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Abstract In his monograph Arthur (The endoscopic classification of representations:
orthogonal and symplectic groups, Colloquium Publications, AmericanMathematical
Society, Providence, 2013) characterizes the L-packets of quasisplit symplectic groups
and orthogonal groups. By extending his work, we characterize the L-packets for the
corresponding similitude groups with desired properties. In particular, we show these
packets satisfy the conjectural endoscopic character identities.
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1 Introduction

Let F be a local field of characteristic zero and WF be the Weil group, then the local
Langlands group is defined as follows

LF =
{
WF if F is archimedean,

WF × SL(2,C) if F is nonarchimedean.

Let G be a quasisplit connected reductive group over F and Ĝ be its complex dual
group, the Langlands dual group LG is a semidirect product Ĝ � WF , where the
action of WF on Ĝ factors through the absolute Galois group �F = Gal(F̄/F). A
local Langlands parameter φ is a Ĝ-conjugacy class of admissible homomorphisms
from LF to LG (see [8]). In particular, it respects the projections on WF from both
LF and LG. We denote a representative of φ by φ: LF → LG. Let �(G) be the
set of local Langlands parameters and �(G(F)) be the set of isomorphism classes
of irreducible admissible representations of G(F). The local Langlands conjecture
asserts a correspondence between �(G) and �(G(F)). The correspondence is not
necessarily a bijection. In fact, it is conjectured that each φ ∈ �(G) is associated with
a finite set�φ of �(G(F)), such that they give a partition of �(G(F))

�(G(F)) =
⊔

φ∈�(G)
�φ.

Such sets �φ are called L-packets. The local Langands conjecture has been proved
for GL(N ) by Harris-Taylor [16], Henniart [14] and Scholze [36], in which case one
does get a bijection. Arthur [7] extended their results to Sp(N ) and SO(N ) through
the theory of twisted endoscopy, and in his case the packets are not always singletons.
By the Langlands classification of irreducible admissible representations of G(F),
one can reduce this correspondence to the tempered case, namely one can replace
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L-packets of quasisplit GSp(2n) and GO(2n) 73

�(G(F)) by the subset�temp(G(F)) of tempered representations, and �(G) by the
subset �bdd(G) of bounded parameters (i.e., the closure of the image of φ|WF is
compact). The tempered L-packets can be characterized by “stability”. To explain this
concept, we need to introduce the Harish-Chandra characters. For any π ∈ �(G(F)),
the associated Harish-Chandra character is a distribution on G(F) defined by

fG(π) := trace
∫
G(F)

f (g)π(g)dg

for f ∈ C∞
c (G(F)). Harish-Chandra showed this distribution can be represented

by a G(F)-conjugate invariant locally integrable function �π over G(F). Moreover,
�π is smooth over the strongly regular semisimple elements Greg(F). Later on, we
will simply call them characters. We say a finite linear combination � of Harish-
Chandra characters is stable if it is G(F̄)-conjugate invariant over Greg(F), namely
�(γ ) = �(γ ′) for any γ, γ ′ ∈ Greg(F) such that γ = g−1γ ′g for some g ∈
G(F̄). Then the tempered L-packets are conjectured to be the minimal subsets of
irreducible tempered representations, within which some linear combination of the
Harish-Chandra characters is stable (cf. Conjecture 9.2, [38]).

Let D be a torus and G̃ be a quasisplit connected reductive group over F , which is
an extension of D by G

1 G G̃
λ

D 1.

Dual to this exact sequence, we have

1 D̂ ̂̃G p
Ĝ 1.

The projection p: ̂̃G → Ĝ can be extended to an L-homomorphism, so it induces
a map �bdd(G̃) → �bdd(G). Labesse ([19], Theorem 8.1) showed this map is in
fact surjective. For φ̃ ∈ �bdd(G̃) and φ = p ◦ φ̃, it is believed that the restriction
�φ̃ |G = �φ . Motivated by this, we want to construct the L-packets of G̃ from that of

G, when G = Sp(2n) (resp. SO(2n)) and G̃ = GSp(2n) (resp. GSO(2n)). In fact,
one can also consider the case when G = SO(2n + 1) and G̃ = GO(2n + 1). Note
GO(2n + 1) is connected. Since GO(2n + 1) ∼= SO(2n + 1)× Gm , this case would
be trivial. To give the precise statement of our result, we need to first recall Arthur’s
results about G. We fix an outer automorphism θ0 of G, such that it is trivial when
G = Sp(2n), and it is induced from the conjugate action of O(2n)whenG = SO(2n).
Let �0 = 〈θ0〉, then �0 acts on �(G(F)). Note θ0 induces a dual automorphism θ̂0
on Ĝ, so �0 also acts on �(G) through the action of θ̂0 on Ĝ. We denote the set of
�0-orbits in �temp(G(F)) by �̄temp(G(F)) and the set of �0-orbits in �bdd(G) by
�̄bdd(G). The action of�0 can be extended to G̃, so we can also define the analogues
of these sets for G̃.

123



74 B. Xu

Theorem 1.1 (Arthur)

1. There is a canonical way to associate any φ ∈ �̄bdd(G) with a finite subset �̄φ

of �̄temp(G(F)) such that

�̄temp(G(F)) =
⊔

φ∈�̄bdd (G)

�̄φ.

2. For φ ∈ �̄bdd(G),

�̄φ := 1

2

∑
[π ]∈�̄φ

(�π +�πθ0 )

is stable.

When G = SO(2n), we let ��0
φ be the set of all irreducible representations of

O(2n), whose restriction to SO(2n) have irreducible constituents contained in �̄φ ,
and we call ��0

φ an L-packet of O(2n). In this sense, the sets �̄φ really determine

the L-packets of Sp(2n) and O(2n). But for simplicity, we will still call the sets �̄φ

L-packets of G in this paper.
Suppose φ̃ ∈ �̄bdd(G̃) and φ = p◦ φ̃. Since �̄φ admits a stable linear combination

ofHarish-Chandra characters, G̃(F) acts on �̄φ by conjugation.Wefix a character ζ̃ of
the centre ZG̃(F) of G̃(F), such that its restriction to ZG(F) = ZG̃(F)∩G(F) is the

central character of �̄φ . Let ˜̄�φ,̃ζ be the subset of representations of �̄temp(G̃(F))with
central character ζ̃ , whose restriction to G(F) have irreducible constituents contained

in �̄φ . Let X = Hom(G̃(F)/ZG̃(F)G(F),C
×). Note X acts on ˜̄�φ,̃ζ by twisting.

In Corollary 4.2 we show there exists a subgroup α(S�0
φ ) of X such that for any

[π̃] ∈ ˜̄�φ,̃ζ , π̃ ⊗ ω ∼= π̃ θ for some θ ∈ �0 if and only if ω ∈ α(S�0
φ ). Now we can

state our main result.

Theorem 1.2 Suppose φ ∈ �̄bdd(G), there exists a subset �̄φ̃ of ˜̄�φ,̃ζ unique up to
twisting by X, such that it satisfies the following properties:

1.

˜̄�φ,̃ζ =
⊔

ω∈X/α(S�0
φ )

�̄φ̃ ⊗ ω.

2.

�̄φ̃ := 1

2

∑
[π̃ ]∈�̄

φ̃

(�π̃ +�π̃θ0 )

is stable.
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L-packets of quasisplit GSp(2n) and GO(2n) 75

In this paper, we call the sets �̄φ̃ in this theorem L-packets of G̃, although they
really determine the L-packets of GSp(2n) and GO(2n) for the same reason as we
have discussed above.When F is archimedean, this theorem is knowndue toLanglands
[20] and Shelstad [39]. In fact this case could also follow from Theorem 1.1 directly.
So in this paper, we will focus on the case when F is nonarchimedean. Note if �̄φ is
a singleton, then �̄φ̃ is also a singleton by part (1) of the theorem, but it is still by no

means clear that part (2) will hold for such �̄φ̃ . Our proof of this theorem is by global
means, and it is certainly interesting to know if one can establish it by purely local
methods.

The main idea of the proof is to realize the L-packet as the local component of
some global L-packet. To describe the global picture, we let F be a number field and
AF be the adele ring of F . We define the automorphic representations of G to be the
irreducible constituents of the regular representation ofG(AF ) on L2(G(F)\G(AF )).
If π is an irreducible admissible representation of G(AF ), it can be decomposed as a
restricted tensor product

π = ⊗′
vπv

of irreducible admissible representations πv of G(Fv) over all the places v. These
local representations πv are unramified for almost all places, which is the necessary
condition to form the restricted tensor product.We assume the global Langlands group
LF exists and it is equipped with embeddings LFv → LF for all places v. Then we
can define the global Langlands parameters as in the local case. We denote the set of
�0-orbits of bounded global Langlands parameters by �̄(G), for this is the set relevant
in the classification of automorphic representations of G. For any φ ∈ �̄(G), we can
associate a family of local Langlands parameter φv ∈ �̄bdd(Gv) for all places by the
following diagram

LFv
φv LGv

LF
φ LG.

So one can define the global L-packet to be the restricted tensor product of the local
L-packets

�̄φ := ⊗′
v�̄φv .

Theorem 1.3 (Arthur) There exist automorphic representations in �̄φ .

For any irreducible admissible representation π of G(AF ), one can associate a
family of Satake parameters c(π) = {c(πv)} for all unramified places ofπ . If we define
an equivalence relation on the families of Satake parameters attached to irreducible
admissible representations of G(AF ) by requiring c(π) ∼ c(π ′) if c(πv) is �0-
conjugate to c(π ′

v) for almost all places, then another way of characterizing �̄φ is
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76 B. Xu

through the equivalence class c(φ) of family of Satake parameters associated with the
representations in �̄φ . Ifwe take the standard embedding ξ : LG → GL(N ,C), where
N = 2n + 1 (resp. 2n) if G = Sp(2n) (resp. G = SO(2n)), then ξ(c(φ)) defines a
family of Satake parameters for irreducible admissible representations ofGL(N ,AF ).
By the conjectural Langlands principle of functoriality and strong multiplicity one for
automorphic representations of GL(N ), ξ(c(φ)) determines a unique automorphic
representation of GL(N ). In practice, Arthur gets around the assumption on global
Langlands group by reversing our discussion here. To be more precise, he substituted
for �̄(G) by the subset of self-dual automorphic representations ofGL(N ), which are
induced from cuspidal automorphic representations of the Levi subgroups of GL(N ).
Then φv will correspond to the representations of GL(N , Fv). Since we do not have
the generalized Ramanujan conjecture, now we can only conclude φv ∈ �̄+

unit (G) ⊇
�̄bdd(G) (see Proposition 3.10). Nonetheless, the local packet �̄φ can still be defined
in this case. In this way, Theorem 1.3 should really be viewed as a statement about
Langlands principle of functoriality with respect to the embedding ξ . To summarize,
the global L-packet �̄φ can be uniquely characterized by either an equivalence class
of family of Satake parameters c(φ) or an automorphic representation of GL(N )
associated with ξ(c(φ)). We call this the strong multiplicity one property for the
global L-packets of G.

The main tool in our proof is the stabilized twisted Arthur-Selberg trace formula.
The ordinary stable trace formula has been established by Arthur in [4–6]. The twisted
case results from a long project of Mœglin and Waldspurger [32] which has been
finished recently. All of these also rest upon Ngo’s celebrated proof [34] of the Funda-
mental Lemma. To give some ideas of the proof of our theorem,wewould like to briefly
describe two typical kinds of trace formulas used in this paper. Let ζ̃ be a character
of ZG̃(F)\ZG̃(AF ). The space of ζ̃ -equivariant L2-functions over G̃(F)\G̃(AF ) can
be decomposed into a discrete part and a continuous part:

L2(G̃(F)\G̃(AF ), ζ̃ ) = L2
disc(G̃, ζ̃ )⊕ L2

cont (G̃, ζ̃ ).

If we take a ζ̃−1-equivariant smooth compactly supported function f̃ = ⊗v f̃v over
G̃(A), then we can define an operator on L2

disc(G̃, ζ̃ ) by

(
RG̃
disc( f̃ )ϕ

)
(x) =

∫
ZG̃ (AF )\G̃(AF )

f̃ (y)ϕ(xy)dy, ϕ ∈ L2
disc(G̃, ζ̃ ).

Müller [31] showed this operator RG̃
disc( f̃ ) is of trace class, so we can write

tr RG̃
disc( f̃ ) =

∑
π̃

m(π̃) f̃G̃(π̃).

where the sum is over all irreducible admissible representations of G̃(AF ) and m(π̃)
is the multiplicity of π̃ in L2

disc(G̃, ζ̃ ). We define the discrete part of the trace formula
to be the following distribution
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L-packets of quasisplit GSp(2n) and GO(2n) 77

I G̃disc( f̃ ) = tr RG̃
disc( f̃ )+ “ symmetric part in L2

cont (G̃, ζ̃ )”,

where the symmetry on the continuous spectrum is given by the action of the regular
elements of the relative Weyl groups (see Sect. 5.1). The stable trace formula gives a
stabilization of this distribution I G̃disc( f̃ ), and it relates the “error terms” to the stable
distributions on some smaller groups, i.e, elliptic endoscopic groups of G̃. We state it
in the following theorem.

Theorem 1.4 (Arthur) By induction, one can define a stable distribution

SG̃disc( f̃ ) = I G̃disc( f̃ )−
∑
G̃ ′

ι(G̃, G̃ ′)SG̃ ′
disc( f̃

G̃ ′
), (1.1)

where the sum is over elliptic endoscopic groups G̃ ′ �= G̃ of G̃, ι(G̃, G̃ ′) are some
constants (see (5.3)), and f̃ → f̃ G̃

′
is the Langlands–Shelstad–Kottwitz transfer.

The relation between SG̃disc( f̃ ) and L-packets can be described in the following
conjecture.

Conjecture 1.5 (Stable multiplicity formula)

SG̃disc( f̃ ) =
∑

ψ̃∈�(G̃)
aψ̃ S

G̃
ψ̃
( f̃ ),

and

SG̃
ψ̃
( f̃ ) =

∏
v

f̃v(ψ̃v),

where f̃v(ψ̃v) is a linear combination of Harish-Chandra characters in some finite
subset �ψ̃v

of �(G̃(Fv)), which defines a stable distribution on G̃(Fv). Moreover,
there is an explicit formula for the constants aψ̃ .

In this conjecture, �(G̃) is the set of so-called global Arthur parameters of G̃,
which generalizes the set�(G̃) of bounded global Langlands parameters. The global
packet�ψ̃ = ⊗′

v �ψ̃v
associated with the stable distribution SG̃

ψ̃
( f̃ ) is called a global

Arthur packet. One can view the global L-packets as a special case of global Arthur
packets, and the local L-packets that we are looking for will be the local components
of some global L-packets, which contribute to SG̃disc( f̃ ). Before we can talk about how

to isolate a global L-packet from SG̃disc( f̃ ), we want to introduce the twisted version
of (1.1) first.

Let ω be a character of G̃(AF )/G̃(F)G(AF ) and θ ∈ �0, we define the discrete
part of the (θ, ω)-twisted trace formula to be

I (G̃
θ ,ω)

disc ( f̃ ) = tr(R(θ)−1 ◦ R(ω) ◦ RG̃
disc( f̃ ))

+ “(θ, ω) − twisted symmetric part in L2
cont (G̃, ζ̃ )”,
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where R(θ) is induced by action on G̃(AF ) by θ , and R(ω) is induced bymultiplication

on L2
disc(G̃, ζ̃ ) by ω. Then the stabilization of I (G̃

θ ,ω)
disc ( f̃ ) is given by the following

theorem.

Theorem 1.6 (Moeglin and Waldspurger)

I (G̃
θ ,ω)

disc ( f̃ ) =
∑
G̃ ′

ι(G̃, G̃ ′)SG̃ ′
disc( f̃

G̃ ′
), (1.2)

where the sum is over (θ, ω)-twisted elliptic endoscopic groups G̃ ′ of G̃.

One application of (1.2) is it gives a multiplicity formula for the automor-
phic representations of G̃. Let X = Hom(G̃(AF )/ZG̃(AF )G(AF ),C

×) and Y =
Hom(G̃(AF )/G̃(F)ZG̃(AF )G(AF ),C

×). If π̃ is an irreducible admissible represen-
tation of G̃(AF ), we write Y (π̃) = {ω ∈ Y : π̃ ∼= π̃ ⊗ ω}, which is finite.

Proposition 1.7 1. Suppose π̃ is a discrete automorphic representation of G̃, and π
is an irreducible constituent of π̃ restricted to G(AF ). If [π ] ∈ �̄φ for φ ∈ �̄(G),
then

m(π̃) = mφ̃ |Y (π̃)/α(Sφ)|, (1.3)

where α(Sφ) (see (2.15)) is a subgroup of Y (π̃), mφ̃ = 1 or 2. Moreover, mφ̃ = 2

only when G is special even orthogonal, φ /∈ �(Gθ0) (see Sect. 3.1), and π̃ ⊗ω ∼=
π̃ θ0 for some ω ∈ Y .

2. Suppose π̃ and π̃ ′ are discrete automorphic representations of G̃, and there exists
ω ∈ X such that π̃v is�0-conjugate to π̃ ′

v⊗ωv for all places. If π is an irreducible
constituent of π̃ restricted to G(AF ) and [π ] ∈ �̄φ for φ ∈ �̄(G), then there exists
some ω′ ∈ Y and θ ∈ �0 such that π̃ ′ ∼= π̃ θ ⊗ ω′.

Back to the proof of Theorem 1.2, a key step is to isolate the global L-packets from
the stable distribution SG̃disc( f̃ ) for f̃ = ⊗v f̃v such that f̃v is �0-invariant. By the
theory of multipliers, one can isolate the parts associated with different equivalence
classes of families of Satake parameters. For φ ∈ �̄(G), the equivalence class c(φ)
determines the packet �̄φ of G uniquely from our previous discussion. But this may
not be the case for G̃. In view of part (2) of Proposition 1.7, this means if the global
L-packet �̄φ̃ exists for φ̃ ∈ �̄(G̃), there might exist ω ∈ Y such that �̄φ̃ �= �̄φ̃ ⊗ ω,

whereas �̄φ̃v
= �̄φ̃v

⊗ωv for almost all places. For our proof, we only need something

weaker, that iswewill fix a nonarchimeadan place u, andwe require if �̄φ̃v
= �̄φ̃v

⊗ωv

for all places v �= u, then �̄φ̃ = �̄φ̃ ⊗ ω. Such global parameters can be constructed
using the result of Shin [41] on automorphic plancherel density. At last, we prove the
following global result, which is parallel with Theorem 1.3.

Theorem 1.8 For φ ∈ �̄(G) satisfying Sφ̃ = 1 (see Sect. 2.2), there exists a global
L-packet

�̄φ̃ = ⊗′
v�̄φ̃v
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of G̃ unique up to twisting by Y , such that if π̃ is an automorphic representation of G̃
whose irreducible constituents in the restriction to G(AF ) are contained in �̄φ , then
[π̃] is contained in �̄φ̃ ⊗ ω for some ω ∈ Y .

The local and global results of this paper will be proved together by a complicated
induction argument. For the purpose of giving a clear proof of the local results, we have
minimized the global assumptions needed in our induction arguments by imposing
very restrictive conditions on the global results (like in Theorem 1.8). In a sequel to
this paper, we will prove the global results of this paper in a more general setting.

A full description of the discrete spectrum of G̃ will also require the Arthur pack-
ets. Unfortunately, the technique in this paper will not be sufficient for that. This is
somehow reflected by the fact that the Arthur packets of G can have more compli-
cated structure than its L-packets. To be able to construct the Arthur packets of G̃ in
the nonarchimedean case, one will need to extend the works of Mœglin [24,25] on
explicit construction of the Arthur packets of G. The global case could be even more
challenging, because that would require certain description of the residue spectrum
for both G and G̃. So we would like to keep that as a project for the future.

This paper is organized as follows. In Sect. 2, we discuss various group theoretic
properties about G and G̃. We introduce their Levi subgroups and twisted endoscopic
groups. We also discuss the relation between �̄(G) and �̄(G̃) both in the local and
global cases. We recall some known results about restricting the local representations
of G̃ to G, in particular we have restriction multiplicity one in this case. In Sect. 3,
we review Arthur’s endoscopic classification theory for G in the tempered case. In the
local theory, we describe the θ -twisted endoscopic character identities (or character
relations) forG and θ ∈ �0. In the global theory, we giveArthur’smultiplicity formula
for automorphic representations of G. In Sect. 4, we state our main local theorem
(Theorem 4.6). In this theorem, we formulate the (θ, ω)-twisted endoscopic character
identities for G̃ and ω ∈ X , which are natural extensions of the θ -twisted endoscopic
character identities for G. Similarly we also formulate the natural extensions of the
twisted local intertwining relations from G to G̃. In Sect. 5, we introduce various
stable trace formulas used in this paper. We prove Proposition 1.7 as an application of
the twisted stable trace formula. We also state some global conjectures, whose special
versions have to be proved together with our main local theorem. In particular, we give
the precise statement of Conjecture 1.5 in the tempered case. In the end of this section,
we make a comparison of both sides of the twisted stable trace formulas for G̃, which
is analogous to what Arthur did for G. In the final section, we give the proofs of our
main local theorem together with all the global theorems by an induction argument.
In particular, we address the issue of lack of strong multiplicity one as we mentioned
above.

Some standard notations If G is a reductive group over a field F , let G0 be the identity
component, Gder be the derived group of G0, Gsc be the simply connected cover
of Gder , and Gad be the adjoint group of Gder . We denote the centre of G by ZG or
Z(G), the split connected component of ZG by AG . IfG is connected, let X∗(G) be the
group of algebraic characters of G over F and aG = HomZ(X∗(G),R). If F is a local
field, there is a homomorphism HG : G(F) → aG defined by e〈HG (g),χ〉 = |χ(g)|F
for g ∈ G(F) and χ ∈ X∗(G). If G is abelian and θ is an automorphism of G, let
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Gθ be the θ -invariant subgroup of G, and Gθ be the θ -coinvariant group of G, i.e.,
Gθ = G/(θ − 1)G. If A is a locally compact abelian group, we denote its Pontryagin
dual by A∗.

2 Preliminary

2.1 Groups

2.1.1 Similitude groups

Let F be a local or global field of characteristic zero and F̄ be its algebraic closure.
When F is global, let us denote the adele ring over F by AF , and the idèle group by
IF . The absolute Galois group over F is written as �F or � for abbreviation. Let G
be a quasisplit connected reductive group over F and D be a torus. We denote by G̃
an extension of D by G

1 G G̃ λ D 1. (2.1)

Let us denote the centres ofG and G̃ by ZG and ZG̃ respectively. Sometimeswe need to
distinguish λ for different groups, so we will also write λG = λ. The primary example
that we are going to consider in this paper is when G is a special even orthogonal
group or a symplectic group, and G̃ is the corresponding similitude group, in which
case λ is called the similitude character.

A split general symplectic group (or symplectic similitude group) is defined as
follows

GSp(2n) =
{
g ∈ GL(2n) : g

(
0 −Jn
Jn 0

)
t g = λ(g)

(
0 −Jn
Jn 0

)}
,

where Jn =

⎛
⎜⎜⎝

1
1

. .
.

1

⎞
⎟⎟⎠ and λ(g) is a scalar. It is connected as an algebraic group.

A split general even orthogonal group (or orthogonal similitude group) is defined by

GO(2n) =
{
g ∈ GL(2n) : g

(
0 Jn
Jn 0

)
t g = λ(g)

(
0 Jn
Jn 0

)}
.

Since (det g)2 = λ(g)2n , it has two connected components depending on whether
det g/λ(g)n being 1 or−1. Let us denote the identity component byGSO(2n), andwe
call it the connected general even orthogonal group. Because SO(2n) (resp.GSO(2n))
has an outer automorphism from the conjugate action by O(2n) (resp.GO(2n)), let us
denote an outer twist of SO(2n) (resp.GSO(2n)) with respect to this outer automor-
phism and an arbitrary quadratic extension E/F by SO(2n, η) (resp.GSO(2n, η)),
where η is the quadratic (idèle class) character associated to E/F by the local (global)
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class field theory. We would like to allow E = F and η = 1, in which case this is the
split group. If G = SO(2n, η), we define ηG = η. If G = Sp(2n), we define ηG = 1.
These groups that we have defined above give all the quasisplit general symplectic
groups and quasisplit connected general even orthogonal groups.

Another description of quasisplit general symplectic groups and quasisplit con-
nected general even orthogonal groups is given by

GSp(2n) = (Gm × Sp(2n))/(Z/2Z) and GSO(2n, η) = (Gm × SO(2n, η))/(Z/2Z),

where Z/2Z is embedded diagonally into the centre of each factor. The similitude
character λ is square on Gm and trivial on the other factor. More generally we can
define

G(Sp(2n1)× · · · × Sp(2ns)× SO(2ns+1, η1)× · · · × SO(2ns+t , ηt )) (2.2)

to be

(Gm×Sp(2n1)× · · · × Sp(2ns)× SO(2ns+1, η1)× · · · × SO(2ns+t , ηt ))/(Z/2Z),

where Z/2Z is again embedded diagonally. We can also generalize the similitude
character λ to these groups such that it is square on Gm and trivial on all the other
factors. At last let us write GSp(0) = GSO(0) = Gm and set λ = id in this case.

For any quasisplit connected reductive group G defined over F , we denote by Ĝ
its complex dual group, by Z(Ĝ) the centre of Ĝ, and by LG its L-group, which is
a semidirect product of Ĝ with the Weil group WF , i.e., Ĝ � WF . Then dual to the
extension (2.1), we have

1 D̂ ̂̃G p
Ĝ 1,

where all the homomorphisms can be extended to L-homomorphisms of L-groups. If
G̃ is GSp(2n) or GSO(2n, η), then ̂̃G is the general Spin group

GSpin(2n + 1,C) = (C× × Spin(2n + 1,C))/(Z/2Z) or

GSpin(2n,C) = (C× × Spin(2n,C))/(Z/2Z),

where Z/2Z is embedded diagonally to the centre of each factor. Here the embedding
needs to be specified. Note that the Spin group is an extension of the special orthogonal
group by Z/2Z. If we denote the generator of this Z/2Z by z, then in defining the
general Spin groupwewantZ/2Z to be embedded to< z > for the Spin factor. In fact,
Z(Spin(2n + 1,C)) =< z >, and for Z(Spin(2n,C)) there is an exact sequence

1 < z > Z(Spin(2n,C)) Z(SO(2n,C)) 1 .

We take a preimage of the generator of Z(SO(2n,C)) ∼= Z/2Z in Z(Spin(2n,C)) and
denote it byw, then it is well-known thatw2 = 1 if n is even andw2 = z if n is odd. On
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the other hand, Z(GSpin(2n + 1,C)) ∼= C
×, and Z(GSpin(2n,C)) ∼= C

× × Z/2Z.
This is because when n is even u = (1, w) (resp. u = (

√−1, w) when n is odd) splits
the exact sequence

1 C
× Z(GSpin(2n,C)) Z(SO(2n,C)) 1.

L G̃ is GSpin(2n + 1,C) × WF or GSpin(2n,C) � WF where the action of WF on
GSpin(2n,C) factors through the Galois group �E/F of the quadratic extension E/F
associated with η, and it acts trivially on C

×. It is interesting to see its action on the
centre of GSpin(2n,C). If τ is the nontrivial element in �E/F , then τ is trivial on the
factor C

× and

τ(u) = (−1) · u, for − 1 ∈ C
×. (2.3)

If G̃ is type (2.2), then ̂̃G is

(C× × Spin(2n1 + 1,C)× · · · × Spin(2ns + 1,C)× Spin(2ns+1,C)× · · ·
× Spin(2ns+t ,C))/(Z/2Z)s+t ,

where (Z/2Z)s+t is embedded as the subgroup generated by

(−1,

k−1︷ ︸︸ ︷
1, · · · , 1, z,

s+t−k︷ ︸︸ ︷
1, · · · , 1 )

for 1 � k � s + t . For L G̃, the action of WF on ̂̃G factors through the Galois group
�E ′/F , where E ′ is the composite field E1E2 · · · Et for the quadratic extensions Ei/F
associated with ηi , and it acts on each factor as in the previous case.

Lemma 2.1 The image of λ onGSp(2n,F), GSO(2n,F) is F×, and on GSO(2n, η)(F)
is NmE/F E×, where E/F is the quadratic extension associated to η.

Proof The cases of GSp(2n) and GSO(2n) are obvious, so we will only consider the
case that G̃ = GSO(2n, η). If n = 1, GSO(2, η) can be embedded into GL(2) and
λ is given by the determinant map. Since GSO(2, η)(F) = E×, it is easy to see that
the determinant map becomes the norm map on E×, and the image is NmE/F E×. For
general n, we can take a Borel subgroup B̃ of GSO(2n, η) with a maximal torus T̃
and unipotent radical Ñ . By the Bruhat decomposition,

G̃(F) =
⊔

w∈W (T̃ (F),G̃(F))

B̃(F)ẇ B̃(F),

where ẇ are representatives ofw in G̃(F). SinceW (T̃ (F), G̃(F)) ∼= W (T (F),G(F))
for T = G∩ T̃ , one can take ẇ inG(F).Moreover, Ñ = N for N = G∩ Ñ . Therefore,
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λ(G̃(F)) = λ(B̃(F)) = λ(T̃ (F)). Let us write G̃ = (Gm × G)/(Z/2Z), and choose
T̃ (F̄) such that it consists of (x, g) modulo Z/2Z, where x ∈ F̄× and

g = diag{z1, . . . , zn−1, y, y
−1, z−1

n−1, . . . , z
−1
1 } ∈ G(F̄)

with zi , y ∈ F̄×. If (x, g) ∈ T̃ (F), then (x, y) ∈ GSO(2, η)(F), and λ(x, g) =
λSO(2,η)(x, y) = x2. On the other hand, if (x, y) ∈ GSO(2, η)(F), then by let-
ting zi = x for 1 � i � n − 1, we have (x, g) ∈ T̃ (F). This shows λ(T̃ (F)) =
λSO(2,η)(GSO(2, η)(F)) = NmE/F E×. ��

This lemma can be easily generalized to groups of type (2.2).

Lemma 2.2 Suppose G̃ is of type (2.2), the image of λ on G̃(F) is

F× ∩ NmE1/F E
×
1 ∩ · · · ∩ NmEt/F E

×
t ,

where Ei/F is the quadratic extension associated to ηi for 1 � i � t .

Proof Let us denote by ˜̃G the product

GSp(2n1)× GSp(2n2)× · · · × GSp(2ns)

× GSO(2ns+1, η1)× · · · × GSO(2ns+t , ηt ), (2.4)

then G̃ is the subgroup of ˜̃G characterized by λ1(g1) = · · · = λs+t (gs+t ) for
(g1, . . . , gs+t ) ∈ ˜̃G. In particular, λ(g) = λ1(g1) for g ∈ G̃ ⊆ ˜̃G. Then the lemma
follows immediately from Lemma 2.1. ��

When F is global, we have the following corollary, whose proof is obvious.

Corollary 2.3 Suppose G̃ is of type (2.2), the image of λ on G̃(AF ) is

IF ∩ NmE1/F IE1 ∩ · · · ∩ NmEt/F IEt ,

where Ei/F is the quadratic extension associated to ηi for 1 � i � t .

Corollary 2.4 Suppose G̃ is of type (2.2), then λ(G̃(AF )) ∩ F× = λ(G̃(F)) and
λ(ZG̃(AF )) ∩ F× = λ(ZG̃(F)).

Proof For the first equality, by Lemma 2.2 and Corollary 2.3 it suffices to show
NmEi /F IEi ∩ F× = NmEi /F E

×
i for all 1 � i � t , and this is a consequence

of Hasse norm theorem (see [33], Corollary VI.4.5). For the second equality, note
λ(ZG̃(AF )) = I 2F and λ(ZG̃(F)) = F×2

. So we need to show F× ∩ I 2F = F×2
, and

this follows from Grunwald–Wang theorem. ��
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2.1.2 Levi subgroups

Let G̃, G, D and λ be defined as in Sect. 2.1.1. If we restrict λ to a Levi subgroup M̃
of G̃, then its kernel will be a Levi subgroup M of G, and we have

1 M M̃ λ D 1.

It is easy to see that this induces a bijection between Levi subgroups of G̃ and G.
Suppose G̃ is a general symplectic group or a connected general even orthogonal

group of semisimple rank n, then M̃ is isomorphic to

GL(n1)× · · · × GL(nr )× G̃−, (2.5)

where G̃− is of the same type as G̃ with semisimple rank n− � 0 and n = ∑r
i=1 ni +

n−. Throughout this paper we fix a Borel subgroup B̃ of G̃ consisting of upper-
triangular matrices and we choose M̃ to be contained in the group

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

GL(n1) 0
. . .

GL(nr )
G̃−

GL(nr )
. . .

0 GL(n1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In fact this gives all the standard Levi subgroups if G̃ is GSp(2n) or GSO(2n, η)
(η �= 1), andGO(2n)-conjugacy classes of standard Levi subgroups if G̃ isGSO(2n).
We fix an isomorphism from (2.5) to M̃ as follows

(g1, . . . gr , g) −→ diag{g1, . . . , gr , g, λ(g)t g−1
r , . . . , λ(g)t g

−1
1 }

if n− > 0, and

(g1, . . . gr , g) −→ diag{g1, . . . , gr , λ(g)t g−1
r , . . . , λ(g)t g

−1
1 }

if n− = 0. Here t gi = Jni
t gi J−1

ni for 1 � i � r . Under this isomorphism, the
Weyl group W (M̃) = Norm(AM̃ ,G)/M̃ acts on M̃ by permuting the general linear
factors and changing some gi to λ(g)t g

−1
i (also compositions of these). Finally, note

M ∼= GL(n1)× · · · × GL(nr )× G− and W (M) ∼= W (M̃).
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2.1.3 Twisted endoscopic groups

Let G be a quasisplit connected reductive group over F . When F is local, we have an
isomorphism

H1(WF , Z(Ĝ)) −→ Hom(G(F),C×). (2.6)

When F is global, we have a homomorphism

H1(WF , Z(Ĝ)) −→ Hom(G(AF )/G(F),C
×), (2.7)

whereHom(G(AF )/G(F),C×)denotes the quasicharacter ofG(AF ) trivial onG(F).
If we let Fv be the localization of F at place v, then there is a commutative diagram

H1(WF , Z(Ĝ)) Hom(G(AF )/G(F),C×)

H1(WFv , Z(Ĝv)) Hom(G(Fv),C×).

Let

Ker1(WF , Z(Ĝ)) :=
⋂
v

Ker{H1(WF , Z(Ĝ)) → H1(WFv , Z(Ĝv))},

it is finite and gives the kernel of (2.7). Suppose G̃, G, D and λ are defined as in
Sect. 2.1.1, then we have the following fact.

Lemma 2.5 Suppose Z(Ĝ) is�F-invariant and D is split, thenKer1(WF , Z(
̂̃G)) = 1.

Proof It is a consequence of Chebotarev’s density theorem (see [33], Corollary
VII.13.10) that

Ker1(WF , Z(Ĝ)) = Ker1(WF , D̂) = 1.

Then we consider the exact sequence

1 D̂ Z(̂̃G) Z(Ĝ) 1,

it induces a commutative diagram

π0(Z(Ĝ)�)

�

H1(WF , D̂) H1(WF , Z(
̂̃G)) H1(WF , Z(Ĝ))

π0(Z(Ĝv)
�v ) H1(WFv , D̂v) H1(WFv , Z(

̂̃Gv)) H1(WFv , Z(Ĝv)),
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with both the top and bottom rows being exact. Suppose u ∈ Ker1(WF , Z(
̂̃G)), then

by the commutativity of the right square and Ker1(WF , Z(Ĝ)) = 1, u has a preimage
w in H1(WF , D̂). Since Ker1(WF , D̂) = 1, the Langlands correspondence for tori
allows us to identify H1(WF , D̂)with Hom(D(AF )/D(F),C×). Nowwithout loss of
generality, we can assumew �= 1. By the commutativity of the left square and the fact
that the left end vertical map is an isomorphism, the localization of w is determined
by the localizations of those in the image of π0(Z(Ĝ)�) in H1(WF , D̂). Finally, we
use Chebotarev’s density theorem again to conclude that w has to lie in the image of
π0(Z(Ĝ)�), and hence u = 1. ��
Corollary 2.6 Suppose G̃ is of type (2.2) and λ is the generalized similitude character,
then

Ker1(WF , Z(
̂̃G)) = Ker1(WF , Z(Ĝ)) = 1.

