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Abstract
Designing protein sequences with a particular bi-
ological function is a long-lasting challenge for
protein engineering. Recent advances in machine-
learning-guided approaches focus on building a
surrogate sequence-function model to reduce the
burden of expensive in-lab experiments. In this
paper, we study the exploration mechanism of
model-guided sequence design. We leverage a
natural property of protein fitness landscape that
a concise set of mutations upon the wild-type
sequence are usually sufficient to enhance the de-
sired function. By utilizing this property, we pro-
pose Proximal Exploration (PEX) algorithm that
prioritizes the evolutionary search for high-fitness
mutants with low mutation counts. In addition, we
develop a specialized model architecture, called
Mutation Factorization Network (MuFacNet), to
predict low-order mutational effects, which fur-
ther improves the sample efficiency of model-
guided evolution. In experiments, we extensively
evaluate our method on a suite of in-silico protein
sequence design tasks and demonstrate substantial
improvement over baseline algorithms.

1. Introduction
Protein engineering aims to discover novel proteins with
useful biological functions, such as fluorescence intensity
(Biswas et al., 2021), enzyme activity (Fox et al., 2007),
and therapeutic efficiency (Lagassé et al., 2017), where
the functions of a particular protein is determined by its
amino-acid sequence (Crick, 1958; Nelson et al., 2008).
The protein fitness landscape (Wright, 1932) characterizes
the mapping between protein sequences and their functional
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Figure 1. (Left) Functional proteins are rare in the sequence space.
The yellow flag corresponds to the wild-type sequence. (Right)
The local landscape near the wild type is rugged. A few amino-
acid mutations may dramatically alter the protein fitness.

levels (aka. fitness scores). It formulates the engineering
of proteins as a sequence design problem. The evolution
in nature can be regarded as a searching procedure on the
protein fitness landscape (Smith, 1970), which is driven by
natural selection pressure. This natural process inspires the
innovation of directed evolution (Arnold, 1998), the most
widely-applied approach for engineering protein sequences.
It mimics the evolution cycle in a laboratory environment
and conducts an iterative protocol. At each iteration, enor-
mous variants are generated and scored by functional assays,
in which sequences with high fitness are selected to form the
next generation. Recent attempts focus on using machine
learning approaches to build a surrogate model of protein
landscape (Yang et al., 2019; Wittmann et al., 2021) and
designing model-guided searching schemes (Biswas et al.,
2018). This paradigm can effectively reduce the burden of
laboratory experiments by performing in-silico population
selection through model-based fitness prediction.

The exploration mechanism of directed evolution is a sim-
ple greedy strategy. It starts from the wild-type sequence
and continuously accumulates beneficial mutations in a
hill-climbing manner on the fitness landscape (Romero &
Arnold, 2009). As the evolution is conducted in both the
real landscape and the surrogate model, this unconstrained
greedy search may lead to sequences far from the wild type.
These sequences with high mutation counts are laborious to
synthesize for mass production (Storici & Resnick, 2006;
Fowler et al., 2014). In addition, it is hard for the training
procedure of the surrogate model to reuse previous samples
that are far from the current search region.

However, as shown in Figure 1, the protein landscape is
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known to be sparse in the vast sequence space, where the
local landscape near the wild-type point is rugged and multi-
peaked. It implies that a few amino-acid mutations on key
positions are sufficient to dramatically alter the fitness score
of the protein (Weinreich et al., 2005). Searching through
regions with low mutations around wild-type sequence can
improve searching effectiveness and reduce wet-lab labor.

Regarding the natural property of the protein landscape, we
propose a novel exploration mechanism that goes beyond
the classical paradigm of directed evolution. Our explo-
ration method, named Proximal Exploration (PEX), aims
to search for effective candidates of low-order mutants (i.e.,
mutants near the wild-type sequence) rather than greedily
accumulate mutations along the evolutionary pathway. By
formulating the local search around the wild-type sequence
as a proximal optimization problem (Parikh & Boyd, 2014),
we derive a regularized objective for searching the steepest
improvement upon the wild type with the limited counts
of amino-acid mutations. Furthermore, we design a spe-
cialized network architecture, called Mutation Factorization
Network (MuFacNet), to model low-order mutational effects
based on local neighbor information, which additionally im-
proves the sample efficiency of our model-guided sequence
design. Our method shows great performance over baselines
on multiple protein sequence design benchmarks.

2. Related Work
ML for Protein Landscape Modeling. Advances in ex-
perimental technologies, such as deep mutational scanning
(Fowler & Fields, 2014), yield large-scale generation of
mutant data. It enables data-driven approaches to model
the protein fitness landscape, which is one of the crucial
problems for protein engineering. Recent works start to
focus on leveraging co-evolution information from multiple
sequence alignments to predict fitness scores (Hopf et al.,
2017; Riesselman et al., 2018; Luo et al., 2021) and utilizing
pre-trained language models to conduct transfer learning
or zero-shot inference (Rao et al., 2019; Alley et al., 2019;
Meier et al., 2021; Hsu et al., 2022). The learned ML model
can be used to screen enormous designed sequences in silico
(Ogden et al., 2019; Bryant et al., 2021; Gruver et al., 2021;
Shan et al., 2022), which serves as a surrogate of expensive
wet-lab experiments.

