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On Maoeglin’s Parametrization of Arthur
Packets for p-adic Quasisplit Sp(N) and
SO(N)

Bin Xu

Abstract. 'We give a survey on Moeglin’s construction of representations in the Arthur packets for p-
adic quasisplit symplectic and orthogonal groups. The emphasis is on comparing Mceglin’s parame-
trization of elements in the Arthur packets with that of Arthur.

1 Introduction

Let F be a number field and G be a quasisplit connected reductive group over F. The
local components of the automorphic representations of G belong to a very special
class of irreducible smooth representations, which is usually referred to as the Arthur
class. In the archimedean case, there is a geometric theory of irreducible smooth rep-
resentations (see [ABV92]), which suggests a possible way to characterize the Arthur
class. In the p-adic case, the general characterization of the Arthur class remains a
mystery. Nonetheless, when G is a general linear group, the Arthur class is known in
both cases due to Mceglin and Waldspurger’s classification of the discrete spectrum of
automorphic representations of general linear groups [MW89]. In this paper, we will
only consider the p-adic case. So from now on, let us assume F is a p-adic field, and
we will also denote G(F) by G, which should not cause any confusion in the context.
To describe the Arthur class for general linear groups, we need to introduce some no-
tation first. If G = GL(n), let us take B to be the group of upper-triangular matrices
and T to be the group of diagonal matrices, then the standard Levi subgroup M can
be identified with

GL(n;) x IIx GL(n,)

for any partition of n = ny + [T} n, as follows:

G61.(m) 1
H H
- GL(n,) L

(g1>-..,g) diag{g,.... &}
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For n = m; [Tz}, where 71; is a finite-length smooth representation of GL(n;) for
1 [11Cz) we denote the normalized parabolic induction Ind$ (7) by 71, X(IIX7z,. More-
over, we denote the direct sum of its irreducible subrepresentations by [z x [IIx 7, []
An irreducible supercuspidal representation of a general linear group can always be
written in a unique way as pfl & p [Tdet( DB for an irreducible unitary supercus-
pidal representation p and a real number x. To fix notation, we will always denote
by p an irreducible unitary supercuspidal representation of GL(d,). Now for a fi-
nite length arithmetic progression x, ..., y of real numbers of step size one and an
irreducible unitary supercuspidal representation p of GL(d,), it is a general fact that

pll x Ik p!

has a unique irreducible subrepresentation, denoted by [p x, ..., y[dr [, ..., y[If
x 34 it is called a Steinberg representation; if x < y, it is called a Speh representation.
Such sequence of ordered numbers is called a segment, and we denote it by [x, y] or
{x,...,y}. Inparticular, when x = —y > 0, we can let a = 2x +1 [4 and write

-1 -1
St(‘[),a)lé-L lﬁT,...,_aTI:l

which is an irreducible smooth representation of GL(ad,). It follows from Zele-
vinksy’s classification theory that all discrete series of GL(#) can be given by St(p, a)
for pairs (p, a) satisfying n = ad,, and this is a bijection. We define a generalized

segment to be a matrix
1 1 X1n
1 1] Xmn

such that each row is a decreasing (resp. increasing) segment and each column is an
increasing (resp. decreasing) segment. The normalized induction

Xim,m] I Xits - 5 xin O

has a unique irreducible subrepresentation, and we denote it by [p {x;;}ux, L1f there
is no ambiguity with p, we will also write it as [{b;;} =, Ldr

1 i X1n [
H -

@11 DDD Xmn |:I
Moreover,
[a {xi Fmxen CEIB {4 13 e D

where {x;;},x, is the transpose of {x;;}mxn. Let a, b be positive integers; we define
Sp(St(p, a), b) to be the unique irreducible subrepresentation of

St(p, a)[m(b—l)/z x St(p, a)[]]](b_3)/2 x [IIX St(p, a)mb—n/z'
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Then one can see that Sp(St(p, a), b) is given by the generalized segment
a—-b)/2 OO 1-(a+b)/2

+5)/2-1 OO —(a-b)/2

The Arthur class for GL(#) consists of irreducible representations

(L1) .r (Sp(St(pi, ai), bi) * [IIx Sp(St(ps, a:), bi) )
=1 [ “|“|H|\|“|“|“| T TTTIOCCONIN (1

for any set of triples (p;, a;, b;) with multiplicities /; such that P}, l;a;b;d,, = n. In
particular, it contains all the discrete series. The local Langlands correspondence for
general linear groups gives a bijection between the set of equivalence classes of irre-
ducible unitary supercuspidal representations of GL(d) with the equivalence classes
of d-dimensional irreducible unitary representations of the Weil group Wg. If we
identify p; in (1.1) with the corresponding d,,-dimensional representations of Wg,
then we get an equivalence class of n-dimensional representations of Wg x SL(2, C) %
SL(2,C) by taking

éli(l)i v mi),

where v, (resp. v,) is the (a; — 1)-th (resp. (b; — 1)-th) symmetric power represen-
tation of SL(2, C). So the Arthur class for GL(#) can be parameterized by the set of
equivalence classes of n-dimensional representations of

WW x SL(2,C) x SL(2,C) [=&L(n,C)

such that yy, is unitary and y(J; (2,cyxsr(z,c) is algebraic. We call such y an Arthur
parameter for GL(n). The two copies of SL(2, C) in the definition of Arthur param-
eters have their own meanings. The first one, introduced by Deligne, corresponds to
some monodromy operator, and is usually integrated with the Weil group as Lp &
WE x SL(2,C), named Weil-Deligne group (or local Langlands group). The second
SL(2,C) is introduced by Arthur, and it corresponds to the non-temperedness of the
associated irreducible smooth representation of GL(#) (cf. (L1)).

For general G, we can define an Arthur parameter to be a AG—conjugacy class of
admissible homomorphisms from Ly x SL(2,C) to LG that are bounded on their
restrictions to Wr. We denote the set of Arthur parameters by W (G). It is conjectured
that the Arthur class for G should be parameterized by ¥(G). To be more precise,
for any y [W(G), we are expecting to be able to associate it with a finite set II,,
of irreducible smooth representations of G, which is called an Arthur packet. The
structure of IT,, can be very delicate in general; for example, we would expect these
packets to have nontrivial intersections with each other. When G is a classical group,
Moeglin has developed a theory to characterize the elements in T, (cf. [MoegO6b,
Moeg09], etc.). The main goal of this paper is to present her results in the case of
quasisplit symplectic and orthogonal groups. First of all, we need to give the definition
of ITy, in these cases.

To simplify the discussion in the introduction, we assume that G = Sp(2#n) unless
otherwise specified. We should point out all the theorems and propositions that we
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state for symplectic groups below also have their analogues for orthogonal groups.
For y [W(G), there is a natural GL(N, C)-conjugacy class of embeddings ‘G [1
GL(N,C) for N = 2n + 1. So we can view y as an equivalence class of represen-
tations of Lg X SL(2,C), or an Arthur parameter for GL(N). Moreover, such v is
necessarily self-dual. So by the previous discussion we can associate it with an irre-
ducible smooth representation m, of GL(N) (cf. (1.1)) that is also self-dual. Arthur
[Art13] showed that one can associate y with a “multi-set” II,, of irreducible smooth
representations of G such that the spectral transfer of some linear combination of
characters in II,, is the twisted character of 7. If we define Sy, to be the component
group of the centralizer of the image of y in G (which can be made independent of the
choice of representatives of y, and shown to be abelian), then Arthur further showed
that there is a “canonical” map from ITy, to the characters S, of S,,. So for any element
e [3,, we can write 7(y, €) for the direct sum of elements in IT,, that are associated
with & then 7(y, €) is a finite-length smooth representation of G. The possibility for
IT, being a multi-set rather than a set suggests the irreducible constituents in 7 (y, €)
may have multiplicities, and also 7(y, €) may have common irreducible constituents
for different ¢ [C5,. But these possibilities are all ruled out by the following deep
theorem of Meeglin.

Ceordm 1.1 (Meeglin, [Mceglic]) For G = Sp(2n) and v LY (G), Il is multiplicity
free.

In fact, for v [¥(G) and ¢ |f3w, Moeglin constructed a finite-length semisimple
smooth representation 7 (v, €) of G. She showed that IT,, consists of 7y (, €) for all
& [ 3y, and by studying their properties she was able to conclude Theorem 1.1. A sub-
tle point here is 7(y, €) in Arthur’s parametrization can be different from (v, €).
This point has been emphasized in various works of Mceglin, and she also gave the
relation between these two. Our second goal in this paper is to make that relation
more transparent, and in the meantime we are able to clarify the fact that the repre-
sentations 7y (y, €) constructed by Mceglin are indeed elements in the Arthur packet
IT,. For this purpose, we would like to rewrite Arthur’s parametrization 7(y, €) by
7w (Y, €) to emphasize its dependence on certain kind of Whittaker normalization
(see Section 4). And the relation between 7y (y, €) and mp(y, €) can be given in the
following theorem.

[Ceordm 1.2 For G = Sp(2n) and v LY (G), there exists a character EWM/W I:A$1,,,
M/W
).

such that for any € ESW, (v, €) = mw(y, gy,

For the statement in this theorem to be true, we have implicitly put some restric-
tions on Moeglin's parametrization 7 (y, €). In the most general setting, we will at-
tach mp(y, €) to characters € in Sy>, which contains S, (see Section 2), and we will

also define eylw in Sy>. The starting point of this comparison theorem is in the case
of discrete series. Let us define

®2(G) {4 [¥(G) 0= > p, L) Ll andp/ 2 pi}.
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Then the following theorem of Arthur showed @, (G) parametrizes the discrete series
of G.

Ceardm 1.3 (Arthur) For G = Sp(2n), the set of irreducible discrete series represen-
tations of G admits a disjoint decomposition

Hz(G) = * H¢
¢ [ (G)

Moreover, for any ¢ LD,(G) and ¢ E§¢, w (¢, €) is an irreducible representation.

For ¢ [®,(G) and ¢ E§¢, we can simply define
m (¢, €) & nw (9, €).

To justify this definition, we need to recall Mceglin’s construction (joint with Tadi¢)
of discrete series of G. We start by introducing some more notations, and here we will
also include the case of special orthogonal groups.

If G = Sp(2n), let us define it with respect to ( ](:] "I, where

1 I
]rt:%." %
[Fm| -

Let us take B to be subgroup of upper-triangular matrices in G and T to be subgroup
of diagonal matrices in G; then the standard Levi subgroup M can be identified with

GL(n;) x IIx GL(n,) x G-

for any partition n = n; + I3 n, + n_ and G- = Sp(2n-) as follows:

rﬁ{‘(nl) 0 1
GL(n,)
G-
GL(n,)
Lo GL(m) -
(1.2) (g, 00%,, &) = diag{g,....8r 818 »---»181 b

where ;g; = J,,,'giJ,,! for 1 [ 7l Note n— can be 0, in which case we simply write
Sp(0) =1. For n = m; [ x) Calwhere 7; is a finite-length smooth representation
of GL(n;) for 1 [ [dand o is a finite-length smooth representation of G—, we
denote the normalized parabolic induction Indg () by my x I 7, [Cal Moreover,
we denote the direct sum of its irreducible subrepresentations by [z x I 7, Call
This notation can be easily extended to special orthogonal groups. If G = SO(N)
split, we define it with respect to /. When N is odd, the situation is exactly the same
as the symplectic case. When N = 2n, there are two distinctions. First, the standard
Levi subgroups given through the embedding (1.2) do not exhaust all standard Levi
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subgroups of SO(2n). To get all of them, we need to take the 6y-conjugate of M given
in (1.2), where

ES 1

1 1

Note that M% # M only when n- = 0 and n, > 1. In order to distinguish the -
conjugate standard Levi subgroups of SO(2n), we will only identify those Levi sub-
groups M in (1.2) with GL(n;) X IIXGL(#n,) X G-, and we denote the other one simply
by M9 Second, if the partition n = n; + ([} n, + n_ satisfies n, = land n— = 0,
then we can rewrite it as # = n; + (I n,_; + n_ with n_ = 1, and the corresponding
Levi subgroup is the same. This is because GL(1) [JO(2). To fix notation, we will
always write it as SO(2). In this paper, we will also consider G = SO(2#, 1), which
is the outer form of the split SO(2n) with respect to a quadratic extension E/F and
0o. Here 7 is the associated quadratic character of E/F by the local class field the-
ory. Then the standard Levi subgroups of SO(2n, 1) will be the outer form of those
0-stable standard Levi subgroups of SO(2#n). In particular, they can be identified
with GL(n;) x IIx GL(n,) X SO(n-, n) and n_ # 0. Note that in the case of SO(8),
there is another outer form, but we will not consider it in this paper.

Now we are back to the case where G = Sp(2n). For ¢ = =1_, p; [v,] v 1D, (G),
we define

Jord(¢) & {(ps»a) O DG, and Jord,(¢) B {a; Tp = p.}.

Then we can identify é(p with the subspace of Z,-valued functions (D) on Jord(¢)
such that
M e(p,a) =1
(p,a) Jdrd(¢)
(see Section 2). The following theorem gives a parametrization of irreducible super-
cuspidal representations of G.

[Ceardm 1.4 ([Mcegllb, Theorem 1.5.1]) For G = Sp(2n), the irreducible supercus-
pidal representations of G are parametrized by ¢ [CD,(G) and € I:i(p, satisfying the
following properties:

(i) if (p,a) Obrd(¢), then (p,a —2) Obrd(¢) as longasa—2>0;
(i) if (p,a), (p,a—2) Ubrd(¢), then e(p,a)e(p,a—2) =L
(iii) if (p,2) Obrd(¢), then e(p,2) = -1

For non-supercuspidal irreducible representations of G, we can characterize their
cuspidal supports by the following proposition.

Proposition 1.5 ([Xul5, Proposition 9.3]) For G = Sp(2n), suppose ¢ L,(G),
and ¢ [By. For any (p,a) [Jord(¢), we denote by a— the biggest positive integer
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smaller than a in Jord,(¢). And we also write amin for the minimum of Jord,(¢). If
A = Amin, we let a_ = 0 if a is even, and —1 otherwise. In this case, we always assume

e(p,a)e(p,a-) =-L
(i) Ife(p,a)e(p,a-)=-landa_<a-—2, then
(1.3) mw($,e) CIh—1)/2,..., (a- +3)2CCmy (¢, €)

as the unique irreducible subrepresentation, where

Jord(¢") = Jord(¢) L{lp a- + D} (p. @)},
and
e (D =¢e(D over Jord(¢)/{(p, a)}, e'(p, a-+2)=¢e(p,a).

(i) Ife(p,a)e(p,a-) =1, then
(1.4) tw($,e) CIh—1)/2,...,—(a- - )/2C0ay (¢ ),

where )

Jord(¢') =Jord(¢)/{(p, a), (p, a-)}
and e () is the restriction of e([). In particular, suppose &, E§¢ satisfying e (D =
e(D over Jord(¢') and
a(p,a) =—e(p,a), ea(p,a-)=-¢e(p,a-).

Then the induced representation in (1.4) has two irreducible subrepresentations,
namely

mw (¢, ) L (¢, &1).
(iii) Ife(p, Amin) =1 and amin is even, then
(1.5) mw (s €) TIChmin —1)/2,..., a0 [(Lamly (¢, ¢)

as the unique irreducible subrepresentation, where

Jord(¢) = Jord($)/{(p, amin)}.
and & () is the restriction of e([).

The construction of discrete series by Moeglin and Tadi¢ can be obtained by revers-
ing steps (1.3), (1.4), and (1.5) in this proposition. Finally, in the general construction
of mp (, €), one requires various reducibility results, which are all based on the fol-
lowing basic criterion.

Proposition 1.6 ([Xul5], Corollary 9.1) For G = Sp(2n), suppose 7 is a supercuspidal
representation of G and m [l for some ¢ [LD,(G). Then for any unitary irreducible
supercuspidal representation p of GL(d,), the parabolic induction

pIE@*D/2 [
reduces exactly for
xJord,(¢), ifJord,(¢) # [, i
a, = if Jord,(¢) = L plis self-dual and is of opposite type to G,

otherwise.
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The main tool in Meeglin’s construction of elements in the Arthur packets of clas-
sical groups is the Jacquet module. Here we would like to summarize the relevant no-
tation about Jacquet modules used in her work. For general G, we denote by Rep(G)
the category of finite-length smooth representations of G. We include the zero space
in Rep(G), and by an irreducible representation we always mean it is nonzero. Now
let G be a quasisplit symplectic or special orthogonal group of F-rank n. We fix a
unitary irreducible supercuspidal representation p of GL(d,), and we assume M =
GL(d,) x G- is the Levi component of a standard maximal parabolic subgroup P of
G. Note that in case G- = 1 and G is special even orthogonal, we require P to be con-
tained in the standard parabolic subgroup of GL(2#) by our convention. Then for
7 [Rep(G), we can decompose the semisimplification of the Jacquet module

s.s.Jacp(m) = =>1; La}

where 7; [Bep(GL(d,)) and 0; [Bep(G-), both of which are irreducible. We define
Jac, 7 for any real number x to be

Jac,(m) = = o;.
Ti=pH
If we have an ordered sequence of real numbers {x1,. .., x;}, we can define
x, 70 = Jac, oD Jac,, 7.

Moreover, let

o otherwise.

Jac, = %x-'-lacx 00y, ifG=SOQ@2n)andn=d, #1,

Then Jac, defines a functor on the category of O(2n)-conjugacy classes of finite-
length smooth representations of SO(2#). It is not hard to see Jac, can be defined
for GL(n) in a similar way by replacing G- by GL(n-). Furthermore, we can de-
fine Jacy? analogously to Jac, but with respect to p “and the standard Levi subgroup
GL(n-) X GL(d,) So let us define Jac? = Jac, oJac?® for GL(n). There are some
explicit formulas for computing these Jacquet modules, and we refer the readers to
[Xul5, Section 5].

2 Arthur Parameters

Let F be a p-adic field and let G be a quasisplit symplectic or special orthogonal group.
We define the local Langlands group as Lr = Wr x SL(2, C), where W is the usual
Weil group. We write I'r = Iy, for the absolute Galois group over F. Let G be the
complex dual group of G, and let LG be the Langlands dual group of G. An Arthur
parameter of G is a AG—conjugacy class of admissible homomorphisms

yLp x SL(2,C) [=AG,

such that y0y, is bounded. If yld;(5,c) = 1, we say the parameter is tempered. We de-
note by ¥(G) the set of Arthur parameters of G. Here we can simplify the Langlands
dual groups as in the following table:
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G e
Sp(2n) SO(2n+1,C)
So(2n+1) Sp(2n,C)
SO0(2n,n) | SO(2n,C) [T}/

In the last case, # is a quadratic character associated with a quadratic extension E/F
and T'g/r is the associated Galois group. We fix an isomorphism SO(2n, C) [T}, [
0(2n,C). So in either of these cases, there is a natural embedding &y of 'G into
GL(N,C) up to GL(N, C)-conjugacy, where N = 2n +1if G = Sp(2n) or N = 2n
otherwise. We fix an outer automorphism 60y of G preserving an F-splitting. If G is
symplectic or special odd orthogonal, we let 8, = id. If G is special even orthogonal,
welet g be induced from the conjugate action of the nonconnected component of the
full orthogonal group. Let 60 be the dual automorphism of 6. We write £ = [By[,]
G® = G (I8, hnd G* = G [If, (S0 in the special even orthogonal case, G*°
(resp. G>) is isomorphic to the full (resp. complex) orthogonal group. Let w be the
character of G*°/G, which is nontrivial when G is special even orthogonal.