Proof One just needs to observe that in this case �F acts trivially on Z(Ĝ), and
D = Gm . ��

Let θ be an automorphism ofG, andω be a quasicharacter ofG(F) if F is local, or a
quasicharacter ofG(AF ) trivial onG(F) if F is global.We define a twisted endoscopic
datum for (G, θ, ω) to be a triple (H, s, ξ), where H is a quasisplit connected reductive
group over F , s is a semisimple element in Ĝ � θ̂ , and ξ is an L-embedding from L H
to LG satisfying the following conditions:

1. Int(s) ◦ ξ = a · ξ, for a 1-cocycle a of WF in Z(Ĝ) which is mapped to ω under
(2.6) or (2.7);

2. Ĥ ∼= Cent(s, Ĝ)0 through ξ .

Here H is called a twisted endoscopic group of G and for abbreviation we will denote
(H, s, ξ) by H . In this definition, we have required ξ to be an L-embedding of L H .
But in general, ξ can be an embedding of certain extension group of Ĥ byWF , which
may not necessarily be isomorphic to L H . In that case, one has to consider z-pairs
(see [18], 2.2). Since we do not need to deal with this general situation in this paper,
we are content with the current definition.

Two twisted endoscopic data (H, s, ξ) and (H ′, s′, ξ ′) are called isomorphic if there
exists an element g ∈ Ĝ such that gξ(L H)g−1 = ξ ′(L H ′) and gsg−1 ∈ s′Z(Ĝ). Here
such g is called an isomorphism.Wedenote byE(Gθ , ω) the set of isomorphismclasses
of twisted endoscopic data for (G, θ, ω). When θ = id andω = 1, we get the ordinary
endoscopic data, and we abbreviate E(Gθ , ω) to E(G). A twisted endoscopic datum
(H, s, ξ) is called elliptic if ξ(Z(Ĥ)�F )0 ⊆ Z(Ĝ), and we denote by Eell(Gθ , ω) the
set of isomorphism classes of twisted elliptic endoscopic data for (G, θ, ω). When
G = GL(N ), we write Eell(N θ ) for Eell(GL(N )θ ). One can see from the definition
that a twisted endoscopic group for G can be viewed as an elliptic endoscopic group
of some θ -stable Levi subgroup M (which also admits a θ -stable parabolic subgroup
P ⊇ M) of G. On the other hand, one can obtain all the twisted endoscopic groups of
G by taking the Levi subgroups of the twisted elliptic endoscopic groups of G.

If (H, s, ξ) is a twisted endoscopic datum for (G, θ, ω), we denote the automor-
phism group of this twisted endoscopic datum by AutG(H). By our definition, it is
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a subgroup of Ĝ. We define the inner automorphism group IntG(H) of this twisted
endoscopic datum to be Ĥ Z(Ĝ)�F , and the outer automorphism group to be

OutG(H) = AutG(H)/IntG(H).

By fixing an F-splitting for H , we get a homomorphism from OutG(H) to the outer
automorphism groupOut(H) of H . Let us denote the image byOut(H,G), and define

C := {z ∈ Z(Ĝ) : σ(z)z−1 ∈ Z(Ĝ) ∩ Ĥ for σ ∈ �F }.

Then there is an exact sequence

1 C/C ∩ Ĥ Z(Ĝ)�F OutG(H) Out(H,G) 1. (2.8)

When F is local, there is an action ofOutG(H) onH(H) (or equivalentlyC∞
c (H(F))).

For g ∈ OutG(H), let us denote its image in Out(H,G) by τg and choose a rep-
resentative ġ in AutG(H) such that Int(ġ) preserves a �F -splitting of Ĥ . Then
bg(w) = ġ−1ξ(1 � w)ġξ(1 � w)−1 defines a 1-cocycle of WF in Z(Ĥ) and
it induces a quasicharacter wg of H(F) by (2.6). So the action of OutG(H) on
H(H) sends f (h) to g f (h) = f (τg(h))ωg(h)−1. In all the cases that we will be
considering in this paper, one can always split the exact sequence (2.8) and get
OutG(H) ∼= Out(H,G) × (C/C ∩ Ĥ Z(Ĝ)�F ) such that Out(H,G) acts on H(H)

through its action on H(F).WhenG is a product of symplectic groups and special even
orthogonal groups, OutG(H) ∼= Out(H,G). When G = GL(N ), we write OutN (H)

for OutGL(N )(H).
Suppose G̃, G, D, λ are defined as Sect. 2.1. Let θ be an automorphism of G̃,

and we assume λ is θ -invariant, then θ also induces an automorphism of G. If ωG̃
is a quasicharacter associated with G̃ as in the setup of twisted endoscopic datum,
let us write ωG for the restriction of ωG̃ to G(F) if F is local or to G(AF )/G(F) if
F is global. The following lemma describes the relation for twisted endoscopic data
between G̃ and G.

Proposition 2.7 There is a one to one correspondence between E(Gθ , ωG) and

⊔
ωG̃ |G=ωG

E(G̃θ , ωG̃),

such that if G ′ corresponds to G̃ ′, then there exists an exact sequence

1 G ′ G̃ ′ λ′
D 1 .

Moreover, the same is true for twisted elliptic endoscopic data.
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Proof We say a twisted endoscopic datum (G̃ ′, s̃, ξ̃ ) for (G̃, θ, ωG̃) corresponds to a
twisted endoscopic datum (G ′, s, ξ) for (G, θ, ωG) if p(̃s) = s and they satisfy the
following diagram

L G̃ ′ ξ̃

p

L G̃

p

LG ′ ξ LG.

In [49] we have shown this gives a one to one correspondence between isomorphism
classes of twisted endoscopic data when F is local. In fact, our proof also works in the
global case except that we need to use a global lifting result of Labesse for homomor-
phisms from the globalWeil group to L-groups (see the paragraph after Theorem 2.9).

Moreover, it is easy to see ξ̃ (Z( ̂̃G ′)�F )0 ⊆ Z(̂̃G) if and only if ξ(Z(Ĝ ′)�F )0 ⊆ Z(Ĝ),
so (G̃ ′, s̃, ξ̃ ) is elliptic if and only if (G ′, s, ξ) is elliptic. ��
Remark 2.8 The most important case for us is when ωG = 1. Then Proposition 2.7
shows there is a one to one correspondence between the θ -twisted endoscopic data
E(Gθ ) and the (θ, ω)-twisted endoscopic data

⊔
ω

E(G̃θ , ω),

whereω runs through quasicharacters of G̃(F)/G(F) if F is local and quasicharacters
of G̃(AF )/G̃(F)G(AF ) if F is global. The same is true for elliptic endoscopic data.

As our most important examples, let us consider the general symplectic groups and
connected general even orthogonal groups with trivial automorphisms, and we have
the following table (cf. [7], 1.2 and [26], 2.1): let n = n1 + n2.

G Eell (G) G̃ Eell (G̃, ω)

Sp(2n) Sp(2n1)× SO(2n2, η) GSp(2n) G(Sp(2n1)× SO(2n2, η)) ω = η ◦ λ
SO(2n) SO(2n1, η)× SO(2n2, η) GSO(2n) G(SO(2n1, η)× SO(2n2, η)) ω = η ◦ λ
SO(2n, η) SO(2n1, η1)× SO(2n2, η1η) GSO(2n, η′) G(SO(2n1, η)× SO(2n2, ηη′))ω = η ◦ λ

Note in the cases above the isomorphism classes of twisted endoscopic data are
completely determined by the twisted endoscopic groups. But that is not the case in
general. For example, in the case of connected general even orthogonal groups, if we
let θ0 be the outer automorphism induced by the conjugate action of the full orthog-
onal group, then the isomorphism classes of θ0-twisted elliptic endoscopic data of
SO(2n, η′) are classified by θ0-twisted elliptic endoscopic groups Sp(2n1)× Sp(2n2)
(n = n1 + n2 + 1) with a pair of quadratic characters (η, ηη′). Correspondingly,
the isomorphism classes of (θ0, ω)-twisted elliptic endoscopic data of GSO(2n, η′)
are classified by (θ0, ω)-twisted elliptic endoscopic groups G(Sp(2n1) × Sp(2n2))
(n = n1 + n2 + 1) with a pair of quadratic characters (η, ηη′) and ω = η ◦ λ.
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2.2 Langlands parameters

Suppose G is a quasisplit connected reductive group over F , a Langlands parameter
of G is a Ĝ-conjugacy class of admissible homomorphisms from the Langlands group
LF to the L-group of G (cf. [8]). We denote the set of Langlands parameters of G by
�(G), and for any φ ∈ �(G) we denote a representative by φ : LF → LG. If F is
local, the Langlands group is defined as follows,

LF =
{
WF if F is archimedean,

WF × SL(2,C) if F is nonarchimedean.

If F is global, the existence of Langlands group is still conjectural. Let G̃, G, D and
λ be defined as in Sect. 2.1.1. The following theorem shows the relation for local
Langlands parameters between G and G̃.

Theorem 2.9 (Labesse) Suppose F is a local, every Langlands parameter φ of G can
be lifted to a Langlands parameter φ̃ of G̃ in the sense that the following diagram
commutes

LF
φ̃

φ

L G̃

p

LG.

In fact the global analogue of this theorem is also true if one uses the the globalWeil
group WF instead of the global Langlands group LF . Both the local and global cases
are proved in ([19], Theorem 8.1). In the global case, since we do not have the global
Langlands group yet, this kind of lifting theorem for global Langlands parameters is
unavailable. However let us assume the existence of global Langlands group and also
the same kind of lifting theorem at this moment, so that we can investigate the relation
for both local and global Langlands parameters between G and G̃ in a uniform way.
Moreover, the consequences of this investigation will serve as motivations for the later
definitions (see Sect. 3) that complement the lack of global Langlands group.

To further simplify our discussion, we are going to assume

Ker1(WF , Z(
̂̃G)) = Ker1(WF , Z(Ĝ)) = Ker1(WF , D̂) = 1 (2.9)

when F is global. This assumption allows us to treat the local and global cases at the
same time, and it also suffices for our purpose in view of Corollary 2.6. Let � be a
finite abelian group of automorphisms of G̃ preserving an F-splitting of G̃, and we
assume λ is�-invariant, so� also acts on G. We denote the dual automorphisms by

�̂ and form the semidirect products ̂̃G� := ̂̃G � �̂ and Ĝ� := Ĝ � �̂. Let � act
on �(G̃) and �(G) through the action of �̂ on ̂̃G and Ĝ respectively. For θ ∈ �, we
denote by �(Gθ ) the set of φ ∈ �(G) such that φθ = φ.
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Suppose F is either local or global, for any φ ∈ �(G) we choose a represen-

tative φ. Let LF act on D̂, Ĝ� , and ̂̃G�
by conjugation through φ. We denote

the corresponding group cohomology by H∗
φ (LF , ·). Note H0

φ (LF , D̂) = D̂� ,

H1
φ(LF , D̂) = H1(WF , D̂), and

S�φ := Cent(Imφ, Ĝ�) = H0
φ (LF , Ĝ

�),

S�
φ̃

:= Cent(Im φ̃, ̂̃G�
) = H0

φ (LF ,
̂̃G�

).

The short exact sequence

1 D̂ ̂̃G�
Ĝ� 1

induces a long exact sequence

1 D̂� S�
φ̃

S�φ
δ H1(WF , D̂),

and hence

1 S�
φ̃
/D̂� ι

S�φ
δ

H1(WF , D̂). (2.10)

To describe δ, we can identify

S�φ =
{̃
s ∈ ̂̃G� : s̃φ̃(u)̃s−1φ̃(u)−1 ∈ D̂, for all u ∈ LF

}
/D̂.

Then δ(s) : u �−→ s̃φ̃(u)̃s−1φ̃(u)−1, where s̃ is a preimage of s in ̂̃G�
, and δ(s)

factors through WF . About (2.10) we have the following lemma.

Lemma 2.10 The image of δ consists of a ∈ H1(WF , D̂) such that

φ̃θ = φ̃ ⊗ a

for some θ ∈ �, and in particular it is finite.

Proof We have shown the lemma when F is local in [49]. In particular the same
argument applies to the global case except for the finiteness of Im δ. When F is
global, we need to use the commutative diagram
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1 S�
φ̃
/D̂� S�φ

δ
H1(WF , D̂)

1 S�
φ̃v
/D̂�v

v S�φv
δv

H1(WFv , D̂v).

Since S0φ is mapped into S0φv and δv is trivial on (S
�

φ̃v
/D̂�v )0 = S0φv , then δ = ∏

v δv

is trivial on S0φ . This implies the image of δ is finite. ��
Take

1 D̂ Z(̂̃G) Z(Ĝ) 1

and it induces

1 D̂� Z(̂̃G)� Z(Ĝ)�
δ

H1(WF , D̂) H1(WF , Z(
̂̃G)).

So Kerδ|Z(Ĝ)� = Z(̂̃G)�/D̂� . Let H̄1(WF , D̂) := H1(WF , D̂)/δ(Z(Ĝ)�). Taking
the quotient of (2.10) by Z(Ĝ)� , we get

1 S̄�
φ̃

ι
S̄�φ

δ̄
H̄1(WF , D̂), (2.11)

where S̄�
φ̃

= S�
φ̃
/Z(̂̃G)� and S̄�φ = S�φ /Z(Ĝ)

� . Since Im δ is finite, we have S̄0
φ̃

= S̄0φ .

After taking the quotient of (2.11) by the identity component, we get

1 S�

φ̃

ι S�
φ

δ̄
H̄1(WF , D̂), (2.12)

where S�

φ̃
= S̄�

φ̃
/S̄0

φ̃
and S�

φ = S̄�φ /S̄
0
φ . There are natural maps from S�φ , S̄

�
φ , and S�

φ

to �̂, and for θ ∈ �, we denote the preimages of θ̂ ∈ �̂ by Sθφ, S̄
θ
φ and Sθ

φ respectively.

By the Langlands correspondence for tori and the assumption Ker1(WF , D̂) = 1,
we can identify H1(WF , D̂) with Hom(D(F),C×) if F is local or Hom(D(AF )

/D(F),C×) if F is global. Then we can compose with λ to get a homomorphism from
H1(WF , D̂) to Hom(G̃(F)/G(F),C×) if F is local or Hom(G̃(AF )/G̃(F)G(AF ),

C
×) if F is global. Since δ(Z(Ĝ)�) is trivial in H1(WF , Z(

̂̃G)), it induces the trivial
character on G̃(F) if F is local or G̃(AF ) if F is global. So we have a homomorphism

r : H̄1(WF , D̂) → Hom(G̃(F)/G(F),C×)

if F is local, and

r : H̄1(WF , D̂) → Hom(G̃(AF )/G̃(F)G(AF ),C
×)
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if F is global. In the local case, r is an isomorphism due to the fact that (2.6) is an
isomorphism. For the global case, we have the following lemma.

Lemma 2.11 If F is global and G̃ is of type (2.2), then r is an isomorphism.

Proof First we consider the following diagram

Hom(G̃(AF )/G̃(F),C×) Hom(D(AF )/D(F),C×)λ∗

H1(WF , Z(
̂̃G)) H1(WF , D̂)

�

π0(Z(Ĝ)�).
δ

(2.13)

By Corollary 2.4, we have Im λ∗ = Hom(G̃(AF )/G̃(F)G(AF ),C
×), and hence r is

surjective. On the other hand, the kernel of

H1(WF , Z(
̂̃G)) −→ Hom(G̃(AF )/G̃(F),C

×)

is Ker1(WF , Z(
̂̃G)) = 1 by Corollary 2.6. Therefore r is also an inclusion.

��
Let us denote the composition r ◦ δ̄ by α, then we can rewrite (2.12) as

1 S�

φ̃

ι S�
φ

α Hom(G̃(F)/G(F),C×) (2.14)

if F is local, and

1 S�

φ̃

ι S�
φ

α
Hom(G̃(AF )/G̃(F)G(AF ),C

×) (2.15)

if F is global. Note in the global case, we only know it is exact when G̃ is of type
(2.2) according to the previous lemma. Sometimes, we want to distinguish the map α
for different groups, so we will also write αG = α.

Next we want to discuss the relation between lifting Langlands parameters (see
Theorem 2.9) and lifting twisted endoscopic groups (see Proposition 2.7). Suppose
F is local or global and φ ∈ �(G). For any semisimple element s ∈ S̄θφ , let Ĝ

′ :=
Cent(s, Ĝ)0 and it can be equipped with a Galois action given by φ. This determines
a quasisplit connected reductive group G ′, and φ will factor through LG ′ for some θ -
twisted endoscopic datum (G ′, s, ξ)ofG, and henceweget a parameterφ′ ∈ �(G ′). In
this way, we call (G ′, φ′) corresponds to (φ, s), andwe denote it by (G ′, φ′) → (φ, s).

By Proposition 2.7, (G ′, s, ξ) can be lifted to a (θ, ω)-twisted endoscopic
datum (G̃ ′, s̃, ξ̃ ) of G̃ for some character ω of G̃(F)/G(F) if F is local or
G̃(AF )/G̃(F)G(AF ) if F is global. Then by Theorem 2.9 and the global assump-
tion that we made after, we can have a lift φ̃′ of φ′ in �(G̃ ′). All of these can be
summarized in the diagram below
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LF
φ̃

′

φ′

L G̃ ′ ξ̃ L G̃

LG ′ ξ LG.

Then we have the following lemma.

Lemma 2.12 α(s) = ω.

Proof It has been shown for the local case in [49], and the proof for the global case is
the same. ��
Remark 2.13 From this lemma we see the character ω associated with the twisted
endoscopic datum G̃ ′ only depends on the image of s in Sθ

φ . In the global case, lifting
Langlands parameter is not available due to the lack of the global Langlands group.
However one can always lift twisted endoscopic groups in both local and global cases,
so this lemma is behind the idea of our later definition of the map α [see (2.15)] in the
global case.

2.3 Representations

Let us assume F is a local field, and G, G̃, D, λ are defined as in Sect. 2.1.1. In this
section, we would like to recall some results about the restriction map �(G̃(F)) →
�(G(F)) from ([49], Section 6.1).

Lemma 2.14 If π̃ is an irreducible admissible representation of G̃(F), then the
restriction of π̃ to G(F) is a direct sum of finitely many irreducible admissible repre-
sentations.

Theorem 2.15 (Adler and Prasad [1]) Suppose G̃ is a quasisplit general symplectic
group or connected general even orthogonal group, and π̃ is an irreducible admissible
representation of G̃(F), then the restriction of π̃ to G(F) is multiplicity free.

Remark 2.16 This theorem can be easily extended to the groups G̃ of type (2.2). To do
so, we can first extend a representation of G̃(F) to ˜̃G(F) [see (2.4)], and then restrict
it to G(F).

Lemma 2.17 If π is an irreducible admissible representation of G(F), then there
exists a unique irreducible admissible representation π̃ of G̃(F) up to twisting by
Hom(G̃(F)/G(F),C×), such that it contains π in its restriction to G(F).

If π is an irreducible admissible representation of G(F), let us denote

G̃(π) = {g ∈ G̃(F) : π g ∼= π}.

If π̃ is an irreducible admissible representation of G̃(F), let us denote

X (π̃) = {ω ∈ (G̃(F)/ZG̃(F)G(F))
∗ : π̃ ⊗ ω ∼= π̃}.
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Proposition 2.18 Suppose G̃ is of type (2.2), π̃ is an irreducible admissible rep-
resentation of G̃(F) and π is contained in its restriction to G(F), then for ω ∈
(G̃(F)/ZG̃(F)G(F))

∗, ω is in X (π̃) if and only if ω is trivial on G̃(π). Moreover, the
restriction of π̃ contains |X (π̃)| irreducible admissible representations of G(F).

Lemma 2.19 Suppose π̃ is an irreducible admissible unitary representation of G̃(F),
then π̃ is an essentially discrete series representation of G̃(F) if and only if its restric-
tion to G(F) is an essentially discrete series representation. The same is true of the
tempered representations.

2.4 Langlands–Shelstad–Kottwitz transfer

Let F be a local field of characteristic zero and G be a quasisplit connected reductive
group over F . Suppose θ is an automorphism of G preserving an F-splitting and ωG

is a quasicharacter of G(F). We choose a quasicharacter χ on a closed subgroup ZF

of ZG(F), and define H(G, χ) to be the space χ−1-equivariant smooth compactly
supported functions over G(F) (i.e., equivariant Hecke algebra of G). Let δ be a
strongly θ -regular θ -semisimple element of G(F) such that ωG is trivial on the θ -
twisted centralizer groupGθ

δ (F) of δ. We choose Haar measures onG(F) andGθ
δ (F),

and they induce a G(F)-invariant measure on Gθ
δ (F)\G(F). Then we can form the

(θ, ωG)-twisted orbital integral of f ∈ H(G, χ) over δ as

Oθ,ωG
G ( f, δ) :=

∫
Gδ(F)\G(F)

ωG(g) f (g
−1δθ(g))dg.

We also form the (θ, ωG)-twisted stable orbital integral over δ as

SOθ,ωG
G ( f, δ) :=

∑
{δ′}θG(F)∼st {δ}θG(F)

Oθ,ωG
G ( f, δ′),

where the sum is over θ -twisted conjugacy classes {δ′}θG(F) in the θ -twisted stable

conjugacy class of δ (i.e., δ′ = g−1δθ(g) for some g ∈ G(F̄)), and the Haar mea-
sure on Gθ

δ′(F) is translated from that on Gθ
δ (F) by conjugation. Let I(Gθ,ωG , χ)

(SI(Gθ,ωG , χ)) be the space of (θ, ωG)-twisted (stable) orbital integrals ofH(G, χ)
over the set Gθ

reg(F) of strongly θ -regular θ -semisimple elements of G(F), then by
definition we have projections

H(G, χ) I(Gθ,ωG , χ) SI(Gθ,ωG , χ).

Suppose π is an irreducible admissible representation ofG(F) and χπ is the central
character of π . Let χ = χπ |ZF . Suppose πθ ∼= π ⊗ ωG , let Aπ (θ, ωG) be the
intertwining operator between π ⊗ ωG and πθ (this is uniquely determined up to a
scalar), we then define the (θ, ωG)-twisted character of π to be the distribution
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fGθ (π, ωG) := trace

(∫
ZF\G(F)

f (g)π(g)dg ◦ Aπ (θ, ωG)

)
, (2.16)

for f ∈ H(G, χ). By results of Harish-Chandra [11,13] in the non-twisted case,
Bouaziz [9], Clozel [10] and Lemaire [21] in the twisted case, there exists a locally

integrable function �Gθ ,ωG
π on G(F) such that for x ∈ Gθ

reg(F), g ∈ G(F)

�Gθ ,ωG
π (g−1xθ(g)) = ωG(g)�

Gθ ,ωG
π (x),

and

fGθ (π, ωG) =
∫
ZF\G(F)

f (g)�Gθ ,ωG
π (g)dg.

By the twisted Weyl integration formula, one can show this character defines a linear
functional on I(Gθ,ωG , χ). A linear functional on I(Gθ,ωG , χ) is called stable if it
factors through SI(Gθ,ωG , χ).

For a (θ, ωG)-twisted endoscopic datum (H, s, ξ) of G, there is a map defined over
F from the semisimple conjugacy classes of H(F̄) to the θ -twisted conjugacy classes
of θ -semisimple elements in G(F̄). We call a strongly regular semisimple element
γ ∈ H(F̄) is strongly G-regular if its associated H(F̄)-conjugacy class maps to a θ -
twisted G(F̄)-conjugacy class of strongly θ -regular θ -semisimple elements in G(F̄).
We denote the set of stronglyG-regular semisimple elements of H(F) by HG−reg(F).
The transfer factor defined in [18] is a function

�G,H (·, ·) : HG−reg(F)× Gθ
reg(F) → C,

which is nonzero only when γ ∈ HG−reg(F) is a norm of δ ∈ Gθ
reg(F), i.e., the

H(F̄)-conjugacy class of γ maps to the θ -twisted G(F̄)-conjugacy class of δ. Note if
δ ∈ Gθ

reg(F) has a norm γ ∈ HG−reg(F), then ωG is trivial on Gθ
δ (F) (see Lemma

4.4.C, [18]). In this paper, we always normalize the transfer factor with respect to
some fixed θ -stable Whittaker datum (B,�), and we also assume the Haar measure
is preserved for any admissible embedding TH

�−→ Tθ , where TH is a maximal torus
of H , T is a θ -stable maximal torus of G and Tθ = T/(θ − 1)T .

There is a canonical inclusion (ZG)θ ↪→ ZH . Let us denote the image of ZF in
ZH (F) by Z ′

F , then one can associate a quasicharacter χ ′ of Z ′
F , depending only

on χ and the twisted endoscopic embedding ξ . The Langlands-Kottwitz-Shelstad
transfer map (or twisted endoscopic transfer) is a correspondence from f ∈ H(G, χ)
to f H ∈ H(H, χ ′) such that

SOH ( f
H , γ ) =

∑
{δ′}θG(F)∼st {δ}θG(F)

�G,H (γ, δ
′)Oθ,ωG

G ( f, δ′) (2.17)
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where the sum is over θ -twisted conjugacy classes {δ′}θG(F) in the θ -twisted stable
conjugacy class of δ. In particular, it descends to a surjection

I(Gθ,ωG , χ) −→ SI(H, χ ′)OutG (H),

where the action of OutG(H) onSI(H, χ ′) is independent of the choice of F-splitting
for H (see Sect. 2.1.3). The existence of such a transfer has been a long standing
problem. In the real case, it is now a theorem of Shelstad [40]. In the nonarchimedean
case, the main obstacle is the Fundamental Lemma, which has been finally resolved
by Ngo [34]. And the proof of the transfer conjecture in this case was completed by
Waldspurger [48].

Now let us assume G, G̃, D and λ are defined as in Sect. 2.1.1. Let θ be an
automorphism of G̃ preserving an F-splitting and λ is θ -invariant. Let Z̃ F be a closed
subgroup of ZG̃(F) such that Z̃ F → (ZG̃)θ (F) is injective and D(F)/λ(Z̃ F ) is finite
(this is possible becausewe assumeλ is θ -invariant). Let ZF = Z̃ F∩G(F).We choose
Haar measures on Z̃ F and ZF such that the measure on ZF\G(F) is the restriction
of that on Z̃ F\G̃(F). Let χ̃ be a quasicharacter of Z̃ F and we denote its restriction to
ZF by χ . For every f ∈ H(G, χ), it can be extended to G̃(F) through Z̃ F by χ̃ , and
the extension lies inH(G̃, χ̃), supported on Z̃ FG(F). Hence we get an inclusion map

H(G, χ) H(G̃, χ̃)

f f̃

, (2.18)

and we can identify H(G, χ) with its image. Let ωG̃ be a quasicharacter of G̃(F)
and ωG = ωG̃ |G . For any strongly θ -regular θ -semisimple element δ of G(F) such
that ωG is trivial on the Gθ

δ (F), we fix the Haar measure on G̃θ
δ (F)\G̃(F), which

determines the Haar measure on Gθ
δ (F)\G(F) by restriction. Then for f ∈ H(G, χ),

and f̃ ∈ H(G̃, χ̃) being its extension, we have

SOG̃( f̃ , δ) = SOG( f, δ),

and

O
θ,ωG̃

G̃
( f̃ , δ) =

∑
{δ′}θG(F)∼G̃(F){δ}θG(F)

Oθ,ωG
G ( f, δ′)ωG̃(g)

where the sum is over θ -twisted G(F)-conjugacy classes {δ′}θG(F) in the θ -twisted

G̃(F)-conjugacy classes {δ}θ
G̃(F)

with δ′ = g−1δg for g ∈ G̃(F), and the Haar

measure on Gθ
δ′(F) is translated from that on Gθ

δ by conjugation. Because Z̃ FG(F) is
θ -conjugate invariant under G̃(F), the map (2.18) induces a map from I(Gθ,ωG , χ) to
I(G̃θ,ωG̃ , χ̃). Moreover Z̃ FG(F̄) is conjugate invariant under G̃(F̄), so it also induces
a map from SI(G, χ) to SI(G̃, χ̃).
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Suppose G̃ ′ ∈ E(G̃θ , ωG̃) andG
′ ∈ E(Gθ , ωG) correspond to each other according

to Proposition 2.7. The natural inclusion (ZG̃)θ → ZG̃ ′ induces an inclusion on Z̃ F .
So we can define Z̃ ′

F ⊆ ZG̃ ′(F) to be the image of Z̃ F and Z ′
F = Z̃ ′

F ∩ ZG ′(F). The
twisted endoscopic transfer sendsH(G̃, χ̃) toH(G̃ ′, χ̃ ′), where χ ′ is a quasicharacter
of Z̃ ′

F , depending only on χ̃ and the twisted endoscopic embedding. Let χ ′ be the
restriction of χ̃ ′ to Z ′

F . Then we have

H(G ′, χ ′) H(G̃ ′, χ̃ ′)

f f̃

,

The following lemma shows these inclusion maps are compatible with the twisted
endoscopic transfers.

Lemma 2.20 ([49], Lemma 3.8) Suppose f ∈ H(G, χ), then the (θ, ωG̃)-twisted
endoscopic transfer of the extension f̃ of f is equal to the extension of (θ, ωG)-twisted
endoscopic transfer f G

′
of f as elements in SI(G̃ ′, χ̃ ′), i.e.

f̃ G̃
′ = ˜( f G ′

) (2.19)

Remark 2.21 The inclusion map (2.18) of Hecke algebras induces a restriction map
of distributions in the opposite direction. Moreover the restriction of an invariant
distribution is again invariant, and the restriction of a stable distribution is again stable.
In particular, the restriction of the character of a representation is compatible with the
restriction of the representation in the usual sense.

Corollary 2.22 Suppose SG̃
′
(·) is a stable distribution on G̃ ′, then the restriction of

the pull-back of SG̃
′
(·) is equal to the pull-back of the restriction of SG̃ ′

(·), i.e.

SG̃
′
( f̃ G̃

′
) = SG̃

′
(˜f G ′

)

Proof One just need to substitute (2.19) into SG̃
′
(·). ��

3 Arthur’s classification theory: tempered case

In this section we will review Arthur’s classification theory for the tempered represen-
tations of quasi-split symplectic groups and special even orthogonal groups (cf. [7]).
So throughout this section, G will always be a quasisplit symplectic group or special
even orthogonal group over F (if not specified). We fix an outer automorphism θ0 of
G, and a nontrivial automorphism θN of GL(N ), so that they preserve an F-splitting
respectively. When G is symplectic, θ0 is trivial. When G is special even orthogonal,
we require θ0 to be the unique outer automorphism induced from the conjugation of the
full orthogonal group. We denote �0 = 〈θ0〉. When F is local, �0 acts on �(G(F))
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and we denote the set of �0-orbits in �(G(F) by �̄(G(F)). We denote by H̄(G, χ)
the subspace of �0-invariant functions inH(G, χ), and we abbreviateH(GL(N )) to
H(N ). We also denote the corresponding space of (stable) twisted orbital integrals by
Ī(Gθ , ωG) (S̄I(Gθ , ωG)) for θ ∈ �0 and ωG ∈ Hom(G(F),C×).

3.1 Substitute Langlands parameter

First let F be a global field, we define the sets of substitute global generic (or tempered)
Langlands parameters as follows,

�sim(N ) := {isomorphism classes of irreducible unitary cuspidal automorphic

representations of GL(N )},
�sim(N

θN ) := {
φ ∈ �sim(N ) : φ = φ∨},

�(N θN ) :=
{
φ= l1φ1 � · · · � lrφr : φ=φ∨, φi ∈ �sim(Ni ), with

r∑
i=1

li Ni =N

}
.

Here φ∨ denotes the dual (or contragredient) of φ if φ ∈ �sim(N ), and

φ∨ := l1φ
∨
1 � · · · � lrφ

∨
r

if φ ∈ �(N θN ). Note that �(N θN ) is just a set of formal sums of irreducible unitary
cuspidal automorphic representations, and for every parameter φ ∈ �(N θN ) we can
assign a family of semisimple conjugacy classes in GL(N ,C) by

c(φv) := c(φ1,v)⊕ · · · ⊕ c(φ1,v)︸ ︷︷ ︸
l1

⊕ · · · ⊕ c(φr,v)⊕ · · · ⊕ c(φr,v)︸ ︷︷ ︸
lr

for unramified places v of φ, where c(φi,v) is the Satake parameter of the local com-
ponent φi,v . Inside �sim(N θN ) there are two types of parameters, we call φ is of
orthogonal type if the symmetric square L-function L(s, φ, S2) has a pole at s = 1;
we call φ is of symplectic type if the skew-symmetric square L-function L(s, φ,∧2)

has a pole at s = 1. In fact every φ ∈ �sim(N θN ) will always be either one of these
two types due to the fact that the Rankin–Selberg L-function

L(s, φ ⊗ φ) = L(s, φ, S2)L(s, φ,∧2)

has a simple pole at s = 1. Moreover when N is odd, φ is always of orthogonal
type. The following theorem proved in ([7], Theorem 1.4.1 and Theorem 1.5.3) shows
how automorphic representations of GL(N ) are related to that of orthogonal groups
and symplectic groups. If π is an automorphic representation of G, we denote by
c(π) = {c(πv)} the family of Satake parameters of πv at the unramified places.

Theorem 3.1 Suppose φ ∈ �sim(N θN ), then there is a unique class of elliptic endo-
scopic data (Gφ, sφ, ξφ) in Eell(N θN ) such that c(φv) = ξφ(c(πv)) for some discrete
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automorphic representation π of Gφ at almost all places. Moreover if φ is of orthog-
onal type, Ĝφ = SO(2n + 1,C) when N = 2n + 1, or SO(2n,C) when N = 2n; if
φ is of symplectic type, Ĝφ = Sp(2n,C) with N = 2n.

For φ = l1φ1 � · · · � lrφr ∈ �(N θN ), since φ = φ∨, one gets an involution on the
indices by letting φi∨ = φ∨

i , and consequently one has li = li∨ . This gives a disjoint
decomposition of these indices

Iφ � Jφ � J∨
φ ,

where Iφ indexes the set of self-dual simple parameters. Let Kφ = Iφ � Jφ , and let
Iφ,O (Iφ,S) indexes the self-dual simple parameters of orthogonal (symplectic) type.
By Theorem 3.1, for each φi with i ∈ Iφ , we have a twisted elliptic endoscopic group
Gi of GL(Ni ) and we fix the twisted endoscopic embedding ξi : LGi −→ LGL(Ni ).
For φ j with j ∈ Jφ , let us just take G j to be GL(N j ) and define an L-embedding
ξ j : LG j −→ LGL(2N j ) by sending g�w to diag{g, t g−1}×w. ThenArthur defines
a substitute global Langlands group by taking the fibre product

Lφ :=
∏
k∈Kφ

{
LGk −→ WF

}
,

and he also defines an L-homomorphism φE : Lφ −→ LGL(N ), where

φE :=
⊕
k∈Kφ

lkξk .

By viewing G as in Eell(N θN ), we can define the set of substitute global parameters
of G as follows

�̄(G) := {φ ∈ �(N θN ) : φE factors through LG}.

As a simple exercise, one can show for φ = l1φ1 � · · · � lrφr ∈ �(N θN ), φ is in
�̄(G) if and only if li is even for all i ∈ Iφ,S . Since OutN (G) ∼= �0, the above set is
really the analogue of the set of�0-conjugacy classes of global Langlands parameters
for G. For φ ∈ �̄(G) and � ⊆ �0, one can define

S�φ = Cent(ImφE , Ĝ�),

S̄�φ = S�φ /Z(Ĝ)
�F ,

S�
φ = S̄�φ /S̄

0
φ,

123



100 B. Xu

and from here one can also define the following important subsets of �̄(G)

�̄sim(G) = {φ ∈ �̄(G) : S̄
∑

0
φ = 1},

�̄2(G) = {φ ∈ �̄(G) : |S̄φ | < ∞},
�̄(Gθ ) = {φ ∈ �̄(G) : Sθφ �= ∅},

�̄ell(G
θ ) = {φ ∈ �̄(Gθ ) : |S̄0φ,s | < ∞ for some semisimple s ∈ S̄θφ},

where θ ∈ �0. In fact, one can even compute Sφ very explicitly (see [7, (1.4.8)])

Sφ =
⎛
⎝ ∏

i∈Iφ,O
O(li ,C)

⎞
⎠

+

φ

×
⎛
⎝ ∏

i∈Iφ,S
Sp(li ,C)

⎞
⎠ ×

⎛
⎝∏

j∈Jφ

GL(l j ,C)

⎞
⎠ , (3.1)

where
(∏

i∈Iφ,O O(li ,C)
)+
φ
is the kernel of the character

ε+
φ :

∏
i

gi −→
∏
i

(det gi )
Ni , gi ∈ O(li ,C), i ∈ Iφ,O .