Exploration Algorithms for Sequence Design. Directed
evolution is a classical paradigm for protein sequence design,
which has achieved several successes (Bloom & Arnold,
2009; Dalby, 2011; Arnold, 2018). Under this framework,
machine learning algorithms play an important role in im-
proving the sample efficiency of evolutionary search. Anger-
mueller et al. (2020a) proposes an ensemble approach that
performs online adaptation among a heterogeneous popula-
tion of optimization algorithms. Angermueller et al. (2020b)

formulates sequence design as a sequential decision-making
problem and conducts model-based reinforcement learn-
ing for efficient exploration. Brookes & Listgarten (2018)
and Brookes et al. (2019) use adaptive sampling to gener-
ate high-quality mutants for batch Bayesian optimization.
Zhang et al. (2021) proposes a probabilistic framework that
unifies black-box sequence design and likelihood-free infer-
ence and presents a methodology to develop new algorithms
for sequence design.

Proximal Optimization. Proximal methods are a family of
optimization algorithms that decompose non-differentiable
large-scale problems to a series of localized smooth opti-
mization (Parikh & Boyd, 2014). The most representative
approach is proximal gradient (Combettes & Wajs, 2005),
which conducts a convex step-wise regularization to smooth
the optimization landscape without losing the optimality of
convergence. It is related to natural gradient (Amari, 1998)
and trust-region methods (Sorensen, 1982). These methods
aim to find the steepest improvement direction in a restricted
small region. In this paper, we adopt the formulation of prox-
imal methods to deploy localized optimization around the
wild-type sequence. We propose an exploration algorithm
to find proximal maximization points (Rockafellar, 1976)
for black-box sequence design.

3. Problem Formulation and Background
Protein Sequence Design upon Wild Type. The protein
sequence design problem is to search for a sequence s with
desired property in the sequence space VL, where V denotes
the vocabulary of amino acids and L denotes the desired
sequence length. We aim to maximize a protein fitness
function f : VL → R by editing sequences. The protein
fitness mapping f(s) is a black-box function that can only
be measured through wet-lab experiments. As a reference
to the design problem, a wild-type sequence swt is given as
the starting point of sequence search, which is the sequence
occurring in nature. In general, the wild type swt has already
expressed decent fitness under the natural selection evolu-
tionary process towards the target function (Fisher, 1958;
Chari & Dworkin, 2013). In this paper, we focus on the
modification upon the wild-type sequence swt to enhance
the desired protein function. Specifically, we aim to design
low-order mutants that have low mutation counts compared
to the wild-type sequence.

Batch Black-Box Optimization. Protein sequence design
with respect to a fitness function f(s) is a batch black-box
optimization problem. Advances in experiment technology
have enabled the parallel fitness measurement over a large
batch of sequences (Kosuri et al., 2013; Peterman & Levine,
2016). However, each round of parallel experiments in the
wet lab is expensive and time-consuming. It leads to an
online learning problem with high throughput but limited
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interactions. Formally, we conduct T rounds of batch op-
timization with batch size M ≫ T for sequence-fitness
measurements within each round.

Model-directed Evolution. Building a surrogate model
for in-silico evolutionary selection is an effective approach
to reduce the burden of expensive wet-lab experiments. It
trains a fitness model f̂θ, parameterized by θ, to predict the
fitness of mutant sequences. More specifically, the surrogate
model optimizes the following regression loss for fitness
prediction:

L(θ) = E
s∼D

[
(f̂θ(s)− f(s))2

]
, (1)

where D is a dataset of experimentally measured sequences.
The learned surrogate model f̂θ can be used to predict the
fitness of unseen sequences, which can thus guide in-silico
sequence searching and improve the sample-efficiency of
directed evolution.

4. Proximal Exploration for Sequence Design
In this section, we introduce our approach, Proximal Explo-
ration (PEX), which prioritizes the search for high-fitness
sequences with low mutation counts upon the wild type. We
formulate this localized search as a proximal optimization
problem and implement the exploration mechanism through
a model-guided approach. In addition, we propose a spe-
cialized network architecture to model the local landscape
around the wild type, which further improves the efficiency
of proximal exploration.

4.1. Overview of Proximal Exploration

In the natural evolutionary process, it is usually sufficient
for a protein to significantly enhance its fitness score by
mutating only a few amino acids within a long sequence.
Motivated by this natural principle, we consider restricting
the search space near the wild type and seek for high-fitness
mutants with low mutation counts. Based on the paradigm
of directed evolution, the basic idea is to adopt a regularized
objective that prioritizes low-order mutants in the sequence
selection step. i.e., our algorithm prefers to select sequences
with low mutation counts for artificial evolution. Formally,
we employ the proximal optimization framework to formu-
late such a localized searching scheme.

Evolution via Proximal Optimization. Following the for-
mulation of proximal optimization (Parikh & Boyd, 2014),
we define a regularized objective function that penalizes the
deviation from the wild-type sequence swt:

f prox
λ (s) = f(s)− λ · d(s, swt), (2)

where f(·) is the original objective function, i.e., the protein
fitness score. λ ≥ 0 denotes the regularization coefficient.
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Figure 2. (a) A geometric illustration of the definition of proximal
points and proximal frontier. (b) The goal of proximal exploration
is finding the ground-truth proximal frontier.

d(·, ·) denotes a distance metric in the sequence space. In
this paper, without further specification, the metric d(·, ·)
refers to evolutionary distance (i.e., Levenshtein edit dis-
tance). We aim to find a proximal maximizer (or proximal
point (Rockafellar, 1976)) with respect to the wild-type
sequence swt:

proxλ(s
wt, f) = argmax

s∈VL

f prox
λ (s). (3)

