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1 Introduction

Interacting conformal field theories in dimensions greater than four are notoriously diffi-

cult to study. Unlike the lower-dimensional cases, where there exist constructions based on

renormalization group flows connecting weakly coupled theories in the ultraviolet to non-

trivial fixed points in the infrared (such as the Ising model in 4− ε dimensions [1] and the

Caswell-Banks-Zaks fixed point in four dimensions [2, 3]), analogous considerations in five

dimensions and beyond usually have weakly coupled descriptions in the infrared instead of

in the ultraviolet, and are much more difficult to control.1

A powerful way to gain control over the renormalization group flows is to introduce

supersymmetry and restrict to supersymmetric flows. Given N = 1 supersymmetry in five

dimensions, any weakly coupled quantum field theory is described by (gauged) vector mul-

tiplets coupled to (matter) hypermultiplets. Since the five-dimensional Yang-Mills coupling

g2
YM has negative mass dimension, the theory is free in the infrared but strongly coupled

in the ultraviolet. When special conditions on the matter content in relation to the gauge

group are satisfied, nontrivial ultraviolet fixed points are argued to exist, by combining

effective field theory arguments with string and M-theory constructions [7–9].2 A class of

examples comes from USp(2N) gauge theory coupled to Nf ≤ 7 hypermultiplets in the fun-

damental representation, and a single hypermultiplet in the antisymmetric representation.

Such theories turn out to have enhanced ENf+1 flavor symmetry at their ultraviolet fixed

points, and are referred to as the Seiberg exceptional superconformal field theories [7–9].

The past two decades have seen developments in both extending the construction

of [7–9] to much larger classes of five-dimensional N = 1 superconformal field theories, and

understanding the fixed-point physics. A plethora of theories have been constructed using

five-brane webs in type IIB string theory, and using isolated canonical three-fold singular-

ities in M-theory; in cases, string dualities provide different infrared effective descriptions

for the same ultraviolet fixed point [11–17]. Thanks to advances in the topological ver-

tex formalism [18–24] and supersymmetric localization [25–28], many BPS quantities can

1Some evidence for the existence of nontrivial infrared fixed points in five dimensions was given in [4],

using the ε-expansion for the critical O(N) model in d = 6 − ε dimensions. The fixed point was shown

to be unitary to all orders in 1
N

, but it remained unclear whether unitarity holds non-perturbatively. In

fact, numerical studies by the exact renormalization group equations suggested that the fixed point is

metastable [5, 6].
2These conditions are often referred to as the Intriligator-Morrison-Seiberg conditions. Their refinements

were further given in [10].
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be computed systematically from either the infrared gauge theory or the five-brane web

diagram, providing various nontrivial consistency checks of field theory dualities, sym-

metry enhancement, and the holographic correspondence for such theories [29–59]. One

notable quantity is the superconformal index that counts the 1
8 -BPS operators at the fixed

point [33, 37, 42, 48]. A subset of these BPS operators preserving extra supercharges fur-

nish the Higgs branch chiral ring and are further studied in [60–65]. Another key quantity

is the supersymmetric five-sphere partition function [29–32, 35, 36, 38–40], which is con-

jectured to decrease monotonically under renormalization group flows, and plays a similar

role to the trace anomalies in even spacetime dimensions and the sphere partition function

in three dimensions [66–79].

A new angle to study (super)conformal field theories is the conformal bootstrap of

local correlation functions. This method exploits unitarity, (super)conformal symmetry,

and crossing symmetry to constrain the local operator spectrum and OPE coefficients, and

has been successfully applied to various theories in dimensions from two to four [80–114], to

non-supersymmetric five-dimensional theories such as the O(N) models [115–118], and to

six-dimensional superconformal field theories [119, 120]. It is then natural to ask what can

be learned about five-dimensional superconformal field theories, if we combine the power

of supersymmetric localization with the bootstrap machinery.

Up until now, all known localization results in five dimensions have made no contact

with correlation functions of local operators in the fixed-point theory. One aim of the

current paper is to develop a systematic procedure for extracting such correlation functions

from the supersymmetric partition function, which can be computed by localization. A

reasonable starting point is to consider the two-point functions of the stress tensor and

the conserved currents. Because conformal symmetry and the conservation laws fix their

tensor structures uniquely, and supersymmetry generates the two-point functions of all

other operators in the associated superconformal multiplets, the only independent physical

quantities are the overall coefficients, namely, the conformal central charge CT and the

flavor central charge CJ .3 We shall study conformal field theories on the five-sphere, which

is conformally flat and naturally regulates infrared divergences. Since the stress tensor is

coupled to the spacetime metric, it is no surprise that under small perturbations of the

five-sphere metric gµν , the variations in the free energy4

FS5 ≡ − logZS5 (1.1)

will depend on CT [121, 122]. Similarly, the dependence of FS5 on a background vector field

Wµ coupled to the conserved current will capture CJ [123].5 In this procedure, one should

3Of course, the two-point functions by themselves are a priori ambiguous due to the freedom of rescaling

the operators. We choose the canonical normalization for the stress tensor. For a non-Abelian flavor

symmetry, we normalize the conserved currents as in appendix A.1; for an Abelian one, we demand that

the minimal charge is one.
4In [74], a general F -theorem in odd dimensions was conjectured for F̃Sd ≡ (−1)

d−1
2 log |ZSd |, where

F̃Sd should be positive for unitary conformal field theories and decrease under renormalization group flows.

Here we define FS5 with the opposite sign of F̃S5 .
5See also [124–126] where FSd , CJ and CT were computed directly for certain classes of non-

supersymmetric weakly-coupled fixed points that exist for a range of spacetime dimensions including d = 5.
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also carefully take into account the potential ambiguities in FS5 due to local counter-terms

in terms of the background fields.

Although the connection between the five-sphere free energy and the central charges

exists in bosonic conformal field theories as well, the relation is not practically useful

unless the free energy at the fixed point can be reliably computed in a weakly-coupled

(effective) description, such as in the infrared gauge theory. Supersymmetry thus comes

as a crucial ingredient. Most of the known five-dimensional superconformal field theories

admit gauge theory descriptions after mass deformations and renormalization group flows.

The particular mass parameter mI that triggers the desired flow is identified (up to a

numerical constant) with 1/g2
YM [7]. This same mass parameter is also associated with the

U(1)I instanton symmetry with the conserved current

JU(1)I
=

i

8π2
∗ Tr(F ∧ F ), (1.2)

and sets the mass scale for the instanton particles in the gauge theory. It has been con-

jectured that the supersymmetric five-sphere partition function of the superconformal field

theory deformed by the instanton particle mass mI is exactly captured by the infrared gauge

theory [32, 35, 40].6 In particular, the undeformed free energy FS5 for the fixed-point the-

ory is obtained by sending mI → 0, which is the strong coupling limit in the gauge theory.

Supersymmetry also puts strong constraints on the admissible counter-terms and their

contributions to the deformed free energy.

We now summarize the key results and discoveries of this paper.

Extracting CT and CJ from the five-sphere free energy (section 3). We can con-

sider supersymmetric deformations of the five-sphere partition function by turning on (real)

squashing parameters ωi = 1 + ai for the metric (ai = 0 gives the round-sphere metric),

and mass parameters Ma for the flavor symmetries. These can be systematically studied

by coupling the superconformal field theory to off-shell background supergravity [30, 127].

It is straightforward to compute the dependence of the free energy FS5 on these small su-

persymmetric deformations using conformal perturbation theory. We obtain the following

expression for the quadratic terms in the squashing parameters ai,

FS5 |a2
i

= −π
2CT

1920

(∑3
i=1 a

2
i −

∑
i<j aiaj

)
, (1.3)

and similarly for the quadratic terms in the mass parameters Ma,

FS5 |M2 =
3π2r2CJ

256
δabM

aM b, (1.4)

6A priori, one may worry about potential higher derivative deformations of the gauge theory Lagrangian

that may modify the localization result. Because of the preserved supersymmetry, the partition function

is protected from the Q-exact deformations of the localization Lagrangian. On general grounds, Q-closed

deformations of the gauge theory Lagrangian should come from integrating out BPS particles (e.g. W-bosons

and point-like instantons). Since such BPS states are all realized in the gauge theory and incorporated in

the localization computation, it is plausible that the “bare” Lagrangian suffices for our purpose here. We

emphasize that this is merely a heuristic argument.
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where r is the radius of the sphere. These formulae allow us to determine the central

charges CT and CJ from the deformed five-sphere partition function, which is computable

by localization in the infrared gauge theory.

Supersymmetric counter-terms (section 2). A subtlety in the computation of the

five-sphere free energy is that there may be potential ambiguities due to finite local counter-

terms, given by supersymmetric completions of various (mixed) Chern-Simons terms. For

example, there are the counter-terms

W ∧ dW ∧ dW, W ∧ Tr(R ∧R), (1.5)

for W the U(1) background gauge field and R the Riemannian curvature two-form. Such

contributions capture our ignorance of contact-terms in the short distance limit of cor-

relation functions. Their coefficients are quantized by demanding invariance under large

background gauge transformations. Although the Chern-Simons terms are perfectly con-

formal, it turns out that in some cases their supersymmetric completions break conformal

invariance. This means that if the relevant non-conformal contact-terms have fractional

coefficients, we can choose to restore conformal invariance at coincident points at the ex-

pense of introducing a non-quantized supersymmetric Chern-Simons counter-term, thereby

breaking large background gauge symmetry. In other words, we cannot simultaneously ful-

fill conformal invariance and background gauge invariance with supersymmetric regulators.

This tension between conformal symmetry, background gauge symmetry, and supersymme-

try is analogous to what happens in three dimensions [123, 128], and signals the existence of

a new superconformal anomaly in N = 1 theories in five dimensions. It turns out that these

counter-terms do not affect the relations (1.3) and (1.4), but are crucial in understanding

flavor symmetry enhancement on the five-sphere.

Instanton contributions to the five-sphere partition function (section 4). Hav-

ing understood how to extract the central charges from localizing the gauge theory path

integral, we apply this procedure to the “simplest” class of five-dimensional superconformal

field theories, namely the rank-one Seiberg ENf+1 and Morrison-Seiberg Ẽ1 theories. These

theories are described in the infrared by a USp(2) super Yang-Mills theory coupled to Nf

fundamental hypermultiplets. The infrared flavor symmetry SO(2Nf )×U(1)I is enhanced

to ENf+1 at the ultraviolet fixed point.7

As usual in localization, the gauge theory path integral reduces to an integral over BPS

configurations weighted by their classical action and one-loop determinants. The novelty

in five dimensions is that the BPS locus also involves the so-called contact instantons for

the gauge fields.8 It was conjectured that for generic squashing, the contributions from

7Such USp(2) gauge theories come with a discrete theta parameter θ ∈ {0, π}, prescribing how the two

topological sectors characterized by π4(USp(2)) ∼= Z2 are summed together in the path integral. For Nf > 0,

the massless infrared Lagrangian has symmetry O(2Nf ) ∼= Z2 o SO(2Nf ) acting on the hypermultiplets,

and the Z2 normal subgroup which flips the sign of a single mass is equivalent to exchanging θ = 0 with

θ = π [12, 42, 61]. Therefore, for Nf > 0, the two theories at θ = 0 and θ = π are equivalent. This Z2

symmetry of the Lagrangian is not a symmetry of the gauge theory.
8Upon circle compactification, the five-dimensional contact instantons reduce to the usual Yang-Mills

instantons in four dimensions.
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contact instantons on the five-sphere are captured by gluing together three copies of the

Nekrasov partition function Z1,2,3
S1×R4 [38, 40]. In other words, the conjecture states that9

ZS5 =

∫
[dλ]e−F

∨
eff(λ)Z1

S1×R4(λ)Z2
S1×R4(λ)Z3

S1×R4(λ), (1.6)

where F∨eff(λ) is a cubic polynomial in λ, and is equal to the one-loop effective prepotential

when every Coulomb branch parameter λ is larger than all the masses of the hypermulti-

plets. We shall address some key issues with (1.6) and write down a precise formula, where

the chemical potentials in the Nekrasov partition function ZS1×R4 are substituted by the

deformation parameters (squashing and masses). Although it is well understood that the

flavor chemical potentials for the hypermultiplets involve imaginary shifts, the shift for the

U(1)I instanton number chemical potential has not been determined in the literature. We

fix this ambiguity by demanding that the five-sphere partition function exhibits enhanced

flavor symmetry ENf+1 in the ultraviolet. Our formula also renders key physical quantities

real at arbitrary instanton order.

A generic squashed five-sphere can be viewed as a circle-fibration over a compact base

manifold. The three S1×R4 patches are located at the three fixed points of the U(1)×U(1)

isometry of the base. In the weak coupling limit mI →∞, each ZS1×R4 is a series in e−mI ,

whose coefficients are computed by the Witten index of a certain “generalized” ADHM

quantum mechanics. However, we are interested in the strong coupling limit mI → 0 in

order to probe the superconformal fixed point. Ideally, one would hope to re-sum the entire

series in e−mI and then re-expand around mI = 0, akin to what has been done for the five-

dimensional N = 2 super Yang-Mills theory [32, 38, 40]. However, the re-summation for

N = 2 super Yang-Mills relies on the known modularity properties of the instanton series,

that follow from a relation to the six-dimensional N = (2, 0) “parent” theories. Since

such properties are not known for the N = 1 gauge theories, we proceed by numerically

evaluating the instanton contributions up to fourth order in the e−mI expansion, and setting

mI → 0. Miraculously, we shall observe that the free energy FS5 appears to converge (with

squashing and mass deformations turned on), at least up to cubic order in the deformation

parameters. We thus reliably compute the undeformed free energy and the central charges

CT and CJ .

Symmetry enhancement in the five-sphere partition function (section 4). Based

on the fiber-base duality of the M-theory or type-IIB five-brane setup, it was observed in [49]

that the Nekrasov partition function ZR4×S1 for the Seiberg theories exhibit not just the

manifest SO(2Nf ) × U(1)I flavor symmetry but the full enhanced ENf+1. This directly

implies that the superconformal index

ZS1×S4 =

∫
[dφ] |ZR4×S1(φ)|2 , (1.7)

is also invariant under the Weyl group action of the enhanced flavor symmetry on the

flavor fugacities [33, 48]. Here φ collectively denotes the gauge field holonomies. The

9Notice that each ZS1×R4 contains perturbative and instanton contributions.
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situation is less clear for the five-sphere free energy FS5 , due to the appearance of F∨eff(λ)

in (1.6). However, we shall see that after incorporating appropriate local counter-terms to

the gauge theory action, FS5 is indeed invariant under the enhanced Weyl group action on

the mass parameters. Our arguments for flavor symmetry enhancement in FS5 formally

requires the inclusion of instanton contributions to all orders in e−mI . Nevertheless, at

low orders in e−mI , we already find solid numerical evidence for the enhancement. In

particular, we compare the values of CJ for the ENf+1 flavor symmetry computed on one

hand by SO(2Nf ) mass deformations, and on the other by a U(1)I mass deformation, and

find beautiful agreement. These checks provide extra confidence for the convergence of the

instanton expansion at strong coupling.

Superconformal bootstrap (section 5). After reliably computing the values of the

central charges CT and CJ in the Seiberg theories, we make a connection to the confor-

mal bootstrap of the four-point functions of moment map operators, the superconformal

primaries that generate the flavor current multiplets. The semi-definite programming tech-

nique generates constraints on the intermediate spectrum and the OPE coefficients, some

of which involving the stress tensor and the flavor current multiplets depend on the central

charges CT and CJ . More specifically, demanding that the flavor symmetry be SU(2), E6,

E7, and E8, we obtain lower bounds on the central charges CT and CJ . The bootstrap

method is most powerful when a conformal field theory saturates the bound, in which

case, one can use the extremal functional method to determine the non-BPS spectrum and

their OPE coefficients [85, 88]. We find strong evidence for the saturation by the rank-one

Seiberg theories, and thereby make predictions for the dimension of the lowest non-BPS

operator appearing in the intermediate channel. One can also in principle solve for the

OPE data in these theories, going much beyond the data that supersymmetric localization

alone can provide. We demonstrate the power of this method in this paper, and invite for

further explorations.

2 Supersymmetric five-sphere partition function

Any five-dimensional conformal field theory can be put on a five-sphere in a canonical man-

ner by the stereographic mapping from R5. The five-sphere free energy FS5 should then

capture physical information about the conformal field theory. However, such quantities

generally suffer from divergences and require regularization. The sphere being compact

eliminates potential infrared divergences. However, at short distances the theory is indis-

tinguishable from that on flat space, which leads to ultraviolet divergences of the form [129]

FS5 ∼ (Λr)5 + (Λr)3 + (Λr) + finite. (2.1)

The explicit r-dependence breaks conformal invariance, but these divergent pieces can

always be removed by introducing local diffeomorphism-invariant counter-terms of the

schematic form

Sct = Λ5

∫
S5

d5x
√
g + Λ3

∫
S5

d5x
√
gR+ Λ

∫
S5

d5x
√
gR2, (2.2)

– 6 –
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where R denotes the background curvature. Such counter-terms are obviously non-

conformal. However, they compensate the non-conformal pieces in (2.1), giving rise to

a regularization scheme, which actually preserves conformal invariance on the sphere.

This is to be contrasted with the even-dimensional case, in which the five-sphere free

energies of conformal field theories are of the form

FS2n ∼ (Λr)2n + (Λr)2n−2 + · · ·+ a log(Λr) + finite, (2.3)

where the logarithmic divergence cannot be cancelled by a local diffeomorphism-invariant

counter-term. In that case, the coefficient a becomes a physical observable of the conformal

field theory, the well-known trace anomaly. The presence of the log-term also means that

the finite term in FS2n is ambiguous. In contrast, the finite piece of FS5 is unambiguous

and an intrinsic observable of the conformal field theory, since there is no diffeomorphism-

invariant counter-term dependent on the background curvature that could shift its value.

In other words, with any ultraviolet diffeomorphism-invariant regularization scheme, we

obtain the same answer for the finite part of FS5 . From now on, we write FS5 to mean the

finite part after subtraction by the counter-terms in (2.2). In unitarity theories, FS5 is a

real number.