Note G is symplectic or special even orthogonal here, so we have Iφ,O = I+
φ and

Iφ,S = I−
φ in Arthur’s original formula of Sφ . When G is special even orthogonal,

S�0
φ =

⎛
⎝ ∏

i∈Iφ,O
O(li ,C)

⎞
⎠ ×

⎛
⎝ ∏

i∈Iφ,S
Sp(li ,C)

⎞
⎠ ×

⎛
⎝∏

j∈Jφ

GL(l j ,C)

⎞
⎠ . (3.2)

As a consequence, one has the following description of those subsets of �̄(G).

Lemma 3.2 1. �̄sim(G) = �sim(N ) ∩ �̄(G).
2. Suppose φ ∈ �̄(G), then φ is in �̄2(G) if and only if Kφ = Iφ,O and li = 1 for

all i ∈ Kφ .
3. Suppose φ is in �̄ell(Gθ ) for θ ∈ �0, then Kφ = Iφ,O and li � 2 for all i ∈ Kφ .
4. Suppose G is special even orthogonal and φ ∈ �̄(G), then φ is in �̄(Gθ0) if and

only if there exists i ∈ Iφ,O such that Ni is odd.

The proof is a direct application of formulas (3.1) and (3.2).
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Now let F be a local field, we also define the substitute local generic (or tempered)
Langlands parameters similarly as follows,

�E
sim(N ) := {isomorphism classes of irreducible essentially discrete

series representations of GL(N )},
�E

sim(N
θN ) :=

{
φE ∈ �E

sim(N ) : φE = (φE )∨
}
,

�E
bdd(N

θN ) :=
{
φE = l1φ

E
1 ⊕ · · · ⊕ lrφ

E
r : φE

= (φE )∨, φEi ∈ �E
sim(Ni ) with

r∑
i=1

li Ni = N

}
.

Suppose φE ∈ �E
sim(N

θ0), we call φE is of orthogonal type if the local symmetric
square L-function L(s, φE , S2) has a pole at s = 0; we call φE is of symplectic type
if the local skew-symmetric square L-function L(s, φE ,∧2) has a pole at s = 0. As in
the global case, every φE ∈ �E

sim(N
θN )will be either of orthogonal type or symplectic

type. We would like to state a local version of Theorem 3.1, which is proved in [7,
Theorem 6.1.1 and Corollary 6.8.1]. For φE ∈ �E

sim(N
θN ), let πφE be the self-dual

essentially discrete series representation of GL(N ) defined by φE . We write

fN θN (φ
E ) := fGL(N )θN (πφE ) f ∈ H(N ), (3.3)

with respect to some intertwining operator Aπ
φE (θN ).

Theorem 3.3 Suppose φE ∈ �E
sim(N

θN ), then there is a unique class of elliptic
endoscopic data (GφE , sφE , ξφE ) in Eell(N θN ) such that

fN θN (φ
E ) = f GφE (φE ), for all f ∈ H(N )

for some stable distribution f (φE ) on GφE , where f GφE is the twisted endoscopic

transfer of f . Moreover if φE is of orthogonal type, ĜφE = SO(2n+1,C)when N =
2n + 1, or SO(2n,C) when N = 2n; if φE is of symplectic type, ĜφE = Sp(2n,C)
with N = 2n.

Note OutN (G) ∼= �0, so the twisted endoscopic transfer f GφE lies in H̄(G). As in
the global case, one can define the substitute local Langlands groupLφE and substitute

local parameter φE . One can also define the set �̄E
bdd(G) of substitute parameters for

G, various centralizer groups of parameter φE in Ĝ, and various subsets in �̄E
bdd(G).

Moreover, the formula (3.1), (3.2) and Lemma 3.2 still hold in the local case.
The link between these substitute local parameters and the genuine local Lang-

lands parameters is through the local Langlands correspondence for GL(N ) proved
byHarris-Taylor [16], Henniart [14] and Scholze [36]. The local Langlands correspon-
dence forGL(N ) gives a bijection between�E

sim(N ) and the set�2(N ) of equivalence
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classes of N -dimensional irreducible unitary representations of LF ,which also induces
a bijection for the self-dual ones. Later in the paper, we will identify them and use
the notation �sim(N ) as in the global case. The following theorem proved in ([7],
Corollary 6.8.1) shows the substitute local parameters of G correspond to the genuine
local Langlands parameters of G under this bijection.

Theorem 3.4 Suppose φE ∈ �E
sim(N

θN ), then φE is in �̄E
sim(G) if and only if its

corresponding Langlands parameter φ factors through LG.

Since the elements in�E
bdd(N

θN ) corresponds to self-dual tempered representations
ofGL(N ) by the parabolic induction, the local Langlands correspondence also gives a
bijection between �bdd(N θN ) and �E

bdd(N
θN ). And we have the following corollary.

Corollary 3.5 1. Suppose φE ∈ �E
bdd(N

θN ), then φE is in �̄E
bdd(G) if and only if

its corresponding Langlands parameter φ factors through LG.
2. Suppose φE ∈ �̄E

bdd(G) corresponds to φ ∈ �̄bdd(G), then SφE ∼= Sφ for any
representative φ of φ.

For the proof, one just needs to notice for φ ∈ �̄bdd(G), there is a decomposition
through the twisted endoscopic embedding to GL(N ,C)

φ = l1φ1 ⊕ · · · ⊕ lrφr ,

where φi ∈ �2(Ni ) is irreducible.
As a consequence of Theorem 3.4 and Corollary 3.5, one can identify �̄E

bdd(G)
with �̄bdd(G) through the twisted endoscopic embedding ξ : LG → LGL(N ). And
we also denote SφE by Sφ .

3.2 Local theory

Now we can state the main local result of Arthur’s theory ([7], Theorem 1.5.1 and
Theorem 2.2.1) for quasisplit symplectic groups and special even orthogonal groups
in the tempered case. Let F be local. We fix a θN -stable Whittaker datum (BN ,�) for
GL(N ). We also fix the twisted endoscopic embedding ξ : LG → LGL(N ).

Theorem 3.6 For every φ ∈ �̄bdd(G), one can associate it with a finite set �̄φ of
�̄temp(G(F)) such that it satisfies the following properties:

1. The distribution

f (φ) :=
∑

[π ]∈�̄φ

fG(π), f ∈ H̄(G) (3.4)

is stable.
2. If we normalize the intertwining operator Aπφ (θN ) such that it preserves the Whit-

taker functional on πφ , then

fN θN (φ) = f G(φ) (3.5)
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for f ∈ H(N ) and the twisted endoscopic transfer f G ∈ H̄(G).
3. There is a disjoint decomposition

�̄temp(G(F)) =
⊔

φ∈�̄bdd (G)

�̄φ.

Since the transfer map I(N θN ) → SI(G)OutN (G) is surjective (see Sect. 2.4), φ
determines the stable distribution (3.4) on G(F) through (3.5). In this way, φ deter-
mines the L-packet �̄φ . If G is a product of symplectic groups and special even
orthogonal groups, we define a group of automorphisms of G by taking the product
of �0 on each factors, and we denote this group again by �0. We denote the set of
�0-orbits in �temp(G(F)) by �̄temp(G(F)) and the set of �0-orbits in �bdd(G) by
�̄bdd(G). Let H̄(G) be the �0-invariant functions in H(G). Then part (1) and (3) of
this theorem can also be generalized to this case, in particular, the L-packets of G are
formed by taking tensor products of those of each factor. If G ′ ∈ E(Gθ ) for θ ∈ �0,
then G ′ ∼= Ml ×G ′−, where Ml is a product of general linear groups, and G ′− is again
a product of symplectic groups and special even orthogonal groups. We can extend
the action of �0 to G ′ by letting it act trivially on Ml . Then we can define �̄bdd(G ′)
and �̄temp(G ′(F)) similarly. Part (1) and (3) of this theorem can again be extended
further to this case.

Theorem 3.7 1. For φ ∈ �̄bdd(G), there is a canonical pairing between �̄φ and
Sφ , which induces an inclusion

[π ] −→ 〈·, π〉, [π ] ∈ �̄φ, (3.6)

from �̄φ into the group Ŝφ of characters on Sφ , such that 〈·, π〉 = 1 if G and π
are unramified. It becomes a bijection when F is nonarchimedean.

2. Suppose s is a semisimple element in S̄φ and (G ′, φ′) −→ (φ, s) with G ′ ∈ E(G)
and φ′ ∈ �̄bdd(G ′). The packet �̄φ′ can be defined by the generalization of the
previous theorem. If x is the image of s in Sφ , then

f G
′
(φ′) =

∑
[π ]∈�̄φ

〈x, π〉 fG(π), f ∈ H̄(G). (3.7)

When G is special even orthogonal, one could further characterize those θ0-stable
tempered representation. It is a theorem proved in ([7], Theorem 2.2.3).

Theorem 3.8 Suppose G is a special even orthogonal group and φ ∈ �̄bdd(Gθ0).

1. For any [π ] ∈ �̄φ , π is a θ0-stable representation of G(F) and hence has an
extension π+ to G+(F) = G(F) � 〈θ0〉.

2. Suppose s is a semisimple element in S̄θ0φ and (G ′, φ′) −→ (φ, s) with G ′ ∈
E(Gθ0), φ′ ∈ �̄bdd(G ′), then

f ′(φ′) =
∑

[π ]∈�̄φ

〈x, π+〉 fGθ0 (π), f ∈ H̄(G), (3.8)
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where x is the image of s in Sθ0
φ , 〈·, π+〉 is an extension of the character 〈·, π〉 to

S+
φ = 〈Sθ0

φ 〉, and the intertwining operator Aπ (θ0) = π+(θ0).

Remark 3.9 In the θ0-twisted character relation (3.8), both the extensions of rep-
resentation π+ and character 〈·, π+〉 are not uniquely determined, but the product
〈·, π+〉 fGθ0 (π) is determined and depends only on π . Moreover, (3.5) is the analogue
of (3.8) for general linear groups, where we have fixed the extension of πφ using the
Whittaker datum and taken the extended character 〈·, π+〉 to be trivial. It is not hard
to see how to generalize both Theorems 3.6 and 3.8 to products of symplectic groups
and special even orthogonal groups.

Because one does not know whether all the local constituents of a unitary cuspidal
automorphic representation of GL(N ) are tempered, i.e. the generalized Ramanujan
conjecture, one has to deal with a more general set of parameters �+

unit (N ), which is
defined as follows. Let νa denote the map | · |aF of WF for a ∈ R. Then,

�+
unit (N ) := {φ = φ1 ⊕ · · · ⊕ φr ⊕ (νa1φr+1 ⊕ ν−a1φr+1) · · ·

⊕ (νasφr+s ⊕ ν−asφr+s) :
φi ∈ �sim(Ni ) for 1 � i � r + s and 0 < a j < 1/2 for 1 � j � s}.

From the classification of the unitary dual of GL(N ) (cf. [46,47] archimedean case,
[44] nonarchimedean case), we know the associated irreducible admissible represen-
tation πφ for any φ ∈ �+

unit (N ) is unitary. And we have the following fact.

Proposition 3.10 If F is global and φ ∈ �sim(N ), then φv ∈ �+
unit (Nv).

Correspondingly, we can define

�̄+
unit (G) := �̄(G) ∩�+

unit (N ).

Theorems 3.6–3.8 can be extended to the caseφ ∈ �̄+
unit (G) except for the constituents

of �̄φ may be non-tempered. In fact, for any φ ∈ �̄+
unit (G

θ ) with θ ∈ �0, φ can be
regarded as φM,λ := φM ⊗ (λ ◦ | · |F ) for some θ -stable Levi subgroup M (which
also admits a θ -stable parabolic subgroup P ⊇ M), where φM ∈ �̄bdd(Mθ ) and
λ ∈ a∗

M lies in the open chamber determined by P . Let �̄φM,λ
:= �̄φM ⊗ e〈HM (·),λ〉.

Then one can just define �̄φ to be the irreducible constituents of the parabolic induc-
tion IP (�̄φM,λ

). Note that the θ -twisted endoscopy transfer is compatible with this
parabolic induction, and also SφM ∼= Sφ , then it is enough to know the following
proposition.

Proposition 3.11 Suppose F is local, φ ∈ �̄+
unit (G), and φ can be regarded as φM,λ

where φM ∈ �̄bdd(M) and λ ∈ a∗
M lies in some open chamber determined by P ⊇ M.

Then for any [πM ] ∈ �̄φM , the induced representation IP (πM,λ) is irreducible.

Propositions 3.10 and 3.11 are well known to experts, but for the convenience of
the readers we will give their proofs in “Appendix”.
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3.3 Global theory

Now let us assume F is global, and we fix the twisted endoscopic embedding ξ :
LG → LGL(N ). The global parameters and local parameters are related by the
following theorem.

Theorem 3.12 Suppose φ ∈ �̄sim(G), then φv factors through LGv for all places v,
i.e. φv ∈ �̄+

unit (Gv).

This theorem is proved in ([7], Theorem 1.4.2). So for φ ∈ �̄(G), one has a
commutative diagram

LFv
φv LGv

Lφ
φE LG,

where LFv → Lφ is defined byφv . It gives rise to an inclusion Sφ ↪→ Sφv for any place
v, which induces a homomorphism Sφ → Sφv . One can define the global L-packet
by taking the restricted tensor product

�̄φ :=
⊗′

v

�̄φv

and define the global pairing by

〈x, π〉 :=
∏
v

〈xv, πv〉.

Note that for almost all places v, 〈·, πv〉 = 1 by Theorem 3.6, so this product is
well-defined. The main global result of Arthur’s theory is to give a description of the
discrete spectrum of automorphic representations of G. Here we only state it for those
discrete automorphic representations parametrized by �̄2(G), i.e. for φ ∈ �̄2(G),
we want to describe L2

disc,φ(G(F)\G(AF )) which consists of discrete automorphic
representations π such that the Satake parameters satisfy ξ(c(πv)) = c(φv) for almost
all places. Let H̄(G) = ⊗′

vH̄(Gv).

Theorem 3.13 Suppose φ ∈ �̄2(G), there is a decomposition as H̄(G)-modules

L2
disc,φ(G(F)\G(AF )) = mφ

∑
[π ]∈�̄φ

〈·,π〉=1

π

where mφ = 1 or 2, and mφ = 2 only when G is special even orthogonal and
φ /∈ �̄(Gθ0). Moreover,

L2
disc,φ(G(F)\G(AF )) = 0

for φ ∈ �̄(G)− �̄2(G).
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Remark 3.14 This theorem is a special case of ([7], Theorem 1.5.2). By Arthur’s
complete description of the discrete spectrum for orthogonal and symplectic groups,
one can see �̄2(G) only contributes to the discrete spectrum of G. It is not hard
to extend this to products of symplectic and special even orthogonal groups. In fact
if G = G1 × G2 × · · · × Gq , then we can define �̄(G) to be consisting of φ :=
φ1 × φ2 × · · · × φq such that φi ∈ �̄(Gi ) for 1 � i � q. Moreover, we can define
Lφ := ∏q

i=1 Lφi , then Sφ = ∏q
i=1 Sφi . And we let mφ = ∏q

i=1 mφi .

For φ ∈ �̄(G) and any subgroup � ⊆ �0, let Lφ act on D̂, ̂̃G�
and Ĝ� by conju-

gation through φE . We denote the corresponding group cohomology by H∗
φE (Lφ, ·).

Note H0
φE (Lφ, D̂) = D̂�, H0

φE (Lφ, Ĝ�) = S�φ and H1
φE (Lφ, D̂) = H1(WF , D̂). We

define S�
φ̃

:= H0
φE (Lφ,

̂̃G�
). Then we have the following diagram

1 S�
φ̃
/D̂� S�φ

δ
H1(WF , D̂)

1 S�
φ̃v
/D̂�v

v S�φv
δv

H1(WFv , D̂v).

Then Lemma 2.10 is still valid, and we again have the following exact sequence as in
Sect. 2.2

1 S�

φ̃

ι S�
φ

α
Hom(G̃(AF )/G̃(F)G(AF ),C

×).

4 Coarse L-packet

4.1 Statement of main local theorem

Now we assume G̃ is of type (2.2), and λ is the generalized similitude character. In
this case G is a product of symplectic groups and special even orthogonal groups. We
also assume θ ∈ �0.

Lemma 4.1 ([49], Lemma 3.13) Suppose φ ∈ �̄bdd(G) and [π ] ∈ �̄φ then

〈x, (π+)g〉 = ωx (g)〈x, π+〉 (4.1)

for any g ∈ G̃(F) and x ∈ Sθ
φ , where ωx = α(x) and π+ is an extension of π to

G+(F) = G(F)× 〈θ〉.
Corollary 4.2 ([49], Proposition 6.28) Suppose φ ∈ �̄bdd(G) and [π ] ∈ �̄φ . If π̃ is
an irreducible admissible representation of G̃(F) whose restriction to G(F) contains
π , then π̃ θ ∼= π̃ ⊗ ω if and only if ω ∈ α(Sθ

φ). In particular,

X (π̃) = α(Sφ).
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Remark 4.3 In view of Proposition 3.11, Lemma 4.1 and Corollary 4.2 also hold for
parameters in �̄+

unit (G), and the proofs are the same.

For φ ∈ �̄bdd(G), let us fix a character ζ̃ of ZG̃(F) such that ζ̃ |ZG (F) is the central

character of �̄φ . Then we define ˜̄�φ,̃ζ to be the subset of �̄temp(G̃) with central

character ζ̃ , whose restriction to G(F) have irreducible constituents contained in �̄φ .

Let X = Hom(G̃(F)/ZG̃(F)G(F),C
×), so X acts on ˜̄�φ,̃ζ by twisting.We call ˜̄�φ,̃ζ

a coarse L-packet of G̃, and its structure can be described in the following proposition.

Proposition 4.4 ([49], Proposition 6.29) Suppose φ ∈ �̄bdd(G) and ζ̃ is chosen as
above.

1. The orbits in �̄φ under the conjugate action of G̃(F) all have size |Sφ/Sφ̃ |. If F
is nonarchimedean, there are exactly |Sφ̃ | orbits.

2. There is a natural fibration

X/α(S�0
φ ) ˜̄�φ,̃ζ

Res
�̄φ/G̃(F)

3. There is a pairing

π̃ −→ 〈·, π̃〉

from ˜̄�φ,̃ζ /X into Ŝφ̃ . It is uniquely characterized by

〈x, π̃〉 = 〈ι(x), π〉,

where ι : Sφ̃ ↪→ Sφ and π is any irreducible representation of G(F) in the

restriction of π̃ . Suppose G̃ and π̃ are unramified, then 〈·, π̃〉 = 1. Moreover, this

mapping from ˜̄�φ,̃ζ /X to Ŝφ̃ is injective and when F is nonarchimedean it is in
fact a bijection.

This proposition is also true for �̄+
unit (G). Now it is natural to ask the following

question.

Question 4.5 For any lift φ̃ of φ ∈ �̄bdd(G), can one assign a packet �̄φ̃ of repre-

sentations of G̃(F) which gives a section of Res : ˜̄�φ,̃ζ → �̄φ/G̃(F), and also a
stable distribution?

The answer to this question can be formulated in the following theorem, which is
our main local result.

Theorem 4.6 Supposeφ ∈ �̄bdd(G), and ζ̃ is a character of ZG̃(F)whose restriction
to ZG(F) is the central character of �̄φ . Let χ̃ = ζ̃ |Z̃ F

. Then there exists a subset �̄φ̃

of ˜̄�φ,̃ζ unique up to twisting by X, and it is characterized by the following properties:
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1.

˜̄�φ,̃ζ =
⊔

ω∈X/α(S�0
φ )

�̄φ̃ ⊗ ω.

2. For f̃ ∈ H̄(G̃, χ̃), the distribution

f̃ (φ̃) :=
∑

[π̃ ]∈�̄
φ̃

f̃G̃(π̃)

is stable.
3. Suppose s is a semisimple element in S̄θφ with ω = α(s) and (G ′, φ′) −→ (φ, s).

Fix a packet �̄φ̃′ defined by part (1) and local Langlands correspondence for

GL(n), then we can choose �̄φ̃ such that

f̃ ′(φ̃′) =
∑

[π̃ ]∈�̄
φ̃

f̃G̃θ (π̃ , ω), f̃ ∈ H̄(G̃, χ̃) (4.2)

where f̃G̃θ (π̃ , ω) = tr(π̃( f̃ ) ◦ Aπ̃ (θ, ω)), and Aπ̃ (θ, ω) is an intertwining oper-
ator between π̃ ⊗ ω and π̃ θ , which is normalized in a way so that if f is the
restriction of f̃ on G(F), then

( f̃ |Z̃ FG(F))G̃θ (π̃ , ω) =
∑

π⊆π̃ |G
< x, π+ > fGθ (π) (4.3)

where x is the imageof s inSθ
φ ,π

+ is an extension ofπ toG+(F) = G(F)� < θ >

such that π+(θ) = Aπ (θ).

Remark 4.7 1. In the notation of �̄φ̃ , one can think of φ̃ as some parameter of G̃

lifted from φ. Since �̄φ̃ is only defined up to twisting by X , one can also take φ̃ as

a formal symbol built in the notation of �̄φ̃ . In this paper, we will take the second
point of view.

2. The normalizations in (4.3) is a consequence of (4.1). When θ = id, ω = 1 and
x ∈ Sφ̃ , Aπ̃ (id, 1) becomes a scalar and is equal to 〈x, π̃〉 by (4.3). So we obtain
the character relation from (4.2)

f̃ ′(φ̃′) =
∑

[π ]∈�̄
φ̃

f̃G̃(π̃, 1) =
∑

[π ]∈�̄
φ̃

〈x, π̃〉 f̃G̃(π̃). (4.4)

3. If F is archimedean, �̄φ̃ is defined by Langlands [20]. In fact, we have �̄φ̃ =
˜̄�φ,̃ζ , if �̄φ is not a singleton (see Proposition 6.11 and also [12], Theorem 27.1).
Moreover, Part (2) and (3) can be directly reduced to (3.4), (3.7) and (3.8) (see
[49], Remark 6.32).
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4. For φ ∈ �̄+
unit (G), since �̄φ = IP (�̄φM,λ

), we can define �̄φ̃ := IP̃ (�̄φ̃M,λ
), and

this theorem can be easily extended to this case.

Let us call this subset �̄φ̃ the refined L-packet of G̃, and it is the genuine L-packet
that one would expect modulo the action of �0. As we can see from this theorem, the
refined L-packet is uniquely determined by the character relation (4.4) up to twisting
by X . As a consequence of that, we can give another characterization of the refined
L-packet.

Corollary 4.8 In the setup of the previous theorem, any stable linear combination in
˜̄�φ,̃ζ is given by a linear combination of f̃ (φ̃ ⊗ ω) := ( f̃ ⊗ ω)(φ̃) for ω ∈ X.

Proof In the archimedean case, one can deduce this from ([39], Lemma 5.3). So we
will assume F is nonarchimedean, and we fix a refined L-packet �̄φ̃ = {[π̃i ]}ri=1.
Suppose

f̃ (φ̃1) :=
∑
i, j

ai j f̃G̃(π̃i ⊗ ω j )

is also stable for distinctω j ∈ X/α(S�0
φ ) and ai j ∈ C. Here φ̃1 is just a formal symbol

for denoting another stable distribution. Since the map [π̃] −→< ·, π̃ > is a bijection
in the nonarchimedean case, we have∑

x∈S
φ̃

< x, π̃i >< x, π̃ j >= r · δi j .

By inverting the formula of character relation (4.4) we get

f̃G̃(π̃i ) =
∑
x∈S

φ̃

c(π̃i , x) f̃
′(φ̃, x),

where f̃ ′(φ̃, x) = f̃ ′(φ̃′) for some semisimple element s ∈ S̄φ̃ whose image in Sφ̃ is

x , and some �̄φ̃′ with (G ′, φ′) −→ (φ, s), and

c(π̃i , x) = 1

r
< x, π̃i > .

Therefore

f̃ G̃(φ̃1) =
∑
i, j

ai j c(π̃i , x) f̃
′(φ̃ ⊗ ω j , x).

If we separate those terms with x = 1 from the right hand side, and move them to the
left hand side, we get

f̃ G̃(φ̃1)− 1

r

∑
i, j

ai j f̃ (φ̃ ⊗ ω j ) =
∑
i, j

∑
x �=1

c(π̃i , x) f̃
′(φ̃ ⊗ ω j , x) (4.5)
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Now let us consider the endoscopic transfer map

T ε : H̄(G̃)
⊕

G̃ ′∈Eell (G̃) S̄I(G̃
′)

f̃
⊕

G̃ ′∈Eell (G̃) f̃
G̃ ′
.

The left hand side of (4.5) can be viewed as value of T ε( f̃ ) on some stable distribution
of G̃, and similarly the right hand side of (4.5) can be viewed as values of T ε( f̃ )
on stable distributions of elliptic endoscopic groups G̃ ′ ∈ Eell(G̃) − {G̃}. It is a
consequence of the main results in [3] that the image of T ε can be characterized as
families of functions ( f̃ G̃

′
)G̃ ′∈Eell (G̃) such that for any G̃

′
1, G̃ ′

2 ∈ Eell(G̃) the parabolic
descent of any two functions f̃ G̃

′
1 and f̃ G̃

′
2 to their common Levi subgroups M̃ ′ of

G̃ ′
1 and G̃ ′

2 coincide. Since φ′ does not factor though any proper Levi subgroups of
LG for x �= 1, then the stable distribution associated to φ′ is not supported on any
proper Levi subgroups of G. The same is true for the stable distribution associated
with �̄φ̃′ . So the right hand side of (4.5) is not valued on any stable distributions

supported on the Levi subgroups of G̃. Since (4.5) holds for all functions in H̄(G̃),
then both sides of (4.5) must be zero. Therefore,

0 = f̃ G̃(φ̃1)− 1

r

∑
i, j

ai j f̃ (φ̃ ⊗ ω j ) =
∑
k, j

(
akj − 1

r

∑
i

ai j

)
f̃G̃(π̃k ⊗ ω j ).

By the linear independence of characters, we have

akj − 1

r

∑
i

ai j = 0

for any k, j . As we fix j and vary k, we get a system of linear equations. The solutions
of this system are ai j = a1 j for 1 � i � r . Since this is also valid when we vary j , so
we can conclude

f̃ (φ̃1) =
∑
j

a1 j f̃ (φ̃ ⊗ ω j ).

��
This corollary is also valid for φ ∈ �̄+

unit (G), and the proof is the same.

4.2 Local twisted intertwining relation

The proof of our main local theorem (Theorem 4.6) requires global methods, and the
existence of refined L-packet needs to be proved together with the character relations.
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Before we proceed to prove the theorem, let us first consider another form of character
relation, called intertwining relation. The intertwining relation in its global form comes
up naturally in the trace formula and it plays an important role in Arthur’s work [7].
Here we need a twisted version of the intertwining relation, which in its local form is
related to the twisted character relation (4.2). In this section, we again assume G̃ is of
type (2.2), and θ ∈ �0.

Suppose φ ∈ �̄bdd(G), and we assume φ factors through φM ∈ �̄bdd(M) for some
Levi subgroup M of G. Let us define

T̄φ(G,M) = AM̂ Z(Ĝ)�F /Z(Ĝ)�F ,

where AM̂ is the maximal split central torus in M̂ . It is a torus in S̄0φ . Then we can

define its normalizer in S̄φ

N̄φ(G,M) = Norm(T̄φ(G,M), S̄φ),

and the group of its connected components

Nφ(G,M) = N̄φ(G,M)/N̄φ(G,M)0

= Norm(T̄φ(G,M), S̄φ)/Cent(T̄φ(G,M), S̄0φ)
0.

Notice Sφ(M) := SφM is a normal subgroup of Nφ(G,M). The quotient
Nφ(G,M)/Sφ(M) is the Weyl group

Wφ(G,M) = W (S̄φ, T̄φ(G,M)).

We write W 0
φ(G,M) to be the normal subgroup of automorphisms in Wφ(G,M) that

are induced from the connected component S̄0φ , and let

Rφ(G,M) = Wφ(G,M)/W 0
φ(G,M)

Moreover,W 0
φ (G,M) is a normal subgroup ofNφ(G,M), andwedenote their quotient

by Sφ(G,M), which is a subgroup of Sφ . Suppose M̃ is the Levi subgroup of G̃
containing M , then similarly we can define

T̄φ̃(G,M) = A ̂̃M Z(̂̃G)�F /Z(̂̃G)�F

which is a torus of S̄0
φ̃
. Since A ̂̃M/D̂ = AM̂ , we have T̄φ̃(G,M) = T̄φ(G,M). We can

also define

N̄φ̃ (G,M) = Norm(T̄φ̃(G,M), S̄φ̃ ) ⊆ N̄φ(G,M),
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and the group of its connected components

Nφ̃(G,M) = N̄φ̃(G,M)/N̄φ̃(G,M)0

= Norm(T̄φ̃(G,M), S̄φ̃ )/Cent(T̄φ̃(G,M), S̄0
φ̃
)0 ⊆ Nφ(G,M).

Again Sφ̃ (M) := Sφ̃M is a normal subgroup ofNφ̃(G,M). The quotientNφ̃(G,M)/

Sφ̃(M) is the Weyl group

Wφ̃(G,M) = W (S̄φ̃ , T̄φ̃(G,M)).

Let us writeW 0
φ̃
(G,M) to be the normal subgroup of automorphism inWφ̃(G,M) that

are induced from the connected component S̄0
φ̃
. Since S̄0φ = S̄0

φ̃
, we haveW 0

φ̃
(G,M) =

W 0
φ(G,M). So

Rφ̃(G,M) = Wφ̃(G,M)/W 0
φ̃
(G,M) ⊆ Rφ(G,M).

At last, W 0
φ̃
(G,M) is a normal subgroup of Nφ̃(G,M), and we denote their quotient

by Sφ̃ (G,M), which is a subgroup of Sφ̃ . If φM ∈ �̄2(M), then T̄φ(G,M) = T̄φ is a

maximal torus in S̄0φ , and hence Sφ(G,M) = Sφ , Sφ̃(G,M) = Sφ̃ . So in this case let
us also write

Nφ(G,M) = Nφ, Nφ̃(G,M) = Nφ̃ ,

Wφ(G,M) = Wφ, Wφ̃(G,M) = Wφ̃ ,

W 0
φ(G,M) = W 0

φ , W 0
φ̃
(G,M) = W 0

φ̃
.

To summarize all these relations, we have the following commutative diagram.

1 1

1 1

W 0
φ̃
(G,M) W 0

φ̃
(G,M)

W 0
φ (G,M) W 0

φ (G,M)

1 Sφ̃ (M) Nφ̃ (G,M) Wφ̃ (G,M) 1

1 Sφ(M) Nφ(G,M) Wφ(G,M) 1

1 Sφ̃ (M) Sφ̃ (G,M) Rφ̃ (G,M) 1

1 Sφ(M) Sφ(G,M) Rφ(G,M) 1

1 1

1 1

(4.6)
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Suppose u ∈ Nφ(G,M), we write wu for the image of u in Wφ(G,M) and xu for
the image of u in Sφ(G,M). Since wu normalizes AM̂ , it also normalizes M̂ , and
therefore can be treated as an element in W (M̂). The standard parabolic subgroup
P containing M allows us to identify wu with an element in W (M) ∼= W (M̃). We
choose a representative θu of wu in G(F) preserving the F-splitting of M . Then
φM ∈ �̄bdd(Mθu ) and u defines an element in Sφ(M)θu := Sθu

φM
. Note that

M ∼= GL(N1)× · · · × GL(Nq)× G−,

and

M̃ ∼= GL(N1)× · · · × GL(Nq)× G̃−,

where G− (resp. G̃−) is of the same type as G (resp. G̃) with smaller rank. Suppose

φM = φ1 × · · · × φq × φ−,

where φi ∈ �bdd(Ni ) and φ− ∈ �̄bdd(G−). Then we can define

�̄φM = πφ1 ⊗ · · · ⊗ πφq ⊗ �̄φ− ,

where πφi is associated to φi . And any representation in this packet can be written as

πM = πφ1 ⊗ · · · ⊗ πφq ⊗ π−
= πGL ⊗ π−.

Since SφM ∼= Sφ− , we can define a pairing between �̄φM and SφM by

〈·, πM 〉 := 〈·, πGL 〉〈·, π−〉,

where 〈·, πGL 〉 is in fact trivial. By Theorem 3.8 and the local Langlands correspon-
dence forGL(n), we know π

θu
M

∼= πM . As usual, we can take the intertwining operator
π+
M (θu) = π+

GL(θu)⊗π+− (θu), which preserves theWhittaker models on those general
linear components, then the extension 〈·, π+

GL 〉 of 〈·, πGL 〉 to Sφ(M)θu is trivial (see
Theorem 3.6). So the extension 〈·, π+− 〉 defined in Theorem 3.8 (see also Remark 3.9)
determines an extension 〈·, π+

M 〉. Now we define

fG(φ, u) =
∑

[πM ]∈�̄φM

〈u, π+
M 〉tr(RP(θu, π

+
M , φ)IP (πM , f )), f ∈ H̄(G, χ),

(4.7)

where RP (θu, π
+
M , φ) is the normalized self-intertwining operator on the space

HP (πM ) of normalized induced representation IP (πM ) (see [7], Section 2.4). If we
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assume the existence of refined L-packet �̄φ̃− for φ̃− as defined in Theorem 4.6, then

�̄φ̃M
can be defined in the same way as �̄φM . And we can also define

f̃G̃(φ̃, u) =
∑

[π̃M ]∈�̄
φ̃M

tr(RP̃(u, π̃M , φ̃)IωP (π̃M ⊗ ω−1, f̃ )), f̃ ∈ H̄(G̃, χ̃). (4.8)

Here we need to give some explanations of this distribution. Firstly, ω = αM (u) =
αG(xu). If

π̃M = πφ1 ⊗ · · · ⊗ πφq ⊗ π̃−

contains πM in its restriction to M(F), then it follows from Corollary 4.2 that
π̃
θu
M

∼= π̃M ⊗ ω, and we let Aπ̃M (θu, ω) be the intertwining operator. Secondly, the
automorphism θu on M̃ is a composition of permutations of the general linear factors
and automorphisms sending gi to θNi (gi ) ·λ(g−),where g = g1×· · ·×gq ×g− ∈ M̃ .
However the effect on general linear components of π̃M is the same as forM , sowe can
use the same intertwining operator for the general linear components of π̃M . In view
of (4.3), the pairing inside (4.7) is built into Aπ̃M (θu, ω) and hence into the operator
RP̃ (u, π̃M , φ̃). Thirdly,

IωP (π̃M ⊗ ω−1, f̃ ) = R(ω) ◦ IP (π̃M ⊗ ω−1, f̃ )

where R(ω) is multiplication by ω, and RP̃ (u, π̃M , φ̃) is the normalized intertwining
operator between HP̃ (π̃M ) and HP̃ (π̃M ⊗ ω−1). The last thing is about this normal-
ization. Let us recall the formulation of the normalized intertwining operator

RP (θu, π
+
M , φ) := π+

M (θu) ◦ (rP (wu, φM )
−1 JP (θu, πM )).

Here rP (wu, φM ) is the normalizing factor, and JP (θu, πM ) is the unnormalized inter-

twining operator between HP (πM ) and HP (π
θ−1
u

M ), which is defined by an integral
over

NP ∩ wu NPw
−1
u \NP ,

where NP is the unipotent radical of P . The key point is to notice that

ResG̃(F)G(F)IP̃ (π̃M ) ∼= IP (Res
M̃(F)
M(F)π̃M ).

123



L-packets of quasisplit GSp(2n) and GO(2n) 115

So we obtain isomorphisms between the following spaces as H̄(G, χ)-modules

HP̃ (π̃M ) ∼=
⊕

πM⊆Resπ̃M

HP (πM ) ∼= HP̃ (π̃M ⊗ ω−1),

HP̃ (π̃
θ−1
u

M ) ∼=
⊕

πM⊆Resπ̃M

HP (π
θ−1
u

M ).

Under these identifications, we can easily see from the definition of unnormalized
intertwining operators that

JP̃ (θu, π̃M ) =
⊕

πM⊆Resπ̃M

JP (θu, πM ).