The value of λ controls the weight of proximal regular-
ization. With larger values of λ, the searching procedure
driven by Eq. (2) would become more concentrated around
the wild-type sequence, and go far otherwise. The de-
graded case with λ = 0 is equivalent to the maximiza-
tion of the original objective function: proxλ=0(s

wt, f) =
argmaxs∈VL f(s). By varying the value of regularization
coefficient λ, we define the proximal frontier as follows:

prox(swt, f) =
{

proxλ(s
wt, f) : λ ≥ 0

}
. (4)

Geometric Interpretation. Figure 2a shows a geometric
illustration of proximal frontier prox(swt, f). It interprets
why this set of proximal points is named as a frontier. We
plot a coordinate system where each protein sequence is rep-
resented by its fitness score f(s) and its distance d(s, swt) to
the wild-type sequence swt. The sequences in prox(swt, f)
are located at the upper frontier on the convex closure of
valid sequence space. These proximal points are Pareto-
efficient solutions to trade off between maximizing protein
fitness score f(s) and minimizing the evolutionary distance
d(s, swt) to the wild-type sequence, i.e., the trade-off be-
tween the major objective and the regularization term. The
sequences lying on the left-upper region of this coordinate
system correspond to the mutants with high fitness and low
mutation counts, which is the goal of our method.

Proximal Exploration (PEX). In classical evolutionary
algorithms, only top-fitness sequences are selected and mu-
tated within the evolution cycle. Such a greedy evolutionary
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Algorithm 1 Proximal Exploration (PEX)

1: Input: wild-type sequence (swt, f(swt))
2: Initialize model parameter θ
3: Initialize buffer D(0) ← {(swt, f(swt))}
4: for t = 1 to T do
5: Generate query sequence batch ▷ section 4.2

{s(t)i }
M
i=1 ← PEX.QUERYBATCH(f̂θ,D(t−1))

6: Measure ground-truth fitness by wet-lab experiments

D(t) ← D(t−1) ∪ {(s(t)i , f(s
(t)
i ))}Mi=1

7: Update fitness model f̂θ using D(t) ▷ section 4.3
8: end for

process hinders the efficiency of exploration and does not
utilize the property of the natural protein fitness landscape.
We consider a different mechanism that performs explo-
ration along the proximal frontier and seeks high-fitness
mutant sequences with low mutation counts. As shown in
Figure 2b, our exploration algorithm, Proximal Exploration
(PEX), aims to extend the proximal frontier instead of only
optimizing the fitness score. We consider this proximal ex-
ploration mechanism as a regularization of the search space
of protein sequences.

The overall procedure of our algorithm is summarized in
Algorithm 1. Following the problem formulation introduced
in section 3, our algorithm conducts T rounds of interaction
with the laboratory. At each round, we propose a query
batch containing M sequence candidates (line 5) and mea-
sure their fitness scores through the wet-lab experiments
(line 6). The measured protein fitness data are used to refine
the fitness model f̂θ where θ denotes the model parameter
(line 7). The major technical improvement of our method
contains two parts:

1. We formalize the mechanism of proximal exploration
through a model-guided approach (section 4.2).

2. We design a specialized model architecture to predict
low-order mutational effects of proximal points, which
further boosts the efficiency of model-guided explo-
ration (section 4.3).

4.2. Model-guided Exploration on Proximal Frontier

In each round of batch black-box optimization, the explo-
ration algorithm is required to generate a query batch given
the experimental measurements collected in previous rounds.
More specifically, a model-guided exploration algorithm
constructs the query batch based on the fitness model f̂θ
and a dataset of measured sequences D. The query gen-
eration procedure of PEX is summarized in Algorithm 2.
The same as other model-guided methods, we first mutate

Algorithm 2 PEX.QUERYBATCH(f̂θ,D)

1: Input: fitness model f̂θ, measured buffer D
2: Generate a candidate pool Dpool by generating random

mutations upon the measured sequences D
3: Initialize query batch Dquery ← ∅
4: while |Dquery| < M do
5: Find proximal frontier based on fitness model f̂θ

Dprox ← prox(swt, f̂θ,Dpool)

6: Update query batch Dquery and candidate pool Dpool

Dquery ← Dquery ∪ Dprox, Dpool ← Dpool \ Dprox

7: end while
8: return: M sequences from Dquery

sequences in measured dataset D to obtain a large set of
random sequences Dpool (i.e., a candidate pool of offspring
in evolution) and then perform a model-based selection over
these mutants.

Classical evolutionary algorithms perform a greedy selec-
tion to determine the query batch. The selection criteria
is given by the model fitness prediction f̂θ(s). i.e., only
sequences with high predicted fitness scores will be sent to
laboratory measurements. In comparison, PEX considers a
different objective to construct the query batch. To expand
the frontier shown in Figure 2b, we compute the proximal
frontier within the candidate pool Dpool:

prox(swt, f̂θ,Dpool) =

{
argmax
s∈Dpool

f̂ prox
θ,λ (s) : λ ≥ 0

}
, (5)

which is expected to explore Pareto-efficient sequences with
either higher fitness or lower mutation count.

At each round of interaction with the wet lab, the query
budget can support the experimental measurement of M
sequences. In addition to the sequences exactly lying on the
proximal frontier defined in Eq. (5), we diversify the query
batch by including the nearby region of the frontier. We
conduct an iterative query generation mechanism as shown
in Algorithm 2. We iteratively compute the proximal frontier
over the current candidate pool Dpool (line 5) and remove
them from the pool (line 6). It enables us to effectively
deploy proximal exploration in the batch-query setting.