We can deform from the conformal five-sphere background either by (a) putting the

conformal field theory on a general Riemannian manifold (M, gµν), or (b) if the confor-

mal field theory has global symmetry, by coupling the global symmetry currents Jµ to

background gauge fields Wµ. Upon such deformations, the free energy FM(g,W ) typically

suffers from ambiguities due to contact-terms among the conserved currents and the stress

tensor of the form

Jµ(p1)Jν(p2)Jρ(−p1 − p2) 3 i

24π2
κJJJεµνρσλp

σ
1p

λ
2 ,

Tµν(p1)Tρσ(p2)Jλ(−p1 − p2) 3 i

384π2
κTTJελαβ(µ(ρp

α
1 p

β
2

[
p1 · p2δν)σ) − p1σ)p2ν)

]
,

(2.4)

written in momentum space for convenience. The coefficients κJJJ and κTTJ are real due

to unitarity.10

Such ambiguities can be classified by the possible local counter-terms, which involve

the background metric and gauge fields, subject to diffeomorphism and gauge invariance.11

For example, at cubic order in the background fields, we can have (mixed) five-dimensional

Chern-Simons terms12

i

24π2
κJJJW ∧ F ∧ F,

i

192π2
κTTJW ∧ Tr(R ∧R), (2.5)

which are conformal. On generic backgrounds, these counter-terms give nonzero contribu-

tions to FM(g,W ), which is generally complex.

In supersymmetric theories, the contact-term ambiguities are further constrained by

insisting on a supersymmetric regularization scheme. Such a scheme can be systematically

10The factors of i come from Wick-rotating the unitary Lorentzian theory.
11We focus on finite (marginal) counter-terms as opposed to divergent (dimensionful) counter-terms.
12Note that there is no five-dimensional pure gravitational Chern-Simons term.
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formulated by coupling the superconformal field theory to off-shell background N = 1 su-

pergravity, and its flavor symmetries to background N = 1 vector multiplets. We should

only consider counter-terms in the supergravity that are manifestly supersymmetric. Due

to the presence of additional fields in the background multiplets, there are a number of

non-conformal supersymmetric counter-terms.13 Depending on which symmetries of the

theory we want to preserve at short distances (on nontrivial backgrounds), we have differ-

ent choices for the coefficients of the counter-terms. As we shall see, the tension between

supersymmetry, conformal invariance and invariance under large background gauge trans-

formations leads to a new superconformal anomaly for five-dimensional superconformal

field theories.14

2.1 Off-shell supergravity and conformal field theories on five-spheres

Before going into the details of the supersymmetric free energy of five-dimensional super-

conformal field theories, let us first clarify how supersymmetry is preserved on a round

sphere, and discuss the relevant off-shell supergravity theories.

When we place a five-dimensional superconformal field theory on the sphere via the

stereographic map, the full superconformal symmetry F (4) is formally preserved. Hence,

the background coupling is naturally described by conformal supergravity. In particular,

the superconformal stress tensor multiplet couples to the standard Weyl multiplet

gµν , D, V ij
µ , vµν , ψiµ, χi, (2.6)

which contains the metric gµν , the dilaton D, an su(2)R gauge field V ij
µ , a two-form field

vµν , the gravitino ψiµ, and the dilatino χi. Similarly, the superconformal current multiplets

couple to five-dimensional vector multiplets

W a
µ , Ma, Ωai

α , Y aij , (2.7)

where Wµ is the background gauge field for the flavor symmetry, M denotes the scalar

mass parameter, Ωi
α is the gaugino, and Y ij is a triplet of auxiliary scalars.

However, due to ultraviolet divergences, the partition function and the correlation

functions need to be regulated. On a round sphere, the maximal subalgebra that can

be preserved by the regulators is su(4|1). The eight supercharges are parametrized by

symplectic-Majorana Killing spinors εi satisfying

∇µεi = γµt
i
jε
j , (2.8)

where t = i
2rσ3, and r is the radius of the sphere. Therefore, to describe the coupling

between the (regulated) superconformal field theory and the (deformed) five-sphere back-

ground, we should consider Poincaré supergravity, whose gauge algebra is su(4|1), instead

of conformal supergravity which gauges the entire F (4).

13Stated differently, the correlation functions of currents themselves have conformal contact-terms as

in (2.4), but supersymmetry implies that the correlation functions of the other operators in the current

multiplets must have non-conformal contact-terms, if the former are present.
14This is analogous to the superconformal anomaly of three-dimensional N = 2 superconformal field

theories studied in [123, 128]. In that case, the anomalies originate from contact-terms in the two-point

functions of current multiplets, whereas here they appear in the three-point functions.
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Off-shell Poincaré supergravity can be obtained by introducing two gauge-fixing com-

pensators to the standard Weyl multiplet in conformal supergravity [130, 131]. One of

them needs to be a vector multiplet

Ŵµ, M̂ , Ω̂i
α, Ŷ ij , (2.9)

and the other can either be a hypermultiplet, a linear multiplet, or a non-linear multiplet.

We choose the other compensator to be a linear multiplet

L̂ij , ϕ̂iα, Êµ, N̂ , (2.10)

where N̂ and L̂ij are scalars, Êµ is a divergenceless vector, and ϕ̂iα is their fermionic partner.

As we shall see, this ensures that upon gauge-fixing, the resulting Poincaré supergravity

admits the desired supersymmetric five-sphere background.

We gauge-fix the dilatation and superconformal transformations by setting15

M̂ = µ, Ω̂i
α = 0, (2.11)

and break the SU(2)R symmetry down to U(1)R by imposing

L̂ij = Ltij , with tij =
i

2r
(σ3)ij . (2.12)

Here µ and L are arbitrary constants of mass dimension one and two, respectively. To

summarize, the off-shell Poincaré supergravity multiplet contains the component fields [131]

gµν , D, V ij
µ , vµν , Ŵµ, Ŷ ij , Êµ, N̂ , ψiµα, χiα, ϕ̂iα. (2.13)

A supersymmetric five-sphere background can be obtained by setting all fermionic

fields in the Weyl multiplet and the compensator multiplets to zero, as well as by requiring

the vanishing of their supersymmetric variations

δϕ̂i = − /DL̂ijεj +
1

2
γµεiÊµ +

1

2
εiN̂ + 2γµνvµνεjL̂

ij − 6L̂ijηj ,

δΩ̂i = −1

4
γµνFµν(Ŵ )εi − 1

2
/DM̂εi + Ŷ i

jε
j − M̂ηi,

δψiµ = Dµε
i +

1

2
vνργµνρε

i − γµηi,

δχi = εiD − 2γργµνεiDµvνρ + γµνFµν
i
j(V )εj − 2γµεiεµνρσλv

νρvσλ + 4γµνvµνη
i.

(2.14)

Here Dµ denotes the covariant derivative Dµ ≡ ∇µ − Vµ. Furthermore, F (Ŵ ) and F (V )

are the field strengths of Ŵµ and V ij
µ respectively. In particular, given the Killing spinor

equation (2.8), all variations in (2.14) vanish if we set

gµν = gS5

µν , ηi = tijε
j , Ŷij = µtij , N̂ =

6

r2
L, (2.15)

and all other background fields to zero.

15The standard Weyl multiplet also contains a gauge field bµ for the dilatation symmetry. Here we set

bµ = 0 in order to fix the special conformal gauge symmetry.
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2.2 Counter-terms and a new superconformal anomaly

The counter-term ambiguities in the supersymmetric five-sphere free energy are charac-

terized by local diffeormorphism- and supersymmetry-invariant functions of the Poincaré

supergravity multiplet (2.13), and also the vector multiplets (2.7) if the superconformal field

theory has global symmetries. Equivalently, we can write these counter-terms in terms of

the Weyl multiplet (2.6) and the two compensator multiplets, while keeping in mind the

gauge-fixing conditions (2.11) and (2.12). For ease of notation, we take the latter approach.

Let us first examine the dimensionful bosonic counter-terms in (2.2). There is no su-

persymmetric completion of the leading Λ5 divergence, which simply reflects the universal

feature of vanishing cosmological constant for supersymmetric field theories. The Λ3 diver-

gent term can be completed by the supersymmetric Einstein-Hilbert action [130, 132–134].

Finally, the Λ divergent term is completed by the supersymmetrized R2 interactions, which

come with three parameters associated to the three independent structures: Ricci squared

RµνR
µν , Ricci-scalar squared R2, and Weyl tensor squared CµνρσC

µνρσ [131, 135–137].16

These divergent counter-terms allow us to regularize the five-sphere free energy while pre-

serving the massive subalgebra su(4|1). Due to the absence of marginal counter-terms

purely in terms of the Poincaré supergravity multiplet (2.13), the regularized supersym-

metric five-sphere free energy is real and free of (finite) ambiguities.17

This freedom from ambiguities is no longer the case once we couple the conserved

currents in the superconformal field theory to background vector multiplets Wf . The

regularized free energy FS5 can be shifted by marginal counter-terms that are all super-

symmetric completions of various (mixed) Chern-Simons terms. Below we shall only keep

track of the couplings between the scalars Mf in the vector multiplet and the Riemannian

curvature R.18 By unitarity, the overall coefficients κ1,2,3
TTJ and κJJJ are real numbers.

Flavor-R2 counter-term. The first counter-term we find is given by

i

24π2
κ1
TTJ

∫
S5

d5x

(
9

64

√
gMfR

2 −Wf ∧ F (V̄ ) ∧ F (V̄ ) + . . .

)
, (2.17)

where V̄ ≡ 2rtijV
ij . This counter-term is solely written in terms of the Weyl multi-

plet (2.6), the compensator linear multiplet (2.10), and the vector multiplet Wf [131]. The

MfR
2 term breaks conformal invariance on the sphere and evaluates to a linear term in

Mf on the supersymmetric five-sphere background.

16We adopt the convention Rµνρσg
µρ = −Rνρ, such that the Riemannian curvature decomposes as

Rµνρσ = Cµνρσ −
2

3
Rµ[ρgσ]ν +

2

3
Rν[ρgσ]µ +

1

6
gµ[ρgσ]νR. (2.16)

17We emphasize here that this reality property is true for unitary five-dimensional N = 1 field theories

that are not necessarily conformal. In contrast, in the three-dimensional N = 2 case, the free energy has a

purely imaginary ambiguity [123, 128].
18We do not prove here, but conjecture that these furnish a complete basis of marginal counter-terms

preservingN = 1 supersymmetry. This conjecture is natural based on dimensional analysis and the available

Chern-Simons terms.
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Flavor-Ric2 counter-term. The second counter-term given by19

i

24π2
κ2
TTJ

∫
S5

d5x

(
15

8

√
gMf

(
RµνR

µν − 1

8
R2

)
−Wf ∧ F (Ŵ ) ∧ F (Ŵ ) + . . .

)
, (2.18)

is another non-conformal counter-term built from the compensator vector multiplet

in (2.9) [137]. On the round sphere, (2.17) and (2.18) give the same contribution.

Flavor-Weyl2 counter-term. The third counter-term is given by

i

12π2
κ3
TTJ

∫
S5

d5x

(
1

8

√
gMfCµνρσC

µνρσ − 1

16
Wf ∧ Tr (R ∧R)

− 1

12
Wf ∧ Tr

(
F (V ) ∧ F (V )

)
+ . . .

)
,

(2.19)

which is a conformal counter-term constructed in [138]. It does not involve any com-

pensator multiplets and has manifest conformal invariance. This term vanishes on the

supersymmetric round five-sphere background 2.15 since it is conformally flat.

Flavor3 counter-term. Finally, the last counter-term reads [139]

i

24π2
κabcJJJ

∫
S5

d5x

(
1

4

√
gMa

fM
b
fM

c
fR−W a

f ∧ F (W b
f ) ∧ F (W c

f ) + . . .

)
, (2.20)

which is possible in the presence of a set of background vector multiplets W a
f . It does not

involve any of the compensator multiplets. The curvature coupling breaks conformal invari-

ance and evaluates to a cubic term in Ma
f on the supersymmetric five-sphere background.

The non-conformal counter-terms (2.17), (2.18), and (2.20) have crucial consequences.

Since they are supersymmetric completions of Chern-Simons terms, their coefficients κ1
TTJ ,

κ2
TTJ , and κabcJJJ must be properly quantized to respect large background gauge invariance.

Therefore, while the integral parts of the non-conformal contact-terms between the current

and stress tensor multiplet can be cancelled by counter-terms, the fractional part is unam-

biguous and physical. There is a tension between large background gauge invariance and

conformal symmetry, analogous to what happens in three-dimensional superconformal field

theories [123, 128]. This tension leads to a new superconformal anomaly in five-dimensional

superconformal field theories.20

Phrased differently, if we start with a given five-dimensional superconformal field the-

ory regularized by a particular scheme (e.g. specified by some renormalization group flow),

the contact-term in the three-point function between the stress tensor Tµν and the scalar

N in the current multiplet that couples to Mf takes the form21

Tµν(p1)Tρσ(p2)N(−p1 − p2)

3 5i

64π2
κ2
TTJ

[(
p1ρp2(µ − δρ(µ(p1 · p2)

) (
p2ν)p1σ − δν)σ(p1 · p2)

)]
+

3i

512π2
(3κ1

TTJ − 5κ1
TTJ) [(p1µp1ν − δµν(p1 · p1)) (p2ρp2σ − δρσ(p2 · p2))] .

(2.21)

19Recall from (2.9) and (2.10) that the hat denotes compensator fields.
20We assume that the partition function is defined using an ultraviolet regulator that preserves background

diffeomorphism invariance, background gauge invariance, and supersymmetry.
21The factor of i is due to N being a pseudo-scalar in the Lorentzian superconformal field theory.
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This contact-term breaks conformal invariance at short distances, which leads to a non-

vanishing one-point function of the scalar N on the five-sphere.22 If κ1,2
TTJ is non-integral,

we have the option of removing this non-conformal contact-term by adding a counter-term

of the form (2.17) with the non-integral coefficient thereby breaking the background large

gauge invariance explicitly.23 Either way, the fractional part of κTTJ is a measure of the

superconformal anomaly and a physical quantity of the theory. The same can be said about

the contact term in the four point function

Tµν(−p1 − p2 − p3)N(p1)N(p2)N(p3)

3 i

192π2
κJJJ

[
(p1 + p2 + p3)µ(p1 + p2 + p3)ν − δµν(p1 + p2 + p3)2

]
.

(2.23)

As is usual with anomalies, the change of these contact-term coefficients under renormal-

ization group flows will be protected and their fractional parts should also be preserved

under dualities. We shall discuss these anomalies in general five-dimensional N = 1 field

theories in more details in a separate paper [141].

The fact that the above marginal counter-terms always involve either one or three

(non-compensator) vector multiplets implies that FS5 is unambiguous when there is no

coupling between the current multiplets and background gauge fields. With background

vector multiplets, the ambiguities of FS5(Wf ) are constrained to be O(Wf ) and O(W 3
f ).

Most importantly, the O(W 2
f ) piece, which — as we shall observe in section 3.2 — carries

information about the flavor central charge CJ , is free from ambiguities. The linear and

cubic ambiguities in FS5(Wf ) will also play an important role in section 4.2.3 in identifying

the symmetry enhancement in five-sphere localization.

3 From the partition function to central charges

In a conformal field theory in d spacetime dimensions, the stress tensor two-point function

is constrained by conformal symmetry to take the form

〈Tµν(x)Tρσ(0)〉 =
CT
V 2

Ŝd−1

Iµν,σρ(x)

x2d
, (3.1)

where V
Ŝd−1 = 2πd/2

Γ(d/2) is the volume of the unit (d − 1)-sphere. Similarly, if we consider a

conformal field theory that has a flavor symmetry G generated by the flavor currents Jaµ .

Then the two-point functions of the flavor currents are constrained by conformal symmetry

22The operator N has scaling dimension four, thus on the five-sphere it can mix with the identity opera-

tor by

N → N + c1R
2 1. (2.22)

This is another way to interpret the fact that the one-point function 〈N〉S5 is non-vanishing, which is

similar to what happens to exactly marginal operators in four-dimensional N = 2 superconformal field

theories [140].
23The more precise definition of the five-dimensional Chern-Simons terms involve the extension to an

auxiliary six-manifold. The fact that we are using a fractional Chern-Simons counter-term means that the

partition function now depends on the data of the bulk six-manifold.
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and conservation laws to take the form

〈Jaµ(x)Jbν(0)〉 =
CJ
V 2

Ŝd−1

δabIµν(x)

x8
. (3.2)

The normalization of the stress tensor Tµν and the flavor currents Jaµ are specified in

appendix A, and the explicit forms of the conformally covariant structures Iµν,σρ(x) and

Iµν(x) are given in (A.1). In the following, we denote by CGJ the flavor central charge of

the flavor group G.

This section introduces precise relations between the central charges CT and CJ and

supersymmetric partition functions on five-spheres for five-dimensional superconformal field

theories. In particular, CT can be probed by adding a nontrivial squashing to the five-sphere

metric, and CJ can be probed by turning on a mass-deformation for flavor symmetries. We

first present the explicit formulae relating CT and CJ to the respective deformations of the

five-sphere partition functions, and test them for the (simple) case of a free hypermultiplet.

In sections 3.1, 3.2 and 3.3, we prove these relations by explicitly coupling the theory to

background supergravity. An important ingredient in the proof is the supersymmetric

background for a five-sphere with generic squashing, which is discussed in appendix B.

Supersymmetric field theories can be put on nontrivial geometries by coupling to off-

shell background supergravity [127]. When appropriate background superfields are turned

on and enough supersymmetry is preserved, the partition function on such backgrounds

is generally well-behaved along renormalization group flows. Preserving supersymmetry

is crucial because generic interacting superconformal field theories in five dimensions are

strongly coupled, and computations are only viably performed in the infrared Lagrangian

theory. Supersymmetry allows one to extrapolate these infrared computations to the ul-

traviolet fixed points (see section 4 for explicit examples). In such curved backgrounds, the

stress tensor is coupled to the background metric. Thus, the dependence of the partition

function under infinitesimal deformations of the geometry away from the round sphere is

captured by correlation functions of the stress tensor. Conversely, the deformed partition

function encodes the stress tensor correlators, in particular the stress tensor two-point

function, and therefore determines the conformal central charge CT at the superconformal

fixed points. The coupling of the stress tensor multiplet to the background supergrav-

ity multiplet will be introduced in section 3.1. It depends on the squashing parameters

ωi = 1 + ai, i = 1, 2, 3, which appear in the squashed sphere metric (B.5). According to

the above discussion, we expect CT to be proportional to the quadratic order coefficients

in the free energy F = − logZ under infinitesimal deformations from the round sphere.