LetπφM = πφ1 ⊗· · ·⊗πφq ⊗πφ− . The normalizing factor rP (wu, φM ) for JP (θu, πM )

is equal to the product of λ-factor λ(wu) (see [7], (2.3.19)) and

L(0, πφM , ρ
∨
w−1
u P|P )ε(0, πφM , ρ

∨
w−1
u P|P , ψF )

−1L(1, πφM , ρ
∨
w−1
u P|P )

−1 (4.9)

where the L-functions involved here are either Rankin–Selberg L-functions or
(skew)-symmetric square L-functions. We can set rP̃ (wu, φ̃M ) := rP (wu, φM ) for
JP̃ (θu, π̃M ). In fact this is what one would expect according to Langlands’ conjec-
tural formula for the normalizing factors. By his conjecture, (4.9) could be replaced
by

L(0, ρ∨
w−1
u P|P ◦ φM )ε(0, ρ

∨
w−1
u P|P ◦ φM , ψF )

−1L(1, ρ∨
w−1
u P|P ◦ φM )

−1,

where ρ∨
w−1
u P|P is the contragredient of the adjoint representation of LM over n̂

w−1
u P ∩

n̂P \̂n
w−1
u P , where n̂P is the Lie algebra of N̂P . Since

ρ∨
w−1
u P̃|P̃ ◦ φ̃M = ρ∨

w−1
u P|P ◦ φM ,

then the conjectural formulas for rP̃ (wu, φ̃M ) and rP (wu, φM ) are the same. Finally
we can normalize Aπ̃M (θu, ω) according to (4.3), so after composingwith this operator
we get

RP̃ (u, π̃M , φ̃) := Aπ̃M (θu, ω) ◦ (rP̃ (wu, φ̃M )
−1 JP̃ (θu, π̃M ))

=
⊕

πM⊆Resπ̃M

< u, π+
M > RP (θu, π

+
M , φ). (4.10)

As a result, if f̃ ∈ H̄(G̃, χ̃) is supported on Z̃ FG(F) and f is its restriction to G(F),
then

f̃G̃(φ̃, u) = fG(φ, u).
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Suppose s is a semisimple element in S̄φ , and (G ′, φ′) −→ (φ, s). For any lift �̄φ̃′ ,
let us define

f̃ ′̃
G
(φ̃, s) = f̃ G̃

′
(φ̃′), f̃ ∈ H̄(G̃, χ̃).

Now we can state the local ω-twisted intertwining relation.

Theorem 4.9 Supposeφ ∈ �̄bdd(G), for semisimple s ∈ S̄φ with (G ′, φ′) −→ (φ, s),
the following identity holds for some lifts �̄φ̃ and �̄φ̃′ that

f̃G̃(φ̃, u) = f̃ ′̃
G
(φ̃, s), f̃ ∈ H̄(G̃, χ̃), (4.11)

where u ∈ Nφ(G,M) and s ∈ S̄φ have the same image in Sφ .

The next lemma shows that for G̃, the ω-twisted intertwining relation (4.11) is
equivalent to the ω-twisted character relation (see (4.2) when θ = id), if one has the
local intertwining relation for G ([7], Theorem 2.4.1).

Lemma 4.10 For φ ∈ �̄bdd(G), we assume φ factors through φM ∈ �̄2(M) and
�̄φ̃M

exists. We define �̄φ̃ := IP (�̄φ̃M
). Suppose u ∈ Nφ(G,M) and semisimple

s ∈ S̄φ have the same image x in Sφ . Then

f̃G̃(φ̃, u) = f̃ ′̃
G
(φ̃, s)

for some �̄φ̃ and �̄φ̃′ if and only if

f̃ ′̃
G
(φ̃, s) =

∑
[π̃ ]∈�̄

φ̃

f̃G̃(π̃, ω),

where ω = α(x) and f̃ ∈ H̄(G̃, χ̃).

Proof By Corollary 4.2, we have �̄φ̃ = �̄φ̃ ⊗ ω. Since

f̃G̃(φ̃, u) =
∑

[π̃M ]∈�̄
φ̃M

tr(RP̃(u, π̃M , φ̃)IωP (π̃M ⊗ ω−1, f̃ )),

we can assume

f̃G̃(φ̃, u) =
∑

[π̃ ]∈�̄
φ̃

f̃G̃(π̃, ω)
′,
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where f̃G̃(π̃, ω)
′ = tr(π̃( f̃ ) ◦ Aπ̃ (ω)′) for some Aπ̃ (ω)′ intertwining π̃ ⊗ ω and π̃ .

Note that if f is the restriction of f̃ on G(F), then ( f̃ |Z̃ FG(F))G̃(φ̃, u) = fG(φ, u).
By the local intertwining relation for G ([7], Theorem 2.4.1), we have

( f̃ |Z̃ FG(F))G̃(φ̃, u) = fG(φ, u) = f ′
G(φ, s) =

∑
[π ]∈�̄φ

< x, π > fG(π).

So f̃G̃(π̃, ω)
′ = f̃G̃(π̃, ω) for f̃ supported on Z̃ FG(F). This means for [π̃] ∈ �̄φ̃ ,

Aπ̃ (ω)′ = Aπ̃ (ω) as defined by (4.3). Thus f̃G̃(π̃, ω)
′ = f̃G̃(π̃, ω) for all f̃ ∈

H̄(G̃, χ̃), and the lemma is clear. ��
Aswe can see from the proof of this lemma, f̃G̃(φ̃, u) only depends on the image of

u in Sφ . And one should expect f̃ ′̃
G
(φ̃, s) only depends on the image of s in Sφ as well

either from the ω-twisted character relation or the ω-twisted intertwining relation. But
there is a little ambiguity here for f̃ ′̃

G
(φ̃, s) depends on the choice of lift �̄φ̃′ . The next

lemma resolves the ambiguity and establishes this property directly.

Lemma 4.11 For φ ∈ �̄bdd(G) and x ∈ Sφ , there is a natural way to get a family of
lifts �̄φ̃′ for all semisimple s ∈ S̄φ with image x in Sφ and (G ′, φ′) → (φ, s). And for

these lifts f̃ ′̃
G
(φ̃, s) are the same.

Proof The proof is essentially the same as for f ′
G(φ, s) in ([7], Section 4.5) except

for one does not have any ambiguity in that case. Since it is important to clarify the
ambiguity here, we will review the original proof and show how one can get rid of
this ambiguity. Suppose semisimple s ∈ S̄φ has image x in Sφ , if s is replaced by an
S̄0φ-conjugate s1, then the corresponding pair (G

′
1, φ

′
1) is isomorphic to (G ′, φ′) under

S̄0φ-conjugation. And this extends to an isomorphism between G̃ ′
1 and G̃ ′ for S̄0

φ̃
= S̄0φ .

So we can simply take the lifts �̄φ̃′ ∼= �̄φ̃′
1
and it is clear that f̃ ′̃

G
(φ̃, s) = f̃ ′̃

G
(φ̃, s1).

Now if we fix a maximal torus T̄φ of S̄0φ and a Borel subgroup B̄φ containing it, any

automorphism of the complex reductive group S̄0φ stabilizes a conjugate of (T̄φ, B̄φ).

So we can choose a semisimple representative sx of x in S̄φ so that Int(sx ) stabilizes
(T̄φ, B̄φ), and such representatives are determined up to a T̄φ-translate. Moreover the
complex torus

T̄φ,x = Cent(sx , T̄φ)
0

in T̄φ is uniquely determined by x . Note that T̄φ,x is the connected component of the
kernel of the following morphism

T̄φ T̄φ

t s−1
x tsx t−1
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So any point of T̄φ can be written as (s−1
x tsx t−1)tx for t ∈ T̄φ and tx ∈ T̄φ,x (see [42],

Corollary 5.4.5), and hence any point in sx T̄φ can be written as

sx (s
−1
x tsx t

−1)tx = tsx t
−1tx = tsx tx t

−1, t ∈ T̄φ, tx ∈ T̄φ,x .

This means it is enough to consider the T̄φ,x -translates of sx . Finally, we can take the
centralizer M̂ of T̄φ,x in Ĝ which is a Levi subgroup of Ĝ, and it is dual to a Levi
subgroup Mx of G. So (φ, sx ) is the image of a pair

(φMx , sMx ), φMx ∈ �̄bdd(Mx ), sMx ∈ SφMx
,

attached to Mx under the L-embedding LMx ⊆ LG. This pair is in turn the image
of an endoscopic pair (M ′

x , φ
′
Mx
), and in particular, φ′

Mx
∈ �̄2(M ′

x ). Note that for

all T̄φ,x -translates sx,1of sx , the corresponding φ′ also factors through LM ′
x . And we

have

f̃ ′̃
G
(φ̃, sx ) = f̃ M

′
x (φ̃′

Mx
) = f̃ ′̃

G
(φ̃, sx,1).

Now if we reverse our argument, we see any lift �̄φ̃′
Mx

will give rise to a family of lifts

�̄φ̃′ for all semisimple s ∈ S̄φ with image x in Sφ , such that f̃ ′̃
G
(φ̃, s) are the same.

This finishes the proof.
��

In fact our discussion of the ω-twisted intertwining relation for G̃ can be extended
to that for G̃ � θ . For φ ∈ �̄bdd(Gθ ), suppose it factors through φM ∈ �̄bdd(M) for
some Levi subgroup M of G. Let us define

Nθ
φ(G,M) = Norm(T̄φ(G,M), S̄θφ)/Cent(T̄φ(G,M), S̄0φ)

0, W θ
φ (G,M)=W (S̄θφ, T̄φ(G,M)),

N+
φ (G,M) = Norm(T̄φ(G,M), S̄+

φ )/Cent(T̄φ(G,M), S̄0φ)
0, W+

φ (G,M)=W (S̄+
φ , T̄φ(G,M)),

and

N+
φ̃
(G,M) = Norm(T̄

φ̃
(G,M), S̄+

φ̃
)/Cent(T̄

φ̃
(G,M), S̄0

φ̃
)0, W+

φ̃
(G,M)=W (S̄+

φ̃
, T̄

φ̃
(G,M)).
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Then we can have a commutative diagram analogous to (4.6).

1 1

1 1

W 0
φ̃
(G,M) W 0

φ̃
(G,M)

W 0
φ(G,M) W 0

φ(G,M)

1 Sφ̃(M) N+
φ̃
(G,M) W+

φ̃
(G,M) 1

1 Sφ(M) N+
φ (G,M) W+

φ (G,M) 1

1 Sφ̃(M) S+
φ̃
(G,M) R+

φ̃
(G,M) 1

1 Sφ(M) S+
φ (G,M) R+

φ (G,M) 1

1 1

1 1

(4.12)

For u ∈ Nθ
φ(G,M), we again write wu for the image of u in W θ

φ (G,M) and xu for

the image of u in Sθ
φ(G,M). Since wu normalizes AM̂ , it also normalizes M̂ , and

therefore can be treated as an element in the Weyl set W (Ĝ � θ̂ , M̂). The standard
parabolic subgroup P containing M allows us to identify wu with an element in the
Weyl set W (G � θ,M) ∼= W (G̃ � θ, M̃). We choose a representative θu of wu in
G(F) � θ preserving the F-splitting of M . Then φM ∈ �̄bdd(Mθu ) and u defines an
element in Sθu

φM
.

As in the previous case, we define

fGθ (φ, u)=
∑

πM∈�̄φM

<u, π+
M > tr(RP|θ P(θu, π+

M , φ)I
θ
P (πM , f )), f ∈ H̄(G, χ).

(4.13)

Here RP|θ P (θu, π+
M , φ) is the normalized intertwining operator between Hθ P (π

θ−1

M )

and HP (πM ), and

IθP (πM , f ) = R(θ)−1 ◦ IP (πM , f ),

where R(θ) is induced from the action of θ on G(F). We can also define

f̃G̃θ (φ̃, u) =
∑

[π̃M ]∈�̄
φ̃M

tr(RP̃|θ P̃ (u, π̃M , φ̃)Iθ,ωP (π̃M ⊗ ω−1, f̃ )), f̃ ∈ H̄(G̃, χ̃).

(4.14)
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Hereω = αM (u) = αG(xu), RP̃|θ P̃ (u, π̃M , φ̃) is the normalized intertwining operator

between Hθ P̃ (π̃
θ−1

M ) and HP̃ (π̃M ⊗ ω−1), and

Iθ,ω
P̃

(π̃M ⊗ ω−1, f̃ ) = R(θ)−1 ◦ Iω
P̃
(π̃M ⊗ ω−1, f̃ ).

As before, we can identify

Hθ P̃ (π̃
θ−1

M ) ∼=
⊕

πM⊆Resπ̃M

Hθ P (π
θ−1

M ),

and

HP̃ (π̃M ⊗ ω−1) ∼=
⊕

πM⊆Resπ̃M

HP (πM ).

Then under these identifications, we have

RP̃|θ P̃ (u, π̃M , φ̃) =
⊕

πM⊆Resπ̃M

< u, π+
M > RP|θ P (θu, π+

M , φ).

Therefore, if f̃ ∈ H̄(G̃, χ̃) is supported on Z̃ FG(F) and f is the restriction of f̃ to
G(F), then

f̃G̃θ (φ̃, u) = fGθ (φ, u).

Suppose s is a semisimple element in S̄θφ , and (G
′, φ′) −→ (φ, s). For any lift �̄φ̃′ ,

let us define

f̃ ′̃
Gθ (φ̃, s) = f̃ G̃

′
(φ̃′), f̃ ∈ H̄(G̃, χ̃).

Now we can state the (θ, ω)-twisted intertwining relation.

Theorem 4.12 Suppose φ ∈ �̄bdd(G), for semisimple s ∈ S̄θφ with (G ′, φ′) −→
(φ, s), the following identity holds for some lifts �̄φ̃ and �̄φ̃′ that

f̃G̃θ (φ̃, u) = f̃ ′̃
Gθ (φ̃, s), f̃ ∈ H̄(G̃, χ̃), (4.15)

where u ∈ Nθ
φ(G,M) and s ∈ S̄θφ have the same image in Sθ

φ .

Finally, it is easy to see that Lemmas 4.10 and 4.11 can be extended to this case too.
Moreover, the discussion of this section can be carried out for φ ∈ �̄+

unit (G) as well,
and the corresponding twisted intertwining relation will follow from the tempered
case.
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5 Stable trace formula and multiplicity formula

5.1 General setup and stable trace formula

In this section, wewill set up themeans to prove themain local theorem (Theorem4.6).
Themethod is global andwe are going to use various types of stabilized trace formulas.
To bemore precise it is the discrete part of the trace formula and its stabilized form that
we are going to use. A detailed discussion of this can be found in ([7], Chapter 3). The
stabilization of the ordinary trace formula has been established by Arthur in [4–6], and
it also rests upon Ngo’s proof [34] of the Fundamental Lemma. In the twisted case,
this results from the long project of Moeglin and Waldspurger [32].

Let us assume F is global, and letG, G̃, D andλ be defined as in Sect. 2.1.1. Let θ be
an automorphism of G̃ preserving an F-splitting and we assume λ is θ -invariant. Let
Z̃AF = ∏′

v Z̃ Fv be a closed subgroup of ZG̃(AF ), such that Z̃ Fv satisfy the conditions
in Sect. 2.4. We also require Z̃AF ZG(AF ) = ZG̃(AF ) and Z̃AF ZG̃(F) is mapped to
a closed and cocompact subgroup in ZG̃(AF )θ . Let Z̃ F = Z̃AF ∩ ZG̃(F) and χ̃ be
a character of Z̃AF /Z̃ F . Let ZAF = Z̃AF ∩ ZG(AF ) and ZF = Z̃ F ∩ ZG(F). We
denote the restriction of χ̃ to ZAF by χ . First we consider the discrete part of the
θ -twisted trace formula for G. For any nonnegative real number t and f ∈ H(G, χ),
it is a distribution defined as follows

I G
θ

disc,t ( f ) =
∑
{M}

|W (M)|−1
∑

w∈W θ (M)reg

| det(w − 1)
aG

θ

M
|−1tr(MP|θ P,t (w, χ)I θP,t (χ, f )).

(5.1)

Here we need to give some explanations of this formula. The outer sum is taken over
G(F)-conjugacy classes of Levi subgroups M of G, and the inner sum is taken over
elements w in the Weyl set

W θ (M) = Norm(AM ,G � θ)/M

such that | det(w− 1)
aG

θ

M
|−1 �= 0, where aG

θ

M is the kernel of the canonical projection

of

aM → aG → aGθ ,

and

aGθ = aG/{X − θ(X) : X ∈ aG}.

For any Levi subgroup M of G, we can take the direct sum of

L2
disc,t (M(F)\M(AF ), ζM ) ⊆ L2

disc(M(F)\M(AF ), ζM )

such that the central character ζM extends χ and is invariant under some element of
W θ (M)reg , and the archimedean infinitesimal characters of the irreducible constituents
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have norm t on their imaginary parts, then

IP,t (χ, f ) =
∫
ZAF \G(AF )

f (g)IP,t (χ, g)dg

defines an operator on the space HP,t (χ) of the corresponding normalized induced
representations. The operator I θP,t (χ, f ) is the composition R(θ)−1 ◦ IP,t (χ, f ), and
MP|θ P,t (w, χ) is the standard intertwining operator betweenHθ P,t (χ) andHP,t (χ).
Note when θ = id, the term for M = G in (5.1) is given by trace of RG

disc,t ( f ) :=
IG,t (χ, f ) on the corresponding part of the discrete spectrum of G.

The discrete part of the trace formula (5.1) can be stabilized, and we get the fol-
lowing formula,

I G
θ

disc,t ( f ) =
∑

G ′∈Eell (Gθ )

ι(G,G ′)SG ′
disc,t ( f

G ′
). (5.2)

Here SG
′

disc,t ( f
′) are stable distributions on G ′, and they are defined by induction from

the stabilized formula for I G
′

disc,t ( f
′). Ifwe denote the image of ZAF under the inclusion

(ZG)θ → ZG ′ by Z ′
AF

and let Z ′
F = Z ′

AF
∩ ZG ′(AF ), then I G

′
disc,t ( f

′) is defined with
respect to a character χ ′ of Z ′

AF
/Z ′

F determined by χ and the twisted endoscopic

embedding LG ′ → LG, and f ′ ∈ H(G ′, χ ′). The coefficients ι(G,G ′) are given by
the Kottwitz’s formula,

ι(G,G ′) = |π0(Z(Ĝ)�)|
|π0(Z(Ĝ ′)�)| · | ker1(F, Z(Ĝ ′))|

| ker1(F, Z(Ĝ))| · |π0(AutG(G ′))|−1

× |κGθ /κGθ ∩ Z(Ĝ ′)|−1 (5.3)

where κGθ = Aθ̂
Ĝ
. When θ = id, the term |κGθ /κGθ ∩ Z(Ĝ ′)|−1 = 1.

We can also write down the same trace formulas for G̃, but in this case we also
need to consider the ω-twisted version of these trace formulas. Let ω be a character of
G̃(AF )/G̃(F) and f̃ ∈ H(G̃, χ̃), the discrete part of the (θ, ω)-twisted trace formula
for G̃ takes the form

I (G̃
θ ,ω)

disc,t ( f̃ ) =
∑
{M̃}

|W (M̃)|−1
∑

w∈W θ (M̃)reg

| det(w − 1)
aG̃

θ

M̃

|−1

× tr(MP̃|θ P̃,t (w, χ̃)I
θ,ω

P̃,t
(χ̃, f̃ )), (5.4)

where the operator I θ,ω
P̃,t

(χ̃, f̃ ) is the composition R(θ)−1 ◦ R(ω) ◦ IP̃,t (χ̃ , f̃ ). For

the term corresponding to M̃ = G̃, we let RG̃
disc,t ( f̃ ) := IG̃,t (χ̃, f̃ ) and denote

R(θ)−1 ◦ R(ω) ◦ RG̃
disc,t ( f̃ ) by R(G̃

θ ,ω)
disc,t ( f̃ ). After stabilization, (5.4) becomes
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I (G̃
θ ,ω)

disc,t ( f̃ ) =
∑

G̃ ′∈Eell (G̃θ ,ω)

ι(G̃, G̃ ′)SG̃ ′
disc,t ( f̃

G̃ ′
), (5.5)

where the coefficients ι(G̃, G̃ ′) are given by the same kind of formula as in (5.3).
We denote byA(G̃) (resp.A2(G̃)) the set of (resp. discrete) automorphic represen-

tations of G̃, and by Caut (G̃) the set of families of Satake parameters of automorphic
representations of G̃, modulo the equivalence relation that c = c′ ∈ Caut (G̃) if and
only if cv = c′

v for almost all places v. More generally, we extend this notion to
admissible representations of G̃(AF ), and we denote the corresponding set by CA(G̃).

For c̃ ∈ CA(G̃) and its projection c on LG, we can write I G
θ

disc,t,c( f ) (resp. I
(G̃θ ,ω)
disc,t ,̃c( f̃ )

and R(G̃
θ ,ω)

disc,t ,̃c( f̃ )) for the part of I
Gθ

disc,t ( f ) (resp. I
(G̃θ ,ω)
disc,t ( f̃ ) and R(G̃

θ ,ω)
disc,t ( f̃ )), which is

contributed from automorphic representations π (resp. π̃ ) satisfying c(π) = c (resp.
c(π̃) = c̃). Then SGdisc,t,c( f ) can be defined inductively using (5.2) for θ = id. To be
more precise, let

SG
′

disc,t,c( f
′) =

∑
c′→c

SG
′

disc,t,c′( f ′),

and the sum is over the preimages c′of c in CA(G ′) under the twisted endoscopic
embedding LG ′ → LG. Then we define

SGdisc,t,c( f ) = I Gdisc,t,c( f )−
∑

G ′∈Eell (G)−{G}
ι(G,G ′)SG ′

disc,t,c( f
G ′
).

Similarly, we can define SG̃disc,t ,̃c( f̃ ). The next lemma shows that SGdisc,t,c( f ) (resp.

SG̃disc,t ,̃c( f̃ )) is stable and we get a decomposition for (5.2) [resp. (5.5)].

Lemma 5.1 1. SGdisc,t,c( f ) [resp. S
G̃
disc,t ,̃c( f̃ )] is stable.

2. The stabilization of the twisted trace formula (5.2) (resp. (5.5)) can be decomposed
according to c ∈ CA(G) (resp. c̃ ∈ CA(G̃)), i.e.

I G
θ

disc,t,c( f ) =
∑

G ′∈Eell (Gθ )

ι(G,G ′)SG ′
disc,t,c( f

G ′
).

resp.

I (G̃
θ ,ω)

disc,t ,̃c( f̃ ) =
∑

G̃ ′∈Eell (G̃θ ,ω)

ι(G̃, G̃ ′)SG̃ ′
disc,t ,̃c( f̃

G̃ ′
). (5.6)

The lemma is an application of the theory of multipliers, and the proof is the same
as in ([7], Lemma 3.3.1).

As in the local casewherewe study the relation of representations betweenG and G̃,
here we want to discuss the relation of I Gdisc,t,c( f ) (resp. S

G
disc,t,c( f )) with I G̃disc,t ,̃c( f̃ )

(resp. SG̃disc,t ,̃c( f̃ )). The next lemma is the first step of studying this relation.
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Lemma 5.2 Suppose π̃ is an irreducible admissible representation of G̃(AF ) andπ is
an irreducible constituent of π̃ restricted to G(AF ), then the set of Satake parameters
c(π̃) is mapped to c(π) under the projection p : L G̃ −→ LG.

Proof This lemma is essentially local, and it suffices to show for any place v of F , if
both πv and π̃v are unramified and πv is contained in the restriction of π̃v to G(Fv),
then c(π̃v) is mapped to c(πv). If G̃v is a torus, this follows from the Langlands
correspondence for tori. In general, π̃v is an irreducible constituent of IB̃v (χ̃v) for
some unramified character χ̃v on the maximal torus T̃v with Borel subgroup B̃v ⊇ T̃v ,
and one has c(π̃v) = c(χ̃v). Since

ResG̃v

Gv
IB̃v (χ̃v)

∼= IBv (Res
T̃v
Tv
χ̃v),

then c(πv) = c(χ̃v|Tv ). So again by the Langlands correspondence for tori one has
c(π̃v) mapped to c(πv). ��

Now we assume G̃ is of type (2.2). By Corollary 2.4, λ(ZG̃(AF )) ∩ D(F) =
λ(ZG̃(F)). So we have λ(ZG̃(AF )) ∩ λ(G̃(F)) = λ(ZG̃(F)), which is equivalent to

G(AF ) ∩ G̃(F)ZG̃(AF ) = G(F)ZG(AF ).

Therefore,

G(F)ZG(AF )\G(AF ) = G̃(F)ZG̃(AF )\G̃(F)ZG̃(AF )G(AF ).

Let ζ̃ be a character of ZG̃(AF )/ZG̃(F) and ζ be the restriction of ζ̃ to ZG(AF ), then
we have

L2
disc(G(F)\G(AF ), ζ ) = L2

disc(G̃(F)\G̃(F)ZG̃(AF )G(AF ), ζ̃ ).

Note that right multiplication by G̃(F)ZG̃(AF )G(AF ) on the right hand side induces
an action on the left hand side. In fact the action by G̃(F) on the left hand side is given
by conjugation on G(F)\G(AF ) and the action by ZG̃(AF ) is through the central
character ζ̃ . The following lemma shows that the L2-discrete spectrum of G̃(AF ) is
essentially induced from the L2-discrete spectrum of G(AF ).

Lemma 5.3 I nd G̃(AF )

G̃(F)ZG̃ (AF )G(AF )
L2
disc(G(F)\G(AF ), ζ ) ∼= L2

disc(G̃(F)\G̃(AF ),

ζ̃ ).

Proof First of all, there is a natural G̃(AF )-equivariant isomorphism

G̃(F)ZG̃(AF )\G̃(AF ) ∼= G(F)ZG(AF )\G(AF )×G̃(F)ZG̃ (AF )G(AF )
G̃(AF ).

Here we can view G̃(F)ZG̃(AF )G(AF )\G̃(AF ) as a closed subgroup of λ(ZG̃(AF ))

D(F)\D(AF ). Since

λ(ZG̃(AF ))D(F)\D(AF )
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is compact (see [33], Theorem 6.1.6), then G̃(F)ZG̃(AF )G(AF )\G̃(AF ) is also
compact. So one can define an inner product on the space of G̃(F)ZG̃(AF )G(AF )-
equivariant continuous functions from G̃(AF ) to L2(G(F)\G(AF ), ζ ), i.e.,

[L2(G(F)\G(AF ), ζ )⊗ C(G̃(AF ))]G̃(F)ZG̃ (AF )G(AF )

by integrating over G̃(F)ZG̃(AF )G(AF )\G̃(AF ). Moreover, one can normalize its
Haar measure such that

L2(G̃(F)\G̃(AF ), ζ̃ ) ∼= completion of [L2(G(F)\G(AF ), ζ )

⊗C(G̃(AF ))]G̃(F)ZG̃ (AF )G(AF ),

which is compatible with G̃(AF )-action. Note that the right hand side is nothing but

IndG̃(AF )

G̃(F)ZG̃ (AF )G(AF )
L2(G(F)\G(AF ), ζ ).

Finally, since G̃(F)ZG̃(AF )G(AF )\G̃(AF ) is compact, one must have

IndG̃(AF )

G̃(F)ZG̃ (AF )G(AF )
L2
disc(G(F)\G(AF ), ζ ) ∼= L2

disc(G̃(F)\G̃(AF ), ζ̃ ).

��
Let X be the set of characters of G̃(AF )/ZG̃(AF )G(AF ), and let Y be the set of

characters of G̃(AF )/G̃(F)ZG̃(AF )G(AF ). If π is an irreducible admissible repre-
sentation of G(AF ), and π̃ is an irreducible admissible representation of G̃(AF ), let
us define

G̃(π) = {g ∈ G̃(AF ) : π g ∼= π}
X (π̃) = {ω ∈ X : π̃ ∼= π̃ ⊗ ω}
Y (π̃) = Y ∩ X (π̃).

By ([15], Lemma 4.11), we know Y (π̃) = (G̃(AF )/G̃(π)G̃(F))∗ is finite. The fol-
lowing lemma is inspired by ([22], Lemma 6.2).

Lemma 5.4 Suppose π̃ is an irreducible admissible representation of G̃(AF ), and π
is an irreducible constituent of π̃ restricted to G(AF ). Then the multiplicities of π̃ and
π in the discrete spectrum are related by the following formula

∑
ω∈X/Y X (π̃)

m(π̃ ⊗ ω) =
∑

g∈G̃(AF )/G̃(π)G̃(F)

m(π g). (5.7)

Proof By Lemma 5.3,

L2
disc(G̃(F)\G̃(AF ), ζ̃ ) ∼= IndG̃(AF )

G̃(F)ZG̃ (AF )G(AF )
L2
disc(G(F)\G(AF ), ζ ) (5.8)
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and we would like to expand the right hand side. First, we need to decompose
L2
disc(G(F)\G(AF ), ζ ) as a representation of G̃(F)ZG̃(AF )G(AF ). Recall ZG̃(AF )

acts through ζ̃ and G̃(F) acts by conjugation on G(F)\G(AF ). Let π be any con-
stituent in L2

disc(G(F)\G(AF ), ζ ) and

G1(π) = G̃(F)ZG̃(AF )G(AF ) ∩ G̃(π).

Then G1(π) will act on the π -isotypic component I (π) and we get

I (π) =
m(π)⊕
ω1

π1 ⊗ ω1,

where π1 is an extension of π to G1(π) and the sum is over m(π) characters ω1 of
G1(π)/ZG̃(AF )G(AF ), which dependon the extensionπ1 and can havemultiplicities.
Since m(π) = m(π g) for g ∈ G̃(F), we have the following decomposition

L2
disc (G(F)\G(AF ), ζ ) =

⊕
{π}

Ind
G̃(F)ZG̃ (AF )G(AF )

G1(π)

⎛
⎝m(π)⊕

ω1

π1 ⊗ ω1

⎞
⎠ ,

where the outer sum is taken over equivalence classes {π} of constituents in
L2
disc(G(F)\G(AF ), ζ ) under the action by G̃(F). Taking this expression into (5.8),

we get

L2
disc(G̃(F)\G̃(AF ), ζ̃ ) ∼=

⊕
{π}

IndG̃(AF )

G̃(F)ZG̃ (AF )G(AF )

◦ Ind
G̃(F)ZG̃ (AF )G(AF )

G1(π)

⎛
⎝m(π)⊕

ω1

π1 ⊗ ω1

⎞
⎠

∼=
⊕
{π}

IndG̃(AF )
G1(π)

⎛
⎝m(π)⊕

ω1

π1 ⊗ ω1

⎞
⎠ .

Moreover,

L2
disc(G̃(F)\G̃(AF ), ζ̃ ) ∼=

⊕
{π}

IndG̃(AF )

G̃(π)
IndG̃(π)G1(π)

⎛
⎝m(π)⊕

ω1

π1 ⊗ ω1

⎞
⎠

∼=
⊕
{π}

IndG̃(AF )

G̃(π)

m(π)⊕
ω1

⎛
⎝ ⊕
ω∈(G̃(π)/G1(π))∗

π̃1 ⊗ ω

⎞
⎠ ⊗ ω1

∼=
⊕
{π}

m(π)⊕
ω1

⊕
ω∈(G̃(π)/G1(π))∗

IndG̃(AF )

G̃(π)
π̃1 ⊗ ω ⊗ ω1,
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where π̃1 is an extension of π1 to G̃(π) andω1 is extended to G̃(π). Suppose π ′ = π g

for some g ∈ G̃(AF )/G̃(F)G̃(π), we have

G1(π
′) = G1(π

g) = G̃(F)ZG̃(AF )G(AF ) ∩ G̃(π g)

= G̃(F)ZG̃(AF )G(AF ) ∩ G̃(π)g.

Since G̃(π)g ∼= G̃(π), then G1(π
′) = G1(π). Hence π ′

1
∼= π

g
1 ⊗ ωg for some

character ωg of G1(π)/ZG̃(AF )G(AF ). Similarly one can show π̃ ′
1

∼= π̃
g
1 ⊗ ωg for

some extension of ωg to G̃(π). So

IndG̃(π)G1(π)
π ′
1

∼=
⊕

ω∈(G̃(π)/G1(π))∗
π̃
g
1 ⊗ ω ⊗ ωg,

and

IndG̃(AF )

G̃(π)
IndG̃(π)G1(π)

π ′
1

∼=
⊕

ω∈(G̃(π)/G1(π))∗
IndG̃(AF )

G̃(π)
π̃
g
1 ⊗ ω ⊗ ωg

∼=
⊕

ω∈(G̃(π)/G1(π))∗
IndG̃(AF )

G̃(π)
π̃1 ⊗ ω ⊗ ωg.

Therefore

L2
disc(G̃(F)\G̃(AF ), ζ̃ ) ∼=

⊕
{π}∼

⊕
g∈G̃(AF )/G̃(F)G̃(π)

m(πg)⊕
ω1

⊕
ω∈(G̃(π)/G1(π))∗

IndG̃(AF )

G̃(π)
π̃1 ⊗ ω ⊗ ω1 ⊗ ωg,

where the outer sum is taken over equivalence classes {π}∼ of constituents in
L2(G(F)\G(AF ), ζ ) under the action by G̃(AF ). Note the characters ω1 in this for-
mula depend on π g . By our definition of G1(π), the characters of G̃(π)/G1(π) can
be extended to that of G̃(AF )/G̃(F)ZG̃(AF )G(AF ). If we let

π̃ = IndG̃(AF )

G̃(π)
π̃1,

then from the above formula one can see easily that

∑
ω∈X/Y X (π̃)

m(π̃ ⊗ ω) =
∑

g∈G̃(AF )/G̃(π)G̃(F)

m(π g).

��
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5.2 Multiplicity formula

It is natural to apply Arthur’s multiplicity formula (cf. Theorem 3.13) to the right hand
side of (5.7) for those representations parametrized by φ ∈ �̄2(G). But we can not
apply that formula directly since it only gives themultiplicity of π as an H̄(G)-module
for [π ] ∈ �̄φ . So let us define

m̄(π) =
∑
π ′∼π

m(π ′),

where π ′ ∼= π as H̄(G)-modules. Then the multiplicity formula for [π ] ∈ �̄φ asserts
that

m̄(π) = mφ |Sφ |−1
∑
x∈Sφ

< x, π >, (5.9)

wheremφ is defined in Theorem 3.13 and Remark 3.14. For any irreducible admissible
representation π̃ of G̃(AF ), whose restriction to G(AF ) contains π , let us also write

m̄(π̃) =
∑

{π̃ ′∼X π̃}/X

∑
ω∈X/Y X (π̃ ′)

m(π̃ ′ ⊗ ω),

where π̃ ′ ∼= π̃ ⊗ω′ as H̄(G̃)-modules for some ω′ ∈ X , and we take such π̃ ′ modulo
twists by X in the sum. Then we can rewrite the formula (5.7) as

m̄(π̃) =
∑

g∈G̃(AF )/G̃(π)G̃(F)

m̄(π g). (5.10)

Now we can apply Arthur’s multiplicity formula (5.9) to the right hand side of (5.10)
to get the following result.

Lemma 5.5 Suppose π̃ is an irreducible admissible representation of G̃(AF ), and π
is an irreducible constituent of π̃ restricted to G(AF ). If [π ] ∈ �̄φ for φ ∈ �̄2(G),
then

m̄(π̃) = mφ

|Y (π̃)|
|α(Sφ)| · |Sφ̃ |−1

∑
x∈S

φ̃

〈x, π〉. (5.11)

Proof First we want to rewrite the right hand side of (5.10) as an integral over
G̃(AF )/G̃(F)ZG̃(AF )G(AF ). Consider the integral
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∫
G̃(AF )/G̃(F)ZG̃ (AF )G(AF )

m̄(π g) dg

=
∑

g∈G̃(AF )/G̃(F)G̃(π)

∫
G̃(π)/G̃(π)∩G̃(F)ZG̃ (AF )G(AF )

m̄(πhg) dh

=
∑

g∈G̃(AF )/G̃(F)G̃(π)

m̄(π g) · vol{G̃(π)/G̃(π) ∩ G̃(F)ZG̃(AF )G(AF )}.

Since

vol{G̃(π)/G̃(π) ∩ G̃(F)ZG̃(AF )G(AF )} = vol{G̃(AF )/G̃(F)ZG̃(AF )G(AF )}
|G̃(AF )/G̃(F)G̃(π)|

and

|G̃(AF )/G̃(F)G̃(π)| = |Y (π̃)|,

then

m̄(π̃) = |Y (π̃)|
vol{G̃(AF )/G̃(F)ZG̃(AF )G(AF )}

·
∫
G̃(AF )/G̃(F)ZG̃ (AF )G(AF )

m̄(π g) dg.