By composing v with &y, we can view y as an equivalence class of N-dimensional
self-dual representation of Lg X SL(2, C). So we can decompose y as follows:

1) y= >1 Ly, = >1 Lip: Td, ).

Here p; are equivalence classes of irreducible unitary representations of Wg, which
can be identified with irreducible unitary supercuspidal representations of GL(d,,)
under the local Langlands correspondence (¢f. [HT01, Hen00, Sch13]). And v, (resp.
vp,; ) are the (a;—1)-th (resp. (b;—1)-th) symmetric power representations of SL(2, C).
The irreducible constituent p; [v), [vJ; has dimension n; = n,, 4,4,y and multi-
plicity I;. We define the multi-set of Jordan blocks for y as follows:
Jord(y) & {(pi, ai, b;) with multiplicity I; O [}
For any p, let us define

Jord, () E{(p’,a’,b") Tbrd(y) [p" = p}.

Fix a representative y; we define for any subgroup X [ 3,
Sz = Cent(Im 1//,AGZ),

= SZ/Z(G)rF

*SM \*EM\

=S /s = SZ/SOZ(C)FF.
We denote by s,, the image of the nontrivial central element of SL(2,C) in S,,.

To characterize the centralizer groups S, and S2°, we need to introduce a parity

condition on the set of Jordan blocks Jord(y). There is a common way to define the
parity for self-dual irreducible representations p of Wr (see [Xul5, Section 3]). We
say (pi, a;, b;) is of orthogonal type if p; [v], [v), factors through an orthogonal
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group, or equivalently a; + b; is even when p; is of orthogonal type and a; + b; is
odd when p; is of symplectic type. Similarly we say (p;, a;, b;) is of symplectic type if
pi [yl [wyl factors through a symplectic group, or equivalently a; + b; is odd when
pi is of orthogonal type and a; + b; is even when p; is of symplectic type. Let v, be
the parameter whose Jordan blocks consists of those in Jord(y) with the same parity
as G, and let Vup be any Arthur parameters of general linear group such that

v =ynp Lyl |—1_/LE
We denote by Jord(y), the set of Jordan blocks in Jord(y,) without multiplicity. Af-

ter this preparation, we can identify those centralizer groups above with certain quo-
tient space of Z,-valued functions on Jord(y),. To be more precise, let so = (so,;) [J

Z;Otd('/’)p be defined as so,; =1if /; is even and so,; = =1 if [; is odd. Then
sy = (1) (2" YO

and
Sy (s = () (2, DL ()™ = 11/ R0

if G is special even orthogonal. Under these identifications,

sy = sy F (sy,1) I:Zgord(l/l)'D
with sy ; = (-1’ if b; is even and sy,i = 1if b; is odd. Let us denote by S, (resp.
Si") the corresponding quotient space of Z,-valued functions on Jord(y), such that
Sy [, (resp. S [S}").

There is a natural inner product on X that identifies its dual with itself. Let
e = (&;) and s = (s;) be two elements in Z)" %, then their inner product is defined
by e(s) = L;(e; Csl), where

L ife; =5, =1,
81 II‘I = 1 .l
otherwise.

Si“ ={e= (&) EZL‘"“"/)" 0L eii =1}.

Zgord(l/,)p

So on the dual side,

When G is special even orthogonal, let &g = (g,) EZ;Md(W)p be defined as ;; = 1
if n; is even, or &,; = —1if n; is odd then g, [Si" is always trivial when restricted to
Sy, and

V/’

ASW = {e=(e) I:Z;ord(v/)p DI'_ ££i =1}/ &[]
In general, we can let 9 = if G is not special even orthogonal. In this paper, we will
always denote elements in Si" by ¢ and denote its image in S, by &.

For computational purposes, it is more convenient to view S,f," as functions on
Jord(y,). In fact there is a natural projection

Ziord('/’p) E]"i—[z;ord(‘V) p

.
s
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such that
s (p,a,b) = M s(p,a,b)
(pya’ b)) Oord(yy)
(p »a ,b)=(p,a,b) in Jord(y),

for (p, a,b) Cord(y),. In particular, so has a natural representative sg in z;"”‘(‘”p)

given by sg (p, a, b) = —1for all (p, a, b) Obrd(y,). When G is special even orthog-
onal, the determinant condition for defining S,, becomes
(2.2) M s(p, a, b)'®ab =1,

(p,a,b) Jdrd(yp)
Moreover, sy also has a natural representative s, in Zéord(wp)
if b is even or 1if b is odd. We define

sy ={s(D 20

givenby s, (p, a,b) = -1

and
S\/P - {S(D H;ord(Wp) 0 M S(P) a, b)n(p’a’b) - 1}/@D
(p>a,b) Jdrd(yp)

if G is special even orthogonal. Then there are surjections Siﬂ - S,/Z,0 and Sy> - Sy.
On the dual side, we have a natural inclusion

leord(u/)p ']I:iz]zm'd(‘l/p)

|
such that £ (p, a,b) = e(p, a,b) for (p,a,b) Jord(y,). We can define an inner
product on Zgord(wp) as for Z;md(q/)p. Then this inclusion is adjoint to the previous

projection in the sense that
e(Cont(s)) = Ext(e)(s)

for ¢ I:Zgord(u')p and s DZL‘“‘“‘”P). Therefore, &) can also be viewed as a functjon
on Jord(y,) through the inclusion map, and the condition imposed on defining Si“
becomes
M e(p,a,b) =1
(p,a,b) Jord(yp)
We also define

Se={e(D L0 M epab)=1},
(p>a,b) Jdrd(yp)

Sy-={e(D Y0 M e(pab)= 1M/ @O
(p,a,b) Jdrd(yp)

. . . . . 2 b - “ =
ifGis spzeaal even orthogonal. Then theri are inclusions S;° I:Sﬁg and S, [S}.
For & [3;2, we denote its image in Sy> by e.

In the end, we are going to associate any Arthur parameter y [W(G) with two
Langlands parameters of G naturally. For the first one, we define

BE 0

o @o?) v

)=y (u, (
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Note that ¢, is nontempered in general, and in the notation of (2.1) we can write it as
’ bi-l bi—1)/2-j
¢y ==>1i( >0(Pim' T vd)).
= j=

For the second one, we can compose ¥ with
AWE x SL(2,C) [ W x SL(2,C) x SL(2,C),

which is the diagonal embedding of SL(2, C) into SL(2, C)*SL(2, C) when restricted
to SL(2,C), and is the identity on Wr. Note that the composition y; F wo A is
tempered. To expand y,, we need to introduce some more notation. For (p, a,b) [
Jord(y), let us write A = (a + b)/2 -1, B=[d — bll2, and set { = {, , = Sign(a — b)
if a # b and arbitrary otherwise. Then we can replace (p, a, b) by (p, A, B, {). Under
this new notation, we have

va=L(C 2 pi Dvda),
=L i, Bi]
where j is taken over half-integers in the segment [A;, B;].

Finally, 2y acts on ¥(G) through A@g, and we denote the corresponding set of
¥o-orbits by W(G). It is clear that for ¥ [W(G), Jord(y) only depends on its im-
age in W(G). It is for this reason that we will also denote the elements in ¥(G) by
v. Moreover, through the natural embedding £y, we can view ¥(G) as a subset of
equivalence classes of N-dimensional self-dual representations of L X SL(2, C).

3 Endoscopy

Before we can introduce the Arthur packets, we need to talk about the relevant cases
of endoscopy in this paper. The discussion here will be parallel to that in [Xul5, Sec-
tion 4]. Suppose v [¥(G) and s [3, is semisimple. In our case, there is a quasisplit
reductive group H with the property that

H ment(s,b)o,
and the isomorphism extends to an embedding

O H =G

such that £(*H) [Qent(s,“G) and v factors through “H. So from y we get a pa-
rameter vy [CW(H). We say (H, v, ) corresponds to (y,s) through &, and denote
this relation by (H, v, ) - (v,9). Such H is called an endoscopic group of G. In the
following examples we e will always assume y = y,,.

Example 3.1 (i) If G = Sp(2n), then LG = SO(2n +1,C). For s [3,-,itgivesa
partition on Jord(y) depending on s(p, a,b) =1or -1, i.e.,
Jord(y) = Jord, OJdrd_.

Without loss of generality, let us assume

Q N(p,ap) =2n1+1=Nr and Q N(p,a,b) = 2111 = Np1.
(p,a,b)0drd, (p,a,b)Jord_
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Define

nmEnn= Mo g6
(p,a,b)Jdrd_

where 7(,, 4, is the quadratic character dual to det(p [v] [vy). Let
Gr=Sp(2n;) and Gp =SOQniL, ni1).

Then we have

H=G;xGy and 'H= (b; ng) LT}, /r
where Ej; is the quadratic extension of F associated with #;. Let

&0G; = GL(N;,C)

be the natural embedding for i = I, II. Then & & (¢ ij.;l) & factors through G
and defines an embedding L H [£Q@. We define y; C¥(Gy) by

Jord(yr) B {(p Caih a,b) [p. a,b) Obrd,},
and g C¥(Gry) by

Jord(yir) E{(p,a,b) Obrd_}.

Let Yy = Y1 X yqg.
(i) If G = SO(2n +1), then LG = Sp(2n, C). For s [3, it gives a partition on
Jord(y) depending on s(p, a,b) =1or -1, i.e.,

Jord(y) = Jord, [Jdrd_.

We can assume
Q N(p,a,b) =2nr = NI and Q N(p,a,b) =2n = NH.
(p,a,b) 0ord,, (p,a,b) 0ord_
Define 51 = 517 = 1. Let
G]ZSO(ZI’II+1) and GH:SO(ZnH+l).
Then we have o
H=G;xGy and LH:GIXGH

Let £;0FG; [_GL(N;,C) be the natural embedding for i = I, II. Then fiﬁ & CEL
factors through G and defines an embedding ' H [*@. We define y; [¥(Gy) by

Jord(y1) & { (p, a, b) Tlbrd. }.,
and 1243 j(G][) by

Jord(ymr) & {(p,a,b) [Jbrd_}.
Let yy = vy X yqr.

(iii) If G = SO(2n,7), then 'G = SO(2n,C) [Tk/p. For s [By-, there is a
partition on Jord(y) depending on s(p, a,b) =1or -1, i.e.,
Jord(y) = Jord, OJdrd_.

By condition (2.2), we can assume

Q n(p,a,b) = 2711 = NI and Q n(p,a,b) = 27111 = NH.
(p,a,b) 0ord, (p,a,b) Jord_
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Define

nr= M M(p,a,b) and i = M M(p,a,b)>
(p,a,b) Jord, (p,a,b) Jdrd_

where 7(,, 4,4) is the quadratic character dual to det(p [zd [w). We also denote by
E; the quadratic extension of F associated with #; for i = I, II. Let

Gr=S0Q@np,n) and G =SOQnu, 1.
Then we have o

H=G;xGy and YH=(G;xGp) Mk,
where L = E;E;;. Let

&0G; ,[oGL(N;,C)

be the natural embedding for i = I,II. Then ¢ & & [&j factors through “G and
defines an embedding L H [£Q. We define y; C¥(Gy) by

Jord(yr) B {(p,a,b) Obrd,},
and 1243 j(G][) by

Jord(yr) E{(p,a,b) Obrd_}.
Letyy =y X yi1.

In the examples above, H is called an elliptic endoscopic group of G. We can de-
fine ¥(H) = ¥(Gy) x ¥(Gyy); then vy C¥(H). For s 3>, we still say (H, y)
correspond to (v, s) through &, and denote this relation by (H, yg) - (¥, s).

In part (iii), it is possible to also choose s I:Sig but not in Sy>, and then we get a
partition on Jord(y), i.e.,

Jord(y) = Jord, Jdrd_

so that
Q n(p,u,b) :21’11+1:N1 and Q n(p,a,b) :2n11+1=NH.
(p,a,b)Jdrd, (p,a,b)Jdrd_
Define
nm= M fgary and o= M 7ab)s
(p,a,b)Jdrd, (p,a,b)Jdrd_

where 71(, 4, is the quadratic character dual to det(p [v] [vy). Let
Gr=Sp(2n;) and Gy = Sp(2npr).

Then we can define y; C¥(G) by
Jord(yr) B { (p T a.b) Obrd,},

and vy @(GII) by
Jord(y1r) B {(p Ly, a,b) Obrd_}.

Let ) )
H=G;xGy and "H=G;xGy.

In this case, H is called a twisted elliptic endoscopic group of G. Let

&0G; ,[EGL(N;,C)
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be the natural embedding for i = I, I1. Then

§E (& Ty T Ty

factors through G and defines an embedding “H [F@. Let vy = y; X yyr. We say
(H, yy) corresponds to (v, s) through &, and write (H, yg) - (¥, s).

In this paper, we also want to consider the twisted elliptic endoscopic groups of
GL(N), but we will only need the simplest case here. Recall that for v C¥(G), we can
view ¥ as a self-dual N-dimensional representation through the natural embedding

&G [ZGL(N,C),

and in this way we get a self-dual Arthur parameter for GL(N). We fix an outer

automorphism 6y of GL(N) preserving an F-splitting, and let Oy be the dual auto-
morphism on GL(N, C); then

Ex(*G) [ent(s, GL(N,C)) and G = Cent(s, GL(N, C))°

for some semisimple s CGL(N,C) [Clk. So we call G a twisted elliptic endoscopic
group of GL(N).

What lies at the heart of endoscopy theory is a (twisted) transfer map on the spaces
of smooth compactly supported functions from G to its (twisted) elliptic endoscopic
group H (similarly from GL(N) to its twisted elliptic endoscopic group G). The ex-
istence of the (twisted) transfer map is quite deep, and it was conjectured by Lang-
lands, Shelstad, and Kottwitz. In a series of papers Waldspurger [Wal95, Wal97,Wal06,
Wal08] was able to reduce it to the Fundamental Lemma for Lie algebras over the
function fields. Finally, it is in this particular form of the fundamental lemma, Ngo
[Ng610] gave his celebrated proof. Let us denote such transfers by

(3.1 Cr(G) =x(H)
f =g,
and similarly
(3.2) C=(GL(N)) =T (G)
==

In the definition of the (twisted) transfer maps, there is a normalization issue. To
resolve that, we will always fix a Z,-stable (resp. Ox-stable) Whittaker datum for G
(resp. GL(N)) in this paper, and we will take the so-called Whittaker normalization
on the transfer maps. We should also point out these transfer maps are only well
defined after we pass to the space of (twisted) orbital integrals on the source and the
space stable orbital integrals on the target. Note that the space of (twisted) (resp. stable)
orbital integrals are dual to the space of (twisted) (resp. stable) invariant distributions
on G; i.e., one can view the (twisted) (resp. stable) invariant distributions of G as
linear functionals of the space of (twisted) (resp. stable) orbital integrals. So, dual
to these transfer maps, the stable distributions on H (resp. G) will map to (twisted)
invariant distributions on G (resp. GL(N)). We call this map the (twisted) spectral
endoscopic transfer. Since we can identify CZ° (G [f}) (resp. C2°(GL(N) [HY)) with
CZ(G) (resp. C°(GL(N))) by sending g L8} (resp. gy [AN) to g (resp. gn), we
can define the twisted transfer map also for C2°(G [H}) (resp. CZ°(GL(N) Cak)).
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If 7 is an irreducible smooth representation of G, then it defines an invariant dis-
tribution on G by the trace of

n(f) = S, f(@)n(g)dg

for f [CC(G). We call this the character of m and denote it by fg (). For any
irreducible representation 7>° of G*°, which contains 7 in its restriction to G, we
define a twisted invariant distribution on G by the trace of

()=, . (™ (g)dg

for f [T (G [HY). We call this the twisted character of G, and denote it by fg (77>°).
We can also define the twisted characters for GL(N) similarly, but we will write it
in a slightly different way. Let 7 be a self-dual irreducible smooth representation of
GL(N); we can define a twisted invariant distribution on GL(N) by taking the trace
of n(f) 0 A,(Oy) for f CC°(GL(N)), where A,(0y) is an intertwining operator
between 7 and 7%. We call this the twisted character of 77 and denote it by fys (7).
Since the (twisted) elliptic endoscopic groups H in our case are all products of qua-
sisplit symplectic and special orthogonal groups, we can define a group of automor-
phisms of H by taking the product of £, on each factor, and we denote this group
again by X,. Let H(G) (resp. H(H)) be the subspace of X,-invariant functions in
CZ(G) (resp. C°(H)). Then it follows from a simple property of the transfer map
(which we will not explain here) that we can restrict both (3.1) and (3.2) to H(G) and
H(H).

4 Arthur Packets
For y [¥(G), we define

Ty = ><(p,a,b) Jord(y) SP(St(I% a)’ b) .

From [Tad86], we know 7, is a unitary self-dual irreducible representation of GL(N),
and there is a Whittaker normalization of the intertwining operator A, (6n) on 7y
(see [Artl3, 2.2]). Now we can state Arthur’s local theory for G.

Ceordm 4.1 (Arthur) For any v [W(G) and € IfS,,,, there is a canonical way
to associate a finite-length semisimple unitary representation viewed as H(G)-module
n(y, €) (which can be zero), satisfying the following properties.

(i)
fW) E Q &(sy) fo(n(y,))
eLs)
defines a stable distribution for f CH(G). Moreover,
(4.1) W) = fan(my),  f LG (GL(NY),

after we normalize the Haar measures on G and GL(N) in a compatible way.
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(ii) Suppose v = v, and s [Sy>. Let (H,yy) - (¥,s), and we define a stable
distribution f(yg) for f CH(H) asin (i). Then, after we normalize the Haar measures
on G and H in a compatible way, the following identity holds

(4.2) fHym) = Q e(ssy) fo(n(y, ), f CH(G),
@S,

where we denote the image of s in S, again by s.
When G is special even orthogonal, we have an additional character relation.

[eordm 4.2 (Arthur) Suppose G is special even orthogonal, v = y, LY (G) and
€ Bi", for any irreducible representation m viewed as H(G)-module [r] in n(y, )
such that n% [#, one can associate it with an extension m>° to G>°. Then for any
s ESEQ but not in Sy> and (H, yy) - (¥, s) the following identity holds:

fam=  Q  esfe(r™), fITT(G ),
€S, [7]1t(y,e)0
7% [
where ¢ ESVZ," is in the preimage of , and it depends on the extension m*. We denote
the image of s in Sf," again by s, and we normalize the Haar measures on G and H in a
compatible way.

We denote the set of H(G)-modules (v, €) for fixed v [CW(G) and all EASW
by ﬁ,,,. One can see from both (4.1) and (4.2) that the parametrization inside ﬁw by
ASV, depends on the normalization of A, (6) and as well as those of intertwining
operators related to yy (i.e, An, (On;) for i = I,1I). In Arthur’s theory, we always
use the Whittaker normalization, as it is the most natural normalization from the
global point of view, and it is in this sense that we say the association of 7(y, €) with
€ 5, is canonical. But as it has been pointed out in [MW06], locally there is no
reason to privilege the Whittaker normalization. Later on we will discuss another
normalization used by Mceglin and Waldspurger in [MWO06], which is critical for
studying the structure of 7(y, €). So in order to distinguish different parametrizations
with respect to various normalizations, we will denote 7w(y, €) in Arthur’s theory by
mw (¥, €), and similarly denote f(y) by fw () and denote fys (1) by fye w(my).

Unlike the tempered case where all 1y (y, €) are distinct and irreducible (see The-
orem 1.3 and [Xul5, Theorem 2.2]), Arthur’s theory says little about 7y (v, €) except
for its unitarity. In fact, mw (y, €) can be reducible or even zero in general, and it is
the main goal of this paper to explore the inner structure of 7wy (v, €). To do so, we
will mainly follow [Moeg06b, Mceg09, MW06].

