;, and it acts on each factor as in the previous case.

Lemma 2.1 The image of A on GSp(2n,F), GSO(2n,F) is F*, and on GSO (2n, n)(F)
is Nmg,rE>, where E | F is the quadratic extension associated to 1.

Proof The cases of GSp(2n) and GSO(2n) are obvious, so we will only consider the
casethat G = GSO(2n,n). If n =1, GSO (2, n) can be embedded into GL(2) and
A is given by the determinant map. Since GSO (2, n)(F) = E*, it is easy to see that
the determinant map becomes the norm map on £, and the image is Nm g, r E*. For
general n, we can take a Borel subgroup B of GSO(2n n) with a maximal torus T
and unipotent radical N. By the Bruhat decomposition,

G(F) = | | B(F)WwB(F),
weW(T(F),G(F))

where w arerepresentatlves of win G(F) Since W(T(F) G(F)) = W(T(F) G(F))
forT = GNT,one cantake w in G (F).Moreover, N = N for N = GNN. Therefore,
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MG (F)) = MB(F)) = M(T(F)). Let us write G = (G, x G)/(Z/2Z), and choose
T (F) such that it consists of (x, g) modulo Z /27, where x € F* and

g = dlag{zlv L] 9Z}’L711 y’ y_17Z;119 .. '52;1} S G(ﬁ)
with z;,y € F*. If (x,g) € T(F), then (x, y) € GSOQ2,n)(F), and A(x, g) =
Aso@,p(x,y) = x2. On the other hand, if (x,y) € GSOQ2,n)(F), theLl by let-
ting z; = x for 1 <i < n— 1, we have (x, g) € T(F). This shows L(T(F)) =
rAso@,n(GSOQ2,n)(F)) = NmgrE>. ]

This lemma can be easily generalized to groups of type (2.2).
Lemma 2.2 Suppose G is of type (2.2), the image of X on G(F) is
F*n NmE|/FE1x n---N NmE,/FE;X,

where E; | F is the quadratic extension associated to n; for 1 <i < t.

Proof Let us denote by G the product

GSp(2ny1) x GSp(2n3) x --- x GSp(2ny)

X GSOQR2ngs41,n1) X -+ X GSO2ngys, Mr)s 2.4
then G is the subgroup of 5 characterized by A1(g1) = -+ = Asys(gs4+) for
(81,---,85+41) € G.In particular, A(g) = A1(gy) for g € G C G. Then the lemma
follows immediately from Lemma 2.1. O

When F is global, we have the following corollary, whose proof is obvious.

Corollary 2.3 Suppose G is of type (2.2), the image of A on (N?(AF) is
IrNNmg, plg, N---0Nmg,plE,,

where E; | F is the quadratic extension associated to n; for 1 <1i < t.

Corollary 2.4 Suppose G is of type (2.2), then M(G(Ap)) N F* = A(G(F)) and
MZE(AR)) N F* = MZg(F)).

Proof For the first equality, by Lemma 2.2 and Corollary 2.3 it suffices to show
Nmg, /rplg; N F* = NmEl./FEiX for all 1 < i < ¢, and this is a consequence
of Hasse norm theorem (see [33], Corollary VI1.4.5). For the second equality, note
MZs(AFR)) = II% and AM(Zz(F)) = F**. So we need to show F* N I% = FXZ, and
this follows from Grunwald—Wang theorem. O
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2.1.2 Levi subgroups

Let~5 , G, D and X be defined as in Sect. 2.1.1. If we restrict A to a Levi subgroup M
of G, then its kernel will be a Levi subgroup M of G, and we have

1l — M M—>4D 1.

It is easy to see that this induces a bijection between Levi subgroups of G and G.
Suppose G is a general symplectic group or a connected general even orthogonal
group of semisimple rank n, then M is isomorphic to

GL(n) x ---x GL(n,) x G_, (2.5)

where G _ is of the same type as G with semisimple rank n_ > Oand n = Yi_ni+
n_. Throughout this paper we fix a Borel subgroup B of G consisting of upper-
triangular matrices and we choose M to be contained in the group

GL(ny) 0

. GL(n,) 5
G_
GL(n,)

0 . GL(n1)

In fact this gives all the standard Levi subgroups if G is GSp(2n) or GSO(2n,n)
(n # 1), and G O (2n)-conjugacy classes of standard Levi subgroups if G is GS O (2n).
We fix an isomorphism from (2.5) to M as follows

(81,88 — diaglgr, ..., g & Mg ' A(@rgr ')

ifn_ > 0, and

(81,88 — diaglgr, ..., g Mg ... A(g)g )

if n_ = 0. Here ,g;, = Jn,.’giJn_'_l for 1 < i < r. Under this isomorphism, the
Weyl group W (M) = Norm(A i G/ M acts on M by permuting the general linear
factors and changing some g; to A(g):g; ! also composit~ions of these). Finally, note
MZGL(m) x -+ x GL(n,y) x G_and W(M) = W(M).
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2.1.3 Twisted endoscopic groups

Let G be a quasisplit connected reductive group over . When F is local, we have an
isomorphism

H'(Wp, Z(G)) —> Hom(G(F), C*). (2.6)
When F is global, we have a homomorphism
H'(Wr, Z(G)) — Hom(G(AF)/G(F), C*), 2.7

where Hom(G (A f)/ G (F), C*) denotes the quasicharacter of G (A ) trivial on G (F).
If we let F, be the localization of F at place v, then there is a commutative diagram

H' (W, Z(@)) — Hom(G(AF)/G(F),C*)

| |

H'(Wp,, Z(G,)) —— Hom(G(F,), C*).
Let
Ker' (Wr, Z(G)) = (") Ker{H'(Wr, Z(G)) — H'(Wr,, Z(G)))},

it is finite and gives the kernel of (2.7). Suppose 5, G, D and A are defined as in
Sect. 2.1.1, then we have the following fact.

-~ ~
Lemma 2.5 Suppose Z(G) is T p-invariant and D is split, then Ker'(Wp, Z(G)) = 1.

Proof 1t is a consequence of Chebotarev’s density theorem (see [33], Corollary
VII.13.10) that

Ker! (Wr, Z(G)) = Ker'(Wg, D) = 1.

Then we consider the exact sequence

l—D—— 70 Z(G) 1,

it induces a commutative diagram

70(Z(G)) —— H'(Wg, D) —— H'(Wp., Z(G)) —— H'(Wr, Z(G))

§ | | |

70(Z(Gy)'v) —— H (W, Dy) — H'(Wr,, Z(G,)) — H'(Wr,, Z(G,)),
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with both the top and bottom rows being exact. Suppose u € Ker! (W, Z (G)) then
by the commutatwlty of the r1ght square and Ker! (W, Z (G)) = 1, u has a preimage
win H' (Wg, D). Since Ker' (W, D) = 1, the Langlands correspondence for tori
allows us to identify H' (W, ﬁ) with Hom(D(Ar)/D(F), C*). Now without loss of
generality, we can assume w # 1. By the commutativity of the left square and the fact
that the left end vertical map is an isomorphism, the localization of w is determined
by the localizations of those in the image of 7o(Z (6)F) in H'(Wp, 5). Finally, we
use Chebotarev’s density theorem again to conclude that w has to lie in the image of
70(Z(G)T), and hence u = 1. m]

Corollary 2.6 Suppose Gis of type (2.2) and A is the generalized similitude character,
then

Ker' (Wp., Z(G)) = Ker' (Wr, Z(©)) = 1.

Proof One just needs to observe that in this case I'r acts trivially on Z (5), and
D = G,,. O

Let 6 be an automorphism of G, and w be a quasicharacter of G(F) if F islocal, ora
quasicharacter of G (A r) trivial on G (F) if F is global. We define a twisted endoscopic
datum for (G, 0, w) tobe atriple (H, s, &), where H is a quasisplit connected reductive
group over F, s is a semisimple element in G % 0, and £ is an L-embedding from © H
to L' G satisfying the following conditions:

1. Int(s) o& = a - &, fora 1-cocycle a of W in Z (6) which is mapped to @ under
(2.6) or (2.7);
2. H= Cent(s, G)0 through &.

Here H is called a twisted endoscopic group of G and for abbreviation we will denote
(H, s, &) by H. In this definition, we have required & to be an L-embedding of » H.
But in general, £ can be an embedding of certain extension group of H by W, which
may not necessarily be isomorphic to ©H. In that case, one has to consider z-pairs
(see [18], 2.2). Since we do not need to deal with this general situation in this paper,
we are content with the current definition.

Two twisted endoscopic data (H, s, £) and (H', s’, &') are called isomorphic if there
exists an element g € G such that géCH)g ' =& (H)and gsg™! € s'Z(G). Here
such g is called an isomorphism. We denote by £(G?, w) the set of isomorphism classes
of twisted endoscopic data for (G, 6, w). When 6 = id and w = 1, we get the ordinary
endoscopic data, and we abbreviate £ (G?, w) to E(G). A twisted endoscopic datum
(H, s, &) is called elliptic if £(Z(H)'F)? € Z(G), and we denote by E.1(G?, w) the
set of isomorphism classes of twisted elliptic endoscopic data for (G, 6, w). When
G = GL(N), we write & (N?) for £,;(GL(N)?). One can see from the definition
that a twisted endoscopic group for G can be viewed as an elliptic endoscopic group
of some 6-stable Levi subgroup M (which also admits a 6-stable parabolic subgroup
P D M) of G. On the other hand, one can obtain all the twisted endoscopic groups of
G by taking the Levi subgroups of the twisted elliptic endoscopic groups of G.

If (H,s, &) is a twisted endoscopic datum for (G, 6, ), we denote the automor-
phism group of this twisted endoscopic datum by Autg(H). By our definition, it is
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a subgroup of G. We define the inner automorphism group Intg (H) of this twisted
endoscopic datum to be HZ(G)"'F, and the outer automorphism group to be

Outg(H) = Autg(H)/Intg (H).

By fixing an F-splitting for H, we get a homomorphism from Outg (H) to the outer
automorphism group Out(H ) of H.Letus denote the image by Out(H, G), and define

={ze€Z(G):0()z ' € Z(G)NH foro € 'p}.

Then there is an exact sequence
1——C/CNHZG)'F —— Outg(H) — Out(H, G) —> 1. (2.8)

When F islocal, there is an action of Outg (H) on H(H ) (or equivalently C2°(H (F))).
For g € Outg(H), let us denote its image in Out(H, G) by 7 and choose a rep-
resentative ¢ in Autg(H) such that Int(g) preserves a I'p-splitting of H Then
be(w) = $TE(l x w)gE(l x w)~! defines a l-cocycle of Wp in Z(H) and
it induces a quasicharacter w, of H(F) by (2.6). So the action of Outg(H) on
‘H(H) sends f(h) to 8 f(h) = f(tg(h))a)g(h)’l. In all the cases that we will be
considering in this paper, one can always split the exact sequence (2.8) and get
Outg(H) = Out(H, G) x (C/C N HZ(G)'F) such that Out(H, G) acts on H(H)
through its action on H (F'). When G is a product of symplectic groups and special even
orthogonal groups, Outg(H) = Out(H, G). When G = GL(N), we write Outy (H)
for OutGL(N) (H).

Suppose G, G, D, A are defined as Sect. 2.1. Let 0 be an automorphism of G,
and we assume A is 6-invariant, then ¢ also induces an automorphism of G. If wg
is a quasicharacter associated with G as in the setup of twisted endoscopic datum,
let us write wg for the restriction of wg to G(F) if F is local or to G(Afr)/G(F) if
F is global. The following lemma describes the relation for twisted endoscopic data
between G and G.

Proposition 2.7 There is a one to one correspondence between E(G?, wg) and

I_l 8(59,605),

wglc=ws

such that if G' corresponds to G', then there exists an exact sequence

Moreover, the same is true for twisted elliptic endoscopic data.
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Proof We say a twisted endoscopic datum (5/ .S, ?) for (5, 6, wg) corresponds to a
twisted endoscopic datum (G, s, &) for (G, 0, wg) if p(s) = s and they satisfy the
following diagram

LG/ § Lé

b,k

LG — LG,
In [49] we have shown this gives a one to one correspondence between isomorphism
classes of twisted endoscopic data when F is local. In fact, our proof also works in the
global case except that we need to use a global lifting result of Labesse for homomor-
phisms from the global Weil group to L-groups (see the paragraph after Theorem 2.9).
Morgover,~it is easy to see E(Z(G/)FF)O - Z(é) if and only ifE(Z(a/)FF)O c 2(6),
so (G', 5, &) is elliptic if and only if (G', s, &) is elliptic. O
Remark 2.8 The most important case for us is when wg = 1. Then Proposition 2.7

shows there is a one to one correspondence between the 9-twisted endoscopic data
£(G?) and the (0, w)-twisted endoscopic data

| €@ w).

Whgre wruns through quasicharacters of CN;(F )/ G(F)if F is local and quasicharacters
of G(AF)/G(F)G(AF) if F is global. The same is true for elliptic endoscopic data.

As our most important examples, let us consider the general symplectic groups and
connected general even orthogonal groups with trivial automorphisms, and we have
the following table (cf. [7], 1.2 and [26], 2.1): let n = ny + n».

G E1(G) G Et(G, w)

Sp(2n) Sp(2ny) x SO(2nyp, 1) GSp(2n) G(Sp(2n1) x SOQ2ny,n)) w=noki
SO(2n) SO@2ny1,n) x SOQ2na, n) GS0O(2n) G(SO0Q2n1,n) x SO2ny,n) w=noA
S0Q2n,n) SOQ2ny.n) x SOQ2ny, nn) GSOQn,n") G(SOQny,n) x SOQny, ny'))w =no

Note in the cases above the isomorphism classes of twisted endoscopic data are
completely determined by the twisted endoscopic groups. But that is not the case in
general. For example, in the case of connected general even orthogonal groups, if we
let 6y be the outer automorphism induced by the conjugate action of the full orthog-
onal group, then the isomorphism classes of fy-twisted elliptic endoscopic data of
SO(2n, n') are classified by fy-twisted elliptic endoscopic groups Sp(2n1) x Sp(2n7)
(n = ny + ny + 1) with a pair of quadratic characters (1, nn’). Correspondingly,
the isomorphism classes of (6, w)-twisted elliptic endoscopic data of GSO(2n, 1)
are classified by (6p, w)-twisted elliptic endoscopic groups G(Sp(2n1) x Sp(2n3))
(n = n1 + ny + 1) with a pair of quadratic characters (1, nn’) and @ = n o A.
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2.2 Langlands parameters

Suppose G is a quasisplit connected reductive group over F, a Langlands parameter
of Gisa 6-c0njugacy class of admissible homomorphisms from the Langlands group
L to the L-group of G (cf. [8]). We denote the set of Langlands parameters of G by
®(G), and for any ¢ € ®(G) we denote a representative by ¢ : L — LG.If F is
local, the Langlands group is defined as follows, B

Lo— Wr if F is archimedean,
F= Wg x SL(2,C) if F is nonarchimedean.

If F is global, the existence of Langlands group is still conjectural. Let G, G, D and
A be defined as in Sect. 2.1.1. The following theorem shows the relation for local
Langlands parameters between G and G.

Theorem 2.9 (Labesse) Suppose F is a local, every Langlands parameter ¢ of G can
be lifted to a Langlands parameter ¢ of G in the sense that the following diagram
commutes

¢ ~
Lp———— G

Iy

Lg.

In fact the global analogue of this theorem is also true if one uses the the global Weil
group Wr instead of the global Langlands group L r. Both the local and global cases
are proved in ([19], Theorem 8.1). In the global case, since we do not have the global
Langlands group yet, this kind of lifting theorem for global Langlands parameters is
unavailable. However let us assume the existence of global Langlands group and also
the same kind of lifting theorem at this moment, so that we can investigate the relation
for both local and global Langlands parameters between G and G in a uniform way.
Moreover, the consequences of this investigation will serve as motivations for the later
definitions (see Sect. 3) that complement the lack of global Langlands group.

To further simplify our discussion, we are going to assume

Ker! (Wr, Z(G)) = Ker' (Wr. Z(G)) = Ker!(Wp. D) = 1 (2.9)

when F is global. This assumption allows us to treat the local and global cases at the
same time, and it also suffices for our purpose in view of Corollary 2.6. Let ¥ be a
finite abelian group of automorphisms of G preserving an F-splitting of G, and we
assume X is X-invariant, so ¥ also acts on G. We denote the dual automorphisms by

P

¥ and form the semidirect products G =G X S and G® := G x S. Let ¥ act

on <I>(5) and ©(G) through the action of SonGand G respectively. For 6 € X, we
denote by ®(G?) the set of ¢ € ®(G) such that ¢¢ = ¢.
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Suppose F is either local or global, for any ¢ € ®(G) we choose a represen-

A%
tative ¢. Let L act on D, G%, and G by conjugation through ¢. We denote
the corresponding group cohomology by H*(L F, ). Note HO(LF, D) = D,

Hj (Lr.D) = H'(Wr, D), and

Sy = Cent(Im¢, G¥) = Hy(Lp,G*),
) ~ ”X 0 AT

S& := Cent(Im ¢, )=Hy(Lr,G ).

The short exact sequence
~ = ~
1 D G G* 1
induces a long exact sequence
I Dr sz ¥ —" H'(Wr. D),
and hence
1%55/? — 87— H'(Wp, D). (2.10)

To describe 8, we can identify

D R P D O A
S¢ =iseG :s?(u)s q_S(u) € D, forallu € Lr¢ /D.
Then 6(s) : u —> sqb(u)s 1(}b(u) I where 5 is a preimage of s in G , and 8(s)
factors through Wx. About (2.10) we have the following lemma.

Lemma 2.10 The image of § consists ofa € H (W, 5) such that

for some 6 € X, and in particular it is finite.
Proof We have shown the lemma when F is local in [49]. In particular the same

argument applies to the global case except for the finiteness of Imé. When F is
global, we need to use the commutative diagram
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1%5{%/13F Sy —— H'(Wp, D)

[ 1, ]

—~ Sy —~
1 —— Sf /Dy’ —— ST —5 H'(W,. D).

Since Sg is mapped into ng and &, is trivial on (Sqi/ﬁrv)o = ng, then § = [, 8y
is trivial on Sg. This implies the image of § is finite. O
Take

| —+D——7(0) 7(6) 1

and it induces
I —— D" —— 2@ —— 2@ — H'(Wp, D) —— H'(Wr, Z(©)).

So Kerd| ;g = Z(G)T /D, Let H' (Wg, D) := H'(Wg, D)/8(Z(G)"). Taking
the quotient of (2.10) by Z(G)F, we get

| §F —— 5} S H\(Wg, D), Q.11

where Sg = SZ/Z(G)F and 52 = SE/Z(G)F Since Im § is finite, we have SQ = S0
After takmg the quotient of (2. 11) by the identity component, we get

8

H' (W, D), (2.12)

where SéE = S‘g / S‘g and S 5 = S‘é / S’;. There are natural maps from Sé:, S’é, and SgE
to ¥, and for§ € %, we denote the preimages of fes by S‘9, 59 and 89 respectively.

By the Langlands correspondence for tori and the assumptlon Ker! (WF, D) =1,
we can identify H!'(Wg, D) with Hom(D(F), C*) if F is local or Hom(D(Af)
/ D(F ), (CX ) if F'is global. Then we can compose with A to get a homomorphism from
H'(WE, D) to Hom(G(F)/G(F) C*) if F is local or Hom(G(AF)/G(F)G(AF)
C*) if F is global. Since 8(Z(G) ) is trivial in H' (W, Z(G)), it induces the trivial
character on G(F ) if F is local or G(A r) if F is global. So we have a homomorphism

r: H' (W, D) - Hom(G(F)/G(F), C*)
if F is local, and

r: H'(Wg, D) — Hom(G(Ap)/G(F)G(Af), C*)
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if F is global. In the local case, r is an isomorphism due to the fact that (2.6) is an
isomorphism. For the global case, we have the following lemma.

Lemma 2.11 If F is global and G is of type (2.2), then r is an isomorphism.

Proof First we consider the following diagram

Hom(G (AF)/G(F), C*) «— Hom(D(Ar)/D(F), CX) (2.13)
H'Wr, ZG) ¢ HYWp. D) — 20(Z(C)D).

By Corollary 2.4, we have ImA* = Hom(G (Af)/G(F)G(Ar), C*), and hence r is
surjective. On the other hand, the kernel of

H'(Wg, Z(G)) —> Hom(G (Ar)/G(F), C%)

is Ker! (W, Z(é)) = 1 by Corollary 2.6. Therefore r is also an inclusion.

(]
Let us denote the composition r o § by «, then we can rewrite (2.12) as
1 SE ‘ S@2 ¢ s Hom(G(F)/G(F),C>) (2.14)
if F is local, and
1 Sg ‘ 3; ¢ s Hom(G(Ap)/G(F)G(Ap),C*)  (2.15)

if F is global. Note in the global case, we only know it is exact when G is of type
(2.2) according to the previous lemma. Sometimes, we want to distinguish the map «
for different groups, so we will also write ¢¢ = «.

Next we want to discuss the relation between lifting Langlands parameters (see
Theorem 2.9) and lifting twisted endoscopic groups (see Proposition 2.7). Suppose
F is local or global and ¢ € ®(G). For any semisimple element s € Sg, let G/ =

Cent(s, 6)0 and it can be equipped with a Galois action given by ¢. This determines
a quasisplit connected reductive group G’, and ¢ will factor through G’ for some 6-
twisted endoscopic datum (G, s, £) of G, and hence we get a parameter ¢’ € ®(G’).In
this way, we call (G', ¢) corresponds to (¢, s), and we denote itby (G, ¢') — (¢, s).

By Proposmon 2.7, (G',s,&) can be lifted to_a (¢, w)-twisted endoscopic
datum (G, s, é) of G for some character @ of G(F)/G(F) if F is local or
G(Ap) / G(F )G(AF) if F is global. Then by Theorem 2.9 and the global assump-
tion that we made after, we can have a lift ¢’ of ¢’ in CD(G ). All of these can be
summarized in the diagram below
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~/ ~

¢ ~ ~
Lp%LG’éLG

N

LGt LG,

Then we have the following lemma.

Lemma 2.12 a(s) = .

Proof It has been shown for the local case in [49], and the proof for the global case is
the same. O

Remark 2.13 From this lemma we see the character w associated with the twisted
endoscopic datum G’ only depends on the image of s in Sg. In the global case, lifting
Langlands parameter is not available due to the lack of the global Langlands group.
However one can always lift twisted endoscopic groups in both local and global cases,
so this lemma is behind the idea of our later definition of the map « [see (2.15)] in the
global case.

2.3 Representations

Let us assume F is a local field, and G, 5, D, A are defined as in Sect. 2.1;1. In this
section, we would like to recall some results about the restriction map IT(G(F)) —
IT(G(F)) from ([49], Section 6.1).

Lemma 2.14 If 7 is an irreducible admissible representation of a(F ), then the
restriction of @ to G(F) is a direct sum of finitely many irreducible admissible repre-
sentations.

Theorem 2.15 (Adler and Prasad [1]) Suppose Gisa quasisplit general symplectic
group or connected general even orthogonal group, and 7 is an irreducible admissible
representation of G (F), then the restriction of @ to G (F) is multiplicity free.

Remark 2.16 This theorem can be easily extended to the groups G of type (2.2). Todo

so, we can first extend a representation of a(F ) to 5(F ) [see (2.4)], and then restrict
itto G(F).

Lemma 2.17 If 7 is an irreducible admissible representation of G(F), then there
exists a unique irreducible admissible representation & of G(F) up to twisting by
Hom(G(F)/G(F),C*), such that it contains 1 in its restriction to G(F).

If 7 is an irreducible admissible representation of G (F'), let us denote
G(r)={g e G(F):n®=nx}.
If 7 is an irreducible admissible representation of 5(F ), let us denote

X(#@) = {we (G(F)/Zg(F)G(F)* : 7 @ w = 7).
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Proposition 2.18 Suppose G is of type (2.2), 7w is an irreducible admissible rep-
resentation of G(F) and m is contained in its restriction to G(F), then for v €
(5(F)/Zg(F)G(F))*, w is in X (1) if and only if w is trivial on 5(71). Moreover, the
restriction of @ contains | X (77)| irreducible admissible representations of G(F).

Lemma 2.19 Suppose 7 is an irreducible admissible unitary representation of é( F),
then 7t is an essentially discrete series representation of G (F) if and only if its restric-
tion to G(F) is an essentially discrete series representation. The same is true of the
tempered representations.

2.4 Langlands-Shelstad-Kottwitz transfer

Let F be a local field of characteristic zero and G be a quasisplit connected reductive
group over F'. Suppose 6 is an automorphism of G preserving an F-splitting and wg
is a quasicharacter of G (F'). We choose a quasicharacter x on a closed subgroup Zr
of Zg(F), and define H(G, x) to be the space x ~!-equivariant smooth compactly
supported functions over G(F) (i.e., equivariant Hecke algebra of G). Let § be a
strongly O-regular 6-semisimple element of G (F) such that wg is trivial on the 6-
twisted centralizer group Gg (F) of §. We choose Haar measures on G (F) and Gg (F),
and they induce a G (F)-invariant measure on G‘g(F )\G(F). Then we can form the
(0, wg)-twisted orbital integral of f € H(G, x) over § as

05 (f.8) := / G (9)f(37'80(2))dg.

Gs(F)\G(F)

We also form the (6, wg)-twisted stable orbital integral over § as

SOG(f.8):= > 0g“(f.8).