Remark. The computation of prox(swt, f̂θ,Dpool) defined
in Eq. (5) is equivalent to find the upper convex closure
of Dpool in the coordinate system illustrated by Figure 2a,
where the fitness scores are predicted by the surrogate model
f̂θ(s). In our implementation, we use Andrew’s monotone
chain convex hull algorithm (Andrew, 1979), which can be
completed in O(n log n) time with n = |Dpool|. Implemen-
tation details are included in Appendix A.2.
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Figure 3. The model architecture and the forward flow graph of
Mutation Factorization Network. The red marked sites are mutated
amino acids upon the wild type. The illustrative example corre-
sponds to the green fluorescent protein (PDB code: 2O29).

4.3. Modeling the Landscape of Low-order Mutants

One challenge of landscape modeling is the high sensitiv-
ity of protein fitness concerning amino-acid mutations. As
illustrated in Figure 1, a few amino-acid substitutions may
dramatically alter the fitness scores. Classical model ar-
chitectures, such as CNN and RNN, represent the protein
landscape as a sequence-fitness mapping. Since the fitness
function is highly non-smooth in the sequence space, these
models usually require a large amount of mutant data to
capture the complicated mutational effects, which do not
meet the demand of sequence design in data efficiency.

To address the challenge of non-smoothness for landscape
modeling, we consider to leverage the algorithmic property
of proximal exploration. Note that our exploration mecha-
nism prioritizes the search for low-order mutants close to
the wild-type sequence. This special property motivates us
to design a specialized network architecture to model the
local fitness landscape around the wild type. We propose a
Mutation Factorization Network (MuFacNet) that factorizes
the composition of mutational effects to the interactions
among single amino-acid mutations. The major character-
istic of MuFacNet is its input representation. It represents
a mutant sequence by the corresponding set of amino-acid
mutations upon the wild type, which emphasizes the effects
of each single mutation site.

Forward View: Aggregation. Figure 3 presents the ar-
chitecture of MuFacNet. Given an input mutant sequence,
we first locate the sites of mutations in comparison to the
wild type. We take the neighbor fragment of each mutated
amino acid as its context information, i.e., a context window
centered at the mutated amino acid. Each context window
is then fed into an encoder network to generate the feature
vector of the corresponding mutation site. We would ob-
tain K separate feature vectors for K mutations, which are
computed by a shared encoder network. These feature vec-
tors encode the functionality of the given mutations. We

perform a sum-pooling operator to aggregate them into a
unified vector that represents the joint effect of mutations.
Finally, the protein fitness prediction is given by a decoder
network taking the joint-effect vector as its input.

Backward View: Factorization. The supervision of Mu-
FacNet is the same as the standard model training procedure.
It learns from sequence-fitness data through an end-to-end
paradigm. The data obtained in wet-lab measurements only
indicate the joint effects of mutation compositions, and the
design purpose of MuFacNet is to factorize the joint fitness
value to local representations of every single mutation site.
The pooling operator is the core component to realize this
joint-to-local factorization. It characterizes the interaction
among mutation sites through the arithmetical composition
of their feature vectors.

Remark. The architecture of MuFacNet is a variant of set
model that represents functions defined on sets. The sum-
pooling operator ensures the model output is invariant to
the order of input mutation context windows. Zaheer et al.
(2017) proves that such a sum-pooling aggregation operator
can preserve the universal approximability of neural net-
works. i.e., with sufficiently expressive encoder and decoder,
a set model with sum-pooling aggregation can represent any
functions mapping sets to values. This property ensures that
MuFacNet can learn non-additive epistasis effects.

5. Experiments
In this section, we present experiments to evaluate the per-
formance of our method. We show that PEX together with
MuFacNet achieves state-of-the-art performance and sig-
nificantly outperforms baselines in section 5.2 and 5.3. In
addition, we conduct several ablation studies to investigate
the functionality of each designed component, including the
design principle of MuFacNet and the local-search mecha-
nism of PEX.

5.1. Protein Engineering Benchmarks

We evaluate our exploration algorithm and baseline meth-
ods on a suite of in-silico protein engineering benchmarks.
Following prior works, we simulate the ground-truth pro-
tein fitness landscape by an oracle model in replace of the
wet-lab measurements. As the black-box optimization set-
ting defined in section 3, the exploration protocol can only
interact with the simulated landscape through batch queries.
The sequence design algorithm cannot obtain any extra in-
formation about the black-box oracle.

We collect several large-scale datasets from previous exper-
imental studies of protein landscape and use TAPE (Rao
et al., 2019) as an oracle model to simulate the landscape.
These fitness datasets involve extensive applications of pro-
tein engineering, including biosensors design, thermosta-
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bility improvement, and industrial enzyme renovation. It
enables us to formally compare the performance of explo-
ration algorithms in an in-silico sandbox. The source code
of our algorithm implementation and oracle landscape sim-
ulation models are available at https://github.com/
HeliXonProtein/proximal-exploration.

Green Fluorescent Proteins (avGFP). Green Fluorescent
Proteins from Aequorea victoria, which can exhibit bright
green fluorescence when exposed to light in the blue to the
ultraviolet range, are frequently used as biosensors to detect
gene expressions and detect protein locations. Sarkisyan
et al. (2016) assayed the fluorescence levels of nearly 52000
genotypes of avGFP obtained by random mutagenesis to the
239-length wild-type sequence, used as our landscape. Our
goal is to optimize sequences with higher log-fluorescence
intensity values in this 20238 search space.