As a consequence of Meeglin’s results about 7y (, €), we will be able to define
the Arthur packet for G* and describe its structure (see Section 8). To begin with,
we define Hi" for ¢ [C®,(G) to be set of irreducible representations of G, whose

restriction to G belong to IT4. Then Theorem 4.2 allows us to parametrize Hi" by S,
and we have the following result.
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[eordm 4.3 (Arthur) Suppose ¢ C®,(G), there is a canonical bijection between
Hfb“ and Si":
<%0 %
Sy L=
e =470 (4,9),
such that

* (¢, ee0) Tty (¢, €) Cad,

. [Tla}’ (¢, )d] = 2nw (¢, €) if G is special even orthogonal and Si“ =Sy, or myw (¢, €)
otherwise,

* foranys ES);" but not in Sy and (H, ¢r) ~ (¢, s), the following identity holds

fiw(¢n) = Q e(s) fo(mp(¢,8)), f LT (G Ep).
#s}

5 The Mceglin~-Waldspurger Normalization

The main reference for this section is [MWO06]. Suppose v [¥(G); we denote the
normalized action of 0 on 7y, by 8(y) for simplicity. If it is the Whittaker normal-
ization, we denote it by 8y (). Our aim is to introduce the normalization used by
Moeglin and Waldspurger, which we denote by 8w (), and to calculate explicitly
the difference 0w (¥)/ 0w (v).

To give the definition, we need to specify a class of parameters in ¥(G) called pa-
rameters with “discrete diagonal restriction”. To be more precise, y [ ¥ (G) is said
to have discrete diagonal restriction if w4 C®,(G). It is an easy exercise to see that
this is equivalent to requiring ¥ = v, and that for any fixed p, the segments [A, B]
for (p, A, B,{) CJord, () are disjoint. In particular this implies Jord(y) is multi-
plicity free. Among this class of parameters, we call y is elementary if A = B for all
(p, A, B, ) Tord(y), or equivalently inf(a, b) =1 for all (p,a,b) ord(y). Note
that in the original terminology of Mceglin and Waldspurger, elementary parameters
are not required to have discrete diagonal restriction; nevertheless, whenever they
treat the elementary parameters, they include the condition of discrete diagonal re-
striction. This is the reason that we include the condition of discrete diagonal restric-
tion in our definition of elementary parameters. For simplicity, if y is elementary we
also denote by Jord, () the set of integers a such that (p, @, 1) [Jbrd(y4), and we
write (p, «, 84) for (p, (a —=1)/2, (a —1)/2, 8,) Tbrd(y).

We first give the definition of 0w (y) for those elementary parameters. Suppose
for all (p, B, B,{) ord(y), we have B = 0; then simply let 6w (¥) = Ow (v).
Otherwise, we fix p and let By be the smallest number with (p, By, Bo, (o) CJbrd(y).
If By # 0, we have

Ty ,@@B" X Ty X pd“B“
as the unique irreducible subrepresentation, where Jord(y ") is obtained from Jord (y)
by changing (p, Bo, Bo, (o) to (p,Bo — 1,By — 1,{p) when By [, or removing
(p. Bo, Bo, (o) otherwise. Then we take 0w () to be induced from 9Mw(1//')- If
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By =0, let B; be the next smallest number with (p, By, By, (1) Obrd(w), and we have
7'[1/, ,IZ[HB],...,OB TIW' X Im...,_{lBll_,_J

where we get ]ord(w') by removing (p, By, Bo, (o) and (p, By, By, (1) from Jord(y).
Note that 7, appears with multiplicity one in the induced representation; then again
we take 6w (1) to be induced from 01y (). This finishes the case of elementary
parameters.

Next we consider the case of parameters with discrete diagonal restriction. We
choose (p, A, B, {) with A > B, then

my ,[=I0B,...,~(ARX my x [(A, ..., -(BL]

as the unique irreducible subrepresentation, where

Jord(y') = Jord(y) C{Ap, A=1.B+1,O}{(p. A. B, )}.
Then we take 61w (¥) to be induced from 6w (y).

Lemma 5.1  In the set-up above, 0 prw () is independent of the choice of (p, A, B, ().

The proof of this Lemma can be found in [MW06, Lemmas 1.12.1 and 1.12.2].
Now we can consider the general case. If v # y,, we can write

my LQ Sp(St(p, a), b)) x my, * ( Sp(St(p, a), b))}
(p,a,b) (p,a,b)

a, a5

where (p, a, b) are taken over Jord(y,,), and hence define 8w (y) to be induced
from 0w (y,). So without loss of generality, we assume ¥ = y,,. The general case
requires us to put some total order >, on Jord(y,) satisfying the following condition.

(P): If (p, A, B, (), (p, A, B',{") Oord(y,) with A > A,B > B and { = ’, then
(P)A)B)C) >l// (PaA )B )C)

The necessity of this condition will be discussed in a moment. The point is there are
many orders satisfying this condition, and we do not have a privileged one in general.
Nonetheless, for parameters with discrete diagonal restriction, we can always choose
an order such that for any p, (p,A,B,{) >, (p,A",B’,{") ifand only if A > A". We
call such orders the natural orders for parameters with discrete diagonal restriction.
For v [CW(G) with order >y, we say that y 6 ¥ (G Drvith order >, —dominates
v with respect to >, if there is an order preserving bijection between Jord(y r)-and
Jord(y) that sends (p, A 5B G to (p, A, B, ) satisfying A —jA = B—B
and { ={(.

Suppose (¥ >, )-dominates (y,>,) with both orders satisfying condition (P),
and y —has discrete diagonal restriction. Then we have

— 0
(5.1) Ty = 0(p,4,B.0) 0rd(v) JAC(p, 4 B0 Ta1A,B,0) TPy 1

where the composition is taken in the decreasing order with respect to >,,.. Note that if
the condition (P) is not satisfied, this may not be true. To describe the Jacquet functor
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in (5.1), we consider the following generalized segment:
r—l {(B+1)
[ .
(52) X(p,A,B,() - :
il {(A+1)

Then the Jacquet functor in (5.1) means applying Jac? consecutively for x ranges over

X (EB, ¢ from top to bottom and from left to right. Now it is clear how to define

Omw (y). We first choose an order >, satisfying condition (P), and then we choose
a dominating parameter ¥ —with discrete diagonal restriction and natural order. We
define 01w (y) to be the one induced from 6w (v -through the Jacquet module.
The upshot is that 6w () only depends on the order >, and not on the dominating
parameter ¥ —Hhhis is explained in [MWO06], and one can also see this when we derive
the formula for 0w (v)/0w (v).

Suppose ¥ [¥(G) and we fix an order >, on Jord(y,) satistying (P); then we can
define a set Z vy w () of unordered pairs of Jordan blocks from Jord(y,) as follows.

De[mition 5.2 A pair{(p,a,b),(p’,a’,b") brd(y,)} is contained in Z pry 7w ()
ifand only if p = p’, and it is in one of the following situations.

(i) Case: a,bareevenand a’,b are odd.
(a) If ¢, =—1and
v =1 Lpa, b) >y (p,a’b),a>a.
y =+ [ada.
(b) If (a,b = (a',b' =+land
,a,b) >, (p,a’,b) Cabab>b.
,a,b) <y (p,a’,b) Cada,b>b.
(i) Case:aisodd, bisevenand a iseven, b isodd.
(a) If ¢, =—1and
b =-1 [(pla,b) >, (p,a’,b),a<a’.
o = +land ,a,b) >, (p,a',b') ma’.
’ ,a,b) <y (p,a,b) Cada.

(b) If (a,b = {a',b' =+land
,a,b) >, (p,a,b)) Cada,b>b.
,a,b) <y (p, a, b') Cada,b>b.

[Ceardm 5.3 For y C¥(G), Oaw (y)/ 0w () = (=1)Zrwrw (T

Proof By our definition it suffices to prove the theorem for y = v, so we will assume
¥ = v, from now on. The proof we give here is incomplete, because we will need to
refer to ([MWO6], Section 5) for several ingredients. First, we would like to assume
this theorem for y having discrete diagonal restriction and natural order, and we refer
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interested readers to [MWO06, Theorem 5.6.1]). Secondly, we need to use the “unipo-
tent normalization” 0y (y) introduced in [MWO06, Section 5], and we will recall two
of its most important properties. The first property of 8y () is parallel with a similar
property for the Whittaker normalization 6y (). Let (p, A, B, {) Obrd(y), and we
get v —simply by changing (p, A, B, {) to (p, A =B =) with A —A = B—B [0
and { —=y(. Suppose

_ 0
Ty = JAC(p 4 1 Bis0) LGaIALB,0) Ty

with an action 8(y) induced from some 0(y )If { = =1 and 0(y O+ Ow (v D=
then 0(y) = Ow(v); if { = +1 and O(y )+ Ou (¥ Dxnthen 6(y) = Oy () (see
[MWO06, Proposition 5.4.1]).

To state the second property, let us define Z(y) to be the set of unordered pairs
{(p,a,b),(p,a’,b)}in Jord(y,) such that sup(b, b") and sup(a, a’) are both even,
and inf(b, b") and inf(a, a) are both odd. Then we have 6y (v)/0y (v) = (1) W0
(see [MWO06, Theorem 5.5.7]).

Now we can start the proof. Let us index the Jordan blocks in Jord(y) accord-
ing to the order >, i.e., (pi, ai, b;) >y (pi-1, ai-1, bi-1). And we assume Jord(y) =
{(pi»ai, b;)}.-,. Let v rbg a dominating parameter with discrete diagonal restriction
and natural order. Then we can also obtain y* from y by changing (p;, @ ¥ =
to (p;, a;, b;) for 1 [Z1CK In particular, we can set y° = y et

]ack = ]acgpk,a b cd =y, ak,bk)
Then we have the following sequence:

oy 5 TTyo hiﬂﬂl]h&ﬂwk htklzl]m]]hiﬁlw = my.
From the properties of 8w (y) and 8y (y) that we have recalled above, we can com-
pute 0w ()0 (). If { = -1, we have
Orrw (W) 0w (¥*) = 0w (W 0w (¥* ).
If { = +1, we have
0w (¥*) /0w (v*)

= 0w (v 0u (v") Bu (W) 0w (y")

= 0w (W60 () Bu (v )6 ()

= 0w (W) O0w (W ) Bw (W )00 (v ) Do (v ) 0w (v")

= Oarw ()03 () I(-) 2O -1y 2¢O

Moreover, let Z (y*™') (resp. Zi (v*)) be the subset of pairs in Z(y*™) (resp. Z(y*))
containing (px, @ cxab rx) (resp. (pk, ax, bi)); then

Orew (W0 w (")
= eMw(ll/k_l)/Gw(y/k_l) o(-1) Zy (P HEFZ ()
= B (V)6 () I(-) D RGNy Dz
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where we identify (px, a b o) with (px, ak, by) in taking the intersection and
union. To simplify the formula above, let us denote by Z (y*™%, y*) the set

(Ze@* ™) TZ) 7 (Ze@ ) 0 Ze (")) -

The proof is given by induction on k. So let us assume the theorem is valid for
Omw (Wi )/0w (yy) with 0 & sl Note that when k = 0, this is our assumption
at the beginning. We need to prove the theorem for k = s + 1. According to our for-
mula, we need to divide into two cases with respect to the parity of as1 + bs41. Here
we will only treat the case when a,+; + bs4; is even, while the other case is similar. Let
p = ps+1. From our previous discussion, we have

+ + W ow (), if (o1 = 1,
s+1 / s+ly — W(I// ) w .
HMW(V/ ) GW(V/ ) %W(Ws)/QW(WS) [(_1)Is+1(ll/ N )E’| isz+1 = +1.

We first consider the case when (41 = —1. Suppose {(p, @ rza, b cza), (p, 4, b) }
belongs to Z;y/w(¥*); then by our definition we are in one of the following situa-
tions.

even; a,bodd Cadss > a.
odd; a, b even [impossible.

Note that a = as41, so in all the situations we have {(p, as+1, bs+1), (> a, b)}
belonging to Z v /w (v**") as well. In the same way, one can show

{(p, as+1,b541), (p» 2, b)} (A prwyw (y*™) LI
{(p.ac=, b ), (p, a, )} LA ywsw (¥°).

This means that our formula is valid for k = s + 1 in this case.
Next we come to the more difficult case {;+; = +1. Similarly, we first suppose

{(p, a =m0, b =), (ps a, b) } belongs to Z v /w (¥°), and we will be in one of the
following situations.

@ If(p,acembos) >y (pra,b),

a1 even; a,bodd Lade <a,bm > 0b.

e < a,(ap =1

- odd; a, b even |

I

a1 < a,bsa <b,(,, = +1

L2

(i) If(p,acsbcm) <y (p,a,b),

Eleven;a,bodd @a>a,b>b,g,b:+l.

o < a, (gp = L

a1 odd; a, b even [

ﬁﬂ>a)b<ba(a,b:+1'
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Note that a;+; < a and bs+; = b =31, SO

{(P: As+1> bs+1)) (P) a, h)} |:ZMW/W(V/S-H)

in all the situations except for and with the additional condition a,4+; < a.
It is easy to check in the exceptional cases, either {(p, a rza, b csa), (p, 4, b)} or

{(P, As+1, bs11), (P’ a,b)} belongs to ZS+1(1//S’ V’SH)-
Conversely, if we suppose {(p, as+1, bs+1), (p, a, b)} belongs to Zyry/w (v**),
then we will be in one of the following situations.

(a) If (P) As+1> b5+l) >u/5+1 (P) a, b))

yeven; a,bodd Cagh < a,be > b.
Lodd; a, b even A" <@ Cap =l
1<, by < b, (ap =+,

(b) If (P’ As+1> bs+l) <1[/5Jr1 (P’ a, b)’

yeven; a,bodd Cad >a,bsy >b,(,, =+l
<a, =-1. -IE
10dd; a, b even L[] 1< Cap

1> 4, bs+1 < b’(a,b =+

We find {(p, @ e, b > (p» 4, 0)} T agwyw (v**) only for | 3], | 4], | 3,
with the additional condition a > a. Again, it is easy to check in these
cases that either {(p, a tzm, b =), (p> a, b)} or {(p, as+1, bs+1), (p> a, b)} belongs

to Zon (y*, y*™).
Finally, it suffices to figure out the set Z; (y*, ¥**!) and show that it consists of

exactly those pairs that we have encountered in — with their additional con-
ditions respectively. So let us suppose that either {(p, a rza, b =), (p, g, b)} or
{(p, as+1, bs+1), (p, a, b)} belongs to Ze; (v, ¥**1), and we list all the possibilities.

i) If(p,acs b)) >y (p,a.b),
even; a,bodd Cadsm >a>ag,brsa >0b. witha>a
y odd; a,beven 1

[ 1]

>a>as+1,b<b,(u,b=+1. Witha>a
>a>agq,brsa <b,{p =1 witha>a

b

>a> a1, b <b, (g p = 1. With as1<a
>a>ag, b <b, (o =L witha>a

Note that each case here corresponds exactly to one of - with the required
additional conditions, as we indicate on their right. This finishes the proof. ]
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Remark 5.4  There is a slight difference between our definition of Z ;v /w (v) (also
Z(y)) and that in [MWO06]; namely, they use ordered pairs rather than unordered
pairs. Moreover, this theorem slightly generalizes the formula in [MWO06] in the sense
that we only require that >, satisfies (P).

We would also like to see the effect of Mceglin and Waldspurger’s normalization
on the parametrizations of representations inside Arthur packets. To do so, we need
the following definition.

De[mition 5.5 For y [¥(G) and (p, a, b) brd(y,),

Zywrw (W) (p,ab) F
{(p’, a,b) Obrd(y,) Othe pair of (p, a, b) and (p', a’,b) lies in Zywrw @)},

and SyW/W(P, a,b) & (=1)Zmww W .ant]

Proposition 5.6  Suppose v [¥(G) has discrete diagonal restriction.

() ™" O35 and ™" (5y) = Oiw (V)/Ow (¥).

(ii) Ifwewrite mpyw (v, €) & nw (v, QWMW/W)forE [y, then the character identities
in Theorem 4.1 can be rewritten as follows.

(a) Let
fuw @) B Q e(sy) fo(ruw (y,€)),  f [H(G).
€[S,

Then

(5.3) Fiw @) = fyo mw (1), f LT (GL(N)).

(b) If s By and (H,yy) - (¥,s), then we can define a stable distribution
fuw (yr) on H as in (a), and the following identity holds:

(54) fuwr) = Q E(ssy) fo (ruw (. ¥)),  f CH(G).
€Sy

Proof For part (i), we have

MW/W _ a
M &y (p,a,b) = M (_I)UZMW/W (W) p.a by
(p,a,b) Jord(y) (p,a,b) Jord(y)
- (_1) P (0,a,0) gardcwy Zmwrw (¥) (p,a,b)C

- (_I)ZIMW/W(W)D: 1,

M
and hence &y

that

WIW defines a character of Si‘). To compute sWMW/W(sw), let us recall

, if bis even,
bl b b =
sy(p>a.b) % if b is odd,
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for (p, a, b) Obrd(y). Then

P z W) p,a0)0
(p,a,b) JQord(y) “MwW/WL¥)(p.a,b)
SWMW/W(SW) = M EIV\,/IW/W([), a,b) =(-1) b is even
(p,a,b) Jord(y)

b is even

= (1) Ewm B 9, (W) 0w (9).

Now we consider part (ii). First, by definition, we have for f CH(G)

—MW/W))

fuw(y) = *‘chh e(sy) fo (mmw (9, ¥)) = % e(sy) fo(mw(y, &g,
-Q gy " () falrw (9,9)) = Q ()8 () fo (mw (9,9))
=5, (sy) Q sy falrw (v,0) =8 () fw (v).

Combined with part (i) aj (4.1), we then get

fz\(/’}w(ll/) = 0w (W) 0w (W) fae,w(my) = fne, mw (1y)
for f LC(GL(N)). Next, for any s [3, and (H,yy) - (y,s), let yyg = yr Xy
(see Example 3.1). Then by (4.2) we have
fuwCyn) = Q €(ssy) f(mw (Y, €)).
LS|,
Also note the right-hand side of (5.4) is
RHS = Q &(ssy) f(rw(y ey ™" ™))
€S,
= Q gy (ssy) f(rw (¥, )
£IS|,
__MW/W

=gy, (ssy) Q Elssy) f(mw (¥, ),
#1,

and the left-hand side of (5.4) is

LHS = e (sy ) ity

MWIW _ MW/IW wIw

where sy, = sy, X sy, and ¢, =&y, . Soit suffices to show that

_MW/W _ —MW/W
Eyp, Gyu) =5y (ssy).

Moreover, by using part (i), this equality can be reduced to

(5.5) & ™Y (5) = Onw (i) 0w (W) Baaw (W)10w (v),

where

Omw (Wer)/Ow (wr) = Opw (w)/Ow (wr) Warw (wir)/Ow (wir).
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To show (5.5), one considers the partition Jord(y) = Jord, [Jdrd_ (see Example 3.1).
Then EWMW/W(S) = (=)™, where
m = 4{{(p,a,b), (p’,a’,b')} Zrrwsw(y) Xp,a,b) Obrd,, (p',a’,b") Obrd_}.

By Theorem 5.3, we can write the other side of (5.5) as

(_I)DZMW/W WEZvmw/w (WI)E'DZMW/W(WII)D’
and hence the validity of (5.5) is clear. ]

Fory =y, [C¥(G), we fix an order >, on Jord(y) satisfying condition (P). We
also choose y —deminating y with discrete diagonal restriction and natural order. We
identify S, with Sy~ and then s, = s, . For & [S,>, we define

(5.6)  muw (¥ 8) B 0(p,a,8,0mrd(w)AC(p,4 1,810 TG, 8,0 Tuw (¥ 158D,

where the Jacquet functor iicleﬁned as in (5.2) and the composition is taken in the
decreasing order. For these H(G)-modules, we have the following proposition.