0 0
{8/}G(F) ~st {J}G(F)

where the sum is over 0-twisted conjugacy classes {8’}%( Fy in the O-twisted stable
conjugacy class of § (i.e., 8’ = g~180(g) for some g € G(F)), and the Haar mea-
sure on Gg,(F ) is translated from that on Gg(F ) by conjugation. Let 7 (GPea, X)
(SZ(G%6, x)) be the space of (9, wg)-twisted (stable) orbital integrals of H(G, x)
over the set Gfeg (F) of strongly 0-regular #-semisimple elements of G (F'), then by
definition we have projections

H(G, x) — Z(GP6, x) — ST(G?6, x).

Suppose 7 is an irreducible admissible representation of G (F') and y is the central
character of . Let x = xx|z,. Suppose 77 2 7 ® wg, let A7 (0, wg) be the
intertwining operator between 7 ® wg and 7? (this is uniquely determined up to a
scalar), we then define the (0, wg)-twisted character of 7 to be the distribution
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foo(w, wg) 1= trace </ f(g)m(g)dg o Az (O, a)(;)> , (2.16)
ZF\G(F)

for f € H(G, x). By results of Harish-Chandra [11,13] in the non-twisted case,
Bouaziz [9], Clozel [10] and Lemaire [21] in the twisted case, there exists a locally

6
integrable function @,? "®G on G(F) such that for x € Gfeg (F),g e G(F)

0 _ 0
0% 6 (¢71x0(g)) = ws(8)OF 24 (x),

and

fon (. 06) = / F(2)08" 96 (g)dg.

ZF\G(F)

By the twisted Weyl integration formula, one can show this character defines a linear
functional on Z(G?“G | x). A linear functional on Z(G?“6 | x) is called stable if it
factors through SZ(G%“6 | y).

For a (8, wg)-twisted endoscopic datum (H, s, £) of G, there is a map defined over
F from the semisimple conjugacy classes of H (F) to the O-twisted conjugacy classes
of @-semisimple elements in G(F). We call a strongly regular semisimple element
y € H(F) is strongly G-regular if its associated H (F)-conjugacy class maps to a 6-
twisted G (F)-conjugacy class of strongly §-regular §-semisimple elements in G (F).
We denote the set of strongly G-regular semisimple elements of H (F) by HG—req (F).
The transfer factor defined in [18] is a function

AG. ()t HG reg(F) x GUyp(F) — C,

which is nonzero only when y € Hg_yeg(F) is a norm of § € Gfeg(F), i.e., the
H (F)-conjugacy class of y maps to the f-twisted G (F)-conjugacy class of §. Note if
S G‘fe (F) has anorm y € Hg_reg(F), then wg is trivial on Gg(F) (see Lemma
4.4.C, [18]). In this paper, we always normalize the transfer factor with respect to
some fixed 6-stable Whittaker datum (B, A), and we also assume the Haar measure
is preserved for any admissible embedding Ty 5 Ty, where Ty is a maximal torus
of H, T is a #-stable maximal torus of G and Ty = T/(6 — DT.

There is a canonical inclusion (Zg)g <> Zp. Let us denote the image of Z in
Zy(F) by Z’., then one can associate a quasicharacter x’ of Z’., depending only
on x and the twisted endoscopic embedding &. The Langlands-Kottwitz-Shelstad
transfer map (or twisted endoscopic transfer) is a correspondence from f € H(G, )
to 7 € H(H, x') such that

sou(f". = > Acuy.8)0g*(£.8) (2.17)

6 ]
{5,}G(F) ~st {S}G(F)
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where the sum is over 9-twisted conjugacy classes {8’}%( F) in the O-twisted stable
conjugacy class of §. In particular, it descends to a surjection

I(GQ’wG, X) s SI(H, X/)OutG(H)7

where the action of Outg (H) on ST(H, ') is independent of the choice of F-splitting
for H (see Sect. 2.1.3). The existence of such a transfer has been a long standing
problem. In the real case, it is now a theorem of Shelstad [40]. In the nonarchimedean
case, the main obstacle is the Fundamental Lemma, which has been finally resolved
by Ngo [34]. And the proof of the transfer conjecture in this case was completed by
Waldspurger [48].

Now let us assume G, 5 D and A are defined as in Sect. 2.1. 1 Let 6 be an
automorphism of G preserving an F-splitting and A is 6-invariant. Let Z r be aclosed
subgroup of Zz(F) such that Zp — (Zg)o(F) is injective and D(F)/A(ZF) is finite
(this is possible because we assume A is f-invariant). Let Zp = 4 rNG(F). We choose
Haar measures on Z r and Z such that the measure on Zp\G(F) is the restriction
of that on Z F\G(F ). Let X be a quasicharacter of Zr and we denote its restriction to
Zr by x. Forevery f € H(G, yx), it can be extended to G(F) through Zr by X, and
the extension lies in H(G, %), supported on ZrG(F). Hence we get an inclusion map

H(G, x) —— H(G, %) , (2.18)

~

fr————

and we can identify H(G, x) with its image. Let wg be a quasicharacter of 5(F )
and wg = wglc. For any strongly 6-regular 6-semisimple element § of G(F) such
that wg is trivial on the GQ(F) we fix the Haar measure on GQ(F)\G(F) which
determines the Haar measure on G9 (F)\G(F) by restriction. Then for f € H(G, x),

and f € H(G, X) being its extension, we have

SOz(f,8) = SOG(f, ),

and

oL (f.oy= > 0L (f.8Hwss)

0 - 0
{6/}G(F) NG(F){‘S}G(F)

where the sum is over O-twisted G (F)-conjugacy classes {8’}9G( F) in the 0-twisted
5(F)—conjugacy classes {8}95(1«“) with 8’ = g~ l8g for g € (NJ(F), and the Haar
measure on G 5 (F) is translated from that on G(’ by conjugation. Because 4 rG(F)is
6-conjugate invariant under G(F ), the map (2.18) induces a map from 7 (G%“6 | ) to

A (G9 @G ¥). Moreover 4 rG (F ) is conjugate invariant under G (F), so it also induces
a map from SZ(G, x) to SI(G, X).
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Suppose G eé& (50 wg) and G € £GY, ws) correspond to each other according
to Proposition 2.7. The natural inclusion (Z&)g — Zz; induces an inclusion on 4 F.
So we can define Z C Zg (F) to be the image of ZF and Z, = Z/ N Zg (F). The
twrged endoscopic transfer sends H(G, X) to H(G’, %, Where x'is a quasicharacter
of Z';, depending only on X and the twisted endoscopic embedding. Let x’ be the
restriction of x” to Z'.. Then we have

H(G', x) —— H(G", X,

fr—————T

The following lemma shows these inclusion maps are compatible with the twisted
endoscopic transfers.

Lemma 2.20 ([49], Lemma 3.8) Suppose f € H(G, x), then the (0, wg)-twisted
endoscopic transfer of the extension f of f is equal to the extension of (8, wg)-twisted
endoscopic transfer f ¢ of f as elements in ST(G', "), i.e.

7O = (1% (2.19)

Remark 2.21 The inclusion map (2.18) of Hecke algebras induces a restriction map
of distributions in the opposite direction. Moreover the restriction of an invariant
distribution is again invariant, and the restriction of a stable distribution is again stable.
In particular, the restriction of the character of a representation is compatible with the
restriction of the representation in the usual sense.

Corollary 2.22 Suppose S 5/(-) is a stable distribution on G', then the restriction of
the pull-back of SC'(-) is equal to the pull-back of the restriction of S (-), i.e.

G (70 = 55 (r¢

Proof One just need to substitute (2.19) into S 5’(~). O

3 Arthur’s classification theory: tempered case

In this section we will review Arthur’s classification theory for the tempered represen-
tations of quasi-split symplectic groups and special even orthogonal groups (cf. [7]).
So throughout this section, G will always be a quasisplit symplectic group or special
even orthogonal group over F (if not specified). We fix an outer automorphism 6y of
G, and a nontrivial automorphism 6y of GL(N), so that they preserve an F-splitting
respectively. When G is symplectic, 6 is trivial. When G is special even orthogonal,
we require 6 to be the unique outer automorphism induced from the conjugation of the
full orthogonal group. We denote X = (fp). When F is local, ¥ acts on [T(G(F))
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and we denote the set of Xg-orbits in [T(G(F) by [1(G(F)). We denote by ’Fl(G, X)
the subspace of Xp-invariant functions in H(G, x ), and we abbreviate H(GL(N)) to
H(N). We also denote the corresponding space of (stable) twisted orbital integrals by
I(G?, wg) (ST(G?, wg)) for 6 € g and wg € Hom(G(F), C*).

3.1 Substitute Langlands parameter

Firstlet F' be a global field, we define the sets of substitute global generic (or tempered)
Langlands parameters as follows,

Dyim (N) := {isomorphism classes of irreducible unitary cuspidal automorphic
representations of GL(N)},

Dyim(NOV) := {p € Oyim(N) : ¢ = ¢},

ONNY:=1¢p=l1p1 B-- Bl : p=0¢", ¢ € Pyin(N;), with ZliNizN}~
i=1

Here ¢~ denotes the dual (or contragredient) of ¢ if ¢ € Oy, (N), and
¢ =gy @---Blrg

if ¢ € ®(NV). Note that d(NV) is just a set of formal sums of irreducible unitary
cuspidal automorphic representations, and for every parameter ¢ € ®(N) we can
assign a family of semisimple conjugacy classes in GL(N, C) by

c(@y) i=c(P1,0) D - Dc(Pru)D--- B c(dry) D--- D c(Pry)
I Iy

for unramified places v of ¢, where c(¢; ) is the Satake parameter of the local com-
ponent ¢; ,. Inside CDS,-m(NeN ) there are two types of parameters, we call ¢ is of
orthogonal type if the symmetric square L-function L(s, ¢, SZ) has a pole at s = 1;
we call ¢ is of symplectic type if the skew-symmetric square L-function L(s, ¢, A2)
has a pole at s = 1. In fact every ¢ € Py, (N o) will always be either one of these
two types due to the fact that the Rankin—Selberg L-function

L(s,p ® ¢) = L(s, ¢, SHL(s, , A?)

has a simple pole at s = 1. Moreover when N is odd, ¢ is always of orthogonal
type. The following theorem proved in ([7], Theorem 1.4.1 and Theorem 1.5.3) shows
how automorphic representations of GL(N) are related to that of orthogonal groups
and symplectic groups. If 7 is an automorphic representation of G, we denote by
c(m) = {c(my)} the family of Satake parameters of m, at the unramified places.

Theorem 3.1 Suppose ¢ € Oy (NON), then there is a unique class of elliptic endo-
scopic data (Gg, 5¢, §¢) in Eep (NONY such that c(¢y) = Ep(c(my)) for some discrete
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automorphic representation 7 of G at almost all places. Moreover if ¢ is of orthog-
onal type, Gy = SO(ZnA+ 1,C) when N =2n + 1, or SO(2n, C) when N = 2n; if
¢ is of symplectic type, Gy = Sp(2n, C) with N = 2n.

For¢ =11 B---Bl.¢, € D(N), since p = ¢, one gets an involution on the
indices by letting ¢;v = ¢.’, and consequently one has /; = [;v. This gives a disjoint
decomposition of these indices

I¢|_|J¢|_|Jq;/,

where I indexes the set of self-dual simple parameters. Let Ky = Iy U Jy, and let
Iy, 0 (Iy,s) indexes the self-dual simple parameters of orthogonal (symplectic) type.
By Theorem 3.1, for each ¢; with i € I, we have a twisted elliptic endoscopic group
G; of GL(N;) and we fix the twisted endoscopic embedding & : L G; — EGL(N;).
For ¢; with j € Jy, let us just take G to be GL(N;) and define an L-embedding
& LG]- — LGL(ZNj) by sending g x w to diag{g, g '} x w. Then Arthur defines
a substitute global Langlands group by taking the fibre product

Ly = 1_[ {LGk — WF] ,
keKy

and he also defines an L-homomorphism ¢g Ly — LGL(N), where

¢ = D Ut

keKy

By viewing G as in & (N?V), we can define the set of substitute global parameters
of G as follows

D(G) = {p € CIJ(NQN) : ¢‘9 factors through LG}.

As a simple exercise, one can show for ¢ = [j¢p) B --- B¢, € ¢(N9N), ¢ is in
®(G) if and only if [; is even for all i € Iy s. Since Outy (G) = X, the above set is
really the analogue of the set of ¥-conjugacy classes of global Langlands parameters
for G. For ¢ € ®(G) and ¥ C X, one can define

S5 = Cent(Im¢®, G¥),
Sy =S3/2(G)",

T _ oX,c0
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and from here one can also define the following important subsets of ®(G)

Byin(G) = (¢ € BG) : 53 = 1),
®(G) = {¢p € D(G) : [Sp| < o0},
®(G%) = (¢ € D(G) : Sy # ),
&De”(Ge) ={¢ € &D(Ge) : I§$,s| < oo for some semisimple s € S‘g},

where 6 € X. In fact, one can even compute Sy very explicitly (see [7, (1.4.8)])

+

So=\ [] ocw.o| x| [] se.O|x|][]cLa;,of. @b

ily 0 ® i€lys Jj€Jy
+ .
where (]_[l clpo o(;, (C)>¢ is the kernel of the character
ef [[ei — []et g™, g€ 0w.CLielso.
i i

Note G is symplectic or special even orthogonal here, so we have I o = I;’ and
lys =1y in Arthur’s original formula of S;. When G is special even orthogonal,

s;o=| J[ ocw.o| x| [] sp@.O| x| [ 6Le;.0f. 32

i€ly o i€ly s J€Jp

As a consequence, one has the following description of those subsets of ®(G).

Lemma3.2 1. ®;,(G) = &y, (N) N P(G).

2. Suppose ¢ € ®(G), then ¢ isin ®,(G) ifand only if Ky = Iy o and l; =1 for
alli € K.

3. Suppose ¢ is in Doy (G?) for 6 € To, then Ky = 1y 0 and l; < 2 foralli € K.

4. Suppose G is special even orthogonal and ¢ € ®(G), then ¢ is in D(GP) if and
only if there exists i € 1y o such that N; is odd.

The proof is a direct application of formulas (3.1) and (3.2).
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Now let F be a local field, we also define the substitute local generic (or tempered)
Langlands parameters similarly as follows,

S,m (N) := {isomorphism classes of irreducible essentially discrete

series representations of GL(N)},

05, (V) = {9F € 0F,, (V) : 67 = 0],

OF 4y (NY) = {¢5 =L¢f @ - @1¢f : ¢f

= @)Y, ¢f € ®, (N;) with ZZN N}

i=1

Suppose ¢5 S (IJ‘f’lm(N ), we call ¢g is of orthogonal type if the local symmetric
square L-function L (s, #¢, 5 hasa pole at s = 0; we call @€ is of symplectic type
if the local skew-symmetric square L-function L(s, €, A2) has a pole at s = 0. As in
the global case, every ¢ @im (N will be either of orthogonal type or symplectic
type. We would like to state a local version of Theorem 3.1, which is proved in [7,

Theorem 6.1.1 and Corollary 6.8.1]. For ¢g € of (NN, Tet Tye be the self-dual

stm

essentially discrete series representation of G L(N) defined by #€. We write

Fyon @) = fopoven (Tge) € HIN), (3.3)
with respect to some intertwining operator A oE @n).

Theorem 3.3 Suppose ¢€ e @5 (N), then there is a unique class of elliptic

stm

endoscopic data (Gye, sp2, Ege) in Et (NON) such that

Fuow @) = 945 @), forall f e H(N)

for some stable distribution f (@%) on Gye, where f Y6 is the twisted endoscopic
transfer of f. Moreover l'fqbg is of orthogonal type, 6¢g =502n+1,C)when N =
2n+ 1, or SO(2n, C) when N = 2n; if(bg is of symplectic type, 6¢£ = Sp(2n, C)
with N = 2n.

Note Outy (G) = X, so the twisted endoscopic transfer f Y6 lies in H(G). Asin
the global case, one can define the substitute local Langlands group £¢,s and substitute
local parameter #€. One can also define the set & bdd (G) of substitute parameters for
G, various centralizer groups of parameter qﬁs in G, and various subsets in ®¢ 5dd(G)-
Moreover, the formula (3.1), (3.2) and Lemma 3.2 still hold in the local case.

The link between these substitute local parameters and the genuine local Lang-
lands parameters is through the local Langlands correspondence for GL(N) proved
by Harris-Taylor [16], Henniart [14] and Scholze [36]. The local Langlands correspon-
dence for G L(N) gives a bijection between of (N) and the set ®,(N) of equivalence

sim
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classes of N-dimensional irreducible unitary representations of L r, which also induces
a bijection for the self-dual ones. Later in the paper, we will identify them and use
the notation ®;,, (N) as in the global case. The following theorem proved in ([7],
Corollary 6.8.1) shows the substitute local parameters of G correspond to the genuine
local Langlands parameters of G under this bijection.

Theorem 3.4 Suppose ¢t € @ (NOV), then ¢¢ is in D5 (G) if and only if its

stm stm
corresponding Langlands parameter ¢ factors through “ G.

Since the elements in € bad (N v corresponds to self-dual tempered representations
of GL(N) by the parabolic induction, the local Langlands correspondence also gives a
bijection between @44 (N Ny and ¢ had (N 7). And we have the following corollary.

Corollary 3.5 1. Suppose ¢8 S bedd(NgN) then ¢8 is in CDbdd (G) if and only if
its correvpondlng Langlands parameter ¢ factors through La.

2. Suppose ¢ S CDbdd(G) corresponds to ¢ € Dpaq(G), then Sge = S for any
representative ¢ of ¢.

For the proof, one just needs to notice for ¢ € Dp44(G), there is a decomposition
through the twisted endoscopic embedding to GL(N, C)

¢=ll¢1®"'@1r¢rs

where ¢; € ®,(N;) is irreducible.

As a consequence of Theorem 3.4 and Corollary 3.5, one can identify éb'gd 4(G)
with @544 (G) through the twisted endoscopic embedding & : G — LGL(N). And
we also denote Sye by Sp.

3.2 Local theory

Now we can state the main local result of Arthur’s theory ([7], Theorem 1.5.1 and
Theorem 2.2.1) for quasisplit symplectic groups and special even orthogonal groups
in the tempered case. Let F be local. We fix a 0 -stable Whittaker datum (By, A) for
GL(N). We also fix the twisted endoscopic embedding £ : “*G — LGL(N).

'I_‘heorem 3.6 For every ¢ € i)bdd(G), one can associate it with a finite set I:I¢ of
Miemp(G(F)) such that it satisfies the following properties:

1. The distribution

f@) =Y folm), feHG) (3.4)

[JT]EI:I¢

is stable.
2. Ifwe normalize the intertwining operator Ay, (0n) such that it preserves the Whit-
taker functional on 1y, then

Faow (@) = fC(9) (3.5)

@ Springer



L-packets of quasisplit GSp(2n) and G O (2n) 103

for f € H(N) and the twisted endoscopic transfer f € H(G).
3. There is a disjoint decomposition

Miemp(G(F) = | | .
$ePpa(G)

Since the transfer map Z(NV) — SZ(G)°"W () is surjective (see Sect. 2.4), ¢
determines the stable distribution (3.4) on G (F') through (3.5). In this way, ¢ deter-
mines the L-packet 1:I¢. If G is a product of symplectic groups and special even
orthogonal groups, we define a group of automorphisms of G by taking the product
of Xp on each factors, and we denote this group again by Xy. We denote the set of
Xo-orbits in Iyemp (G (F)) by lzl,emp(G(F)) and the set of Xg-orbits in ®p44(G) by
Dpq4(G). Let H(G) be the Xp-invariant functions in H(G). Then part (1) and (3) of
this theorem can also be generalized to this case, in particular, the L-packets of G are
formed by taking tensor products of those of each factor. If G’ € £(G?) for 6 € %,
then G’ = M; x G’_, where M; is a product of general linear groups, and G’_ is again
a product of symplectic groups and special even orthogonal groups. We can extend
the action of X to G’ by letting it act trivially on M;. Then we can define Dpaa (G
and l:Item,,(G/(F )) similarly. Part (1) and (3) of this theorem can again be extended
further to this case.

Theorem 3.7 1. For ¢ € Dp4a(G), there is a canonical pairing between I:I¢ and
Sy, which induces an inclusion

[7] — (-, ), [m]e My, (3.6)

from I:I¢ into the group 3; of characters on Sy, such that (-, w) = 1if G and &
are unramified. It becomes a bijection when F is nonarchimedean.

2. Suppose s is a semisimple element in Sy and (G, ¢') —> (¢, s) with G' € E(G)
and ¢' € ®pyq(G'). The packet 1:I¢/ can be defined by the generalization of the
previous theorem. If x is the image of s in Sy, then

9@h="Y ) fa@). feHG). 3.7)

[N]El:l¢

When G is special even orthogonal, one could further characterize those 6p-stable
tempered representation. It is a theorem proved in ([7], Theorem 2.2.3).
Theorem 3.8 Suppose G is a special even orthogonal group and ¢ € ®pyq(GP).

1. For any [r] € l:[¢,, 7 is a Op-stable representation of G(F) and hence has an
extension Tt 10 GT(F) = G(F) % (6p).

2. Suppose s is a semisimple element in Sg" and (G',¢") — (¢, s) with G’ €
E(GM), ¢ € Ppga(G'), then

F@)= 3 a1 fgn), feHG), (3.8)

[71elly
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where x is the image of s in 890 (-, ") is an extension of the character (-, ) to

S+ (89") and the intertwining operator Ay (6o) = 7 (0p).

Remark 3.9 In the y-twisted character relation (3.8), both the extensions of rep-
resentation 7+ and character (-, 7 ") are not uniquely determined, but the product
(-, ) fgoo () is determined and depends only on 7. Moreover, (3.5) is the analogue
of (3.8) for general linear groups, where we have fixed the extension of 74 using the
Whittaker datum and taken the extended character (-, 7 1) to be trivial. It is not hard
to see how to generalize both Theorems 3.6 and 3.8 to products of symplectic groups
and special even orthogonal groups.

Because one does not know whether all the local constituents of a unitary cuspidal
automorphic representation of GL(N) are tempered, i.e. the generalized Ramanujan
conjecture, one has to deal with a more general set of parameters CD;"ni ,(N), which is
defined as follows. Let v* denote the map | - | of W for a € R. Then,

umt(N) {¢=¢1@"'@¢r@(‘)al¢r+] @V_al¢r+])"‘
@(Vas¢r+s @V_ax¢r+s)3
¢i € Oyim(N) forl <i<r+sand0<a;j <1/2forl1 < j<s).

From the classification of the unitary dual of GL(N) (cf. [46,47] archimedean case,
[44] nonarchimedean case), we know the associated irreducible admissible represen-
tation 7y for any ¢ € @jm.t (N) is unitary. And we have the following fact.

Proposition 3.10 If F is global and ¢ € ®yj,,(N), then ¢, € ®F . (N,).

unit

Correspondingly, we can define

(G) :==d(G)NdF (N).

Ml’lll unit (

Theorems 3.6-3.8 can be extended to the case ¢ € or unir (G) except for the constituents
of 1'[,,5 may be non-tempered. In fact, for any ¢ € (Dmm(Ge) with 6 € X, ¢ can be
regarded as ¢p.x = ¢u @ (A o| - |F) for some O-stable Levi subgroup M (which
also admits a @-stable parabolic subgroup P O M), where ¢>M € Cpbdd (Me) and
A € aj, lies in the open chamber determined by P. Let My, , = g, ® A1),
Then one can just define 1'I¢ to be the irreducible constituents of the parabolic induc-
tion 7, p(I:[q)M,)\). Note that the -twisted endoscopy transfer is compatible with this
parabolic induction, and also Sg,, = Sy, then it is enough to know the following
proposition.

Proposition 3.11 Suppose F is local, ¢ € CI>un”(G), and ¢ can be regarded as ¢ 5,
where ¢y € Dpaa(M )_and A€Eat v lies in some open chamber determined by P 2 M.
Then for any [y ] € Ily,,, the induced representation Lp(mpy 3) is irreducible.

Propositions 3.10 and 3.11 are well known to experts, but for the convenience of
the readers we will give their proofs in “Appendix”.
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3.3 Global theory

Now let us assume F' is global, and we fix the twisted endoscopic embedding & :
LG — LGL(N). The global parameters and local parameters are related by the
following theorem.

Theorem 3.12 Suppose ¢ € Oy (G), then ¢, factors through L G, for all places v,
ie. ¢y € D . (Gy).

This theorem is proved in ([7], Theorem 1.4.2). So for ¢ € ®(G), one has a
commutative diagram

LFU LLGU

| .

Ly— LG,

where L g, — Ly is defined by ¢, . It gives rise to an inclusion Sy < Sy, for any place
v, which induces a homomorphism Sy — Sy, . One can define the global L-packet
by taking the restricted tensor product

— 7 —
H¢ = ® H¢v
v
and define the global pairing by

(x, ) =] Joxy, mo).

v

Note that for almost all places v, (-, m,) = 1 by Theorem 3.6, so this product is
well-defined. The main global result of Arthur’s theory is to give a description of the
discrete spectrum of automorphic representations of G. Here we only state it for those
discrete automorphic representations parametrized by ®(G), i.e. for ¢ € ®»(G),
we want to describe Lsim ¢(G(F )\G (AF)) which consists of discrete automorphic
representations s such that the Satake parameters satisfy £ (c(y)) = c(¢y) for almost

all places. Let H(G) = @, H(G).
Theorem 3.13 Suppose ¢ € ®(G), there is a decomposition as H(G)-modules

Lz2ilsc,¢(G(F)\G(AF)) =my Z T
[71]61:[¢
(-m)=1

where mg = 1or2, and my = 2 only when G is special even orthogonal and
¢ ¢ O(GP). Moreover,

Ltzilsc,q)(G(F)\G(AF)) =0

for ¢ € (G) — P2(G).
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Remark 3.14 This theorem is a special case of ([7], Theorem 1.5.2). By Arthur’s
complete description of the discrete spectrum for orthogonal and symplectic groups,
one can see ®>(G) only contributes to the discrete spectrum of G. It is not hard
to extend this to products of symplectic and special even orthogonal groups. In fact
if G = G; x G2 x -+ x Gy, then we can define ®(G) to be consisting of ¢ =
@1 X ¢ X -+ X ¢g such that ¢; € ®(G;) for 1 < i < g. Moreover, we can define
£¢ = 1_[;-1:1 £¢i’ then S¢ = 1_[?:1 S¢i' And we let mgy = 1_[;-1:1 meg, .