The precise relation we derive is

F |a2
i

= −π
2CT

1920

(∑3
i=1 a

2
i −

∑
i<j aiaj

)
. (3.3)

From here on out, we shall set the five-sphere radius r = 1.

For theories with flavor symmetry G, one can perform a different type of deformation,

by coupling the flavor current multiplet to a background vector multiplet. The detailed

coupling depends crucially on the mass parameters Ma (a = 1, . . . , dim(G)) and will be
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introduced in sections 3.2 and 3.3. The precise relation between the flavor central charge

CGJ for G and the mass-deformed round-sphere partition function is given by

F |M2 =
3π2CGJ

256
δabM

aM b. (3.4)

Suppose the superconformal field theory flows to a gauge theory in the infrared with an

(infrared) flavor group K ⊆ G acting on the hypermultiplets. Then the mass term of the

hypermultiplet in the action on the round S5 (ωi = 1) is given by

SM =

∫
d5x
√
g
(
− εij q̄iM2qj + 2itij q̄iMqj − 2ψ̄Mψ

)
, (3.5)

whereM∈ k ≡ Lie(K) is the mass matrix. The relation between the flavor central charge

CKJ of the flavor group K and the mass-deformed free energy is

F |M2 =
3π2CKJ

256
Tr(M2), (3.6)

where Tr(·) is the Killing form defined in (A.8). If the embedding ι : k ↪→ g ≡ Lie(G)

is known, the flavor central charge CGJ of the ultraviolet flavor group G is related by the

embedding index (reviewed in appendix C)

CKJ = Ik↪→gC
G
J . (3.7)

Free hypermultiplet: a check. In d dimensions, the values of CT for a scalar φ and a

Dirac spinor ψ are [142]

CφT =
d

d− 1
, CψT = 2b

d
2
c−1d. (3.8)

A free hypermultiplet in five dimensions consists of four scalars and a single Dirac spinor,

and hence has central charge

CT = 15. (3.9)

For the flavor central charge CJ for the SU(2) flavor symmetry of a free hypermultiplet, a

calculation analogous to [142] gives

C
SU(2)
J =

8

3
. (3.10)

The partition function of a mass-deformed free hypermultiplet on a squashed sphere

is given by [36, 39]

Z =
1

S3(ω1+ω2+ω3
2 + im|ω1, ω2, ω3)

, (3.11)

where ω1, ω2, ω3 are the squashing parameters of the squashed five-sphere metric (B.5), and

the mass matrix in (3.5) is chosen to beM = imσ3. The definition and relevant properties

of the triple sine function S3 are reviewed in appendix F. Using the integral representa-

tion (F.5) for S3, we find that the free energy F ≡ − logZ is given by the expression

F = −πi

6
B3,3

(
|ω|
2 + im | ω1, ω2, ω3

)
−
∫
R+i0+

d`

`

e
|ω|`

2 eim`∏3
i=1(eωi` − 1)

. (3.12)
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In the second term, the series expansions of the integrand in small ai ≡ ωi − 1 and in m

commute with the integral. To quadratic order in these parameters we thus find

F = F0 −
π2

128

(∑3
i=1 a

2
i −

∏
i≤j aiaj

)
− π2

16
m2 +O(m4), (3.13)

which indeed gives the correct CT and CJ applying the formulas (3.3) and (3.6).

3.1 Linearized coupling for the stress tensor multiplet and CT

The primary operator content of the five-dimensional N = 1 stress tensor multiplet

B[3; 0, 0; 0] (appendix D explains the notation) can be summarized as

[0, 0]
(0)
3 → [0, 1]

(1)
7/2 → [1, 0]

(2)
4 ⊕ [0, 2]

(0)
4 → [1, 1]

(1)
9/2 → [2, 0]

(0)
5

Φ → Ψi
α → J ijµ ⊕Bµν → Siµα → Tµν

(3.14)

where each entry [d1, d2]
(2JR)
∆ labels the representation of the corresponding bosonic con-

formal primary under the bosonic subgroup of F (4) [143, 144]. The d1, d2 and 2JR are the

Dynkin labels of the so(5)× su(2)R. The Poincaré supercharges

Q ∈ [0, 1]
(1)
1/2 (3.15)

acting on the superconformal primary Φ generate the entire stress tensor multiplet.

The normalization of the individual operators are fixed by requiring

J ijµ = Q(iγµQ
j)Φ, Bµν = εijQ

iγµνQ
jΦ,

Tµν = εikεj`Q
(iγµQ

j)Q(kγνQ
`)Φ + (conformal descendants),

(3.16)

where Q satisfies the five-dimensional supersymmetry algebra (see appendix A.3), and Tµν
is canonically normalized as in appendix A.1.

Any five-dimensional superconformal field theory can be put on a curved manifold by

coupling the stress tensor multiplet to the background N = 1 standard Weyl multiplet,

which contains the dilaton D, the metric gµν , an su(2)R gauge field V ij
µ , a 2-form field vµν ,

the gravitino ψiµ, and the dilatino χi. To preserve supersymmetry in the “rigid limit” [127],

we require the background fields to have trivial variations under a subset of the N = 1

supercharges. This requirement boils down to the conditions ψiµ = χi = 0 as well as

δψiµ =Dµε
i+

1

2
vνργµνρε

i−γµηi = 0,

δχi = εiD−2γργµνεiDµvνρ+γµνFµν
i
j(V )εj−2γµεiεµνρστv

νρvστ+4γµνvµνη
i = 0.

(3.17)

The preserved supercharges are parametrized by ξi and ηi subject to the above condi-

tions. The round five-sphere background is given by (2.15), but we do not need to worry

about the compensator multiplets here.24 In appendix B, we derive the general squashed

24Note that the compensator multiplets (2.9) and (2.10) do not couple to physical operators in the

superconformal field theory, and therefore do not enter the linearized coupling. The only way they could

show up is in the potential counter-term ambiguities, which is absent here as explained in section 2.1.
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supersymmetric five-sphere background, which is parametrized by three real parameters

ω1,2,3. Here we shall show that the leading order effect of infinitesimal squashing on FS5 is

precisely captured by the conformal central charge CT .

To linear order in perturbation theory around the round S5 background, we have the

coupling25

δS =

∫
d5x
√
g

(
− hµνTµν + 2V ij

µ J
µ
ij − ivµνB

µν +
1

8
DΦ

)
+O(h2

µν) (3.18)

We expand the squashed five-sphere partition function for the conformal field theory in the

squashing parameters ai = ωi − 1 around ai = 0. The first order terms in this expansion

vanish as a consequence of the vanishing one-point functions of the stress tensor multiplet

operators. At second order, the contributions are captured by the integrated two-point

functions of Φ, Bµν and J ijµ . Note that a general feature of the supersymmetric squashed

five-sphere background is that

hµν ∼ O(a2
i ), vµν ∼ O(ai), V ij

µ ∼ O(ai), D ∼ O(ai). (3.19)

Hence, we do not need to consider the two-point functions of Tµν to second order in ai.

Thus, from (3.18), it follows immediately that

F |a2
i

= −1

2

∫
d5x
√
g

∫
d5y
√
g

(
4V µ

ij (x)V ν
k`(y)〈J ijµ (x)Jk`ν (y)〉S5

− vµν(x)vρσ(y)〈Bµν(x)Bρσ(y)〉S5 +
1

64
D(x)D(y)〈Φ(x)Φ(y)〉S5

) (3.20)

to second order in the squashing parameters.

Now the squashed five-sphere background in appendix B expanded to linear order in

ai gives

V ij =
i

2
(σ3)ij

3∑
i=1

aiy
2
i dφi +O(a2

i ),

v = − i

8
d((σ3)ijV

ij) +O(a2
i ) = −1

2

3∑
i=1

aiyidyi ∧ dφi +O(a2
i ),

D = −4

3∑
i=1

ai +O(a2
i ).

(3.21)

To evaluate the integrated two-point functions (contracted with spacetime tensors) (3.20),

it is convenient to transform to the stereographic coordinates (see appendix B.4), in which

case we have

V ij =
i(σ3)ij

(1 + x2)2

[
2a1 (x1dx2 − x2dx1)− 2a2 (x3dx4 − x4dx3)

+ a3

(
(x2 − 2x2

5 − 1)dx5 − 2x5xµdxµ
) ]
.

(3.22)

25The coefficients in the linearized coupling are fixed by (3.16) and (3.17). One can also extract the

coefficients from the coupling between standard Weyl multiplet and hypermultiplets in [52, 138, 139].
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The flat-space two-point functions of Φ, J ijµ , and Bµν are given by

〈Φ(x)Φ(y)〉 =
CT

480π4

1

|x− y|6
,

〈J ijµ (x)Jk`ν (y)〉 =
CT

640π4
ε(ikεj)`

δµν − 2
(x−y)µ(x−y)ν
|x−y|2

|x− y|8
,

〈Bµν(x)Bρσ(y)〉 = − 3CT
1280π4

Tr[γµν(/x− /y)γρσ(/x− /y)]

|x− y|10
,

(3.23)

which can be derived from (3.16) and the superconformal Ward identities. Using stereo-

graphic projection, we obtain the two-point functions on the five-sphere,

〈Φ(x)Φ(y)〉S5 =
CT

480π4

1

s(x, y)6
,

〈J ijµ (x)Jk`ν (y)〉S5 =
CT

640π4
ε(ikεj)`

δab − 2 (x−y)a(x−y)b
|x−y|2

s(x, y)8
eaµ(x)ebν(y),

〈Bµν(x)Bρσ(y)〉S5 = − 3CT
1280π4

Tr[γab(/x− /y)γcd(/x− /y)]

|x− y|2s(x, y)8
eaµ(x)ebν(x)ecρ(y)edσ(y),

(3.24)

where we introduced a frame

eaµ = δaµ
2

1 + x2
, gµν = eaµe

b
νδab, (3.25)

and the SO(6) invariant distance,

s(x, y) =
2|x− y|

√
1 + x2

√
1 + y2

. (3.26)

To simplify the integrated two-point functions, we first take advantage of the SO(6)

invariance of the measure, to rotate y to 0. This allows us to extract a factor of the unit

five-sphere volume

V
Ŝ5 = π3. (3.27)

The remaining integral over
∫

d5x
√
g has power law divergences at small x and needs to be

regularized. Here we use the dimensional regularization (analytic continuation using the

Gamma function) ∫ ∞
0

dx

(1 + |x|2)a|x|b
=

Γ(1−b
2 )Γ( b+2a−1

2 )

2Γ(a)
. (3.28)

The choice of regularization does not affect the result, as follows from the counter-term

analysis in section 2.2.

Let us start with the first term in (3.20), which has contributions from 〈JJ〉. It can

be evaluated to

4

∫
d5x
√
g V µ

ij (x)V ν
k`(0)〈J ijµ (x)Jk`ν (0)〉S5 =

CT
640π

a2
3. (3.29)

Next we consider the contribution from 〈BB〉, which leads to

−
∫

d5x
√
g vµν(x)vρσ(y)〈Bµν(x)Bρσ(0)〉S5 =

CT
640π

(a2
1 + a2

2). (3.30)
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Finally, the remaining 〈ΦΦ〉 term integrates to

1

64

∫
d5x
√
g D(x)D(0)〈Φ(x)Φ(0)〉S5 = − CT

1920π
(a1 + a2 + a3)2. (3.31)

Putting everything together, we end up with the previously advertised equation

F |a2
i

= −π
2CT

1920

(∑3
i=1 a

2
i −

∑
i<j aiaj

)
. (3.32)

3.2 Linearized coupling for the current multiplet and CJ

Now, let us consider a five-dimensional N = 1 superconformal field theory with flavor

symmetry G. The primary operator content of a flavor current multiplet D[3; 0, 0; 2] (ap-

pendix D explains the notation) is

[0, 0]
(2)
3 → [0, 1]

(1)
7/2 → [1, 0]

(0)
4 ⊕ [0, 0]

(0)
4

Laij → ϕaiα → Jaµ ⊕Na
(3.33)

where a is the adjoint label. More explicitly, the primary operators Na and Jaµ are related

to the superconformal primary Laij by

Na =
i

12
CαβQjαQ

k
βL

a
jk, Jaµ =

i

12
(γµC)αβQjαQ

k
βL

a
jk. (3.34)

We can introduce mass deformations for the superconformal field theory whilst still

preserving supersymmetry, by coupling to background off-shell supergravity and vector

multiplets. The values of the background fields will be constrained by requiring that their

off-shell supersymmetry variations vanish. Here we are interested in mass-deformed five-

dimensional superconformal field theory on the five-sphere, in which case the background

supergravity fields take values as in (2.15). The coupling to a background vector field

with components

W a
µ , Ma, Ωai, Y aij , (3.35)

takes the form [139]

δS =

∫
d5x
√
g
(
2Y aijLaij −W a

µJ
aµ +MaNa + . . .

)
, (3.36)

where the terms involving fermions are suppressed. The supersymmetry variation of the

background gaugino is

δΩi = −1

4
γµνFµν(W )εi − 1

2
γµDµMεi + Y i

jε
j +Mtijε

j , (3.37)

where εj is a symplectic-Majorana spinor satisfying the Killing spinor equation (2.8) on

the five-sphere. It is easy to see that

Wµ = Ωi = 0, Y ij = −Mtij , (3.38)

with M a constant element of g = Lie(G), gives the desired supersymmetry-preserving

mass deformation

δS =

∫
d5x
√
gMa

(
Na − 2tijLaij

)
. (3.39)
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As explained in section 2.2, while the O(M) and O(M3) terms in the mass-deformed

five-sphere free energy are ambiguous, the O(M2) dependence is not, and is in particular

determined by

F |M2 =−1

2
MaM b

∫
d5x
√
g

∫
d5y
√
g
(

4tijtk`〈Laij(x)Lbk`(y)〉S5 +〈Na(x)N b(y)〉S5

)
. (3.40)

The two-point functions of Na and Laij on flat space are related to the two-point function of

Jµ by (3.34) and the superconformal Ward identities. The two-point functions on the five-

sphere are then given by stereographically projecting the flat space two-point functions,

which results in

〈Laij(x)Lbk`(y)〉S5 =
3CGJ

1024π4

δabεi(kεj`)

s(x, y)6
, 〈Na(x)Na(y)〉S5 = −

27CGJ
256π4

δab

s(x, y)8
, (3.41)

where s(x, y) is the geodesic distance (3.26) on the sphere. Performing the double integral

by dimensional regularization using (3.28), we end up with

F |M2 =
3π2CGJ

256
δabM

aM b. (3.42)

3.3 Relation to the gauge theory partition function

As explained in the introduction, part of the ultraviolet global symmetries are preserved

in the infrared gauge theory phase. They are realized either by the flavor symmetries

of the hypermultiplets or by the topological U(1)I instanton symmetry. To compute CJ
from (3.42) by localization for either of these subgroups (see section 4), we need to correctly

normalize the mass matrix, or equivalently normalize the conserved current multiplet (now

no longer superconformal) in the infrared gauge theory.

We fix the normalization by demanding that the current Jaµ is canonically normalized

as in (A.4) and (A.5). This prescription is unambiguous (irrespective of the gauge cou-

pling) thanks to the Ward identity of the flavor symmetry. The normalization of the other

bosonic conformal primaries in the current multiplet are fixed by supersymmetry (3.34).

In particular, the OPE between the moment map operators, at the ultraviolet fixed point,

takes the form

Laij(x)Lbk`(y) =
3CJ

1024π4

δabεi(kεj`)

|x− y|6
+

2i√
3
fabc

(
εi(kL

c
`)j(y) + εj(kL

c
`)i(y)

) 1

|x− y|3
+ . . . ,

(3.43)

with the prescribed normalization. Below we shall identify the normalized infrared current

multiplets associated to both the hypermultiplet flavor symmetry and the U(1)I instan-

ton symmetry.

Suppose we gauge a subgroup H ⊂ USp(2N). The commutant (centralizer) then gives

the flavor symmetry of the hypermultiplets. For simplicity, let us focus on one simple factor

K of the commutant subgroup, and consider the charged hypermultiplets that transform in

the representation (RH , RK) of H×K. The action for N massive (gauged) hypermultiplets
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on the five-sphere is [30]

S =

∫
d5x
√
g

(
εijDµq̄iD

µqj − εij q̄iσ2qj +
15

4
εij q̄iqj − 2iψ̄ /Dψ − 2ψ̄σψ − 4εijψ̄λiqj

− iq̄iD
ijqj − εij q̄iM2qj + 2itij q̄iMqj − 2ψ̄Mψ

)
,

(3.44)

where we labeled fields in the dynamical vector multiplets as

Aµ, σ, λi, Dij . (3.45)

We have suppressed the RH and RK indices Ȧ = 1, · · · , dim(RH) and A = 1, · · · , dim(RK),

and defined

ψ̄ḂB ≡ ψ
ȦAIȦḂ ĨAB, q̄ḂB ≡ q

ȦAIȦḂ ĨAB, (3.46)

with the invariant tensors IȦḂ and ĨAB given by restrictions of the invariant tensor of

USp(2N). To be explicit, the IȦḂ and ĨAB are normalized such that

IȦḂ ≡ I∗
ȦḂ
, IȦḂI

ḂĊ = −δĊ
Ȧ
,

ĨȦḂ ≡ Ĩ∗
ȦḂ
, ĨȦḂ Ĩ

ḂĊ = −δĊ
Ȧ
.

(3.47)

The mass matrixM is Hermitian, takes values in k = Lie(K), and couples in (3.44) to the

moment map operators as

Laij(T
a)AB ∝ iqȦAi qḂj BIȦḂ, (3.48)

where T a denote the Hermitian generators of k with normalization given in (A.10).