Proposition 5.7 Suppose y = y, C¥(G), and >y is an order on Jord(y) satisfy-
ing condition (P). Suppose v —has discrete diagonal restriction and dominates v with
natural order.

(i) Then eafW/W I:glig and eyW/W(s;) = 0w (W) 0w (v).
(ii) Fore [ 8y,
_MWIWN o —MWIW %
mmw (Y, €) = g(w’ gy ) ifegy L3y,

otherwise.

Proof The proof of part (i) is the same as that in Proposition 5.6, so we will only
show part (ii) here. For s [ 3>, we denote its image in S;, again by s. Let

yw,s(v O F Q e(ssy Drmw (v 59,

ELS)
ﬁW,s(I//) = Q g(551;/)7Tw(1//, 5).
e[S,
It follows for € E§w> that
(sy

muw (¥ ) = Q ()M yw,s(v D=

BWI__QISESI“_I

Suppose that (H iy )~ (¥ 55) and (H, yg) - (¥, s); then yy dominates yp.
By (4.2) and (5.4) we have

(5.7)  0(p,4,8,0Tord(y) JA(p,4 B0 L@, 5,0 Imw,s (W OF
Orew (Wen)/ 0w (W) s (v).

Analogous to (5.5), one can show

Orw (i) 0w (yrr) =2 ™ (s57).
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Therefore,
_ _E(S;,) —f N=MW/W , >\TT
mw (¥, €) = 5.0 e(s)zy, (ss )w s (y).
1//> SESl.lP
We rewrite this as
EMW/W( >) B
A N I A O GO ()
V/> SEShP
(s2) o
= 5on Q EOMw.().
V’> S[SLP

Note that Iy, () only depends on the image of s in Sy, so
>0 — f — =
= P, €(&)w (v), ife 3y,
Q &),y = [ s Fw¥) e LSy
s[S|> otherwise.
Ife IfSW, then €(sy) = €(s,), and it follows that

—mwrw _ €(sy)
mw (v, €€ )=
v 8,0,

Q ) Mw,«(y) = 1w (v, ¥).
sl

MW/IW

Ife Iva,, then mpw (v, €€y

) = 0. This finishes the proof. ]

In general, for y [¥(G), we define
uw (Y, €) = my,, Cahw (vp, €),
fore E§w>. Since w (¥, €) = 7y, Laly (v, ) for e ESW, we again have
—MWIWN o —MW/W &
_ , €€ , ifee 03,,
maw (¥, €) = @(W v ) v v

otherwise.

The main purpose of introducing the Moeglin-Waldspurger normalization is that
one will have a recursive formula for fye 5y () with v [CW(G) having discrete
diagonal restriction. Here we will occasionally write () for m,. To introduce the
formula, let us fix (p, a,b) Jord(y) such that inf(a,b) > 1. Recall we also put
A=(a+b)/2-1,B=W-0b{2, and { = {,; = Sign(a — b) if a # b and arbitrary
otherwise. Then it is the same to require A # B for the fixed Jordan block. Let v’
be obtained from y by removing (p, a,b). Then we can define an element in the
Grothendieck group of representations of GL(N) as follows:

T[(V/)(p,A,B,O F 2 (_I)A_C( IIB> cees _(CI:'
CIIB,A]

.....

CENAP D n(y’, (p, A, B+1,0), (p, B, B, 1))

We impose the normalized actions of Mceglin-Waldspurger on 7(y’, (p, A, B +
2,0)) and n(y’, (p, A, B+ 1,{), (p, B, B, {)), and we denote the resulting action on
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m(¥)(p,4,8,0) bY Omw(¥)(p,a,8,0)- The next theorem shows the relation between
(¥ (p,4,8,0) and 7(y).

Ceordm 5.8  Suppose v [W(G) has discrete diagonal restriction; then
o mw (ry) = fNB,MW(ﬂ(V/)(p,A,B,())-

The proof of this theorem (see [MW06]) involves some complicated computations
of Jacquet modules, and it is fair to say that the Moeglin-Waldspurger normalization
is somehow artificially made for this theorem. This theorem has an immediate con-
sequence on the Arthur packets for G.

For y [¥(G) having discrete diagonal restriction, we write

&Sy
Then we have the following proposition.

Proposition 5.9  Suppose v [TW(G) has discrete diagonal restriction and we fix
(p, A, B, {) Obrd(v) such that A > B; then

.....

COB,A]
CE) D2, (v, (p, A B+1,0), (p, B, B, D)),
where v is obtained from vy by removing (p, A, B, {).

Proof This proposition follows easily from Theorem 5.8 and the twisted character
relation (5.3), together with the compatibility of the twisted endoscopic transfer with
parabolic inductions and Jacquet modules (see [Xul5], Section 6). [ |

From this formula, one can see that the case of parameters with discrete diagonal
restriction can be reduced to the case of elementary parameters. Later on, we will give
a recursive formula of Moeglin for mpw (¥, €), or more precisely for (v, €) (see
Section 7 for its definition), in the case of discrete diagonal restriction again, which
is clearly motivated by the formula here. But in order to give Mceglin’s formula, we
need to first study the Arthur packets for elementary parameters.

6 Elementary Arthur Packets

Let us recall that y [W(G) is elementary if y 0 A [D,(G) and A = B for all
(p, A, B, {) Obrd(y). And we have the following theorem about elementary Arthur
packets due to Moeglin [Moeg06b].

[Ceordm 6.1 (Mceglin)  Suppose y C¥(G) is elementary; then mw (y, €) is always
nonzero and irreducible. Moreover, myw (v, €) # mw(y,€ ) ife # €.

The main difficulty of this theorem remains proving that certain generalized
Aubert involution (see Section 6.2) would take irreducible representations viewed as
H(G)-modules in elementary Arthur packets to irreducible representations viewed
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as H(G)-modules up to a sign in the corresponding Grothendieck group. But this
does not admit a direct approach. So instead, we will follow [Moeg06b] to systemati-
cally construct a class of representations which generalizes the construction of discrete
series representations of Mceglin and Tadi¢ (see [MT02] and also [Xul5, Section 10]).
This class of representations will form the candidates for elements in the elementary
Arthur packets. In fact, what Mceglin constructed are representations of G*°, but we
can then take the irreducible representations of G viewed as H(G)-modules defined
by their restriction to G. The point is that it is easier to show the generalized Aubert
involution preserve this class of representations of G*° and also their irreducibility. In
the end, we are going to show the corresponding H(G)-modules are really elements
in the elementary Arthur packets.

First we need to define parabolic induction and Jacquet module on the category
Rep(G*) of finite-length smooth representations of G*. Let P = MN be a standard
parabolic subgroup of G. If M is 6,-stable, we write M> & M [Z}. Otherwise, we
let M*® = M. Suppose 0> [Bep(M*"), n* [Rep(G>°).

(a) If M% = M, we define the normalized parabolic induction Insz(, %0 to be the
extension of the representation Ind$ (¢>°[j;) by an induced action of %y, and
we define the normalized Jacquet module Jacps, 7>° to be the extension of the
representation Jacp (7>°[¢) by an induced action of Z.

(b) If M % # M, we define the normalized parabolic induction Insz0 0% to be

Indg IndP (0*[), and we define the normalized Jacquet module Jacps, 7>°
to be Jacp(n*°[g).

It follows from the definition that

(Jacps, 1) = Jacp (7™ ).
Moreover,

(IndSs, 0™)3 = nd§ (o™ &)

unless G is special even orthogonal and M*® = M, in which case

(1ndS:, 03 = IndS (0™ Gr) CCInd§ (0™G,)) "

We can also define Jac, on Rep(G*?) as in the introduction.
6.1 Construction of a Class of Representations

The construction of Mceglin is by induction on the rank of the groups, and it also
depends on certain so-called basic properties, which have to be established at the same
time again by induction. So let us assume for G = G(n") with n" < n and elementary
v @(g), the irreducible representation 7% (, £) of G is well defined and distinct

for e ESi“.
Let by,y,. Ubrd,(y,) be the biggest integer such that ¢ is “p-cuspidal” for

]Ordp,cusp(W) E {(P’ «, 806) Hbrdp (W) Eb( mp,l[/,s};

ie.,
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(a) if (p,a, 84) UJbrd, .., (¥), then (p, a=2, 84—2) [Jbrd, ., () aslongas a—2 >
0;
(b) if (9, &, 30, (s & = 2, 3a—2) TI0rd, ey (), then e(p, &, 8,)e(py & = 2, 8,02 =
-1;
(c) if (p,2,6,) Obrd, ¢, (¥), then e(p,2,8,) = -1.
We allow b,y to be zero. Let a,,y,. [Jord,(y4) be the smallest integer such that
Apye > by ye andlet &, 4 be the associated sign. If such a, ,, . does not exist, we
say a,,y,e = 0.
Along with our assumption on the existence of 7 (y, €), we also assume they
satisfy the following basic properties.

Basic Properties [Moceg06Db, Section 2.3]

(1) (Jacquet module): If Jac > (y, €) # 0, then there exists by,y,e < a [Jbrd, (va)
such that x = §, .

(2) (Non-unitary irreducibility) : For x [1/2, if 2x —1 Ubrd, (vq) 0} or0<x [
(bp,y,e =172, then p [P (y, ) is irreducible.

(3) (Unitary reducibility) : Suppose Jord, (y4) contains odd integers. Then p []
¥ (y, €) is irreducible if 1 [Jord, (y4), and is semisimple of length 2 without

multiplicities otherwise. Moreover, let 0> be an irreducible subrepresentation of
p [k (v, €) in both cases; then p x [ITx p [aF* is irreducible.

Remark 6.2  Property (1) is proved in [Mceg06b, Section 2.5]; Property (2) is proved
in [Moeg06b, Section 2.7]. In the tempered case, Property (1) can be deduced easily
from [Xul5, Lemma 9.2]. But, the general proof of Property (1) depends on Prop-
erty (2). Property (2) is not obvious even in the tempered case, and its proof in the
tempered case is more or less the same as in the general case. A fundamental case of
Property (2) is when 7% (y, €) is supercuspidal, and that follows from [Xul5, Corol-
lary 9.1] (cf. Proposition 1.6). Property (3) is proved in [Mceg06b, Section 2.8] without
assuming any unitarity results of Arthur, and in the tempered case it follows easily
from Arthur’s theory.

Based on our assumptions, we can now give the construction for 7>° (y, €).

De[mition 6.3 Suppose v [¥(G(#n)) is an elementary parameter and & I:Si“.

(i) Ifa,,y, = oo forall p, thenlet (Pcusps Ecusp) F (W, £), and we define = (y, €)
tobe naj’ (Pcusps Ecusp) in Theorem 4.3, which is supercuspidal by [Xul5, Theorem 3.3]
(¢f. Theorem 1.4).

(i) Ifapy,e>byy,e+20rb,y =0, wedefine

7T20 (1//, 8) y Q[ﬁp’w,a(up,w,z—l)ﬁ EFO (1//" g')

to be the unique irreducible subrepresentation, where (v, &) is obtained from (v, ¢)

by changing (p, a,,y.e5 0p,y,e) t0 (Ps p ye = 2,85 y,6)-
(iii) If ap,y,e = bp,y,e + 2, we need to divide into three cases.

(a) IfJord, (ya) contains even integers and b, . # 0, then we define

™ (y,e) ,[o8, 4 (ap,y,e = 1)/2, ..., 8y, L/ 200 (Yo, e2)
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to be the unique irreducible subrepresentation, where (y_, e_) is obtained from (y, €)

by removing (p, ap,y,¢> 85,y,¢)> and changing (p, a, §a) to (p, &, =6,y ¢) with
e-(p,a,—8,,y,e) = —e(p, &, 8a)

for all « [Hl, . Moreover,

7 (y,€) o8, 4. e (apye =112, .0, =8 pye (bpy,e = D2CLC (v, €).

where (v, ') is obtained from (y, €) by removing a,,y,. and b,y from Jord, (va)-
(b) If Jord,(y,) contains odd integers and by, # 1, then we define ¥ (y, €) to
be the unique common irreducible subrepresentation of
[3,,y,c(@pye = 1)/2,..., 0 (y—, =)
and
[,y (@pye =12, ..., =85 4,e(bp.y,c — D2ET (', ).

Here (v, €') is obtained from (v, ) by removing ap,y,e and by . from Jord, (v4);
(y-,e-) is obtained from (y, &) by removing (p, ap y.e> 6p,y.c) and (p,1,8:), and
changing (p, a, §,) to (p, &, =8, y,c) with
8—(/)’ «, _6,0,14/,5) = _5(1)’ «,04)
for1<a [H, .. o
(c) fapye=3,bpy.e = 1,' we have (y—,e-) = (v, ¢ ) in the notation of (b). By

Property (3), 0> = p [ab* (v, ¢') is semisimple of length 2, and hence we can write

0% = 73° [zl according to the following two cases.

(1) When Jord,(y4) only contains 2 elements, we fix arbitrary parametrization in
0>, and we define 7% (i, £) to be the unique irreducible subrepresentation of
ple Iﬁf", with { = &(3)85.

(2) When Jord,(y4,)0> 2, ie, a,, V. ¢ oo, we can specifY,th’e parametriza-
tion in o> as follows. Assume (y ,&" ) is obtained from (v, &") by changing
(psapye>6py,e)t0(p, 1,8, ). Let

™ =px [,y e (@py e =12, 8, LIy, e"),
aqz" =08,y (apy,e —DI2,. .., OEIEFO(V/", s"),
and

o2 = A% )y e (apy e ~DI2,..., 0, I (y ,e").

There is an exact sequence

0 /g2 /Hfj /quo lo .
oo
We set 72° = ¢ n (s.s.aqz") and 72° = ¢ n (5.5.02°). Then we define

% (y, €) to be the unique irreducible subrepresentation of pf IE?“, with
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(= e(ap,y,e)0,,y,e€(3)d3. Under such a choice this parametrization is com-
patible with Arthur’s parametrization of discrete series representations in the case
v = y, (cf Proposition 1.5 and also [Xul5, Proposition 9.3]), and it also satisfies
Theorem 6.10.

Remark 6.4 The uniqueness properties in the construction should follow from the
property about Jacquet modules, i.e., Property (1). The parametrization of represen-
tations of G>* in this construction is not uniquely determined by the choices we make
in Step (c)(1). To fix this one can use the (twisted) endoscopy theory. In the tempered
case, there are unique choices to be made here so that this parametrization is the same
as Arthur’s (¢f. Theorem 1.3 and also [Xul5, Theorem 2.2]). In the nontempered case,
we can fix the parametrization by that in the tempered case through the generalized
Aubert involution, and we will denote such parametrization by 7> 3 (v, €) later on.

In the next few sections, we would like to show that ﬁ,,, consists of H(G)-modules
obtained from restriction of 7>° (v, ¢) for e Bi“. To do so, we will introduce two
kinds of generalized Aubert involution operators, one on the Grothendieck group

of representations of G (similarly also for representations of G viewed as H(G)-
modules), and the other on that of GL(N) [T#ly [[We will start with G* following
[Moeg06b, Section 4].

6.2 Aubert Involution for G*°

Let us fix a positive integer X, and write xo = (X, —1)/2. We also fix a self-dual irre-
ducible unitary supercuspidal representation p of GL(d,). We denote by PZ" the set
of Xy-conjugacy classes of standard parabolic subgroups P of G whose LeV1 compo-
nent M is isomorphic to

(6.1) GL(a1d,) X IIX GL(a;d,) x G(n— Q aid,).
i,
Here we also require G(n =P,y ;y aid,) # SO(2) when d, # 1. Let A be the maxi-

mal split central torus of M. For P I:E’20 and 0> [Bep(M 20) we denote by 02?, the
direct sum of irreducible constitutes of o whose cuspidal support on the general linear
factors consist only of p[[f with [X[K x¢. In particular, when G(n = P,y aid,) =
SO(2) [AL(1), we also impose this condition on G(n = P;py, i3 aid))-

We define the generalized Aubert involution for G* with respect to (p, Xo) as
follows. For any > [Rep(G*),

an<Xo(7T VE Q (- l)d‘mAM Indpzo (facpzO (7‘[20)<x0),
P[Edp

where

pxo (120), otherwise.

%o . . N
faCPZO (T[):u) = %Piu (7T ) m, lfG(n Pll:D,l] aldp) SO(Z),

Analogously, we can define invx; if we change all strict inequalities to inequalities
here. Just as for the usual Aubert involution, we have the following result.
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Proposition 6.5 ([Moeg06b], Proposition 4)  As defined above, invex, is an involu-
tion on the Grothendieck group of finite-length smooth representations of G>°.

However, unlike the usual Aubert involution, it is by no means clear that inv<x,
preserves irreducibility. Because of this we would like to show it preserves irreducibly
at least for the class of representations that we have constructed in Section 6.1. The
key ingredient of showing this is the following proposition.

Proposition 6.6 ([Mceg06b, Proposition 3]) Let n*°(y, €) be a representation de-
fined as in Section 6.1, and let E be an ordered multi-set of half-integers such that for all
x B, LK (ap,y,e = 1)/2. If 7™ is an irreducible subquotient of X, imp[ Lzl (y, €),
then there exists an ordered multi-set E satisfying

{E'} C3E} ={E} CLHE},

such that
™ 3, g pM L (v, €).

Combining Propositions 6.5 and 6.6, one can show the following theorem.

[Ceordm 6.7 ([Moeg06b, Theorem 4.1])  We have that inv<x, n>° (v, €) is irreducible
with a sign in the Grothendieck group of representations of G*. Moreover, the corre-
sponding irreducible representation Gnv<x, 7> (v, €)Chlso belongs to the class of repre-
sentations constructed in Section 6.1.

One can also determine the sign in this theorem. Let

Jord(y, p, < Xo) = {a Olbrd, (y4) [ < Xo},

and we define

By, p,< Xo) &

1) Jord(y,p,<Xo)Jord(y,p,<Xo)ED/2 [ (a=1)/2

«J3rd(y.p,<x0) 1
if Jord,(y4) contains odd integers;
DBrd(y,p,<Xo) (T1) LN if Jord, (y.4) contains even integers.

Proposition 6.8 ([Moeg06b, Proposition 4,2])

B(w, p, < Xo) invex, 72 (y, ) =
oo oy €(P & 8a) vy, 7 (s, )1
if Jord, (ya) contains even integers;
vex, 1 (v, €)0) if Jord, (ya) contains odd integers.

Next we want to illustrate the second part of Theorem 6.7. This makes use of a com-
patible relation between this Aubert involution and the Jacquet module. To describe
this relation, let P = MN be in P> d, and let wp be a Weyl group element in W* (M) &
Norm(A 5, G*)/M sending all posmve roots outside M to negative roots. We can
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also define invy;: by taking the usual Aubert involution on the general linear fac-
tors of (6.1). For any representation 7> of G, let Jacpzy <, (77>°) = (Jacpz, (17°))<x.
Then we have

Jacpzo <x DnV<XO(7TZ°)D: Ad(wP)[inviW;;) Jacpzy <x (r*)O
for all x [y and 7> [Rep(G*°) (cf. [Mceg06b, Section 4.2]). From this equality,
one can easily conclude the following corollary.
Corollary 6.9 ([Mceg06b, Corollary 4.2])  Let a [Jbrd,(y) with a,,y.. < a.
(D) Ifapye>bpyet2, then
Gnvee (™ (y, €)) 0 oA Cowe™D [, (7% (v, €)1
where (y', €") is obtained by changing (p, ap.y.e» 8p.y.e) 10 (P, Apye =2, 8p y.e)-
(i) Ifapye=Dbpy,e™+2, then
Gnve (7™ (v, €)) D =T88,,.c (@p,ye = D72, .., 8py,e (bp,y,e = 1D/200
[Ghve<, (7™ (¥, ¢))0
where (', €") is obtained by removing a,,y,. and by, . from Jord, (ya).