- ~ DT ~
For ¢ € ®(G) and any subgroup X C X, let L4 acton D, G and G* by conju-
gation through ¢g . We denote the corresponding group cohomology by H(;;g (Lg, ).

Note Hgg (Ly, D) = DT, Hq?g (L, GZ) = S and H;g (Ly, D) = H' (Wr, D). We

=2
define Sq% = Hgg (Ly, G ). Then we have the following diagram

8

11— SE/BF Sy H'(Wp, D)

[ 1.

—~ 8y ~
1— squ /Dy’ —— S5 —= H'(Wr,. D).

Then Lemma 2.10 is still valid, and we again have the following exact sequence as in
Sect. 2.2

1 Sg Sy~ Hom(G(Ar)/G(F)G(Ap), C*).

4 Coarse L-packet
4.1 Statement of main local theorem

Now we assume G is of type (2.2), and A is the generalized similitude character. In
this case G is a product of symplectic groups and special even orthogonal groups. We
also assume 6 € X.

Lemma 4.1 ([49], Lemma 3.13) Suppose ¢ € ®pqqa(G) and [r] € Ty then
(x, (@ ®) = o (@) (x. ") 4.1

for any g € G(F) and x € SY, where oy = a(x) and wT is an extension of 7 to
GT(F) = G(F) x (6).

Corollary 4.2 ([49], Proposition 6.28) Supgose ¢ € ®ps4(G) and [7] € 1:I¢. Ifis
an irreducible admissible representation of G (F) whose restriction to G (F) contains
7, then 7% = 7% @ w if and only if w € a(Sg). In particular,

X(7) = a(Sp).
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Remark 4.3 In_VieW of Proposition 3.11, Lemma 4.1 and Corollary 4.2 also hold for
parameters in @:m. ;(G), and the proofs are the same.

For ¢ € ®344(G), let us fix a character E of Z&(F) such that Z|ZG(F) is the central
character of I:I¢ Then we define IEI 97 0 be the subset of IT temp (6) with central
character { whose restriction to G (F) have irreducible constltuents contained in l'[¢
LetX = Hom(G(F)/ZG (F)G(F),C*), so X actson 1'I¢ 7 by twisting. We call 1'I¢ F
acoarse L-packet of G, and its structure can be described in the following proposition.

Proposition 4.4 ([49], Proposition 6.29) Suppose ¢ € ®pyq(G) and E is chosen as
above.

1. The orbits in 1:I¢ under the conjugate action of G(F) all have size |S¢/Sq; . If F
is nonarchimedean, there are exactly |S 4§| orbits.
2. There is a natural fibration

X/a(S)°) M,z % My/G(F)

3. There is a pairing
T —> <'7 TN[)
from lzl(bf/ X into 3’; It is uniquely characterized by

(x, ) = (1x), ),

where t : S 3 = Sy and 7 is any irreducible representation of G(F) in the
restriction of . Suppose G and 7 are unramified, then (-, 7) = 1. Moreover; this

mapping from 1:[¢’E/X to 3; is injective and when F is nonarchimedean it is in
fact a bijection.

This proposition is also true for ® = (G). Now it is natural to ask the following

question.

umt

Question 4.5 For any lift ¢ of ¢ € Ppyq(G), can one assign a packet H of repre-
sentations of 6(F) which gives a section of Res : Hzpf — H¢/G(F), and also a

stable distribution?

The answer to this question can be formulated in the following theorem, which is
our main local result.

Theorem 4.6 Suppose ¢ € Dpia (G): and ? isa chgracter of Z&(F) whose restriction
to Zg (F) is the central character of I1g. Let ¥ = | Z e Then there exists a subset T1 3

of f .7 unique up to twisting by X, and it is characterized by the following properties:

@ Springer



108 B. Xu

—In

o= |l Moo
weX/a(S,0)

2. For f € H(G, X), the distribution

I
S{sx
ST
N—

f(@):

is stable.

3. Suppose s is a semisimple element in S’g with w = a(s) and (G', ¢') —> (P, s).
Fix a packet TI & defined by part (1) and local Langlands correspondence for
G L(n), then we can choose T1 é such that

f@)= > fe@ o, feHG.T) (4.2)

[7lell;
where f59 (7, ) = tr(7(f) o A7 (0, w)), and A (0, w) is an intertwining oper-
ator between T @ w and 7%, which is normalized in a way so that if f is the
restriction of f on G(F), then

Flzrou)ge @ o) = > <x.at > fgo(m) (4.3)

7Chtl

where x is the image of s inS¢ nt is an extensionof t to GT(F) = G(F)x < 0 >
such that 17 (0) = A, (0).

Remark 4.7 1. In the notation of I1 > one can think of ¢~> as some parameter of G

lifted from ¢. Since I1 3 is only defined up to twisting by X, one can also take ¢ as

a formal symbol built in the notation of IT 2 In this paper, we will take the second
point of view.

2. The normalizations in (4.3) is a consequence of (4.1). When 6 = id, w = 1 and
X € SQ;, A (id, 1) becomes a scalar and is equal to (x, 77) by (4.3). So we obtain
the character relation from (4.2)

f@h= Y fa@ b= Y (x.7)fs). (4.4)
[wlefl, [n]el:lqg
3. If F is archimedean, I1 ¥ is defined by Langlands [20]. In fact, we have : =

IEI¢’Z, if 1:I¢, is not a singleton (see Proposition 6.11 and also [12], Theorem 27.1).
Moreover, Part (2) and (3) can be directly reduced to (3.4), (3.7) and (3.8) (see
[49], Remark 6.32).
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4. For¢ € @ . (G),since [Ty = Ip(Iy,, ,), we can define 1:1(5 =T Gu,)-and
this theorem can be easily extended to this case.

Let us call this subset IT; the refined L-packet of G, and it is the genuine L-packet
that one would expect modulo the action of ¥(. As we can see from this theorem, the
refined L-packet is uniquely determined by the character relation (4.4) up to twisting
by X. As a consequence of that, we can give another characterization of the refined
L-packet.

Corollary 4.8 In the setup of the previous theorem, any stable linear combination in
ﬁq&f is given by a linear combination off(qs Qw) := (f ® w)(P) for w € X.

Proof In the archimedean case, one can deduce this from ([39], Lerllma 5.3). So we
will assume F is nonarchimedean, and we fix a refined L-packet IT b= {E e
Suppose

f@Y =) ajfeF®@w))
iJ
is also stable for distinct w; € X /a (S >0) and a;j € C.Here ¢! is just a formal symbol
for denoting another stable distribution. Since the map [7] —> < -, 7 > is a bijection

in the nonarchimedean case, we have

E <X, ><X,7Tj >=T-5j.
xESd;

By inverting the formula of character relation (4.4) we get

fo@) =) c@.0)f @ ),
xESd;

where f'(¢, x) = f'(¢') for some semisimple element s € § 5 whose image in S 5 is
x, and some l:[¢3’ with (G', ¢') —> (¢, 5), and
- 1 -
c(m,x)=—<x,7; >.
r
Therefore

fE@hH = aijcGi ) f' (¢ @w), x).
ij
If we separate those terms with x = 1 from the right hand side, and move them to the

left hand side, we get

FE@hH - - Za,,fw Rw)=Y Y cGE N @Qwjx) 45)

i,j x#1
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Now let us consider the endoscopic transfer map

T UG —— Bgce, G ST(G)

1 - _ FG
f 69G’EEeII(G)f :

The left hand side of (4.5) can be viewed as value of TE( f ) on some stable distribution
of G, and similarly the right hand side of (4.5) can be viewed as values of T( f )
on stable distributions of elliptic endoscopic groups G’ € 8911(5) - {5}. Itisa
consequence of the main results in [3] that the image of 7° can be characterized as

families of functions ( f G') Tee (5) such that for any G 1 G 2 €&y ((N}) the parabolic

descent of any two functions f FG and f FG'> to their common Levi subgroups M’ of
G’y and G'5 coincide. Since ¢’ does not factor though any proper Levi subgroups of
LG for x # 1, then the stable distribution associated to ¢’ is not supported on any
proper Levi subgroups of G. The same is true for the stable distribution associated
with TI & S0 the right hand side of (4.5) is not valued on any stable distributions

supported on the Levi subgroups of G. Since (4.5) holds for all functions in H(G),
then both sides of (4.5) must be zero. Therefore,

N~ 1 ~ ~ 1 ~
0=7@H - - af@ew)=3" (ak,» - Zaij) fo ® w)).
i,J i

k.j

By the linear independence of characters, we have
1
agj — - Z aij =0
1

for any &, j. As we fix j and vary k, we get a system of linear equations. The solutions
of this system are a;; = a;; for 1 <i < r. Since this is also valid when we vary j, so
we can conclude

f@H=> aijf@ew).
J

This corollary is also valid for ¢ € éut”.t(G), and the proof is the same.

4.2 Local twisted intertwining relation

The proof of our main local theorem (Theorem 4.6) requires global methods, and the
existence of refined L-packet needs to be proved together with the character relations.
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Before we proceed to prove the theorem, let us first consider another form of character
relation, called intertwining relation. The intertwining relation in its global form comes
up naturally in the trace formula and it plays an important role in Arthur’s work [7].
Here we need a twisted version of the intertwining relation, which in its local form is
related to the twisted character relation (4.2). In this section, we again assume G is of
type (2.2), and 6 € X.

Suppose ¢ € ®444(G), and we assume ¢ factors through ¢y, € @44 (M) for some
Levi subgroup M of G. Let us define

T4(G, M) = A Z(G)'F /Z2(G)'F,

where A j; is the maximal split central torus in M. 1t is a torus in 5‘2. Then we can
define its normalizer in Sy

Ny(G, M) = Norm(Ty(G, M), Sp),
and the group of its connected components

Ny (G, M) = Np(G, M)/Ny(G, M)°
= Norm(T (G, M), 54)/Cent(Ty(G, M), 53)°.

Notice S¢(M) := Sy, is a normal subgroup of 94(G, M). The quotient
Ny (G, M)/Sy(M) is the Weyl group

Wy (G, M) = W (Sg, Ty(G, M)).

We write Wq? (G, M) to be the normal subgroup of automorphisms in Wy (G, M) that
are induced from the connected component S‘g, and let

Ry(G. M) = Wy(G. M)/ W(G, M)

Moreover, Wg (G, M) is anormal subgroup of 914 (G, M), and we denote their quotient

by S¢(G, M), which is a subgroup of Ss. Suppose M is the Levi subgroup of G
containing M, then similarly we can define

T3(G, M) = A5 Z(G)'" /2(G)""

which is a torus of Sg. Since Aﬁ/l’)\ = Aj;, we have Tq;(G, M) = T¢(G, M). We can
also define

Nz(G, M) = Norm(T;(G, M), S3) € Ny(G, M),
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and the group of its connected components
N3G, M) = Ny(G, M)/Ny(G, M)°
= Norm(T(G, M), 53)/Cent(T(G, M), Sg)o C Ny(G, M).

Again Sq;(M) = Sq;M is a normal subgroup of ‘JI(};(G, M). The quotient ‘J?(Z)(G, M)/
S F (M) is the Weyl group

W5(G, M) = W(S;, T5(G, M)).

Let us write WE(G, M) to be the normal subgroup of automorphism in Wd3 (G, M) that
are induced from the connected component S‘g. Since S'g = S‘g, we have WE(G, M) =
Wg (G, M). So

R;(G, M) = W3 (G, M)/Wg(G, M) C Ry(G, M).

At last, Wg(G, M) is a normal subgroup of 1 ¢3(G’ M), and we denote their quotient
by S3(G, M), whi_ch is a subgroup of S;. If gy € (M), then Ty (G, M) = Ty is a
maximal torus in Sg, and hence Sy (G, M) = S, Sd;(G, M) = Sq;. So in this case let
us also write

Ny (G, M) = Ny, ‘T(d;(G, M)=‘J‘(¢;,

Wy (G, M) = Wy, WJ)(G, M) = Wd;,

WJ(G. M) = Wy, Wg(G, M) = Wg.

To summarize all these relations, we have the following commutative diagram.

1 1 4.6)
1 1
Wg(G, M) Wg(G, M)
wi(G, M)/ Wy(G, M)/
1 Sy(M) N3G, M) W;(G, M) 1
/ /
1 Sp(M) H Ny (G, M) Wy (G, M) 1
|
1 H S5(M) S;(G. M) R3(G, M) 1
| — —
1 Sp(M) Sp(G, M) Ry(G, M) 1
1 1
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Suppose u € MNy(G, M), we write w,, for the image of u in Wy(G, M) and x, for
the image of u in S¢(G, M). Since w, normalizes A j;, it also normalizes M , and
therefore can be treated as an element in W(]VI ). The standard parabolic subgroup
P containing M allows us to identify w, with an element in W(M) = W(Jrl ). We
choose a representative 6, of w, in G(F) preserving the F-splitting of M. Then
Om € Dpga (M) and u defines an element in Sp (M You = SZ‘I‘W. Note that

M = GL(N;) x --- x GL(N,) x G_,
and

M = GL(Ny) x --- x GL(Ny) x G _,
where G _ (resp. G_) is of the same type as G (resp. G) with smaller rank. Suppose

S =¢1 X X Pg X P,
where ¢; € ®pg4(N;) and ¢p_ € CiDbdd(G_). Then we can define
Mgy =7g, @ - @7g, @ y_,

where 74, is associated to ¢;. And any representation in this packet can be written as

Ty =Ty @ @, @ T

=ngL Qm_.
Since Sp,, = S,_, we can define a pairing between I14,, and Sy,, by
<'7 T[M) = (" nGL)(" 7T7>,

where (-, mg ) is in fact trivial. By Theorem 3.8 and the local Langlands correspon-
dence for G L (n), we know nf},‘ = ). As usual, we can take the intertwining operator
n;, 6,) = ng 1 0)® 71 (6,), which preserves the Whittaker models on those general
linear components, then the extension (-, rrg 1) of (-, mgL) to S (M )0« is trivial (see
Theorem 3.6). So the extension (-, 71 ) defined in Theorem 3.8 (see also Remark 3.9)
determines an extension (-, n;,rl). Now we define

fo.wy=Y (u ) tr(RpOu. 7). $)Ip(ru. £)).  f € H(G, 1),
[ﬂM]El:[¢M

4.7)

where Rp(6,, rr;,'[, ¢) is the normalized self-intertwining operator on the space
‘H p (rpr) of normalized induced representation Zp (7r37) (see [7], Section 2.4). If we
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assume the existence of refined L-packet IT e for ¢_ as defined in Theorem 4.6, then

I $,, can be defined in the same way as My, - And we can also define

fo@.w="Y r(Rpw, im, PIEGEn @', ), [eHG, ). 48)

[TTM]EHJ,M

Here we need to give some explanations of this distribution. Firstly, w = o™ (1) =
G
o (xy). If

i =gy @ @ My, ® F_

contains mys in its restriction to M (F), then it follows from Corollary 4.2 that
ﬁ% = 7y  w, and we let Az,, (04, ) be the intertwining operator. Secondly, the
automorphism 6, on M is a composition of permutations of the general linear factors
and automorphisms sending g; to Oy, (g;)-A(g-), where g = g1 X --- X g; X g € M.
However the effect on general linear components of 77, is the same as for M, so we can
use the same intertwining operator for the general linear components of 77y;. In view
of (4.3), the pairing inside (4.7) is built into Az, (8,, ) and hence into the operator

R3(u, Ay, $). Thirdly,
T8GEM® 0", ) =R oIp(Fu @', f)

where R(w) is multiplication by w, and R (u, 7y, $) is the normalized intertwining
operator between H () and Hp(Ty ® o~ D). The last thing is about this normal-
ization. Let us recall the formulation of the normalized intertwining operator

Rp Oy, 03 @) 1= 1035 (B0) 0 (rp (i, )~ T p (B, T)).

Here rp (wy,, ¢pr) is the normalizing factor, and Jp (6, ) is the unnormalized inter-

—1
twining operator between Hp(my) and Hp (ﬂf}l‘ ), which is defined by an integral
over

Np N wupru_l\Np,
where Np is the unipotent radical of P. The key point is to notice that
G(F N M(F) ~
ResGEF;Iﬁ(nM) =7T7p (ResMEF;nM).
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So we obtain isomorphisms between the following spaces as H(G, x)-modules

HpGn) = D HeGuw) EHpGM @0 ),

7y CResT
07 0!
Hp(ry )= @ Hp(my ).
7 CRes

Under these identifications, we can easily see from the definition of unnormalized
intertwining operators that

I@7)= €  JpOumm).

7y CResT

Letny), =g @ - Qg 7y . The normalizing factor 7 p (w,,, ¢pr) for Jp (6, mar)
is equal to the product of A-factor A(w,,) (see [7], (2.3.19)) and

-1 -1

L(07 7T¢M7 p;;lplp)g(ov JT¢M’ p;;lPlP’ WF) L(la T[¢7M’ p;;lP‘P) (49)
where the L-functions involved here are either Rankin-Selberg L-functions or
(skew)-symmetric square L-functions. We can set 75 (wy, ¢pp) = rp(wy, ¢pu) for
J5(6,, ). In fact this is what one would expect according to Langlands’ conjec-
tural formula for the normalizing factors. By his conjecture, (4.9) could be replaced
by

LO.py i 0 bm)e©. )1y 0 dm YE) L o)y 0 fa) 7

where p¥
’Ow;'P|P

np \ﬁwu_l p» Where ip is the Lie algebra of Np. Since

is the contragredient of the adjoint representation of © M over ’ﬁw_u pN

\% 7 \%
0 ooy =p o¢
wu_lP\P M wu_lP\P M

then the conjectural formulas for 75 (w,, ¢~>M) and rp(w,, ¢p) are the same. Finally
we can normalize Az, (6, @) according to (4.3), so after composing with this operator
we get

Rp(u, Tp, @) i= Az (O, @) o (r(wy, dar) ™ T3 O, Tnr))
= P <unf>Re@u ) 9. (4.10)

7y CRes

As aresult, if f € 7'_((5, %) is supported on zFG(F) and f is its restriction to G (F),
then

fa(d, uw) = fe(g,u).
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Suppose s is a semisimple element in Sy, and (G', ¢') —> (¢, s). For any lift IT o
let us define

f5@.5) = @), feHG. D).
Now we can state the local w-twisted intertwining relation.

Theorem 4.9 Suppose ¢ € &thd(G),forsEzmisimp{es € Spwith (G, ¢') —> (¢, 5),
the following identity holds for some lifts T1 F and T1 & that

f6@.w) = f&(d.5),  feHG. ). (4.11)
where u € Ny (G, M) and s € S‘¢ have the same image in Sg.
The next lemma shows that for (~}, the w-twisted intertwining relation (4.11) is

equivalent to the w-twisted character relation (see (4.2) when 6 = id), if one has the
local intertwining relation for G ([7], Theorem 2.4.1).

I:,emma 4.10 For ¢ € fbedd(G), we assume ¢ factors through ¢y € Dy (M) and
1'I¢~)M exists. We define I"I¢; = Ip(I"Iq;M). Suppose u € Ny(G, M) and semisimple

s € S‘¢ have the same image x in Sy. Then
f6@,u) = 75, 5)
for some I:Iq; and I:Iq;, if and only if

5@ =Y [z ),

where w = a(x) and f € H(G, X).

Proof By Corollary 4.2, we have 1:I¢~) = l:[q; ® w. Since

fo@wy= > tr(Rp(u. 7y $)IEGEu @ 0™, ),
[Amlely

W€ can assume

fobwy= > [ o)
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where fg (7, w) = tr(@(f) o Az (w)") for some Az (w) intertwining # ® w and 7.
Note that if f is the restriction of f on G(F), then (f|§FG(F))5(q§, u) = fg(p,u).
By the local intertwining relation for G ([7], Theorem 2.4.1), we have

Flzra)s@w) = fo@. 1) = fG@.9)= Y <x.7> fo(r).

[7]elly

So fg(ﬁ w) = fg(ﬁ w) for f supported on pr(F) This means for [7] € 1:[~

Az (a))’ Az (w) as defined by (4.3). Thus fG(rr w) = fG(n w) for all f €
’H(G %), and the lemma is clear. O

As we can see from the proof of this lemma, fg (¢, u) only depends on the image of
u in Sp. And one should expect f é (¢, 5) only depends on the image of s in Sy as well
either from the w-twisted character relation or the w-twisted intertwining relation. But
there is a little ambiguity here for £ é (¢, s) depends on the choice of lift IT P The next
lemma resolves the ambiguity and establishes this property directly.

Lemma 4.11 For ¢ € ®pyy (G) and x € Sy, there is a natural way to get a family of
lifts H¢, for all semisimple s € S¢ with image x in Sy and (G', ¢') — (¢, s). And for

these lifts f(~; (¢, s) are the same.

Proof The proof is essentially the same as for fé (¢, s) in ([7], Section 4.5) except
for one does not have any ambiguity in that case. Since it is important to clarify the
ambiguity here, we will review the original proof and show how one can get rid of
this ambiguity. Suppose semisimple s € S¢ has image x in Sy, if s is replaced by an
59 p -conjugate s1, then the corresponding pair (G, ¢}) is 1som0rph1c to (G/ @) under

S0 -conjugation. And this extends to an isomorphism between G’ 1 and G’ for Sg = SO.
So we can simply take the lifts I:Id;, = ﬁ&; and it is clear that fé (},5) = fé (@, 51).

Now if we fix a maximal torus 7_}/, of S‘g and a Borel subgroup B¢ containing it, any
automorphism of the complex reductive group 50 stabilizes a conjugate of (Td,, 1§¢)

So we can choose a semisimple representative s, of X in S¢ so that Int(s,) stabilizes
(T¢, B¢) and such representatives are determined up to a T,-translate. Moreover the
complex torus

f}p,x = Cent(sy, T¢)0

in 7_"¢, is uniquely determined by x. Note that T¢,x is the connected component of the
kernel of the following morphism

Ty ——— Ty

t—— s syt
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So any point of 7_"¢ can be written as (sx_]tsx_t_l)tx fort e 7_"¢ and ¢, € T¢,x (see [42],
Corollary 5.4.5), and hence any point in s, T4 can be written as

se(spltset ™Dt = 150t 1y = syt 1€ Ty, 1y € Ty

This means it is enough to consider the T¢, x-translates of sy. Finally, we can take the
centralizer M of Ty,x in G which is a Levi subgroup of G, and it is dual to a Levi
subgroup M, of G. So (¢, sy) is the image of a pair

(Pm,-su,). b, € Poaa(My), su, € Spy.

attached to M, under the L-embedding “M, < LG. This pair is in turn the image
of an endoscopic pair (M, q);WX), and in particular, quux € P2(M}). Note that for

all 7_"¢, c-translates s, jof sy, the corresponding ¢’ also factors through Ly . And we
have

F5@. 50 = @) = Fx(@.s:1).

Now if we reverse our argument, we see any lift IT e will give rise to a family of lifts
My

I & for all semisimple s € S’¢, with image x in Sy, such that fé ((;3, s) are the same.
This finishes the proof.
O

In fact our discussion of the w-twisted intertwining relation for G can be extended
to that for G x 6. For ¢ € Dpaa(G?), suppose it factors through ¢y € ®pg4(M) for
some Levi subgroup M of G. Let us define

NG (G, M) = Norm(T (G, M), 55)/Cent(Ty (G, M), 59)°, WE(G, M)=W (5§, Ty(G, M)),
NS (G, M) = Norm(T (G, M), 5)/Cent(Ty (G, M), 5)°. W, (G, M)=W(5; . Ty(G, M),
and

+ — T ot T <040 + — ot 7.
N2 (G, M) = Norm(T; (G, M), §3)/Cent(T (G, M), §3)°, WG M)=W (ST, T5(G, M)).
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Then we can have a commutative diagram analogous to (4.6).

1 1 (4.12)
1 1
WO(G. M) W2(G, M)
WG, M)/ W(G, M)/
1 Sz(M) m;g(G, M) — W;’(G, M)—1
1 Sp(M) H m;(G, M)/ S W;(G, M) 1
|
1 Sz(M) sé*(c, M) L R;(G, M) —1
1 Sp(M) S;(G, M)/ N R;(G, M) 1
1 1

1 1

For u € ‘ﬁg(G, M), we again write w, for the image of u in Wg(G, M) and x, for
the image of u in Sg(G, M). Since w, normalizes Aj;, it also normalizes M , and

therefore can be treated as an element in the Weyl set W(G x 0, M ). The standard
parabolic subgroup P contammg M allows us to identify w, with an element in the
Weyl set W(G x 0, M) = W(G x 0, M) We choose a representative 6, of w, in
G(F) x 0 preserving the F-splitting of M. Then ¢y € ®pgq(M%) and u defines an

.o
element in Slp;‘w .
As in the previous case, we define

feo @ w= Y <u,my > tr(Rpjop©Ou, 77, $)TpCGru, ), [ € HG, 0.
ﬂMGl:[(pM

(4.13)

. . . .. -1
Here Rpjgp (6,4, JT;,}, ¢) is the normalized intertwining operator between Hy p(rrff,l )
and H p(;ryy), and

ToGm, f) = RO) ™ o Ip(u, f).

where R(6) is induced from the action of 6 on G(F). We can also define

foo@w =Y tr(Rpgpu, i, O Gu@w ', ), [eHG, .
[ﬁM]Eﬁq;M
(4.14)
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Herew = o™ (u) = «%(x,), R Plo 7(u, Ty, ¢~>) is the normalized intertwining operator

between Hgg(ﬁf,;l) and Hp(7y ® o~ 1), and
IGEn @™, f)=RO) ' o I8GEN @™, f).