The normalization in (3.48) needs to be specified before we use (3.42) to compute CJ
from localization. Since the normalization is independent of the gauge coupling, we can

work in the weak coupling limit, and use the two-point functions for free hypermultiplets,26

〈qAi (x)qBj (y)〉 =
1

2
Cφ

ΩABεij
|x− y|3

, 〈ψA(x)ψB(y)〉 =
i

4
CψΩABCγµ(xµ − yµ)

|x− y|5
, (3.49)

with

Cφ =
1

3
Cψ =

1

8π2
. (3.50)

Therefore, the normalized current is given by

Jµ = 2
(

iqiȦA∂µq
ḂB
i + ψȦAγµψ

ḂB
)
IȦḂT

a
AB, (3.51)

and the normalized moment map operators are fixed by supersymmetry to be

Laij = iqȦAi qḂBj IȦḂT
a
AB. (3.52)

Hence, Ma in (3.36) is identified with

Ma = Tr(MT a). (3.53)

26The normalization here is fixed by (3.44).
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0 1 2 3 4 5 6 7 8 9

D8/O8 × × × × × × × × ×
D4 × × × × ×

Table 1. The D4-D8/O8 brane system in type I’ string theory.

From (3.42), we have

F |M2 =
3π2CKJ

256
Tr(M2), (3.54)

or equivalently,

F |M2 =
3π2CKJ

512C2(RK)
trRK (M2), (3.55)

whereM is the mass matrix in (3.44), and C2(RK) is the Dynkin index associated with RK .

At the ultraviolet fixed points of five-dimensional theories, the global symmetry is

typically enhanced to a larger group G ⊃ K. If G is simple (or a simple factor), then we

can obtain CGJ from CKJ through the embedding index

CKJ = Ik↪→gC
G
J , (3.56)

and similarly when K is replaced by the U(1)I instanton symmetry. In appendix C, we

provide some details about the embedding indices appearing in the Seiberg exceptional

superconformal field theories.

4 Seiberg and Morrison-Seiberg exceptional theories

A special class of five-dimensional superconformal field theories are the theories with ex-

ceptional En (n = 1, . . . , 8) flavor symmetry proposed by Seiberg [7], and Ẽ1 = U(1) by

Morrison and Seiberg [8]. For n < 6, the flavor groups are E5 = SO(10), E4 = SU(5),

E3 = SU(3)× SU(2), E2 = SU(2)×U(1), and E1 = SU(2). For each flavor group, there is

a family of theories of labeled by their ranks, and the rank-N theory has an N -dimensional

Coulomb branch, RN/WUSp(2N), where WUSp(2N) is the Weyl group of USp(2N). The

family of Seiberg E8 theories arise in the low energy limit of N D4 branes probing a

nine-dimensional E8 singularity, which is constructed out of seven D8-branes on top of an

O8-orientifold plane at infinite string coupling (table 1).

The Seiberg E8 theories can be deformed by the dimension-four R-symmetry-singlet

scalar primary Na in the E8 flavor current multiplet (see (3.33)), and flow to low energy

theories with smaller flavor symmetry. The flows fall into two categories, as depicted in

figure 1:

• Flow 1. If the deformation by Na breaks the E8 flavor group to En (n < 8), then the

infrared fixed point is the Seiberg En theory of the same rank. There exist similar

flows from En to Em (and Ẽ1) for n > m.
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Flow 2

F
lo

w
1

E8

E7

ENf+1

E1, Ẽ1

USp(2N) with 7 fund + 1 anti

USp(2N) with 6 fund + 1 anti

USp(2N) with Nf fund + 1 anti

USp(2N) with 1 anti, θ = 0, π

Figure 1. Renormalization group flows across various theories, starting from the Seiberg E8

theories. On the right, fund and anti denote hypermultiplets transforming in the fundamental

and antisymmetric representations of USp(2N). Note that for rank-one, there is no antisymmetric

representation of USp(2).

• Flow 2. If the deformation by Na breaks the ENf+1 flavor group to SO(2Nf ) ×
U(1)I (Nf = 0, 1, . . . , 7), then the low-energy theory is N = 1 USp(2N) Yang-Mills

coupled to Nf fundamental hypermultiplets together with a single antisymmetric

hypermultiplet (the latter is decoupled for rank-one).27

Along Flow 2, the operator Na flows to the Yang-Mills Lagrangian density in the

infrared. In the language of the infrared, the inverse Yang-Mills coupling squared 1/g2
YM is

the mass parameter that parameterizes the renormalization group flow. The infrared gauge

theories contain instanton particles of mass mI = 4π2/g2
YM, which are charged under the

instanton symmetry U(1)I. Furthermore, along Flow 2, it was assumed in [32, 35, 40] that

with respect to a particular supercharge Q, the Yang-Mills term is Q-closed, while all other

irrelevant operators are Q-exact.28 Another possibility is as we explained in footnote 6.

Consequently, the partition function is insensitive to those irrelevant couplings. The su-

persymmetric partition function can be computed by standard localization techniques, in

which a Q-exact term is added to the action that formally does not change the partition

function [25–30]. When the coefficient of the Q-exact term is tuned to be large, the path

integral localizes to the fixed-point loci of the action of the supercharge Q. The result from

27The antisymmetric hypermultiplet transforms under an additional mesonic SU(2)m flavor symmetry.

However, since our focus in this paper is on the rank-one theories, we shall omit this additional SU(2)m

from most of our discussions (in particular, we omit its corresponding chemical potential from the partition

function), and refer the reader to [145].
28Similar arguments were made for five-dimensional maximal N = 2 super Yang-Mills [32, 40]. In

fact, the deformations of maximally supersymmetric gauge theories that preserve 16 supersymmetries have

been classified in [146–150]. Based on this classification, there is only one irrelevant deformation that

could potentially not be Q-exact — the supersymmetric completion of Tr(FµνFνρFρσFσµ). Thus the claim

of [32, 40] is essentially the statement that this particular term does not arise in the compactification of the

six dimensional N = (2, 0) theory to five dimensions.
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localization formally takes the form

Z = Zpert +
∑
n

e−SnZk, (4.1)

where Zpert is the one-loop partition function at the perturbative fixed point, n labels the

nontrivial fixed points, Sn ∝ mI is the classical action and Zn the one-loop determinant of

the Q-exact localizing term, both at the nth fixed point.

The goal of this section is to explicitly compute the supersymmetric five-sphere parti-

tion function for the Seiberg exceptional theories. We borrow the matrix model expression

for the localized path integral [31, 32, 39] and a recipe for computing the instanton contri-

butions [38, 40, 48] from the literature. The resulting free energy

F (ωi,mf ,mI) = − logZ(ωi,mf ,mI), (4.2)

is a function of the squashing parameters ωi = 1 + ai (i = 1, 2, 3), the instanton particle

mass mI, and the masses mf (f = 1, . . . , Nf ) of the fundamental hypermultiplets. The mf

appear in the mass matrix in the hypermultiplet action (3.44) as29

Mf = iσ2 ⊗

m1

. . .

mNf

 , (4.3)

which is a Cartan generator of SO(2Nf ) in the vector representation.

In section 4.1, we first discuss the dependence of the partition function on the central

charges, and certain properties that follow from the Weyl group of the exceptional flavor

symmetry. Since only the SO(2Nf )×U(1)I subgroup is manifest in the gauge theory, these

properties provide highly nontrivial checks on the precise triple factorization formula, which

is presented in section 4.2, and explicitly (numerically) evaluated in section 4.3.

4.1 Central charges and constraints from Weyl group

We apply the relations derived in section 3 between the central charges CT , CJ and the

five-sphere free energy to the specific case of the Seiberg ENf+1 theories, with the mass

matrix given in (4.3).

Nf = 0, 3, 4, . . . , 7. These ENf+1 groups are simple, so there is only one independent

flavor central charge C
ENf+1

J for each Nf . However, in the gauge theory description, only

the SO(2Nf ) × U(1)I subgroup is manifest. So the five-sphere free energy to quadratic

order in the deformation parameters depends on two flavor central charges, C
SO(2Nf )
J and

C
U(1)I

J , as well as the conformal central charge CT .30 By (3.3), (3.4) and (3.6), the precise

29Although the physical mass matrixM in (3.5) is Hermitian, when performing localization,M has be to

analytically continued to an anti-Hermitian matrix for the convergence of the localized path integral [30, 31].
30In appendix E, we fix the normalization of the U(1)I instanton current multiplet by requiring that the

minimal charge of the U(1)I symmetry is one. This gives M = imI ≡ 4π2i/g2
YM in (3.36).
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dependence is

F |a2
i ,m

2
f ,m

2
I

=− π2

1920
CT

 3∑
i=1

a2
i−
∑
i<j

aiaj

− 3π2

256
C

SO(2Nf )
J

Nf∑
f=1

m2
f−

3π2

256
C

U(1)I

J m2
I . (4.4)

The C
SO(2Nf )
J and C

U(1)I

J are related to the flavor central charge C
ENf+1

J of the enhanced

flavor symmetry ENf+1 by

C
ENf+1

J =
C

SO(2Nf )
J

Iso(2Nf )↪→eNf+1

=
C

U(1)I

J

Iu(1)I↪→eNf+1

, (4.5)

where the embedding indices are computed in appendix C to be

Iso(2Nf )↪→eNf+1
= 1, Iu(1)I↪→eNf+1

=
4

8−Nf
. (4.6)

Nf = 1. The flavor symmetry is enhanced from SO(2) × U(1)I to E2 = SU(2) × U(1).

By the embedding map given in [33, 48], the SU(2) mass matrix is ( 1
4m1 − 1

2mI)iσ
3, and

the U(1) mass parameter is M = 7
4m1 + 1

2mI. From (3.4) and (3.6), the free energy at

quadratic order in the mass parameters is

FNf=1|m2
f ,m

2
I

= −3π2

128
C

SU(2)
J

(
1

4
m1 −

1

2
mI

)2

− 3π2

256
C

U(1)
J

(
7

4
m1 +

1

2
mI

)2

. (4.7)

Nf = 2. The flavor symmetry in the infrared is SO(4) ∼= SU(2) × SU(2)′, with mass

matrix 1
2(m1 − m2)iσ3 ⊕ 1

2(m1 + m2)iσ3. The SU(2)′ part is enhanced to SU(3) at the

ultraviolet fixed point, with embedding index Isu(2)′↪→su(3) = 1. By (3.4) and (3.6), the free

energy at quadratic order in the mass parameters is

FNf=2|m2
f ,m

2
I

=−3π2

512

[
C

SU(2)
J (m1−m2)2+C

SU(2)′

J (m1+m2)2
]
− 3π2

256
C

U(1)I

J m2
I . (4.8)

The Weyl group of the enhanced flavor group ENf+1 acts on the mass parameters as

linear transformations on mf and mI. Up to possible counter-terms at linear and cubic

orders in the mass parameters (see section 2.2), the free energy F (ωi,mf ,mI) should be

invariant under the enhanced Weyl group. For example, there is a second degree Weyl

group invariant polynomial
Nf∑
f=1

m2
f +

4

8−Nf
m2

I , (4.9)

which is unique for Nf = 0, 3, 4, . . . , 7, and the second equality in (4.5) is a consequence

of the enhanced Weyl group. The Weyl group actions on the mass parameters mf and mI

are the same as the Weyl group actions on the chemical potentials mf and mI, which are

specified in (4.26).

The above properties are only expected to be true for the exact five-sphere partition

function at the ultraviolet fixed point. When computed using the gauge theory descrip-

tion, all instanton saddles must be taken into account, and the instanton particle mass mI
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should be taken to zero in order to hit the ultraviolet fixed point. A finitely truncated free

energy would not exhibit enhanced Weyl group invariance; in particular, the flavor cen-

tral charges C
SO(2Nf )
J and C

U(1)I

J would not satisfy the relations (4.5). Since the instanton

expansion (4.1) becomes uncontrolled at mI = 0, a priori, one could not hope that the

partition function computed by a finite-order truncation of the series gives a good approx-

imation to the exact partition function. However, by explicit numerical computation up

to four instantons in section 4.3, we see miraculously that the expansion (4.1) seems to

converge even at mI = 0, and the coefficients of the terms violating enhanced Weyl group

diminish at higher and higher orders! In particular, the violation of the relation (4.5)

between C
SO(2Nf )
J and C

U(1)I

J diminishes.

4.2 Five-sphere partition function

4.2.1 Heuristic argument for triple factorization

It was conjectured in [32, 38, 40] (also see [151, 152] for reviews) that the five-sphere

partition function of five-dimensional N = 1 gauge theories can be computed by a Coulomb

branch integral that “glues” three copies of the Nekrasov partition function. The heuristic

argument of this triple factorization goes as follows. In the localization computation of the

partition function on the squashed five-sphere background (B.5), one adds a large Q-exact

term to the action. At the fixed-point loci of Q, the hypermultiplets have vanishing vacuum

expectation values, while the gauge fields in the vector multiplets satisfy the “contact

instanton equation” [29, 30],

ξµF̂µν = 0, F̂µν =
1

2β̃κ̃
εµνρσδF̂

ρσξδ, (4.10)

and the scalar fields in the vector multiplets satisfy

Dµ(κ̃−1φ) = 0, Dij =
i

2
(σ3)ij κ̃φ. (4.11)

Here, F̂ ≡ F − iκ̃−1φ dY; the Reeb vector ξµ, scalars κ̃ and β̃, and one-form Y are defined

in appendix B.2. A class of solutions to the scalar field equations (4.11) is

φ = κ̃λ, (4.12)

with λ being a constant that takes values in the Cartan subalgebra of the gauge group, and

[F̂µν , λ] = 0, by the first equation in (4.11). The five-sphere partition function is computed

by an integral over the Coulomb branch parameters λ, of the schematic form

ZS5 =

∫
dλ
∑
n

e−Scl,nZn, (4.13)

where Scl,n is the classical action of the n-th solution to the contact instanton equation,

and Zn is the one-loop determinant in that background.

The most general solution to the contact instanton equation is unknown, but there is a

class of solutions given by embedding the flat space instanton solutions as follows. We can

– 25 –



J
H
E
P
0
3
(
2
0
1
8
)
1
2
3

view the squashed five-sphere metric as a (singular) T3 fibration over the base S2, which

we parameterize with constrained coordinates yi satisfying y2
1 + y2

2 + y2
3 = 1. The T3 fiber

degenerates to S1 at three points on the S2,

(y1, y2, y3) = (1, 0, 0), (0, 1, 0), and (0, 0, 1). (4.14)

At these three points, the Reeb vector ξµ generates closed orbits along the S1, and the

contact instanton equation (4.10) reduces to the instanton equation on R4. One can embed

the R4 small instanton solution into S5, localized at one of the three points and constant

along the direction of the Reeb vector. When the Coulomb branch parameters λ take

generic values in the Cartan subalgebra, the field strength of the small instanton must

also be in the Cartan subalgebra, such that it commutes with λ. The instanton solutions

at different degenerate points can be superposed since the field strengths are all in the

Cartan subalgebra. Consider a solution with instanton numbers k1, k2, and k3 at the three

degenerate points. The classical action was computed in [40] to be

Scl =
πmI

ω1ω2ω3
Tr(λ2) +

2πmI

ω1
k1 +

2πmI

ω2
k2 +

2πmI

ω3
k3, (4.15)

where mI = 4π2/g2
YM is the mass of the instanton particle. At each degenerate point,

the geometry is locally S1 × R4, and it was conjectured that the one-loop determinants

factorize into three copies of the twisted partition function on S1×R4 associated to the three

degenerate points. The S1×R4 partition function suffers from infrared divergences, which

can be regularized by the twisted boundary condition (z1, z2, t) ∼ (z1e
−ε1 , z2e

−ε2 , t + 1),

where t is the coordinate of the S1 with unit radius, z1 and z2 are the complex coordinates

on the two two-planes R12,R34 ∈ R4. The twisted S1 × R4 partition function is nothing

but the Nekrasov partition function ZS1×R4 [25, 26].

4.2.2 Triple factorization formula for rank-one

We focus on the rank-one Seiberg exceptional theories. The five-sphere partition function

is computed by the Nekrasov partition function via the formula

ZS5 =

∫
C

dλ

4π
e−F

∨
eff

[
ZS1×R4

(
2πiω2

ω1
,

2πiω3

ω1
,

2πλ

ω1
,

2πmf

ω1
− πi,

2πmI

ω1
− Nf

2
πi

)
× (2 cyclic perms on ωi)

]
,

(4.16)

where the exponent S0 is

F∨eff =
(8−Nf )πλ

3

3ω1ω2ω3
+

2πmIλ
2

ω1ω2ω3
−

[∑Nf
f=1m

2
f + Nf+4

12

∑3
i=1 ω

2
i +

∑
i<j ωiωj

]
πλ

ω1ω2ω3
. (4.17)

The contour C in the undeformed case lies slightly above the real axis, −∞+ iε to ∞+ iε

for small ε > 0, and in the general case is such that when continuously deforming from

the undeformed case, no pole crosses the contour.31 In the region λ ≥ mf for all f , what

31We do not have a first-principle derivation of this contour prescription, but it seems to be the only

prescription that gives sensible results. For instance, naively choosing the contour to be on the real axis

gives a free energy that diverges in the undeformed limit (when the instantons are included).
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we call F∨eff has the interpretation as the one-loop effective prepotential on the squashed

five-sphere.32 In F∨eff , the quadratic term in λ comes from the on-shell action (4.15), and

the linear and cubic terms in λ are from the one-loop determinants of the vector and hyper-

multiplets.33 The arguments of the Nekrasov partition function ZS1×R4(ε1, ε2, α,mf ,mI)

are the following: α is the Coulomb branch parameter, mf with f = 1, . . . , Nf are the

chemical potentials for the SO(2Nf ) flavor symmetry, and mI is the chemical potential for

the U(1)I instanton symmetry.