Adeno-associated Viruses (AAV). Engineering a 28-amino
acid segment (position 561-588) of the VP1 protein located
in the capsid of the Adeno-associated virus has drawn lots of
attention in ML-guided design, aiming to remain viable for
packaging of a DNA payload for gene therapy (Ogden et al.,
2019). We adopt a library with approximately 284, 000
mutant data developed by Bryant et al. (2021) to build the
landscape oracle. We aim to design more capable sequences
as gene delivery vectors measured by AAV viabilities. The
size of search space is 2028.

TEM-1 β-Lactamase (TEM). TEM-1 β-Lactamase protein
resisting to penicillin antibiotics in E.coli is widely stud-
ied to understand mutational effect and fitness landscape
(Bershtein et al., 2006; Jacquier et al., 2013). We collect
the fitness data from Firnberg et al. (2014) and Gonzalez
& Ostermeier (2019), resulting in 17857 sequences as the
landscape training data, where fitness is the view as thermo-
dynamic stability. The optimization problem is to propose
high thermodynamic-stable sequences upon wild-type TEM-
1 in the search space with size 20286.

Ubiquitination Factor Ube4b (E4B). Ubiquitination fac-
tor Ube4b plays an important role in the trash degradation
process in the cell by interacting with ubiquitin and other
proteins. Starita et al. (2013) scored approximately 100, 000
mutation protein sequences by measuring their rates of ubiq-
uitination to the target protein. We focus on designing E4B
with higher enzyme activity on the landscape above. The
size of search space is 20102.

Aliphatic Amide Hydrolase (AMIE). Amidase encoded
by amiE is an industrially-relevant enzyme from from Pseu-
domonas aeruginosa. By quantifying the growth rate of
each bacterial strain carrying specific amidase mutants,
Wrenbeck et al. (2017) measures 6629 sequences with sin-
gle mutations to model the fitness landscape. We seek for
optimizing amidase sequences which lead to great enzyme

activities. It defines a search space with 20341 sequences.

Levoglucosan Kinase (LGK). Levoglucosan kinase con-
verts LG to the glycolytic intermediate glucose-6-phosphate
in an ATP-dependent reaction. A mutant library containing
7891 mutated protein has been established and evaluated
using the deep mutational scanning method to recognize
mutational effects (Klesmith et al., 2015). Optimizing such
protein for improved enzyme activity fitness is our goal.
The size of search space is 20439.

Poly(A)-binding Protein (Pab1). Some proteins function
by binding to other biomolecules, e.g., RNA or DNA. Pab1
is one of them that binds to multiple adenosine monophos-
phates (poly-A) using the RNA recognition motif (RRM).
Melamed et al. (2013) develop high throughput screening to
assay the binding fitness of around 36000 double mutants
of Pab1 variants in RRM region. As above, we desire to
improve the binding fitness by introducing beneficial mu-
tations to the wild-type sequence. The search space size is
2075 on a segment of the wild-type sequence.

SUMO E2 conjugase (UBE2I). Utilizing variants to func-
tion mapping of human genomes is substantial for scientific
research and clinic treatment. We put to use around 2000
variants of the disease-relevant protein, human SUMO E2
conjugase constructed by Weile et al. (2017) and boost the
fitness measured by growth rescue rate at high temperature
in a yeast strain. The size of search space is 20159.

5.2. Performance Comparison to Baseline Algorithms

We compare the performance of PEX with several baseline
algorithms to design functional proteins by exploring the
fitness landscape.

AdaLead (Sinai et al., 2020) is an advanced implementa-
tion of model-guided evolution. At each round of batch
query, AdaLead first performs a hill-climbing search on the
learned landscape model and then queries the sequences
with high predicted fitness. Such a simple implementa-
tion of model-directed evolution has been demonstrated to
achieve competitive performance against many elaborate
algorithms.

DyNA PPO (Angermueller et al., 2020b) formulates protein
sequence design as a sequential decision-making problem
and uses model-based reinforcement learning to perform
sequence generation. It applies proximal policy optimiza-
tion (PPO; Schulman et al., 2017) to search sequences on
a learned landscape model. Different from our proximal
approach, PPO performs a regularization between the poli-
cies of two consecutive rounds. Since a slight alter in policy
space may dramatically change the sequence generation
distribution, DyNA PPO does not restrict the search space
around wild type.

https://github.com/HeliXonProtein/proximal-exploration
https://github.com/HeliXonProtein/proximal-exploration
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Figure 4. Learning curves on a suite of protein engineering benchmark tasks. Each round of batch black-box query can measure the fitness
scores of 100 sequences. The evaluation metric is the cumulative maximum fitness score among queried sequences. All curves are plotted
from 80 runs with random network initialization. The shaded region indicates the standard deviation.

DbAS (Brookes & Listgarten, 2018) establishes a proba-
bilistic framework that uses model-based adaptive sampling
to explore the fitness landscape. It trains a variational auto-
encoder (VAE; Kingma & Welling, 2013) to model the
distribution of high-fitness sequences and performs model-
guided evolution using this sequence sampler.

CbAS (Brookes et al., 2019) follows the same formula-
tion as DbAS and consider a regularization to stabilize the
model-guided search. The motivation and the regularization
objective of CbAS are similar to the consideration of DyNA
PPO. It restricts the sampling distribution to be supported
by the given labeled dataset, which leads to a trust-region
search concerning the learned surrogate model. It prevents
the exploration algorithm from being trapped in the ill-posed
regions with poor model generalization.

CMA-ES (Hansen & Ostermeier, 2001) is a famous algo-
rithm for evolutionary search. It is a second-order approach
that estimates the covariance matrix to adaptively adjust the
search strategy of the upcoming generations.