It is easy to see from this corollary that Gnv<yx, 77 (y, €) s in the class of Sec-
tion 6.1. In fact, from here one can even describe the pair (y#, ¢*) that parametrizes
Onvey, 7> (v, €)U

Ceardm 6.10 ([Mceg06b, Theorem 5]) For > (y, €), let y* be obtained from v
by changing 8y to =8 for all « (Jord, (y4) such that a < Xo, and let € = & under
this correspondence. Then one can make suitable choices in the construction of rep-
resentation corresponding to this new pair (y*, e*) (see Section 6.1, (c)(1)) such that
= (y#, e%) = Onvey, 120 (¥, €) U

Let Rep(G) be the category of finite-length smooth representations of G viewed
as H(G)-modules. We denote the elements in Rep(G) by [7] for 7 [Rep(G), and
we call [r] irreducible if 7 is irreducible. Let

Jacy = §p+]acp060, if G = SO(2n) and M% # M,
b=

P otherwise.

We can define parabolic induction and the Jacquet module on Rep(G) as follows:
Ind$[o] E[IndS 0] and Jacp[n] & [Jacpn].

Then the generalized Aubert involution inv<y, can also be defined for Rep(G) in an
analogous way, i.e.,

invex, ([7) B Q (-1)¥™ 4 Ind§ (Jacp ([7])<x, ) -

PIE
For > [Rep(G*°), we have

[(IndSey Jacps, 7)&] = IndS Jacs[7> ],
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SO

[(inv<x, ﬂzo)@] = ﬁ<X0([7TZ°@;])-
6.3 Twisted Aubert Involution for GL(N)

As in the previous section, we again fix Xy, x¢, and p. We denote by P N the set of
On-invariant standard parabolic subgroups P of GL(N) whose Levi component Mis
isomorphic to

GL(ad,) x MIx GL(a;d,) * GL(N -2 Q a;d,) x GL(a;d,) X IIX GL(a,d,).
i,

Let Ay be the maximal spllt central torus of M, and (Ap)s, be the group of its

6y -coinvariants. For P [P A and 7 [Rep(M), we denote by 7<,, the direct sum

of irreducible constitutes of T whose cuspidal support on  ;,;; GL(a;d,) consists

only of p[ with X[K x,. Then we define the generalized 0y-twisted Aubert involu-

tion for GL(N) with respect to (p, Xo) as follows. For any self-dual representation 7
of GL(N), let 7" be an extension of 7 to GL(N) [Ty ]

inv?% () B Q (DU Ind i ™ (Jacp (1) <,) -
PIIEeN

We should pomt out that inv®} %, is defined differently from that in [MWO06, Section
3.1]). Here inv® (n ) is only an element in the Grothendieck group of representa-
tions of GL(N) [Ty Clsee [MWO6, Section 3.2],), even when we take 7 = m(y).
However, if we only consider the 0y-twisted characters of GL(N), we can still get a
theorem parallel with Theorem 6.10.

Ceordm 6.11 ([MWO06, Proposition 3.1])  Let y* be defined as in Theorem 6.10,
fn(invSy, G @) = fu (" (), f LT (GL(N) CK)

for certain normalization of n* (y*) with respect to that of * ().

To determine the normalization of 7 (y¥) in this theorem, we need the following
proposition.

Proposition 6.12 ([MWO06, Lemma 3.2.2]) Suppose that n* () in Theorem 6.1 is
normalized according to Meeglin and Waldspurger (cf. Section 5); then the correspond-
ing normalization of O on n* (y¥) differs from 0w (v*) by B(w, p, < Xo).

The careful reader may notice that this proposition is slightly different from the
original result of Moeglin and Waldspurger, and that is due to a sign error in the state-
ment of [MWO06, Lemma 3.2.2]. As a consequence of this proposition, we can rewrite
Theorem 6.11 as follows.

Corollary 6.13
(6.2)

S GnvZy, (e (WD) = By, p,< Xo) fu (e (¥9)), f T (GL(N) [EY),
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where 10y (v) and 7y, (W*) are normalized extensions of m(y) and n(y*) according
to Mceglin- Waldspurger.

6.4 Construction of Elementary Arthur Packets by Aubert Involution

In the tempered case, we already know that w(y,€) is a Xy-orbit of discrete series
representations (cf. Proposition 1.5 and also [Xul5, Proposition 9.3]), and moreover
its parametrization by (y, €) is the same as Arthur’s if we make certain choices in our
definition of m(y, €) (cf. Section 6.1, (c)(1)). To obtain the nontempered packet, we
need to use (6.2) and show that the following diagram commutes when restricted to
distributions associated with elementary parameters.

(6.3) SI(G) ——T1(N®)

— I
invex, inv_y

SI(G) ——I1(N?).

Here, SI (G) is the space of stable invariant distributions on G, T (N?) is the space
of twisted invariant distributions on GL(N), and the horizontal arrows denote the
twisted spectral endoscopic transfers. The commutativity of this diagram (under our
restriction) essentially follows from the compatibility of twisted endoscopic transfer
with both Jacquet module and parabolic induction, and we will give its proof in Ap-
pendix A. If we apply this diagram to ITw (v) (see (5.8)) and expand using (5.3) and
(6.2), we get

fOCQ &(sy)invex, maurw (¥:€)) = By, p. < Xo) fivo,mw (7 (¥7))
€[S,
=By p.< X0)f°( Q sy )muw (v, 7)),
E[Slug
where f [T (GL(N)), and f¢ [T (G) is its twisted endoscopic transfer. Hence,
(6.4) Q e(sy) fo (invex, mpw (¥, €)) =
e[S,
By pr< X0) Q E(sye) fo(manw (v 9)),
E[Slw
for any f CH(G).

Lemma 6.14

£(5y)/e(5y) = J8rd(y.p,<Xo) E(P> & 8a), zgflordp (va) contazins even‘integers,
if Jord, (ya) contains odd integers.

Proof It suffices to note that

if « < Xy and « is even,
sySys (P> &, 0g) = % 0 [ ]

otherwise.
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Equality (6.4) suggests we can construct the nontempered Arthur packet by apply-
ing the generalized Aubert involution consecutively to tempered packet. So we have
the following definition.

De[mition 6.15 Suppose ¥ C¥(G) is elementary; for & I:Si“ we define

7'[1%/}) (W, 8) E: O(p,a,éa) DBrd(w)Ba:—l(DnV<a (b Gnv mDﬂ%\? (Wd, 8)

and

T (¥, €) B 0(p,a,6,) ard () a=—1 (V< [ (v )y (ya, €),
where we have AS%“ Eélig (resp. ASV, I:élw) by identifying Jord(y) with Jord(y,).

From Theorem 6.10, itis clear that 7'[12\,;’ (v, €) = n* (y, €) constructed in Section 6.1,
but with fixed parametrization determined by that of tempered representations (cf.
Remark 6.4). It follows from Theorem 4.3 that

(6.5) o (v, eg0) [y (v, €) Cap.

Moreover, [75° (v, €)1 = 27mm(y, €) if G is special even orthogonal and Sf," =Sy,
or 7y (v, €) otherwise. In particular, 7 (y, €) is irreducible.

[Ceordm 6.16  Suppose y LY (G) is elementary; then

Myw(y) = Q e(sy)mu(y, €).
e[S,

Proof Note that in the tempered case 7y (v, €) = mw (v, €) = mpw (¥, €), so this is
already known. Then from the tempered packet, one can apply the generalized Aubert
involution and use equality (6.4) step by step. Finally, note

(6.6) e(sy) By, p, < Xo)invex, mar (, €) = e(sy) mar (¥F, ),

which follows from Proposition 6.8 and Lemma 6.14. ]

At this point, we have shown the elementary Arthur packets of G do contain irre-
ducible representations of G viewed as H(G)-modules obtained by restriction from
the class of representations of G* constructed in Section 6.1. However, to prove
Theorem 6.1 we still need to find the relation between 7w (y, €) and mp(y, €). One
can think of this as a problem of parametrization, but in fact it is much more subtle
than that, for we do not know a priori that 7w (v, €) is irreducible or not. Nonethe-
less, we will show they are irreducible, and at same time compute the difference of
parametrization between myw (y, €) and 7 (v, €). A

To describe this difference, we have to introduce a special element sWM/MW ESE,“.
It is defined in the following way.

De[nition 6.17 Suppose ¥ [¥(G) is elementary and « brd, (ya).

(i) Ifaiseven, st,/I/MW(p, a,0,) =1
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(i) If a is odd, let
m = ¢{a’ Ubrd, (ya) ' >a, 80 =-1} and n=#{a’ Ubrd, (va) ' < a}.

Then
MIMW n” if 04 = +1,
bl b 6“ =
Sl[/ (p [24 ) %1)”14-” lf (S(x = _1'

[Ceordm 6.18  Suppose v C¥(G) is elementary; then

(v, €) = maw (28, ™).

Proof The idea is similar to the proof of Theorem 6.16 in that we have to apply the
generalized Aubert involution step by step. First note that in the tempered case, we
have by definition 7y (y, €) = mpw (¥, €), and it is easy to check that sy/MW =1lin
this case. Next, let us assume y is some elementary parameter satisfying the theorem,
and we would like to prove the theorem for y*. In fact this is the critical step in our

proof. To be more precise, we now have

(Y, 8) = maw (v, g8, ")

under our assumption, and we want to show

(Y, €) B Tvex, m () F muw (v, 225, ).
The main ingredient of the proof is a commutative diagram analogous to the dia-
gram (6.3). Note that we can identify S, with Sy, and for any s 5, [3, let
(H,yn) - (y,s)and (H,v%) - (v*,s), where H = G;xGyrand vy = y; ;. Then
the following diagram commutes when restricting to distributions associated with el-
ementary parameters, and this again follows from the compatibility of endoscopic
transfer with Jacquet module and parabolic induction (see [Hir04] and Appendix A).

(6.7) SI(H) —11(G)

—H -
invey, invex,

Si(H) —11(G).

Here [ (G) is the space of invariant distributions on G, SI (H) is the space of stable in-
variant distributions on H, and the horizontal arrows denote the spectral endoscopic
transfers. We define
—H —G =G
invey, &inve )'(0 EE'V<}I(IO
—0G ’ ’
with inv<}'(0 respecting p [z}, where = #; in (Example 3.1(i), (ii)), and " = 1in

(Example 3.1(iii)). Applying this diagram to T yrw (ve) & ayrw (wr) Tlhew (vir),
we get

B, p.< Xo) furw (Wh) = Q (ssy) fo (invex, muw (v,2)) . f CH(G),
LSy
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where BV, p, < Xo) = B(vr, p Tl < Xo)B(vir, p> < Xo). By our assumption, the
right-hand side can be written as

—M/MW —M/MW
) =

Q £(ssy) fe (invex, mar (v, €€y, Q €€y, (ssl,,)f(;(inV<X0 (¥, €)).
&[S, &S|,

Combining (6.6), we have
fuiw W) = BQya p < Xo) Q " (ssy) fo (nvex, mu (Y, £))
get
= By pr< Xo) Q g8y (s5y)B(y. pr < Xo)e(sysye) fo (rau (v, )

€[Sy
—M/MW

= B, pr< Xo)B(y p.< X0y (s59) Q Essye) fo (mm (v, 9)).
LS,

Finally, it is a simple fact that ewM/MW(sW) =1.So

68) faw(i) =
_M/MW _ _
BQya, p < Xo)B(y, p,< Xo)e, ™ " () Q €(ssys) fa (mu (v, 9)).
£LS,
On the other hand, we have from the character relation that
Hiw@Wi) = Q &(ssy) fo (muw (v, €)) -
HEP
Since we know from linear algebra that 7y (¥, €) are completely determined by
these identities for all s [ Sy, it remains for us to show

ﬂ(V’HaP’< XO)B(V/’P’< XO) - 8

If Jord, (y,) contains even integers, then it is easy to show from the definitions that
both s1des are equal to 1. So now let us assume that Jord, (y,) contains odd integers.

Note that Jord(y) = Jord(y; Iil) Odrd(yrr). Letu = DOI‘d(I//I,p Ij]l_l, < Xo)[and
v = Jord(y1s, p, < Xo)Glthen

B(yn: p< X0)B(y, p, < Xo) = (-1 D2 D/ (Dl = gy

On the other hand, we can index Jord,, (y4) according to the natural order of integers
and assume that Jord(yy, p [} < XO) {(x,J}] .- Then

M/MW M/MW
(s).

eul\,/I/MW M/MW( ) M( 1)(u+v t)+(t-1) — ( 1)u(u+v 1) — ( l)uv
j=1
This finishes the proof. ]

Corollary 6.19  Suppose y C¥(G) is elementary, let sM/W E: eWM/MWef/\,/IW/W. Then

w (Y, €€ es ™y = (w1, ).

Proof The proof is clear from Proposition 5.6. ]
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In particular, this proves Theorem 6.1.

Corollary 6.20  Suppose G is special even orthogonal and y C¥(G) is elementary.
Fore ESV, let mw (v, €) = [n]. Then 7% [ if and only sz £S,.

Proof This follows from (6.5). |

If y CW(G) is elementary, we can define H,f," to be the set of irreducible repre-

sentations of G*°, whose restriction to G belongs to IT,. Then it follows from Corol-
lary 6.20 and Theorem 4.2 that there is a canonical bijection between

z Z
Sk [
Z
e A (v, ),

such that:

[7'[ (v, e)ld] = 2nw(w,¢) if G is special even orthogonal and S * = §y, or
w (y, €) otherwise.
* Foranys ES%“ but notin Sy, and (H, vy) - (¥, s), the following identity holds:

fwlym) = Q essy) fo(my ()  f CTZ(G LHY).
gt

MW/W
Let us define 7'[ (v, e) & o w (. egy

same way as Proposition 5.6 that for any s I:Sf," but not in Sy, and (H,yy) - (v,5),
Hiwm) = Q elssy) fo(mypy (y.€)) [ L (G LEY).
5
(sl

At last, we can extend Theorem 6.18 to G*°.

) for e ESE"; then we can show in the

[Ceordm 6.21  Suppose v [¥(G) is elementary; then
MIMWy

73 (9 €) = i (s e

Proof We can assume that G is special even orthogonal and Suz," # Sy. Since

(W, 8) = muw (v, gy ™),

M/MW

)= 71 *(y,e) or ni}’(w,e) Cw).

myew (v, €€,
Note that when v is tempered,

M/MW MWIW

€y =&y =1 and 71 °(y, ) = 7 wy,e) = 71 tw (W, €).
So as in the proof of Theorem 6.18, we can assume

M/MW
)

ot (¥, €) = oyt (v ey
for some parameter ¥ by induction, and the critical step is to show that

z«»(w €) & Onvey, 7TM (v, o)k 71 (y/ ££$/MW)_
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We identity SE," I:S]ig, and choose s %i“ but notin Sy. Let (H, yx) - (¥,s Hland
(H,v%) - (v*,5), where H = G; x Gy and yg = y; X yyr. Then we can have the
following commutative diagram analogous to (6.7) (see Appendix A):

(6.9) SI(H) —I1(G%)

. H .
invey, 1nv<x,

SI(H) ——T1(G%).

Here, [ (G%) is the space of §,-twisted invariant distributions on G, and the horizon-
tal arrows denote the twisted spectral endoscopic transfers. We define

invly, &inv3 Cibly

with invg'(o (resp. invf)'('o) respecting p [y (resp. p Cydy). Applying this diagram to

ﬁMW(V/H) = ﬁMW(WI) Dlew(I//U), one can show

Friw @) = By, o< XIB(: o< Xo)ey ™ (' Q (s s fo (3 (W%, )
eLs),

for f L@ (G LA}) (cf. (6.8)). As in the proof of Theorem 6.18, we also have

M/MW M/MW

BWu, . < X)B(Wsp< Xo) =g, ey (s
Since

Fatw i) = Q e(s"sye) fa (mypy (W, ©)),
i

Q ("5 fo(mpy (¥, €)) = Q ey ™™ (s"sye) fo (mip (v%, &)

e[Sy €S|
= Q e(s '?l:,a)fg ( 7'[1%; (l//ﬁ, sewM/Mw)) .
EI:SlW

By the linear independence of twisted characters, we have for any € E:ciu,a,
e(s sy fo (myt (v, ©)) = s sye) fa (mp (v, ey ™)),
and hence f¢ (nﬁ"w(wﬁ, €)= fe (711%4" (1//“, ssflﬁ/MW)), ie.,
7'[12\:/}] (1//“, &)= nf(,}’w(wﬁ, eevjﬁ/MW). [ |

Remark 6.22  Later on we will see that Mo%/{,in defines 715? (y, €) in the general case,
and if one also extends the definition of ey/ to the general case, then Theorem 6.21
is still valid (see Theorem 8.9).
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7 The Case of Discrete Diagonal Restriction

In this section, we would like to look into the Arthur packets associated with pa-
rameters having discrete diagonal restrictions. To be more precise, we want to give a
parametrization of irreducible constituents of ww (y, €) (or equivalently 7w (v, €))
in this case. This parametrization is given by Mceglin, and we will follow her paper
[Moeg09] closely.

As in the elementary case, we start by constructing certain elements in the Gro-
thendieck group of representations of G>. Thege elements are parametrized by y [
¥(G) with discrete diagonal restriction and & I:Sf,".

De[nition 7.1  Suppose y [W(G) has discrete diagonal restriction, and there exists
(p, A, B, ) Tord(y) such that A > B. Let e I:Si" and 1o & e(p, A, B, {). Then we

define
nf(,}’ (v, e) &
2 (-D*CWB, ..., ~(COTAcy(p+2y,....cc Taf (W € (0, A, B+2,(5170)) [
CB,A]
2 (~)IATBDR AT 4B (v e (0, A, B+ 1,551, (p, B, B, (o)) »
n=%1

where v is obtained from y by removing (p, A, B, {), and & () is the restriction of

e(D.

Remark 7.2 (i) When A = B+land o = -1, the term involving (p, A, B+2, {, o)
does not appear because ¢ ([) does not define a character of Sf}’ in this case.
(ii) Itis clear by induction that

711%4“ (v, €€0) Iﬂi}’ (v, ¢) Cw).

(iii) We could also define 7y (v, €) in a similar way. Let

Jord(y") =Jord(y") [p, A, B+2,()},
and
Jord(y*) =Jord(y') (X{p, A, B+1,0),(p, B, B, )}
We can identify S, [, by sending (p, A, B, () to (p, A, B +2,(), and map
s [, into Sy by letting
s(p,A,B+1,0) =s(p, B, B,{) E s(p, A, B, ().
Then S, S} is of index 1 or 2. We denote the image of € in ASWI by €. Let us
define
7TM(1//, E) F

.....

CcOB,A]
2 (DI e (o, A, B+ 1,04 e(p, A, B, O P rm (v, 52).
e-5 (S|
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Again by induction, one observes the restriction of 7'[12\:/? (v, €) to G viewed as
H(G)-modules is 27y (y, €) if G is special even orthogonal and Si” =Sy, or
m(y, €) otherwise. Later we will show that 7[12\,}’ (v, ¢) is a representation of
G*, and 7y (y, €) consists of irreducible representations of G viewed as H(G)-
modules in the restriction of nf,}’ (v, €) to G without multiplicities.