The Nekrasov partition function ZS1×R4(ε1, ε2, α,mf ,mI) receives perturbative and in-

stanton contributions,

ZS1×R4(ε1, ε2, α,mf ,mI) = Zpert
S1×R4(ε1, ε2, α,mf )Z inst

S1×R4(ε1, ε2, α,mf ,mI). (4.19)

The perturbative part was computed in [33] using the Atiyah-Singer equivariant index

theorem, and the result is summarized in appendix G.1. The instanton partition function

organizes into a sum of contributions from different instanton numbers,

Z inst
S1×R4(ε1, ε2, α,mf ,mI) = 1 +

∞∑
k=1

exp (−kmI)Z inst,k
S1×R4(ε1, ε2, α,mf ), (4.20)

which was obtained in [33, 48] by computing the Witten indices of the ADHM quantum

mechanics arising in the D-brane configuration of table 1, with the D0-brane worldline

along the zeroth direction. In appendix G.2, we review the ADHM quantum mechanics

and the computation of the Witten indices.

The substitution rules for the chemical potentials ε1, ε2, α, and mf in terms of the

Coulomb branch parameter λ, the squashing parameters ωi, and the mass parameters mf

and mI can be determined by studying the mI →∞ limit of this formula, and demanding

32We thank Hee-Cheol Kim for correspondence on this point.
33Without loss of generality, let us assume mNf ≤ mNf−1 ≤ · · · ≤ m1. We conjecture that the one-loop

effective prepotential on the squashed five-sphere is

Feff =
2πmIλ

2

ω1ω2ω3
+
πi

6

[
B3,3(2iλ | ~ω)−B3,3(−2iλ | ~ω)−

Nf∑
f=1

B3,3(iλ+ imf + ω1+ω2+ω3
2

| ~ω)

+

Nf∑
f=n+1

B3,3(−iλ+ imf + ω1+ω2+ω3
2

| ~ω)−
n∑
f=1

B3,3(−iλ+ imf + ω1+ω2+ω3
2

| ~ω)

]
,

(4.18)

for mn+1 ≤ λ ≤ mn. This expression reduces to (4.17) when λ ≥ mf for all f . The functions B3,3(z | ~ω)

come from the triple sine functions in (4.21) by applying (F.10) for Im(z) ≥ 0 and (F.11) for Im(z) < 0. In

the flat space limit ωi → 0, the five-sphere one-loop effective prepotential behaves as Feff ∝ FR4

eff /(ω1ω2ω3)

(with the identification of mI with 1
2
m0 in [9]). Thus, it is plausible that Feff is the generalization of

FR4

eff to the squashed sphere. In particular, the pieces of (4.18) inhomogeneous in (λ,mI,mf ) should be

produced by the one-loop effective coupling between the background supergravity multiplet and the U(1)

vector multiplet (on the Coulomb branch).
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that it reduces to the perturbative formula34

Zpert
S5 =

∫ ∞
−∞

dλ

4π
exp

(
−2πmIλ

2

ω1ω2ω3

)
S′3(0 | ~ω)S3(±2iλ | ~ω)∏

f S3(±iλ+ imf + ω1+ω2+ω3
2 | ~ω)

, (4.21)

which was obtained by a direct one-loop computation in [31, 32, 39]. The triple sine

function S3 (z | ~ω) is defined and discussed in some detail in appendix F, and S′3 (z | ~ω)

is its z-derivative. The comparison between the mI → ∞ limit of (4.16) and (4.21) is

reviewed in appendix G.1. Given the on-shell action (4.15), we expect that mI should be

substituted by 2πmI
ωi

. However, we conjecture that there is an additional imaginary shift

−Nf
2 πi in the substitution rule for the U(1)I chemical potential mI.

4.2.3 Instanton particle mass shift and flavor symmetry enhancement

We presently give arguments for the −Nf
2 πi shift in the substitution rule for mI in the

triple factorization formula (4.16) for the five-sphere partition function of rank-one Seiberg

exceptional theories. As shown in [49], the Nekrasov partition function exhibits manifest

enhanced flavor symmetry when expanded in the shifted Coulomb branch parameter

α̃ = α+
2

8−Nf
mI. (4.22)

We define

Z̃S1×R4 (ε1, ε2, α̃,mf ,mI) = ZS1×R4

(
ε1, ε2, α̃−

2

8−Nf
mI,mf ,mI

)
. (4.23)

At finite order in the w̃-expansion (or w-expansion), where w̃ = e−α̃ (w = e−α), the

Nekrasov partition function only receives contributions up to finite instanton number.

The coefficients of the w̃-expansion can be organized into characters of the enhanced fla-

vor group,

χR(~m) =
∑
~ρ∈R

e~ρ·~m, (4.24)

where ~m = (m1, . . . ,mNf
, 2(−1)Nf√

8−Nf
mI), and R is a representation of the enhanced flavor

group, here to be interpreted as the set of weights of R in the weight lattice Λ
eNf+1

weight. Our

choice of basis is specified in appendix H. The character is invariant under the shift

~m→ ~m + 2πi~α, (4.25)

for any root vector ~α ∈ Λ
eNf+1

root . In other words, the imaginary part of ~m takes values in

the space RNf+1/(2πΛ
eNf+1

root ). A Weyl reflection w~α associated to a root vector ~α acts on a

34The factor of S′3(0 | ~ω) coming from the contributions of the zero modes in the vector multiplet is of

critical importance, but is often ignored in the literature. In particular, only when this factor is included

will the five-sphere free energy take the form (3.3). Furthermore, the S′3(0 | ~ω) factor is essential for the

gauge theory partition function (4.21) to be invariant under a simultaneous rescaling ωi → c ωi with c ∈ R
when the mass parameters mI and mf are turned off; this property is consistent with (but not implied

by) (3.3) and continues to hold when instanton contributions are included.
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weight vector ~ρ and the chemical potential ~m as35

w~α(~ρ) = ~ρ− 2
~α · ~ρ
|~α|2

~α, w~α(~m) = ~m− 2
~α · ~m
|~α|2

~α. (4.26)

The character is invariant under the Weyl reflections

χR(w~α(~m)) = χR(~m). (4.27)

We define the shifted character χR(~m+2πi~ρ) with ~ρ ∈ Λ
eNf+1

weight, which is also invariant under

the Weyl reflections on ~m,

χR(w~α(~m) + 2πi~ρ) = χR(~m + 2πi~ρ). (4.28)

Rewriting the triple factorization formula (4.16) in terms of Z̃S1×R4 , we obtain

ZS5 =

∫
C

dλ̃

4π
exp

(
−F∨eff |λ=λ̃− 2

8−Nf
mI

)
×
[
Z̃S1×R4

(2πiω2

ω1
,
2πiω3

ω1
,

2πλ̃

ω1
− Nf

8−Nf
πi,

2πmf

ω1
− πi,

2πmI

ω1
− Nf

2
πi
)

× (2 cyclic perms on ωi)
]
.

(4.29)

The substitution rule for the vector ~m = (m1, . . . ,mNf
, 2(−1)Nf√

8−Nf
mI) can be written as

~m =
2π~m

ωi
+ 2πi~ρ, (4.30)

where ~m = (m1, . . . ,mNf
, 2(−1)Nf√

8−Nf
mI), and ~ρ = −(1

2 , . . . ,
1
2 ,

(−1)NfNf

2
√

8−Nf
) is a weight vector.

By (4.28), we find that the expression in the square bracket in (4.29) is invariant under

the enhanced Weyl group actions (4.26). Below we find that F∨eff is invariant under the

enhanced Weyl group after taking into appropriate counter-terms, thus the full partition

function respects the enhanced symmetry. This gives strong evidence for the −Nf
2 πi chem-

ical potential shift in Z̃S1×R4 .

We now show that F∨eff is indeed invariant under the enhanced Weyl group, after

an appropriate subtraction of counter-terms. In terms of the shifted Coulomb branch

parameter λ̃, we have

F∨eff

∣∣∣
λ=λ̃− 2

8−Nf
mI

=
(8−Nf )πλ̃

3

3ω1ω2ω3
(4.31)

−

[
12
∑Nf

f=1m
2
f+ 48

8−Nf
m2

I +(Nf +4)
∑3

i=1ω
2
i +12

∑
i<j ωiωj

]
πλ̃

12ω1ω2ω3

+

[
12
∑Nf

f=1m
2
f+ 32

8−Nf
m2

I +(Nf +4)
∑3

i=1ω
2
i +12

∑
i<j ωiωj

]
πmI

6(8−Nf )ω1ω2ω3
.

35For Nf = 1, the Weyl group is only generated by the Weyl reflection associated to the simple root on

the second line of the 2× 2 matrix in (H.1).
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The cubic term in λ̃ is obviously Weyl-invariant. After recognizing the Weyl-invariant

polynomial (4.9), we see that the linear term in λ̃ is also Weyl-invariant. The λ̃-independent

terms are not Weyl-invariant, but they can be canceled by the admissible counter-terms

classified in section 2.2.36

We end this section by pointing out an interesting observation on the Nekrasov parti-

tion function ZS1×R4 . We conjecture that the states contributing to the Nekrasov partition

function for the Seiberg exceptional theories satisfy37

q ≡ qR mod (8−Nf ), (4.32)

where q is the charge under the USp(2) gauge group, R is the representation of the ENf+1

flavor group and qR is the charge under its center.

For Nf > 1, the simply connected Lie group ENf+1 with Lie algebra eNf+1 has center

Λ
eNf+1

weight/Λ
eNf+1

root
∼= Z8−Nf

. (4.33)

For E2, the quotient (4.33) is identified with the Z7 subgroup of the center U(1) ⊂ E2.

The generators of Z8−Nf
are represented by the following weight vectors ~ρe,

Nf = 1 : ~ρe =

(
1,− 1√

7

)
, Nf = 2 : ~ρe =

(
1, 0,

1√
6

)
,

Nf = 3 : ~ρe =

(
1, 0, 0,− 1√

5

)
, Nf = 4 : ~ρe =

(
1, 0, 0, 0,

1

2

)
,

Nf = 5 : ~ρe =

(
1, 0, 0, 0, 0,− 1√

3

)
, Nf = 6 : ~ρe =

(
1, 0, 0, 0, 0, 0,

1√
2

)
.

(4.34)

Any weight vector ~ρ ∈ Λ
eNf+1

weight can be written as ~ρ = n~ρe + ~α, for some n ∈ Z8−Nf
and

~α ∈ Λ
eNf+1

root . If R is an irreducible representation, then the characters obey

χR(~m + 2πi~ρ) = ξRχR(~m), (4.35)

where ξR is an (8 −Nf )-th root of unity. The Z8−Nf
center charge qR of a representation

R is defined by

χR(~m + 2πi~ρe) = exp

(
2πiqR
8−Nf

)
χR(~m). (4.36)

Finally, the property (4.32) follows from a conjectural identity for the Z̃S1×R4 defined

in (4.23),

Z̃S1×R4

(
ε1, ε2, α̃+

2πi

8−Nf
,mf ,mI

) ∣∣
~m→~m+2πi~ρe

= Z̃S1×R4 (ε1, ε2, α̃,mf ,mI) , (4.37)

36We emphasize here that these Weyl non-invariant terms should not be confused with the potential su-

perconformal anomalies of the fixed point superconformal field theory with ENf+1 flavor symmetry. Instead,

they imply that the regularization scheme used in the gauge theory localization computation only preserves

the SO(2Nf ) × U(1)I subgroup. In other words, the ENf+1 preserving scheme can be implemented in the

localization computation by including the corresponding counter-terms from the beginning. Note that this

is not an issue for the superconformal index because these counter-terms all vanish on the supersymmetric

S1 × S4 background.
37This relation between the gauge and the Z8−Nf center charges was also observed in the ray operator

indices [56].

– 30 –



J
H
E
P
0
3
(
2
0
1
8
)
1
2
3

which in terms of the ordinary Nekrasov partition function ZS1×R4 is equivalent to38

ZS1×R4(ε1, ε2, α,mf ,mI)
∣∣
~m→~m+2πi~ρe

= ZS1×R4 (ε1, ε2, α,mf ,mI) . (4.38)

4.3 Numerical results

We proceed with the direct numerical evaluation of the triple factorization formula (4.16),

and compute the undeformed free energies F0 as well as the central charges CT and fla-

vor central charges CJ using (4.4), (4.7), and (4.8) for the rank-one Seiberg exceptional

and Morrison-Seiberg Ẽ1 theories. The results up to four instantons are summarized in

tables 2, 3, and 4. We close this section with the following remarks.

• The instanton contributions are small compared to the perturbative result, especially

for larger Nf .

• For En, n = 3, 4, . . . , 8, the flavor central charge CEnJ can be obtained by the depen-

dence of the free energy on either the masses of the fundamental hypermultiplets, or

on the mass of the instanton particle. The two methods may give differing results

at finite instanton number, but should ultimately agree to be consistent with the en-

hanced flavor group. Table 5 tracks the differences of the two up to four instantons.

We see that the difference indeed diminishes with higher instanton numbers, espe-

cially in the E5 case, providing a strong check of the triple factorization formula (4.16).

This also suggests that the instanton expansion (4.1) may be convergent even at the

ultraviolet fixed point, where mI = 0.

• In general, the coefficients of the terms which are not invariant under the Weyl group

can be nonzero at finite instanton number. We computed the expansion of the free

energy in both mI and mf up to cubic order, and after adding counter-terms to

cancel the last line of (4.31), observed that such coefficients all appear to diminish

at higher and higher instanton numbers. This check is another piece of evidence for

the convergence of the instanton series at mI = 0.

• The values of the undeformed free energy given in table 2 show that the Seiberg

exceptional theories connected by renormalization group flows (Flow 1 in figure 1)

have larger −F0 and CT in the ultraviolet than in the infrared. This observation

hints towards a five-dimensional version of the F - or C-theorem [66–75, 77, 78].39

38We checked this identity up to instanton number five.
39In three-dimensional N = 2 superconformal field theories, there are counter-examples to a C-theorem

for CT [153]. In five-dimensional non-supersymmetric conformal field theories, there is also a counter-

example described in [4]. However, it is plausible that with eight supercharges, a C-theorem could hold

for five-dimensional N = 1 superconformal field theories. We hope to investigate this possibility in the

near future.
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G −F pert
0 −∆F 1-inst

0 −∆F 2-inst
0 −∆F 3-inst

0 −∆F 4-inst
0 −F 4-inst

0

Ẽ1 5.0967 −1.1× 10−2 1.6× 10−4 3.2× 10−6 3.1× 10−7 5.0855

E1 5.0967 1.5× 10−3 −2.9× 10−4 −7.7× 10−5 −3.2× 10−5 5.0978

E2 6.1401 7.9× 10−3 −7.9× 10−5 −4.5× 10−5 −1.6× 10−5 6.1478

E3 7.3949 9.7× 10−3 4.5× 10−5 −1.7× 10−5 −4.5× 10−6 7.4046

E4 8.9590 1.1× 10−2 2.4× 10−4 4.9× 10−7 3.8× 10−7 8.9706

E5 11.007 1.2× 10−2 3.3× 10−4 −4.8× 10−6 6.0× 10−9 11.019

E6 13.898 9.0× 10−3 7.6× 10−4 3.8× 10−5 −2.1× 10−6 13.907

E7 18.538 3.7× 10−3 1.4× 10−3 3.8× 10−5 8.4× 10−6 18.544

E8 28.473 1.9× 10−4 2.9× 10−4 1.9× 10−4 4.3× 10−5 28.474

Table 2. The contributions to the values of the undeformed free energy −F0 at each instanton

number in the rank-one Seiberg exceptional theories and the Morrison-Seiberg Ẽ1 theory.

G Cpert
T ∆C1-inst

T ∆C2-inst
T ∆C3-inst

T ∆C4-inst
T C4-inst

T

Ẽ1 333.39 6.6× 10−1 3.7× 10−1 −6.1× 10−2 −1.3× 10−2 334.35

E1 333.39 −4.5 −1.3 −8.4× 10−1 −6.6× 10−1 326.04

E2 422.94 −2.4 −3.5× 10−1 −3.4× 10−1 −2.9× 10−1 419.58

E3 529.78 −1.2 3.8× 10−2 −1.1× 10−1 −8.2× 10−2 528.39

E4 662.00 5.9× 10−1 2.3× 10−1 −2.7× 10−2 −6.8× 10−3 662.78

E5 834.00 2.2 −5.5× 10−2 2.4× 10−3 2.1× 10−3 836.17

E6 1075.1 2.6 −2.7× 10−2 6.4× 10−2 −4.3× 10−3 1077.8

E7 1459.5 1.5 5.3× 10−1 −2.2× 10−2 1.2× 10−2 1461.6

E8 2274.4 1.4× 10−1 1.8× 10−1 1.4× 10−1 3.0× 10−2 2274.9

Table 3. The contributions to the values of the conformal central charge CT at each instanton

number in the rank-one Seiberg exceptional theories and the Morrison-Seiberg Ẽ1 theory.
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Fundamental hypermultiplet masses

G Cpert
J ∆C1-inst

J ∆C2-inst
J ∆C3-inst

J ∆C4-inst
J C4-inst

J

SU(3) ⊂ E3 23.700 −8.3× 10−2 −3.5× 10−2 −1.7× 10−2 −1.1× 10−2 23.554

SU(2) ⊂ E3 23.700 1.4× 10−1 −1.4× 10−2 −1.1× 10−2 −6.1× 10−3 23.818

E4 26.413 1.9× 10−1 −1.4× 10−3 −2.5× 10−3 −7.1× 10−4 26.594

E5 30.131 2.1× 10−1 6.5× 10−3 −6.9× 10−5 1.4× 10−7 30.345

E6 35.587 1.7× 10−1 8.2× 10−4 5.9× 10−4 3.1× 10−6 35.760

E7 44.657 7.3× 10−2 1.6× 10−2 8.4× 10−4 1.8× 10−4 44.747

E8 64.752 3.9× 10−3 5.9× 10−3 3.9× 10−3 3.3× 10−4 64.766

Instanton particle mass

G Cpert
J ∆C1-inst

J ∆C2-inst
J ∆C3-inst

J ∆C4-inst
J C4-inst

J

Ẽ1 18.409 −8.5× 10−1 7.3× 10−2 5.8× 10−3 9.5× 10−4 17.636

E1 18.409 −2.7× 10−1 −2.3× 10−1 −1.6× 10−1 −1.3× 10−1 17.605

SU(3) ⊂ E3 23.120 3.8× 10−1 1.4× 10−3 −1.7× 10−2 −1.0× 10−2 23.477

E4 26.190 3.6× 10−1 3.3× 10−2 1.1× 10−3 7.2× 10−4 26.589

E5 30.128 2.1× 10−1 6.5× 10−3 −6.9× 10−5 1.4× 10−7 30.345

E6 35.664 2.3× 10−2 6.7× 10−2 7.0× 10−3 −6.1× 10−4 35.760

E7 44.707 −2.6× 10−2 6.4× 10−2 1.2× 10−4 1.3× 10−3 44.747

E8 64.756 3.9× 10−3 −3.0× 10−3 3.9× 10−3 4.8× 10−3 64.766

Both

G Cpert
J ∆C1-inst

J ∆C2-inst
J ∆C3-inst

J ∆C4-inst
J C4-inst

J

SU(2) ⊂ E2 20.406 3.6× 10−1 −7.3× 10−2 −8.1× 10−2 −6.1× 10−2 20.547

U(1) ⊂ E2 6.2326 2.4× 10−2 −1.9× 10−3 −1.1× 10−3 −5.4× 10−4 6.2531

Table 4. The contributions to the values of the flavor central charge CG
J at each instanton number

in the rank-one Seiberg exceptional theories and the Morrison-Seiberg Ẽ1 theory, computed using

the fundamental hypermultiplet masses and the instanton particle mass.
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G Diff Cpert
J Diff C1-inst

J Diff C2-inst
J Diff C3-inst

J Diff C4-inst
J

SU(3) ⊂ E3 5.8× 10−1 1.2× 10−1 7.9× 10−2 7.8× 10−2 7.7× 10−2

E4 2.2× 10−1 4.5× 10−2 1.1× 10−2 7.0× 10−3 5.5× 10−3

E5 3.2× 10−3 5.9× 10−6 1.8× 10−9 2.8× 10−14 o(10−15)

E6 −7.7× 10−2 7.2× 10−2 5.9× 10−3 −5.9× 10−4 1.6× 10−5

E7 −5.1× 10−2 4.9× 10−2 4.9× 10−4 1.2× 10−3 1.1× 10−4

E8 −4.5× 10−3 −4.5× 10−3 4.4× 10−3 4.4× 10−3 2.1× 10−5

Table 5. The differences between the values of the flavor central charge CG
J computed using

the fundamental hypermultiplet masses and using the instanton particle mass, at each instanton

number in the rank-one Seiberg exceptional theories.