(5.12)

Combining the multiplicity formula (5.9) and also our local formula (4.1), we can
compute the integral on the right hand side of (5.12) as follows,∫

G̃(AF )/G̃(F)ZG̃ (AF )G(AF )

m̄(π g) dg

=
∫
G̃(AF )/G̃(F)ZG̃ (AF )G(AF )

mφ |Sφ |−1
∑
x∈Sφ

< x, π g > dg

= mφ |Sφ |−1
∑
x∈Sφ

< x, π > ·
∫
G̃(AF )/G̃(F)ZG̃ (AF )G(AF )

ωx (g) dg

= mφ |Sφ |−1
∑
x∈S

φ̃

< x, π > ·vol{G̃(AF )/G̃(F)ZG̃(AF )G(AF )}

= mφ |Sφ/Sφ̃ |−1|Sφ̃ |−1
∑
x∈S

φ̃

< x, π > ·vol{G̃(AF )/G̃(F)ZG̃(AF )G(AF )}.

Substitute this into (5.12), one gets

m̄(π̃) = mφ

|Y (π̃)|
|α(Sφ)| · |Sφ̃ |−1

∑
x∈S

φ̃

< x, π > .

��
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Although this lemma does not give a multiplicity formula for G̃, it has a very
interesting consequence.

Corollary 5.6 Suppose π̃ is an irreducible admissible representation of G̃(AF ), and
π is an irreducible constituent of π̃ restricted to G(AF ). If [π ] ∈ �̄φ for φ ∈ �̄2(G),
then there exists ω ∈ X such that π̃ ⊗ ω is isomorphic to a discrete automorphic
representation as H̄(G̃)-module if and only if < ·, π̃ >= 1. In particular, if Sφ̃ = 1
such character always exists.

Proof Since 〈x, π̃〉 = 〈x, π〉 for x ∈ Sφ̃ , it follows from the formula (5.11) that

m̄(π̃) =
{
mφ

|Y (π̃)|
|α(Sφ)| if < ·, π̃ >= 1,

0 otherwise .

So the first part of this corollary is clear. Next if Sφ̃ = 1, then we always have

m̄(π̃) = mφ

|Y (π̃)|
|α(Sφ)| ,

and this shows the second part. ��
In fact, we can refine the result of Lemma 5.5 to get a multiplicity formula for G̃ by

applying the stabilized twisted trace formulas. First, we need to define an equivalence
relation on CA(G) such that c ∼ c′ ∈ CA(G) if and only if cv is�0-conjugate to c′

v for
almost all places, and we denote the set of equivalence classes by C̄A(G). Let C̄aut (G)
be the subset of C̄A(G) consisting of equivalence classes of Caut (G).

Lemma 5.7 Suppose c̃ ∈ CA(G̃), then

I G̃disc,t ,̃c( f̃ ) = SG̃disc,t ,̃c( f̃ ) = 0

for f̃ ∈ H(G̃, χ̃), unless the projection of c̃ under p : L G̃ → LG belongs to the set
C̄aut (G).

Proof It follows from Lemmas 5.2 and 5.3 that

tr RG̃
disc,t ,̃c( f̃ ) = 0, (5.13)

unless c̃ projects to c ∈ C̄aut (G). Suppose the projection of c̃ in C̄A(G) does not belong
to C̄aut (G), then by the principle of functoriality (which results from Arthur’s theory
[7]), it neither belongs to C̄aut (M) for any Levi subgroup M of G, nor to C̄aut (G ′)
for any endoscopic group G ′ of G. Then for the same reason as (5.13), one gets
tr RM̃

disc,t ,̃c( f̃M ) = 0. So it follows from the definition [see (5.1)] that

I G̃disc,t ,̃c( f̃ ) = 0.
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Since

SG̃disc,t ,̃c( f̃ ) = I G̃disc,t ,̃c( f̃ )−
⎛
⎝ ∑

G̃ ′∈Eell (G̃)−{G̃}
ι
(
G̃, G̃ ′) SG̃ ′

disc,t ,̃c

(
f̃ G̃

′) ⎞
⎠ ,

we can assume SG̃
′

disc,t ,̃c( f̃
G̃ ′
) = 0 by induction, then

SG̃disc,t ,̃c( f̃ ) = 0.

��
For φ ∈ �̄(G), Arthur (cf. [7], Section 3.3) defines the φ-component of the discrete

part of the twisted trace formula forG and its stabilized form. Note that c(φ) defines an
element in C̄A(G), andφ alsodetermines the normof the imaginarypart of archimedean
infinitesimal character, which can be denoted by t (φ), so we can write

I G
θ

disc,φ( f ) =
∑

c→c(φ)

I G
θ

disc,t (φ),c( f ),

and

SGdisc,φ( f ) =
∑

c→c(φ)

SGdisc,t (φ),c( f ),

where these sums are all over preimages c of c(φ) in CA(G). Then the stabilization of
the φ-component of the twisted trace formula for G is

I G
θ

disc,φ( f ) =
∑

G ′∈Eell (Gθ )

ι(G,G ′)SG ′
disc,φ( f

G ′
),

where

SG
′

disc,φ( f
G ′
) =

∑
c′→c(φ)

SG
′

disc,t (φ),c′( f G
′
).

Here we want to define the φ-component of the discrete part of the twisted trace
formula for G̃. Let us write

I (G̃
θ ,ω)

disc,φ ( f̃ ) =
∑

c̃→c(φ)

I (G̃
θ ,ω)

disc,t (φ),̃c( f̃ ),

and

SG̃disc,φ( f̃ ) =
∑

c̃→c(φ)

SG̃disc,t (φ),̃c( f̃ ).
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Then the stabilization of the φ-component of the twisted stable trace formula for G̃ is

I (G̃
θ ,ω)

disc,φ ( f̃ ) =
∑

G̃ ′∈Eell (G̃θ ,ω)

ι
(
G̃, G̃ ′) SG̃ ′

disc,φ

(
f̃ G̃

′)
, (5.14)

where

SG̃
′

disc,φ

(
f̃ G̃

′) =
∑

c̃′→c(φ)

SG̃
′

disc,t (φ),̃c′
(
f̃ G̃

′)
.

Similarly, we can also define R(G̃
θ ,ω)

disc,φ ( f̃ ). For φ ∈ �̄2(G), it only contributes to the
discrete spectrum of G (cf. Remark 3.14), and by Lemma 5.3 it also only contributes
to the discrete spectrum of G̃. So we have

I (G̃
θ ,ω)

disc,φ ( f̃ ) = tr R
(
G̃θ ,ω

)
disc,φ ( f̃ ). (5.15)

Nowwe can give our multiplicity formula for G̃, and we will start with the simplest
case, i.e., G̃ = GSp(2n) or GSO(2n, η).

Proposition 5.8 Suppose G̃ = GSp(2n) or GSO(2n, η), π̃ is a discrete automorphic
representation of G̃, and π is an irreducible constituent of π̃ restricted to G(AF ). If
[π ] ∈ �̄φ for φ ∈ �̄2(G), then

m(π̃) = mφ̃

|Y (π̃)|
|α(Sφ)| , (5.16)

wheremφ̃ = 1 or 2, andmφ̃ = 2 onlywhenG is special even orthogonal,φ /∈ �̄(Gθ0),

and π̃ ∼= π̃ θ0 ⊗ ω for some ω ∈ Y .

Proof Since π̃ is automorphic, we can takeπ to be automorphic aswell by Lemma 5.3,
and hence < ·, π >= 1. It follows from Lemma 5.5 that

m̄(π̃) = mφ

|Y (π̃)|
|α(Sφ)| . (5.17)

Since θ0 acts on {π̃ ′ ∼X π̃}, we can write

m̄0(π̃) =
∑

{π̃ ′∼X π̃}/X,θ0

∑
ω∈X/Y X (π̃ ′)

m(π̃ ′ ⊗ ω),

where the sum modulo twists by X and θ0. If π ∼= πθ0 , then

m̄0(π̃) = m̄(π̃) =
∑

ω∈X/Y X (π̃)

m(π̃ ⊗ ω).
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If π � πθ0 , m̄0(π̃) = 1
2 m̄(π̃). Therefore, we have

m̄0(π̃) =
⎧⎨
⎩
mφ

|Y (π̃)|
|α(Sφ)| if π ∼= πθ0 ,

|Y (π̃)|
|α(Sφ)| if π � πθ0 .

(5.18)

Note that α(Sφ) ⊆ Y (π̃), so

|Y (π̃)|
|α(Sφ)| = |Y (π̃)/α(Sφ)|.

In particular, Y (π̃)/α(Sφ) is a two-group. We can fix a subgroup of representatives in
Y (π̃) and denote it again by Y (π̃)/α(Sφ).

Let us first consider the caseπ � πθ0 . IfY (π̃)/α(Sφ) = 1, then the lemmabecomes
obvious. So let us assume 1 �= ω ∈ Y (π̃)/α(Sφ), and by the stabilized ω-twisted trace
formula (5.14), one gets

I (G̃,ω)disc,φ( f̃ ) =
∑

G̃ ′∈Eell (G̃,ω)
ι
(
G̃, G̃ ′) SG̃ ′

disc,φ

(
f̃ G̃

′)
,

for f̃ ∈ H(G̃, χ̃). Since ω is not in α(Sφ), φ can not factor through LG ′ for any
G ′ ∈ Eell(G) such that G̃ ′ ∈ Eell(G̃, ω). Then by Lemma 5.7, SG̃

′
disc,φ( f̃

G̃ ′
) = 0 for

all G̃ ′ ∈ Eell(G̃, ω), and hence

I (G̃,ω)disc,φ( f̃ ) = 0.

In particular,

tr R(G̃,ω)disc,φ( f̃ ) = I (G̃,ω)disc,φ( f̃ ) = 0, (5.19)

as φ ∈ �̄2(G). This is true for all nontrivial ω ∈ Y (π̃)/α(Sφ). Let I (π̃) be the π̃-

isotypic component in RG̃
disc,φ , and one observes Y (π̃)/α(Sφ) will act on I (π̃) by

multiplication. The action of Y (π̃)/α(Sφ) does not commute with that of G̃(AF ), but
one can take

G1
AF

= {g ∈ G̃(AF ) : ω(g) = 1 for all ω ∈ Y (π̃)/α(Sφ)},

which is of finite index in G̃(AF ), and then it will commute with the action of G1
AF

.
In fact one can have a decomposition

I (π̃) =
⊕

g∈G̃(AF )/G1
AF

I ((π1)g)
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by restricting to G1
AF

. The point is each summand is invariant under Y (π̃)/α(Sφ) and
has the same multiplicity as π̃ . By (5.19), one has

tr(R( f̃ ) ◦ R(ω))|I (π̃) = 0,

where R(ω) denotes the multiplication by ω. In particular, one can restrict to those f̃
supported on G1

AF
, then one has

tr(R( f̃ ) ◦ R(ω))|I ((π1)g) = 0

for all g ∈ G̃(AF )/G1
AF

. We can view I (π1) as a representation of H(G1
AF
) ×

Y (π̃)/α(Sφ) and write it as π1 ⊗ W , then

tr(R( f̃ ) ◦ R(ω))|I (π1) = trπ1( f̃ ) · trπ1
W (ω) = 0,

where π1
W is the corresponding representation of Y (π̃)/α(Sφ) on W . Therefore,

trπ1
W (ω) = 0

for 1 �= ω ∈ Y (π̃)/α(Sφ). We claim

|Y (π̃)/α(Sφ)| divides dim(W ). (5.20)

If that is the case, by noticing m(π̃) = dim(W ) and comparing with (5.18) one must
have

|Y (π̃)/α(Sφ)| = dim(W ),

hence m(π̃) = |Y (π̃)/α(Sφ)|.
To prove the claim (5.20), one just needs to show the following general statement.

Suppose V is a finite dimensional representation over the complex numbers of a finite
group A such that the trace of each nontrivial element of A is zero, then the order of
A must divide the dimension of V . To see this, let χV and χtriv be the characters of
V and the trivial representation of A respectively, then the multiplicity of the trivial
representation in V can be given by

m = 〈χV , χtriv〉 = dim(V )/|A|,

which is an integer. Hence |A| divides dim(V ).
For the case π ∼= πθ0 and mφ = 1, the proof is the same. So we are left with the

case π ∼= πθ0 and mφ = 2. In this case, we have π̃ θ0 ∼= π̃ ⊗ ω for some ω ∈ X . Let

X0(π̃) = {ω ∈ X : π̃ ∼= π̃ ⊗ ω or π̃ θ0 ∼= π̃ ⊗ ω}.
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If π̃ ⊗ ω � π̃ θ0 for any ω ∈ Y , then

∑
ω∈X/Y X0(π̃)

m(π̃ ⊗ ω) = |Y (π̃)|
|α(Sφ)|

and the rest of the proof is again the same. If π̃ ⊗ ω1 ∼= π̃ θ0 for some ω1 ∈ Y , we
need to consider the action of the two-group

〈(θ0, ω1)〉 × (Y (π̃)/α(Sφ)) (5.21)

on I (π̃), where (θ0, ω1) acts by R(θ0)−1 ◦ R(ω1). It commutes with the action of
(θ0, ω1)-invariant functions inH(G1

AF
), i.e. f̃ θ0 ⊗ ω1 = f̃ . And as a module of such

space of functions, we have

I (π̃) ∼=

⎛
⎜⎝ ⊕

g∈G̃(AF )/G1
AF

I ((π1+)g)

⎞
⎟⎠⊕⎛

⎜⎝ ⊕
g∈G̃(AF )/G1

AF

I ((π1−)g)

⎞
⎟⎠

where the sign is according to the eigenvalues {±1} of any fixed intertwining operator
between π̃ ⊗ω1 and π̃ θ0 after we identify I (π̃) ∼= m(π̃) π̃ . Note that the multiplicity
of π̃ is the same as that of irreducible modules in I (π1+) and I (π1−) of the subspace
of functions described above, and then the rest of the argument proceeds in the same
way as before by using the stabilized (θ, ω)-twisted trace formula (5.14) for (θ0, ω)
in (5.21).

��
Corollary 5.9 Suppose π̃ and π̃ ′ are discrete automorphic representations of G̃, such
that π̃ ∼= π̃ ′ ⊗ω as H̄(G̃)-modules for some ω ∈ X. If π is an irreducible constituent
in the restriction of π̃ to G(AF ) and [π ] ∈ �̄φ for φ ∈ �̄2(G), then there exists some
ω′ ∈ Y and θ ∈ �0 such that π̃ ′ ∼= π̃ θ ⊗ ω′.

Proof If G̃ = GSp(2n) or GSO(2n, η), this can be seen easily by comparing (5.16)
with (5.18). In general, we can first go to the product group ˜̃G of general symplectic
groups and connected general even orthogonal groups [see (2.4)], and it is clear this
corollary holds in that case. Then by restricting to G̃ we get the result. ��

To generalize Proposition 5.8, for [π ] ∈ �̄φ with φ ∈ �̄2(G), we denote by
�0(π,Y ) the subgroup of �0 consisting of θ such that π̃ ⊗ ω ∼= π̃ θ for some ω ∈ Y ,
where π̃ is an irreducible admissible representation of G̃(AF ) containing π in its
restriction to G(AF ). If we write �Y (π) for the quotient of �0 by �0(π,Y ), then we
have an exact sequence

1 �0(π,Y ) �0 �Y (π) 1 , (5.22)

where all these groups are two-groups. We can also choose a splitting of this sequence
and write �0 ∼= �0(π,Y )×�Y (π).
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Corollary 5.10 Suppose π̃ is a discrete automorphic representation of G̃, and π is
an irreducible constituent of π̃ restricted to G(AF ). If [π ] ∈ �̄φ for φ ∈ �̄2(G), then

m(π̃) = mφ̃

|Y (π̃)|
|α(Sφ)| , (5.23)

where mφ̃ = mφ/|�Y (π)|.
Proof We will use the formula (5.17)

m̄(π̃) = mφ

|Y (π̃)|
|α(Sφ)| .

It follows from Corollary 5.9 that

m̄(π̃) =
∑

θ∈�Y (π)

m(π̃θ ).

Since m(π̃θ ) = m(π̃) for θ ∈ �0, then we get

|�Y (π)| · m(π̃) = mφ

|Y (π̃)|
|α(Sφ)| .

So by writing mφ̃ = mφ/|�Y (π)|, we have proved the formula (5.23). ��
Suppose φ ∈ �̄2(G), let ζ̃ be a character of ZG̃(AF )/ZG̃(F) such that ζ =

ζ̃ |ZG is the central character of �̄φ . If we denote by ˜̄�φ,̃ζ all equivalence classes

of irreducible admissible representations of G̃(AF ) as H̄(G̃)-modules with central
character ζ̃ , whose restriction to G(AF ) have irreducible constituents contained in

�̄φ , then by Corollary 5.6 we can always choose a representative for [π̃ ] ∈ ˜̄�φ,̃ζ /X

with 〈·, π̃〉 = 1 in the discrete spectrum of G̃. The following proposition gives a
decomposition of the φ-component of the discrete spectrum of G̃.

Proposition 5.11 Suppose φ ∈ �̄2(G), we have the following decomposition as
H̄(G̃)-modules

L2
disc,φ(G̃(F)\G̃(AF ), ζ̃ ) = mφ

∑
ω∈Y/α(Sφ)

∑
[π̃ ]∈ ˜̄�φ,̃ζ /X
<·,π̃>=1

π̃ ⊗ ω, (5.24)

where π̃ are taken to be the representatives of ˜̄�φ,̃ζ /X in the discrete automorphic
spectrum. Moreover,

L2
disc,φ(G̃(F)\G̃(AF ), ζ̃ ) = 0

for φ ∈ �̄(G)− �̄2(G).
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Proof For φ ∈ �̄(G) − �̄2(G), we have L2
disc,φ(G(F)\G(AF )) = 0 (cf. Theo-

rem 3.13). Then it follows from Lemmas 5.2 and 5.3 that L2
disc,φ(G̃(F)\G̃(AF ), ζ̃ ) =

0. Next we assume φ ∈ �̄2(G). By Lemma 5.3, L2
disc,φ(G̃(F)\G̃(AF ), ζ̃ ) consists

of discrete automorphic representations in ˜̄�φ,̃ζ . Then for any automorphic repre-

sentation π̃ ′ in L2
disc,φ(G̃(F)\G̃(AF ), ζ̃ ), there exists a representative π̃ chosen in

(5.24) such that π̃ ∼= π̃ ′ ⊗ ω as H̄(G̃)-modules for some ω ∈ X . By Corollary 5.9,
π̃ ′ ∼= π̃ θ ⊗ ω′ for θ ∈ �0 and ω′ ∈ Y . In particular, π̃ ′ ∼= π̃ ⊗ ω′ as H̄(G̃)-
modules. Therefore, it suffices to count the multiplicity of π̃ as H̄(G̃)-modules in
L2
disc,φ(G̃(F)\G̃(AF ), ζ̃ ). By Corollary 5.9 again,

∑
π̃ ′∼π̃

m(π̃ ′) =
∑

θ∈�0, ω∈Ȳ (π̃)
m(π̃θ ⊗ ω) =

∣∣∣∣ Ȳ (π̃)Y (π̃)

∣∣∣∣ · |�Y (π)| · m(π̃),

where π̃ ′ ∼= π̃ as H̄(G̃)-modules and

Ȳ (π̃) = {ω ∈ Y : π̃ ⊗ ω ∼= π̃ as H̄(G̃)− modules}.

By Corollary 5.10, we have

|�Y (π)| · m(π̃) = mφ

|Y (π̃)|
|α(Sφ)| ,

so

∑
π̃ ′∼π̃

m(π̃ ′) = mφ

|Ȳ (π̃)|
|α(Sφ)| .

This is exactly the multiplicity we get from (5.24).
��

Now let us get back to themultiplicity formula.Note under the assumption of Propo-
sition 5.8, if G̃ is general symplectic, then the multiplicity formula (5.16) becomes

m(π̃) = |Y (π̃)|
|α(Sφ)| .

It is an interesting question to ask when one can have multiplicity one, i.e. |Y (π̃)| =
|α(Sφ)|. Since α(Sφ) is a subgroup of Y (π̃), it is the same to ask when

α(Sφ) = Y (π̃).
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By Corollary 4.2 we have the following description for Y (π̃). Let us define

aut∏
v

α(Sφv ) := {ω ∈ Y : ωv ∈ α(Sφv ) for all v},
aut∏

almost all v

α(Sφv ) := {ω ∈ Y : ωv ∈ α(Sφv ) for almost all v},

then

Y (π̃) =
aut∏
v

α(Sφv ).

Moreover, we get a sequence of inclusions

α(Sφ) ⊆
aut∏
v

α(Sφv ) ⊆
aut∏

almost all v

α(Sφv ).

Motivated by the case that G is symplectic and φ ∈ �̄2(G), we give the following
definition for both symplectic groups and special even orthogonal groups.

Definition 5.12 Suppose φ ∈ �̄(G), we say multiplicity one holds for φ̃ if

α(Sφ) =
aut∏
v

α(Sφv ).

Definition 5.13 Suppose φ ∈ �̄(G), we say strong multiplicity one holds for φ̃ if

aut∏
v

α(Sφv ) =
aut∏

almost all v

α(Sφv ).

Themotivation for the first definition is now clear, while the second definition needs
some explanation. But before giving the explanation, we want to give two modified
definitions of the same kind. In view of Theorem 3.13, we need to deal with the group
of characters ωv such that

f̃v(π̃v ⊗ ωv) = f̃v(π̃v), f̃v ∈ H̄(G̃v)

for [πv] ∈ �̄φv . It follows from Corollary 4.2 that this group is isomorphic to α(S�0
φv
).

Then we can similarly define a sequence of inclusions

α(S�0
φ ) ⊆

aut∏
v

α(S�0
φv
) ⊆

aut∏
almost all v

α(S�0
φv
),
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and define the concepts of multiplicity one and strong multiplicity one in the same
way regarding these groups.

Definition 5.14 Suppose φ ∈ �̄(G), we say �0-multiplicity one holds for φ̃ if

α(S�0
φ ) =

aut∏
v

α(S�0
φv
).

Definition 5.15 Suppose φ ∈ �̄(G), we say �0-strong multiplicity one holds for φ̃
if

aut∏
v

α(S�0
φv
) =

aut∏
almost all v

α(S�0
φv
).

Recall that we can associate a global L-packet �̄φ to φ ∈ �̄(G), so we can talk
about strong multiplicity one for the global L-packet �̄φ , i.e. if π is automorphic,
and [πv] ∈ �̄φv for almost all places v, then [π ] lies in �̄φ . As in the local case (see
Theorem4.6),we can expect to lift the global L-packet �̄φ to someglobal L-packet �̄φ̃

for G̃. Obviously the lift is not unique, but as one can see from Corollary 5.9, it should
be unique up to twisting by idèle class characters. Because we already have strong
multiplicity one for �̄φ , so strong multiplicity one for �̄φ̃ is equivalent to the property

that for any ω in Y if �̄φ̃v
= �̄φ̃v

⊗ ωv for almost all places v, then �̄φ̃ = �̄φ̃ ⊗ ω.
And it can be easily seen that this property is equivalent to the condition of�0-strong
multiplicity one in our definition.

5.3 Statement of global theorem

After discussing the multiplicity question, we want to describe the φ-component of
the discrete spectrum for G̃, which should be an analogue of Theorem 3.13. We again
assume G̃ is of type (2.2).

Conjecture 5.16 1. Suppose φ ∈ �̄(G), one can associate a global packet �̄φ̃ of

H̄(G̃)-modules of irreducible admissible representations for G̃(AF ) satisfying the
following properties:
(a) �̄φ̃ = ⊗′

v �̄φ̃v
where �̄φ̃v

is some lift of �̄φv defined in Theorem 4.6.

(b) there exists [π̃ ] ∈ �̄φ̃ such that that π̃ is isomorphic to an automorphic

representation as H̄(G̃)-modules.
Moreover, �̄φ̃ is unique up to twisting by characters of G̃(AF )/G̃(F)G(AF ). And
we can define a global character of Sφ̃ by

< x, π̃ >:=
∏
v

< xv, π̃v > for π̃ ∈ �̄φ̃ and x ∈ Sφ̃ .

123



140 B. Xu

2. Suppose φ ∈ �̄2(G), the φ-component of the discrete spectrum of G̃(AF ) as
H̄(G̃)-module has a decomposition.

L2
disc,φ(G̃(F)\G̃(AF ), ζ̃ ) = mφ

⊕
ω∈Y/α(Sφ)

⊕
[π̃ ]∈�̄

φ̃
⊗ω

<·,π̃>=1

π̃ , (5.25)

where mφ is defined as in Remark 3.14.

Along with this conjecture, we need to prove some results about the stable mul-
tiplicity formula for G̃ (see Conjecture 1.5). This formula has been conjectured by
Arthur [2] for any quasisplit connected reductive groups, and he also proved this for
special orthogonal group and symplectic group in [7]. To state the formula, we need
some preparations. Suppose S is a connected complex reductive group with an auto-
morphism θ , we denote Sθ = S � θ , which can be viewed as a connected component
of the complex reductive group S+ := S� < θ >. We fix a maximal torus T of S,
and define the Weyl set

W θ (S) = Norm(T, Sθ )/T .

Let W θ (S)reg be the set of Weyl elements w such that

det(w − 1)|aT �= 0.

Moreover, let s0(w) denote the sign (−1)n , where n is the number of positive roots of
(S, T ) mapped by w to negative roots. Now we can assign to Sθ a real number

iθ (S) = |W (S)|−1
∑

w∈W θ
reg(S)

s0(w)| det(w − 1)|−1
aT
,

whereW (S) is theWeyl group of S. Nextwewant to define a constant σ(S1) associated
with any connected complex reductive group S1. To define this we have to introduce
some more notations. Still for the original Sθ , let us denote the set of semisimple
elements of Sθ by Sθss . And for any s ∈ Sθss , we write

Ss = Cent(s, S).

Let

Sθell = {s ∈ Sθss : |Z(Ss)| < ∞},

and Eθell(S) be the S-conjugacy classes in Sθell . Finally the constant σ(S1) can be
characterized by the following proposition ([7], Proposition 4.1.1).
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Proposition 5.17 There are unique constants σ(S1) defined for all connected complex
reductive groups S1, such that for any connected component Sθ of a complex reductive
group, the following number

eθ (S) =
∑

s∈Eθell (S)
|π0(Ss)|−1σ((Ss)

0)

equals iθ (S), and furthermore

σ(S1) = σ(S1/Z1)|Z1|−1,

for any central subgroup Z1 of S1.

Now we can state the stable multiplicity formula for G̃ as follows.

Conjecture 5.18 Suppose φ ∈ �̄(G), then

SG̃disc,φ( f̃ ) = mφ

∑
ω∈Y/α(Sφ)

|Sφ̃ |−1σ(S̄0φ) f̃
G̃(φ̃ ⊗ ω), f̃ ∈ H̄(G̃, χ̃), (5.26)

where

f̃ G̃(φ̃ ⊗ ω) :=
∏
v

f̃v(φ̃v ⊗ ωv),

with respect to �̄φ̃ defined in Conjecture 5.16.

Finally, we need a twisted version of the decomposition (5.25), whose role will be
clear in the next section.

Conjecture 5.19 Suppose φ ∈ �̄2(G) and x ∈ Sθ
φ with α(x) = ω for θ ∈ �0 and

some character ω of G̃(AF )/G̃(F)G(AF ). For [π̃] ∈ �̄φ̃ with < ·, π̃ >= 1, the
canonical intertwining operator

R(θ)−1 ◦ R(ω)

restricted to the π̃ -isotypic component I (π̃) in the discrete spectrum is equal to the
product of m(π̃) and the local intertwining operators Aπ̃v (θ, ωv) normalized by xv
(see (4.3)), i.e.

I (G̃
θ ,ω)

disc,φ ( f̃ ) = mφ

∑
ω′∈Y/α(Sφ)

∑
[π̃ ]∈�̄

φ̃
⊗ω′

<·,π̃>=1

f̃G̃θ (π̃ , ω), f̃ ∈ H̄(G̃, χ̃), (5.27)

where f̃G̃θ (π̃ , ω) = ∏
v f̃G̃θ

v
(π̃v, ωv), and it does not depend on x.
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Remark 5.20 This kind of result has been proved in the cases of special even orthogo-
nal groups (see [7], Theorem 4.2.2) and general linear groups (see [7], Lemma 4.2.3).

In this paper, we will only establish these conjectures in a special case.

Theorem 5.21 Suppose G = G1 × G2 × · · · × Gq, such that Gi is a symplectic
group or a special even orthogonal group. For φ = φ1 × φ2 × · · · × φq ∈ �̄(G) with
φi ∈ �̄(Gi ), if Sφ̃i = 1 for all i , then Conjecture 5.16, 5.19 hold. If we further assume

φ ∈ �̄2(G), then Conjecture 5.18 also holds.

5.4 Comparison of trace formulas

Weassume G̃ is of type 2.2 and θ ∈ �0. Sincewe are going to prove all the theorems by
induction, here we would like to take a temporary induction assumption: we assume
Conjecture 5.16, 5.18, 5.19 together with our main local theorem (Theorem 4.6)
hold for the proper Levi subgroups and twisted endoscopic groups of G̃. Based on
this assumption, we want to expand the φ-component of (5.4) and (5.5) in terms of
local objects. Before we do the expansion, let us write �(G, φ) for the set of global
Langlands parameters of G giving rise to φ ∈ �̄(G). It is clear that |�(G, φ)| = mφ .
So we can write formally those formulas (5.25), (5.26) and (5.27) for φG ∈ �(G, φ)
by simply setting mφG = 1. In fact these formal formulas do make sense when we
associate to φG the refined global L-packet (see [7], Section 8.4). But we do not need
this refinement here, for eventually we are going to sum over�(G, φ). The benefit of
working with these global Langlands parameters is one can imitate the computation in
([2], Section 5 and 7), where one does assume the global Langlands correspondence.

5.4.1 The spectral expansion

Let us write the φ-component of (5.4) as

I (G̃
θ ,ω)

disc,φ ( f̃ ) =
∑
{M̃}

|W (M̃)|−1
∑

w∈W θ (M̃)reg

| det(w−1)
aG̃

θ

M̃

|−1tr(MP̃|θ P̃,φ(w, χ̃)I
θ,ω

P̃,φ
(χ̃ , f̃ )).

So the key is to expand

tr(MP̃|θ P̃,φ(w, χ̃)I
θ,ω

P̃,φ
(χ̃ , f̃ )) (5.28)

By definition, (5.28) does not vanish only if there exists φM ∈ �̄2(M, φ). Moreover,
the (G(F) � �0)-conjugacy class of M such that �̄2(M, φ) �= ∅ is determined by
φ, and the choice of φG ∈ �(G, φ) determines the G(F)-conjugacy class of M such
that �2(M, φG) �= ∅. So we can fix such a G(F)-conjugacy class of M and assume
φM ∈ �̄2(M, φ). To apply our induction assumption we also need to assume M �= G,
i.e., φ /∈ �̄2(G).

Note the diagram (4.12) in our discussion of the local (θ, ω)-twisted intertwining
relation can be defined in the global case, and the global analogue of those groups in
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the diagram will map to their local counterparts. It is not hard to show, using a similar
argument in Proposition 5.8, that (5.28) vanishes unless there exists u ∈ Nθ

φ such that

wu = w and ω = α(xu). So φM ∈ �̄2(Mθu ). Now we can apply Conjecture 5.16 to
φ̃M . For any [π̃M ] ∈ �̄φ̃M

, let us define

RP̃|θ P̃ (u, π̃M , φ̃) :=
∏
v

RP̃v |θ P̃v (uv, π̃Mv , φ̃v).

In particular, if π̃M ∈ A2(M̃), we can write

RP̃|θ P̃ (w, π̃M , φ̃) := rP (w, φM )
−1MP̃|θ P̃ (w, π̃M ),

where rP (w, φM ) is the global normalizing factor defined by

rP (w, φM ) =
∏
v

rP (wv, φMv ).

It follows from Conjecture 5.19 and analogous result for GL(N ) (cf. Remark 5.20)
that

RP̃|θ P̃ (w, π̃M , φ̃) = RP̃|θ P̃ (u, π̃M , φ̃)

for any u ∈ Nθ
φ(w, ω). Here Nθ

φ(w, ω) consists of u ∈ Nθ
φ such that wu = w and

α(xu) = ω. Applying Conjecture 5.16 (2) to M̃ , we can write (5.28) as a double sum
over φG ∈ �(G, φ) and φM ∈ �2(Mθu , φG) of

∑
ω′∈Y/α(SφM )

∑
[π̃M ]∈�̄

φ̃M
⊗ω′

δφ̃M
(π̃M )rP (w, φM )tr(RP̃|θ P̃ (u, π̃M , φ̃)I

θ,ω

P̃
(π̃M ⊗ ω−1, f̃ )),

where

δφ̃M
(π̃M ) = |Sφ̃M |−1

∑
x∈S

φ̃M

< x, π̃M > .

Moreover, we can write∑
x∈S

φ̃M

< x, π̃M > RP̃|θ P̃ (u, π̃M , φ̃) =
∑

u∈Nθ
φ(w,ω)

RP̃|θ P̃ (u, π̃M , φ̃).

If we switch the sum over π̃M ∈ �̄φ̃M
⊗ ω′ with u ∈ Nθ

φ(w, ω), and define

f̃G̃θ (φ̃ ⊗ ω′, u) =
∑

[π̃M ]∈�̄
φ̃M

⊗ω′
tr(RP̃|θ P̃ (u, π̃M , φ̃)I

θ,ω

P̃
(π̃M ⊗ ω−1, f̃ )),
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then (5.28) becomes a double sum over φG ∈ �(G, φ) and φM ∈ �2(Mθu , φG) of

∑
ω′∈Y/α(SφM )

|Sφ̃M |−1
∑

u∈Nθ
φ(w,ω)

rP (w, φM ) f̃G̃θ (φ̃ ⊗ ω′, u). (5.29)

Since we are taking f̃ ∈ H̄(G̃, χ̃), the contributions of φG ∈ �2(G, φ) to the φ-
component of (5.4) are the same. So the φ-component of (5.4) can be written as a sum
over w ∈ W θ (M̃)reg and φM ∈ �2(Mθu , φG) of

mφ |W (M̃)|−1|det (w − 1)
aG̃

θ

M̃

|−1

multiplied with (5.29). Here we can identify W (M̃) with W (M), and it is easy to see

|det (w − 1)
aG̃

θ

M̃

| = |det (w − 1)
aG

θ

M
|.

Next we want to switch the order of the double sum over w ∈ W θ (M̃)reg and
φM ∈ �2(Mθu , φG) to a double sum over φM ∈ �2(M, φG) and w ∈ W θ

φ,reg , where

W θ
φ,reg = W θ (M̃)reg∩ W θ

φ . Since the nonzero contribution of each φM ∈ �2(M, φG)

is the same and

|�2(M, φG)| = |W (M)|
|Wφ | ,

then we get a single sum over w ∈ W θ
φ,reg of

mφ |Wφ |−1|Sφ̃M |−1|det (w − 1)
aG

θ

M
|−1

multiplied with

∑
ω′∈Y/α(SφM )

∑
u∈Nθ

φ(w,ω)

rP (w, φM ) f̃G̃θ (φ̃ ⊗ ω′, u).

Note the double sum over w ∈ W θ
φ,reg and u ∈ Nθ

φ(w, ω) can be rearranged as a

double sum over x ∈ Sθ
φ(ω) and u ∈ Nθ

φ,reg(x), where

Sθ
φ(ω) = {x ∈ Sθ

φ : α(x) = ω},

and

Nθ
φ,reg(x) =

{
u ∈ Nθ

φ : xu = x, wu ∈ W θ
φ,reg

}
.
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So we end up with a sum over x ∈ Sθ
φ(ω) of

mφ |Wφ |−1|Sφ̃M |−1

multiplied with

∑
ω′∈Y/α(SφM )

∑
u∈Nθ

φ,reg(x)

|det (wu − 1)
aG

θ

M
|−1rP (wu, φM ) f̃G̃θ (φ̃ ⊗ ω′, u). (5.30)

If we write

rGφ (wu) = rP (wu, φM ),

and define s0φ(wu) to be (−1)n , where n is the number of positive roots of (S̄0φ, T̄φ)
mapped to negative roots by wu , then by Arthur’s sign lemma ([7], Lemma 4.3.1) we
have

rGφ (wu) = s0φ(wu).