As before, we can identify

Hophy )= D Horlh ),

Ty CReswyy

and

Hp(iy @ w™ ') = @ Hp(tm).

7 CRes

Then under these identifications, we have

RF‘QE(”) ﬁMs q;) = @ <u, 77:;} > RP‘QP(QM’ 77:‘]411/}7 d))

7 CResTT

Therefore, if f € ﬂ(é, X) is supported on Z FG(F) and f is the restriction of f to
G(F), then

f@f? (q;, u) = fGG (¢, u).

Suppose s is a semisimple element in S, and (G', ¢') —> (¢, s). For any lift 1:14;,,
let us define

fa@.9)=f9@). feHG.%.
Now we can state the (6, w)-twisted intertwining relation.

Theorem 4.12 Suppose ¢ € Ppyq(G), for semisimple s € S‘g with (G, ¢') —
(¢, s), the following identity holds for some lifts 1:14; and l:I¢~), that

foo @ w) = f5u($.5),  feHG, 3, (4.15)

where u € ‘ﬁg(G, M) ands € S’g have the same image in Sg.

Finally, it is easy to see that Lemmas 4.10 and 4.11 can be extended to this case too.
Moreover, the discussion of this section can be carried out for ¢ € CIDLfm.t(G) as well,
and the corresponding twisted intertwining relation will follow from the tempered

case.

@ Springer



L-packets of quasisplit GSp(2n) and G O (2n) 121

5 Stable trace formula and multiplicity formula
5.1 General setup and stable trace formula

In this section, we will set up the means to prove the main local theorem (Theorem 4.6).
The method is global and we are going to use various types of stabilized trace formulas.
To be more precise it is the discrete part of the trace formula and its stabilized form that
we are going to use. A detailed discussion of this can be found in ([7], Chapter 3). The
stabilization of the ordinary trace formula has been established by Arthur in [4-6], and
it also rests upon Ngo’s proof [34] of the Fundamental Lemma. In the twisted case,
this results from the long project of Moeglin and Waldspurger [32].

Letus assume F is global, and let G, G, D and 2 be defined as in Sect. 2.1.1. Let ¢ be
an automorph1sm of G preserving an F-splitting and we assume A is 6-invariant. Let
4 Ap = ]_[ 4 F, be aclosed subgroup of Zg(AF), such that 4 ZF, satisfy the conditions
in Sect. 2.4. We also require ZAF Zg(Af) = Zg(AF) and ZAFZG(F) is mapped to
a closed and cocompact subgroup in ZG (Ar)g. Let Zrp = Zp,. N ZG(F) and ¥ be
a character of ZAF/ZF Let Zy, = Zp, N Zg(Af) and Zrp = Zp N Zg(F). We
denote the restriction of X to Z,, by x. First we consider the discrete part of the
0-twisted trace formula for G. For any nonnegative real number ¢ and f € H(G, x),
it is a distribution defined as follows

6 _ —
IGe (D =D IWADITH 7 (det(w — 1) _go [~ r(Mpigp,i(w, )15, (X, ).
M
WeW? (M) eq
(5.1
Here we need to give some explanations of this formula. The outer sum is taken over
G (F)-conjugacy classes of Levi subgroups M of G, and the inner sum is taken over
elements w in the Weyl set

W% (M) = Norm(Ay, G x 0)/M

such that | det(w — l)age |=1 # 0, where aAG,IB is the kernel of the canonical projection
M
of

ay — ag — age,
and
age = ag/{X —60(X): X € ag}.
For any Levi subgroup M of G, we can take the direct sum of
Gises M(FO\M(AF), tp) S Lo (M(F)\M (AF), Cy)

such that the central character £y, extends x and is invariant under some element of
W (M), ¢»and the archimedean infinitesimal characters of the irreducible constituents
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have norm ¢ on their imaginary parts, then

IpaGio ) = / F@)Ipa (1, 8)dg

Zap\G(AF)

defines an operator on the space Hp (x) of the corresponding normalized induced
representations. The operator 110;’[( X, f) is the composition R(9) "' o1 r.i(x, f),and
Mpgp,:(w, x) is the standard intertwining operator between Hgp ;(x) and Hp ;(x).
Note when 6 = id, the term for M = G in (5.1) is given by trace of Rt?isc,t(f) =
Ic.:(x, f) on the corresponding part of the discrete spectrum of G.

The discrete part of the trace formula (5.1) can be stabilized, and we get the fol-
lowing formula,

0 7 ’
Ife(H= > uG.GNST . (f9). (5.2)
G'e&ui(GY)

Here Sg;a ,(f') are stable distributions on G’, and they are defined by induction from
the stabilized formula for / g; xS "). If we denote the image of Z , under the inclusion
(ZG)o — Zg' by ZAF andlet Z), = ZAF N Zg (AF), then ]g;c’[(f’) is defined with
respect to a character x’ of Z} /Z}. determined by x and the twisted endoscopic
embedding “G’ — LG, and f’ € H(G', x'). The coefficients ((G, G') are given by
the Kottwitz’s formula,

_ mZ@N)| |ker (F, Z(G)|

(G, Gy = ~ . |mo(Autg (G'))| !
(GO = z@ P el (F, 2@y AN
X |kgo /o N Z(G)|™! (5.3)
where kgo = A%. When 6 = id, the term |kgo /icge N Z(G')| ™' = 1.

We can also write down the same trace formulas for G , but in this case we also
need to consider the w-twisted version of these trace formulas. Let w be a character of
G(Av F)/ G(F ) and f € H((~}, %), the discrete part of the (9, w)-twisted trace formula
for G takes the form

&), 7 . )
ey (£ =2 WADIT 30 Idetw =10l
{M) WeW? ()0 M

x tr (M5, (w, DIFY . ), (5.4)

where the operator 1193";’(7(, f) is the composition R(8) ™' o R(w) o I3 (X, f). For

the term corresponding to M = G, we let Rdéisct(f) = Ig’t()N(, f) and denote
~ ~ 0 ~

R©®) o R(w) o RS, () by RS (f). After stabilization, (5.4) becomes

disc,t
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1890 = Y u@ .G 7, (5.5)
5’65611 (69 ,)

where the coefficients L(G G ) are glven by the same kind of formula as in (5.3).
We denote by A(G) (resp. Az(G)) the set of (resp. discrete) automorphic represen-
tations of G, and by . Caui (G) the set of families of Satake parameters of automorphic
representations of G, modulo the equivalence relation that ¢ = ¢’ € Cau,(G) if and
only if ¢, = ¢, for almost all places v. More generally, we extend this notion to
admissible representations of G(A r), and we denote the correspondlng set by C A(G)

Forc e CA(G) and its projection ¢ on LG, we can write Idmc :, C(f) (resp. ItggC ?)i (f)

andR(G ) (f))forthepartof Hct(f) (resp. I(G w)(f) R(G w)(f)),WthhIS

disc,t,¢ disc,t disc,t
contributed from automorphic representations 7 (resp. 77) satisfying c(;r) = ¢ (resp.

c() = ¢). Then Sgsc’m(f) can be defined inductively using (5.2) for & = id. To be
more precise, let

G’ G’
Sdisc,t,c(f/) = Z Sdisc,t,c’(f/)’

—c

and the sum is over the preimages c¢’of ¢ in C4(G’) under the twisted endoscopic
embedding G’ — L G. Then we define

G G G’ G’
Sdisc,t,c(f) = [disc,t,c(f) - Z UG, G/)Sdisc,t,c(f )
G'e€ui(G)—{G}

~( f ). The next lemma shows that Sgw nel f) (resp.

.. G
Slnnlarly, we can define S disct T

ngc’t’g(f)) is stable and we get a decomposition for (5.2) [resp. (5.5)].

Lemma 5.1 /. Sd”C :, (f) [resp. S d”C :, C(f)] is stable.
2. The stabilization of the twisted trace forniula (5.2) (resp. (5.5)) can be decomposed
according to ¢ € Cp(G) (resp. € € Co(G)), Le.

0 ’ /
e = «G.GHSG., .(f).
G'e€i(GY)
resp.
G ~ ~ P
189%H = Y uG.6SG, 2. (5.6)
G’eé‘ell(ég,w)

The lemma is an application of the theory of multipliers, and the proof is the same
asin ([7], Lemma 3.3.1). ~
Asin the local case where we study the relation of representations between GandG,

here we want to discuss the relation of IdGch N () (esp. S dl .y () with [ dl e C(f)

(resp. S disc. o £)). The next lemma is the first step of studying this relation.
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Lemma 5.2 Suppose 7 is an irreducible admissible representation of G (Ap)andm is
an irreducible constituent of  restricted to G (A ), then the set of Satake parameters
c(7) is mapped to c () under the projection p : LG — LG.

Proof This lemma is essentially local, and it suffices to show for any place v of F, if
both 7, and 7, are unramified and i, is contained in the restriction of 7, to G(F}),
then c¢(7,) is mapped to c(m,). If 51, is a torus, this follows from the Langlands
correspondence for tori. In general, 7, is an irreducible constituent of Z3 B, ( Yv) for

some unramified character ¥, on the maximal torus 7, with Borel subgroup B, 2Ty,
and one has c(7,) = c(Xy). Since

Resg! Tz, () = Tg, (Resy! o),

then c(ry) = ¢(Xyl7,). So again by the Langlands correspondence for tori one has
c(7T,) mapped to c(ry). m]

Now we assume G is of type (2.2). By Corollary 2.4, A(Zg(AF)) N D(F) =
MZg(F)). Sowehave AM(Zz(Afr)) NA(G(F)) = M(Zg(F)), which is equivalent to

G(Ap)NG(F)Zg(Ar) = G(F)Zg(AF).
Therefore,
G(F)Zo(Ar)\G(Ar) = G(F)Zg(Ar)\G(F)Z5(Ar)G(AF).

Let E be a character of Zx(Ar)/Zg(F) and ¢ be the restriction ofE to Zg(AF), then
we have

L5 (GUIPN\G(AF), §) = Ly o (G(F\G(F)Z5(Ar)G (AF), 7).

Note that right multiplication by G(F)Z & (Ap)G(Ap) on the right hand side induces
an action on the left hand side. In fact the action by G (F) on the left hand side is given
by conjugatlon on G(F)\G(AF) and the action by Zz(AF) is through the central
character ¢. The following lemma shows that the L?-discrete spectrum of G(Ap) is
essentially induced from the L2-discrete spectrum of G(Af).

G(Ar) ~
Lemma 5.3 IndG(F)FZG(AF)G(AF) 2 (GIFN\G(AR), D) = L2 (G(F)\G(AF),
0).

Proof First of all, there is a natural CN}(A F)-equivariant isomorphism
G(F)Zg(A\G(AF) = G(F) Z6(AR\G(AF) XG(p) 25 (apGap) CAF).

Here we can view 5(F)Z5 (AF)G(AF)\(N}(AF) as a closed subgroup of A(Zz(AF))
D(F)\D(AF). Since

MZg(Arp)D(F)\D(Ar)
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is compact (see [33], Theorem 6.1.6), then G(F)ZG (AF)G(AF)\a(AF) is also
compact. So one can define an inner product on the space of G(F VZ&(AF)G(AF)-
equivariant continuous functions from G(A F) to L2(G(F)\G(AF), ?), ie.,

[L2(G(F)\G(AF), ¢) ® C(C(Ap))|CFIZeANGHE)

by integrating over G(F VZE(AF)G(A F)\G(A r). Moreover, one can normalize its
Haar measure such that
L>(G(F)\G(Ap),Z) = completion of [L>(G(F)\G(AF), ¢)
®C(G (b)) 07540,

which is compatible with G (A p)-action. Note that the right hand side is nothing but

G(Ap) 2
200 i GPNG (), ).

Finally, since G (FZzAF)GAR)\ G (AF) is compact, one must have

G(Ar)
IAZ) i L GENG(AR). ©) = Ly (GNG(Ar). D.

m}

Let X be the set of characters of G(A F)/Z5(AF)G(AFr), and let Y be the set of
characters of G(A F)/ G(F )Z&(AF)G(AF). If 7 is an irreducible admissible repre-
sentation of G(AFr), and 7 is an irreducible admissible representation of G(A F), let
us define

G(n)={g e GAp): n8 =x)}
Xm)={weX: T =27 Q w}
Y@#)=YNX®F).

By ([15], Lemma 4.11), we know Y () = (G(Ar)/G ()G (F))* is finite. The fol-
lowing lemma is inspired by ([22], Lemma 6.2).

Lemma 5.4 Suppose 7 is an irreducible admissible representation of 5(A F), and
is an irreducible constituent of w restricted to G (Ar). Then the multiplicities of T and
7 in the discrete spectrum are related by the following formula

Z mE@ @ w) = Z m(r?). (5.7)

weX /Y X () 2€G(Ap)/G(m)G(F)

Proof By Lemma 5.3,

GFNG(Ap), D) = IndZ A L% (G(F\G(AF), ) (5.8)

dlsc G(F)Zz(Ar)G(AF)
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and we would like to expand the right hand side. First, we need to decompose

dm(G(F)\G(Ap) ) as arepresentation of G(F)ZG(AF)G(AF) Recall Zg(AFr)
acts through ¢ and G(F ) acts by conjugation on G(F)\G(AFr). Let & be any con-
stituent in L3, (G(F)\G(Af), ¢) and

Gi(m) = G(F)Zz(AR)G(AR) NG ().
Then G (;r) will act on the m-isotypic component / (r) and we get

m(m)

I(ﬂ)=@ﬂ1®w1,

where 71 is an extension of 7 to G(;r) and the sum is over m(;r) characters w; of
Gi(m)/Zz(Ar)G(AF), which gepend on the extension 771 and can have multiplicities.
Since m(mr) = m(w &) for g € G(F), we have the following decomposition

G(F)Zz(AR)G(AF)

m()
L (GIP\G(AF), ©) = P Tndg, ) Proao .
{m} 0]

where the outer sum is taken over equivalence classes {7} of constituents in
dm(G(F)\G(AF) ¢) under the action by G(F) Taking this expression into (5.8),
we get

G(AF)
L3y (GU\G(AF), §) = @ Ind ryzswme@r

~ m(r)
G(F)Zz(Ar)G(Ar)
o Indg, ¢ P m @ w

m ()

~ G(A
=Pmig ) D meo
wi

{m}
Moreover,

m(m)
~ ~ ~ G(A G
L2, (G(F\G(Ap).7) = @IndGE )”1 dcf’(’;) Priew
) i
m(m)
~ G(AF) ~
= P mag D Age |sw
{} 2] we(G(m)/G1(m))*

m ()

E@@ @ Indgi )F)fr1®a)®a)1,

) @1 we(Gr)/Gi(m)*
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where 77 is an ~e/txtensioAr‘l of 71 to 5(71) and w; is extended to CN}(JT). Suppose 7’ = 78
for some g € G(Af)/G(F)G (), we have

Gi(n)) = Gi(n8) = G(F)Zg(Ap)G(Ap) N G (%)
= G(F)Zz(Ar)G(Ap) NG (m)8.

Since G(7)¢ = G(7), then G1(7') = G1(). Hence T = nig ® wg for some
character wg of G1()/Zg(Ap)G(AF). Similarly one can show = ﬁf ® w, for
some extension of wg to G (7). So

Gr) 1~ ~g
Indg, 7y = @ ] Q@wQ wg,
we(G(m)/G1(m)*

and
G G 1 ~ G(AF) =8
Indé(n) Indg 'y = ) @ Inda(ﬂ) T Qw® wg
we(G(n)/G1(n))*
~ G(AF) ~
= ) @ Indé(n) T Qw® wg.
we(G(1)/ G (m))*
Therefore

m(m8)

L CENGAnD=H P P D

(T}~ geG(Ap)/G(F)G() @1 we(G(n)/G)(m)*

G(AF) ~
Indé(ﬂf TR0 w Qw,,

where the outer sum is taken over equixalence classes {m}~ of constituents in
LZ(G(F)\G(AF), ¢) under the action by G (A ). Note the characters w; in this for-

mula depend on 7. By our definition of G (r), the characters of 5(71) /G1() can
be extended to that of G(Ar)/G(F)Zz(Ar)G(AF). If we let

then from the above formula one can see easily that

Y m@Eeow = > m(w?).

weX/YX(T) g€G(Ap)/G(m)G(F)

O
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5.2 Multiplicity formula

It is natural to apply Arthur’s multiplicity formula (cf. Theorem 3.13) to the right hand
side of (5.7) for those representations parametrized by ¢ € ®,(G). But we can not
apply that formula directly since it only gives the multiplicity of 77 as an (G )-module
for [] € 1:I¢. So let us define

m(r) =Y m@'),

'~

where 7’ = 7 as H(G)-modules. Then the multiplicity formula for [7] € 1:I¢ asserts
that

() = mgy|Sy ™! Z <x,7m >, (5.9)
x€S¢

where m is defined in Theorem 3.13 and Remark 3.14. For any irreducible admissible
representation 7 of G (Af), whose restriction to G (A ) contains 7, let us also write

mE) =y Y, mE®w),

(#'~x7}/X weX/YXF)

where 7' = 7% ® o' as H(G)-modules for some o' € X, and we take such #’ modulo
twists by X in the sum. Then we can rewrite the formula (5.7) as

m(w) = Z m(r?). (5.10)

¢€G(AF)/G(m)G(F)

Now we can apply Arthur’s multiplicity formula (5.9) to the right hand side of (5.10)
to get the following result.

Lemma 5.5 Suppose 7 is an irreducible admissible representation of 5(A F), and
is an irreducible constituent of 7 restricted to G(Ar). If [] € Ty for ¢ € P2(G),
then

Y@
m(n)—m¢|a(8¢)| 1S;1 ;(x,n). (5.11)
xeS;

Proof First we want to rewrite the right hand side of (5.10) as an integral over
G(AF)/G(F)Zz(AF)G(AF). Consider the integral
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/~ B m(m®)dg
GAp)/GF)Z5(AF)G(AF)

¢€G(AF)/G(F)G(n)

= > m(8) - vol{G (1) /G () N G(F)Zg(Ar)G(Ap)).
8€G(Ap)/G(F)G(n)

/N o m("8) dh
G(n)/G NG (F)Zg(Ap)G(AF)

Since

vol{G (AF)/G(F)Zg(Ar)G(AF))

vol{G (1)/G () NG(F)Z5(Ap)G(AF)} =

IG(AF)/G(F)G ()|
and
IGAR)/GF)G ()| = Y (7).
then
m#E) = Y@l m()dg.

VoG (AF)/G(F)ZE(AR)G (AR} JGr) /G zstnGin
(5.12)

Combining the multiplicity formula (5.9) and also our local formula (4.1), we can
compute the integral on the right hand side of (5.12) as follows,

/N N m(m®)dg
GAR)/G(F)Zg(AR)G(AF)

m¢|S¢|_1 Z <x, 78 > dg
x€$¢

= mglSp ™ Y <xim = [ 0:(9) dg

eSy G(AR/G(F)Zg(AR)GAF)
=mylSsl~" Y <x.m > vol{G(AF)/G(F)Zg(Ar)G(Ap))
xeS8;
(4

=mglSs/Sz1 7185171 Y < x> Vol{G(AR)/G(F)Zz(Ar)G(AF)).
xES&

/E(AF>/6(F>25(AF>G(AF>

Substitute this into (5.12), one gets

S [Y ()] el
m(w) = m¢|a(8¢,)| |S¢| xgﬁ <X, 7T >.

O
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Although this lemma does not give a multiplicity formula for G, it has a very
interesting consequence.

Corollary 5.6 Suppose 7 is an irreducible admissible representation of CN?(AF), and
7 is an irreducible constituent of T restricted to G (Af). If [r] € 1:I¢ for¢ € D5(G),
then there exists w € X such that 7 ® w is isomorphic to a discrete automorphic
representation as ’F[(&)-module if and only if < -, 7w >= 1. In particular, ideg =1
such character always exists.

Proof Since (x, ) = (x, ) for x € §3, it follows from the formula (5.11) that

[Y ()] : LA
m¢,‘a($¢)‘ if <. 7>=1,

m(w) =
otherwise .

So the first part of this corollary is clear. Next if S G = 1, then we always have

Y ()]
(S’

m(@)=m

and this shows the second part. O

In fact, we can refine the result of Lemma 5.5 to get a multiplicity formula for G by
applying the stabilized twisted trace formulas. First, we need to define an equivalence
relation on C4 (G) such that ¢ ~ ¢/ € C4(G) if and only if ¢, is Xo-conjugate to ¢, for
almost all places, and we denote the set of equivalence classes by C A(G). Let C_W, (G)
be the subset of C_A(G) consisting of equivalence classes of Cy;; (G).

Lemma 5.7 Suppose ¢ € Ca(G), then
G ; G 7
Idisc,t,'é'(f) = Sdisc,tf(f) =0

for f € H(a, X), unless the projection of ¢ under p - LG > Lg belongs to the set
Caur (G).

Proof It follows from Lemmas 5.2 and 5.3 that
G F) —
1rRyise:2(f) =0, (5.13)
unless ¢ projects to ¢ € Caus (G). Suppose the projection of ¢in Ca (G) does not belong
to Caut (G), then by the principle of functoriality (which results from Arthur’s theory

[7]), it neither belongs to C_m,,(M ) for any Levi subgroup M of G, nor to (fau,(G’ )
for any endoscopic group G’ of G. Then for the same reason as (5.13), one gets

trR%sc,l,'E( fM) = 0. So it follows from the definition [see (5.1)] that
Iagsc,t,?(f) =0.
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Since

& A0 7 5 onse (7T
Sdisc,l,@'(f) = Idisc,t,z(f) - Z L(G’ G/) Sdisc,t,? (f ) ’
G'eEa1(G)—1G)

we can assume Sc?i;c,t,'g(fG/) = 0 by induction, then

SdGisc,t,E(f) =0.
O

For ¢ € ®(G), Arthur (cf. [7], Section 3.3) defines the ¢-component of the discrete
part of the twisted trace formula for G and its stabilized form. Note that c(¢) defines an
elementinCa (G), and ¢ also determines the norm of the imaginary part of archimedean
infinitesimal character, which can be denoted by #(¢), so we can write

G? G?
Idisc,d>(f) = Z Idisc,t(d)),c(f)’
c—c(¢p)

and

SdGisc,(Z)(f) = Z SLiGisc',t(¢),c(f)’
c—c(¢p)

where these sums are all over preimages c of c(¢) in C4 (G). Then the stabilization of
the ¢-component of the twisted trace formula for G is

§hsH= 3 UG.G)SG s(f,

G'e€ei (G?)

where

G’ G’ G’ G’
Sdisc,(;& (f7) = § : Sdisc,z(qs),c/ f7).
c'—c(p)

Here we want to define the ¢-component of the discrete part of the twisted trace
formula for G. Let us write

((N;o,w) AN (69,60) 7
Lives (D =D Ty iin 2
c—c(9)

and

Sagi~m¢(f) = Z SdGisc,t(¢),Z~'(f)~
c—c(¢)
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Then the stabilization of the ¢-component of the twisted stable trace formula for G is

&w) = ~ o~ =
10N = 3 1(G.6)sG.4 (7). (5.14)
6768611 (59 ,®)

where

G FG' G FG'
Sdise.$ (f )Z Z Sdisc.i)@ (f )

'—>c(p)

0 ~ -
Similarly, we can also define R;ﬁ C";;)( f). For ¢ € ®>(G), it only contributes to the

discrete spectrum of G (cf. Remark 3.14), and by Lemma 5.3 it also only contributes
to the discrete spectrum of G. So we have

~0 - GO ) ~
Ly () = trR,fsc’,(i,) (. (5.15)

Now we can give our multiplicity formula for G, and we will start with the simplest

case,i.e., G = GSp(2n) or GSO(2n, n).

Proposition 5.8 Suppose G= GSp(2n) or GSO(2n, n), @ is a discrete automorphic
representation of G, and 7 is an irreducible constituent of  restricted to G (AF). If
[] € Iy for ¢ € P2(G), then

e
m(7T) =mg |a(8¢)|’ (5.16)

where mg = 1 or2,and mg = 2 onlywhen G is special even orthogonal, ¢ ¢ ®(G%),

and 7 = 7% @ w for some w € Y.

Proof Since 7 is automorphic, we can take 7 to be automorphic as well by Lemma 5.3,
and hence < -, w >= 1. It follows from Lemma 5.5 that

Y ()|
?1a(Sp)l

(@) =m

(5.17)

Since 0y acts on {7’ ~x 7}, we can write

mo(E) = Y Y m@ ®w),

(A'~x7}/X.00 weX/YX (')

where the sum modulo twists by X and 6. If 7 = 7%, then

mo() =m(@) = ) mEQw).

weX/YX(®)
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If 7 2 7%, my(7) = %rh(ﬁ). Therefore, we have

Y7 e~
o me T‘L((Z))“ ifr = g%,
mo(7) = Y@ ' . (5.18)
@S] ifm Z a0,
Note that a(Sy) € Y (), so
|Y (70)] .
=Y Sy)|.
(Sp)l [Y (77) /a(Sp)l

In particular, Y (77) /0 (Sy) is a two-group. We can fix a subgroup of representatives in
Y () and denote it again by Y (7)/a(Sy).