5 Superconformal bootstrap

In previous sections, the values of the conformal central charge CT and the flavor central

charge CJ have been computed for the Seiberg exceptional theories, based on computations

of the squashed sphere partition functions. In this section, we study these theories by the

superconformal bootstrap, exploiting the superconformal and flavor symmetries in these

theories. The values of CT and CJ are related to certain OPE coefficients involving the

BPS scalars residing in the flavor current multiplets, and allow us to pinpoint the Seiberg

exceptional theories in the space of unitary solutions to bootstrap. We then present the

results of the numerical bootstrap. As a check of our numerics, we first consider theories

with SU(2) flavor symmetry that may have higher spin conserved currents, and compare the

bootstrap bounds with a single free hypermultiplet. Then we go on to consider interacting

theories with flavor groups E1
∼= SU(2), E6, E7, and E8, and compare with the Seiberg

exceptional theories.

We stress here that our goal is not to compute CT or CJ in certain theories by boot-

strap, but to demonstrate that the bootstrap (the extremal functional method) in principle

systematically solves certain strongly interacting theories such as the Seiberg exceptional

theories, by providing evidence that their central charges saturate bootstrap bounds.

5.1 Superconformal bootstrap with flavor symmetry

Flavor symmetries of a five-dimensional superconformal field theory are realized by the

conserved currents in the D[2] superconformal multiplets [143, 144]. The superconformal

primary of the D[2] multiplet is the moment map operator Laij , which transforms in the

adjoint representation of the flavor group. Its top component La11 is 1
2 -BPS. These moment

map operators furnish the so-called Higgs branch chiral ring, and their expectation values,

subject to the ring relations, parametrize the Higgs branch vacuum moduli space MH of

the superconformal field theory.
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The superconformal bootstrap of the four-point functions of the moment map operators

can be treated in a uniform fashion across spacetime dimensions three, five, and six [120].40

This section reviews the setup. For simplicity, we assume for now that the moment map

operators reside in a single flavor current multiplet. After contracting the SU(2)R indices

on each operator Lij(x) with auxiliary variables Y i to form L(x, Y ) ≡ Lij(x)Y iY j , the

four-point function takes the form

〈L(x1, Y1)L(x2, Y2)L(x3, Y3)L(x4, Y4)〉 =

(
(Y1 · Y2)(Y3 · Y4)

x2ε
12x

2ε
34

)2

G(u, v;w),

G(u, v;w) = G0(u, v) +G1(u, v)w−1 +G2(u, v)w−2,

(5.1)

where ε is related to the number of spacetime dimensions by ε = d−2
2 , and the cross ratios

u, v, w are defined as41

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, w =
(Y1 · Y2)(Y3 · Y4)

(Y1 · Y4)(Y2 · Y3)
,

x2
12 = (x1 − x2)2, Y1 · Y2 = Y A

1 Y
B

2 εBA.

(5.2)

By superconformal symmetry and the fact that L11 is 1
2 -BPS, the OPE coefficients in

L × L for all operators residing in each superconformal multiplet are linearly related to a

single structure constant; otherwise, without the 1
2 -BPS condition, there would be multiple

superconformal blocks and multiple independent structure constants. This implies that the

four-point function G can be expanded in superconformal blocks,

G(u, v;w) =
∑
X
λ2
XAX (u, v;w), (5.3)

where X labels superconformal multiplets allowed by the selection rules for L×L. We refer

the reader to [120, 154] for the expressions for the blocks. Like the four-point function, the

blocks are second order polynomials in w−1,

AX (u, v;w) = ÃX0 (u, v) + ÃX1 (u, v)w−1 + ÃX2 (u, v)w−2. (5.4)

In unitary theories, the expansion coefficients λ2
X are non-negative.

In a consistent conformal field theory, the operator product expansions must be asso-

ciative, which entails the crossing symmetry constraints,

G

(
u

v
,

1

v
,− w

w + 1

)
= G(u, v;w) =

(
uε

vεw

)2

G(v, u;w−1). (5.5)

The first equality is solved by imposing certain selection rules on the intermediate primary

operators, so we only need to consider the second equality. By the use of superconformal

Ward identities, this second equation can be reduced to

u−2εG2(u, v) = v−2εG0(v, u). (5.6)

40The four-point functions of other operators in the D[2] flavor current multiplet do not contain ex-

tra information, since they are related to the four-point function of the moment map operators by the

superconformal Ward identity.
41Due to the identity (Y1 · Y2)(Y3 · Y4) − (Y1 · Y3)(Y2 · Y4) + (Y1 · Y4)(Y2 · Y3) = 0, there is only a single

cross ratio w formed out of Y1, Y2, Y3, and Y4.
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Expanding this equation in superconformal blocks, we have

0 =
∑

X∈I∪{D[0]}

λ2
XKX (u, v), KX (u, v) ≡ v2εÃX2 (u, v)− u2εÃX0 (v, u),

λ2
D[0] = 1, λ2

X ≥ 0 for X ∈ I,
(5.7)

where I is the putative spectrum of non-identity superconformal multiplets.

Let us relax the assumption that the scalars reside in a single flavor current multiplet,

and label them by an adjoint index a. The four-point function now has extra indices

〈La(x1, Y1)Lb(x2, Y2)Lc(x3, Y3)Ld(x4, Y4)〉 =
(Y1 · Y2)2(Y3 · Y4)2

x4ε
12x

4ε
34

Gabcd(u, v;w), (5.8)

and its superconformal block decomposition takes the form

Gabcd(u, v;w) =
∑

RI∈adj⊗adj
P abcdI GI(u, v;w),

GI(u, v;w) =
∑
X
λ2
X ,IAX (u, v;w),

(5.9)

where P abcdI is the projection matrix that projects onto the contributions from intermediate

operators transforming in the representation RI . Under crossing, the contributions from

different RI mix together, and thus the crossing equation with flavors becomes

F J
I GJ(u, v;w) =

u2ε

v2εw2
GI(v, u;w), (5.10)

where the crossing matrix F J
I is defined as

F J
I =

1

dim(RI)
P dabcI P abcdJ . (5.11)

The crossing matrices can be computed by the methods of [155], and the results for the

flavors groups of interest are listed in table 6.

Putting everything together, the full system of bootstrap equations are

0 =
∑

(X ,J)∈I∪{(D[0],1)}

λ2
X ,J(KX ) JI (u, v),

(KX ) JI (u, v) ≡ F J
I v

2εÃX2 (u, v)− δ JI u2εÃX0 (v, u),

λ2
D[0],I = δ 0

I , λ2
X ,I ≥ 0 for (X , I) ∈ I.

(5.12)

The putative spectrum I contains a subset of

D[2], D[4], B[0]`, B[2]`, L[0]∆,`, (5.13)

subject to the following selection rules:

1. Symmetric representations in adj× adj appear with `+ JR even, and antisymmetric

ones with `+ JR odd.
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GF h∨ adj ⊗S adj adj ⊗A adj F

SU(2) 2 1 ⊕ 5 3

 1
3

5
3 1

1
3

1
6 −

1
2

1
3 −

5
6

1
2



E6 12 1 ⊕ 650 ⊕ 2430 78 ⊕ 2925


1
78

25
3

405
13 1 75

2
1
78 −

7
24

81
104

1
4 −3

4
1
78

5
24

29
104 −

1
12 −

5
12

1
78

25
12 −

135
52

1
2 0

1
78 −

1
6 −

9
26 0 1

2



E7 18 1 ⊕ 1539 ⊕ 7371 133 ⊕ 8645


1

133
81
7

1053
19 1 65

1
133 −

23
70

78
95

2
9 −13

18
1

133
6
35

61
190 −

1
18 −

4
9

1
133

18
7 −117

38
1
2 0

1
133 −

9
70 −

36
95 0 1

2



E8 30 1 ⊕ 3875 ⊕ 27000 248 ⊕ 30380


1

248
125
8

3375
31 1 245

2
1

248 −
3
8

27
31

1
5 − 7

10
1

248
1
8

23
62 − 1

30 −
7
15

1
248

25
8 −225

62
1
2 0

1
248 −

5
56 −

90
217 0 1

2


Table 6. The crossing matrices for adj ⊗ adj of SU(2), E6, E7, and E8 flavor groups. The basis

for the crossing matrices are in the order as shown in the adj ⊗S adj and adj ⊗A adj columns.

2. D[0] must be in the trivial representation.

3. D[2] must be in the adjoint representation of the flavor group.

4. In interacting theories with a unique stress tensor, B[0]0 must be in the trivial rep-

resentation, and B[0]`>0 cannot appear.

The bootstrap makes contact with the previous sections by a relation between the

OPE coefficients for the stress tensor and flavor current multiplets and the central charges

CT and CJ . The formulae are [120]

λ2
B[0]0,1

=
4(2ε+ 2)(2ε+ 3)

2ε+ 1

1

CT
, λ2

D[2],adj =
4(2ε+ 1)h∨

2ε

1

CJ
. (5.14)

5.2 Solving theories by the extremal functional method

The linear functional method exploits the non-negativity of the coefficients in the (su-

per)conformal block expansion in unitary theories, and puts nontrivial bounds on the op-

erator dimensions and OPE coefficients. This section reviews this method. We then explain

how the extremal functional method solves the theories that saturate bootstrap bounds.
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The idea is to consider a vector valued linear functional αI on functions of u, v, and

act on the bootstrap equations (5.12) to obtain

0 =
∑

(X ,J)∈I∪{(D[0],1)}

∑
I

λ2
X ,Jα

I [(KX ) JI ]. (5.15)

In the following, we keep the sum over the I index implicit, and write (KX )J as KX ,J .

Each linear functional that satisfies

α[KD[0],1] = −1, α[KX ,J ] ≥ 0 for (X , J) ∈ I (5.16)

implies a bound on the OPE coefficients

λ2
X ,J =

λ2
X ,J∑

(X ′,J ′)∈I λ
2
X ′,J ′α[KX ′,J ′ ]

≤ 1

α[KX ,J ]
. (5.17)

By maximizing α[KX ,J ] within the space of linear functionals satisfying (5.16), we obtain

the most stringent upper bound on λ2
X ,J . The functional that maximizes α[KX ,J ] is called

the extremal functional [85], which we denote by αX ,J . If there exists a four-point function

that saturates the bound (5.17), then the OPE coefficients satisfy

0 =
∑

(X ′,J ′)∈I\{(X ,J)}

λ2
X ′,J ′αX ,J [KX ′,J ′ ], (5.18)

which, given (5.16), means that the multiplets (X ′, J ′) other than (X , J) contributing to

this four-point function have vanishing αX ,J [KX ′,J ′ ]. Such a four-point function is called

an extremal four-point function [85, 88].

In practice, the above extremization procedure can only be performed within a finite-

dimensional subspace of linear functionals. The following is a convenient basis. Define z

and z̄ by

u = zz̄, v = (1− z)(1− z̄), (5.19)

so that crossing u ↔ v is equivalent to (z, z̄) ↔ (1 − z, 1 − z̄), and consider the space of

linear functionals at derivative order Λ:

α =
Λ∑

m,n=0

αm,n∂
m
z ∂

n
z̄ |z=z̄= 1

2
, αm,n ∈ R. (5.20)

The optimal bounds at higher and higher derivative orders become tighter and tighter, and

the most stringent bound is obtained by extrapolating Λ to infinity. Other practicalities

with the bootstrap numerics have been discussed in [120], to which the reader is referred.

The most interesting bounds to consider are perhaps on the OPE coefficients for the

stress tensor and flavor current multiplets, since they are related to the central charges CT
and CJ , which have been computed in previous sections.
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Figure 2. Lower bounds on CT and CJ for general (free or interacting) theories with SU(2) flavor

group and twist gap ∆ − s ≥ 6, at various derivative orders Λ and extrapolated to infinite order

using the quadratic ansatz (5.21) (solid) and the linear ansatz (5.22) (dashed). Also shown are the

values CT = 15 and CJ = 8
3 for a free hypermultiplet (dotdashed).

5.3 Numerical bounds

This section presents the results of the numerical application of the linear functional method

to bootstrap superconformal field theories with flavor groups SU(2), E6, E7, and E8. In

all cases considered, the bounds on central charges are extrapolated to infinite derivative

order Λ→∞ using two ansatzes, quadratic

minCT/J = a+
b

Λ
+

c

Λ2
, b < 0, Λ ≥ 24, 28, 32 (5.21)

and linear

minCT/J = a+
b

Λ
, Λ ≥ 36. (5.22)

If we assume that a theory saturates a bound, then the gap in the spectrum of long multi-

plets is determined by the first zero of the extremal functional acted on the contribution of

the spin-zero long multiplet to the crossing equation, αD[2],adj[KL[0]∆,0 ]. The resulting gaps

are also extrapolated to infinite derivative order Λ →∞ using two ansatzes, exponential

∆L[0]
gap = a+ b exp

c

Λ
, Λ ≥ 24, (5.23)

and linear

∆L[0]
gap = a+

b

Λ
, Λ ≥ 36. (5.24)

The variation among extrapolations with different ansatzes serves as an estimate for the

extrapolation error.

5.3.1 Free hypermultiplet

As a first step, we make assumptions that should single out the free hypermultiplet as a

solution to the crossing equations — SU(2) flavor symmetry, the existence of higher spin

conserved currents (residing in B[0]`>0), and twist gap ∆ − s ≥ 6 in the spectrum of long

multiplets (cf. ∆ − s ≥ 4 is the unitarity bound). With these assumptions, figure 2 shows
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Figure 3. Left: the extremal functional optimizing the lower bound on CJ for general (free or

interacting) theories with SU(2) flavor group and twist gap ∆ − s ≥ 6, acted on the contribution

of the spin-zero long multiplet to the crossing equation, αD[2],3[KL[0]∆,0 ], in the 1 and 5 of SU(2),

plotted in logarithmic scale. Increasing derivative orders Λ = 24, 26, . . . , 48 are shown from green to

red. Right: the gaps at different Λ, and extrapolations to Λ→∞ using the quadratic ansatz (5.23)

for Λ ∈ 4Z and Λ ∈ 4Z + 2, separately (solid), and using the linear ansatz (5.24) (dashed).

the upper bounds on CT and CJ at derivative orders Λ = 4, 6, . . . , 48, and extrapolations

to infinite derivative order. A free hypermultiplet has CT = 15 and CJ = 8
3 , saturating

both the infinite-derivative-order bounds on CT and CJ to within extrapolation errors,

lim
Λ→∞

minCT = 14.9(5), lim
Λ→∞

minCJ = 2.65(7). (5.25)

To further check that the extremal theory minimizing CJ is indeed a free hypermulti-

plet, we employ the extremal functional method to determine the spectrum appearing in

the D[2]×D[2] OPE in the theory with minimal CJ , and compare with the known spectrum

of a free hypermultiplet. Figure 3 shows the gaps (lowest scaling dimension) at various

derivative orders, and extrapolations to infinite derivative order. We find the gaps in the

1 and 5 channels to be

∆L[0],1
gap = 6.03(6), ∆L[0],5

gap = 8.06(7), (5.26)

respectively, consistent with the actual gaps 6 and 8.
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5.3.2 SU(2) flavor symmetry

Next, we bootstrap interacting unitary superconformal field theories with SU(2) flavor

symmetry. Interacting means that the B[0]`>0 multiplets containing higher spin conserved

currents are absent. Figure 4 maps out the allowed region in the CT − CJ plane, where

there appears to be a sharp corner with the minimal allowed CJ . Also shown are the four-

instanton values of (CJ , CT ) in the rank-one Seiberg E1 theory, and the perturbative values

in the higher-rank theories borrowed from upcoming work [145]. Figure 9 shows the lower

bounds on CT and CJ at various derivative orders, and extrapolations to infinite derivative

order. Assuming that the four-instanton values of CT and CJ are good approximations to

the exact values, the extrapolations suggest that neither the bound on CT nor that on CJ
is saturated by the rank-one Seiberg E1 theory,

lim
Λ→∞

minCT = 87(6). < 326., lim
Λ→∞

minCJ = 10.1(3) < 17.6. (5.27)

In particular, they suggest that the sharp corner does not approach the rank-one Seiberg

E1 theory at infinite derivative order. We are not aware of a candidate theory that sits at

the sharp corner.