Moreover, by our comments after Lemma 4.10, f̃G̃θ (φ̃ ⊗ ω′, u) only depends on the
image of u in Sθ

φ , so we can write

f̃G̃θ (φ̃ ⊗ ω′, u) = f̃G̃θ (φ̃ ⊗ ω′, x)

Therefore, the term (5.30) becomes

∑
ω′∈Y/α(SφM )

⎛
⎜⎝ ∑

u∈Nθ
φ,reg(x)

s0φ(wu)|det (wu − 1)
aG

θ

M
|−1

⎞
⎟⎠ f̃G̃θ (φ̃ ⊗ ω′, x).

For ω′ ∈ α(Sφ), �̄φ̃ ⊗ ω′ = �̄φ̃ and

( f̃ |Z̃ FG(F))G̃θ (φ̃ ⊗ ω′, x) = fGθ (φ, x) = ( f̃ |Z̃ FG(F))G̃θ (φ̃, x),

where f is the restriction of f̃ to G(F). So we get for ω′ ∈ α(Sφ)

f̃G̃θ (φ̃ ⊗ ω′, x) = f̃G̃θ (φ̃, x).

Thereforewe only need to take the sumoverω′ ∈ Y/α(Sφ) in (5.30), and thenmultiply
by |α(Sφ)/α(SφM )|. Since

|α(Sφ)/α(SφM )| = |Sφ |
|Sφ̃ | · |Sφ̃M |

|SφM | ,
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the resulting constant multiple is mφ times

|Wφ |−1|Sφ̃M |−1 |Sφ |
|Sφ̃ | · |Sφ̃M |

|SφM | = |Wφ |−1|SφM |−1Sφ
Sφ̃

= |Nφ |−1 |Sφ |
|Sφ̃ |

= |W 0
φ |−1|Sφ |−1 |Sφ |

|Sφ̃ |
= |W 0

φ |−1|Sφ̃ |−1.

Let

Cφ̃ = mφ |Sφ̃ |−1,

and we define

iθφ(x) = |W 0
φ |−1

∑
w∈W θ

φ,reg(x)

s0φ(w)|det (w − 1)
aG

θ

M
|−1,

where W θ
φ,reg(x) is the image of Nθ

φ,reg(x) in W θ
φ,reg . Hence we have shown the

following lemma.

Lemma 5.22 Suppose φ ∈ �̄(G)− �̄2(G), θ ∈ �0 and ω ∈ Y , then

I (G̃
θ ,ω)

disc,φ ( f̃ ) = Cφ̃

∑
ω′∈Y/α(Sφ)

∑
x∈Sθ

φ(ω)

iθφ(x) f̃G̃θ (φ̃ ⊗ ω′, x), f̃ ∈ H̄(G̃, χ̃). (5.31)

5.4.2 The endoscopic expansion

Parallel to this (θ, ω)-twisted spectral expansion (5.31), we will proceed to expand
the φ-component of (5.5). Note that if θ = id, ω = 1, we can only expand the right
hand side of

I G̃disc,φ( f̃ )− SG̃disc,φ( f̃ ) =
∑

G̃ ′∈Eell (G̃)−{G̃}
ι(G̃, G̃ ′)SG̃ ′

disc,φ( f̃
G̃ ′
)

based on our temporary induction assumption. By Corollary 2.6 we know Ker1(F,

Z(̂̃G)) = Ker1(F, Z( ̂̃G ′)) = 1, so the formula (5.3) applied to ι(G̃, G̃ ′) can be
simplified as

ι(G̃, G̃ ′) = |Z̄( ̂̃G ′)� |−1|OutG̃(G̃ ′)|−1|π0(κG̃θ )|−1 (5.32)
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where

Z̄( ̂̃G ′)� = Z( ̂̃G ′)� Z(̂̃G)�/Z(̂̃G)�,
and

OutG̃(G̃
′) = AutG̃(G̃

′)/ ̂̃G ′Z(̂̃G)�.
Note that |π0(κG̃θ )| = 1 here, and this formula (5.32) is given in ([2], Lemma 3.2).
By applying Conjecture 5.18 to G̃ ′, we get

SG̃
′

disc,φ′( f̃ ′) =
∑

ω′∈Y ′/αG′
(Sφ′ )

|Sφ̃′ |−1σ(S̄0φ′) f̃ ′(φ̃′ ⊗ ω′), f̃ ′ ∈ H̄(G̃ ′, χ̃ ′)

for φ′ ∈ �(G ′). By Lemma 5.7, the φ-component of (5.5) is summed over φG ∈
�(G, φ) and

{(G̃ ′, φ′) : G̃ ′ ∈ Eell(G̃θ , ω) and φ′ ∈ �(G ′, φG)}

of distributions SG̃
′

disc,φ′( f̃ ′). Again because we are taking f̃ ∈ H̄(G̃, χ̃), the contribu-
tions of φG ∈ �(G, φ) to the φ-component of (5.5) are the same. If we fix a parameter
φG ∈ �(G, φ), then the first sum collapses to be a constant multiple

|�(G, φ)| = mφ.

Now let us fixφG := φE as a homomorphism fromLφ to LG, instead of a Ĝ-conjugacy
class, and let S̄θφ = Cent(ImφG , Ĝ� θ̂ )/Z(Ĝ)� . We observe (G̃ ′, φ′)will correspond
to (φG, s) for s ∈ S̄θφ,ss(ω), where

S̄θφ,ss(ω) = {s ∈ S̄θφ,ss : α(s) = ω}

by taking suitable Ĝ-conjugation, and s is determined up to S̄φ-conjugation. Let us
use the convention to denote the conjugacy class of S̄φ in S̄θφ,ss(ω) by

S̄φ\S̄θφ,ss(ω).

Then this correspondence gives us a map

{(G̃ ′, φ′) : G̃ ′ ∈ Eell(G̃θ , ω) and φ′ ∈ �(G ′, φG)} −→ S̄φ\S̄θφ,ss(ω)

The point is the contribution of (G̃ ′, φ′) only depends on its image under this map,
so we want to write the double sum over (G̃ ′, φ′) as a single sum over the image. To
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characterize the image, it is equivalent to find s ∈ S̄θφ,ss(ω)with (G̃
′
s, φ

′) −→ (φG, s)

such that G̃ ′
s is elliptic. If we define

S̄θφ,ell =
{
s ∈ S̄θφ,ss : |Z(S̄0φ,s)| < ∞

}
S̄θφ,ell(ω) =

{
s ∈ S̄θφ,ss(ω) : |Z(S̄0φ,s)| < ∞

}
,

then for s ∈ S̄θφ,ell(ω), it is easy to see that G̃ ′
s is elliptic. The converse is not true,

but the contribution from pairs (G̃ ′
s, φ

′) with s /∈ S̄θφ,ell(ω) is zero by the stable
multiplicity formula (5.26). In fact

S̄0φ′ = (S̄φ,s)
0 Z̄( ̂̃G ′)�/Z̄( ̂̃G ′)�

and σ(S̄0
φ′) = 0 unless |Z(S̄0

φ′)| < ∞. If we write

S̄′θ
φ,ell =

{
S̄φ,ell − {1} if θ = id

S̄θφ,ell otherwise

and

S̄′θ
φ,ell(ω) =

{
S̄φ̃,ell − {1} if θ = id, ω = 1

S̄θφ,ell(ω) otherwise

then the effective image of this map should be S̄φ\S̄′θ
φ,ell(ω). The next problem is to

count the fibre of this map. Since G̃ ′ is taken to be the isomorphism class of endoscopic
data, the fibre containing (G̃ ′, φ′) must have the endoscopic datum isomorphic to G̃ ′,
and hence can be obtained by the action of AutG(G ′). Moreover, φ′ is taken to be
Ĝ ′-conjugacy classes, so the fibre should be isomorphic to

AutG(G
′)/Sφ,sIntG(G ′) ∼= OutG(G

′)/(Sφ,sIntG(G ′)/IntG(G ′)),

where IntG(G ′) = Ĝ ′Z(Ĝ)� and Sφ,s is the preimage of S̄φ,s in Sφ . Moreover let us
write

Sφ,sIntG(G
′)/IntG(G ′) ∼= Sφ,s/Sφ,s ∩ Ĝ ′Z(Ĝ)�

So we can turn the φ-component of (5.5) into a sum over s ∈ S̄φ\S̄′θ
φ,ell(ω), but

multiplied with the size of each fibre

|OutG(G ′)||Sφ,s/Sφ,s ∩ Ĝ ′Z(Ĝ)� |−1.
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In fact, it is more convenient to sum over the conjugacy classes in S̄′θ
φ,ell(ω) by the

group S̄0
φ̃
. So let us define

E ′θ
φ,ell = S̄0

φ̃
\S̄′θ

φ,ell ,

E ′θ
φ,ell(ω) = S̄0

φ̃
\S̄′θ

φ,ell(ω),

then changing to sum over E ′θ
φ,ell(ω) amounts to multiplying by

|S̄0
φ̃
/S̄0

φ̃,s
||S̄φ/S̄φ,s |−1 = |S̄φ,s/S̄0φ̃,s ||S̄φ/S̄0φ̃ |−1.

Finally, we get a sum over s ∈ E ′θ
φ,ell(ω) of the product of the following three terms

|OutG̃(G̃ ′)|−1|OutG(G ′)|,
|Sφ,s/Sφ,s ∩ Ĝ ′Z(Ĝ)� |−1|Sφ̃′ |−1|Z̄( ̂̃G ′)� |−1|S̄φ,s/S̄0φ̃,s |,

and

mφ |S̄φ/S̄0φ̃ |−1
∑

ω′∈Y ′/αG′
(Sφ′ )

σ (S̄0φ′) f̃ G̃
′
(φ̃′ ⊗ ω′)

where (G ′, φ′) → (φG, s). Note that

1 D̂ AutG̃(G̃
′) AutG(G ′) 1.

so

|OutG̃(G̃ ′)|−1|OutG(G ′)| = |IntG(G ′)/(IntG̃(G̃ ′)/D̂)|
= |Ĝ ′Z(Ĝ)�/( ̂̃G ′Z(̂̃G)�/D̂)|−1

= |Z(Ĝ)�/Z(Ĝ)� ∩ Ĝ ′(Z(̂̃G)�/D̂)|−1

= |Z(Ĝ)�/(Ĝ ′ ∩ Z(Ĝ)�)(Z(̂̃G)�/D̂)|−1.

Moreover, we have S̄0
φ̃,s

= S̄0φ,s and S̄0
φ̃

= S̄0φ , so we can rewrite the expansion of

φ-component of (5.5) as a sum over s ∈ E ′θ
φ,ell(ω) of the product of the following two

terms

|Sφ,s/Sφ,s ∩ Ĝ ′Z(Ĝ)� |−1|Sφ′ |−1|Z̄(Ĝ ′)� |−1|S̄φ,s/S̄0φ,s |σ(S̄0φ′) (5.33)
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and

∑
ω′∈Y ′/αG′

(Sφ′ )

mφ |Sφ |−1|Sφ′ ||Sφ̃′ |−1|Z̄(Ĝ ′)� ||Z̄( ̂̃G ′)� |−1|Z(Ĝ)�/

(Ĝ ′ ∩ Z(Ĝ)�)(Z(̂̃G)�/D̂)|−1 f̃ ′(φ̃′ ⊗ ω′). (5.34)

As one can see, (5.33) is only relevant to G, and it can be simplified as in ([7], Section
4.4). So we will just repeat the simplification there. First we note that

|Sφ′ | = |π0(S̄φ′)| = |S̄φ,s ∩ ¯̂G ′/(S̄φ,s)0 Z̄(Ĝ ′)� |,

where ¯̂G ′ denotes the quotient Ĝ ′Z(Ĝ)�/Z(Ĝ)�. Consequently,

|Sφ,s/Sφ,s ∩ Ĝ ′Z(Ĝ)� |−1 |Sφ′ |−1

= |S̄φ,s/S̄φ,s ∩ ¯̂G ′|−1 |S̄φ,s ∩ ¯̂G ′/(S̄φ,s)0 Z̄(Ĝ ′)� |
= |S̄φ,s/(S̄φ,s)0 Z̄(Ĝ ′)� |−1.

The product of the first four factors of (5.33) therefore equals

|S̄φ,s/S̄0φ,s Z̄(Ĝ ′)� |−1 · |S̄0φ,s Z̄(Ĝ ′)�/(S̄φ,s)0 Z̄(Ĝ ′)� |−1 · |Z̄(Ĝ ′)� |−1 · |S̄φ,s/S̄0φ,s |
= |S̄0φ,s Z̄(Ĝ ′)�/S̄0φ,s | · |S̄0φ,s/(S̄φ,s)0|−1 · |S̄0φ,s ∩ (S̄φ,s)

0 Z̄(Ĝ ′)�

/(S̄φ,s)
0| · |Z̄(Ĝ ′)� |−1

= |π0(S̄0φ,s)|−1 · |Z̄(Ĝ ′)�/S̄0φ,s ∩ Z̄(Ĝ ′)� | · |S̄0φ,s ∩ Z̄(Ĝ ′)�

/(S̄φ,s)
0 ∩ Z̄(Ĝ ′)� | · |Z̄(Ĝ ′)� |−1

= |π0(S̄0φ,s)|−1 · |(S̄φ,s)0 ∩ Z̄(Ĝ ′)� |−1.

Furthermore, we can write

σ(S̄0φ′) = σ((S̄φ,s)
0/(S̄φ,s)

0 ∩ Z̄(Ĝ ′)�)

= σ((S̄φ,s)
0)|(S̄φ,s)0 ∩ Z̄(Ĝ ′)� |.

Hence the first term (5.33) is equal to

|π0(S̄0φ,s)|−1σ((S̄φ,s)
0).

For the second term (5.34), let us denote

f̃ G̃
′
(φ̃′ ⊗ ω′) = f̃ ′̃

Gθ (φ̃ ⊗ ω′, s), f̃ ∈ H̄(G̃, χ̃).
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Also notice |αG ′
(Sφ′)| = |Sφ′/Sφ̃′ | and mφ |Sφ̃ |−1 = Cφ̃ , so we can write it as

∑
ω′∈Y ′/αG′

(Sφ′ )

Cφ̃ |α(Sφ)|−1|αG ′
(Sφ′)||Z̄(Ĝ ′)� ||Z̄( ̂̃G ′)� |−1|Z(Ĝ)�

/(Ĝ ′ ∩ Z(Ĝ)�)(Z(̂̃G)�/Ẑ)|−1 f̃ ′̃
Gθ (φ̃

′ ⊗ ω′, s).

In view of (5.31), we need to turn this into a sum over Y/α(Sφ) instead of Y ′/αG ′
(Sφ′).

To do so we need the following two lemmas.

Lemma 5.23 Suppose φv ∈ �̄+
unit (Gv), and sv is a semisimple element of S̄φv with

(G ′
v, φ

′
v) → (φv, sv). If we assume the main local Theorem 4.6 for the lift φ̃′

v of φ′
v ,

then for any ω′
v ∈ α(Sφv ) we have

f̃ ′̃
Gθ
v
(φ̃v ⊗ ω′

v, sv) = f̃ ′̃
Gθ
v
(φ̃v, sv), f̃v ∈ H̄(G̃v, χ̃v).

Proof Since f̃ ′̃
Gθ
v

(φ̃v, sv) only depends on the image of sv in Sθ
φv

(see Lemma 4.11),

according to the formula (3.1) of Sφv , we can assume sv commutes with some
tv ∈ S̄φv such that α(tv) = ω′

v . Note that tv ∈ AutGv (G
′
v)/Z(Ĝv)

�v . If tv ∈
IntGv (G

′
v)/Z(Ĝv)

�v , then it is easy to seeω′
v ∈ αG ′

v (Sφ′
v
), so there is nothing to prove.

If tv /∈ IntGv (G
′
v)/Z(Ĝv)

�v , we denote the inducing automorphism ofG ′
v by θ

′, and it
can be extended to G̃ ′

v . Then it follows fromCorollary 4.2 that �̄θ ′
φ̃′
v

= �̄φ̃′
v
⊗ω′

v . Since

f̃ G̃
′
v

v is OutG̃v
(G̃ ′

v)-invariant, we have f̃ G̃
′
v

v (φ̃′
v) = f̃ G̃

′
v

v ((φ̃′
v)
θ ′
) = f̃ G̃

′
v

v (φ̃′
v ⊗ ω′

v).
��

Since ZG̃(AF ) = AG̃(AF ) · ZG(AF ), we can identify Y with the quotient

Ker{H1(WF , D̂) → H1(WF , ÂG̃)}
Ker{H1(WF , D̂) → Hom(G̃(AF )/G̃(F),C×)} ,

where the involved homomorphisms are from the following diagram

H1(WF , D̂)

�

H1(WF , Z(
̂̃G)) H1(WF , ÂG̃)

�

Hom(D(AF )/D(F),C×) Hom(G̃(AF )/G̃(F),C×) Hom(AG̃(AF )/AG̃(F)).

In the same way, we can identify Y ′ with

Ker{H1(WF , D̂) → H1(WF , ÂG̃ ′)}
Ker{H1(WF , D̂) → Hom(G̃ ′(AF )/G̃ ′(F),C×)} .
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Note that AG̃
∼= AG̃ ′ under the inclusion of ZG̃ = (ZG̃)θ to ZG̃ ′ , and also we have

H1(WF , D̂) H1(WF , Z(
̂̃G)) H1(WF , ÂG̃)

H1(WF , D̂) H1(WF , Z(
̂̃G ′)) H1(WF , ÂG̃ ′).

�

So Ker{H1(WF , D̂) → H1(WF , ÂG̃)} = Ker{H1(WF , D̂) → H1(WF , ÂG̃ ′)}, and
we can first sum over this group. Then the rest is to determine the quotient

|Ker{H1(WF , D̂) → Hom(G̃ ′(AF )/G̃ ′(F),C×)}|
|Ker{H1(WF , D̂) → Hom(G̃(AF )/G̃(F),C×)}| .

Lemma 5.24

|Z̄(Ĝ ′)� ||Z̄( ̂̃G ′)� |−1|Z(Ĝ)�/(Ĝ ′ ∩ Z(Ĝ)�)(Z(̂̃G)�/D̂)|−1

= |Ker{H1(WF , D̂) → Hom(G̃ ′(AF )/G̃ ′(F),C×)}|
|Ker{H1(WF , D̂) → Hom(G̃(AF )/G̃(F),C×)}| .

Proof From the proof of Lemma 2.11, we see

Ker{H1(WF , D̂) → Hom(G̃ ′(AF )/G̃ ′(F),C×)} ∼= Z(Ĝ ′)�/(Z( ̂̃G ′)�/D̂),

and

Ker{H1(WF , D̂) → Hom(G̃(AF )/G̃(F),C
×)} ∼= Z(Ĝ)�/(Z(̂̃G)�/D̂).

Therefore it is enough to show

|Z̄(Ĝ ′)� ||Z̄( ̂̃G ′)� |−1|Z(Ĝ)�/(Ĝ ′ ∩ Z(Ĝ)�)(Z(̂̃G)�/D̂)|−1

= |Z(Ĝ ′)�/(Z( ̂̃G ′)�/D̂)|
|Z(Ĝ)�/(Z(̂̃G)�/D̂)| . (5.35)

We start by considering the following exact sequence

1 −→ (Ĝ ′ ∩ Z(Ĝ)�)/(Ĝ ′ ∩ (Z(̂̃G)�/D̂)) −→ Z(Ĝ)�/(Z(̂̃G)�/D̂)
−→ Z(Ĝ)�/(Ĝ ′ ∩ Z(Ĝ)�)(Z(̂̃G)�/D̂) −→ 1.

It follows

|Z(Ĝ)�/(Ĝ ′ ∩ Z(Ĝ)�)(Z(̂̃G)�/D̂)|−1 = |(Ĝ ′ ∩ Z(Ĝ)�)/(Ĝ ′ ∩ (Z(̂̃G)�/D̂))|
|Z(Ĝ)�/(Z(̂̃G)�/D̂)| .
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If we write

(Ĝ ′ ∩ Z(Ĝ)�)/(Ĝ ′ ∩ (Z(̂̃G)�/D̂)) = (Z(Ĝ ′)� ∩ Z(Ĝ)�)/((Z( ̂̃G ′) ∩ Z(̂̃G)�)/D̂),
then

|Ĝ ′ ∩ Z(Ĝ)�/Ĝ ′ ∩ (Z(̂̃G)�/D̂)||Z̄(Ĝ ′)� ||Z̄( ̂̃G ′)� |−1

= |Z(Ĝ ′)�/((Z( ̂̃G ′) ∩ Z(̂̃G)�)/D̂)||Z̄( ̂̃G ′)� |−1

= |Z(Ĝ ′)/(Z( ̂̃G ′)�/D̂)|.

Hence (5.35) holds. ��
As a consequence of Lemmas 5.23 and 5.24, we can sum over Y/α(Sφ) for (5.34)

and get

∑
ω′∈Y/α(Sφ)

Cφ̃ f̃ ′̃
Gθ (φ̃ ⊗ ω′, s).

To sum up, we have shown the φ-component of (5.5) has an expansion

∑
s∈E ′θ

φ,ell (ω)

|π0(S̄0φ,s)|−1σ((S̄φ,s)
0)

∑
ω′∈Y/α(Sφ)

Cφ̃ f̃ ′̃
Gθ (φ̃ ⊗ ω′, s)

=
∑

ω′∈Y/α(Sφ)
Cφ̃

∑
s∈E ′θ

φ,ell (ω)

|π0(S̄0φ,s)|−1σ((S̄φ,s)
0) f̃ ′̃

Gθ (φ̃ ⊗ ω′, s).

Finally by the same argument as in the proof of Lemma 4.11, there exists a family
of global lifts �̄φ̃′ for all s ∈ S̄θφ,ss with image x in Sθ

φ , such that the distribution

f̃ ′̃
Gθ (φ̃ ⊗ ω′, s) are the same. So we can write

f̃ ′̃
Gθ (φ̃ ⊗ ω′, s) = f̃ ′̃

Gθ (φ̃ ⊗ ω′, x).

Moreover, we can split the sum over s ∈ E ′θ
φ,ell(ω) into a double sum over x ∈ Sθ

φ(ω)

and s ∈ E ′θ
φ,ell(x), where E ′θ

φ,ell(x) is the subset of E ′θ
φ,ell that mapped to x . If we define

e′θ
φ (x) =

∑
s∈E ′θ

φ,ell (x)

|π0(S̄0φ,s)|−1σ((S̄φ,s)
0),

then we get the following lemma.

Lemma 5.25 Suppose φ ∈ �̄(G), θ ∈ �0 and ω ∈ Y . If θ = id, ω = 1 then

I G̃disc,φ( f̃ )− SG̃disc,φ( f̃ ) = Cφ̃

∑
ω′∈Y/α(Sφ)

∑
x∈S

φ̃

e′
φ(x) f̃

′̃
G
(φ̃ ⊗ ω′, x). (5.36)
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Otherwise,

I (G̃
θ ,ω)

disc,φ ( f̃ ) = Cφ̃

∑
ω′∈Y/α(Sφ)

∑
x∈Sθ

φ(ω)

e′θ
φ (x) f̃

′̃
Gθ (φ̃ ⊗ ω′, x). (5.37)

Corollary 5.26 Suppose φ ∈ �̄(G) and Sφ̃ = 1, then the distribution I G̃disc,φ( f̃ ) is
stable .

Proof Since Sφ̃ = 1, it follows from (5.36) that

I G̃disc,φ( f̃ ) = SG̃disc,φ( f̃ )+ Cφ̃

∑
ω′∈Y/α(Sφ)

e′
φ(1) f̃

′̃
G
(φ̃ ⊗ ω′, 1).

Note that f̃ ′̃
G
(φ̃⊗ω′, 1) is defined by inducing global L-packets of Levi subgroups of

G̃, and hence is stable. Therefore I G̃disc,φ( f̃ ) is stable. ��
Later on, we will compare the formulas in Lemmas 5.22 and 5.25. Note it follows

from Proposition 5.17 that for x ∈ Sθ
φ ,

iθφ(x)− e′θ
φ (x) =

{
0 if x �= 1,

σ (S̄0φ) if x = 1.

6 Refined L-packet

6.1 Beginning of proofs

In the following sections, we are going to prove the main local theorem (Theorem 4.6)
along with the global theorem (Theorem 5.21). First we need to impose our induction
assumptions. It consists of a local part and a global part. Let F be either local or global.
We denote

G(n) := Sp(2n), SO(2n + 2, η),

G̃(n) := GSp(2n),GSO(2n + 2, η).

Let

G = G(n1)× G(n2)× · · · × G(nq)

and G̃ be the corresponding similitude group (see (2.2)), then our induction assump-
tions can be stated as follows.

Local induction assumption The main local theorem (Theorem 4.6) holds for G̃, when
ni < N for all 1 � i � q.
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Global induction assumption The global theorem (Theorem 5.21) hold for G̃, when∑q
i=1 ni < N .

Remark 6.1 When G̃ = GSp(2N ), these assumptions imply all the local and global
theorems hold for the Levi subgroups and twisted endoscopic groups of G̃. But this is
not true when G̃ = GSO(2N + 2, η) for it can have twisted endoscopic group of the
formG(Sp(2N1)× Sp(2N2))with N = N1+N2 and N1, N2 � 0. To fix this, we will
first prove the local and global theorems for G̃ based on our induction assumption,
when G does not contain any factor of SO(2N + 2, η). Then we can add those results
to our induction assumptions and repeat the same arguments to prove the rest of the
cases.

We will first establish the main local theorem (Theorem 4.6) for G̃ = G̃(N ),
which is the most important case. In view of Remark 4.7, we can further assume F is
nonarchimedean. Under our local induction assumption, we can prove a lot of cases of
the main local theorem. The precise statement is formulated in the following lemma.

Lemma 6.2 Suppose φ ∈ �̄bdd(G)−�̄2(G), then one can assign an L-packet �̄φ̃ for

any lift φ̃ such that it satisfies (1) and (2) of the main local theorem (Theorem 4.6). Fur-
thermore, the (θ, ω)-twisted character relation (4.2) holds for θ ∈ �0 and semisimple
s ∈ S̄θφ such that |S̄0φ,s | = ∞.

Proof Suppose φ ∈ �̄bdd(G) − �̄2(G), then φ factors through φM ∈ �̄2(M) for
some proper Levi subgroup M of G. Since

M ∼= G(m)×
∏
i

GL(ni )

with m < N , by our local induction assumption we can define a refined L-packet
�̄φ̃M

associated to φ̃M . Then we can take local packet �̄φ̃ for φ̃ to be the irreducible

constituents of those induced from �̄φ̃M
. Because �̄φ is also obtained by induction

from �̄φM , we can easily see that �̄φ̃ will satisfy (1) and (2) of the main local theorem.
For the (θ, ω)-twisted character relation (4.2), it will follow from the usual descent
argument. For (G ′, φ′) → (φ, s), let Tφ,s be a maximal torus of (Sφ,s)0, which is
nontrivial by our assumption that |S̄0φ,s | = ∞. Then M̂ ′ = Cent(Tφ,s, Ĝ ′) defines a
proper Levi subgroup of Ĝ ′ such that φ′ factors through φ′

M ∈ �̄2(M ′). Moreover,
M ′ ∈ Eell(Mθ ) for a proper θ -stable Levi subgroup M of G, which is determined by
M̂ = Cent(Tφ,s, Ĝ). So

f̃ ′(φ̃′) = f̃ M̃
′
(φ̃′

M ) =
∑

[π̃M ]∈�̄
φ̃M

f̃M̃θ (π̃M , ω) =
∑

[π̃ ]∈�̄
φ̃

f̃G̃θ (π̃ , ω),

where ω = α(s). ��
Remark 6.3 We have not shown the uniqueness of �̄φ̃ here. In fact that will follow
from the character relation (see Theorem 6.21).
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The key issue in proving the main local theorem is to find a candidate for the
stable distribution associated with any lift φ̃ of φ ∈ �̄bdd(G). As one can see from
Lemma 6.2, the critical case is when φ ∈ �̄2(G). The way to find such a distribution

is to lift φ to a global parameter φ̇ and use the global stable distribution S
˜̇G
disc,φ̇

in the

stabilized trace formula. Under some assumptions on this lifted global parameter φ̇,
we can obtain the local stable distribution associated with φ̃ using an argument based
on stability (cf. Corollary 4.8). Let us write S∞ for the set of archimedean places of
a global field Ḟ , and S∞(u) = S∞ ∪ {u} for any nonarchimedean place u. Suppose
F = Ḟu and Ġu = G. Let Ẋ = Hom(˜̇G(AḞ )/Z ˜̇G(AḞ )Ġ(AḞ ),C

×).

Theorem 6.4 For φ ∈ �̄2(G), suppose φ̇ ∈ �̄2(Ġ) is a global lift of φ with φ̇u = φ

and it also satisfies the following additional conditions:

1. φ̇v ∈ �̄+
unit (Ġv)− �̄ell(Ġv) for all v /∈ S∞(u);

2. S˜̇φ = 1;

3. �0-strong multiplicity one holds for
˜̇φ.

Then one can assign an L-packet �̄φ̃ to any lift φ̃ of φ satisfying (1) and (2) of the
main local theorem (Theorem 4.6).

Proof In view of Lemma 6.2, the first condition of our global lift φ̇ just means that
the main local theorem (except for the (θ0, ω)-twisted character relation in the even
orthogonal case) holds for all ˜̇φv (v �= u). The second condition means that

tr R
˜̇G
disc,φ̇

(˜̇f ) = I
˜̇G
disc,φ̇

(˜̇f ) = S
˜̇G
disc,φ̇

(˜̇f ) �= 0

for ˜̇f ∈ H̄(˜̇G, ˜̇χ), which follows from Corollary 5.26 and the fact that φ̇ ∈ �̄2(Ġ)
(cf. (5.15)). It follows from Proposition 5.11 that

I
˜̇G
disc,φ̇

(˜̇f ) = mφ̇

∑
ω̇∈Ẏ/α(Sφ̇ )

∑
˜̇π

˜̇f ˜̇G(˜̇π ⊗ ω̇) (6.1)

for ˜̇f ∈ H̄(˜̇G, ˜̇χ), where the sum of ˜̇π is taken over representatives of ˜̄�
φ̇,̃ζ̇

/Ẋ

inside A2(
˜̇G). Here we will always view representations of ˜̇G(AF ) as H̄(˜̇G, ˜̇χ)-

modules. Since I
˜̇G
disc,φ̇

(˜̇f ) is stable, it is stable at every place. If we take ˜̇f = ⊗
w
˜̇f w

and fix
⊗

w �=v ˜̇f w for v �= u, then by Corollary 4.8 the coefficients of ˜̇f v(˜̇πv) in

I
˜̇G
disc,φ̇

(˜̇f ) must be the same for all [˜̇πv] ∈ �̄˜̇φv . Moreover, if we fix a representa-

tion ˜̇π ∈ A2(
˜̇G), by varying

⊗
w �=v ˜̇f w and the linear independence of characters of⊗

w �=v H̄(˜̇Gw, ˜̇χw)-modules, we will observe that for v �= u

[˜̇πv]
⊗⎛

⎝⊗
w �=v

[˜̇πw]
⎞
⎠ ∈ ˜̄�

φ̇,̃ζ̇
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contributes to (6.1) if and only if

[˜̇π ′
v]
⊗⎛

⎝⊗
w �=v

[˜̇πw]
⎞
⎠ ∈ ˜̄�

φ̇,̃ζ̇

also contributes to (6.1) for all [˜̇π ′
v] ∈ �̄˜̇φv , where �̄˜̇φv contains [˜̇πv]. We still fix ˜̇π

and hence �̄˜̇φv for all v �= u. Then (6.1) will contain H̄(˜̇G, ˜̇χ)-modules of the form

[˜̇πu]
⊗⎛

⎝⊗
v �=u

[˜̇πv]
⎞
⎠

where [˜̇πv] ranges over �̄˜̇φv for all v �= u. Suppose there is a distinct H̄(˜̇G, ˜̇χ)-module

[˜̇π ′
u]
⊗⎛

⎝⊗
v �=u

[˜̇πv]
⎞
⎠

in (6.1) such that [˜̇πv] ∈ �̄˜̇φv for all v �= u, then [˜̇π ′
u] �= [˜̇πu] ⊗ ω for any character

ω ∈ X . Otherwise, there will exist ω̇ ∈ Ẏ such that [˜̇πu] ⊗ ω̇u = [˜̇π ′
u] �= [˜̇πu] and

�̄˜̇φv = �̄˜̇φv ⊗ ω̇v for all v �= u. This is impossible because of the third condition, i.e.

�0-strong multiplicity one holds for ˜̇φ. Therefore if we consider all [π̃ ] ∈ ˜̄�φ,̃ζ such
that

[π̃ ]
⊗⎛

⎝⊗
v �=u

�̄˜̇φv
⎞
⎠

is contained in (6.1), this gives a non-empty set �̄φ̃ of representatives of ˜̄�φ,̃ζ /X

in ˜̄�φ,̃ζ . To see why this gives all the representatives, one just needs to take the test

function ˜̇f = ⊗v
˜̇f v such that ˜̇f u is supported on ˜̇Z Ḟu Ġ(Ḟu), then it is the same to

consider representations of

˜̇Z Ḟu Ġ(Ḟu)×
∏
v �=u

˜̇G(Ḟv).
By the same reasoning using stability, one can conclude that

�̄φ

⊗⎛
⎝⊗
v �=u

�̄˜̇φv
⎞
⎠
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is contained in (6.1), therefore �̄φ̃ must contains all representatives of ˜̄�φ,̃ζ /X in˜̄�φ,̃ζ . Moreover, it follows again from �0-strong multiplicity one and stability of
(6.1) that

f̃ (φ̃) :=
∑

[π̃ ]∈�̄
φ̃

f̃G̃(π̃)

is stable. This shows the packet �̄φ̃ satisfies the property (1) and (2) of Theorem 4.6.
��

Remark 6.5 1. Following the proof, we can rewrite (6.1) as

I
˜̇G
disc,φ̇

(˜̇f ) = mφ̇

∑
ω̇∈Ẏ/α(Sφ̇ )

∑
[˜̇π ]∈�̄˜̇φ⊗ω̇

˜̇f ˜̇G(˜̇π)

where

�̄˜̇φ = �̄φ̃

⊗⎛
⎝⊗
v �=u

�̄˜̇φv
⎞
⎠ .

If we define

˜̇f (̃φ̇) :=
∏
v

˜̇f v(̃φ̇v),
then we get the stable multiplicity formula for our lift ˜̇φ

S
˜̇G
disc,φ̇

(˜̇f ) = I
˜̇G
disc,φ̇

(˜̇f ) = mφ̇

∑
ω̇∈Ẏ/α(Sφ̇ )

˜̇f (˜̇φ ⊗ ω̇
)
.

This identity will be used in the proof of Theorem 6.22.
2. The statement of this theorem indicates thatwe need a lifting result for the existence

of such φ̇. In fact, there is a standard argument using the simple invariant trace
formula which provides a global lift so that one is allowed to impose some local
conditions. That argument is carried out in quite detail in ([7], Sections 6.2 and
6.3), and the local conditions that Arthur imposes already take care of our first
additional condition in most cases. Even though the global lift which Arthur uses
does not necessarily satisfy the other two conditions, his argument is still flexible
enough to leave us a lot of room to manipulate. In fact, it is not hard to impose the
second condition after we give a combinatorial description of the exact sequence

1 S˜̇φ ι Sφ̇
α Hom(˜̇G(AḞ )/

˜̇G(Ḟ)Ġ(AḞ ),C
×).
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However, for technical reasons the third condition is not so easy to satisfy, and it
seems that we have asked something too strong. By tracking the argument in our
proof carefully, one will observe that it is enough to have

aut∏
v

α
(
S�0

φ̇v

)
=

aut∏
v �=u

α
(
S�0

φ̇v

)
.

This condition can also be interpreted in terms of strong multiplicity one, which
means that for any ˙̃π ∈ A( ˙̃G) such that [ ˙̃πv] ∈ �̄˜̇φv for all v �= u, [ ˙̃π ] must be

also in �̄˜̇φ . If this condition is satisfied, we say �0-strong multiplicity one holds

for ˜̇φ at the place u. And it is the most technical part of this paper to establish this
property.