Next we want to show that ﬁw consists of 71 (¥, €), and furthermore we would like
to compute the difference between the parametrizations of 7 (v, €) and marw (¥, €).

M/MW

To do so, we need to extend the definition of ¢,, ESi" in the previous section.

De[nition 7.3  Suppose v [¥(G) has discrete diagonal restriction, and (p, a, b) [
Jord(v).

(i) Ifa+bisodd ey (p,a,b) =1
(ii) Ifa+biseven,let

m=¢{(p,a’,b) Obrd(y) tu',b odd,{y, =-1,1d —b' (> @ - b},

and
n=#{(p,a’,b") Obrd(y) 0a',b 0dd, @' ~ b’ @ b},
Then
if a, b even,
SWM/MW(p’ a,b) = H™ ifa,bodd, {,, = +1,

D™ ifa,bodd, {,, =-L

M/MW

There is a simple fact about this character ¢,

Lemma 7.4 Supposey [¥(G) has discrete diagonal restriction; then sWM ™ W(sw) =1

Proof From the definition, we see sy/MW(p, a,b) =1if b is even. Then

M/MW _ M/MW —
&y (sy) = M &y (p,a,b) =1 [ |
(p,a,b) Jdrd(y)
b even

[Ceardm 7.5  Suppose v [¥(G) has discrete diagonal restriction; then

mu(y,©) = muw (v zEy ™™,

Before we prove the theorem, for any s [, let
Myw,:(¥) B Q e(ssy)mmw (¥, €),
e[S},
My, (y) & (? &(ssy)mp (v, €).
e[Sl
In particular, Tyw(y) = Hpyw,i(w) and we denote Ty (v) = T i(w). For
T, (), we have the following recursive formula.
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Lemma 7.6  Suppose y [¥(G) has discrete diagonal restriction and s [B,. Let
(p, A, B, {) Obrd(v) such that A > B; then

ﬁM,s(‘//) =

.....

CUB,A]
CEDIA D2, (v, (p, A, B+1,0), (p, B, B, ),
where we let s(p, A, B, {) =s(p, A, B+2,{) =s(p, A, B+1,0) =s(p, B, B, {).

Proof By definition we have for any € IfSu,,
&(ssy) mu (Y, ) =

.....

CIIB,A]
2 (_1)[(A—B+1)/2]£2(P’A’B +1,0)47 B e(p, A, B, ()A7B
£-5 05|
CE(ssy) mm V2, &).
So it suffices to show &, (ssy1) = €(ssy) and
&(ssy2) = e2(p, A, B+1, 045 e(p, A, B, ()A_BE(SSW).

The first one is easy, because sy1 = s, under our identification. For the second one,
note that €,(s) = £(s) and

E(sy) = M e(pab)i= M e(p, A, B, )",
(p>a,b) Jord(y) (p,A,B, Q) Odrd(y)

Then
£2(sy2)/e(sy) = e2(p, A, B+ 1,0 Ve, (p, B, B, )P P1e(p, A, B, )45,
Using the fact that ¢,(p, A, B+1,{)e2(p, B, B, {) = ¢(p, A, B, (), we have
£2(sy2)/e(sy)
= e3(p, A, B +1, ()A~{ED
D:(p,A,B, ()B—(Bsz(p)A’B +1, ()—B+(B/s(p)A’ B, OA—(B
=&(p, A, B+1, C)A_B_ls(p, A, B, )B4
=&(p, A, B+1, ()A_Bﬂs(p, A, B, ()A_B.
This finishes the proof. u

Lemma 7.7  Suppose w [¥(G) has discrete diagonal restriction; then Ty (y) =
Ty (¥).

Proof Lemma 7.6 and Proposition 5.9 allow us to reduce this lemma to the case of
elementary Arthur packets, where the statement is already known. ]

Now we can give the poof of Theorem 7.5.
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Proof Since ¢

v Mw(s‘,,) = 1, it is enough to show that

M () = &)™ () prw.s ()

for all s [$y,. From the previous lemma, we know this is true for s = 1. So we can
assume that s # 1in the rest of the proof. By induction, we may assume the theorem
is true for y' and v, i.e.,

HM 5(1/’1) - 8 (S)ﬁMW,s(wl)’
I—[M 5(1//2) - 8 (S)ﬁMW,s(wz)-

Suppose (H,yvg) - (v,s) and v & yyg = yr % 1//11. We can assume (p,A,B, () 1
Jord(y1) because the other case is similar. Let y! = 1//1 x y}, and y2 = y? x y,.
In particular, y; = y} = 1//1 Note that ITpw s (y') (resp. TIpw (%)) is the spectral

endoscopic transfer of ITyrw (vh) (0w (wl,) (resp. arw (w?) Ciw (v3,)). By the
compatibility of endoscopic transfer with Jacquet module and parabolic induction, we

M/MW

M/MW

can conclude that Iy, ; () is the spectral endoscopic transfer of

> ( 1)A C M/MW()mg _(CD 1
CB,A]

Jac(s+2y,....cc Muw (v1) Clhw (y1,))
L) P2 (T (y7) Cllhew (y7))-

Note that Jac;pITprw (y}) = 0 for any B +2 DD A, which follows from the corre-
sponding vanishing fact for Jacquet modules of w(y}). Then we can rewrite it as

2 (DA% M/MW(S)HMW(‘//I)
CIIB,A] = 1
CACB,...,-(C I:DEIC((BH) ,,,,, ccuw ()
ml)[(A_BH)/Z] gWMZ/MW(S)ﬁMw(I[/§) l:ﬁ:lMW(W%I)
If we can show

(7.1) SM/MW( ) EM/MW( ) M/MW(S),

" :wl :WZ

then that means ITy; s () is the spectral endoscopic transfer of ey/MW(s)ﬁMw(l//I) —1
ﬁMW(l//H). Hence,

s () = &y ™™ () g« ().

Finally, it is an easy exercise to verify (7.1). In fact, one can assume that s(p, A, B, {) = 1;
then the set of Jordan blocks (p,a’,b") such that s(p,a’,b") = —1is the same for v,
v!, and y?, and it is enough to show

M/MW(p) a b )= 81‘;{/Mw(p) ab )= %MZ/MW

for any (p,a’,b") in this set. Recall that
(p,A,B+2,0) = (p,a+2(,b-20),
(p A, B+1L,0) =(p,a+(b=0),
(p,B,B,{) = (p,sup(0,a—b) +1,sup(0,b — a) +1).

(p.a’,b")
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One checks easily that the contribution of (p, A, B, {) to the numbers m, n in Defini-
tion 7.3 for v is the same as (p, A, B + 2, ) for ¢!, and (p, A, B+1,{), (p, B, B, {) for
y? modulo 2. Then the rest is clear. |

One consequence of Theorem 7.5 is that (v, ) is an H(G)-module, which is
by no means clear from our definition. In fact, the main goal of [Mceg09] is to show
that 7112\,}’ (v, €) is a representation of G* and characterize its irreducible constituents,
which also implies that 7y (v, €) is an H(G)-module independently of Arthur’s the-
ory.

Ceordm 7.8 ([Moeg09, Theorem 4.2]) Suppose v [W(G) has discrete diagonal
restriction, and there exists (p, A, B,{) ord(y) such that A > B. Let ¢ I:$f,° and
1o & e(p, A, B, (). Then we have

e (y,€) = 2 2
10, [(A=B+1)/2]] 7=#100=n 5+ L_c gy oy (~DIC]

[IB,...,~(ACR (IIX (B +1—1),...,—-((A—+1)[]

Lo (v ¢, Cedwara-n (e C. G Gn(-DIT)

where v is obtained from v by removing (p, A, B, (), and & ([) is the restriction of
e(D. In particular, when | = (A — B +1)/2 and no = 1, we will just take one value for
1, since both values give the same term.

Remark 7.9 The complicated condition on # comes from the fact that 5(~1)[¢]
with & (D) needs to define a character e_ of Siﬁ, where Jord(y_) is obtained from

Jord(y") by adding Cedp+1,4-11(p> C, C, ).

This theorem shows that nf,;’ (v, €) is a representation G>* and allows us to de-
compose it according to two parameters [, 77, where [ is an integer-valued function on

Jord(y) and 7 is a Z,-valued function on Jord(y). In the notation of this theorem,
welet I(p, A, B,{) = land n(p, A, B,{) = n(-1)IB*1 Then

1(p, A, B, Q) [0, [(A - B+1)/2]],

and
£(p,A,B, {) - ﬁ(P)A)B) ()A—B+1(_1)[(A—B+1)/2]+l(p,A,B,[).

Let us denote by ¢; , the character of Si° defined by (, 7) through this formula. Then
we define for any pair ([, ) such that ¢, ESVZ,“,
mye (v, 1) B (B, ..., (AR OIx
C(B+1(p,AB,)=1),....,=((A-1(p, A B,O) + I
Cay (y-, 1, n )G
where y is defined as in the remark, and I_ and _ are extended from [ and 7 by
letting I_(p,C,C,{) = 0and 1_(p,C,C,{) = n(-1IC1. In the theorem, Mceglin
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shows that 7'[1%/}’ (v, L, ) is irreducible. In fact, one can also show that

5 L) 5]
. (B 1D -(A ]

: : =

(p,4,B,0) Tord(y) Led+1(p, A,B,O) -1) D —{(A-I(p,A,B,{)+1) ]

0

(P,A,B,O [Erd(ll/) C [EB+l(P’A’B’C))A_l(P’A’B»()]
(p,C, C, s n(p, A, B, (-1) <P L0-A20y)

as the unique irreducible subrepresentation. We define my(y, L, 77) to be the irre-

ducible representation of G viewed as H(G)-module in the restriction of nlz\,}’ (v.Ln)
to G. Then

nM(V/) l) ﬂ) y III
1 (B I —(A 1

ABDUN Ledp 4 1(p, A,B,0)~1) D ~{(A-I(p, A B, () +1)

Eazhy (
(p-A,B,0)Jdrd(y) CLB+1(p,A,B,0,A=1(p,A,B,0)]

(p,C,C, (s n(p, A, B, (- <P L0420y

as the unique irreducible element in Rep(G) forming an H(G)-submodule. )
We define an equivalence relation on pairs (I, 77) such that (1, ) L (1, ﬁ') if

and only if ] = [ and (ﬁ/ﬁ')(p,A, B,{) =1lunless I(p,A,B,{) = (A-B+1)/2. 1t

is clear that 711%/1“ (v, L) IEIZ\,}’ (v, f,ﬁ') it (Ln) L ([,ﬁ'). In fact, the converse is
also true.

Proposition 7.10  Suppose v [¥(G) has discrete diagonal restriction and e I:$$°;
then

o (¥, €) = 2 i (v, L 7).
LU mE=e,0}/ 5]
Moreover, nff (v.Ln) Ei?(l//, [,ﬂ') if and only if (1, n) s, Q',ﬂ').

Proof The only thing that may not be obvious from Theorem 7.8 is the fact that
ﬂ]%/f (v, L) I__ulif" (v,1 ,ﬁ') if(Ln) g ,ﬁ'). But this can be shown by comparing
the Jacquet modules of these representations. ]

Remark 7.11 If Jord(y) contains (p,a,b) with a = b, then our definition of
711%4“ .1, ﬂ) will depend on the choice of sign {, ,. However, it is not hard to show

that the representation ni}’ (v, 1, n) is independent of (5.
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If G is special even orthogonal, and y C¥(G) has discrete diagonal restriction, we
define a Z,-valued function on Jord(y) by

. ifd,isoddand A [4,

otherwise.

Then &(p, A, B, () = ﬁO(P,A, B, {)*7B*1, and hence €Lyn, = €Ly €o- In general, we
let 7,=1 if G is not special even orthogonal.

Corollary 7.12  Suppose w LY (G) has discrete diagonal restriction; then
(72) e (v Ly ) Caing (. 1) Ca.

Proof This follows from the formula of 772 (., , 1) and (6.5) in the elementary case.
|

We define another equivalence relation on pairs (I, ﬁ) such that (I, ﬁ) EQ', ﬁ') if
and only if (1, 17) L] ([,ﬁ') or (I,n) Lsf (ll,ﬂ' ﬂo)' It follows from this corollary

that 7y (y, 1, ) = my(y, L, ') if and only if (1, ) CQ', 7).

Corollary 7.13  Suppose v C¥(G) has discrete diagonal restriction and & I:ASW; then
e = au(wln).
{(m)E=E,, M/
Moreover,
2 m(y.e)
Ehs[ASEO
consists of all irreducible representations of G*°, whose restriction to G belong to

ﬂM(l//, E)

Proof We can assume G is special even orthogonal. It follows from Proposition 7.10
that

m Orp (9, ) = myf (v, €)1& = e e (v, L )&,
L E=e; 1/ 5]
where m = 2 if Si" = Sy, and m = 1 otherwise. By (7.2), one can easily see the right
hand side is

m 2 mu(y, L, ﬁ) .
{n)E==, Y

This proves the first part, and the second part should then be clear. ]

Motivated by this corollary, we can define Hi" to be the set of irreducible repre-
sentations of G*, whose restriction to G belong to ITy,. In the case where G is special
even orthogonal and v [W(G) has discrete diagonal restriction, suppose Sf," %Sy
then for any (I, %),

Q’ﬁﬁo) s (1 ﬂ),
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and hence 7% [ for any irreducible constituent [7r] in 7y (w, €) by (7.2). Then it
follows from Theorem 4.2 that there is a canonical disjoint decomposition

M = + me(y.e)
s[Sﬁ"
such that

o [732(v, )] = 2mw(y,?) if G is special even orthogonal and SVE,0 = Sy, or
7w (v, €) otherwise.
* Foranys I:Suz,‘) but not in Sy, and (H, yy) - (v, s), the following identity holds

fwym) = Q elssy) fo(mp(v.))  f LT7(G Lap).
€Sy

Let us define ﬂi}’w (v, ¢) & 7'[5\2 (v, ssWMW/W) for ¢ ESE,"; then we can show in the

same way as Proposition 5.6 that for any s ESi" but notin Sy, and (H, yy) - (¥,5),

Faiw(Wa) = Q e(ssy) fo(mypw (v, 8))  f LT (G LH)).
g

At last, we can extend Theorem 7.5 to G>°.

Ceordm 7.14  Suppose v [¥(G) has discrete diagonal restriction; then

z -z M/MW
”1\/? (W» 5) - ”N}’w(vj’ £gy )

Proof We can assume that G is special even orthogonal and S;° # S,,. The proof
goes in the same way as that of Theorem 7.5. First we choose s ':ES‘%" but not in S,
and we define

30 o) B Q e(s"sy)mdy (v, ),

&S
o) B Q e(s™sy)myf (v, ).
e[S,
Secondly, we can extend Lemma 7.6 to this case, i.e., for (p, A, B, {) Jord(y) such
that A > B,
W)= 2 (D*CUB,...,.~{CTdcy(zs2y,...cc sz\,}),s ', (p, A B+2,0))
CB,A]

|I|.1)[(A—B+1)/2]H1)i?)sr€w.’ (0, A B+1,0), (p, B, B, ),
where we let s"(p, A, B,{) = sYp, A, B+2,{) = s5p,A,B+1,{) = s%p, B, B, ).

The proof is the same. Then we can show by induction that

e o) = ey ™Y (s, ).
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This is because of Theorem 6.21 and the fact that (71) still holds in this case. Finally,
. — _ —M/MW
since my (¥, €) = mpw (¥, €€, ), we have

e(s' sy (v, &) = sy/MW(s '——)'Dsey/MW(s Sy, (v, ££3,MMW)
/
- D el )
by the linear independence of twisted characters. Hence,
nf;,}’ (v, e) = nf(,}’w (v, ££3//UMW).

8 The General Case

In this section, we consider Moeglin’s parametrization of elements in IT,, for general
v C¥(G). The idea is similar to Section 5. We first assume that ¥ = y,, and fix
an order >, on Jord(y) satisfying condition (P). We also choose a parameter y —
dominating y with discrete diagonal restriction and natural order, and we identify

p> >
Swg I:Sﬁ“li"ll'hen we define for ¢ ESWS,

73 (1, €) B 0(p,4,8,0) Tard(y) JAC(p, A 1510 CGa1A,B,0) Tap (Y 156D,

where the composition is taken in the decreasing order. Since

oy (¥ rego) Tty (v 5e) Cad,
we have
e (v, e60) Tty (v, €) Cand.
We also define

@D (Y, ) B O a0 Tordy) (.4 80 T, 8,0 T (Y 15).

It follows from the case of discrete diagonal restriction that the restriction of 7'[1%/}) (v, €)
to G viewed as H(G)-modules is 277y (v, €) if G is special even orthogonal and Si" =
Sy, or mp(y, €) otherwise.

M/MW

Next we extend the definition of &y ESi,g to this case.

De [nikion 8.1  Suppose y =y, [C¥(G) and (p, a, b) [Jbrd(y). We fix an order >y
on Jord(y) satisfying condition (P).

(i) Ifa+bisodd ey (p,a,b) =1

(i) Ifa+ biseven,let

m=¢{(p,a’,b") Obrd(y) 0a’,b" 0dd, {op = =L (p,a’,0) >y (p,a, L)},

and
n=#{(p,a’,b') Obrd(y) 0, b 0dd, (p,a’,b') <y (p a, b)}.
Then
if a, b even,
e (p,a,b)= D" ifa,bodd, {up =+,

D™ ifa,bodd, {,; = -1
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Proposition 8.2  Suppose y =y, [¥(G) and & [ﬁup; then
(. €) = maw (v g8y "),

Proof By the definition of (5.6) and (8.1), it suffices to show that

(Y 58 = nuw (v ﬁy/MW)-
One checks easily SV,M/MW = sWMgW by the definition. So now this proposition will
follow from Theorem 7.5 directly. ]

As a consequence, we have the following result.

Proposition 8.3 Suppose y =y, [¥(G) and & E§1,,>. Let p be a unitary irreducible
supercuspidal representation of GL(d,).

(i)  For { (%1} and segment [x, y] with 0 [T [}, Jac, oymm(y, €) = 0 unless
there exists a sequence of Jordan blocks {(p, A;, B;, )}, OIbrd(y) such that
B, = x,An m and B; EE,‘+1 Iﬂ,- +1

(ii) Forx [, let m = 4{(p, A, B, {) Tbrd(y) XB = x}; then

Ex ..... x ﬂM(w’ g) =0
il i |

ifn>m.

Proof Note that 7y (v, €) = myw (v, g&™™M"y and

. (w’gM/MWEMW/W)) i EEMIMW MWW 3,
7TMW(1//s &e )= .
otherwise.

So it suffices to show the proposition for my (y,€) and € If$,,,. As we see from the

proof of Proposition 5.7,

€(sy)
8,0,

mw (Y, €) = Q #()Tw,s(¥),
Sy

where ITyy () is transferred from ﬁu/H for (H,yn) - (v,s). By (4.1), it suffices to
show the vanishing of the corresponding Jacquet modules for m,, & m,, [, . In
fact, it suffices to consider

Ty = Sp(St(p, a), b).
(p»a,b) Jord(y)

.....

{(P7 Ai7 Bi> ()}:’:1 Dﬂ)rd(ll/)
such that B; = x, A, [3d and B; [ B,y [A; +1. Itis also easy to see that

Jordan blocks

if n>m. |
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Remark 8.4 This proposition implies that the same kind of statements are also true
for rr]y(,}’ (v, ¢).
For functions [(p, A, B, {) L]0, [(A~B+1)/2]] and n(p, A, B, {) [Z;, on Jord(y)
such that
14(p A B, Q) B n(p, A, B, AP (- AP/ A

defines a character ¢;,,, of Sig, we define

73t (Vs L 1) B 0o, 8,0 Tord(v) JC(p,4 B0 Liaan 5.0y g (W 541D,

where the composition is taken in the decreasing order,

I(p,ABO)=lp AGBQ) and 1(p,A,B,0) = n(p, A B 0.