Nonetheless, the rank-one Seiberg E1 theory does appear to sit close to the boundary

of the allowed region. To examine this further, figure 6 shows the lower bounds on CJ
when CT is set to the four-instanton value of CT in the rank-one Seiberg E1 theory, and

extrapolated to infinite derivative order, giving

lim
Λ→∞

minCJ = 17.9(1). (5.28)

Assuming that the four-instanton values of CT and CJ are good approximations, the extrap-

olation supports the hypothesis that the rank-one Seiberg E1 theory sits at the boundary

of the allowed region. If this hypothesis is true, then we can employ the extremal functional

method to determine the spectrum of long multiplets appearing the D[2] × D[2] OPE in

the rank-one Seiberg E1 theory. Figure 7 shows the gaps (the lowest scaling dimension) at

various derivative orders, and extrapolations to Λ →∞ using the quadratic ansatz (5.23)

and linear ansatz (5.24). We find the gaps in the 1 and 5 channels to be

∆L[0],1
gap = 4.86(2), ∆L[0],5

gap = 6.71(2). (5.29)
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Figure 4. Allowed region in the CT − CJ plane for interacting theories with SU(2) flavor group,

at derivative orders Λ = 20, 24, . . . , 40, shown from green to red. Also shown are the four-instanton

values in the rank-one Seiberg E1 theory, the perturbative values in the rank-two and three, and

the values according to the large-rank formula (dashed line).
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Figure 5. Lower bounds on CT and CJ for interacting theories with SU(2) flavor group, at various

derivative orders Λ and extrapolated to infinite order using the quadratic ansatz (5.21) (solid) and

the linear ansatz (5.22) (dashed). Also shown are the values of CT and CJ in the rank-one Seiberg

E1 theory (dotdashed).
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infinite order using the quadratic ansatz (5.21) (solid) and the linear ansatz (5.22) (dashed). Also

shown is the value of CJ in the rank-one Seiberg E1 theory (dotdashed).
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Figure 7. Left: the extremal functional optimizing the lower bound on CJ when CT is set to

the four-instanton value in the rank-one Seiberg E1 theory, acted on the contribution of the spin-

zero long multiplet to the crossing equation, αD[2],3[KL[0]∆,0 ], in the 1 and 5 of SU(2), plotted

in logarithmic scale. Increasing derivative orders Λ = 24, 26, . . . , 48 are shown from green to red.

Right: the gaps at different Λ, and extrapolations to Λ → ∞ using the exponential ansatz (5.23)

for Λ ∈ 4Z and Λ ∈ 4Z + 2, separately (solid), and using the linear ansatz (5.23) (dashed).
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5.3.3 E6, E7, and E8 flavor symmetry

Finally, we bootstrap interacting unitary superconformal field theories with E6, E7, and E8

flavor symmetries. Figure 8 maps out the allowed regions in the CT − CJ plane. For each

flavor group, the allowed region has two corners, corresponding to the minimal CJ and the

minimal CT , and the four-instanton values of (CJ , CT ) in the rank-one Seiberg exceptional

theory sit near the corner with the minimal CJ . To examine the corners further, figure 9

shows the lower bounds on CT and on CJ at various derivative orders, and extrapolations

to infinite derivative order. And figure 10 shows the values of CJ and CT that minimize

CT and CJ , respectively. The results as summarized in tables 7 and 8 provide strong

evidence for the rank-one Seiberg E6, E7, and E8 theories having the minimal CJ among

all interacting theories with E6, E7, and E8 flavor symmetry, respectively. We are not

aware of candidate theories that saturate the extrapolated bound on CT .

We suspect that the slight discrepancies between the extrapolated bootstrap bounds on

CJ and the four-instanton values in the rank-one Seiberg exceptional theories, as well as the

discrepancies in the values of CT at min CJ , disappear when even higher derivative orders

are included.42 In the zoomed-in plots of figure 10, the values of CT at min CJ exhibit

upward trends at high derivative orders that potentially diminish the discrepancies.43

Assuming that the rank-one Seiberg E6, E7, and E8 theories saturate the lower bounds

on CJ , we employ the extremal functional method to determine for each theory the spec-

trum appearing in the D[2]×D[2] OPE. We find that the long multiplets that achieve the

lowest scaling dimension have zero spin and appear in the representations 650 of E6, 1539

of E7, and 3875 of E8. For these channels, figure 11 shows the gaps (the lowest scaling

dimension) at various derivative orders, and table 9 summarizes the extrapolated gaps at

infinite derivative order.

In the rank-one Seiberg ENf+1 theory, the structure of the Higgs branch moduli space

MH is particularly simple: it is given by the one-instanton moduli space of ENf+1 [7], which

can be described by a complex algebraic variety with holomorphic coordinates La ≡ La11,

subject to the Joseph ideal relations [64, 156]

L⊗ L|J = 0, Sym2(adj) = (2 adj)⊕ J. (5.30)

Consequently, in the D[2] × D[2] OPE, the D[4] can only appear in the 5 of SU(2), the

2430 of E6, the 7371 of E7, and the 27000 of E8. We confirmed this expectation by

numerically observing that αD[2],adj[KD[4],r] are parametrically much smaller for r in the

above representations than for r in the other representations.

42Our estimates for the errors in the bootstrap data due to spin truncation are around 1% [120]. Therefore,

the only meaningful discrepancies occur in the E6 case.
43In light of the results for E1 in section 5.3.2, there is the possibility that the rank-one Seiberg theories

generally do not saturate the absolute lower bound on CJ (it is conceivable that only the E8 case does),

but lie on the lower boundaries of the allowed regions close to the kinks. In this scenario, the extremal

functional method still solves these theories. Determining which scenario is correct requires considerably

more computational power, and is left for future work.
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G limΛ→∞minCT C4−inst
T limΛ→∞minCJ C4−inst

J

E6 6.8(1)× 102 1.08× 103 3.44(2)× 102 3.58× 102

E7 9.7(2)× 102 1.46× 103 4.42(3)× 102 4.47× 102

E8 1.62(4)× 103 2.27× 103 6.48(4)× 102 6.48× 102

Table 7. The extrapolated lower bounds on CT and CJ for interacting theories with flavor groups

G = E6, E7, E8 at infinite derivative order, and compared to the four-instanton values in the

rank-one Seiberg exceptional theories.

G limΛ→∞CT at minCJ C4−inst
T

E6 1.05(2)× 103 1.08× 103

E7 1.47(1)× 103 1.46× 103

E8 2.31(2)× 103 2.27× 103

Table 8. The values of CT when the lower bound on CJ is saturated for interacting theories with

flavor groups G = E6, E7, E8, and compared to the four-instanton values in the rank-one Seiberg

exceptional theories.

G ∆
L[0]
gap Representation

E6 4.91(1) 650

E7 4.95(2) 1539

E8 4.98(2) 3875

Table 9. Predicted gaps (the lowest scaling dimension) in the long multiplets in the Seiberg

exceptional theories, and the flavor group representations in which they transform.

6 Discussion and outlook

In this paper, we carefully analyzed the coupling of five-dimensional N = 1 superconformal

field theories with mass deformations to squashed-sphere backgrounds, and presented a

precise triple factorization formula for computing the free energy in rank-one theories

that incorporates instanton contributions. Along the way, we classified the admissible

supersymmetric counter-terms, discovered a new superconformal anomaly, and derived

relations to the conformal and flavor central charges. The knowledge of the counter-terms

allowed us to elucidate the invariance of the five-sphere free energy under the enhanced Weyl

group actions, both formally and supplemented with strong numerical evidence. Using the

triple factorization formula, we numerically computed the central charges in the rank-

one Seiberg exceptional and Morrison-Seiberg Ẽ1 theories. Finally, we made connections

between the central charges and the OPE data, and studied the numerical bootstrap of the

four-point function of moment map operators. We found strong evidence for the saturation

of the bootstrap bounds by the rank-one Seiberg theories, and extracted the spectra of long

multiplets in these theories.
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Figure 8. Allowed regions in the CT − CJ plane for interacting theories with E1, E6, E7, and E8

flavor symmetry, at derivative orders Λ = 20, 24, . . . , 40, shown from green to red. Also shown are

the four-instanton values in the rank-one Seiberg theories, the perturbative values in the rank-two

and three, and the values according to the large-rank formula (dashed line).
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Figure 9. Lower bounds on CT (left) and CJ (right) for interacting theories with E6, E7, and E8

flavor groups, at various derivative orders Λ and extrapolated to infinite order using the quadratic

ansatz (5.21) (solid) and the linear ansatz (5.22) (dashed). Also shown are the four-instanton values

of CT and CJ in the rank-one Seiberg exceptional theories (dotdashed).
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Figure 10. Left: the values of CJ when the lower bounds on CT are saturated for interacting

theories with E6, E7, and E8 flavor groups, at various derivative orders Λ. Also shown are the values

of CT and CJ in the rank-one Seiberg exceptional theories (dotdashed). Right: zoomed-in plots.
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Figure 11. Left: the extremal functional optimizing the lower bound on CJ , acted on the contri-

bution of the spin-zero long multiplet to the crossing equation, αD[2],adj[KL[0]∆,0 ], in the 650 of E6,

the 1539 of E7, and the 3875 of E8, plotted in logarithmic scale. These representations are chosen

because they have the smallest gap (the lowest scaling dimension). Increasing derivative orders

Λ = 24, 26, . . . , 48 are shown from green to red. Right: the gap at different Λ, and extrapolations

to Λ → ∞ using the exponential ansatz (5.23) for Λ ∈ 4Z and Λ ∈ 4Z + 2, separately (solid), and

using the linear ansatz (5.23) (dashed).
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The Seiberg theories are holographically dual to type-I’ string theory on AdS6 ×HS4,

which in a certain low energy limit is captured by Romans F (4) supergravity. In upcoming

work [145], we examine the higher-rank Seiberg theories and their holographic duals. In

particular, we compute the central charges CT and CJ at large-rank using matrix model

techniques, and compare with certain couplings in Romans F (4) supergravity. In another

paper [141], we investigate the new five-dimensional superconformal anomaly explained

in section 2.2, as well as its implications for dualities. Other arenas for further explo-

ration include a proof of the F - or a C-theorem for N = 1 superconformal field theories in

five dimensions, of which the numerical results of section 4.3 are suggestive, and a better

(physical) understanding of our contour prescription for the gauge theory sphere partition

function. A final observation is that the undeformed five-sphere free energy F0 sits at a local

maximum with respect to infinitesimal supersymmetric squashing and mass deformations,

as the signs in (3.3)–(3.6) show. This property is reminiscent of the F -maximization in

three-dimensional N = 2 superconformal field theories [71], except that here the maximiza-

tion is automatic since there is no mixing between the non-Abelian SU(2)R R-symmetry

and flavor symmetries.
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A Conventions and normalization

This appendix summarizes the various conventions and normalization adopted in this paper.

A.1 Normalization of the central charges CT and CJ

The conformally covariant structures Iµν,σρ(x) and Iµν(x) that appear in the stress tensor

two-point function (3.1) and the flavor current two-point function (3.2), are defined by

Iµν,σρ(x) =
1

2
[Iµσ(x)Iνρ(x) + Iµρ(x)Iνσ(x)]− 1

d
δµνδσρ,

Iµν(x) = δµν − 2
xµxν
x2

.
(A.1)

The stress tensor has a canonical normalization coming from the normalization of the

dilatation operator D, which in radial quantization is defined by the following integral of

the stress tensor,

D = −
∫

Sd−1

xµxν
|x|

TµνdS. (A.2)

The normalization of D (and hence Tµν) is such that the state |O〉 corresponding to an

operator O with scaling dimension ∆ has eigenvalue ∆ under D,

D|O〉 = ∆|O〉. (A.3)

With this normalization, the coefficient CT in (3.1) is physical and called the conformal

central charge.

Similarly, the flavor currents have a canonical normalization coming from the normal-

ization of the flavor charges Qa, which in radial quantization are defined by the following

integral of the flavor currents,

Qa =

∫
Sd−1

Jaµ(x)
xµ

|x|
dS. (A.4)

The canonical normalization requires that the flavor charges acting on the states
∣∣Jaµ〉

corresponding to the flavor currents under the state-operator correspondence give44

Qa
∣∣∣Jbµ〉 = ifabc

∣∣Jcµ〉, (A.5)

where fabc is the structure constant of the flavor group G normalized by

1

2h∨
faedf bde = δab, (A.6)

where h∨ is the dual Coxeter number. With this normalization, the coefficient CJ in (3.2)

is physical and called the flavor central charge. When the flavor symmetry is U(1), we

normalize the current by

Q|φ〉 = i|φ〉, (A.7)

where |φ〉 is a state carrying the elementary U(1) charge in the theory.

44In our convention, Qa is an anti-hermitian operator. In particular, fabc is purely imaginary for compact

flavor groups.

– 51 –



J
H
E
P
0
3
(
2
0
1
8
)
1
2
3

Let g be the Lie algebra of the flavor group G. For x, y ∈ g, we define the Killing form

(x, y) = Tr(xy) ≡ 1

2h∨
tradj(xy), (A.8)

and tradj(·) is the trace in the adjoint representation. We can pick a basis {T a} for the Lie

algebra g, such that

[T a, T b] = fabcT c. (A.9)

Then the normalization (A.6) implies

(T a, T b) = Tr(T aT b) = δab. (A.10)

The traces in other representations are linearly related to the Killing form. For example,

we have trfund(·) = Tr(·) for the fundamental representation of SU(N) or USp(2N), and

trvec(·) = 2Tr(·) for the vector representation of SO(N).

A.2 Spinor conventions

The five-dimensional gamma matrices γµ (µ = 1, . . . , 5) satisfy the Clifford algebra

{γµ, γν} = 2δµν . (A.11)

The transpose γtµ of gamma matrices also satisfy the same Clifford algebra, and are related

to the gamma matrices by

γtµ = CγµC
−1, (A.12)

where C is the charge conjugation matrix, which is real, antisymmetric, and satisfies C2 =

−1. With the spinor indices α = 1, . . . , 4, the gamma matrices and the charge conjugation

matrix are

(γµ)αβ , Cαβ , Cαβ ≡ Cαβ . (A.13)

The higher rank gamma matrices are

(Cγµ)αβ , (Cγµνρσ)αβ , (Cγµνρσλ)αβ , (Cγµν)αβ , (Cγµνρ)αβ , (A.14)

where γµ1···µn ≡ γ[µ1
· · · γµn], and the first three are antisymmetric under exchanging α and

β, whereas the last two are symmetric. The symplectic-Majorana spinor ψαi also carries an

SU(2) fundamental index i = 1, 2. It satisfies the symplectic-Majorana condition

(ψαi )∗ = εijψβj Cβα. (A.15)

The spinor index α and the SU(2) fundamental index i are raised and lowered as follows

ψα = Cαβψβ , ψα = ψβCβα,

ψi = εijψj , ψi = ψjεji,
(A.16)

with ε12 = ε12 = 1. The spinor index contraction is by default southwest to northeast,

whereas the SU(2) fundamental index contraction is by default northwest to southeast,

χψ ≡ χiαψαi , χMψ ≡ χiαMα
βψ

β
i . (A.17)
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A.3 Five-dimensional supersymmetry conventions

In flat space, the five-dimensional supersymmetry algebra is

{Qiα, Q
j
β} = 2εij(Cγµ)αβi∂µ,

[Ui
j , Qk] = δki Q

j − 1

2
δjiQ

k, [Ui
j , Uk

`] = δ`iUk
j − δjkUi

`,
(A.18)

where Ui
j are the SU(2)R R-symmetry generators.

B Supersymmetric backgrounds for squashed five-spheres

In this appendix, we compute the five-dimensional backgrounds preserving rigid (global)

supersymmetry for a generic squashed five-sphere with the minimal U(1) × U(1) × U(1)

isometry. The goal is to write down the background fields in the standard (irreducible)

Weyl multiplet (see [139] and also [138]). As a matter of fact, one can explicitly show that

the standard Weyl multiplet is precisely equivalent to the conformal boundary of Romans

F (4) gauged supergravity. We start by providing the appropriate field redefinitions which

relate the study of supersymmetric backgrounds performed in reference [52], arising at the

conformal boundary of Romans F (4) supergravity, to the standard Weyl multiplet.45

B.1 Standard Weyl multiplet and its relation to Romans F (4) supergravity

The irreducible standard Weyl multiplet consists of 32 + 32 bosonic and fermionic degrees

of freedom given in terms of the vielbein eµ
a, two su(2) Majorana fermions ψiµ and χi, two

real bosons bµ and D, an su(2) gauge field V ij
µ , and a real antisymmetric tensor vab. The

supersymmetry conditions for the standard Weyl multiplet read

δψiµ = Dµε
i +

1

2
vabγµabε

i − γµηi = 0,

δχi = εiD − 2γcγabεiDavbc + γabFab
i
j(V )εj − 2γaεiεabcdev

bcvde + 4γabvabη
i = 0,

(B.1)

where εi and ηi are the Killing spinors and conformal Killing spinors, respectively, Ka the

generators of special conformal transformation, and

δ = ε̄iQi + η̄iSi + ξaKKa (B.2)

with Qi and Si the supercharges and their conformal cousins. The covariant derivatives

are defined as follows,

Dµε
i = ∂µε

i +
1

2
bµε

i +
1

4
ωµ

abγabε
i − Vµijεj ,

Dµη
i = ∂µη

i − 1

2
bµη

i +
1

4
ωµ

abγabη
i − Vµijεj ,

(B.3)

where ωµ
ab is the spin connection. Finally, Vµν

ij is the field strength of Vµ
ij and for

our purposes,

Davbc = ∇avbc. (B.4)

45See also [157].
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Standard Weyl multiplet Conformal boundary of Romans F (4)

Vµ ij − i
2a
(
σ3
)
ij

vab
i

2
√

2
bab

(εi, ηi)
(
ε̃i,− i

√
2

3 η̃i + i
6
√

2
babγ

abε̃i

)
D 8

3X2 − 1
3babb

ab

bµ Cµ

Table 10. Dictionary between the fields in the standard Weyl multiplet in the notation of [139], and

the fields arising from expanding Romans F (4) gauged supergravity at the conformal boundary [52].