Let us first consider the case w % 7% If Y (77) /o (S¢) = 1, then the lemma becomes
obvious. So letus assume 1 # w € Y (7)/a(Sy), and by the stabilized w-twisted trace
formula (5.14), one gets

= Y (8.6) s, (7).

G'e€at(G,)

for f € ’H(é, X). Since w is not in «(Sy), ¢ can not factor through LG’ for any
G’ € &,;(G) such that G e 5811(5, ). Then by Lemma 5.7, Sg;c’d)(fc') = 0 for
all G’ € 56”(5, ), and hence

5’ ~
Id(iscc:)q)b(f) =0.
In particular,
RO () = L) (f) =0, (5.19)

as ¢ € ®>(G). This is true for all nontrivial w € Y () /a(Sy). Let I () be the -
isotypic component in Rgim & and one observes Y (77)/a(Sy) will act on I (1) by
multiplication. The action of Y (77) /a(Sy) does not commute with that of CN}(A F), but

one can take

Gl ={geGAp) 1 w(g) =lforallw € Y(@)/a(Sy)).

which is of finite index in 5(A r), and then it will commute with the action of G }%F.
In fact one can have a decomposition

= @ 1hd

geG(AP)/G),
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by restricting to G }M. The point is each summand is invariant under Y (77) /o(Sy) and
has the same multiplicity as 7. By (5.19), one has

tr(R(f) o R(@))|1z) =0,

where R(w) denotes the multiplication by w. In particular, one can restrict to those f
supported on G | . then one has

tr(R(f) o R(@))|1((x1ye) =0

for all g € é(AF)/G}M. We can view I(7!) as a representation of H(G}%F) X
Y (1) /a(Sy) and write it as 7! ® W, then

tr(R(f) o R(@)|j(z1y = trre' (f) - trag (@) =0,
where nvlv is the corresponding representation of Y (7)/a(Sg) on W. Therefore,
trogy(w) =0
for 1 # w € Y(7)/a(Sy). We claim
|Y (7)/0(Sy)| divides dim(W). (5.20)

If that is the case, by noticing m(77) = dim(W) and comparing with (5.18) one must
have

Y (7)/a(Sp)| = dim(W),

hence m(w) = |Y () /a(Sy)I.

To prove the claim (5.20), one just needs to show the following general statement.
Suppose V is a finite dimensional representation over the complex numbers of a finite
group A such that the trace of each nontrivial element of A is zero, then the order of
A must divide the dimension of V. To see this, let xy and xiy be the characters of
V and the trivial representation of A respectively, then the multiplicity of the trivial
representation in V can be given by

m = (xv, Xuiv) = dim(V)/|Al,
which is an integer. Hence |A| divides dim(V').
For the case 7 = 7% and mg = 1, the proof is the same. So we are left with the

case 7 = 7% and mg = 2. In this case, we have 7% =~ % ® w for some w € X. Let

)

1
1

Xom)={weX: T EaQworm T Q w}.
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If# @ w2 7% for any w € Y, then

s
> mEew =
weX/Y Xo(#) o9

and the rest of the proof is again the same. If 7 ® w; = 7% for some w; € Y, we
need to consider the action of the two-group

((Bo, w1)) x (Y (71)/(Sp)) (5.2

on I (), where (6y, 1) acts by R(6p) ! o R(wy). It commutes with the action of
(60, wi)-invariant functions in H(GAF), ie. f% ® w; = f. And as a module of such
space of functions, we have

1) = P 1w=HnH | P P 1=hy

geG(Ap)/G) seG(Ar)/G),

where the sign is according to the eigenvalues {41} of any fixed intertwining operator
between 7 ® w; and 7% after we identify I (7) = m(7) 7. Note that the multiplicity
of 7 is the same as that of irreducible modules in 7 (7 _L) and I (r!) of the subspace
of functions described above, and then the rest of the argument proceeds in the same
way as before by using the stabilized (6, w)-twisted trace formula (5.14) for (6, )
in (5.21).

O

Corollary 5.9 Suppose & and 7' are discrete automorphic representations of G, such
thatt = 7' Q@ w as ﬂ(é)-modules for some w € X. If  is an irreducible constituent
in the restriction of @ to G(Ar) and [7] € 1:[¢ for ¢ € ®2(G), then there exists some
o €YandO € Xy suchthar # = #% @ w'.

Proof 1f G = GSp(2n) or GSO(2n, n), this can be seen easily by comparing (5.16)
with (5.18). In general, we can first go to the product group G of general symplectic
groups and connected general even orthogonal groups [see (2.4)], and it is clear this
corollary holds in that case. Then by restricting to G we get the result. O

To generalize Proposition 5.8, for [r] € 1:I¢ with ¢ € ®5(G), we denote by
Yo(m, Y) the subgroup of X consisting of 6 such that 7 ® w = 7 for some w € Y,
where 7 is an irreducible admissible representation of G(AF) containing 7 in its
restriction to G (AF). If we write Xy (i) for the quotient of X by X¢(x, Y), then we
have an exact sequence

1 —— Yo, Y) 0 Ty () 1, (5.22)

where all these groups are two-groups. We can also choose a splitting of this sequence
and write Yo = Xo(, Y) x Zy (7).
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Corollary 5.10 Suppose 7 is a discrete automorphic representation of _5 and 1 is
an irreducible constituent of T restricted to G(Ar). If [] € 1y for ¢ € O2(G), then

m(T) =m; Yel , (5.23)
1 (Sp)l
where mg = mg /| Ty (7).
Proof We will use the formula (5.17)
Y@
O =6 o Sl

It follows from Corollary 5.9 that

m@E)= Yy  m@".

feXy(m)

Since m(7?) = m(7) for @ € X, then we get

|Zy ()] -m(7) =myg Laol :
loe(Sgp)
So by writing mg = mg /| Zy ()|, we have proved the formula (5.23). O

Suppose ¢ € Cf>2(G), let E be a character of Zz(Ar)/Zz(F) such that ¢ =
E|ZG is the central character of I:I¢. If we denote by IT .7 all equivalence classes

of irreducible admissible representations of 5(A F) as H(é)-modules with central
character ¢, whose restriction to G(Ar) have irreducible constituents contained in

1:1¢, then by Corollary 5.6 we can always choose a representative for [7] € T1 0.7/ X

with (-, 7) = 1 in the discrete spectrum of G. The following proposition gives a
decomposition of the ¢-component of the discrete spectrum of G.

Proposition 5.11 Suppose ¢ € O, (G), we have the following decomposition as
‘H(G)-modules

Liisc,qb(é(F)\a(AF)v 0) =my Z Z 7TQw, (5.24)
weY/aSy) [z1e, 2/ x
<<,ﬁ><=1

where 7 are taken to be the representatives of Tl .7/ X in the discrete automorphic
spectrum. Moreover,

L2 o (GIFN\G(AF). D) =0

for ¢ € (G) — P2(G).
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Proof For ¢ € ®(G) — ®2(G), we have L. «(G(F)\G(AF)) = 0 (cf. Theo-
rem 3.13). Then it follows from Lemmas 5.2 and 5.3 that L3, . , (G(F)\G(AF),7) =
0. Next we assume ¢ € D5(G). By Lemma 5.3, L,21,-SC¢(5(F)\5(AF), E) consists
of discrete automorphic representations in m ¢.z- Then for any automorphic repre-
sentation 77’ in L?h se d)(é(F )\G(AF) Z) there exists a representative 77 chosen in

(5.24) such that 7 = 7’/ ® w as H(G) modules for some w € X. By Corollary 5.9,
~] ~

7 2" @w ford € Tpand o € Y. In particular, 7’ = n®a) asH(G)
modules . Therefore, it suffices to count the multiplicity of 7 as H(G) modules in
¢(G(F)\G(AF) ;) By Corollary 5.9 again,

dzsc

s
Zm(ﬁ’)= Z m#@’ ® w) = Y@, By ()] - m (),

' ~7 e, weY (7) Y @)
where 7/ = 7 as H(é)-modules and
YA)={weY :7®w=7as H(G) — modules}.
By Corollary 5.10, we have

1Y ()]

|Zy ()] - m() = mg PEA

SO

S ) = m ¥ (@)
Syl

T/~

This is exactly the multiplicity we get from (5.24).
O

Now letus get back to the multiplicity formula. Note under the assumption of Propo-
sition 5.8, if G is general symplectic, then the multiplicity formula (5.16) becomes

1Y (7]

) = Sl

It is an interesting question to ask when one can have multiplicity one, i.e. |Y ()| =
|e(Sy)l. Since a(Sy) is a subgroup of Y (77), it is the same to ask when

a(Sy) = Y (7).

@ Springer



138 B. Xu

By Corollary 4.2 we have the following description for Y (77). Let us define

aut

l_[a(S(/)”) ={weY :w, €a(Sy,) forall v},
v

aut
l_[ a(Sy,) '=1{w e Y : oy € a(Sy,) for almost all v},

almost all v

then

aut

Y(7) = ]—[a(s%).

Moreover, we get a sequence of inclusions

aut aut

a(Sp) S[JaSs) S ] Sy,

almost all v

Motivated by the case that G is symplectic and ¢ € ®,(G), we give the following
definition for both symplectic groups and special even orthogonal groups.

Definition 5.12 Suppose ¢ € ®(G), we say multiplicity one holds for ¢ if

aut

a(Sp) = [ [a(Ss,)-

Definition 5.13 Suppose ¢ € ®(G), we say strong multiplicity one holds for ¢ if

aut aut

[TeSe) = [] oS

almost all v

The motivation for the first definition is now clear, while the second definition needs
some explanation. But before giving the explanation, we want to give two modified
definitions of the same kind. In view of Theorem 3.13, we need to deal with the group
of characters w, such that

fv(ﬁ'v ® wy) = fv(ﬁv)» fv € 7‘_[(61))

for [m,] € I:I¢v. It follows from Corollary 4.2 that this group is isomorphic to oz(vao).
Then we can similarly define a sequence of inclusions

aut aut

a S c[Jas;He [ aSO.

almost all v
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and define the concepts of multiplicity one and strong multiplicity one in the same
way regarding these groups.

Definition 5.14 Suppose ¢ € ®(G), we say Zo-multiplicity one holds for ¢ if

aut

a (S =[S,

Definition 5.15 Suppose ¢ € ®(G), we say o-strong multiplicity one holds for ¢
if

aut aut

[Tes;y = J]  as.

almost all v

Recall that we can associate a global L-packet I:I¢ to ¢ € ®(G), so we can talk
about strong multiplicity one for the global L-packet l:I¢,, i.e. if 7 is automorphic,
and [7,] € 1:I¢v for almost all places v, then [r] lies in 1:I¢. As in the local case (see
Theorem 4.6), we can expect to lift the global L-packet l:I¢ to some global L-packet IT 3

for G. Obviously the lift is not unique, but as one can see from Corollary 5.9, it should
be unique up to twisting by idele class characters. Because we already have strong
multiplicity one for l'[¢, so strong multiplicity one for 1'[ is equivalent to the property
that for any w in Y if 1'I¢ = 1'I¢ ® w, for almost all places v, then H¢ = 1'[¢ ® w.
And it can be easily seen that this property is equivalent to the condition of X-strong
multiplicity one in our definition.

5.3 Statement of global theorem

After discussing the multiplicity question, we want to describe the ¢-component of
the discrete spectrum for G, which should be an analogue of Theorem 3.13. We again
assume G is of type (2.2).

Conjecture 5.16 1. Suppose ¢ € ®(G), one can associate a global packet TI 3 of

ﬂ(a)-modules of irreducible admissible representations for 5(A F) satisfying the

Jfollowing properties: . .

(a) Hq; = ®; H(/;U wherf l'Iq;U is some lift of Ty, defined in Theorem 4.6.

(b) there exists 1] € l'I such that that 7w is isomorphic to an automorphic
representatlon as H(G) modules.

Moreover, 1'I¢~) is unique up to twisting by characters ofG(AF)/G(F)G(AF) And

we can define a global character of S by

<X, >:=H<xv,ﬁv> for frelzléand xeSd;.
v
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2. S_upgose ¢ € ®1(G), the ¢-component of the discrete spectrum of G(Ap) as
‘H(G)-module has a decomposition.

Ly GENGAR. D =my P P 7 (625
weY/a(Sy) [7]el ;00
<., 7>=1

where my is defined as in Remark 3.14.

Along with this conjecture, we need to prove some results about the stable mul-
tiplicity formula for G (see Conjecture 1.5). This formula has been conjectured by
Arthur [2] for any quasisplit connected reductive groups, and he also proved this for
special orthogonal group and symplectic group in [7]. To state the formula, we need
some preparations. Suppose S is a connected complex reductive group with an auto-
morphism 6, we denote $% = § % 6, which can be viewed as a connected component
of the complex reductive group St := Sx < 6 >. We fix a maximal torus T of S,
and define the Weyl set

w?(S) = Norm(7, $%)/T.
Let W9(S) reg be the set of Weyl elements w such that
det(w — 1)|q, # 0.

Moreover, let s (w) denote the sign (—1)", where n is the number of positive roots of
(S, T) mapped by w to negative roots. Now we can assign to S? a real number

i"© =W > L)l detw — D).
weW?f (S)

reg

where W (S) is the Weyl group of S. Next we want to define a constant o (S7) associated
with any connected complex reductive group Sj. To define this we have to introduce
some more notations. Still for the original S?, let us denote the set of semisimple
elements of S? by S%.. And for any s € S%, we write

S; = Cent(s, S).
Let
Sh = 1s € S8 1 |1Z(Sy)| < oo},

and Ef”(S) be the S-conjugacy classes in Sfll. Finally the constant o (S7) can be
characterized by the following proposition ([7], Proposition 4.1.1).
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Proposition 5.17 There are unique constants o (S1) defined for all connected complex
reductive groups Sy, such that for any connected component S° of a complex reductive
group, the following number

)= ImGHI o (50"

s€&9,(S)

equals i% (S), and furthermore
o (S1) = (S1/Z|Zi| 7",
for any central subgroup Z; of S1.

Now we can state the stable multiplicity formula for G as follows.

Conjecture 5.18 Suppose ¢ € ®(G), then

SGepN=mg 3 150N /CG@w). [eHG. D). (526)
weY [a(Sy)

where

fa(‘ﬁ Q) = va(‘isv ® wy),

with respect to T1 3 defined in Conjecture 5.16.

Finally, we need a twisted version of the decomposition (5.25), whose role will be
clear in the next section.

Conjecture 5.19 Suppose ¢ € ©2(G) and x € Sg with a(x) = o for 6 € Xy and

some character @ of CN}(AF)/G(F)G(AF). For [7] € I:I(Z; with < -, 7 >= 1, the
canonical intertwining operator

R©O)"' o R(w)
restricted to the w-isotypic component 1 () in the discrete spectrum is equal to the

product of m(7) and the local intertwining operators Az (0, wy) normalized by x,
(see (4.3)), i.e.

~0 - ~ ~ ~ TN~
10N =m Y Y jeGe). feHE.DH. (27
o' €Y /a(Sy) [ﬁ]ef[q;®w’

<, w>=1

where f69 (T, ) =11, fgg (7Ty, wy), and it does not depend on x.
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Remark 5.20 This kind of result has been proved in the cases of special even orthogo-
nal groups (see [7], Theorem 4.2.2) and general linear groups (see [7], Lemma 4.2.3).

In this paper, we will only establish these conjectures in a special case.

Theorem 5.21 Suppose G = G x Gy X --+ X Gg, such that G; is a symplectic
group or a special even orthogonal group. For ¢ = ¢1 X ¢pp X - -+ X ¢pg € ®(G) with
¢; € (Gy), if8~[_ = 1 foralli, then Conjecture 5.16, 5.19 hold. If we further assume

¢ € ®2(G), then Conjecture 5.18 also holds.

5.4 Comparison of trace formulas

We assume G is of type2.2and 6 € Xy. Since we are going to prove all the theorems by
induction, here we would like to take a temporary induction assumption: we assume
Conjecture 5.16, 5.18, 5.19 together with our main local theorem (Theorem 4.6)
hold for the proper Levi subgroups and twisted endoscopic groups of G. Based on
this assumption, we want to expand the ¢-component of (5.4) and (5.5) in terms of
local objects. Before we do the expansion, let us write ® (G, ¢) for the set of global
Langlands parameters of G giving rise to ¢ € ®(G). It is clear that |®(G, ¢)| = Mmg.
So we can write formally those formulas (5.25), (5.26) and (5.27) for ¢g € @ (G, ¢)
by simply setting mg; = 1. In fact these formal formulas do make sense when we
associate to ¢ the refined global L-packet (see [7], Section 8.4). But we do not need
this refinement here, for eventually we are going to sum over ® (G, ¢). The benefit of
working with these global Langlands parameters is one can imitate the computation in
([2], Section 5 and 7), where one does assume the global Langlands correspondence.

5.4.1 The spectral expansion

Let us write the ¢-component of (5.4) as

G o), & S - ~ b F
Iéisc,g)(.f>=Z|W<M>| DY |det(w=1) g | "tr(Mpg5 o (w. DIFS T ).
{M} UJEWH(M)reg

So the key is to expand
tr(Mpig5. o (w. DI ) (5.28)

By definition, (5.28) does not vanish only if there exists ¢y € ®2(M, ¢). Moreover,
the (G(F) x Xp)-conjugacy class of M such that Dy(M, ¢) # ¥ is determined by
¢, and the choice of ¢ € (G, ¢) determines the G (F)-conjugacy class of M such
that &2 (M, ¢pg) # ¥. So we can fix such a G (F)-conjugacy class of M and assume
¢m € ©2(M, ¢). To apply our induction assumption we also need to assume M # G,
ie., ¢ ¢ P2(G).

Note the diagram (4.12) in our discussion of the local (8, w)-twisted intertwining
relation can be defined in the global case, and the global analogue of those groups in
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the diagram will map to their local counterparts. It is not hard to show, using a similar
argument in Proposition 5.8, that (5.28) vanishes unless there exists u € ‘ﬁg such that

Wy = w and w = a()gu). So ¢y € 5)2(M9“). Now we can apply Conjecture 5.16 to
¢y . For any [7Ty] € Hq;M, let us define

Rpjop(u, Ty, P) = 1_[ Rp 105, (v, T, bv).
v

In particular, if 7y € Ay (1\7 ), we can write
Rpo5(w, 7ip, @) = rp(w, ¢p) ™ Mp 5w, 7).,

where rp (w, ¢pr) is the global normalizing factor defined by

re(w, ¢u) = [ [ re(wo, du,)-

It follows from Conjecture 5.19 and analogous result for GL(N) (cf. Remark 5.20)
that

Rpjp(w, 7im, @) = Rpgp(u, im, §)
for any u € ‘ﬁg (w, w). Here ‘ﬁg(w, w) consists of u € ‘ﬁz such that w, = w and

a(x,) = w. Applying Conjecture 5.16 (2) to M, we can write (5.28) as a double sum
over ¢pg € (G, ¢) and ¢y € Dr(M%, ¢¢) of

Z Z 84, Ta)rp(w, da)tr (Rpjgp(u, T, ‘l;)lf?’w(ﬁM 2wl ).
a)/GY/O((S¢M) [ﬁM]ef[sz Q'

where

5$M(ﬁM)=|Sd;M|—1 Z <X,y > .

X ES ‘{)M
Moreover, we can write

Y < xdm > Rppp, v, @)= D Rppp, iim, ).
xeSq;M ue‘)’li(w,w)

If we switch the sum over 7 € I1 b ® o' withu € ‘ﬁg(w, w), and define

fo@d, =" Y tr(Rpep Fu, HIF Gy @™, ),

[ﬁM]eI:Id;M®w’
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then (5.28) becomes a double sum over ¢ € ©(G, ¢) and ¢y € Oy (MO, ¢g) of

Z |5¢3M|_1 Z rp(w, om) fz0 (9 @ o', w). (5.29)

W'eY [a(Sp),) ueN (w,)

Since we are taking f € 7:{(5, %), the contributions of ¢ € ®>(G, ¢) to the ¢-
component of (2 .4) are the same. So the ¢-component of (5.4) can be written as a sum
over w € WG(M),eg and ¢y € ©o(MO%, ¢pg) of

mg|W (M)| ™" |det (w = 1)_go| ™"
M

multiplied with (5.29). Here we can identify W(A7[ ) with W (M), and it is easy to see

|det(w — 1) zo| = |det(w — 1) 5o.
aﬁ GM

Next we want to switch the order of the double sum over w € W9(A71 )reg and
bdm € d>2(M9" ,?G) to a double sum over ¢y € (M, ¢pg) and w € Wg’reg, where
Wg’reg = WQ(M)reg N Wg. Since the nonzero contribution of each ¢y € ®r(M, ¢i)
is the same and

|[WM)|
P Mv = o
|P2(M, $6) A

then we get a single sum over w € Wg,r cg of

mg|Wel 1S5, 17" det (w — D o0 I~
multiplied with

Z Z re(w, ¢u) fz0 (0 @ ', u).

w’eY/a($¢M) ue‘ﬂg(w,w)

Note the double sum over w € Wg reg
9

¢.reg

and u € ‘ﬁg (w, w) can be rearranged as a

double sum over x € Sg (w) and u € N (x), where

SZ(w) ={xe Sg ta(x) = wl,
and

‘ﬁg,reg(x) = {u € ‘ﬂg Xy =X,wy, € Wg)reg}.
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So we end up with a sum over x € Sg (w) of

my|We|™'1S;

-1
|

multiplied with

> > |det(wu—l)u?;|_1rp(wu,¢M)f§9(¢~5®w/,u). (5.30)

o'€Y Ja(Sy,,) uemgm (x)
If we write
rg (W) = rp Wy, $u),
and define sg (wy) to be (—1)", where n is the number of positive roots of (S’g, 7_"¢)
mapped to negative roots by w,,, then by Arthur’s sign lemma ([7], Lemma 4.3.1) we
have

rg (wy) = s (wy).

Moreover, by our comments after Lemma 4.10, fgg (q; ® o', u) only depends on the
image of u in 8%, so we can write

fe0 (@ @' u) = fgo (@ @, x)

Therefore, the term (5.30) becomes

> > sYw)lder (wy — D et ™ fae @ ®@ @ x).

w'eY/a(Sy,,) ue‘ﬂz,reg(x)

For o’ € a(Sp), lzld; R = lzld; and

(Flzr6m)50 @ © &', x) = fgo (%) = (fl7,6(r)50 (& ),
where f is the restriction of f to G(F). So we get for ' € a(Sy)

fer @@, x) = fgo(d, x).

Therefore we only need to take the sum over o’ € Y /a(Sy) in (5.30), and then multiply
by |a(Sp) /o (Sg,, ). Since

|S¢| ISJ’M'
a(Sg)/a(Spy )| = —— - ,
| d)/ [ | |S¢~)| |S¢M|
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the resulting constant multiple is my times

_ 1Sl 15,1 —1 15y
(Wol 1S5 1712 = Wyl 1Spy 17122
_118l
=My~ =2
1S5
_ ey
= Wy~ Sy =2
1S5
w0 =1 c_—1
= |WI7l1s51 "
Let
C43=m¢|543|71,

and we define

g =1WgI™h D sgwlderw =1 g™,
wEWgyreg(x)

0

where W? .reg

¢qreg(x) is the image of N

(x) in Wg’r eg’ Hence we have shown the
following lemma.

Lemma 5.22 Suppose ¢ € ®(G) — ®2(G), 6 € Xg and w € Y, then

~ ~ o .
e h=c; Y Y iwfa@ed.x). feHG.X). (531)
'€ [a(Sp) xesg(a))
5.4.2 The endoscopic expansion
Parallel to this (0, w)-twisted spectral expansion (5.31), we will proceed to expand

the ¢-component of (5.5). Note that if 6 = id, ® = 1, we can only expand the right
hand side of

LoD = SSies(D=" > uG.GNS5 s (f)
G'e€a1(G)—(G)

based on our temporary induction assumption. By Corollary 2.6 we know Ker! (F,
Z(é)) = Ker!(F, Z(G’)) = 1, so the formula (5.3) applied to L(é, G') can be
simplified as

(G, G = 12GHT 17 |Outg (G~ o (kg | ! (5.32)
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where
Z2(GH = 2(G) 2@ 1ZG)T,
and
~ ~ ~ ~ F
Outs (G = Autz(G)/G'Z(G).