Bayesian Optimization (BO; Mockus, 2012) is a classical
paradigm for the sequential design problem. We adopt the
implementation developed by Sinai et al. (2020), which
uses an ensemble of models to estimate the uncertainty and
construct the acquisition function for exploration.

We consider an ensemble of three CNN models as the default
configuration for these model-guided approaches. Specifi-
cally, following the implementation of Angermueller et al.
(2020b), DyNA PPO uses a hybrid ensemble and conducts
an adaptive selection to pick reliable model candidates. In

the evaluation of proximal exploration, PEX+MuFacNet
and PEX refer to using an ensemble of three MuFacNets and
the default CNN models, respectively. An ablation study on
the model configuration is presented in section 5.3.

Performance Comparison. The protein engineering bench-
marks introduced in section 5.1 have much longer sequence
length than the proteins considered by previous works,
which raises a challenge since the size of search space is
exponential to the sequence length. The experiment results
are presented in Figure 4. It shows that PEX generally
outperforms baseline algorithms with significant improve-
ment. Our approach can find sequences with higher fit-
ness scores using fewer rounds of black-box queries, which
demonstrates the improvement of sample efficiency. In Ap-
pendix B, we conduct an additional suite of performance
evaluation with oracle landscape simulators based on ESM-
1b (Rives et al., 2021), and our method also significantly
outperforms baselines.

5.3. Effectiveness of MuFacNet

The performance of a model-guided algorithm depends on
the quality of its back-end surrogate model. To establish an
ablation study on the model configuration, we consider three
types of model architectures: CNN, RNN, and MuFacNet,
where all of these models are implemented by an ensemble
of three network instances. CNN with 1D-convolution is
a popular choice for protein fitness prediction (Shanehsaz-
zadeh et al., 2020), and we adopt the implementation devel-
oped by AdaLead (Sinai et al., 2020). The RNN architecture
is adopted from Gruver et al. (2021), which uses stacked



Proximal Exploration for Model-guided Protein Sequence Design

Table 1. Comparing different model architectures for model-guided sequence design. We present the maximum fitness scores obtained in
10 rounds of black-box queries. The top-3 algorithms of each task are marked by the bold font. “Overall” refers to the normalized score
averaged over 8 tasks. Every entry of this table is averaged over 80 runs. The learning curves are included in Appendix C.

Algorithm + Model avGFP AAV TEM E4B AMIE LGK Pab1 UBE2I Overall

PEX + MuFacNet 3.12 4.45 0.27 2.22 0.16 0.04 1.23 2.97 0.98
PEX + CNN 2.97 2.52 0.19 2.21 -0.11 0.03 1.27 2.97 0.89
PEX + RNN 2.64 1.63 0.28 2.31 0.05 0.03 1.13 2.97 0.88

AdaLead + MuFacNet 1.88 3.58 0.15 1.94 0.16 0.04 1.25 2.96 0.78
AdaLead + CNN 2.61 -2.33 0.09 0.16 -0.86 -0.72 1.09 2.91 0.43
AdaLead + RNN 1.88 -2.09 0.04 0.74 -2.05 -0.41 0.86 2.79 0.31

DyNA PPO + MuFacNet 1.86 -3.33 0.02 -0.23 -2.15 -0.52 0.49 2.08 0.05
DyNA PPO + CNN 1.84 -3.22 0.03 -0.20 -2.13 -0.32 0.42 2.17 0.09
DyNA PPO + RNN 1.86 -3.33 0.02 -0.14 -1.84 -0.34 0.44 2.42 0.15

DbAS + MuFacNet 1.90 2.24 0.09 0.61 -0.61 -0.03 0.96 2.90 0.56
DbAS + CNN 2.30 -2.43 0.10 0.23 -2.30 -0.35 0.90 2.85 0.36
DbAS + RNN 2.13 -2.39 0.10 0.34 -1.91 -0.00 0.79 2.90 0.42

CbAS + MuFacNet 2.08 2.22 0.09 0.47 -0.51 0.04 0.83 2.93 0.58
CbAS + CNN 2.22 -2.50 0.10 0.19 -2.26 -0.22 0.92 2.87 0.38
CbAS + RNN 2.07 -2.31 0.11 0.31 -1.55 0.00 0.79 2.87 0.43

GRUs (Chung et al., 2014). The implementation details of
MuFacNet are included in Appendix A.3.

The experiment results regarding different model architec-
tures are presented in Table 1. The Overall evaluation refers
to the normalized scores averaged overall tasks. i.e., we nor-
malize the cumulative maximum fitness score of each task
to the unit interval [0, 1] and present the average overall
tasks. The results show that PEX+MuFacNet provides the
most stable performance. It achieves the best average per-
formance in 6 out of 8 benchmark tasks and only marginally
underperforms in the remaining 2 tasks. MuFacNet can also
improve the performance of AdaLead, DbAS, and CbAS.
It shows that MuFacNet is a widely applicable model for
sequence design based on the given wild type.

5.4. Encoding Context Information of Mutation Sites

The major characteristic of MuFacNet is its input represen-
tation that represents a mutant sequence by a set of amino-
acid mutations upon the wild type. To demonstrate the
superior performance of MuFacNet is supported by such
a set-representation, we conduct several ablation studies
to investigate the module design of MuFacNet. First, we
vary the size of the context window to locate the mutation
site. In the default configuration, we take context windows
with radius 10 centered at each mutation site as the inputs
of MufacNet. In addition, we consider an alternative way
to represent the mutated amino acids. We concatenate the
positional encoding (Vaswani et al., 2017) with size 32 to
the one-hot encoding of the amino-acid mutation and use an

Table 2. Ablation studies on the methods to represent the context
information of each single amino-acid mutation site. The learning
curves of all eight landscapes are included in Appendix D.