6.2 A combinatorial description of Sφ

Nowwewill give a combinatorial description of the exact sequences (2.14) and (2.15).
We assume F is either local or global. Suppose G = G(n), φ ∈ �̄(G) if F is global
or �̄bdd(G) if F is local, and

φ = l1φ1 � · · · � lrφr ,

where φi ∈ �sim(Ni ) for 1 � i � r . From the discussion of Sect. 3, the set of indices
can be written as a disjoint union of

Iφ,O � Iφ,S � Jφ � J∨
φ

where Iφ,O (Iφ,S) is the set of indices that index self-dual parameters of orthogonal
(symplectic) type. In particular, since we are considering G to be either a special even
orthogonal group or a symplectic group, Ĝ will always be orthogonal and hence the
multiplicities li must be even for i ∈ Iφ,S . On the other hand, let us denote

I oddφ,O = {i ∈ Iφ,O : li is odd },
I evenφ,O = {i ∈ Iφ,O : li is even }.

Moreover, let S and T be subsets of I oddφ,O and I evenφ,O respectively, with the condition
that

∑
i∈S∪T Ni is even if G is special even orthogonal. And we allow S and T to be

empty sets. Then the pair of such sets modulo the following equivalence relation gives
us the combinatorial object that we need to substitute for Sφ , i.e.

Pφ = {(S, T )}/(S, T ) ∼ (Sc, T )

where Sc is the complement of S in I oddφ,O . There is a natural map from Pφ to

Hom(G̃(F)/G(F),C×) if F is local (resp. Hom(G̃(AF )/G̃(F)G(AF ),C
×) if F

is global), which sends
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(S, T ) �−→
( ∏
i∈S∪T

ηφi

)
◦ λ

where ηφi is the central character of πφi . Let us denote this map by αP and the kernel
of this map by Pφ̃ , then we get a sequence

1 Pφ̃ Pφ
αP Hom(G̃(F)/G(F),C×) (6.2)

if F is local, and

1 Pφ̃ Pφ
αP Hom(G̃(AF )/G̃(F)G(AF ),C

×) (6.3)

if F is global.
To compare these sequences with (2.14) and (2.15), we need a map connecting Sφ

andPφ . To define such amap, we consider semisimple s ∈ S̄φ , and (G ′
s, φ

′) → (φ, s).
In general, G ′

s may not be elliptic, but it will lie in Eell(M) for some Levi subgroup
M of G. Since M is a product of general linear groups with a group G− of the same
type as G with smaller rank, then G ′

s contains a factor G
′
I × G ′

I I ∈ Eell(G−) and φ′
will decompose accordingly. Suppose φ− is the component of φ contributing to G−,
and

φ′− = φ′
I × φ′

I I

if G is special even orthogonal, or

φ′− = (φ′
I ⊗ ηφ′

I
)× φ′

I I

ifG andG ′
I are symplectic. In either case,φ′

I , φ
′
I I give a partition of simple parameters

in φ−. Let S (T ) be the subset of I oddφ,O (I evenφ,O ) parametrizing simple parameters in φ′
I

with odd multiplicities. It is easy to see that (S, T ) ∈ Pφ , so we get a map cG = c :
S̄φ −→ Pφ in this way. Moreover we have the following lemma.

Lemma 6.6 1. The map c defined above will factor through Sφ , and it gives a bijec-
tion between Sφ and Pφ .

2. If we denote the bijection in (1) still by c, then we have a commutative diagram.

1 Sφ̃ Sφ

c

α
Hom(G̃(F)/G(F),C×)

1 Pφ̃ Pφ
αP

Hom(G̃(F)/G(F),C×)
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if F is local, or

1 Sφ̃ Sφ

c

α
Hom(G̃(AF )/G̃(F)G(AF ),C

×)

1 Pφ̃ Pφ
αP

Hom(G̃(AF )/G̃(F)G(AF ),C
×)

if F is global.

Proof First we would like to show c factors though Sφ , i.e. for any s ∈ S̄φ , c(s) only
depends on the image x of s in Sφ . Note that if s is replaced by an S̄0φ-conjugate s1,
then the corresponding pair (G ′

1, φ
′
1) is isomorphic to (G ′, φ′). So by our definition

c(s1) = c(s).

Now if we fix a maximal torus T̄φ of S̄0φ and a Borel subgroup B̄φ containing it, any

automorphism of the complex reductive group S̄0φ stabilizes a conjugate of (T̄φ, B̄φ).

So we can choose a representative sx of x in S̄φ so that Int(sx ) stabilizes (T̄φ, B̄φ), and
such representatives are determined up to a T̄φ-translate. Moreover the complex torus

T̄φ,x = Cent(sx , T̄φ)
0

in T̄φ is uniquely determined by x . Note that T̄φ,x is the connected component of the
kernel of the following morphism

T̄φ T̄φ

t s−1
x tsx t−1

So any point of T̄φ can be written as (s−1
x tsx t−1)tx for t ∈ T̄φ and tx ∈ T̄φ,x (see [42],

Corollary 5.4.5), and hence any point in sx T̄φ can be written as

sx (s
−1
x tsx t

−1)tx = tsx t
−1tx = tsx tx t

−1, t ∈ T̄φ, tx ∈ T̄φ,x .

Therefore it will be enough to show that

c(sx ) = c(sx tx )

for any tx ∈ T̄φ,x .
The centralizer M̂x of T̄φ,x in Ĝ is a Levi subgroup of Ĝ, which is dual to a Levi

subgroup Mx of G. So (φ, sx ) is the image of a pair

(φMx , sMx ), φMx ∈ �̄(Mx ), sMx ∈ SφMx
,
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attached to Mx under the L-embedding LMx ⊆ LG. And this pair is in turn the image
of an endoscopic pair (M ′

x , φ
′
Mx
). Note that Mx has a component Gx of the same type

as G and S̄φGx
∼= S̄φMx

. So we can define a map cMx on S̄φMx
by cGx with respect to

the component φGx of φMx . Since M ′
x can be identified with a Levi subgroup of G ′,

one can easily check that

cMx (sMx ) = c(sx ).

Note that cMx (sMx ) is invariant under the translation of sMx by T̄φ,x , so the same is
true of c(sx ).

Secondly we need to show that c is in fact a bijection between Sφ andPφ . Note that
we can actually compute |Sφ | and |Pφ | explicitly. For |Sφ |, we have the description
from Sect. 3 that

Sφ =
⎛
⎝ ∏

i∈Iφ,O
O(li ,C)

⎞
⎠

+

φ

×
⎛
⎝ ∏

i∈Iφ,S
Sp(li ,C)

⎞
⎠ ×

⎛
⎝∏

j∈Jφ

GL(l j ,C)

⎞
⎠ , (6.4)

where (
∏

i∈Iφ,O O(li ,C))
+
φ is the kernel of the character

ξ+
φ :

∏
i

gi −→
∏
i

(det gi )
Ni , gi ∈ O(li ,C), i ∈ Iφ,O .

If G is symplectic or G is special even orthogonal with I oddφ,O being empty, then

Sφ =
{
(Z/2Z)|Iφ,O | if all Ni are even for i ∈ Iφ,O ,

(Z/2Z)|Iφ,O |−1 otherwise.

If G is special even orthogonal and I oddφ,O is not empty, then Z(Ĝ) /∈ S̄0φ and thus

Sφ =
{
(Z/2Z)|Iφ,O |−1 if all Ni are even for i ∈ Iφ,O ,

(Z/2Z)|Iφ,O |−2 otherwise.

For |Pφ |, it is just a combinatorial computation. Suppose G is symplectic, there is no
condition on Ni , so |Pφ | = 2|Iφ,O |−1. Suppose G is special even orthogonal, it again
divides into two cases. If all Ni are even for i ∈ Iφ,O , then the condition on Ni is
automatically satisfied and hence

|Pφ | =
{
2|Iφ,O | if I oddφ,O is empty,

2|Iφ,O |−1 otherwise .
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And if there exists i ∈ Iφ,O such that Ni is odd then

|Pφ | =
{
2|Iφ,O |−1 if I oddφ,O is empty,

2|Iφ,O |−2 otherwise .

Therefore one can conclude that |Sφ | = |Pφ |. Now it suffices to show that c is surjec-
tive. In fact for any partition (S, T ), one can choose an element s = (sk)k∈Kφ ∈ Sφ
according to the decomposition (6.4) such that it has the form

si =

⎛
⎜⎜⎝

−1
1
. . .

1

⎞
⎟⎟⎠ for i ∈ S ∪ T , and sk = I otherwise .

When G is symplectic, we can assume
∑

i∈S∪T Ni is odd by possibly changing (S, T )
to (Sc, T ). If (G ′, φ′) → (φ, s), then G ′ is elliptic and φ′ = φ′

I × φ′
I I (or φ

′− =
(φ′

I ⊗ ηφ′
I
)× φ′

I I if G
′
I is symplectic) with the property that

φ′
I = �i∈S∪Tφi .

Hence by the definition c(s) = (S, T ).
For the second part of the lemma, it is enough to show that

α(s) = αP (c(s)),

for s ∈ Sφ being such representatives chosen above. Let

η′ = ηφ′
I
=

∏
i∈S∪T

ηφi ,

then αP (c(s)) = η′ ◦λ. Moreover, G ′ will be Sp(2n1)× SO(2n2, η′) if G = Sp(2n),
and SO(2n1, η′)× SO(2n2, η′η) if G = SO(2n, η). As one can see from the table of
twisted elliptic endoscopic groups in Sect. 2.1.3, G ′ can be lifted to G̃ ′ ∈ Eell(G̃, ω)
with ω = η′ ◦ λ. So ω = αP (c(s)). Finally we just need to notice α(s) = ω by
Lemma 2.12, hence α(s) = αP (c(s)).

��
Corollary 6.7 Suppose φ = l1φ1 � · · · � lrφr ∈ �̄bdd(G) if F is local (resp. �̄(G)
if F is global), and S, T are subsets of I oddφ,O, I

even
φ,O respectively. Suppose that

( ∏
i∈S∪T

ηφi

)
◦ λ �= 1

unless T is empty and S is either empty or equal to I oddφ,O. Then Sφ̃ = 1.

123



164 B. Xu

Proof It follows from the definition that |Pφ̃ | = 1. By Lemma 6.6, one has |Sφ̃ | =
|Pφ̃ | = 1. Hence Sφ̃ = 1. ��

The following proposition will become useful in our later proofs.

Proposition 6.8 Suppose φ ∈ �̄ell(Gθ ) for θ ∈ �0 and Sφ̃ = 1. We assume one of
the following condition is satisfied.

1. G is symplectic,
2. G is special even orthogonal with ηG �= 1,
3. G is special even orthogonal with ηG = 1, and I oddφ,O or I evenφ,O is empty.

Ifφ factors through φ′ ∈ �̄(G ′), where G ′ = GI ×GI I is a twisted elliptic endoscopic
group of G, let φ′ = φI ×φI I , where φi ∈ �̄(Gi ) for i = I, I I . Then Sφ̃I = Sφ̃I I = 1.

Proof Since φ ∈ �̄ell(Gθ ), we can view

I oddφI ,O ⊆ Iφ,O and I evenφI ,O ⊆ I evenφ,O

after possibly twisting φI by ηφI . Suppose Sφ̃I �= 1, we can represent any nontrivial
element of Sφ̃I by (S

′, T ′) for

S′ ⊆ I oddφI ,O and T ′ ⊆ I evenφI ,O

such that S′ ∪ T ′ is nonempty,
∑

i∈S′∪T ′ Ni is even and

∏
i∈S′∪T ′

ηφi = 1.

Then we want to show Sφ̃ �= 1, which would lead to a contradiction.
Let us define (S, T ) by

S = S′ ∩ I oddφ,O and T = (S′ ∪ T ′) ∩ I evenφ,O .

Then (S, T ) corresponds to a nontrivial element inSφ̃ unless T is empty and S = I oddφ,O .
In the exceptional cases, we have

T ′ is empty and S′ = S = I oddφ,O .

By our conditions on (S′, T ′), we seeG has to be special even orthogonal and ηG = 1.
So we only need to consider condition (3). In particular, we can assume I evenφ,O is

empty, i.e. Iφ,O = I oddφ,O . It follows S′ = I oddφI ,O
. But this is impossible for (S′, T ′)

should correspond to a nontrivial element in Sφ̃I by our assumption. Therefore, we
see Sφ̃ �= 1. Similarly, if we assume Sφ̃I I �= 1, we can also deduce Sφ̃ �= 1. This
finishes the proof. ��
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In the case that G is a special even orthogonal group and φ ∈ �bdd(Gθ0) if
F is local (resp. �(Gθ0), if F is global), we can have a similar combinatorial
description of the map from S�0

φ to Hom(G̃(F)/G(F),C×) if F is local (resp.

Hom(G̃(AF )/G̃(F)G(AF ),C
×) if F is global). To do this we need to take a big-

ger set

P�0
φ = {(S, T )}/S ∼ Sc

by withdrawing the condition that
∑

i∈S∪T Ni must be even. It is easy to see that one
can extend the map αP toP�0

φ and the map c to S̄�0
φ with its image inP�0

φ . As a result,
we have the following lemma which is an analogue of Lemma 6.6, and the proof is
similar.

Lemma 6.9 1. The extended map c will factor through S�0
φ , and it gives a bijection

between S�0
φ and P�0

φ .
2. If we denote the bijection in (1) still by c, then we have a commutative diagram.

1 S�0

φ̃
S�0
φ

c

α
Hom(G̃(F)/G(F),C×)

1 P�0

φ̃
P�0
φ

αP
Hom(G̃(F)/G(F),C×)

if F is local, or

1 S�0

φ̃
S�0
φ

c

α
Hom(G̃(AF )/G̃(F)G(AF ),C

×)

1 P�0

φ̃
P�0
φ

αP
Hom(G̃(AF )/G̃(F)G(AF ),C

×)

if F is global.

Remark 6.10 It is a consequence of Lemmas 6.6 and 6.9 that

α(S�0
φ ) = αP (P�0

φ )

Here we give two applications of these combinatorial descriptions. The first one
gives the refined L-packet in the archimedean case (cf. Remark 4.7).

Proposition 6.11 Suppose F is real, φ ∈ �̄bdd(G) and π̃ is an irreducible admissible
representation of G̃(F) whose restriction to G(F) have irreducible constituents con-
tained in �̄φ . If Sφ �= 1, then π̃ ⊗ω ∼= π̃ for all characters ω of G̃(F)/ZG̃(F)G(F).

In particular, let ζ̃ be the central character of π̃ , then we can define �̄φ̃ = ˜̄�φ,̃ζ if

�̄φ is not a singleton.
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Proof Notice that G̃(R)/ZG̃(R)G(R) is either 1 or R
×/R>0, and the only nontrivial

character ε of R
×/R>0 is given by the sign character. Since GL(n,R) has essentially

discrete series only when n � 2, the set Iφ,O only parametrizes quadratic characters
of F× and discrete series of GL(2,R) with central character ε. Now we suppose
π̃ ⊗ ε � π̃ , then it is clear from Lemma 6.6 that this is only possible when Iφ,O
parametrize quadratic characters of F×, i.e. ε and the trivial character ε0. Depending
on which characters I oddφ,O and I evenφ,O parametrize, we have eight cases and we can
represent them as follows: ε0, 2ε0; ε, 2ε; ε0 ⊕ 2ε, ε⊕ 2ε0; ε0 ⊕ ε, 2ε0 + 2ε. One can
see easily from Lemma 6.6 that in these cases either Sφ = 1 or ε ∈ α(Sφ). Therefore
we get a contradiction. For the last point, one just needs to notice Sφ �= 1 if �̄φ is not
a singleton. ��
Remark 6.12 The proof of Proposition 6.11 also shows that X (π̃) = X for discrete
series representation π̃ of G̃(R).

The second application is on the multiplicity problem that we have discussed in
Sect. 5. Now let us assume F is global again, and it turns out more convenient to ask
when both �0-multiplicity one and �0-strong multiplicity one hold for φ̃ together,
i.e.

α(S�0
φ ) =

aut∏
almost all v

α(S�0
φv
).

By our Remark 6.10, this is the same as

αP (P�0
φ ) =

aut∏
almost all v

αP (P�0
φv
).

The next lemma gives an answer for the simplest type of parameters.

Lemma 6.13 Suppose

φ = l1η1 � · · · � lrηr ∈ �̄(G),

where ηi are quadratic idèle class characters for 1 � i � r . Then both�0-multiplicity
one and �0-strong multiplicity one hold for φ̃.

Proof From Lemma 2.1, we can view ηi ◦ λ as quadratic idèle class characters of F ′,
where F ′ is the extension of F associated to the character

ηφ =
r∏

i=1

η
li
φi

by class field theory. Let us denote ηi ◦ λ by η′
i . We are going to prove this lemma

by induction on the number of nontrivial characters η′
i for 1 � i � r . Suppose there

123



L-packets of quasisplit GSp(2n) and GO(2n) 167

exists some quadratic idèle class character ω of F such that ω′ = ω ◦ λ is contained
in

aut∏
almost all v

αP (P�0
φv
).

If we assume η′
1 is nontrivial, and let E be the quadratic extension of F ′ associated to

η′
1, then after a base change to E , we get

φE = l1ηE,1 � · · · � lrηE,r

where ηE,i = η′
i ◦ NmE/F ′ . And we have

ωE = ω′ ◦ NmE/F ′

contained in

aut∏
almost all v

αP (P�0
φE,v

).

Since ηE,1 = 1, by induction the lemma is true for φE . Hence

ωE =
m∏

k=1

ηE,ik ,

for some 1 < ik � r and m < r . This implies that

(
ω′ ·

m∏
k=1

η′
ik

)
◦ NmE/F ′ = 1.

Since |IF ′ : NmE/F ′ IE | = 2, then

ω′ ·
m∏

k=1

η′
ik = 1 or η′

1.

Hence ω′ ∈ αP (P�0
φ ). ��

6.3 Construction of global parameters

In this section we are going to give the global lifting result needed in Theorem 6.4.
Let us assume F is a nonarchimedean local field and Ḟ is a totally real global field
with Ḟu = F (cf. [7], Lemma 6.2.1). Let Ġ be a quasisplit special even orthogonal
group or symplectic group over Ḟ such that Ġu = G and Ġv has discrete series for
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v ∈ S∞ (cf. [7], Lemma 6.2.2). For any finite set S of nonarchimedean places of Ḟ ,

we denote the unitary dual of Ġ(ḞS) = ∏
v∈S Ġ(Ḟv) by ̂̇G(ḞS), and the Plancherel

measure on ̂̇G(ḞS) by μ̂
pl
S .

Lemma 6.14 For φ ∈ �̄sim(G) and an open subset Û of tempered representations of
Ġ(ḞS) such that μ̂

pl
S (Û ) > 0, one can find φ̇ ∈ �̄sim(Ġ)with the following properties.

1. φ̇u = φ, and ⊗v∈S�̄φ̇v
⊆ Û .

2. If v /∈ S∞(u) ∪ S, then φ̇v is spherical. In particular, it can be written as a direct
sum of quasicharacters of F×

v with at most one ramified quasicharacter.
3. If v ∈ S∞, φ̇v ∈ �̄2(Ġv).

Proof This lemma is the consequence of ([41], Theorem 5.8) and ([7], Lemma 6.2.2
and Corollary 6.2.4). As one can see in the proof of ([7], Lemma 6.2.2), φ̇v has a ram-
ified quasicharacter if and only if ηĠv

is ramified. Also note that ([41], Theorem 5.8)
requires G to have trivial centre, however this condition can be removed by choosing
suitable discrete series in the archimedean places as in the proof of ([7], Lemma 6.2.2).
In fact, the main techniques in both proofs are the same, i.e., Arthur’s simple invariant
trace formula. The new input in ([41], Theorem 5.8) is Harish-Chandra’s Plancherel
formula and Sauvageot’s principle of density result (cf. [35], Theorem 7.3). ��

Lemma 6.14 serves as the building blocks of our global lifting result, and because
we want to impose the condition of �0-strong multiplicity one at one place for any
global lift, it is important to consider the case of simple parameters first. We will begin
with another description of �0-strong multiplicity one, which is kind of dual to the
original one.

6.3.1 �0-strong multiplicity one at one place

Suppose F is a global field, G is special even orthogonal or symplectic group over F
and φ ∈ �̄(G). We define

G1
AF

= ZG̃(Fu)G(Fu)×
∏
v �=u

G̃(Fv),

G1
F = G̃(F) ∩ G1

AF
.

Let

G̃(π�0
v ) = {g ∈ G̃(Fv) : ωv(g) = 1 for all ωv ∈ α(S�0

φv
)},

for any [πv] ∈ �̄φv , and

G̃(π�0) =
∏
v

G̃(π�0
v ),
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for any [π ] ∈ �̄φ . We define G1(π�0) = G̃(π�0) ∩ G1
AF

. As a consequence we can
have the following identities

aut∏
v

α(S�0
φv
) = (G̃(AF )/G̃(F)G̃(π

�0))∗

aut∏
v �=u

α(S�0
φv
) = (G1

AF
/G1

FG
1(π�0))∗.

By the approximation theory for number fields (cf. [33]), we have G̃(AF ) =
G̃(F)G1

AF
. So

(G̃(AF )/G̃(F)G̃(π
�0))∗ = (G1

AF
/G1

AF
∩ G̃(F)G̃(π�0))∗

Therefore the condition of �0-strong multiplicity one at the place u is equivalent to

|G1
AF

∩ G̃(F)G̃(π�0) : G1
FG

1(π�0)|
= |G1

AF
∩ G̃(F)G̃(π�0) : G1

F (G̃(π
�0) ∩ G1

AF
)| = 1. (6.5)

Let

A = G1
AF
/G(AF ), AF = G1

FG(AF )/G(AF )

BF = G̃(F)/G(F), B̄(π) = G̃(π�0)/G(AF )

and B̄(πv) = G̃(π�0
v )/G(Fv), then we can rewrite (6.5) as

|A ∩ B̄(π)BF : (A ∩ B̄(π))AF | = 1.

In particular,

(A ∩ B̄(π))AF = A ∩ B̄(π)AF ,

so we has proved the following lemma.

Lemma 6.15 Suppose φ ∈ �̄(G) and [π ] ∈ �̄φ . Then �0-strong multiplicity one at
the place u holds for φ̃ if and only if

|A ∩ B̄(π)BF : A ∩ B̄(π)AF | = 1. (6.6)

Note that all these groups A, B̄(π) and AF , BF can be viewed as subgroups of
IF and F× respectively through the similitude character λ. Therefore we have the
following equivalent statement for (6.6).
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Lemma 6.16 |A ∩ B̄(π)BF : A ∩ B̄(π)AF | = 1 if and only if for any x ∈ B̄(π),
there exists y ∈ B̄(π)∩ BF such that xy ∈ A. (i.e., for any xu ∈ B̄(πu)/(F×

u )
2, there

existis y ∈ B̄(π) ∩ BF such that yu = x−1
u mod (F×

u )
2.)

Proof Suppose x ∈ B̄(π) and z ∈ BF such that xz ∈ A. First let us assume (6.6),
then xz ∈ A ∩ B̄(π)AF since xz ∈ A ∩ B̄(π)BF . So we can write xz = uw where
u ∈ AF and w ∈ B̄(π) ∩ A. In particular xw−1 = uz−1 ∈ B̄(π) ∩ BF . Let us set
y = wx−1 which is also in B̄(π) ∩ BF , then one has xy = w ∈ A.

Conversely, let us take y ∈ B̄(π) ∩ BF such that xy ∈ A. Then we can write
xz = (xy)(y−1z). Since both xz and xy lie in A, one has y−1z ∈ A and in particular,
y−1z ∈ A ∩ BF = AF . Moreover, it clear that xy ∈ B̄(π). Hence xz ∈ A ∩ B̄(π)AF

and the rest of the lemma should be clear. ��

6.3.2 Global lift

Now we are going to use Lemmas 6.14, 6.15 and 6.16 to produce a global lift with the
intended property of �0-strong multiplicity one at one place.

Lemma 6.17 Suppose F is a nonarchimedean local field and φ ∈ �̄sim(G), there
exists a totally real global field Ḟ and a group Ġ over Ḟ such that Ḟu = F and
Ġu = G, and one can lift φ to a global simple parameter φ̇ ∈ �̄sim(G) satisfying the
following properties.

1. φ̇u = φ, and φ̇v ∈ �̄2(Ġv) for v ∈ S∞.
2. If v /∈ S∞(u), φ̇v is a direct sum of quasicharacters of F×

v with at most one ramified
quasicharacter.

3. �0-strong multiplicity one holds for
˜̇φ at the place u.

Proof Let Ġ be a quasisplit special even orthogonal group or symplectic group over
Ḟ such that Ġu = G and Ġv has discrete series for v ∈ S∞, and let η̇φ = ηĠ .
In view of Lemma 6.14, one would like to impose restrictions over a finite set S of
nonarchimedean places described by an open subset Û of tempered representations
with μ̂pl

S (Û ) > 0, so that the global lift φ̇ obtained from Lemma 6.14 has the property
of �0-strong multiplicity one at the place u. To determine S and Û , we need to use
the equivalent characterization of the property of �0-strong multiplicity one at one
place given by Lemmas 6.15 and 6.16. First, let us take two distinct quadratic idèle
class character η̇i (i = 1, 2), so that η̇i,u = 1 and η̇i,v = εv the sign character of
R

× for v ∈ S∞. This is possible for one can construct a quadratic extension of any
number field with arbitrarily prescribed localizations at finitely many places. Then we
can consider the following composite parameter

φ̇η = η̇φ � η̇1 � η̇2 � η̇1η̇2 ∈ �̄(Ġη),

and let

B̄(φ̇η,v) =
{
z ∈ ˜̇Gη(Ḟv)/Ġη(Ḟv) : ωv(z) = 1 for all ωv ∈ α(S�0

φ̇η,v
)
}
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for any place v. Note that BḞ
∼= ˜̇Gη(Ḟ)/Ġη(Ḟ) and ˜̇Gη(Ḟv)/Ġη(Ḟv) ∼=˜̇G(Ḟv)/Ġ(Ḟv). Moreover if [π ] ∈ �̄φ , then B̄(π) = B̄(φ̇η,u). And B̄(φ̇η,v) = R>0 if

v ∈ S∞. If we apply Lemmas 6.13 and 6.16 to φ̇η, we get for any x ∈ B̄(π)/(F×)2,
there exists y ∈ BḞ such that yu = x−1 mod (F×)2 and yv ∈ B̄(φ̇η,v) for v �= u.
In particular, yv ∈ R>0 if v ∈ S∞. Since we are going to use Lemma 6.14 to lift
φ, by its properties we can conclude immediately that yv ∈ B̄(π̇v) unless v �= u is
nonarchimedean and |yv| �= 1. To emphasize the dependence of y on x , we also write
y = y(x). Let Sy(x) be those nonarchimedean places v �= u where |yv| �= 1, and since
the group B̄(π)/(F×)2 is finite, we can take the union of all such sets and get

S =
⋃

x∈B̄(π)/(F×)2
Sy(x)

which is still finite. Note that S depends on the choice of y for each x . Now we can
describe Û = ∏

v∈S Ûv . In fact for any v ∈ S, one just needs to take Ûv to be the
union of tempered packets �̄φv for spherical φv ∈ �̄bdd(Ġv) such that α(S�0

φv
) = 1.

ByLemma6.9, this condition is equivalent to requiring nofinite products of unramified
quasicharacters in φv gives the nontrivial unramified quadratic character unless ηĠv

is nontrivial and quadratic. Since this is an open condition, Ûv is open with positive
Plancherel measure. Note that the condition α(S�0

φv
) = 1 also guarantees B̄(φ̇η,v) ⊆

B̄(πv) for [πv] ∈ �̄φv ⊆ Ûv . Finally, we can use Lemma 6.14 to get a global lift φ̇
such that �̄φ̇v

⊆ Ûv for v ∈ S. And it is clear that for any x ∈ B̄(π)/(F×)2, the y

chosen above will lie in B̄(π̇) ∩ BḞ for [π̇ ] ∈ �̄φ̇ . This finishes the proof. ��
This lemma is the first step to overcome the lack of strong multiplicity one, next

we will generalize this to composite parameters.

Lemma 6.18 Suppose

φ = φ1 ⊕ · · · ⊕ φq ⊕ 2φq+1 ⊕ · · · ⊕ 2φr ∈ �̄ell(G
θ ),

where φi is simple for 1 � i � r and θ ∈ �0. We assume φ factors through φM ∈
�̄2(M). Then one can choose a lift (Ġ, Ṁ, Ḟ, φ̇) of (G,M, F, φ) with the following
properties:

1. Ḟ is a totally real field and there exists a place u such (Ġu, Ṁu, Ḟu, φ̇u) =
(G,M, F, φ).

2. φ̇ = φ̇1 � · · · � φ̇q � 2φ̇q+1 � · · · � 2φ̇r ∈ �̄ell(Ġθ ).
3. S˜̇φ = 1. Moreover, (Ġ, φ̇) satisfies the conditions in Proposition 6.8.
4. If v /∈ S∞(u), the local Langlands parameter

φ̇v = φ̇1,v ⊕ · · · ⊕ φ̇q,v ⊕ 2φ̇q+1,v ⊕ · · · ⊕ 2φ̇r,v

is a direct sum of quasicharacters of F×
v , and it contains at most one ramified

quasicharacter counted without multiplicities modulo the unramified quasichar-
acters.
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5. If v ∈ S∞, φ̇i,v ∈ �̄2(Ġφi,v ).

6. �0-strong multiplicity one holds for
˜̇φ at the place u.

Proof The idea is to apply Lemma 6.17 to each simple parameters. But one needs to
be extra careful at the following points.

The first point is about property (3) and (4), they require choosing those global
characters η̇φi in a consistent way so that the condition of Corollary 6.7 is satisfied,
and also there is at most one ramified character in η̇φ1,v ⊕ · · · ⊕ η̇φr,v at each place
v /∈ S∞(u) counted without multiplicities modulo the unramified quasicharacters. But
this can be done easily. In fact, one can fix nonarchimedean places {v1, v2, . . . , vr }
distinct from u. If q = 0, we require for 1 � i � r and 1 � j � r that

η̇φi,v j
=
{
the unramified quadratic character of Ḟ×

v j
, when i = j,

1, otherwise.
(6.7)

If q �= 0, we only impose (6.7) for 2 � i � r and 1 � j � r , and require for
2 � j � r that

η̇φ1,v j
=
{∏

1<i�q η̇φi,v j
, if q > 1,

1, if q = 1.

In this case, we also require η̇φ1,v1 �= 1 when G is special even orthogonal. It is easy to
see that these conditions will guarantee (3). Next we can choose η̇φi satisfying these
conditions. Moreover, we can choose them consecutively for i decreasing from r to
1 such that Ġφi has discrete series and η̇φi is unramified over the ramified places of
η̇φ j for j > i , except in the case i = 1 and G is symplectic, where we would like to
assume Gφ1 is also symplectic and take

η̇φ1 =
{∏

1<i�q η̇φi , if q > 1,

1, if q = 1.

The second point is about choosing the set S of nonarchimedean places as in the
proof of Lemma 6.17. It is tempting to think that it should be the union of all such
sets defined in Lemma 6.17 for each simple parameter φi . In fact, one should choose
this set S for φ as a whole. Let η̇1 and η̇2 again be two distinct quadratic idèle class
characters defined as in Lemma 6.17. And here we consider

φ̇η = η̇φ1 � · · · � η̇φq � 2η̇φq+1 � · · · � 2η̇φr � η̇1 � η̇2 � η̇1η̇2 ∈ �̄(Ġη)

when q is odd; or

φ̇η = η̇φ1 � · · · � η̇φq � 2η̇φq+1 � · · · � 2η̇φr � 2η̇1 ∈ �̄(Ġη)

when q is even. By applying Lemmas 6.13 and 6.16 to φ̇η, we can get a set S of
nonarchimedean places using the same argument as in Lemma 6.17. Finally, one can
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choose the open set of tempered representations Ûi = ∏
v∈S Ûi,v for each simple

parameter φi as in Lemma 6.17 and make them smaller enough so that α(S�0

φ̇v
) ⊆

α(S�0

(φ̇η)v
). This is possible again by Lemma 6.9. Note that if φi is a quadratic character,

there is no need to impose any local conditions on S. This finishes the proof. ��
Remark 6.19 1. In view of Lemma 6.9, the second property about this global lift

φ̇ implies the natural inclusion S�0

φ̇
↪→ S�0

φ is an isomorphism here. So we can

identify S�0

φ̇
with S�0

φ .

2. In later proofs, we would like to apply the discussions in Sect. 5.4 to such global
parameters φ̇. In fact, by our induction assumption and Proposition 6.8 we can
replaceConjecture 5.16, 5.18, 5.19 byTheorem5.21 for the properLevi subgroups
and twisted endoscopic groups of ˜̇G. It is then clear that Lemma 5.22 is still valid
for φ̇. Since we are only going to establish the stable multiplicity formula for
discrete parameters in Theorem 5.21, we need to require

S̄θ
φ̇,ell

(ω̇) = S̄θ
φ̇,ss

(ω̇)

when φ̇ is not a discrete parameter in Lemma 5.25. However, in our application
this will always be satisfied by our choice of ω̇ and the fact that S˜̇φ = 1.

6.4 Proof of main local theorem

With all these refined lifting results, we can start to prove the main local theorem. Let
F be a nonarchimedean local field,

φ = φ1 ⊕ · · · ⊕ φq ⊕ 2φq+1 ⊕ · · · ⊕ 2φr ∈ �̄ell(G
θ ), (6.8)

where φi is simple for 1 � i � r and θ ∈ �0. The simplest cases are when φi are
quadratic characters ηi for 1 � i � r , and one can see not all of these cases will follow
from induction. So we have to treat the exceptional cases differently. In fact regarding
property (4) of Lemma 6.18, one only needs to consider the cases when r � 4, i.e., the
trivial character ε0, the unramified quadratic character ε, a ramified quadratic character
η, and also η ·ε. In fact, when r = 4 and G is special even orthogonal, it can be further
reduced to the case r � 3 by our induction argument as one can see from the proof of
Lemma 6.18.

Lemma 6.20 For φ shown in (6.8), if φi = ηi , and r � 3 (or r � 4 when G is
symplectic), then the main local theorem (Theorem 4.6) holds for φ̃.

Proof There are two types of parameters which lead to nontrivial cases here.
Type I :

φ = η1 ⊕ η2 ⊕ η3 ∈ �̄bdd(G)
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Type II:

φ ∈ �̄ell(G
θ )− �̄2(G)

For type I, G̃ = GL(2) and Sφ̃ = 1 by Lemma 6.6, so the refined L-packet �̄φ̃

is a singleton and hence determined by �̄φ . Since the character of any irreducible
admissible representation of GL(2, F) is already stable, the packet �̄φ̃ is then stable.
Therefore the only thing we need to prove is the twisted character relation (4.2) for
ω ∈ α(Sφ) and θ = id. To prove this, we use the stabilized ω̇-twisted trace formula
for ω̇ ∈ α(Sφ̇) and some global lift φ̇.

Assume φ̇ = η̇1 � η̇2 � η̇3 is a global lift of φ. Because the global L-packet for
GL(2) should also be a singleton and multiplicity one holds for GL(2), the spectral
side of the discrete part of the ω̇-twisted trace formula becomes

I (
˜̇G,ω̇)

disc,φ̇
(˜̇f ) = tr R(

˜̇G,ω̇)
disc,φ̇

(˜̇f ) =
∑

ω̇′∈Y/α(Sφ̇ )
m(˜̇π ⊗ ω̇′, ω̇)˜̇f ˜̇G(˜̇π ⊗ ω̇′, ω̇),

where ˜̇π is taken to be any representation in A2(
˜̇G), whose restriction to Ġ(AḞ ) are

contained in �̄φ̇ , and

˜̇f ˜̇G(˜̇π ⊗ ω̇′, ω̇) =
∏
v

˜̇f ˜̇Gv
(˜̇πv ⊗ ω̇′

v, ω̇v),

defined by (4.3). In particular, m(˜̇π ⊗ ω̇′, ω̇) = ±1. For the endoscopic side, we can
apply Lemma 5.25 and get

I (
˜̇G,ω̇)

disc,φ̇
(˜̇f ) =

∑
ω̇′∈Y/α(Sφ̇ )

˜̇f ′˜̇G (̃φ̇ ⊗ ω̇′, ẋ),

where α(ẋ) = ω̇ and S˜̇φ = 1. Therefore we have an identity

∑
ω̇′∈Y/α(Sφ̇ )

m
(˜̇π ⊗ ω̇′, ω̇

) ˜̇f ˜̇G (˜̇π ⊗ ω̇′, ω̇
) =

∑
ω̇′∈Y/α(Sφ̇ )

˜̇f ′˜̇G
(˜̇φ ⊗ ω̇′, ẋ

)
.