Note that |o(kge)| = 1 here, argi this formula (5.32) is given in ([2], Lemma 3.2).
By applying Conjecture 5.18 to G/, we get

G ow= Y 1S e @ @), [ eHG.LT)

w’EY’/aG/(Sd)/)

for ¢’ € ®(G’). By Lemma 5.7, the ¢-component of (5.5) is summed over ¢g €
(G, ¢) and

{(G',¢'): G € Eq1(G?, w) and ¢’ € D(G', dg)}

of distributions Sgsc ( f "). Again because we are taking f € 7'_[(va, %), the contribu-

tions of ¢ € ®(G, (}5) to the ¢p-component of (5.5) are the same. If we fix a parameter
¢G € P(G, ¢), then the first sum collapses to be a constant multiple

|®(G, P)| =myg.
Now letus fix ¢ := ¢€ asa homomorphism from L to LG, instead of a a—conjugacy

class, and let S.?) = Cent(Impg, G x0)/Z(G)'. We observe (G, ¢') will correspond
to (¢g, s) fors € S’g’ss(a)), where

Sg,ss(w) ={se Sg,” Co(s) = w}

by taking suitable a-conjugation, and s is determined up to §¢-conjugation. Let us
use the convention to denote the conjugacy class of Sy in Sg,” (w) by

5p\S5 45 (@).
Then this correspondence gives us a map
{(G'.¢): G € Ent(G”, w)and ¢ € (G, p5)} —> §4\5] (@)

The point is the contribution of (6’ , ¢") only depends on its image under this map,
so we want to write the double sum over (G’, ¢’) as a single sum over the image. To

@ Springer



148 B. Xu

characterize the image, it is equivalent to find s € § d) 55 (@) with (G/ 5, @) —> (¢g, s)
such that G’ s is elliptic. If we define

Sg,ell = {S € gz,ss : |Z(*§g,y)| < OO}

51g,ell(w) = [S € Sg,ss(w) : |Z(‘§g,5)| < OO} s

then for s € S‘z o1 (@) it is easy to see that G s is elliptic. The converse is not true,

but the contribution from pairs (G~’S, ¢’) with s ¢ Sg’e” (w) is zero by the stable
multiplicity formula (5.26). In fact

89 = (S4.°Z(G"" 1 Z(GH"

and o (8%,) = 0 unless | Z(8%,)| < co. If we write

0 _ Sp.en — {1} if0 =id
¢.ell — 519 th :
b ell otherwise
and
_ —{l} if=id, ow=1
o) = | 5! .
’e 51 (@) otherwise

then the effective image of this map should be S’(p\gg o1 (@). The next problem is to

count the fibre of this map. Since G’ is taken to be the isomorphism class of endoscopic
data, the fibre containing (G’, ¢) must have the endoscopic datum isomorphic to G/,
and hence can be obtained by the action of Autg(G’). Moreover, ¢’ is taken to be
G -conjugacy classes, so the fibre should be isomorphic to

AutG(G")/Sp, sIntG(G') = OutG(G")/(Sy sIntG (G') /IntG (G')),

where Intg (G') = 5’2(6)r and Sy s is the preimage of S}m in Sy. Moreover let us
write

Sp.sIntG(G')/IntG(G') = Sp.5/Sp.s N G'Z(G)"

So we can turn the ¢-component of (5.5) into a sum over s € 5‘4’\3&8&11 (w), but
multiplied with the size of each fibre

|0utG (G)|Sp.5/Sp.s NG Z(G)' |71
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In fact, it is more convenient to sum over the conjugacy classes in S’f o11(w) by the
group S’g. So let us define

0 S0\ o0
E;S,ell = S(IB\S(/j),ell’
gf,ell (w) = Sg\gf,eu (@),

then changing to sum over £ ﬁell (w) amounts to multiplying by
0,30 15 /5 -1 _ % 0 15 /50—1
180/59 150/ S.51™" = 155.5/53 1136/5917"
Finally, we get a sum over s € £ gel ; () of the product of the following three terms

|Outg (G|~ [0utG (G,
1S5.5/S8.5 N G'ZG) 1718517 1Z(GN 17139,/ 1.
and

melSo/S3 D0 o5 FC6 @)
o'eY’ [aF (Sy)

where (G', ¢') — (¢g, s). Note that
| —— D —— Autz(G') — Autg(G') — 1.
SO

|Outg (G|~ [0utG (G")| = |Int (G")/(Int(G")/ D)
=1G'Z(G) /(G'2(G) /D)| !
T A ~ Al T Ay =1
=126 /2(G)" nG'(z(G)' /D)
T A \T BT Ay =1
=1Z(G)" /(G'n Z(G))(zZ(G)' /D).
Moreover, we have S‘g L= S‘g’s and S‘g = S’g, so we can rewrite the expansion of

¢-component of (5.5) as a sum over s € Eq’gel ;(w) of the product of the following two
terms

1S.5/Sp.s NG Z@G) 7118y 17 1ZGH 17 1Sp.5/55 510 (59 (5.33)
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and

Yo mplSel TSy IISH 1T ZGH T IZGH1TZ@G)
w'eY' /ab (Sy)

G NzZ@NHYZG /D F @ ® ). (5.34)

As one can see, (5.33) is only relevant to G, and it can be simplified as in ([7], Section
4.4). So we will just repeat the simplification there. First we note that

Syl = 1m0(Sp)| = 1354 N G'/(Sp.)° Z(GH".
where G’ denotes the quotient G'Z(G)"' /Z(G)T . Consequently,

1S4.5/Sp.s NG Z(G)T |71 S| ™!
= 184.5/Sp.s NG| 7 8.5 NG/ (S4.)°Z(GNHT|
= 1S4.5/(Sp.)°Z(GHT 7.

The product of the first four factors of (5.33) therefore equals

16.5/59 s Z(GHT 171189 (Z(GN' /(Sp.0)° Z@GHT |71 1Z@GHT 171 154.5/55 ]
=159 ,Z(G"" /53 1189 1/ (Sp.)°1 "+ 183 N (Sp.5)°Z(GN)"
/Sp.)°1 - 1Z@GHT !
= |70 (S )I7" - 1Z(GH /83, N Z(GH| 155, N Z(@GHT
/S4.)° N Z(GH| - 1Z@GH !
= mo(S9. )17 18p.)° N Z(GHT 7.

Furthermore, we can write

7 (89) =0 ((84.5)°/(Sp.5)° N Z(GH")
=0 ((S.9)N(S4.)° N Z@GH".

Hence the first term (5.33) is equal to
[70(59 )1~ o ((55.9)").
For the second term (5.34), let us denote
fO@ )= ft@@d.s), feR@ 5.
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Also notice |ozG/(S¢,/)| = |S¢// ,| and m¢|S -1 = ¢, SO we can write it as

Yoo CalaSpI e (SN ZGHI1ZGH 171 Z2(6)"
W' eY'[ab (Sy)

/G N Z@&))NZ& /2! 5 (@ @, 5).

In view of (5.31), we need to turn this into a sum over Y /o (Sy) instead of Y’/ch/ (Sg)-
To do so we need the following two lemmas.

Lemma 5.23 Suppose ¢, € Cbum ((Gy), and sy is a semisimple element of S'q;u with

(G, @) — (¢, sv). If we assume the main local Theorem 4.6 for the lift ql;,’j of ¢,
then for any w), € a(Sy,) we have

fég(qgv ® w;’ sv) = fég(d;va Sv)v fv € 7:{(51}1 5(1))

Proof Since f~9 (¢v, sy) only depends on the image of s, in S (see Lemma 4.11),

accordlng to the formula (3.1) of Sy,, we can assume s, commutes with some
ty € S¢ such that «(r,) = ). Note that tv e Autg, (G, )/Z(G Yo If 1, €

Intg, (G;)/Z(GU)F”, thenitis easy to see ), € « Gy (8¢,;J), so there is nothing to prove.
If 1, ¢ Intg, (G;)/z@,)Fv , we denote the inducing automorphism of G/, by 8’, and it
can be extended to G',,. Then it follows from Corollary 4.2 that I:Ig, =11 & ®w),. Since
£ s Outg, (G',)-invariant, we have £ (@) = G () = £ (9, ® w)).

O

Since Zg(Af) = Ag(AF) - Zg(AF), we can identify Y with the quotient

Ker(H'(Wp, D) — H'(Wp, Ag))
Ker{H'(Wp, D) - Hom(G(Af)/G(F), C*)}’

where the involved homomorphisms are from the following diagram

H'(Wp, D) ————— H'(Wp, Z(G)) ————— H'(Wp, Ag)

[ | [

Hom(D(Ap)/D(F),C*) —— Hom(a(AF)/a(F), C*) —— Hom(Ag(AFp)/Ag(F)).
In the same way, we can identify Y’ with

Ker{H'(Wr, D) - H'(Wr, Ag))
Ker{H!(Wp, D) — Hom(G'(Ap)/G'(F), C*)}’
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Note that Az = Az under the inclusion of Zx = (Zz)e to Zz;, and also we have

H'(Wp, D) —— H'(Wr., Z(G)) — H'(Wr, Ag)

A

H'(Wg, D) —— H'(Wp, Z(G')) —— H' (Wi, Ag).

So Ker{H'(Wp, D) — H'(Wp, Az)} = Ker{H'(WF, D) — H'(Wp, Az)}, and
we can first sum over this group. Then the rest is to determine the quotient

|Ker{H! (Wr, D) — Hom(G'(Ap)/G/'(F), C)}|
[Ker{H!(Wg, D) — Hom(G(Ap)/G(F), C)}|

Lemma 5.24

Z@ NZGHT171Z6) (@ N 2@ ) Z(G) /D)
_ |Ker{H'(Wp, D) — Hom(G'(Ar)/G'(F), C¥)}|
" |Ker{H'(Wg, D) — Hom(G(Ap)/G(F),C¥)}|

Proof From the proof of Lemma 2.11, we see
Ker{H' (W, D) — Hom(G'(Ar)/G/(F), C)} = 2(G)' /(2(G)' /D),
and
Ker{H'(Wg, D) — Hom(G (A)/G(F), C)} = Z(©)" /(2(G)" /D).
Therefore it is enough to show
Z@GH 1Z@GHT 2@ /@ 1 2@z /D)

_ 2@ /2@G) D))

— . (5.35)
|Z(G)T /(Z(G)''/D)|

We start by considering the following exact sequence

| — (' NZ(G)")/@G N (ZG) /D)) — 2B /(2(G) /D)
— 2@ /(@ N 2T Z G /D) —> 1.

It follows

(G'N Z(G)")/(G N (Z(G) /DY) .

1ZG) (G N 2@ )Z(@G) /D) = — —
|Z(G)T /(Z(G)T /D))
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If we write

G’ NZ©")/(@ N (Z©G) /D)) = (Z@G) N Z©G))/(Z(G)NZEG)/D).

then
IG'N 2@ /G N (@) DIZ@H N1ZGH |
=1Z(GH" /(Z(GH N Z(G)")/DIZGHT| !
= 12(G)/(Z(G"' /D)|.
Hence (5.35) holds. ]

As a consequence of Lemmas 5.23 and 5.24, we can sum over Y /a(Sy) for (5.34)
and get

Z C&fée(‘i(@w/,s)-

W €Y a(Sy)

To sum up, we have shown the ¢-component of (5.5) has an expansion

Y YOI 0 (850" Y Coff@@a,s)

segge”(w) w'€Y [a(Sy)

= Y G Y SIS0 f @@ W),

' €Y Ja(Sp) segq’fe”(w)

Finally by the same argument as in the proof of Lemma 4.11, there exists a family
of global lifts [y, for all s € S with image x in S}, such that the distribution

fée (¢~> ® o', s) are the same. So we can write
fé0(¢; ®d,s) = fée(‘i; ® o', x).

Moreover, we can split the sum over s € £ f o1 (@) into a double sum over x € Sg (w)

ands € S(;e’e” (x), where gé)e,ezz (x) is the subset Ofgf,ell that mapped to x. If we define

ef)y="Y_ |mo(S3 ) o ((S5.00).

se&fdl (x)

then we get the following lemma.

Lemma 5.25 Suppose ¢ € ®(G), 6 € Tpand w € Y. If0 = id, w = 1 then

15 es D = SGesD=C S Y it@dov.n. (536

a)’EY/c{(S(p) xESd;
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Otherwise,

1G9Oh=c; Y Y dwih@ed.. (5.37)

W' €Y/a(S4) xeSh(w)
Corollary 5.26 Suppose ¢ € ®(G) and 8(/; = 1, then the distribution Igmd)(f) is
stable .
Proof Since S 5= 1, it follows from (5.36) that

1o (DN =SS s(D+C; Y eh(Dfs@ @, D).
W'Y Ja(Sy)

Note that fé (¢ ® @', 1) is defined by inducing global L-packets of Levi subgroups of

5, and hence is stable. Therefore IdGNim ¢( f ) is stable.
O

Later on, we will compare the formulas in Lemmas 5.22 and 5.25. Note it follows
from Proposition 5.17 that for x € S9,

0 ifx #1,

-0 _ 0 — B
fp(x) = €4 () o(39) ifx=1.

6 Refined L-packet

6.1 Beginning of proofs

In the following sections, we are going to prove the main local theorem (Theorem 4.6)
along with the global theorem (Theorem 5.21). First we need to impose our induction
assumptions. It consists of a local part and a global part. Let F be either local or global.

We denote

G(n) :=SpR2n),SO2n +2,1n),
G(n) := GSp(2n), GSO(2n + 2, n).

Let
G=Gn) xGmy) x---x G(ng)

and G be the corresponding similitude group (see (2.2)), then our induction assump-
tions can be stated as follows.

Local induction assumption The main local theorem (Theorem 4.6) holds for 5, when
nj < N foralll <i <gq.
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Global induction assumption The global theorem (Theorem 5.21) hold for G, when
Z?:l n; < N.

Remark 6.1 When G = G, p(2N), these assumptions imply all the local and global
theorems hold for the Levi subgroups and twisted endoscopic groups of G. But this is
not true when G = GSO(2N + 2, n) for it can have twisted endoscopic group of the
form G(Sp(2N1) x Sp(2N>)) with N = N; —i—Nz and Ny, N> > 0. To fix this, we will
first prove the local and global theorems for G based on our induction assumption,
when G does not contain any factor of SO (2N + 2, 7). Then we can add those results
to our induction assumptions and repeat the same arguments to prove the rest of the
cases.

We will first establish the main local theorem (Theorem 4.6) for G = 5(N ),
which is the most important case. In view of Remark 4.7, we can further assume F is
nonarchimedean. Under our local induction assumption, we can prove a lot of cases of
the main local theorem. The precise statement is formulated in the following lemma.

Lemma 6.2 Suppose ¢ € Dp1d(G) — D2(G), then one can assign an L-packet lzl(z;f()r

any lift & such that it satisfies (1) and (2) of the main local theorem (Theorem 4.6). Fur-
thern_wre, the (0, az)—rwisted character relation (4.2) holds for 6 € X and semisimple
s € Sg such that |52,s = Q.

Proof Suppose ¢ € Dpaq(G) — P2(G), then ¢ factors through ¢y € Oy (M) for
some proper Levi subgroup M of G. Since

M = G@m) x [[GL®)

l

with m < N, by our local induction assumption we can define a refined L-packet
I du associated to ¢y. Then we can take local packet IT 3 for ¢ to be the irreducible
constituents of those induced from IT - Because 1:I¢ is also obtained by induction
from 1:I¢ > We can easily see that IT - will satisfy (1) and (2) of the main local theorem.
For the (0, w)-twisted character relation (4.2), it will follow from the usual descent
argument. For (G', ¢') — (¢, s), let Ty ; be a maximal torus of (S¢,S)0, which is
nontrivial by our assumption that |S’2) ;| = oo. Then M = Cent(Ty ., G') defines a
proper Levi subgroup of G’ such that ¢ factors through ¢y, € P2(M’). Moreover,
M’ € E,4;(M?) for a proper §-stable Levi subgroup M of G, which is determined by
M = Cent(Ty s, @). So

F@=M"@n= > FfuGuno= )Y [z o),
(Zmlely (71l
where w = a/(s). O
Remark 6.3 We have not shown the uniqueness of I1 é here. In fact that will follow

from the character relation (see Theorem 6.21).
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The key issue in proving the main local theorem is to find a candidate for the
stable distribution associated with any lift_¢ of p € ®py4(G). As one can see from
Lemma 6.2, the critical case is when ¢ € ®3(G). The way to find such a distribution
is to lift ¢ to a global parameter ¢ and use the global stable distribution S G . in the
stabilized trace formula. Under some assumptions on this lifted global parameter b,

we can obtain the local stable distribution associated with ¢ using an argument based
on stability (cf._ Corollary 4.8). Let us write S, for the set of archimedean places of
a global field F, and Soo (1) = Soo U {u} for any nonarchimedean place u. Suppose

F=F,and G, = G.Let X = Hom(G(AF)/Za(AF')G(AF), C*).

Theorem 6.4 For ¢ € ®2(G), suppose ¢ € ©2(G) is a global lift of p with b, = ¢
and it also satisfies the following additional conditions:

1 ¢y € dF . (Gy) — uii(Gy) forall v ¢ Seo(u);
2. S; =1;

3. Xo-strong multiplicity one holds for ;

Then one can assign an L-packet H& to any lift ¢ 0f¢ satisfying (1) and (2) of the
main local theorem (Theorem 4.6).

Proof In view of Lemma 6.2, the first condition of our global lift ¢ just means that
the main local theorem (except for the (6p, w)-twisted character relation in the even

orthogonal case) holds for all ¢, (v # u). The second condition means that
G _ G _ G
ter isc ¢7(f) Idlu ¢(f) Sdmc ¢(f) ;é 0

for ; € 7:[(5, ;), which follows from Corollary 5.26 and the fact that é € Dr(G)
(cf. (5.15)). It follows from Proposition 5.11 that

Igsc,qs(?) —my > Y fGed 6.1)

beY [a(Sy) 7T

for f € H(G X) where the sum of 7 is taken over representatlves of H /X

inside AQ(G) Here we will always view representations of G(AF) as H(G x)
modules. Since I G ( f ) is stable, it is stable at every place. If we take f R f w

and fix ®w#v f w for v # u, then by Corollary 4.8 the coefficients of f (n ) in
d” ¢( f ) must be the same for all [ v] € H; . Moreover, if we fix a representa-

tion 7 € .AZ(G), by varying &), £ f » and the linear independence of characters of
®w¢v H(Gy, )?w)—modules, we will observe that for v # u
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contributes to (6.1) if and only if

also contributes to (6.1) for all [7?;] € lzlgv, where lzlgv contains [rr"v v]. We still fix T

and hence T~ for all v # u. Then (6.1) will contain H(G, ;)—modules of the form

ER [ER

vF#U

where [;U] ranges over [17 forall v # u. Suppose there is a distinct H (G, })—module

7,1 | Q7]

vF£U

in (6.1) such that [71,,] € IT> forall v # u, then [7?:,] * [;u] ® w for any character

w € X. ptherwise, there will exist @ € Y such that [?Tu] R w, = [7’;;] #* [71,,] and
1'[; = H; ® w, for all v # u. This is impossible because of the third condition, i.e.

Yo-strong multiplicity one holds for Zs Therefore if we consider all [7] € F[ .7 such
that

1@ | Q15

v#uU

is contained in (6.1), this gives a non-empty set IT 3 of representatives of 1:I¢,2/X
in I ¢.z- To see why this gives all the representatives, one just needs to take the test

function f = ®va such that fu is supported on ZF,, G (F,), then it is the same to
consider representations of

Zy G(F,) x ]_[ G(Fy).
v#uU

By the same reasoning using stability, one can conclude that

My ) ®1=[wv

v#EU
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is contained in (6.1), therefore IT § must contains all representatives of IT .7/ X In

I .7+ Moreover, it follows again from Xo-strong multiplicity one and stability of
(6.1) that

f@ =Y fe®

[ﬁ]ef[d;

is stable. This shows the packet IT é satisfies the property (1) and (2) of Theorem 4.6.
O

Remark 6.5 1. Following the proof, we can rewrite (6.1) as

Bob=m ¥ X Fd

DEY [a(Sy) [z?leﬁ;@as

where
i3 =1; Q) | &1,

If we define

@ =T] 7@

then we get the stable multiplicity formula for our lift ¢

~ ~

St ) = Idaisc,q'b(?) =m; Y. f(é®a).

d)EY/a(Sq;)

This identity will be used in the proof of Theorem 6.22.

2. The statement of this theorem indicates that we need a lifting result for the existence
of such ¢. In fact, there is a standard argument using the simple invariant trace
formula which provides a global lift so that one is allowed to impose some local
conditions. That argument is carried out in quite detail in ([7], Sections 6.2 and
6.3), and the local conditions that Arthur imposes already take care of our first
additional condition in most cases. Even though the global lift which Arthur uses
does not necessarily satisfy the other two conditions, his argument is still flexible
enough to leave us a lot of room to manipulate. In fact, it is not hard to impose the
second condition after we give a combinatorial description of the exact sequence

1 85— 8 —“— Hom(G(A ;) /G(F)G(A ), C).
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However, for technical reasons the third condition is not so easy to satisfy, and it
seems that we have asked something too strong. By tracking the argument in our
proof carefully, one will observe that it is enough to have

aut aut
o\ _ o
[Ta(s5) =TT (s5):
v v#U
This condition can also be interpreted in terms of strong multiplicity one, which
means that for any 7 € A(é) such that [7,] € [Tx for all v # u, [7] must be

also in 1:15. If this condition is satisfied, we say Xg-strong multiplicity one holds

for ; at the place u. And it is the most technical part of this paper to establish this
property.

6.2 A combinatorial description of Sy

Now we will give a combinatorial description of the exact sequences (2.14) and (2.15).
We assume F is either local or global. Suppose G = G(n), ¢ € ®(G) if F is global
or ®,44(G) if F is local, and

¢p=hL¢B---HlLe,

where ¢; € Dy;;, (N;) for 1 < i < r. From the discussion of Sect. 3, the set of indices
can be written as a disjoint union of

Ip.oUlp syl J¢v

where Iy o (Ip,s) is the set of indices that index self-dual parameters of orthogonal
(symplectic) type. In particular, since we are considering G to be either a special even
orthogonal group or a symplectic group, G will always be orthogonal and hence the
multiplicities /; must be even fori € I s. On the other hand, let us denote

Igflg ={i€lyo:lisodd},

I;f’f)" ={ielyo:liiseven}.
Moreover, let S and T be subsets of I(Zflg and I;f’g” respectively, with the condition
that ) ;7 N; is even if G is special even orthogonal. And we allow S and T to be
empty sets. Then the pair of such sets modulo the following equivalence relation gives
us the combinatorial object that we need to substitute for Sy, i.e.

Py =1{(S, )}/(S,T) ~ (8. T)
where S¢ is the complement of S in Iq‘;flg . There is a natural map from Py to
Hom(G (F)/G(F), C*) if F is local (resp. Hom(G(Ar)/G(F)G(Af), CX) if F
is global), which sends
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(S, T) — < ]_[ n¢i)o)»

ieSUT

where 7y, is the central character of g, . Let us denote this map by ap and the kernel
of this map by P;, then we get a sequence

1 P; Py —5 Hom(G (F)/G(F), C*) 6.2)

if F is local, and

1 P; Py —B Hom(G(AF)/G(F)G(AF), C*) 6.3)

if F is global.

To compare these sequences with (2.14) and (2.15), we need a map connecting Sg
and Py. To define such a map, we consider semisimple s € S‘¢, and (G}, ¢") — (¢, 5).
In general, G|, may not be elliptic, but it will lie in &.;; (M) for some Levi subgroup
M of G. Since M is a product of general linear groups with a group G_ of the same
type as G with smaller rank, then G contains a factor G/I X G/I ; € Eu(G-) and ¢’
will decompose accordingly. Suppose ¢_ is the component of ¢ contributing to G_,
and

oL =) x ¢,
if G is special even orthogonal, or
oL = (] ®ng) X ¢y

if G and G, are symplectic. In either case, ¢}, ¢}, give a partition of simple parameters
in¢_. Let S (T) be the subset of Igfig (I;f’g”) parametrizing simple parameters in ¢;

with odd multiplicities. It is easy to see that (S, T') € Py, so we get a map ¢“=c:
Sy —> Py in this way. Moreover we have the following lemma.

Lemma 6.6 [. The map c defined above will factor through Sy, and it gives a bijec-
tion between Sy and Py.
2. If we denote the bijection in (1) still by ¢, then we have a commutative diagram.

1 Sy Sy —%— Hom(G(F)/G(F),C)
1 P; Py —L+ Hom(G (F)/G(F), C*)
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if F is local, or

1 Sy Sp —— Hom(G(AF)/G(F)G(AF), C*)
1 P; Po —Ls Hom(G(Ar)/G(F)G(Ap), CX)

if F is global.

Proof First we would like to show ¢ factors though Sp, i.e. for any s € .§'¢, c(s) only
depends on the image x of s in Sy. Note that if s is replaced by an Sg—conjugate S,
then the corresponding pair (G, ¢}) is isomorphic to (G’, ¢'). So by our definition

c(s1) = c(s).

Now if we fix a maximal torus T¢ of .S_’g and a Borel subgroup l_?¢ containing it, any
automorphism of the complex reductive group S'g stabilizes a conjugate of (T¢, B’¢,).

So we can choose a representative s, of x in S‘¢ so that Int(s,) stabilizes (T,p, B¢), and
such representatives are determined up to a Ty-translate. Moreover the complex torus

Ty = Cent(sy, Ty)"

in T¢ is uniquely determined by x. Note that T¢,, x 1s the connected component of the
kernel of the following morphism

Ty ——— Ty

t— s s, 7!

So any point of 7_"¢ can be written as (s ltsx_t’l)tx fort e 7_"4) and ¢, € 7_},),)( (see [42],
Corollary 5.4.5), and hence any point in s, T4 can be written as

se(s syt ™t =150ty = 5,07, 1€ Ty, 1€ Ty
Therefore it will be enough to show that
c(sx) = e(sxlx)
for any 7, € 7_"¢’x. R B R R
The centralizer M, of Ty . in G is a Levi subgroup of G, which is dual to a Levi

subgroup M, of G. So (¢, sx) is the image of a pair

(¢Mxv SM_x)a ¢MX € d_)(MX)stx € S¢MX’
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attached to M, under the L-embedding “ M, C ©G. And this pair is in turn the image
of an endoscopic pair (M, ¢;VIX). Note that M, has a component G of the same type
as G and S‘¢GX = S‘¢MX. So we can define a map ¢+ on S‘¢MX by ¢Y* with respect to
the component ¢, of ¢y, . Since M|, can be identified with a Levi subgroup of G’,
one can easily check that

M (spr,) = e(sy).

Note that ¢ (s M, ) is invariant under the translation of sy, by T¢,x, so the same is
true of ¢(sy).