Mutation Encoding avGFP AAV TEM E4B

Window (radius=5) 2.96 4.68 0.23 2.62
Window (radius=10) 3.12 4.45 0.27 2.22
Window (radius=15) 2.86 4.58 0.25 2.40
Positional Encoding 3.15 4.32 0.27 2.61

without MuFacNet 2.97 2.52 0.19 2.21

MLP-encoder to produce the feature vector of mutation sites.
The experiment results are presented in Table 2. The typical
implementation of mutation encoding does not largely affect
the performance of the downstream protein sequence design.
It indicates that the paradigm of set-representation is critical
to the performance improvement. In this paper, since we
focus on learning from a small set of protein-fitness data,
the encoder and decoder architectures of MuFacNet are im-
plemented by simple modules such as 1D-CNN and MLP
layers. A future work is to investigate advanced set models
(Lee et al., 2019) on large-scale protein fitness datasets.

5.5. Discovering Low-Order Mutants with High Fitness

In addition to the ability to discover high-fitness proteins,
we present another strength of PEX, i.e., the sequences
designed by our method have a low mutation count upon
the wild-type sequence. To demonstrate this algorithmic
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Figure 5. The mutation count of the best-designed sequence for each method in multiple benchmarks. Our methods achieve fewer mutation
count while maintaining high fitness compared to other algorithms. The error bar has also been shown in each panel.

property, we collect the best sequence designed by every
algorithm and evaluate their mutation counts, i.e., the num-
ber of amino-acid mutations required to synthesize these
sequences from the wild type sequence. The results are
presented in Figure 5. In comparison to baseline algorithms,
PEX can discover high-fitness sequences with far less num-
ber of mutations upon the wild type. Since synthesizing
sequences with a large number of mutation sites is time-
and labor-consuming for modern site-directed mutagenesis
toolkit (Hogrefe et al., 2002; Carrigan et al., 2011), and
mutants with fewer mutation count may also have good
performance in other biochemical aspects (Klesmith et al.,
2017; Araya & Fowler, 2011), our framework is a more
powerful tool for efficient high-throughput protein design.

To demonstrate PEX is an outstanding approach to search
in the local landscape around the wild-type sequence, we
consider two simple alternative methods to restrict the ex-
ploration scope:

1. Reject by Distance (RD): Rejecting sequences with
more than 10 mutations since Figure 5 has shown that
10 mutation sites are sufficient to cover the high-fitness
sequences found by PEX. This simple heuristics is
previously used by Biswas et al. (2021) where the
distance threshold is named by the “trust radius” of the
wild type sequence.

2. Lower Confidence Bound (LCB): Using lower con-
fidence bound that minuses the standard deviation of
the ensemble predictions from the average to make the
exploration algorithm be conservative on landscape re-
gions with high model uncertainty. Similar approaches
are used in the literature of model-based reinforcement
learning (Kidambi et al., 2020; Yu et al., 2020).

Table 3. Comparison to simple alternative methods to restrict the
exploration scope. The learning curves are included in Appendix E.

Algorithm avGFP AAV TEM E4B

PEX 2.97 2.52 0.19 2.21

AdaLead + RD 2.53 -0.12 0.20 1.23
AdaLead + LCB 2.67 -2.30 0.09 -0.06
AdaLead + RD + LCB 2.59 1.25 0.20 1.18

CbAS + RD 2.28 -1.51 0.12 0.45
CbAS + LCB 2.30 -2.37 0.13 0.24
CbAS + RD + LCB 2.27 -0.60 0.15 0.36

The experiment results are presented in Table 3. These sim-
ple tricks work well in a few cases but cannot fundamentally
improve the performance as what is achieved by PEX.

6. Conclusion
This paper propose a novel exploration mechanism, called
proximal exploration (PEX), that uses a regularized objec-
tive function to locally search for sequences with low mu-
tation count upon the wild-type sequence. It utilizes the
natural property of the protein fitness landscape to reduce
the size of search space. Based on the localized property
of PEX, we propose MuFacNet to specialize the landscape
modeling near the wild type. The integration of PEX and
MuFacNet shows great improvement both in performance
and sample efficiency compared to prior model-guided pro-
tein design baselines in a suit of protein engineering bench-
marks. As a future work, we will investigate the sequence
optimization problem to simultaneously enhance multiple
properties for designing novel proteins, which connects
proximal exploration with Pareto optimization.
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A. Experiment Setting and Implementation Details
A.1. Experiment Setting

As discussed in section 5.1, we collect eight large-scale datasets from previous experimental studies of protein landscape and
use TAPE (Rao et al., 2019) as an oracle model to simulate the landscape. Since the wild-type sequences in most datasets
have already achieved a high fitness score, we relocate the starting sequence of the search algorithm to the sequence with the
lowest fitness in the dataset. It means the starting sequences of these benchmarks are not the true wild-type sequences in the
natural environment.

The exploration protocol can only interact with the simulated landscape through batch queries and cannot obtain any extra
information about the black-box oracle. The exploration procedure contains 10 rounds of black-box queries. Each batch
contains 100 sequences. In Figure 4, we plot the cumulative maximum fitness scores achieved by every algorithm, i.e, the
score at round t is the maximum fitness scores overall sequences queried in round 1 to t.