Then we have the following result about this representation.

Proposition 8.5 ([Mcegl0], Proposition 2.8.1)  Fory =y, L¥(G), 7[12\:; (v, 1, 1) only
depends on >y, but not on y —Moreover, my° (v, 1, 17) is either zero or irreducible. If
7'[1%/}’ (v, 1,n) #£0, then B
me(yhin) Xm0 0 Lk (v L ),
(p.A.B.O) Tord(v)
where the product is taken in the increasing order.

Proof  First, we would like to show 722 (v, I, n) only depends on >, Suppose there
are two dominating parameters y'—apd y%—wjth discrete diagonal restriction and
natural order; we can always choose a third one y =that dominates both y'—agd v~
It is clear that

T3 (Whi 1) = ©p,a,8.0 08rd(v) JAC(p, AR Tl 510 Tt (W 2k 1)
for i = 1,2, where the composition is taken in the decreasing order. For all
(p,A,B,{) >, (p, A, B, (), itis easy to check that

Jaco, ainBing rusn  A0d Jac y oy rgaaL)

commute (cf. [Xul5, Lemma 5.6]). Also note that

Jac(p, i B0y TGa1A,B,0) ©JAC(p, A B LA Bl = JAC(p, AR CGaM,B.O) -
Then

b i —
O(p, 48,0 ord(y) (o, 4l B0 T, 5.0 T (Wish 1) =

O(p.A.B,0) Tord(y) JAC(p, 4 5850 [(p1A,B.0) Tt (‘l’:'mbﬁ)-

This finishes the first part of the proof.
Next we index Jord(y) according to >, such that

(pis Ai, Bi, (i) >y (pi-1, Ai-1, Bim1, Gi1).

Let y bg obtained from y by shifting (p;, A;, B, (i) to (pi, A; + T, B + T3, {;). We
also define y* from v by shifting (p;, A; + T;, B; + T;, {;) back to (p;, A;, B;, ;) for
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i M Suppose ni}’ (v, L n) # 0; then ”12\/? Wk, 1) # 0 by definition. We would like
to show by induction that nlz\,}’ Wk, 1, n) is irreducible and that

reaBr + Tx) O ((Br+1) [
(82) miG Ly o o B GR L
LA+ T) OO0 G(Ag+1)

is the unique irreducible subrepresentation. Note that y° = y —and y" = y, where
n = Jord(y) So let us assume 711%}’ (v*1, 1, 1) is irreducible. For 0 [CI1 T — 1, we
denote B

CaBx + 1) OO ((Bi+1+1) [
nBH : H

ZHA+T) D (oA +1+1) 0

Let y*7%! be obtained from y*! by shifting (px, Ax + Tk, Bx + Tk, (k) to (o, Ax +
I, Bx + 1, (). We claim that ”12\40 (A ﬁ) is irreducible and

me W L) 5 Tl (v L)

is the unique irreducible subrepresentation. In particular, y*™* = y¥, so this is what

we want.
To prove the claim, we assume it is true for / + 1, and we would like to establish it
for I.
m (WL L) Che b (v Lyp).
Since

there exists an irreducible representation alz" and C [[IBx +1+1, Ay +1+1] such that

m (WL L) ISR, L Ge(A + T+ 1) L]

If C > By + 1 +1, then by Proposition 8.3 there exists (p;, A;, B;, (;) ord(y) for
i < k such that

Pi=pr>Ci=C,Bi>Br+1+1 and A; CAg+1+1

But this is impossible by the condition (P) on >,. Therefore, we must have C = By +
I +1. It follows that 012" is a constituent of 71? (y* 4, I, n). Apply Proposition 8.3 to

kbl

(8.3) Jace oo, qc” 0120 =0

for C' [PBx +1+1,Ax + Ti], C" [Ag + 1 +1, A + Ti]. To sum up,
CaA(Bx +1+1)

IO ) W e TR o B Fdape.
Leda+ 1+

, and we have
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If we apply ]aC(Pk’Ak"'Tk’Bk"'Tk:(k) CCad Ay +1,By+1,¢) 1O
Ca(Bx +1+1)
(8.4) naxH Edaj-,

LdAc+1+1)
we should get alz" by (8.3). So

b k—1,1 > k— - >
T (WL L) B JaC( 4, Ty Bt T TG AGHL B+ L) Tt (W L) = 07,

and (8.4) has a unique irreducible subrepresentation. Hence,

(v L) oy Cade (0 L)

is the unique irreducible subrepresentation. This completes the proof of our claim. W

Remark 8.6 It is an interesting problem to determine when 73? (y, 1, 77) is not
zero, and a solution to such problem would have many applications (e.g., [Mcegllb,
Moeglla]). In a sequel to this paper, we will give a procedure for finding explicit non-
vanishing conditions on (I, #) for ﬂjzl,}) (v, 1, n).

Corollary 8.7  Fory = y, LW(G), if my(y,Ln) Ty (v, !, n) £ 0, then
L) GIA,7).

Proof Suppose 7. (v, 1, n) 0 (v, I, ﬁ') # 0; then by applying (8.2) step by
step, one can conclude that 752 (v hn) e (v |11"|,ﬂ'). This implies (1, 1) [z
{a, ﬁ'). ]

Let mp(y, L, ) be the irreducible representation of G viewed as H(G)-module in
the restriction of 7'[]%/;’ (v.Ln) to Gif 7'[]%/;’ (v, L, ) # 0, and zero otherwise. Then

(¥, L 1) = 0(p,4,8,0) Dord(v))3C(p.4 B0 L5, ™ (Y A 1),

where the composition is taken in the decreasing order. The following proposition fol-
lows easily from the definitions and similar statements in the case of discrete diagonal
restriction (cf. Proposition 710 and Corollary 7.13).

Proposition 8.8 Fory =y, [¥(G) and ¢ [3;2,

7[1%; (W’ 8) = e 71’12\/?(1//)1)&):
{UmE=e 0 M 5
(v, €) = 2 vy, L ).

(L )E=7,n}/
Moreover,
2 mi(y.e)
- elsfl
consists of all irreducible representations of G*°, whose restriction to G belong to

7TM(1//, E)
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Asa consequence, for y = y, C¥(G) we can define Hi“ to be the set of irreducible
representations of G>?, whose restriction to G belong to IT. In the case where G is

special even orthogonal, if Si" # Sy, then % [# for any irreducible constituent

[7] in mp(y,€). So it follows from Theorem 4.2 that there is a canonical disjoint
decomposition

M= + 7 (y.e)
EESEO
such that:

. [naj’ (v, e)l&] = 2nw(y,€) if G is special even orthogonal and Si" = Sy, or
w (v, €) otherwise.
* Foranys I:Si,“ but notin Sy, and (H, yy) - (¥, s), the following identity holds:

fwQyn) = Q e(ssy) fo(mp(y,€))  f LT (G CH)).
#fs,

Let us also define for ¢ I:SES,

ot (¥ €) B O(p.A.B,0) Tord(y) JAC(p,A B0 L(aMA,B,0) Tyt (¥ 8D

Then we have the following theorem.

Ceordm 8.9  Suppose y =y, L¥(G) and ¢ EASiQ,

MW/W o MWIW g3
nﬁw(w,s):@f(‘//’“w ), ifegy L3y"

otherwise,

and

b . M/MW
oyt (s €) = gy (v, egy, )

Proof We can assume G is special even orthogonal and Si" #S,. Since

—MW/W e MWIW %
_ , €€ , ifee S,
maaw (9 9) = @W vk dEy

otherwise

we have ﬂlz\,;)w(l//, ssvl\,dW/W) #0onlyife ESVZ,".

Let us choose s '%Sig but not in Sy>, and we denote its image in Si" again by s
Then let us define

Mt @) B Q (s sy)myfy (v €),
e[S)>
Iy @) B Q e(s"sy)my (v, ©).
#sy

As in Proposition 5.7 one can show

Tty o) = ey ™" (s DI o)

https://doi.org/10.4153/CIM-2016-029-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-029-3

On Meeglin’s Parametrization of Arthur Packets 945

(cf. (5.7)). By the linear independence of twisted characters, we have for ¢ ES%“,

eeyW/W(s %)nf{jw(v/, eeyW/W) = SWMW/W(S;S k(s I;ll,,)rr%\}’ (v, ¢).
And hence,
o (o eey MY = mhe (v, e).

This proves the first part. The second part follows from the case of the discrete diag-

M/MW _ M/MW

onal restriction and the fact that Eyry =& . [ |

The following corollary is a direct consequence of Theorem 8.9.

M/W M/IMW MW/W
v E: £ .

Corollary 8.10  Suppose y = v, C¥(G) and ¢ E:"oig, let ¢ &y v

Then
MIW . MIW o
% — r(y,ee, ), ifee, T L3,
My (> €) = .
otherwise.

Finally for y [¥(G), I1, = Ty I:lj%. We define

Iy & ( Sp(St(p, @), b)) [T,
(p,a,b) Jord(ynp)

e (v, €) B ( Sp(St(p, a), b)) Cafy (yp. €),

(p,a,b) Odrd(ynp)

2 (y€) B sp(St(p. a). b)) L2 (v e)

(p>a,b) Jord(ynp)
for ¢ [Si". Then we have
MIW o MIW g3
(v, e , ifee 320,
wa(ye) = P (s ey BBy
otherwise.

For I(p, A, B,{) [0, [(A - B +1)/2]] and 5(p, A, B, ) [Z, on Jord(y,) such that

ey [32¢, we also define

17

e (v L) = ( Sp(St(p, a), b)) Cahe (v, L 1),
(p,a,b) Jord(ynp)

ma(ys L) = Sp(St(p, a), b)) Lk (v L, ).

(P’a’h) Ude(‘l’np)

Proposition 8.11 ([Mceg06a, Theorem 6]) For y [¥(G), 7[12\,;’ (v, L, n) is irreducible
or zero.

As a consequence of this proposition, 7y (v, I, ) is the irreducible representation

of G viewed as H(G)-module in the restriction of ”12\40 (v, L) to Gif nlzw" (v.Ln) #0,
and zero otherwise. To summarize, we obtain Mceglin's multiplicity free result for
Arthur packets.
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Ceordm 8.12 (Mceglin) For v C¥(G),

> E 2 my(y.e) (resp. Y B 2 mw(y,2))
s[S[io e[Sl

is a multiplicity-free representation of G* (resp. H(G)-module).

A Compatibility of Endoscopic Transfer with Aubert Involution

In this section, we want to establish the compatibility of (twisted) endoscopic transfer
with generalized (twisted) Aubert involution (¢f. (6.3), (6.7), and (6.9)). We will start
by considering the usual (twisted) Aubert involution. Let F be a p-adic field and let G
be a quasisplit connected reductive group over F. Let 0 be an F-automorphism of G
preserving an F-splitting. We denote the space of (resp. twisted) invariant distribu-
tions on G byAI (G) (resp. T (G%)), and denote the space of stable invariant distribu-
tions on G by SI(G). Let P? be the set of §-stable standard parabolic subgroups of G.
Let G = G 1AL For any n* [Bep(G™), we define the O-twisted Aubert involution
as follows:
inv? (7)) = Q (~1)4mAe Ind§ (Jac, ),
pm®

where Ap is the maximal split central torus of the Levi component M of P. Let H be
a twisted endoscopic group of G, and we denote by inv”’ the Aubert involution on
Grothendieck group of Rep(H). Then we want to show that the following diagram
commutes, where the horizontal maps correspond to the twisted spectral endoscopic
transfer:

(A) S1(H) —11(G%

. H .
nv ll'IVe

S1(H) —1(G%),

To establish this diagram, we need to know the compatibility of twisted endoscopic
transfer with Jacque modules, and we will recall its formulation here following [Xul5,
Appendix C].

For simplicity, we will assume there is an embedding

¢ H 2AG,

and £(*H) [CTent(s, G) and H [CTent(s, G)° for some semisimple s [G
We fix (6-stable) Tp-splittings (B, Tz, {Xuy,}) and (B¢, T, {Xq}) for H and G
respectively. By taking certain G-conjugate of £, we can assume s [T ﬁﬂnd &(Tw) =
(Tg)0 and ¢(Bgy) [Bg. Let Wy = W(}-I, Ty) and Wge = W(AG,TG)Q; then Wy can
be viewed as a subgroup of Wgs. We also view “H as a subgroup of G through ¢&.

For P = MN [P? with standard embedding LAP [EQ, there exists a torus S [C(T%)°
such that M = Cent(S, *G). Let Wy = W(M, T¢)?. We define

Wge (H, M) E {w [Wge (Cent(w(S),“H) -~ W surjective }.
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For any w [Wge (H, M), let us take g G such that Int(g) induces w. Since
Cent(w(S),“H) - Wr is surjective, g"Pg™" n L H defines a parabolic subgroup of
L H with Levi component g"Mg™ n L H. So we can choose a standard parabolic sub-
group P, = M, N, of H with standard embedding LP,, [XH such that P, (resp.
LM.,) is H-conjugate to g* Pg™" n L H (resp. g"Mg™" n L H). In particular, M., can be
viewed as a twisted endoscopic group of M, and the embedding &y FM,, - M is
given by the following diagram:

LP;Q;LM;, EM4"’V/LM4/LP

LH Int(h) /LH ¢ /LG dnt(g) LG,

where h CH induces an element in Wy. Note that the choice of & is _unique up to
M,,-conjugation, and so is & ;- If we change g to h'gm, where k" [H induces an
element in Wy and m M induces an element in Wy,s, then we still get P, , but & M,
changes to Int(m™) 0 & up to M, -conjugation. To summarize, for any element w
in
W/ Wge (H, M) Wio

we can associate a standard parabolic subgroup P, = M., N, of Hand a M -conjugacy
class of embeddings £, O*M,, -~ “M. Then the following diagram commutes,
where the sum is over Wy/Wge (H, M)/ Wye and the horizontal maps correspond to
the twisted spectral endoscopic transfers with respect to & on the top and &y, on the

bottom:
(A2) SI(H) ———11(G%)
LoJcp;, Jacp
>, SI(M.,)) —T1(M?).

6
Let us denote the twisted spectral endoscopic transfer from H to G by Tran¥ , and the
MB

twisted spectral endoscopic transfer from M., to M by Tran ;- Then we can translate
the diagram (A.2) into the following identity. For @7 CSI(H),
Q Tran%?v Jacp: o =Jacp Trange of.
It follows that
Q Indg (Tranﬁ; Jacp: o) = Ind}G, (Jacp Tranﬁ,e o).
By the compatibility of twisted endoscopic transfer with parabolic induction,
Indg Tran%\i (Jacp, of) = Trange Ind?vrv (Jacg, o).

So
TranIG{e (Q Ind% Jacp, ey = Indg Jacp ( Traane o).
w
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We can multiply both sides by (—1)4™(4#) and then sum over P [BY,

Trange (0 (~1)dim4rdse Q Indg’v Jacp, 0™ =inv? ( Tranf,e of).
=g w

To establish the diagram (A.1), it is enough to show

Q (-1)dimtee o Ind?v-V Jacp: o = inv? 0",
PR w

By the definition,
inv?@f = @ (-1)4m4* IndY Jac, ©F,
P’ B
where PH denotes the set of standard parabolic subgroups of H. So it suffices to prove
the following proposition.

Proposition Al Forany P'=M N [BY,

(A3) Q (—l)dim(AP)e av .M = (_l)dim Ap
PRP

where
ap v B #{w CWy/ Wge (H, M)/ Wy [P, = P'}.

Hiraga proved this proposition in the non-twisted case (see [Hir04]), and we will
extend his arguments to prove the twisted case here. First we need to introduce some
more notation. A

Let A% be the identity component of [z-invariant elements in (TZ)°, and let
A be the identity component of Tz-invariant elements in Ty. By the choice of G-
conjugate of &, we can further assume that £(A¥) D&G’Ae and there is a 0-stable
standard Levi subgroup M¥ of G such that L M = Cent(AF, LG).

For any 0-stable standard Levi subgroup M of G, we denote by Ryes (M) the
root system (not necessarily reduced) obtained by restriction from the root system
R(M Tg) to (Tg)o, and we denote the set of simple roots in Rres(M) by Ares(M).
Let Ris(M) be the set of positive (negative) roots. We write ry.s(M) for the num-
ber of I'r-orbits in Ares(M). Note that P? is in bijection with the I'z-stable subsets of
Ares(G). ' A

For any standard Levi subgroup M of H, we denote by R(M") the root system
R(M', Ty) and we denote the set of simple roots in R(M") by A(M"). Let R*(M")
be the set of positive (negative) roots. We write r(M ") for the number of ['z-orbits in
A(M) Note that P¥ is in bijection with the I'z-stable subsets of A(}-I) It is easy to
see that R*(H) (R (G).

If we multiply both sides of (A.3) by (-1)4™ 4% , then we will get

(A4) Q (_l)fres(M) am . HM = (_l)rres(MH)"'r(M') .
P[P8

We will break the proof of this identity into four steps.
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Step 1: We fix a 0-stable standard Levi subgroup M of G. Let
Dy = {w CWge 7 (Ares(M)) LR}, (G)},
Dy = {w [Wee v (A(H)) [R},,(G)}.

We would like to show that Dy je & D;}e n Dy is a set of representatives of
Wr!/ Weo/ Wi

Lemma A.2 Dy (resp. Do) is a set of representatives of Wi/ Wge (resp. Wye/ W ).

Proof For any w [Wge, let ABH 2 Hn w(Bg). Then ABH is a Borel subgroup of
H. So there exists a unique wy Wy such that WH(B 1) = Bpy. It follows that By =
WH(H nw(Bg)) = Hn waw(Bg), and hence wgw [IDg. By the uniqueness of wy,
we see Dy is a set of representatives of Wy/Wgs.

The proof for Wye/ Wee is similar. One just needs to notice W DN(AGI, (Tg)o)
and Wye CW (M, (T8)?), where G! (resp. M) is the identity component of 6-in-
variant elements in G (resp. M). [ |

For w [Wge, we define

Lo (W) = e [RY, (M) e (R (G)}
lu(w) = #{a (B (H)Wa [R,,(G)}.

Lemma A3  Foranyw [(Wge, Dy e N WawWype # L1

Proof Since Dy is a set of representatives of Wy/Wge, we can choose wy [
WrwWye such that wo [ Dy. Note that wy' "Dy if and only if 1y (wo) = 0.
So we can make an induction on Iy (wg). Suppose 0 (wo) > 0; then there exists
a Iﬂres(M) such that woa I:Rr_es(AG). We claim

Iy (Wosa) < e (wo),
where s, is corresponding the simple reflection. To see this, note that

sa(RE (M) = Z+a) =R, (M) - Z+a and  woa (B (G).

res res

So
Lo (Wose) = #{a’ [RY (M) - Zyalbgsaa’ (R, (G)}

res
={a” (B}, (M) - Z.alboa” (R, (G)}.

Then .
Lo (Wo) = Lyo (Wose) + Lo 0 Ry (M)D> Lygo (Wosa).