Secondly we need to show that c is in fact a bijection between Sy and Pg. Note that
we can actually compute |Sg| and [Py | explicitly. For |Sy|, we have the description
from Sect. 3 that

+
So=| [] oct.O| x| ] sp.O| x| []GL@;.0f. 64
i€ly o ® i€ly s J€Jp
where ([, Ip.0 o(l;, (C))(;r is the kernel of the character

&5 [ e — []@et g™, gie0Wi,0iclso.
i i

If G is symplectic or G is special even orthogonal with / (Z%’ being empty, then

_ | @y2z)le0l if all N; are even fori € Iy o,
v = (Z)27Z)!s.01=1 " otherwise.

If G is special even orthogonal and Igdg is not empty, then Z(a) ¢ S‘g and thus

| @2z)M #0171 ifall N; are even fori € Iy 0,
¢~ (@/22)15.01-2  otherwise.

For |Pg|, it is just a combinatorial computation. Suppose G is symplectic, there is no
condition on N;, 5o [Py| = 2lls.01=1 Suppose G is special even orthogonal, it again
divides into two cases. If all N; are even for i € Iy o, then the condition on N; is
automatically satisfied and hence

Pyl = M0l if I;flg is empty,
ol 21ls.01=1 " otherwise .
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And if there exists i € Iy o such that N; is odd then

Pl — 2llp.0l-1 if[q(;dg is empty,
P17 Y2llsol=2  otherwise .

Therefore one can conclude that |Sy| = |Pg|. Now it suffices to show that ¢ is surjec-
tive. In fact for any partition (S, 7'), one can choose an element s = (s )ke Ky € Se
according to the decomposition (6.4) such that it has the form

-1
= ) fori € SUT, and s; = I otherwise .

1

When G is symplectic, we can assume ) _; _q  N; is odd by possibly changing (S, T')
to (S, 7). If (G',¢") — (¢,s), then G’ is elliptic and ¢’ = ¢} x ¢}, (orp. =
(¢; ® ng) X ¢}, if G/, is symplectic) with the property that

¢; = Biesurdi.

Hence by the definition ¢(s) = (S, T).
For the second part of the lemma, it is enough to show that

a(s) = ap(e(s)),
for s € Sy being such representatives chosen above. Let

n/ e n¢} = 1_[ n¢i’
ieSUT

then ap(c(s)) = n’ o A. Moreover, G’ willbe Sp(2n1) x SO(2n,, ') if G = Sp(2n),
and SO(2n1,n") x SOQ2ny, n'n) if G = SO(2n, ). As one can see from the table of
twisted elliptic endoscopic groups in Sect. 2.1.3, G’ can be lifted to G’ € Ea1(G, )
with @ = ' o A. So @ = ap(c(s)). Finally we just need to notice a(s) = w by
Lemma 2.12, hence «(s) = ap(c(s)).

O

Corollary 6.7 Suppose ¢ =11 B --- B¢, € Ppaa(G) if F is local (resp. (G)
if Fis global), and S, T are subsets of Igflg, 14‘;?5” respectively. Suppose that

(]‘[ n¢i)okyél

ieSUT

unless T is empty and S is either empty or equal to Igdg. Then Sq; =1
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Proof 1t follows from the definition that |73¢;| = 1. By Lemma 6.6, one has |S ¢~,| =
|P$|=1.HenceS¢;=1. O

The following proposition will become useful in our later proofs.

Proposition 6.8 Suppose ¢ € ®.;;(GY) for 0 € Lo and Sd; = 1. We assume one of
the following condition is satisfied.

1. G is symplectic,
2. G is special even orthogonal with ng # 1,
3. G is special even orthogonal with ng = 1, and 1 (Zf‘!g or I3'5" is empty.

If ¢ factors through ¢’ € ®(G’), where G' = G x Gy is a twisted elliptic endoscopic

group of G, let ' = ¢y x ¢11, where ¢; € ®(G;) fori =1, 11. Then Sq;I = S¢;” =1

Proof Since ¢ € d_Jell(Ge), we can view
Iodd c dleven C Jeven
¢r.0 = 1p,0a08 1y, 5 =1y 0

after possibly twisting ¢; by 14,. Suppose S 5, 7 1, we can represent any nontrivial
element of Sd31 by (§', T) for

/ odd / even
S C I¢1’0 and 7' C I¢1’0
such that §" U 7" is nonempty, ) ;g7 Ni is even and

l_[ ng = 1.

iesS'uT’

Then we want to show S; # 1, which would lead to a contradiction.
Let us define (S, T') by

S=SNI¥and T = (S'UT) NI

_ Iodd

Then (S, T') corresponds to a nontrivial elementin S ¥ unless 7" is empty and S 6.0

In the exceptional cases, we have

T'isempty and S’ = § = Igfjg.

By our conditions on (S’, T”), we see G has to be special even orthogonal and ng = 1.

So we only need to consider condition (3). In particular, we can assume / ;”g’ is

empty, i.e. Iy 0 = Igf’g. It follows S’ = Iq‘;ldydo. But this is impossible for (S', T")
should correspond to a nontrivial element in S 5 by our assumption. Therefore, we
see 543 # 1. Similarly, if we assume S(j;” # 1, we can also deduce SJJ # 1. This
finishes the proof. O
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In the case that G is a special even orthogonal group and ¢ € ®pgq(G%) if
F is local (resp. O (G), if F is global), we can have a similar combinatorial
description of the map from SEO to Hom(G(F)/G(F),C*) if F is local (resp.

Hom(é(AF)/a(F)G(AF), C*) if F is global). To do this we need to take a big-
ger set

Py =1{(S.T)}/S ~ §°

by withdrawing the condition that ) ;¢ ;- N; must be even. It is easy to see that one

can extend the map ap to P(f % and the map ¢ to qufo with its image in 775 0. Asaresult,
we have the following lemma which is an analogue of Lemma 6.6, and the proof is
similar.

Lemma 6.9 [. The extended map ¢ will factor through S %0 and it gives a bijection

between S(fo and Ptfo.
2. If we denote the bijection in (1) still by ¢, then we have a commutative diagram.

1 3(?0 830 —“— Hom(G(F)/G(F),C*)
1 73;0 Py — Hom(G(F)/G(F),C*)

if F is local, or

| SF s §30 s Hom(G ()G (F)G(AF). C)
L P2 P Hom(G () /G (F)G(ar). C)

if F is global.
Remark 6.10 1t is a consequence of Lemmas 6.6 and 6.9 that
o )
0‘(84,0) = Ol7D(P¢ %)
Here we give two applications of these combinatorial descriptions. The first one

gives the refined L-packet in the archimedean case (cf. Remark 4.7).

Proposition 6.11 Suppose F is real, ¢ € ®pqq(G) and 7 is an irreducible admissible
representatlon of G(F) whose restriction to G(F) have lrreduable constituents con-
tained in 1'[¢ If8¢, # 1, then T @ w = 7 for all characters w ofG(F)/ZG(F)G(F)

In particular, let ; be the central character of 7, then we can define H =1 0.2 I

1'I¢ is not a singleton.
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Proof Notice that G(R) /Z&R)G(R) is either 1 or R* /R ¢, and the only nontrivial
character ¢ of R* /R is given by the sign character. Since G L(n, R) has essentially
discrete series only when n < 2, the set /4 o only parametrizes quadratic characters
of F* and discrete series of GL(2,R) with central character &. Now we suppose
7 ® e 2 7, then it is clear from Lemma 6.6 that this is only possible when Iy o
parametrize quadratic characters of F'*, i.e. ¢ and the trivial character eg. Depending
on which characters / Of’g and I;f’g” parametrize, we have eight cases and we can
represent them as follows: gq, 2¢€0; €, 2¢; g0 @ 2¢, € D 2¢0; €9 D €, 2e09 + 2¢. One can
see easily from Lemma 6.6 that in these cases either Sy = 1 or & € «(Syp). Therefore
we get a contradiction. For the last point, one just needs to notice Sy # 1 if l:I¢ is not
a singleton. O

Remark 6.12 The proof of Proposition 6.11 also shows that X (7) = X for discrete
series representation 7 of G(R).

The second application is on the multiplicity problem that we have discussed in
Sect. 5. Now let us assume F is global again, and it turns out more convenient to ask
when both X(-multiplicity one and X-strong multiplicity one hold for ¢ together,
ie.

aut
S = [ s,
almost all v
By our Remark 6.10, this is the same as
aut
ap(P) =[] arP.
almost all v

The next lemma gives an answer for the simplest type of parameters.

Lemma 6.13 Suppose
¢ =lin 8- -Bln € D),

where n; are quadratic idele class characters for 1 < i < r. Then both Xo-multiplicity
one and Xq-strong multiplicity one hold for ¢.

Proof From Lemma 2.1, we can view 7; o A as quadratic idele class characters of F’,
where F’ is the extension of F associated to the character

)
ne =[]
i=1

by class field theory. Let us denote 7; o A by n.. We are going to prove this lemma
by induction on the number of nontrivial characters n; for 1 < i < r. Suppose there
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exists some quadratic idele class character w of F such that ' = w o A is contained
in

aut
[] er®.

almost all v

If we assume 7] is nontrivial, and let E be the quadratic extension of F” associated to
1}, then after a base change to E, we get

¢ =lne B---BlLng,
where ng ; =1, o Nmg . And we have
WE = a)/ onE/F/

contained in

aut

[ ar®@).

almost all v

Since ng,1 = 1, by induction the lemma is true for ¢ . Hence

m
WE = 1_[ NE,iy»
k=1

for some 1 < iy < r and m < r. This implies that

m
(0)/ . 1_[ T}l/k) onE/F/ =1.
k=1
Since |l : Nmg,p Ig| = 2, then
m
a)’~1_[nfk =lorn).

k=1

Hence o’ € ap (Pd)E 9). O

6.3 Construction of global parameters

In this section we are going to give the global lifting result needed in Theorem 6.4.
Let us assume F is a nonarchimedean local field and F is a totally real global field
with Fu = F (cf. [7], Lemma 6.2.1). Let G be a quasisplit special even orthogonal
group or symplectic group over F such that G, = G and G, has discrete series for
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v € Sxo (cf. [7], Lemma 6.2.2). For any finite set S of nonarchimedean places of F,
we denote the unitary dual of G(Fs) = I G(Fy) by G (Fs), and the Plancherel

ey veS
measure on G (Fs) by ﬁgl.

Lemma 6.14 For ¢ € O, (G) and an open subset U of tempered representations of
G(Fs) such that ﬁ?l U) > 0, 0one canﬁndtfb € Dyim (G) with the following properties.

1. q'b,, = ¢, and ®U€Sﬁq'>u C U.
2. Ifv ¢ Seo(u)US, then by is spherical. In particular, it can be written as a direct

sum of quasicharacters of F,* with at most one ramified quasicharacter.
3. If'v € Soo, Py € D2(Gy).

Proof This lemma is the consequence of ([41], Theorem 5.8) and ([7], Lemma 6.2.2
and Corollary 6.2.4). As one can see in the proof of ([7], Lemma 6.2.2), q'Sv has a ram-
ified quasicharacter if and only if nG, is ramified. Also note that ([41], Theorem 5.8)
requires G to have trivial centre, however this condition can be removed by choosing
suitable discrete series in the archimedean places as in the proof of ([7], Lemma 6.2.2).
In fact, the main techniques in both proofs are the same, i.e., Arthur’s simple invariant
trace formula. The new input in ([41], Theorem 5.8) is Harish-Chandra’s Plancherel
formula and Sauvageot’s principle of density result (cf. [35], Theorem 7.3). O

Lemma 6.14 serves as the building blocks of our global lifting result, and because
we want to impose the condition of ¥y-strong multiplicity one at one place for any
global lift, it is important to consider the case of simple parameters first. We will begin
with another description of X¥y-strong multiplicity one, which is kind of dual to the
original one.

6.3.1 Xo-strong multiplicity one at one place

Suppose F is a global field, G is special even orthogonal or symplectic group over F
and ¢ € ®(G). We define

Gh, = Z5(F)G(F) x [ [ G(F),
v#U
Gr=G(F)NG},.
Let
G 20) = (g € G(F,) : wp(g) = 1 forall w, € a(S2)),

for any [m,] € 1:I¢U, and

G™) =[G,
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for any [rr] € 1:I¢. We define G!(rX0) = 5(7‘[20) N G}%F. As a consequence we can
have the following identities

aut

[Te(S") = (Gar)/GF)G ™))"
[TeS;0) = (G}, /GRG (x™)*.
v#uU

By the approximation theory for number fields (cf. [33]), we have G(Ap) =
G(F)G}%F. So

(GAR/GIFGE™)* = (G}, /G, NGF)GE™)*
Therefore the condition of X¢-strong multiplicity one at the place u is equivalent to

IGL, NG(F)G(T™) : GG (x™)]
=G}, NG(F)G(™): GL(G@™) NG} )| = 1. (6.5)

Let

A =G} |G(AF), Ar=GLpG(AF)/G(AF)
Br = G(F)/G(F), B(w)=G@™)/G(AF)

and B(m,) = 5(7r1,20)/G(FU), then we can rewrite (6.5) as
|ANB(7)Br : (AN B(m))Afr| = 1.
In particular,
(AN B(7))Ar = AN B(w)AF,

so we has proved the following lemma.

Lemma 6.15 Suppose ¢ € ®(G) and [r] € l=I¢,. Then Xo-strong multiplicity one at
the place u holds for ¢ if and only if

|ANB(7)Br : AN B(n)Afr| = 1. (6.6)

Note that all these groups A, B(rr) and Ar, Br can be viewed as subgroups of
Ir and F* respectively through the similitude character A. Therefore we have the
following equivalent statement for (6.6).
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Lemma 6.16 |A_ﬁ B(@)Br : AN B(JT)Apl = 1 if and only if_for any x € B(n),
there exists yE B(m) N Br such that xy € A. (i.e., for any x, € B(m,)/(F; )2, there
existis y € B(w) N Bf such that y, = xu_l mod (Fux)z.)

Proof Suppose x € B(r) and z € B such that xz € A. First let us assume (6.6),
then xz € AN B(w)AF since xz € A N B(7r)Br. So we can write xz = uw where
uecArandw € B(nr) NA. In particular xw™ ' = uz"! € B(w) N Bp. Let us set
y = wx~! which is also in B(;r) N B, then one has xy = w € A.

Conversely, let us take y € B() N B such that xy € A. Then we can write
xz = (xy)(y~!z). Since both xz and xy lie in A, one has y~'z € A and in particular,
y_lz € AN Br = Ar. Moreover, it clear that xy € B(w).Hence xz € AN B(m)AF
and the rest of the lemma should be clear. O

6.3.2 Global lift

Now we are going to use Lemmas 6.14, 6.15 and 6.16 to produce a global lift with the
intended property of Xo-strong multiplicity one at one place.

Lemma 6.17 Suppose F is a nonarchimedean local field and ¢ € @S,m(G) there
exists a totally real global field F and a group G over F such that F, = F and
G, = G, and one can lift ¢ to a global simple parameter ¢ € Dyim(G) satisfying the
following properties.

L ¢u=¢, and §, € $2(G,) for v € Sec.
2. Ifv ¢ Seo(u), ¢y is adirect sum of quasicharacters of F, with at most one ramified
quasicharacter.

3. Xo-strong multiplicity one holds for ¢ at the place u.

Proof Let G be a quasisplit special even orthogonal group or symplectic group over
F such that Gu = G and Gv has discrete series for v € S, and let 1y = 7.
In view of Lemma 6.14, one would like to impose restrictions over a finite set S of
nonarchimedean places described by an open subset U of tempered representations
with ,TI’S’I (U) > 0, so that the global lift ¢ obtained from Lemma 6.14 has the property
of X¥p-strong multiplicity one at the place u. To determine S and U, we need to use
the equivalent characterization of the property of Xo-strong multiplicity one at one
place given by Lemmas 6.15 and 6.16. First, let us take two distinct quadratic idele
class character ; (i = 1,2), so that ;, = 1 and 7;, = &, the sign character of
R* for v € Sy. This is possible for one can construct a quadratic extension of any
number field with arbitrarily prescribed localizations at finitely many places. Then we
can consider the following composite parameter

by = 1y B Bip B € ®(Gy),
and let

B(dy) = {z € Gy (F))/Gy(Fy) : wy(z) = 1 forall w, € (S} )}
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f~or any place v. Note that By = GU(F)/G (F) and G (F )/G (F ) =
G(F,)/G(F,). Moreover if [7] € Ty, then B(x) = B(¢y..). And B(¢y,,) = Rog if
v € Seo. If we apply Lemmas 6.13 and 6 16 to qbn, we get for any x € B(w)/(F* )2,
there exists y € By such that y, = x~ 'mod (F*)? and y, € B(d)n,v) for v # u.
In particular, y, € R.g if v € Ss. Since we are going to use Lemma 6.14 to lift
. by its properties we can conclude immediately that y, € B(i,) unless v # u is
nonarchimedean and |y, | # 1. To emphasize the dependence of y on x, we also write
¥y = y(x). Let Sy(x) be those nonarchimedean places v # u where |y,| # 1, and since
the group B(r)/(F*)? is finite, we can take the union of all such sets and get

s= U Sw

x€B(m)/(F*)?

which is still finite. Note that S depends on the choice of y for each x. Now we can
describe U = [],cg Uy. In fact for any v € S, one just needs to take U, to be the

union of tempered packets 1:I¢U for spherical ¢, € d_Dbdd(Gv) such that (S di N =1.
By Lemma 6.9, this condition is equivalent to requiring no finite products of unramified
quasicharacters in ¢, gives the nontrivial unramified quadratic character unless n¢;

is nontrivial and quadratic. Since this is an open condition, U, is open with positive
Plancherel measure. Note that the condition oz(S EO) = 1 also guarantees B (¢, ) C

B(m,) for [rrv] € H¢ - Uv Finally, we can use Lemma 6.14 to get a global lift ¢
such that 1'I¢ C Uu for v € S. And it is clear that for any x € B(7)/(F* )2, the y

chosen above will lie in B(7) N B;; pfor[n] e I; b This finishes the proof. O

This lemma is the first step to overcome the lack of strong multiplicity one, next
we will generalize this to composite parameters.

Lemma 6.18 Suppose
P=1 D B B 20041 ® - D2, € Dent(G),

where ¢; is simple for 1 < i < r and 0 € Xo. We assume ¢ factors through ¢y €

CT>2(M). Then one can choose a lift (G, M, F, QS) of (G, M, F, ¢) with the following

properties:

I. Fisa totally real field and there exists a place u such (Gu, Mu, Fu, (i&u) =
(G, M F.¢). : :

2. ¢9=¢B---BHeo, H2¢g4 1 H--- B2, € o (GY).

3. & = 1. Moreover, (G, ¢) satisfies the conditions in Proposition 6.8.

4. If v ¢ Soo(u), the local Langlands parameter

¢v = ¢l,v DD ¢q,v @ 2¢q+l,v DD 2¢r,v
is a direct sum of quasicharacters of F, and it contains at most one ramified

quasicharacter counted without multiplicities modulo the unramified quasichar-
acters.
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5. If v € Seo, $i.y € P2(Gy, ). ~
6. Xo-strong multiplicity one holds for ¢ at the place u.

Proof The idea is to apply Lemma 6.17 to each simple parameters. But one needs to
be extra careful at the following points.

The first point is about property (3) and (4), they require choosing those global
characters 74, in a consistent way so that the condition of Corollary 6.7 is satisfied,
and also there is at most one ramified character in 1g, , @ --- @ 7, at each place
v ¢ Soo (1) counted without multiplicities modulo the unramified quasicharacters. But
this can be done easily. In fact, one can fix nonarchimedean places {vi, v2, ..., v;}
distinct from u. If ¢ = 0, we require for 1 <i <rand 1 < j < r that

. 6.7)
1, otherwise.

. __ | the unramified quadratic character of ij, wheni = j,
n¢i.Uj
If ¢ # 0, we only impose (6.7) for 2 < i < rand 1 < j < r, and require for
2 < j < rthat

T [Ticigy f)¢,,vj, ifg > 1,
Lvj 17 1fq _ L

In this case, we also require 1'74)1'1,1 # 1 when G is special even orthogonal. It is easy to
see that these conditions will guarantee (3). Next we can choose 17y, satisfying these
conditions. Moreover, we can choose them consecutively for i decreasing from r to
1 such that G, has discrete series and 7, is unramified over the ramified places of
1, for j > i, exceptin the case i = 1 and G is symplectic, where we would like to
assume G, is also symplectic and take

— Hl<i<q 7.7¢i’ iftg >1,

o=, ifg=1.

The second point is about choosing the set S of nonarchimedean places as in the
proof of Lemma 6.17. It is tempting to think that it should be the union of all such
sets defined in Lemma 6.17 for each simple parameter ¢;. In fact, one should choose
this set S for ¢ as a whole. Let 71 and 7, again be two distinct quadratic idele class
characters defined as in Lemma 6.17. And here we consider

by = Tigy B+ By, B2y, BB 20y B B B € Gy
when ¢ is odd; or
by = i, B -+ By, B 20, B B2, B2 € DG,

when ¢q is even. By applying Lemmas 6.13 and 6.16 to q')n, we can get a set S of
nonarchimedean places using the same argument as in Lemma 6.17. Finally, one can
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choose the open set of tempered representations l’jl =] l’]\,’,v for each simple

veS
parameter ¢; as in Lemma 6.17 and make them smaller enough so that «(S -20) -

ot(S(?)O) ). This is possible again by Lemma 6.9. Note that if ¢; is a quadratic character,
n)v

there is no need to impose any local conditions on S. This finishes the proof. O

Remark 6.19 1. In view of Lemma 6.9, the second property about this global lift
¢ implies the natural inclusion S;:O — S(;:O is an isomorphism here. So we can
identify sfo with 5.

2. In later proofs, we would like to apply the discussions in Sect. 5.4 to such global
parameters ¢. In fact, by our induction assumption and Proposition 6.8 we can
replace Conjecture 5.16, 5.18, 5.19 by Theorem 5.21 for the proper Levi subgroups
and twisted endoscopic groups of G. It is then clear that Lemma 5.22 is still valid
for ¢. Since we are only going to establish the stable multiplicity formula for
discrete parameters in Theorem 5.21, we need to require

=0 .y o .
S(i),ell (@) = S(Z'),ss (@)

when ¢ is not a discrete parameter in Lemma 5.25. However, in our application
this will always be satisfied by our choice of @ and the fact that Sg =1.

6.4 Proof of main local theorem

With all these refined lifting results, we can start to prove the main local theorem. Let
F be a nonarchimedean local field,

=1 D Dy D2Py1 ® - ®2¢, € Peyt(GY), (6.8)

where ¢; is simple for | < i < r and 8 € Xg. The simplest cases are when ¢; are
quadratic characters n; for 1 < i < r, and one can see not all of these cases will follow
from induction. So we have to treat the exceptional cases differently. In fact regarding
property (4) of Lemma 6.18, one only needs to consider the cases when r < 4, i.e., the
trivial character &¢, the unramified quadratic character ¢, aramified quadratic character
n, and also 7 - €. In fact, when r = 4 and G is special even orthogonal, it can be further
reduced to the case r < 3 by our induction argument as one can see from the proof of
Lemma 6.18.

Lemma 6.20 For ¢ shown in (6.8), if ¢; = n;, and r < 3 (orr < 4 when G is
symplectic), then the main local theorem (Theorem 4.6) holds for ¢.

Proof There are two types of parameters which lead to nontrivial cases here.
Type I :

¢=n®n®n € Ppa(G)
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Type II:
¢ € D1(G?) — D2(G)

For type 1, G = GL(2) and S{; = 1 by Lemma 6.6, so the refined L-packet l:[d;

is a singleton and hence determined by 1:I¢. Since the character of any irreducible
admissible representation of G L(2, F) is already stable, the packet I is then stable.
Therefore the only thing we need to prove is the twisted character relation (4.2) for
o € a(Sp) and 6 = id. To prove this, we use the stabilized w-twisted trace formula
for w € oz(Sd;) and some global lift ¢.

Assume ¢ = 7y B 7, B i3 is a global lift of ¢. Because the global L-packet for
G L(2) should also be a singleton and multiplicity one holds for G L(2), the spectral
side of the discrete part of the w-twisted trace formula becomes

(Gw) (Gw) ~ NN S .
L C¢(f)—trR (f) Y mEAR, ) frF R, @),
a/eY/a(Sq;)

where 7 is taken to be any representation in AZ(G), whose restriction to G(A /) are
contained in I e and

fe@®@a, o) =]]fz G @, a
v

defined by (4.3). In particular, m(?f ® o', ) = +1. For the endoscopic side, we can
apply Lemma 5.25 and get

199G =Y FaGed.q.

W'eY [a(Sy)

where a(x) = w and Sg = 1. Therefore we have an identity

> om@Eed.e)fFed.e)= Y fi(éed.i).

d)’eY/a(S¢ (b/eY/a(Sq;)

Note that strong multiplicity one also holds for ¢. This either can be seen from
Lemma 6.13 or from the fact that G = GL(2) here. Then one can use the Satake

parameters of representations of G (A ) to distinguish the summands on both sides of
the identity (cf. Lemma 5.1). As a result, we get

mE. )57 ) = [5(@. 0,
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where we may need to change 7 by twisting with some @’ € Y /oz(Sq;) to get this
equality. Therefore for any place v one has

Mo in) g, For i) = [ 3, By i),

where m(?t v, Wy) are some constants in C*. If we take f » supported on 4 FUG(FU)’
~ ~ ~/ ~ . ~
then fz (v, wy) = f§, (¢y, Xv) by character relation for G, hence m (7, wy) = 1

and so is m(g , ). In particular we have shown the twisted character relation for 43 of
type L.