A.2. Implementation Details of PEX

The query generation procedure of PEX contains several steps at each round:

1. As a special case, the first round of query generation is completed by randomly mutating the wild-type sequence without
accessing to the surrogate model, since the landscape exploration algorithm has not accumulated any protein-fitness
data from the interaction with the black-box oracle. The main procedure of PEX is launched at the second round of
query generation.

2. To reduce the computation burden of the surrogate model, we perform a heuristics to make the size of candidate pool
Dpool manageable. We first compute the proximal frontier of the measured sequence buffer D. i.e., we compute the
upper convex hull of D on the coordinate system constructed by (1) the hamming distance d(s, swt) to the wild-type
sequence swt and (2) the fitness score f(s) obtained from the landscape oracle. We use Andrew’s monotone chain
convex hull algorithm (Andrew, 1979) as follows:

(a) First, we sort the sequences in buffer D in the increasing order of d(s, swt). For sequences with the same value of
d(s, swt), we only preserve the one with largest fitness score f(s).

(b) We maintain a stack whose the elements constructs a convex hull. Initially, the stack is set to empty.
(c) Then, we sweep the sorted sequences. For each sequence, we will intend to push it to the top of the stack. Before

the push operation, we will continually pop the elements on the top of the stack that would violate the convex
condition when pushing the new element. The convex condition is checked by computing the cross product.

(d) The prefix of the final stack with monotonic increasing values of f(s) refer to the proximal frontier prox(swt, f).

The above procedure can be completed in O(n log n) time with n = |Dpool|. We screen the measured sequences near
the proximal frontier and only perform random mutations upon these outstanding sequences to construct the candidate
pool Dpool, since the mutants based on the known proximal frontier are more likely to be selected in the further steps of
PEX algorithm.

3. Following line 4-7 of Algorithm 2, we iteratively compute the proximal frontier of the candidate pool, add the sequences
lying on the frontier to the query batch, and remove them from the candidate pool. This procedure is repeated until we
gather sufficient sequences in the query batch. The proximal frontier is also computed by Andrew’s monotone chain
convex hull algorithm.
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A.3. Architecture of MuFacNet

The input of MuFacNet is a set of context window of the mutation sites. Each context window is a one-hot encoding for the
sequence fragment centered at the corresponding mutation site. The context window size is Lc = 21 (i.e., radius= 10).

Table 4. The network architecture of MuFacNet.

Input: K fragments with shape Lc × 20

1D-CNN number of filters: 32, kernel size: 5
ReLU activation

1D-CNN number of filters: 32, kernel size: 5
ReLU activation

Global Max-Pooling
Dense output size: 128

ReLU activation
Dense output size: 32

Local Features: K feature vectors with length 32

Sum-Pooling

Joint Features: a feature vector with length 32

Dense output size: 128
ReLU activation

Dense output size: 128
ReLU activation

Dense output size: 1

Fitness Prediction: a scalar value

We use Adam optimizer with a learning rate 10−3 to train the fitness prediction. The loss function is the mean squared error.
We stop network training when the training loss does not decrease in 10 epochs. This training procedure is applied to all
models considered in this paper.

B. Experiments based on ESM-1b
We consider an alternative oracle model built on the features produced by ESM-1b (Rives et al., 2021). We adopt the
ESM-1b feature with dimension 1280 and train an Attention1D decoder to predict the fitness value.
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Figure 6. Learning curves of PEX and baselines on a suite of protein engineering tasks simulated by oracle models based on ESM-1b.
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C. Learning Curves of the Experiments in Table 1
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Figure 7. Learning curves of PEX with MuFacNet, CNN, and RNN.
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Figure 8. Learning curves of AdaLead with MuFacNet, CNN, and RNN.
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Figure 9. Learning curves of DyNA PPO with MuFacNet, CNN, RNN, and its default hybrid ensemble.
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Figure 10. Learning curves of DbAS with MuFacNet, CNN, and RNN.
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Figure 11. Learning curves of CbAS with MuFacNet, CNN, and RNN.

D. Learning Curves of the Experiments in Table 2

0 2 4 6 8 10
Number of Query Rounds

1.2

1.6

2.0

2.4

2.8

3.2

M
ax

im
um

 F
itn

es
s

avGFP

0 2 4 6 8 10
Number of Query Rounds

6

4

2

0

2

4

6
AAV

0 2 4 6 8 10
Number of Query Rounds

0.00

0.06

0.12

0.18

0.24

0.30

TEM

0 2 4 6 8 10
Number of Query Rounds

3

2

1

0

1

2

3
E4B

0 2 4 6 8 10
Number of Query Rounds

7.5

6.0

4.5

3.0

1.5

0.0

M
ax

im
um

 F
itn

es
s

AMIE

0 2 4 6 8 10
Number of Query Rounds

1.8

1.5

1.2

0.9

0.6

0.3

0.0

LGK

0 2 4 6 8 10
Number of Query Rounds

0.00

0.25

0.50

0.75

1.00

1.25

Pab1

0 2 4 6 8 10
Number of Query Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

UBE2I

Window (radius=5) Window (radius=10) Window (radius=15) Positional Encoding without MuFacNet

Figure 12. Learning curves of ablation studies on the representation of the context information of each single amino-acid mutation site.
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E. Learning Curves of the Experiments in Table 3
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Figure 13. Learning curves of AdaLead with two simple methods to restrict the exploration scope.
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Figure 14. Learning curves of CbAS with two simple methods to restrict the exploration scope.