We still need to show wosq [Dpy. For that, let us consider (wose) " (A(H)) =
sawy (A(H)). Since
sa(Ries (G) = Z+) = Riyy(G) = Zear,

res

we only need to show wy I(A(H)) n Z+a = [This is guaranteed by the fact that
Wok Dlr_es(G). |

Now we have the following proposition.
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Proposition A.4 Dy ye is a set of representatives of W/ Wge/ Wiy

Proof In view of Lemma A.3, we just need to show Wrw W6 contains a unique
element in Dy pre for any w [Wge. Suppose wo, wy [Dp p0 N WwWye; then we
can assume that W0 = wgwowye for wyg Wy and wype [W,e. First we want to
show that wy can be chosen to be trivial. Note that wy = 1if and only if / H(w H=o.
Suppose In(wy') > 0; then there exists a DL(H) such that wy (oc) R™ (H) Since
wo, wo [ Dpr, we have B = wylwila [R;, (G) and wMe[S (WO) a [RT (G) So
B[R, (M). Hence

res res

w(') = wywowpe = (Sq Ba)Wawow e = SaWHSy-1a WoW a0
= (SaWH)W()(SW—lW—laWMB) = (sawH)wo(sﬁwMe).

As in the proof of Lemma A.3, one can show Ig(wi'se) < IH(WH) So by induction
on Iy(wy), we can assume that wy = wow,ye. Since wo, w D)Me, we must have
we =1, and hence wy = wy. ]

Next we would like to describe Dy pre N Wge (H, M), which is a set of represen-
tatives of We/ Wge (H, M)/ Wyo. Since "M = Cent((49)°,"G), w [Wgs (H, M) is
characterized by the condition that

Cent(w(Ahgw)O, Imy =we
is surjective. For w Dy, the above condition is equivalent to requiring 14/(AA(;\4)0 1
AH S0 let us define
Do = {w (Do Dw7'(42)° A}
Then DH Me E: DMe n Dy is equal to Dy,pe 0 Wos (H M).
For w DDH e, it is easy to see that M = W(M) n H. So we would like to define

M, E: w(M) nH forallw [ > and note that M, is only a standard Levi subgroup
of H over F in this case. For any standard Levi subgroup M of H over F, let us define

Dy = {w [Wgs v~ (A(M")) [R(G)}-
We also define
Dy mme B A{w [Dy po DMW =M}, bM',H,Me E{w Eﬁ)H,Me DMW =M}
It is clear that D e # Colly when M "is defined over F.

Step 2: We again fix a 6-stable standard Levi subgroup M of G, and we will take M’
to be standard Levi subgroups of H over F (if not specified). Let

EMe: Q w and &y = Q w.

WEi]Me WmM'
Forany & = P, @wWw, let us write
[(lu= Q aww.

Wm'Ge
w(aH)=a"
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Then we want to show
(A5) [uépeln = Q ap m,Mmo [Em]n.
=l
For any x [Wge satistying x(Ah) = AH its coefficient in [¢ H~€Me] H is given by
the number of pairs (du, dpp) [Dg X Dy such that x = dpdye; in other words, we

need to count xD;}e n Dy.
By Proposition A .4, it is enough to count

(A.6) (xD3ks 0 Dir) 0 Wigw Wype
for all w [Dg pre. Let
(A7) whx = woge (x, w) e (x, w)

for wpge (x, w) Wy and dpe (x, w) [CDppe. Note that this decomposition makes
sense for all x [Wge.

Lemma A5  Suppose x [IWgse satisfies x(AH) =AM and w CIDyy ppe; then
dpe (x, w) [y if and only if w [y pps.

Proof Since xd e (x,w)_l(AA%I O = wwye (x,w)(AA?M)0 = W(AA%I)O, the lemma is
clear. ]

Before we give the result for (A.6), we would like to consider a slightly more general
situation.

Proposition A.6  For x [(Wge and w [y pe,

dpe e, W)™}, ifxdype (x,w)! [Dy,

xD7% N D) n WwWye =
(Do ") HE e otherwise.

To prove this proposition, we need the following lemma.

Lemma A.7  Suppose w [Dy ye, and every element in Wyw Wye has a unique ex-
pression as wyww e for wye [Wye and wy [y 0 Wy, where M = M., Moreover,

Iy (w;,}a wlwi) Chi(wy).

Proof Asin Lemma A.2, one can show that D} n Wy is a set of representatives of
WH/WM . Then
waww e = (dyfwar)wwige = dypw(w ' war w)w e

for dyy Dy and wyr Wy, Since Wy n wWyew™ = Wy, we have
w'wayrw [Wye. This proves the existence of the expression. To see the unique-
ness, we can assume that wgwwye = wyww, , in both the desired expressions. Then
WEWW 0 (W10 )7' = wyw. So we can assume instead that wgww e = wyw. It follows
wwye = wiwyw CWgw. So wwyew ™ [TWy. Hence, war B wwyew ™' TWy.
Now we get wywy = wy. Since Wy, wy I:IDI_\,I1 N Wy, we must have wy = 1. Then
whg =wgand wype =1
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Next we want to show
ZH(WI_MIQ wlwi) Chi(wy

for wye [Wye and wy £} n Wy Note that

R*(H) = (R"(H) = wu(R* (M) +wi(R"(M")).
Then

-l/p+/7 — —l/p+/r7 + A + S

wy (R™(H)) = (wy (R™(H)) = R™(M)) + R (M)).
We claim that o« [ (R* (H))-R* (M") is positive if and only if Wi W ais positive.
It is clear that for « [R(H), « is positive if and only if w™'« is positive. So we only

need to show w™'a [Ryes(M) for a T (R*(H)) - R* (M), or equivalently, a [
W(Ryes(M)). To see this, we consider

R*(H) 0 wirw(Rees (M)) = R* (H) 0 wrr(R(H) 0 w(Rees(M)))
= R"(H) n wi(R(M)).

Since wy (D35 n Wy, wg(R*(M')) CR*(H), and we have

R (H) 0w (R(M) = wi(R"(M")).
Therefore, A A A

R*(H) n waw(Rres(M)) = wr(R™(M")).

Multiplying both sides by w, and we get

wit (R*(H) 0 w(Rees (M) = R*(M).
From this identity, one can easily see & [ (Rres (M)) for o L (R (H))-R*(M).
This shows our claim. Consequently, we have

L wiew  wit) = In(wid) + #{a CRT (M) Bvisw ™ a (B (G)} 2 Iy(wi}). m
Corollary A.8 Forw Dy ye, Dy n WawWye CulWye.

Proof For wgwwye [Dg n WgwW,e, we can assume that wy Dy n Wy by
Lemma A.7. Then 0 = lH(W;,Ile wowi) Clg(wy'). So Ig(wy') = 0, and hence
wy = L |

Now we will prove Proposition A.6.

Proof For x [(Wge and
y I]xD_Mle N Dy) N WygwWyye,

we can assume y = ww e for wye W6 by Corollary A.8. There exists dye [ID 0
such that

xdyp =y = wwype.
So wlx = wyedye. Compared with (A7), we get dye = dpe(x,w) and
wye = wype(x,w). Then y = xdype(x,w)™ [Dpy. On the other hand, suppose
xd e (x, w) ™' [Dp; it is clear that xd e (x, w)™ (3D} 1 Dy. Moreover,

xdyge (o, W)= wwpge (o, w) CWEw Wge.
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So xd e (x, w)™ [xDy N Dyr) N Wyw Wyye. This finishes the proof. [ |
Since there is a decomposition

Dy pe =+ Dpp pgoaes
>

where the sum is over all standard parabolic subgroup P’ of H over F, we would like
to refine Proposition A.6 by restricting to Dy g pze.

Proposition A.9  For x [Wge and w LDy g pe, (Do 0 D) 0 WywWye # L1
if and only if x LDy,

Proof By Proposition A.6, it is enough to show that xd e (x, w) ™ [Dy if and only
if x [y . Since A A A
R*(H) n w(Rees(M)) = R (M)
and xd e (x, w) ™' = ww e (x, w), we have
dygo (e, W)™ (R (M) = dige G, w)x T (RT(HD) 0 wiage G, w) ™™ w(Rees (M)
= dyp (6, w)x T (R (H)) 0 Rees(M).
If xd o (x, w) ™' [Dy, then dyo (x, w)x " (R* (H)) [R,(G). So
dys (e, W)™ (R* (M) CRE (M),
Then . . .
xH(RF(M)) Cdygs (x, w) ™ (Rieg (M) [R(G).
This means x (D, . . .
Conversely, suppose x [Dyy; then x '(R*(M")) [RY,,(G). We can rewrite it as

dpe (6, w) " (dppe G, w)x Y (RT(M')) LR, (G).
Since d o (x, w)x LR (M")) = wye (x, w) W (R (M) [Ryes (M), we must
have
dps (e, w)x I (RT(M')) LR, (M).
So it is enough to consider
dye (o, w)x {(RT(H) - R*(M"))

= wye (6, w) W (RT(H) - R*(M"))

= wye (o w) (IR (H)) - w T (RT(M)))

= wye (6, w) 7 (w (R (H)) = w (RT(H) 0 w(Rpes(M))))

= wye (6, w) (W (R (H)) — w (RT(H)) 0 Rees (M)

= wype (6, w) (W (RY(H)) = Rees(M)) .

Since « IEV_I(RJ'(}-I)) - Rres(M) is positive and not in Rres(M), wie (x, w) L is
also positive. Therefore,

dye (x,w)x T (R (H) = R* (M) [, (6)-
This implies xd 0 (x, w) ™ [Dy. ]
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Next, we will modify Propositions A.6 and A.9 for counting (A.6).
Proposition A.10  For x [Wge satisfying x(Ah) = A" and w Dy pres

(xD3ls N Dy) 0 WywWye =
%ilm Cow)™}, ifw IjDH)Me and xd e (x, w) ™' [Dy,

otherwise.

Proof By Proposition A.6,

(xD_le n DH) n WHWWMB = %gMG (x’w)_l}) ifdee (x’w)_l DDH’
M

otherwise.

So (xb;\/}e N Dy) n Wygw Wye # [ifhnd only if xd e (x, w) ™ (D and d e (x, w) [
Z)Me. By Lemma A.5, this is equivalent to requiring xd e (x, w)™ [Dg and w [
DH,Me . .

As a consequence, we can restrict ourselves to the set D H,m® When counting (A.6).
Since

(A.8) NDI_I’]\/IG = -+ ~DM',H,MG >
P [BAH

we can further restrict to each D M LHME -
Proposition A.1l  For x [Wgs satisfying x(A}{) = AH and w EfDM-,H’Me,
(xDyhe N Dy) n WywWye # L1
if and only if x [y,
Proof By definition, D w.mm® LDy e In view of Proposition A.9, it suffices to
show that for x D,
(xD3)e 0 D) n WwWye # L1

Since in this case
(xD3js N D) n WywWe # G

we have xd e (x, w)™ [y by Proposition A.6. Then the result follows immediately
from Proposition A.10. u

Corollary A.12

[Euépelu= Q anrpelénla.

P’ [BH

Proof Since apy g ye = D " ,1,m0 ] this identity is an easy consequence of (A.8)
and Proposition A.11. ]
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Step 3: In this step, we would like to establish the following two identities:

(A.9) Q (1) =ONF, o = (—1) @™ Gy M"
PRe
(A10) Q ()L 1y = [EuwSwM 1.
P M

Here w¢ (resp. wM H) is the longest element in W (resp. Wyn). It is an easy exer-
cise to show that w& [Wge (resp. wM" CWarmys ). Moreover, we have wS (A%f) =
A% (resp. wM" (AG-0) = AG-9) e, WS wM" DN;E.

First let us consider (A.9). Recall that the left-hand side of (A.9) is equal to

LHS(A9) = Q ()™M Q w,
P[P8 Wli]Me

and we make the following observation.

Lemma A13  Ifw Dy, then w LW

Proof Forw |jDMe, we have

W (Bres (W) [RL(G) and w™'(a%)" CA"

res

by the definition. We take any ¢ [Ty. Since AH 250 it is easy to see that o(w) [
Wyew. On the other hand,

o) (Ares(M)) = 0 (W™ (Ares(M))) CA(R;,(G)) = RE, ().
So a(w) [Dype. By Lemma A.2, 6(w) = w. Hence, w DWGF’;. [ |

As a consequence, we can restrict the summation on the left-hand side of (A.9) to

Wcr;';. Moreover, for w IjVéZ, the condition that w [ o 1s equivalent to

R (MH) G (R (M) R, (G).

So
LHS(A.9) = Q (-1)"=®D Q w
PR wm’ég
R, (M) Gl (R}, (M) (K], (G)
= Q( Q (1) 0y w
ww'F pmE°

¢ w(rL,(M")) (RY,, (M) AR}, (G))

For w DWGF'; , we define
Ly = {o (Ao (G) gy # O for some B [ e (MH)},

where wf = P, 5 () g @ Then we have the following lemma.
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Lemma A.l4 Forw LW, I, = w(AreS(MH)) if and only if

G®’
w(Rie, (MH)) (M) TR, (G))
for some P [RY.

Proof If there exists P [P? such that
w(RE (MH)) [RL (M) CH(R;,(G)),
then I, [B,es (M) Cl(R},(G)). Sow™' (1)) LR, (G). We claim w(Ares(MH)) [

res res

Ares(AG). Suppose § [Nes (MH); since wpf I:R:es(j\/[), we can assume that wf =
P.m "pa « where ng, [0l Hence,

p= w_l(wﬁ) = Q 1pa (wa).
a L)

. -1 +
Since w— o R},

(G) for a [T, this can only happen when ng, = 0 except for
one simple root, i.e., w3 [CAes(G). This proves our claim. As a consequence, I,, =
w(Ares(MH)). R

Conversely, if I,, = w(Ares(MH)), we can let My, be the standard Levi subgroup
of G associated with the subset of simple roots I,,. Then we have

w(Rl (MH)) [R, (M) CH(RL(G)). n

res res

In view of this lemma, we can assume that I,, = w(AreS(AMH )). Let M(w) be the
standard Levi subgroup of G associated with the subset of « [N¢(G) such that
wla [BY, (G). Itis clear that M(w) M, under our assumption. Then

LHS(A.9) = Q ( Q (=)

wm’rg pR°
? M, CALH(w)
Ly=w(Ares ((MH))
= Q (_1)rres(M|W) w
WDZI’F';
G

Iy=w(Ares (MH)), M, =M(w)

Note that r,es(Mj, ) = rres (M), s0

LHS(A.9) = (~1)"=M"™ o "
wW'F
~ o
Ty=w(Ares (M), My, =M (w)

Then (A.9) follows from the following lemma.

Lemma A.15  Supposew D]VGF'; satisfies I,, = W(Ares(AMH)) and M;, = M(w); then
w=wlwM"

H H
Proof Since (w9)? = (wM )2 =1, it is equivalent to show that w™ w™ = wC, ie,

WM W (Ares (G)) TR, (G).
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Since W (Iy) = Ares (MH), wM" wl(1,,) CRL,,(G). Since My, = M(w),
W_I(Ares (AG) - IW) I:H;es (AG)
Byw™'(I,) = Ares(MH) again, we have W_I(Ares(G) -I,)n Rres(AMH) = [Hence
Mt -1 - -
w_ w (Ares (G) - IW) Eﬂres(G)'
This finishes the proof. ]
Next let us consider (A.10). Recall that the left-hand side of (A.10) is equal to
LHS(AL0)= Q (-)'™) Q w.
P’ [AH w FDM' X
w(ah)=a"

For w [CWe satisfying w(AH) = AM, we have that for any ¢ [Tr and « CR(H),
w™'(«) and w™! (o («)) are both positive or negative, where oy is the Galois action
in L H. This is because

w7 (@) = w7 @l = w ™ (0(@) ) = w (01 (a)) e #0.

So the subset of & [A(H) satisfying w'a R, (G) determines a standard Levi
subgroup M'(w) of H. Then

IHS(A10)= Q ( Q (-1)@)y= Q w.
WMGQ ,P' [B’H Wm’Gg
w(At)=aH M M (w) w(aH)=aH

w™ (A(H)) [T, (G)
On the other hand, the right-hand side of (A.10) is equal to

RHS(A.10) = [EwC]s Ov™" .

One can check easily that DywC consists of w [Wgs such that w™! (A(}-I)) R, (AG)

So
"
RHS(A.10) = ( Q wyw = Q w.
w m'Ge w m’eg
w(AM)=4H w(AM)=4H
w™' (A(H)) [RT, (G) w™ (A(H)) (R, (G)

The last equality is due to the fact that for w [Wge satistying w(Ah) = AH,
w (A(H)) [R,,(G)
if and only if
orw2) 7 (A(H) TR, ().

One can show this by restricting the roots to AH. Then the proof is completed by
comparing the last expressions of RHS (A.10) and LHS (A.10).
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Step 4. We will establish (A.4) by using the identities (A.9) and (A.10). First, we mul-
tiply (A.9) by &g, and compare it with (A.10):

(A.11) Q (D)=L E o Tn = (1) =M [EnCwM 1y
P[PP

= ()" Q () OLE]n.

P [AH

Then we can use (A.5) to expand the left-hand side:

LHS(ALl) = Q (1= Q ay mme S ]u

P[P P’ [PH
=Q (Q (_l)rm(M)aM',H,MB)[fM']H~
= i=T

By the linear independence of [£r]x, we get

Q (_l)rres(M) aM',H,Me = (—1)7res(MH)+’(M')
P®

for any P’ [RH.
A.1 Generalized Aubert Involution

We would like to generalize the diagram (A.1) to (6.3), (6.7), and (6.9). Note that we
will only show the commutativity of (6.3) and (6.7) when restricting to distributions
associated with elementary parameters. In fact, they are not commutative in general.
Let G be a quasisplit symplectic or special orthogonal group. We fix a positive integer
Xo and write xo = (X, —1)/2. We also fix a self-dual irreducible unitary supercuspidal
representation p of GL(d,). Let P4, be the set of standard parabolic subgroups P of
G whose Levi component M is isomorphic to

GL(a1d,) x IIX GL(a;d,) x G(n— Q aid,).
i,1]
Then we can define for 7 [Rep(G),

invey, (M) B Q (1)U ™4 Ind§ (Jacp ()<, )-
P EEdp

It is clear that
[invex, ()] = invex, ([7]).

So (6.3) is equivalent to

SI(G) ——T1(N%)

oN

invex, <Xo

inv

SI(G) ——T1(N?).
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To prove this, we can follow the argument for (A.1). For P IZIEPZS , we specialize the
diagram (A.2) in our case:

(A12) SI(G) ——T1(N9)

IICIJacp‘;V )<xq (Jacp)<xy

>, SI(M.,)) —1(Mm9),

where the sum is restricted to those w satisfying P,, [P,,. Unlike (A.2), the above
diagram may not commute in certain cases when we apply it to distributions not as-
sociated with elementary parameters. This is the reason that we want to restrict (6.3)
(similarly (6.7)) to distributions associated with elementary parameters. By (A.12), it
suffices to show that for any P’ [Py,

(A13) Q (_l)dim(Ap)g am.Gm = (—l)dimAP'.
pEN
P
By Proposition A.1, we have
Q (_l)dim(AP)BaM',G,M = (-)himAe,
PN
Therefore, (A.13) follows from the simple fact that ayr g, = 0 when P I:E’Z:.
The case of (6.7) is similar. For (6.9), let PZZ be the set of 8-stable standard para-
bolic subgroups in P4,. Then we can define for 7% [Rep(G™),
inv® () B Q (1) ™A% 1nd %y (Jacps, (17)<ry)-
PR
For P I:IPZ‘; and G(n = P,y aidp) # SO(2), it is clear that (Aa)g, = Ay and
Jacps, = Jacpsy. If G(n = P,y aid,) = SO(2), then dim(Ap)g, = dim(Ay) — 1,

but the effect of facng in taking the twisted character also differs from Jacpz, by a
negative sign. So we have

fo(inv®y, (1)) = fo(invex, (7)), [ CCX(G CH).
As aresult, (6.9) is equivalent to
SI(H) —I1(G%)

.8
inv_9

s H
invey, Xo

SI(H) ——I1(G%).
The rest of the argument is similar to (6.3).
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