For type 1II, it also suffices to show the twisted character relation regarding
Lemma 6.2. In fact its proof is similar to the proof of the twisted character relation for
a general parameter

P=P1 D DYy B20y41 D B2¢, € Do(G”) — 2(G).

So here we will carry out the general strategy. First we apply Lemma 6.18 to ¢ and
get a global lift ¢ such that ¢, = ¢, S; = 1, and Xp-strong multiplicity one holds for

¢ at the place . In particular, for the case of type II parameters considered here, it is
true that both Xp-multiplicity one and Xg-strong multiplicity one hold according to
Lemma 6.13. Next we would like to apply Lemmas 5.22 and 5.25 to get an identity
of the spectral expansion and endoscopic expansion of the stabilized (6, w)-twisted
trace formula. In view of Lemma 6.2, we can assume semisimple s € S’g satisfies
|S‘0,S| < oo. This implies s € S’g’ell and we denote its preimage in S?

bl by s. Let x

be the image of § in Sj; ol Since Sg =1, we have ® # 1 and

C3 Z ii()&)?ae (; Qa, x) =C; Z e(’i)@(@?ée (; Q. x) 7

W'Y /a(S,) W'Y /a(S,)

It follows from Proposition 5.17 and the fact that s S‘g ol

O eN 10,
lé(x) =e; (x) #0.
Therefore

> ?59 (:5@‘5)/’*): > }/5" (;f@d/,x)_ (6.9)

W€y [a(S)) ey [a(Sy)

In case Xp-strong multiplicity one holds, we can again use the Satake parameters of

admissible representations of G (A /) to distinguish the summands on both sides of
the identity. As a result, we get

~

Fa (6.2) = et (9.%)
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and hence there exist constants n, for all places such that
~ ~ ~/ ~ .
T (o) = Ty (o)

If we take ?U supported on sz G (Fy), then ?59 (ZU, Xy) = 7&9 (ZU, Xy) by the twisted

local intertwining relation for Qv- Therefore n, = 1 and we have shown the twisted
local intertwining relation for ¢. By Lemma 4.10, this implies the twisted character
relation for ¢. So we have finished the proof for the parameters of type II.

O

Theorem 6.21 Suppose F is a nonarchimedean local field and ¢ € @ (G?) —
D, (G), then the twisted character relations (4.2) holds for ¢.

Proof We first get (6.9) following the general strategy in the second part of the proof
of Lemma 6.20. In this general case, we only know Xo-strong multiplicity one holds

at the place u for ¢. But now we can assume the twisted character relation for all
places except u. This is because of the property of our lift ¢ shown in Lemma 6.18
and the fact that we have shown the twisted character relation for the exceptional
cases considered in Lemma 6.20. Under these assumptions, we can conclude from

the linear independence of twisted characters of ®v¢u7'_{(G.v, ;U)-modules (see [21],

A.4.1) that
(7 (i) =T (3 ) ) [T 71 (Bor) =0

and hence

Fao ($usi) = £ (Bur ) -

u

This proves the twisted local intertwining relation, which implies the twisted character
relation according to Lemma 4.10. O

Now we can deal with the discrete parameters ¢ € D1(G).

Theorem 6.22 Suppose F' is a nonarchimedean local field and ¢ € @5 (G), then the
main local theorem (Theorem 4.6) holds for ¢.

Proof We can apply Lemma 6.18 to ¢, and because of Lemma 6.20 and Theorem 6.21,
we can use the argument in Theorem 6.4 to show part (1) and (2) of the main local
theorem. At the same time we can deduce the stable multiplicity formula for the global

lift ¢ (cf. Remark 6.5), i.e.

2=t (P=n ¥ T (@ed).

W'eY/a(S))

@ Springer



L-packets of quasisplit GSp(2n) and G O (2n) 177

Hence the only thing left is to show the twisted character relations (4.2). In order to
deduce the (6, w)-twisted character relation we use the stabilized (0, w)-twisted trace
formula. Note that

;ﬁcz)(f)—twa‘;)(f) > X mE o]/,

124 [ﬁ]eﬁg&b,

where f & (71 v» Wy) is normalized according to (4.3), the sum of @’ is taken over

v

aut

rTe(s):

and |m (7, ®)| is some integer not larger than the multiplicity

aut

TN e z -1
m(@) = m |[Ta(S;0)| (Sl
of 77 as ’Fl(é, ;)—module. By Lemma 5.25, we get
(G ) _
1€ D) =my > f (p@a'. ).

(0] eY/oz(

where a(x) = w. By Lemma 6.20 and Theorem 6.21, we can assume the twisted
character relations for all places v 7 u. Then it follows from the linear independence

of twisted characters of ®U#M7:[(G.v, }U)-modules and X-strong multiplicity one for
¢ at the place u that

Z m(n a)) '~9 nu,a)u 1_[ nv,a)v

[ﬁ]eﬁ; v£u

=m@fg (b)) [T| X Tz @Eea)]. 610

vFEU [Jn]el'I
Now we choose f = ®, f » With f .« supported on Z rG(F) and thus

fG Gt = Y f~e(nu,wu)

[Fulelly
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Substitute such test functions into the identity (6.10), one deduces that

mF, @) = m(@).

Therefore

m@GE @0~ 3 TaGeon[[| X Fp@Euon|=0

[n,,]el'[;u vEU [nt]eﬂa

for all } € 7:((5, ;). So we must have

f5@en= Y F 0 G ).

[Hu]él'l

and this finishes the proof of the (6, w)-twisted character relation. O

At this point, we have proved our main local theorem (Theorem 4.6) for G=0G (N),
and the general case is just a corollary of that.

Corollary 6.23 Suppose

G=Gmn) xGmy) x--- x G(ng),
with n; < N for 1§ i<qgand¢ € Dpyq(G), then the main local theorem (Theo-
rem 4.6) holds for ¢.
Proof Letus write ¢ = ¢1 X ¢ X - - - X ¢, such that ¢; € Dpaa(Gni)) forl <i < q.
Note that

G - é(nl) X é(nz) X -0 X (~7(nq)

form a pair of groups satisfying the assumption in Sect. 2.1.1. Since IT 4, is well defined
now, we can define IT; to be the restriction of ®q_1 I & o G (F). Itis clear that l:I 3
satisfies part (1) and (2) of Theorem 4.6. Moreover, the twisted endoscopic groups of
G lift to twisted endoscopic groups of G(n)xGna)x---x G(nq) by Proposition2.7.

Then it is a consequence of Corollary 2.22 that the tw1sted character relations of G
follow from that of G(nl) X G(nz) XX G(nq) again by restriction. This completes
the proof in the general case. O

6.5 Proof of global theorem

In this section, we are going to prove the global theorem, i.e., Theorem 5.21. We will
keep the notations as in Sect. 6.1. Suppose F is global,

G=Gmn) xGmy) x---xG(ng),
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with Z?:l nj = N.Now we can assume the main local theorem for G thanks to
Sect. 6.4. We will first prove the corresponding statement of Conjecture 5.16 for G.

Theorem 6.24 We assume ¢ € ®(G) satisfies the assumption in Theorem 5.21.

1. One can associate a global packet H of irreducible admissible representations

ofG(AF) as ’H(G) modules, sattsfylng the following properties:
(a) TI; = ®v H B , where H b is some lift of l'[¢v defined in Theorem 4.6.

(b) there exists [7] € T & S0 that 7 is isomorphic to an automorphic representa-

tion as 'H(G) modules.
Moreover, H is unique up to twisting by characters ofG(AF)/G(F)G(AF) And
we can deﬁne a global character of 8 by

<X, 7 >::H<xv,frv> for [ﬁ]elzl(/;andxeSdg.
v

2. Ifp € éz(G), the ¢-component of the E-equivariant discrete spectrum of G (Af)
as H(G)-modules can be decomposed as follows

Ly s GNGBR. D =my > 3
weY /a(Sp) [7]el ;00
<. a>=I

where my is defined as in Remark 3.14.

Proof Tf ¢ factors through ¢y, € ®,(M) for some proper Levi subgroup M of G,
then by our induction assumption, we have a global L-packet IT du for M, and we

can define IT g to be the irreducible constituents induced from IT e So it is enough
to consider the case ¢ € ®,(G). Note that one can always define a global packet 1:I 7

as follows. If 7 € Az(G) and its restriction to G(A) have irreducible constltuents
contained in 1'[4,, then we can take the local lift 1'[ of 1'[¢ to be the one containing
[77y]. We form a global packet

iy =] ]y,
v
and the uniqueness property should follow from Corollary 5.9 and the decomposition

in Part (2).
To show Part (2), we can apply Lemma 5.25 to get

LoD =5%es(D+C5 Y Y [adowx. 6.11)
weY/a(Sq,)xeSé—{l}
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By the local character relation, one can define a global packet IT b transferred from
I:I(,;, forany x € S5 — {1}. Next we would like to add

2.-C;

G Y, Y fiGew (6.12)
weY [a(Sy) xeSz—{1} [7lefy
<x,T>=-1

to both sides of (6.11). Note that this sum does not include x € S Fi {1} such that
<x, 7% >=1forall [#] € IT Be For those x which does not contribute to (6.12), we

have fé (¢ @ w,x) = f9(¢y ® w) which is defined by I1 4, and is stable. Then the
right hand side becomes

SdGisc,(ﬁ(f) + ng Z Z fc(‘i’x Q w),
wEY/ot(qu)xESJ)—{l}

which is again stable. So the left hand side

IgesH+2:C; Y Y Y jzGee  (613)
weY/a(Sd,)xeSd;—{l} [ﬁIEﬁéx

<x,7>=—1

is also stable. By (5.15),
I£.€C,¢(f) = tngiscﬂ;(f)-

Let 1:I be the global packet defined in the beginning with respect to some fixed 7° €

Az(G) Since (6.13) is stable, itis stable at every place. So we can take f Q®uw fw and
fiX ®y£v fu for any place v, then by Corollary 4.8 the coefficient of fo(#y) in (6.13)
must be the same for all 7, € I1; By By varying ®w#vfw and the linear independence

of characters of ®w#v7:{(5w, Yw)-modules, we have that
[7°] = [7,1 ® (@uxl )
contributes to (6.13) if and only if all elements in
My ® (Quzoly])

also contribute to (6.13). By repeating this kind of argument, one can show all elements
inIT; é contrlbute to (6.13). Note for any [77] € I; ¥ such that < -, 7 >= 1, it can only

contribute to I disc.é ( f ), which means it belongs to Az(é). Then the decomposition
in Part (2) will follow from Proposition 5.11 immediately.

O
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Remark 6.25 Following the proof, we can also apply the same argument to elements
inIl; b which contributes to (6.13). It follows all elements in IT ; 5, contributes to (6.13).

For[7] € H~ suchthat < -, 7 >=1 1tcanon1ycomefromldm¢(f) So H% = I'I(/;
up to tW1st1ng by some character in Y. Note this is only true for x € S 7 — {1} in the
sum (6.12). As a result, (6.13) becomes

g Z fg(q;@w),

weY /a(Sy)

where
fG(Q'; ® w) = l_[ fv(&v & U)v)-
v
Moreover, we have

GeH=msg S FCloo-c; Y Y fCéow.

weY [a(Sy) wEY/D{(S(p)xGSq;*{]}

Suppose I1 3 = I gupto twisting by some characterin ¥ forallx € S F i {1}, then
Sgsc,qb(f) =g Z |S¢§|_1fG((]3®0))o
weY /a(Sy)

This is the stable multiplicity formula in Conjecture 5.18. We will come back to this
identity in Theorem 6.30.

Next, we will prove the corresponding statement of Conjecture 5.19 for G.

Theorem 6.26 Suppose ¢ € ®»(G) satisfying the assumption in Theorem 5.21 and
X € Sg with a(x) = w for 8 € Xy and some character w of G(Ar)/G(F)G(AF).

For[#] el é with < -, 1 >= 1, the canonical intertwining operator

R©O)"' o R(w)

restricted to the 7 -isotypic component I (1) is equal to the product of m(w) and the
local intertwining operators Az (0, wy) determined by x, (see (4.3)), i.e.

189 =my Y Y Je@E.e). feHG.X. (614
o'eY/a(Sy) [ﬁ]6ﬁ¢3®w,

<., a>=I

where f69 (T, ) =11, fgg (7Ty, wy), and it does not depend on x.
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Proof 1t follows from Theorem 6.24 that

50’ ~ 59‘ ~ ~ ~ ~
Lo (N =REDNH =Y Y m#. 0.0 f5¢ 0
o' [ﬁ]eﬁq;@;w’

<, a>=1

where the sum of o' is taken over

aut

/] JeS5.

and |m(7, 0, w)| is some integer less than or equal to

aut

m(@) = my | [ [e(S;)] le(Sp)I ™"
v
By Lemma 5.25, we have

189N =155 Y m@ @ oo x),

o x’esz(w)
where the sum of «’ is again over
aut
b
Y/ [ (S0,
v
Therefore
YooY m@E@ b ofep@ o =I5 Y m@)fa@ o, x).
o [7~T]€1:[¢;®w’ o' x’esg(w)
<, w>=lI

By the twisted character relation, one can define a global packet IT Fe transferred from
lzlq;, for any x’ € Sg(w). Note Sz(a)) =x- Sq}: then

Z m(ﬁ,e,w)fée(ﬁ',w):|8¢~)|_lz Zm(q;)
o [ﬁ]eﬁ&@)w’ o' yeS;
<. a>=l
Z <y 7> fa(@ ), (6.15)

[7]e Héxy Rw'’
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where fge (77, w) is normalized by x (cf. (4.3)). This implies

m(, 0, o) fzo (7, 0)=|S;] ™! m(g) fzo (7, w).
$

PR / ~ ~ o /
n]EH¢®w o' yeS; [rlelly, @
<. 7>=lI <., a>=l1

It follows from the 1inear in_dependence of twisted characters of 7:[(C~}, %)-modules
that we can choose 1'[4; L= l'[(z; forall x’ € SZ (w). Then

Y mE 6,0 faFE ) =m@) Y feE o).
(71l

1 <., 7>=l1

Som(w,0,w) = m(q;). Hence

G 7 e
Ia(’tsc;;)(f)zme > Y fa o).
w'eY [a(Sp) [7lef; @’
<., 7>=l1

m}

Now we are only left with proving the corresponding statement of Conjecture 5.18.
From Remark 6.25, we see the key is to prove the functoriality of endoscopic transfer.
Here we would like to consider a more general notion of that, i.e., functoriality
of tw_isted endoscopic transfex:, and we formulate it in our context as follows. For
¢ € ®(G) and semisimple s € Sy, let (G, ¢') — (¢, s) and G’ € (G, w) be the lift
of G’, the functoriality of twisted endoscopic transfer means the global L-packet IT,
transfers to a global L-packet IT 3 through the local twisted character relation (4.2).
By the same argument in the proof of Lemma 4.11, we see the transfer of IT & only

depends on the image x of s in Sy. So we can denote the transfer image by 3| Be

Lemma 6.27 Suppose G = Gn) forn < N, ¢ € ®(G) such that ng = 1, then
I b = H up to twisting by some character inY forany x € Sp.

Proof For semisimple s € Sy, let (G’ o) — (¢, s) Suppose |S’¢ | = oo, let Ty s be
amaximal torus of (S, 5)?, then M = Cent(Ty s, G’ ) defines a proper Levi subgroup
of G’ such that ¢’ factors through ¢, € Dy (M). Moreover, M € Eet (M) for a
proper Levi subgroup M of G, which is determined by M = Cent(Tj s, G). So ¢
factors through ¢y € ®(M), and we can reduce this case to M.

Next we assume |S0 ;| <oo,then¢ € @,;(G). In particular, s € S¢,ell and we let
x be its image in Sp. We can also assume x # 1, then ng = l implies a(x) = w # 1.
By Lemma 5.25, we have

Iégfé(f) =C; Y. efEPed, ).

w'eY /a(Sp)
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By Lemma 5.22 and Theorem 6.26, we have

Iéi’;ﬁ(f) =C; Z ip(X) f5(p ® ', x).

W'Y Ja(Sp)

Note e¢ (x) = ig(x) # 0. Then by the linear independence of twisted characters, we
have I1 b = H up to twisting by some character in Y. O

It is not hard to extend this result to the general case.

Lemm_a 6.28 Suppose_G =Gm) xG(ny) x---xG(ng), and d = ¢ x [ SRR
@q € D(G) with ¢; € ®(G(n;)) for1 <i < q. If =1 forall i, then Hq; = Hd;
up to twisting by some character in 'Y for any x € S¢,

Proof If we write the image of x in Sy, by x;, then by Lemma 6.27, ® y I

a global L-packet of G(n 1) X G(nz) X oo X G(nq) and 1'[ is its restriction to 5.
Since the restriction of a global L-packet is again a global L- packet, then IT b = I
up to twisting by some character in Y. ”

[mpSH

Remark 6.29 We would like to point out in the case of this lemma, S; can be nontrivial
even though SJS,- = 1 for all i. For example, let G = Sp(2n) x Sp(2n) and ¢ = (¢ H

$2) % (¢>1 M ¢») € ®2(G). We assume the central characters satisfy Ng, = Ng, = 1,
then S : = 71/27.

Now we can prove the corresponding statement of Conjecture 5.18.

Theorem 6.30 Suppose G = G(n1) x G(nz) X -+ x G(ng), and ¢ = ¢1 X ¢z X
- X ¢g € P2(G) with ¢; € (G (n;)) for 1 <i < q. IfSJb,' = 1 foralli, then

CesD=ms 3 1S e SDFCG®w). FeHE D).
weY /a(Sy)

Proof 1t follows from Remark 6.25 and Lemma 6.28 that

SGesD=ms S 18517 O G @ ).

weY/a(S¢)

Note in this case O'(Sg) = 1. This finishes the proof.
O

Up to now, we have proved the local and global theorems for G under our induction
assumptions, when G does not contain any factor of SO (2N + 2, 1) (cf. Remark 6.1).
By adding these results to our induction assumptions, we can prove the general case
by repeating the previous arguments in Sects. 6.4 and 6.5 without any change.
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7 Appendix: An irreducibility result

The aim of this appendix is to prove Propositions 3.10 and 3.11. We should point
out that neither these results nor their proofs are new, and just for the convenience of
the readers we would like to present their proofs here. In this section G will always
denote a symplectic group or special even orthogonal group. First, let us restate Propo-
sition 3.10, and for its proof we will follow the same argument in [27].

Proposition 7.1 If F is global and ¢ € ®y;,, (N), then ¢, € O . (Ny).

unit
Proof Suppose 7y is the unitary cuspidal automorphic representation of G L(N) asso-
ciated to ¢. By [37], 7y, is generic for all places v. And one knows from [17] that
any irreducible generic representation of GL(N) over a local field is a fully induced
representation

Ip(vHo; @ v20r @ --- @ v¥o,)

where P is some standard parabolic subgroup of GL(N), o; are unitary essentially
discrete series representations and a; € R for 1 < i < r. So for our ¢, we have

¢y = Vﬂl(bv,l 57 Va2¢v,2 ®---D Ua“¢>v,s

where ¢, j € @y (Ny,j) forl < j < s.Sincemy , is also unitary, by the classification
of unitary dual of G L (N) (archimedean case in [46] and nonarchimedean case in [44]),
¢, must belongs to ® . (N). In particular, laj| < 1/2for1 < j <s. O

unit
Next we restate Proposition 3.11 as follows.

Proposition 7.2 Suppose F is local, ¢ € @jm(G), and ¢ can be regarded as ¢y,

where ¢y € _&Dbdd (M) and A € oy, lies in some open chamber of P 2 M. Then for
any [y € My,,, the induced representation Ip (7 ) is irreducible.

Before starting the proof, we want to introduce some notations for the parabolic
induction. Suppose 1 and mr are representations of G L (N1) and G L(N>) respectively,
we will write 71 X 75 for the parabolic induction of 71 ® 7, by viewing GL(N1) X
GL(N3) as the Levi component of a maximal parabolic subgroup in GL(N| + N3).
And similarly, suppose 7 and o are representations of GL(N) and G, we will write
m X o for the parabolic induction of m ® o by viewing GL(N) x G as the Levi
component of a maximal parabolic subgroup in G which is of same type as G.

The proof of this proposition breaks down to several steps. First notice ¢ €
é;nit(G), SO we can write

p=¢c_ ® VP DV P ) DD VP DV P,),
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where G_ is of the same type as G, ¢g_ € ®paa(G_), and ¢i € Dim(N;) for
1<i<mwithO<a, <---<a; <1/2. Then

=06 DP1® - ® b € Ppga(M),

and A = (ay,az, -+ ,ap). Let my, be the corresponding essentially discrete series
representation of GL(N;) associated to ¢; for 1 < i < m, then any my € I:I¢M
can be written as 1y = 7 ® 7p @ - ® 7y, , for some ng_ € Ty, . And
Ip(mmy) = vimy, x ---v¥my X mwg_. Next, we have two reduction steps. These
steps are due to Speh and Vogan [43], and they are also presented very clearly in [30],
so we will state them without proofs. The first reduction is given by the following
lemma.

Lemma 7.3 Zp(mpy ) is irreducible if and only if v¥i g, x v Ty, v T, X v‘airrgj

are irreducible for all i # j, and also vy, X mwg_ is irreducible for all i.

To make the second reduction, we need to write ¢6_ = ¢’ ® (9] D) D--- B

(¢, ®¢,), where G”_ is of the same type as G_ and ¢’ € D,(G), ¢! € Pyim(N)).
Then it is clear that wg_ is a subrepresentation of Ty X oo+ X Tgr X TG for some

TG € 1:I¢G, . And we can state the second reduction as follows.

\
/

a; .. e a;
, V9T X is irreducible if v¥imy, X g, VT, XMy

Lemma 74 Forl <i <
k

m
are irreducible for 1 < k < n, and also vy, X 7 is irreducible.

Since 0 < a; < 1/2 for 1 < i < m, by the theory of Zelevinsky [50] and its
archimedean analogue [46], we can see easily that v¥ g, x v/ T Vg, x v jT‘Zi
(Z, are irreducible for all

k
k. So it reduces to show vy, X mg is irreducible for 1 < i < m. And this is the

consequence of the following proposition.

are irreducible for all i # j, and v¥imy, x T Vg, X 1

Proposition 7.5 Suppose w and o are discrete series representations of GL(N) and
G respectively, then the induced representation v¢ 1 X o is irreducible if0 < a < 1/2.

The proof of this proposition is divided into two cases: archimedean and nonar-
chimedean. The archimedean case follows from the result of Speh and Vogan directly,
and we refer the readers to [43] for precise statement of their theorems. For the nonar-
chimedean case, the story is not that straightforward, and we will concentrate on this
case. Sonow we assume F is nonarchimedean, and we can write the essentially discrete
series v of GL(N) as segments according to the classification theory of Zelevinsky
[50], i.e. vir = 8(v 1 p, v2p) where p is a cuspidal representation of GL(d,), d,
is defined by p, and I} + [ € Z3o with a = (I — [1)/2. Note that 2, + 1 ¢ Z for
0 < a < 1/2. Then it is easy to see that the nonarchimedean case follows from the
following theorem due to Tadi¢ ([29], Theorem 2.2).

Theorem 7.6 Suppose F is nonarchimedean, § = 8(1)_11 0, vlzp) and o is a discrete
series of G. If p # p¥ or 2l + 1 € 7Z, then § x o is irreducible.
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The proof of this theorem again involves several reduction steps. It is clear that
there is no harm to assume I, > [y. The simplest case is when § = vl,o and o is a
cuspidal representation, and this has been settled by Mceglin in [23]. In fact, Mceeglin
has proved the following result.

Proposition 7.7 Suppose F is nonarchimedean, p and o are cuspidal representations
of GL(N) and G respectively. If p = p" and v* p X o is reducible, then a € %Z, and
vPp x o is irreducible for all B € R\ {Za); If p # pV, then vl xo s irreducible for
alll e R.

We should point out the original proof of Proposition 7.7 in [23] is based on the
assumption of functorial lifting from classical groups to general linear groups. Now
it is unconditional by Arthur’s result [7]. For the second reduction step of the proof
of Theorem 7.6, Tadi¢ shows the theorem is true for o being cuspidal in [45], and he
uses an induction argument which is quite different from the proof of Proposition 7.7.
Finally, we can consider the general case, i.e. o is a discrete series of G. Suppose o
is not cuspidal, then by Meeglin-Tadiés’ classification of discrete series of classical
groups [28], one has an inclusion

o C—— V¥ x V2 X - X V¥, XMoo

where 7; are self-dual essentially discrete series of GL(N;), «; € %Z>o, and o’ is a
discrete series of G’, where G’ is of the same type as G. So we can do induction on
the rank of G, and assume § % ¢’ is irreducible, i.e. the standard intertwining operator

§x0’ = 8Vxo'isa bijection by the theory of Langlands quotient. Note that § x v*is;
and 8§ x v%m; are irreducible, so the normalized intertwining operators

S xv¥imy ———v¥m; x §

Vaim; x 8 ——= 8V x v

are bijections. Now consider the following composition of normalized intertwining
operators.

SXo = §xv¥m X v®Rmy X - X V¥, Mol = v¥im

X8 X V921 X -+ - X V¥, X o’

= S VYT X VB2 X e X VI, XS

xo' S ¥ x V2 X - X V¥, x 8V x of
S x V2 X - x §Y x v, ol S s S 8V
XV X V92 X - -- X VO, X oo’
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This shows the standard intertwining operator

§xo =68 xo

is a bijection, and hence § x o is irreducible. This finishes the proof of Theorem 7.6.
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