Note that strong multiplicity one also holds for ˜̇φ. This either can be seen from
Lemma 6.13 or from the fact that G̃ = GL(2) here. Then one can use the Satake
parameters of representations of ˜̇G(AḞ ) to distinguish the summands on both sides of
the identity (cf. Lemma 5.1). As a result, we get

m(˜̇π, ω̇)˜̇f ˜̇G(˜̇π, ω̇) = ˜̇f ′˜̇G (̃φ̇, ẋ),
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where we may need to change ˜̇π by twisting with some ω̇′ ∈ Y/α(Sφ̇ ) to get this
equality. Therefore for any place v one has

m(˜̇πv, ω̇v)
˜̇f ˜̇Gv

(˜̇πv, ω̇v) = ˜̇f ′˜̇Gv
(̃φ̇v, ẋv),

where m(˜̇πv, ω̇v) are some constants in C
×. If we take ˜̇f v supported on Z̃ Ḟv Ġ(Ḟv),

then ˜̇f ˜̇Gv
(˜̇πv, ω̇v) = ˜̇f ′˜̇Gv

(̃φ̇v, ẋv) by character relation for Ġv , hence m(˜̇πv, ω̇v) = 1

and so is m(˜̇π, ω̇). In particular we have shown the twisted character relation for φ̃ of
type I.

For type II, it also suffices to show the twisted character relation regarding
Lemma 6.2. In fact its proof is similar to the proof of the twisted character relation for
a general parameter

φ = φ1 ⊕ · · · ⊕ φq ⊕ 2φq+1 ⊕ · · · ⊕ 2φr ∈ �̄ell(G
θ )− �̄2(G).

So here we will carry out the general strategy. First we apply Lemma 6.18 to φ and
get a global lift φ̇ such that φ̇u = φ, S˜̇φ = 1, and�0-strong multiplicity one holds for˜̇φ at the place u. In particular, for the case of type II parameters considered here, it is
true that both �0-multiplicity one and �0-strong multiplicity one hold according to
Lemma 6.13. Next we would like to apply Lemmas 5.22 and 5.25 to get an identity
of the spectral expansion and endoscopic expansion of the stabilized (θ, ω̇)-twisted
trace formula. In view of Lemma 6.2, we can assume semisimple s ∈ S̄θφ satisfies

|S̄0φ,s | < ∞. This implies s ∈ S̄θφ,ell and we denote its preimage in S̄θ
φ̇,ell

by ṡ. Let ẋ

be the image of ṡ in Sθ

φ̇,ell
. Since S˜̇φ = 1, we have ω̇ �= 1 and

C˜̇φ
∑

ω̇′∈Y/α(Sφ̇ )
iθ
φ̇
(ẋ)˜̇f ˜̇Gθ

(˜̇φ ⊗ ω̇′, ẋ
)

= C˜̇φ
∑

ω̇′∈Y/α(Sφ̇ )
e′θ
φ̇
(ẋ)˜̇f ′˜̇Gθ

(˜̇φ ⊗ ω̇′, ẋ
)
,

It follows from Proposition 5.17 and the fact that ṡ ∈ S̄θ
φ̇,ell

,

iθ
φ̇
(ẋ) = e′θ

φ̇
(ẋ) �= 0.

Therefore ∑
ω̇′∈Y/α(Sφ̇ )

˜̇f ˜̇Gθ

(˜̇φ ⊗ ω̇′, ẋ
)

=
∑

ω̇′∈Y/α(Sφ̇ )
˜̇f ′˜̇Gθ

(˜̇φ ⊗ ω̇′, ẋ
)
. (6.9)

In case �0-strong multiplicity one holds, we can again use the Satake parameters of
admissible representations of ˜̇G(AḞ ) to distinguish the summands on both sides of
the identity. As a result, we get

˜̇f ˜̇Gθ

(˜̇φ, ẋ) = ˜̇f ′˜̇Gθ

(˜̇φ, ẋ)
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and hence there exist constants nv for all places such that

˜̇f ˜̇Gθ

v

(˜̇φv, ẋv) = nv · ˜̇f ′˜̇Gθ

v

(˜̇φv, ẋv) .
Ifwe take ˜̇f v supported on Z̃ Ḟv Ġ(Ḟv), then

˜̇f ˜̇Gθ

v

(̃φ̇v, ẋv) = ˜̇f ′˜̇Gθ

v
(̃φ̇v, ẋv)by the twisted

local intertwining relation for Ġv . Therefore nv = 1 and we have shown the twisted
local intertwining relation for φ̃. By Lemma 4.10, this implies the twisted character
relation for φ̃. So we have finished the proof for the parameters of type II.

��
Theorem 6.21 Suppose F is a nonarchimedean local field and φ ∈ �̄ell(Gθ ) −
�̄2(G), then the twisted character relations (4.2) holds for φ̃.

Proof We first get (6.9) following the general strategy in the second part of the proof
of Lemma 6.20. In this general case, we only know �0-strong multiplicity one holds
at the place u for ˜̇φ. But now we can assume the twisted character relation for all
places except u. This is because of the property of our lift φ̇ shown in Lemma 6.18
and the fact that we have shown the twisted character relation for the exceptional
cases considered in Lemma 6.20. Under these assumptions, we can conclude from
the linear independence of twisted characters of ⊗v �=uH̄(˜̇Gv, ˜̇χv)-modules (see [21],
A.4.1) that

(˜̇f ˜̇Gθ

u

(˜̇φu, ẋu
)

− ˜̇f ′˜̇Gθ

u

(˜̇φu, ẋu
))∏

v

˜̇f ˜̇Gθ

v

(˜̇φv, ẋv) = 0,

and hence

˜̇f ˜̇Gθ

u

(˜̇φu, ẋu
)

= ˜̇f ′˜̇Gθ

u

(˜̇φu, ẋu
)
.

This proves the twisted local intertwining relation, which implies the twisted character
relation according to Lemma 4.10. ��

Now we can deal with the discrete parameters φ ∈ �̄2(G).

Theorem 6.22 Suppose F is a nonarchimedean local field and φ ∈ �̄2(G), then the
main local theorem (Theorem 4.6) holds for φ̃.

Proof We can apply Lemma 6.18 to φ, and because of Lemma 6.20 and Theorem 6.21,
we can use the argument in Theorem 6.4 to show part (1) and (2) of the main local
theorem. At the same time we can deduce the stable multiplicity formula for the global
lift ˜̇φ (cf. Remark 6.5), i.e.

I
˜̇G
disc,φ̇

(˜̇f ) = S
˜̇G
disc,φ̇

(˜̇f ) = mφ̇

∑
ω̇′∈Y/α(Sφ̇ )

˜̇f ˜̇G (˜̇φ ⊗ ω̇′) .
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Hence the only thing left is to show the twisted character relations (4.2). In order to
deduce the (θ, ω)-twisted character relation we use the stabilized (θ, ω̇)-twisted trace
formula. Note that

I (
˜̇Gθ

,ω̇)

disc,φ̇
(˜̇f ) = tr R(

˜̇Gθ
,ω̇)

disc,φ̇
(˜̇f ) =

∑
ω̇′

∑
[˜̇π]∈�̄˜̇φ⊗ω̇′

m(˜̇π, ω̇)∏
v

˜̇f ˜̇Gθ

v

(˜̇πv, ω̇v),

where ˜̇f ˜̇Gθ

v

(˜̇πv, ω̇v) is normalized according to (4.3), the sum of ω̇′ is taken over

Y/
aut∏
v

α
(
S�0

φ̇v

)
,

and |m(˜̇π, ω̇)| is some integer not larger than the multiplicity

m (̃φ̇) := mφ̇

∣∣∣∣∣
aut∏
v

α(S�0

φ̇v
)

∣∣∣∣∣ |α(Sφ̇)|−1

of ˜̇π as H̄(˜̇G, ˜̇χ)-module. By Lemma 5.25, we get

I (
˜̇Gθ

,ω̇)

disc,φ̇
(˜̇f ) = mφ̇

∑
ω̇′∈Y/α(Sφ̇ )

˜̇f ′˜̇Gθ

(˜̇φ ⊗ ω̇′, ẋ
)
,

where α(ẋ) = ω̇. By Lemma 6.20 and Theorem 6.21, we can assume the twisted
character relations for all places v �= u. Then it follows from the linear independence
of twisted characters of ⊗v �=uH̄(˜̇Gv, ˜̇χv)-modules and�0-strong multiplicity one for˜̇φ at the place u that

∑
[˜̇π ]∈�̄˜̇φ

m
(˜̇π, ω̇) ˜̇f ˜̇Gθ

u

(˜̇πu, ω̇u
)∏
v �=u

˜̇f ˜̇Gθ

v

(˜̇πv, ω̇v
)

= m (̃φ̇)˜̇f ′˜̇Gθ

u

(˜̇φu, x
)∏
v �=u

⎛
⎜⎝ ∑

[˜̇πv]∈�̄˜̇φv

˜̇f ˜̇Gθ

v

(˜̇πv, ω̇v
)⎞⎟⎠ . (6.10)

Now we choose ˜̇f = ⊗v
˜̇f v with ˜̇f u supported on Z̃ FG(F) and thus

˜̇f ′˜̇Gθ

u
(̃φ̇u, ẋu) =

∑
[˜̇πu ]∈�̄˜̇φu

˜̇f ˜̇Gθ

u
(˜̇πu, ω̇u).
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Substitute such test functions into the identity (6.10), one deduces that

m(˜̇π, ω̇) = m (̃φ̇).

Therefore

m (̃φ̇)(˜̇f ′˜̇Gθ

u
(̃φ̇u, x)−

∑
[˜̇πu ]∈�̄˜̇φu

˜̇f ˜̇Gθ

u
(˜̇πu, ω̇u))

∏
v �=u

⎛
⎜⎝ ∑

[˜̇πv]∈�̄˜̇φv

˜̇f ˜̇Gθ

v

(˜̇πv, ω̇v)

⎞
⎟⎠ = 0

for all ˜̇f ∈ H̄(˜̇G, ˜̇χ). So we must have

˜̇f ′˜̇Gθ

u
(̃φ̇u, x) =

∑
[˜̇πu ]∈�̄˜̇φu

˜̇f ˜̇Gθ

u
(˜̇πu, ω̇u),

and this finishes the proof of the (θ, ω)-twisted character relation. ��
At this point, we have proved ourmain local theorem (Theorem 4.6) for G̃ = G̃(N ),

and the general case is just a corollary of that.

Corollary 6.23 Suppose

G = G(n1)× G(n2)× · · · × G(nq),

with ni � N for 1 � i � q and φ ∈ �̄bdd(G), then the main local theorem (Theo-
rem 4.6) holds for φ̃.

Proof Let us write φ = φ1×φ2×· · ·×φq such that φi ∈ �̄bdd(G(ni )) for 1 � i � q.
Note that

G̃ ⊆ G̃(n1)× G̃(n2)× · · · × G̃(nq)

form a pair of groups satisfying the assumption in Sect. 2.1.1. Since �̄φ̃i
is well defined

now, we can define �̄φ̃ to be the restriction of
⊗q

i=1 �̄φ̃i
to G̃(F). It is clear that �̄φ̃

satisfies part (1) and (2) of Theorem 4.6. Moreover, the twisted endoscopic groups of
G̃ lift to twisted endoscopic groups of G̃(n1)×G̃(n2)×· · ·×G̃(nq) by Proposition 2.7.
Then it is a consequence of Corollary 2.22 that the twisted character relations of G̃
follow from that of G̃(n1)× G̃(n2)×· · ·× G̃(nq) again by restriction. This completes
the proof in the general case. ��

6.5 Proof of global theorem

In this section, we are going to prove the global theorem, i.e., Theorem 5.21. We will
keep the notations as in Sect. 6.1. Suppose F is global,

G = G(n1)× G(n2)× · · · × G(nq),
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with
∑q

i=1 ni = N . Now we can assume the main local theorem for G̃ thanks to
Sect. 6.4. We will first prove the corresponding statement of Conjecture 5.16 for G̃.

Theorem 6.24 We assume φ ∈ �̄(G) satisfies the assumption in Theorem 5.21.

1. One can associate a global packet �̄φ̃ of irreducible admissible representations

of G̃(AF ) as H̄(G̃)-modules, satisfying the following properties:
(a) �̄φ̃ = ⊗′

v �̄φ̃v
, where �̄φ̃v

is some lift of �̄φv defined in Theorem 4.6.

(b) there exists [π̃ ] ∈ �̄φ̃ , so that π̃ is isomorphic to an automorphic representa-

tion as H̄(G̃)-modules.
Moreover, �̄φ̃ is unique up to twisting by characters of G̃(AF )/G̃(F)G(AF ). And
we can define a global character of Sφ̃ by

< x, π̃ >:=
∏
v

< xv, π̃v > for [π̃ ] ∈ �̄φ̃ and x ∈ Sφ̃ .

2. If φ ∈ �̄2(G), the φ-component of the ζ̃ -equivariant discrete spectrum of G̃(AF )

as H̄(G̃)-modules can be decomposed as follows

L2
disc,φ(G̃(F)\G̃(AF ), ζ̃ ) = mφ

∑
ω∈Y/α(Sφ)

∑
[π̃ ]∈�̄

φ̃
⊗ω

<·,π̃>=1

π̃ ,

where mφ is defined as in Remark 3.14.

Proof If φ factors through φM ∈ �̄2(M) for some proper Levi subgroup M of G,
then by our induction assumption, we have a global L-packet �̄φ̃M

for M̃ , and we

can define �̄φ̃ to be the irreducible constituents induced from �̄φ̃M
. So it is enough

to consider the case φ ∈ �̄2(G). Note that one can always define a global packet �̄φ̃

as follows. If π̃ ∈ A2(G̃) and its restriction to G(AF ) have irreducible constituents
contained in �̄φ , then we can take the local lift �̄φ̃v

of �̄φv to be the one containing
[π̃v]. We form a global packet

�̄φ̃ :=
∏
v

�̄φ̃v
,

and the uniqueness property should follow from Corollary 5.9 and the decomposition
in Part (2).

To show Part (2), we can apply Lemma 5.25 to get

I G̃disc,φ( f̃ ) = SG̃disc,φ( f̃ )+ Cφ̃

∑
ω∈Y/α(Sφ)

∑
x∈S

φ̃
−{1}

f̃ ′̃
G
(φ̃ ⊗ ω, x). (6.11)
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By the local character relation, one can define a global packet �̄φ̃x
transferred from

�̄φ̃′ for any x ∈ Sφ̃ − {1}. Next we would like to add

2 · Cφ̃

∑
ω∈Y/α(Sφ)

∑
x∈S

φ̃
−{1}

∑
[π̃ ]∈�̄

φ̃x
<x,π̃>=−1

f̃G̃(π̃ ⊗ ω) (6.12)

to both sides of (6.11). Note that this sum does not include x ∈ Sφ̃ − {1} such that

< x, π̃ >= 1 for all [π̃ ] ∈ �̄φ̃x
. For those x which does not contribute to (6.12), we

have f̃ ′̃
G
(φ̃ ⊗ ω, x) = f̃ G̃(φ̃x ⊗ ω) which is defined by �̄φ̃x

and is stable. Then the
right hand side becomes

SG̃disc,φ( f̃ )+ Cφ̃

∑
ω∈Y/α(Sφ)

∑
x∈S

φ̃
−{1}

f̃ G̃(φ̃x ⊗ ω),

which is again stable. So the left hand side

I G̃disc,φ( f̃ )+ 2 · Cφ̃

∑
ω∈Y/α(Sφ)

∑
x∈S

φ̃
−{1}

∑
[π̃ ]∈�̄

φ̃x
<x,π̃>=−1

f̃G̃(π̃ ⊗ ω) (6.13)

is also stable. By (5.15),

I G̃disc,φ( f̃ ) = tr RG̃
disc,φ( f̃ ).

Let �̄φ̃ be the global packet defined in the beginning with respect to some fixed π̃0 ∈
A2(G̃). Since (6.13) is stable, it is stable at every place. Sowe can take f̃ = ⊗w f̃w and
fix ⊗w �=v f̃w for any place v, then by Corollary 4.8 the coefficient of f̃v(π̃v) in (6.13)
must be the same for all π̃v ∈ �̄φ̃v

. By varying ⊗w �=v f̃w and the linear independence

of characters of ⊗w �=vH̄(G̃w, χ̃w)-modules, we have that

[π̃0] = [π̃0
v ] ⊗ (⊗w �=v[π̃0

w])

contributes to (6.13) if and only if all elements in

�̄φ̃v
⊗ (⊗w �=v[π̃0

w])

also contribute to (6.13). By repeating this kind of argument, one can show all elements
in �̄φ̃ contribute to (6.13). Note for any [π̃] ∈ �̄φ̃ such that < ·, π̃ >= 1, it can only

contribute to I G̃disc,φ( f̃ ), which means it belongs to A2(G̃). Then the decomposition
in Part (2) will follow from Proposition 5.11 immediately.

��
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Remark 6.25 Following the proof, we can also apply the same argument to elements
in �̄φ̃x

which contributes to (6.13). It follows all elements in �̄φ̃x
contributes to (6.13).

For [π̃ ] ∈ �̄φ̃x
such that< ·, π̃ >= 1, it can only come from I G̃disc,φ( f̃ ). So �̄φ̃x

= �̄φ̃

up to twisting by some character in Y . Note this is only true for x ∈ Sφ̃ − {1} in the
sum (6.12). As a result, (6.13) becomes

mφ

∑
ω∈Y/α(Sφ)

f̃ G̃(φ̃ ⊗ ω),

where

f̃ G̃(φ̃ ⊗ ω) =
∏
v

f̃v(φ̃v ⊗ ωv).

Moreover, we have

SG̃disc,φ( f̃ ) = mφ

∑
ω∈Y/α(Sφ)

f̃ G̃(φ̃ ⊗ ω)− Cφ̃

∑
ω∈Y/α(Sφ)

∑
x∈S

φ̃
−{1}

f̃ G̃(φ̃x ⊗ ω).

Suppose �̄φ̃x
= �̄φ̃ up to twisting by some character in Y for all x ∈ Sφ̃ − {1}, then

SG̃disc,φ( f̃ ) = mφ

∑
ω∈Y/α(Sφ)

|Sφ̃ |−1 f̃ G̃(φ̃ ⊗ ω).

This is the stable multiplicity formula in Conjecture 5.18. We will come back to this
identity in Theorem 6.30.

Next, we will prove the corresponding statement of Conjecture 5.19 for G̃.

Theorem 6.26 Suppose φ ∈ �̄2(G) satisfying the assumption in Theorem 5.21 and
x ∈ Sθ

φ with α(x) = ω for θ ∈ �0 and some character ω of G̃(AF )/G̃(F)G(AF ).

For [π̃] ∈ �̄φ̃ with < ·, π̃ >= 1, the canonical intertwining operator

R(θ)−1 ◦ R(ω)

restricted to the π̃-isotypic component I (π̃) is equal to the product of m(π̃) and the
local intertwining operators Aπ̃v (θ, ωv) determined by xv (see (4.3)), i.e.

I (G̃
θ ,ω)

disc,φ ( f̃ ) = mφ

∑
ω′∈Y/α(Sφ)

∑
[π̃ ]∈�̄

φ̃
⊗ω′

<·,π̃>=1

f̃G̃θ (π̃ , ω), f̃ ∈ H̄(G̃, χ̃), (6.14)

where f̃G̃θ (π̃ , ω) = ∏
v f̃G̃θ

v
(π̃v, ωv), and it does not depend on x.
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Proof It follows from Theorem 6.24 that

I (G̃
θ ,ω)

disc,φ ( f̃ ) = tr R(G̃
θ .ω)

disc,φ ( f̃ ) =
∑
ω′

∑
[π̃ ]∈�̄

φ̃
⊗ω′

<·,π̃>=1

m(π̃, θ, ω) f̃G̃θ (π̃ , ω)

where the sum of ω′ is taken over

Y/
aut∏
v

α(S�0
φv
),

and |m(π̃, θ, ω)| is some integer less than or equal to

m(φ̃) := mφ |
aut∏
v

α(S�0
φv
)| |α(Sφ)|−1.

By Lemma 5.25, we have

I (G̃
θ ,ω)

disc,φ ( f̃ ) = |Sφ̃ |−1
∑
ω′

∑
x ′∈Sθ

φ(ω)

m(φ̃) f̃ ′̃
Gθ (φ̃ ⊗ ω′, x ′),

where the sum of ω′ is again over

Y/
aut∏
v

α(S�0
φv
).

Therefore

∑
ω′

∑
[π̃ ]∈�̄

φ̃
⊗ω′

<·,π̃>=1

m(π̃, θ, ω) f̃G̃θ (π̃ , ω) = |Sφ̃ |−1
∑
ω′

∑
x ′∈Sθ

φ(ω)

m(φ̃) f̃ ′̃
Gθ (φ̃ ⊗ ω′, x ′).

By the twisted character relation, one can define a global packet �̄φ̃x ′ transferred from

�̄φ̃′ for any x ′ ∈ Sθ
φ(ω). Note Sθ

φ(ω) = x · Sφ̃ , then
∑
ω′

∑
[π̃ ]∈�̄

φ̃
⊗ω′

<·,π̃>=1

m(π̃, θ, ω) f̃G̃θ (π̃ , ω) = |Sφ̃ |−1
∑
ω′

∑
y∈S

φ̃

m(φ̃)

∑
[π̃ ]∈�̄

φ̃xy
⊗ω′

< y, π̃ > f̃G̃θ (π̃ , ω), (6.15)
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where f̃G̃θ (π̃ , ω) is normalized by x (cf. (4.3)). This implies

∑
ω′

∑
[π̃ ]∈�̄

φ̃
⊗ω′

<·,π̃>=1

m(π̃, θ, ω) f̃G̃θ (π̃ , ω)=|Sφ̃ |−1
∑
ω′

∑
y∈S

φ̃

m(φ̃)
∑

[π̃ ]∈�̄
φ̃xy

⊗ω′

<·,π̃>=1

f̃G̃θ (π̃ , ω).

It follows from the linear independence of twisted characters of H̄(G̃, χ̃)-modules
that we can choose �̄φ̃x ′ = �̄φ̃ for all x ′ ∈ Sθ

φ(ω). Then

∑
[π̃ ]∈�̄

φ̃

<·,π̃>=1

m(π̃, θ, ω) f̃G̃θ (π̃ , ω) = m(φ̃)
∑

[π̃ ]∈�̄
φ̃

<·,π̃>=1

f̃G̃θ (π̃ , ω).

So m(π̃, θ, ω) = m(φ̃). Hence

I (G̃
θ ,ω)

disc,φ ( f̃ ) = mφ

∑
ω′∈Y/α(Sφ)

∑
[π̃ ]∈�̄

φ̃
⊗ω′

<·,π̃>=1

f̃G̃θ (π̃ , ω).

��
Nowwe are only left with proving the corresponding statement of Conjecture 5.18.

From Remark 6.25, we see the key is to prove the functoriality of endoscopic transfer.
Here we would like to consider a more general notion of that, i.e., functoriality
of twisted endoscopic transfer, and we formulate it in our context as follows. For
φ ∈ �̄(G) and semisimple s ∈ S̄φ , let (G ′, φ′) → (φ, s) and G̃ ′ ∈ E(G̃, ω) be the lift
of G ′, the functoriality of twisted endoscopic transfer means the global L-packet �̄φ̃′
transfers to a global L-packet �̄φ̃ through the local twisted character relation (4.2).

By the same argument in the proof of Lemma 4.11, we see the transfer of �̄φ̃′ only

depends on the image x of s in Sφ . So we can denote the transfer image by �̄φ̃x
.

Lemma 6.27 Suppose G̃ = G̃(n) for n � N, φ ∈ �̄(G) such that Sφ̃ = 1, then

�̄φ̃x
= �̄φ̃ up to twisting by some character in Y for any x ∈ Sφ .

Proof For semisimple s ∈ S̄φ , let (G ′, φ′) → (φ, s). Suppose |S̄0φ,s | = ∞, let Tφ,s be

a maximal torus of (Sφ,s)0, then M̂ ′ = Cent(Tφ,s, Ĝ ′) defines a proper Levi subgroup
of Ĝ ′ such that φ′ factors through φ′

M ∈ �̄2(M ′). Moreover, M ′ ∈ Eell(M) for a
proper Levi subgroup M of G, which is determined by M̂ = Cent(Tφ,s, Ĝ). So φ

factors through φM ∈ �̄(M), and we can reduce this case to M̃ .
Next we assume |S̄0φ,s | < ∞, then φ ∈ �̄ell(G). In particular, s ∈ S̄φ,ell and we let

x be its image in Sφ . We can also assume x �= 1, then Sφ̃ = 1 implies α(x) = ω �= 1.
By Lemma 5.25, we have

I (G̃,ω)disc,φ( f̃ ) = Cφ̃

∑
ω′∈Y/α(Sφ)

e′
φ(x) f̃

′̃
G
(φ̃ ⊗ ω′, x).
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By Lemma 5.22 and Theorem 6.26, we have

I (G̃,ω)disc,φ( f̃ ) = Cφ̃

∑
ω′∈Y/α(Sφ)

iφ(x) f̃G̃(φ̃ ⊗ ω′, x).

Note e′
φ(x) = iφ(x) �= 0. Then by the linear independence of twisted characters, we

have �̄φ̃x
= �̄φ̃ up to twisting by some character in Y . ��

It is not hard to extend this result to the general case.

Lemma 6.28 Suppose G = G(n1)×G(n2)×· · ·×G(nq), and φ = φ1 ×φ2 ×· · ·×
φq ∈ �̄(G) with φi ∈ �̄(G(ni )) for 1 � i � q. If Sφ̃i = 1 for all i , then �̄φ̃x

= �̄φ̃

up to twisting by some character in Y for any x ∈ Sφ .

Proof If we write the image of x in Sφi by xi , then by Lemma 6.27,
⊗q

i=1 �̄φ̃xi
is

a global L-packet of G̃(n1) × G̃(n2) × · · · × G̃(nq), and �̄φ̃x
is its restriction to G̃.

Since the restriction of a global L-packet is again a global L-packet, then �̄φ̃x
= �̄φ̃

up to twisting by some character in Y . ��
Remark 6.29 Wewould like to point out in the case of this lemma,Sφ̃ can be nontrivial
even though Sφ̃i = 1 for all i . For example, let G = Sp(2n)× Sp(2n) and φ = (φ1 �
φ2) × (φ1 � φ2) ∈ �̄2(G). We assume the central characters satisfy ηφ1 = ηφ2 �= 1,
then Sφ̃ ∼= Z/2Z.

Now we can prove the corresponding statement of Conjecture 5.18.

Theorem 6.30 Suppose G = G(n1) × G(n2) × · · · × G(nq), and φ = φ1 × φ2 ×
· · · × φq ∈ �̄2(G) with φi ∈ �̄(G(ni )) for 1 � i � q. If Sφ̃i = 1 for all i , then

SG̃disc,φ( f̃ ) = mφ

∑
ω∈Y/α(Sφ)

|Sφ̃ |−1σ(S̄0φ) f̃
G̃(φ̃ ⊗ ω), f̃ ∈ H̄(G̃, χ̃).

Proof It follows from Remark 6.25 and Lemma 6.28 that

SG̃disc,φ( f̃ ) = mφ

∑
ω∈Y/α(Sφ)

|Sφ̃ |−1 f̃ G̃(φ̃ ⊗ ω).

Note in this case σ(S̄0φ) = 1. This finishes the proof.
��

Up to now, we have proved the local and global theorems for G̃ under our induction
assumptions, when G does not contain any factor of SO(2N +2, η) (cf. Remark 6.1).
By adding these results to our induction assumptions, we can prove the general case
by repeating the previous arguments in Sects. 6.4 and 6.5 without any change.
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7 Appendix: An irreducibility result

The aim of this appendix is to prove Propositions 3.10 and 3.11. We should point
out that neither these results nor their proofs are new, and just for the convenience of
the readers we would like to present their proofs here. In this section G will always
denote a symplectic group or special even orthogonal group. First, let us restate Propo-
sition 3.10, and for its proof we will follow the same argument in [27].

Proposition 7.1 If F is global and φ ∈ �sim(N ), then φv ∈ �+
unit (Nv).

Proof Suppose πφ is the unitary cuspidal automorphic representation ofGL(N ) asso-
ciated to φ. By [37], πφ,v is generic for all places v. And one knows from [17] that
any irreducible generic representation of GL(N ) over a local field is a fully induced
representation

IP (ν
a1σ1 ⊗ νa2σ2 ⊗ · · · ⊗ νar σr )

where P is some standard parabolic subgroup of GL(N ), σi are unitary essentially
discrete series representations and ai ∈ R for 1 � i � r . So for our φ, we have

φv = νa1φv,1 ⊕ νa2φv,2 ⊕ · · · ⊕ νasφv,s

whereφv, j ∈ �sim(Nv, j ) for 1 � j � s. Sinceπφ,v is also unitary, by the classification
of unitary dual ofGL(N ) (archimedean case in [46] and nonarchimedean case in [44]),
φv must belongs to �+

unit (N ). In particular, |a j | < 1/2 for 1 � j � s. ��
Next we restate Proposition 3.11 as follows.

Proposition 7.2 Suppose F is local, φ ∈ �̄+
unit (G), and φ can be regarded as φM,λ

where φM ∈ �̄bdd(M) and λ ∈ a∗
M lies in some open chamber of P ⊇ M. Then for

any [πM ] ∈ �̄φM , the induced representation IP (πM,λ) is irreducible.

Before starting the proof, we want to introduce some notations for the parabolic
induction. Supposeπ1 andπ2 are representations ofGL(N1) andGL(N2) respectively,
we will write π1 × π2 for the parabolic induction of π1 ⊗ π2 by viewing GL(N1) ×
GL(N2) as the Levi component of a maximal parabolic subgroup in GL(N1 + N2).
And similarly, suppose π and σ are representations of GL(N ) and G, we will write
π � σ for the parabolic induction of π ⊗ σ by viewing GL(N ) × G as the Levi
component of a maximal parabolic subgroup in G+ which is of same type as G.

The proof of this proposition breaks down to several steps. First notice φ ∈
�̄+

unit (G), so we can write

φ = φG− ⊕ (νa1φ1 ⊕ ν−a1φ∨
1 )⊕ · · · ⊕ (νamφm ⊕ ν−amφ∨

m),
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where G− is of the same type as G, φG− ∈ �̄bdd(G−), and φi ∈ �sim(Ni ) for
1 � i � m with 0 < am � · · · � a1 < 1/2. Then

φM = φG− ⊕ φ1 ⊕ · · · ⊕ φm ∈ �̄bdd(M),

and λ = (a1, a2, · · · , am). Let πφi be the corresponding essentially discrete series
representation of GL(Ni ) associated to φi for 1 � i � m, then any πM ∈ �̄φM

can be written as πM = πG− ⊗ πφ1 ⊗ · · · ⊗ πφm , for some πG− ∈ �̄φG− . And
IP (πM,λ) = νa1πφ1 × · · · νamπφm � πG− . Next, we have two reduction steps. These
steps are due to Speh and Vogan [43], and they are also presented very clearly in [30],
so we will state them without proofs. The first reduction is given by the following
lemma.

Lemma 7.3 IP (πM,λ) is irreducible if and only if νaiπφi ×νa jπφ j , ν
aiπφi ×ν−a jπ∨

φ j

are irreducible for all i �= j , and also νaiπφi � πG− is irreducible for all i .

To make the second reduction, we need to write φG− = φG ′− ⊕ (φ′
1 ⊕φ′∨

1 )⊕ · · · ⊕
(φ′

n ⊕φ′∨
n ), where G ′− is of the same type as G− and φG ′− ∈ �̄2(G ′−), φ′

i ∈ �sim(N ′
i ).

Then it is clear that πG− is a subrepresentation of πφ′
1
× · · · × πφ′

n
� πG ′− for some

πG ′− ∈ �̄φG′−
. And we can state the second reduction as follows.

Lemma 7.4 For 1 � i � m, νaiπφi �πG− is irreducible if νaiπφi ×πφ′
k
, νaiπφi ×π∨

φ′
k

are irreducible for 1 � k � n, and also νaiπφi � πG ′− is irreducible.

Since 0 < ai < 1/2 for 1 � i � m, by the theory of Zelevinsky [50] and its
archimedean analogue [46], we can see easily that νaiπφi ×νa jπφ j , ν

aiπφi ×ν−a jπ∨
φ j

are irreducible for all i �= j , and νaiπφi × πφ′
k
, νaiπφi × π∨

φ′
k
are irreducible for all

k. So it reduces to show νaiπφi � πG ′− is irreducible for 1 � i � m. And this is the
consequence of the following proposition.

Proposition 7.5 Suppose π and σ are discrete series representations of GL(N ) and
G respectively, then the induced representation νaπ�σ is irreducible if 0 < a < 1/2.

The proof of this proposition is divided into two cases: archimedean and nonar-
chimedean. The archimedean case follows from the result of Speh and Vogan directly,
and we refer the readers to [43] for precise statement of their theorems. For the nonar-
chimedean case, the story is not that straightforward, and we will concentrate on this
case. So nowwe assume F is nonarchimedean, andwe canwrite the essentially discrete
series νaπ of GL(N ) as segments according to the classification theory of Zelevinsky
[50], i.e. νaπ = δ(ν−l1ρ, νl2ρ) where ρ is a cuspidal representation of GL(dρ), dρ
is defined by ρ, and l1 + l2 ∈ Z�0 with a = (l2 − l1)/2. Note that 2l2 + 1 /∈ Z for
0 < a < 1/2. Then it is easy to see that the nonarchimedean case follows from the
following theorem due to Tadić ([29], Theorem 2.2).

Theorem 7.6 Suppose F is nonarchimedean, δ = δ(ν−l1ρ, νl2ρ) and σ is a discrete
series of G. If ρ �= ρ∨ or 2l2 + 1 � Z, then δ � σ is irreducible.
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The proof of this theorem again involves several reduction steps. It is clear that
there is no harm to assume l2 > l1. The simplest case is when δ = νlρ and σ is a
cuspidal representation, and this has been settled by Mœglin in [23]. In fact, Mœglin
has proved the following result.

Proposition 7.7 Suppose F is nonarchimedean, ρ and σ are cuspidal representations
of GL(N ) and G respectively. If ρ = ρ∨ and ναρ � σ is reducible, then α ∈ 1

2Z, and
νβρ � σ is irreducible for all β ∈ R \ {±α}; If ρ �= ρ∨, then νl � σ is irreducible for
all l ∈ R.

We should point out the original proof of Proposition 7.7 in [23] is based on the
assumption of functorial lifting from classical groups to general linear groups. Now
it is unconditional by Arthur’s result [7]. For the second reduction step of the proof
of Theorem 7.6, Tadić shows the theorem is true for σ being cuspidal in [45], and he
uses an induction argument which is quite different from the proof of Proposition 7.7.
Finally, we can consider the general case, i.e. σ is a discrete series of G. Suppose σ
is not cuspidal, then by Mœglin-Tadićs’ classification of discrete series of classical
groups [28], one has an inclusion

σ να1π1 × να2π2 × · · · × ναmπm � σ ′

where πi are self-dual essentially discrete series of GL(Ni ), αi ∈ 1
2Z>0, and σ ′ is a

discrete series of G ′, where G ′ is of the same type as G. So we can do induction on
the rank of G, and assume δ�σ ′ is irreducible, i.e. the standard intertwining operator
δ�σ ′ �−→ δ∨

�σ ′ is a bijection by the theory of Langlands quotient. Note that δ×ναiπi
and δ∨ × ναiπi are irreducible, so the normalized intertwining operators

δ × ναiπi
�

ναiπi × δ

ναiπi × δ∨ �
δ∨ × ναiπi

are bijections. Now consider the following composition of normalized intertwining
operators.

δ � σ ↪−→ δ × να1π1 × να2π2 × · · · × ναmπm � σ ′ �−→ να1π1

×δ × να2π2 × · · · × ναmπm � σ ′
�−→ · · · �−→ να1π1 × να2π2 × · · · × ναmπm � δ

×σ ′ �−→ να1π1 × να2π2 × · · · × ναmπm � δ∨ × σ ′
�−→ να1π1 × να2π2 × · · · × δ∨ × ναmπm � σ ′ �−→ · · · �−→ δ∨

×να1π1 × να2π2 × · · · × ναmπm � σ ′
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This shows the standard intertwining operator

δ � σ
�−→ δ∨

� σ

is a bijection, and hence δ � σ is irreducible. This finishes the proof of Theorem 7.6.
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