We may translate the conditions (B.1) into equivalent supersymmetry conditions aris-

ing in the analysis of [52]. We explicitly write down the translation for the fields be-

tween [139] and [52] in table 10. Notice that in the last line, we denote by Cµ the generator

of Weyl transformations; a field of given Weyl weight w is acted on by the covariant deriva-

tive as Dµ ≡ ∂µ + w Cµ. In the following, we shall set C = b = 0. To avoid confusion, we

also denote by ε̃ and η̃ the Killing spinors in the analysis of [52].

B.2 Generic squashed five-dimensional backgrounds

In this section, we shall present the supersymmetric backgrounds for generic five-

dimensional squashed spheres with (at least) U(1) ×U(1)×U(1) isometry.

We pick the following five-dimensional metric,

ds2 =
3∑
i=1

(
dy2

i + y2
i dφ

2
i

)
+ κ̃2

 3∑
j=1

ajy
2
jdφj

2

, κ̃2 =
1

1−
∑3

j=1 y
2
ja

2
j

, (B.5)

where φi are periodic coordinates, φi ∼ φi + 2π, yi are constrained coordinates such that

y2
1 + y2

2 + y2
3 = 1, and

ωi = 1 + ai, for i = 1, 2, 3, (B.6)

are the squashing parameters, that govern the deformation away from the round sphere.

Now, let us introduce the following frame,

e1 =
1

y3

√
1− y2

2

[
y1y2 dy2 + (1− y2

2)dy1

]
,

e2 =
y1y3√
1− y2

2

[
(dφ1 − dφ3) +

a3 − a1

β̃
X
]
,

e3 =
1√

1− y2
2

dy2,

e4 =
y2√

1− y2
2

[
−dφ2 +

1 + a2

β̃
X
]
,

e5 =
1

κ̃β̃
X +

1

κ̃
Y,

(B.7)
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where for ease of notation we introduced the definitions

X =

3∑
i=1

y2
i dφi, Y = κ̃2

3∑
i=1

aiy
2
i dφi, β̃ = 1 +

∑
i

aiy
2
i . (B.8)

We now present the U(2) structure, defined by a function S, a one-form K1 and real

and complex two-forms J and Ω, respectively, which are explicitly given by

S = β̃κ̃, K1 = e5,

J = e1 ∧ e2 + e3 ∧ e4, Ω =
(
e1 + ie2

)
∧
(
e3 + ie4

)
.

(B.9)

Furthermore, we introduce the Killing vector ξ via

g (ξ, ·) = SK1, (B.10)

which can be explicitly written as

ξ = ω1∂φ1 + ω2∂φ2 + ω3∂φ3 . (B.11)

Using the U(2) structure equations introduced in [52],46

dS = −
√

2

3
(SK2 + iiξb) ,

Sα =
1

2
√

2
iξa,

d (SK1) =
2
√

2

3

(
2αSJ + SK1 ∧K2 + iSb− i

2
iξ(∗b)

)
,

d (SK2) = iiξdb− iLξ (logS) b,

d (SJ) = −
√

2K2 ∧ (SJ),

d (SΩ) = −i
(
a− 2

√
2αK1 − i

√
2K2

)
∧ (SΩ) ,

(B.12)

we can solve for the background fields — the function α, the one-form K2, the U(1) ⊂ SU(2)

gauge field a and the two-form b. We find the general solution47

K2 = − 1√
2

d log
(
β̃2κ̃

)
,

a = (1− atot)Y +

(
(atot − 1)κ̃+

4

κ̃β̃
+ 2
√

2α

)
K1 − d(φ1 + φ2 + φ3),

b = − i√
2κ̃

dY −
√

2i

(
(atot − 1)κ̃+

4

κ̃β̃
+ 2
√

2α

)
J,

(B.13)

46Notice that the field D — or equivalently X2 — does not appear in these equations. However, it is

completely fixed in terms of the other fields and the U(2) structure by (for instance) solving the second

equation in (B.1). Given this and by taking a U(1) ⊂ SU(2) truncation of the background gauge field,

equation (B.1) is equivalent to (B.12) as proved in [52].
47Here we pick a particular gauge for the U(1) ⊂ SU(2) gauge field a, such that iξa = 0.
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which is parameterized by the arbitrary (real) function α. Furthermore, we used the

notation (recall that ωi = 1 + ai)

atot =
3∑
i=1

ai, ωtot =
3∑
i=1

ωi. (B.14)

We can compute X2 or (equivalently) the scalar field D in the standard Weyl multiplet

D =
8

3
X2 −

1

3
babb

ab

= 2

[
3− 2atot(2− atot) +

∑
i

a2
i

]
κ̃2 +

42(atot − 1)

β̃
+

72

(κ̃β̃)2

+ 12
√

2

(
(atot − 1)κ̃+

3

κ̃β̃

)
α.

(B.15)

A convenient choice for α is

α =
1

2
√

2

(
(1− atot)κ̃−

4

κ̃β̃

)
. (B.16)

The background fields then read

a = (1− atot)Y − d(φ1 + φ2 + φ3),

b = − i√
2κ̃

dY,

D = 4(atot − a1a2 − a1a3 − a2a3)κ̃2.

(B.17)

We can now translate those background fields (α, aµ, bµν , X2) into the ones appearing

in the standard Weyl multiplet, (Vµ ij , vµν , D), by table 10. In particular, one can show

that the Killing spinor

ε =

√
S

2
√

2


−i

i

1

−1

 , (B.18)

and the conformal Killing spinor

η =

[√
2i

3
α− 1

6β̃2κ̃
∂a
(
β̃2κ̃

)
γa +

i

6
√

2
babγ

ab

]
ε, (B.19)

(as well as their complex conjugates) solve the Killing spinor equations for the standard

Weyl multiplet given in (B.1), with the explicit five-dimensional gamma matrices

γ1 = σ3 ⊗ 12, γ2 = σ1 ⊗ 12, γ3 = −σ2 ⊗ σ3,

γ4 = −σ2 ⊗ σ2, γ5 = −σ2 ⊗ σ1.
(B.20)
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B.3 Expansions in the standard Weyl multiplet

Finally, let us write down the leading order deformations of background fields away from

the round sphere. To do so, we pick the choice of α in (B.16), and thus only require the

expansions of the following forms,

Y =
∑
i

aiy
2
i dφi +O

(
a2
i

)
,

dY = 2
∑
i

aiyidyi ∧ dφi +O
(
a2
i

)
,

κ̃−1 = 1 +O
(
a2
i

)
.

(B.21)

We find the following explicit expansions for the background fields in the standard Weyl

multiplet48

Vµ
ijdyµ =

[
(1− atot)

∑
i

aiy
2
i dφi +O

(
a2
i

)]
(σ3)ij ,

1

2
vµνdyµ ∧ dyν =

1

2

∑
i

aiyidyi ∧ dφi +O
(
a2
i

)
,

D = 4(atot − a1a2 − a1a3 − a2a3) +O
(
a2
i

)
.

(B.22)

B.4 Stereographic coordinates

For the evaluation of integrated two point functions on the round five-sphere in section 3.1,

it is more convenient to use the stereographic coordinates x1,2,3,4,5. The relation to the

{yi, φi} coordinates is

x1 =
y1 cosφ1

1 + y3 sinφ3
, x2 =

y1 sinφ1

1 + y3 sinφ3
, x3 =

y2 cosφ2

1 + y3 sinφ3
,

x4 =
y2 sinφ2

1 + y3 sinφ3
, x5 =

y3 cosφ3

1 + y3 sinφ3
.

(B.23)

We also have

dφ1 =
x1dx2 − x2dx1

x2
1 + x2

2

, dφ2 =
x3dx4 − x4dx3

x3
1 + x4

2

,

dφ3 = 2
−2x5xidxi + (x2 − 2x2

5 − 1)dx5

(1− x2)2 + 4x2
5

.

(B.24)

C Embedding index

Let g be a Lie algebra. The Killing form (x, y) for x, y ∈ g is defined in (A.8). We denote

the Cartan subalgebra of g by h, and the dual vector space by h∗ (the space of linear

functions from h to R). The Cartan element Hα ∈ h associated to a vector α ∈ h∗ is

defined by (Hα, H) = α(H) for any H ∈ h. The Killing form on the vector space h∗ is

defined by 〈α, β〉 = (Hα, Hβ) for α, β ∈ h∗.

48The SU(2) gauge field Vµ
ij is pure gauge at leading order. We shall pick a gauge here in which it is

vanishing (it will leave the remaining background fields invariant).
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Consider a subgroup G′ of the flavor group G, and let g′ be the Lie algebra of G′, with

ι : g′ ↪→ g the embedding map. The Killing forms of g′ and g are linearly related by

Ig′↪→g × (x, y) = (ιx, ιy) for any x, y ∈ g′, (C.1)

where Ig′↪→g is called the embedding index. Since the flavor current two-point function (3.2)

is proportional to the Killing form, the flavor central charge CG
′

J associated to the subgroup

G′ is related to CGJ by

CG
′

J = Ig′↪→gC
G
J . (C.2)

In this appendix, we compute the embedding indices Iso(2Nf )↪→eNf+1
and Iu(1)I↪→eNf+1

.

Consider a sublattice inside the root lattice of eNf+1 generated by the simple

roots {α2, α3, . . . , αNf+1}, the labeling of which is specified in figure 12. The roots

{α2, α3, . . . , αNf+1} form a subdiagram of Dynkin type DNf
, and the roots of eNf+1 that are

inside this sublattice generate an so(2Nf ) subalgebra. The embedding so(2Nf ) ↪→ eNf+1 of

the Cartan elements is given by

ι : Hαso
i
7→ Hαi+1 , (C.3)

where αso
i , i = 1, . . . Nf denote the simple roots of so(2Nf ). And the embedding index (C.1)

of so(2Nf ) ↪→ eNf+1 can be computed by

Iso(2Nf )↪→eNf+1
=

(Hα2 , Hα2)

(Hαso
1
, Hαso

1
)

=
A22

Aso
11

= 1, (C.4)

where Aij = 〈αi, αj〉 and Aso
ij = 〈αso

i , α
so
j 〉 are the Cartan matrices of eNf+1 and so(2Nf ),

respectively.

The instanton number U(1)I is defined as the commutant of this subgroup. Note that

with this definition, the simple root of u(1)I is not α1, which has nontrivial intersection

with α3. Instead, we identify

αI ≡ ρ1, (C.5)

where ρi for i = 1, . . . , Nf +1 are the fundamental weights that satisfy 〈ρi, αj〉 = δij . Under

this identification, αI is orthogonal to the roots α2, α3, . . . , αNf+1, and with a normalization

fixed by the condition (A.7). The embedding u(1)I ↪→ eNf+1 of the Cartan elements is

given by

ι : Hu(1)I
7→ HαI = Hρ1 . (C.6)

The embedding index of u(1)I ↪→ eNf+1 can be computed by

Iu(1)I↪→eNf+1
=

(Hρ1 , Hρ1)

(Hu(1)I
, Hu(1)I

)
= A−1

11 =
4

8−Nf
, (C.7)

where the inner product of the u(1)I Lie algebra is normalized as (Hu(1)I
, Hu(1)I

) = 1.
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c c c c c c c
α1 α3 α4 α5 α6 α7 α8

cα2

c c c c c c
α1 α3 α4 α5 α6 α7

cα2

c c c c c
α1 α3 α4 α5 α6

cα2

Figure 12. The Dynkin diagrams for e6, e7, e8, and their subdiagrams corresponding to the

subalgebra so(2Nf ) ⊂ eNf+1.

D Review of superconformal representation theory

The five-dimensional superconformal algebra is F (4), which contains the bosonic subalgebra

so(2, 5)× su(2)R. There are sixteen fermonic generators: eight supercharges QAα and eight

superconformal supercharges SαA, where α = 1, . . . , 4 and A = 1, 2 are the so(5) and su(2)R

spinor indices, respectively. Superconformal primaries are operators that are annihilated

by all the superconformal charges SαA. A highest weight state of F (4) is a superconformal

primary that is also a highest weight state of the maximal compact subalgebra so(2) ×
so(5)×su(2)R. Representations of the superconformal algebra are generated by successively

acting with the supercharges QAα and the lowering generators of so(5) × su(2)R on the

highest weight states. While some descendants of a highest weight state can appear to

have zero norm, in unitary theories, they must be decoupled, and the shortened multiplets

are referred to as short multiplets.

Each superconformal multiplet can be labeled by the charges ∆, J±, JR of its highest

weight state under the Cartan of so(2)×so(5)×su(2)R, where J± are the Cartan generators

of the su(2)+ × su(2)− ⊂ so(4) ⊂ so(5). All the charges are real for unitary representa-

tions of the Lorentzian conformal algebra so(2, 5)× su(2)R. The short representations are

classified into A,B,D types, satisfying the following conditions [143, 144, 158, 159]

A : ∆ = 2J+ + 3JR + 4, for J+, J−, JR ≥ 0,

B : ∆ = 2J+ + 3JR + 3, for J+ = J− and J+, JR ≥ 0,

D : ∆ = 3JR, for J+ = J− = 0 and JR ≥ 0.

(D.1)

The D-type highest weight states are also annihilated by the four supercharges with pos-
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itive R-charge, and are therefore 1
2 -BPS. The A- and B-type multiplets always contain

BPS operators, although the highest weight states of them are not BPS. And the long

representations satisfy the inequality

L : ∆ > 2J+ + 3JR + 4. (D.2)

Let us denote the multiplets by49

X [∆; d1, d2; 2JR], X = L,A,B,D, (D.3)

where d1 = 2J− and d2 = 2J+ − 2J− are the so(5) Dynkin labels. Due to OPE selection

rules, in the bootstrap analysis, we only have to consider multiplets whose superconformal

primaries are in the symmetric rank-` representation of so(5). We denote such representa-

tions by

X [2JR]∆,` = X [∆; `, 0; 2JR]. (D.4)

The ∆, ` subscripts for D-type multiplets and the ∆ subscript for B-type will be omitted

since their values are fixed by (D.1) and (D.4).

E Instanton particle mass term

As discussed in section 4, the Seiberg exceptional theories can be mass-deformed by a

weight-four scalar in the flavor current multiplet. Consequently, they flow to USp(2N)

gauge theories in the infrared. The general form of the mass deformation is given in (3.39).

In this appendix, we derive the relation between the mass parameter and the Yang-Mills

coupling of the infrared gauge theory.

Let us consider a USp(2N) vector multiplet, which contains a gauge field Aaµ, a

symplectic-Majorana spinor λaiα , a scalar φa, and scalars Da
ij all in the adjoint represen-

tation of SU(2)R. The index a ∈ {1, . . . , (2N + 1)N} labels the adjoint representation

of the gauge group USp(2N). The leading terms in the supersymmetry variation of the

component fields are

[Qiα, A
a
µ] = 2iλaiβ (γµ)βα + · · · ,

{Qiα, λ
aj
β } =

1

4
εij(Cγµν)αβF

a
µν +

i

2
εij(Cγµ)αβ∂µφ

a + CαβD
aij + · · · ,

[Qiα, φ
a] = 2λaiα + · · · ,

[Qiα, D
ajk] = −2iεi(j(γµ)βα∂µλ

ak)
β + · · · ,

[Qiα, F
a
µν ] = 4i∂[µλ

ai
β (γν])

β
α + · · · .

(E.1)

The U(1)I instanton current multiplet can be constructed from bilinears of the vector

multiplet together with higher order corrections. The superconformal primary Lij of the

instanton current multiplet takes the form

Lij =
1

4π2

(
Cαβλaiα λ

aj
β +Daijφa

)
+ · · · . (E.2)

49We use 2JR since it is the Dynkin label of su(2)R.
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The other two primaries N and Jλ are related to Lij via (3.34), and therefore given by

N =
1

4π2

[
− 2(γµC)αβλajα ∂µλ

a
jβ −

i

4
F aµνF

aµν +
i

2
∂µφ

a∂µφa

+ iDaijDa
ij + iφa�φa

]
+ · · · ,

Jλ =
1

4π2

[
i

8
ελµνρσF aµνF

a
ρσ − ∂µ(φaF aµλ) +

1

2
(γλµC)αβ∂µ(λajα λ

a
jβ)

]
+ · · · .

(E.3)

Note that the operators in (E.2) and (E.3) are all properly normalized, in the sense that

the instanton number current Jλ has the canonical normalization (A.7).50 Substituting the

above into the action (3.39), and comparing with the standard Yang-Mills kinetic term,

we find

M = imI ≡
4π2i

g2
YM

. (E.6)

F Triple sine function

In this appendix, we define the “Barnes triple sine” function, and list a plethora of prop-

erties that are useful in the main text.

Let us start by defining the Barnes multiple zeta function,

ζN (s, w | ~ω) =
∞∑

m1,...,mN=0

(w +m1ω1 + · · ·+mNωN )−s , (F.1)

where Rew > 0, Re s > N and ω1, . . . , ωN > 0. This function is meromorphic in s, with

simple poles at s = 1, . . . , N . One can then define the Barnes multiple gamma function

ΓN (w | ~ω) = exp [ΨN (w | ~ω)] , (F.2)

where

ΨN (w | ~ω) =
d

ds

∣∣∣∣
s=0

ζN (s, w | ~ω) . (F.3)

Finally, the multiple sine function is defined in terms of the Barnes gamma function as

SN (w | ~ω) = ΓN (w | ~ω)−1 ΓN (atot − w | ~ω)(−1)N , (F.4)

50Consider a local operator of nonzero U(1)I charge n inserted at the origin. The boundary condition of

the gauge field Aaµ near the origin is modified to

1

8π2

∫
S4

Tr(F ∧ F ) = n, (E.4)

where S4 is a small four-sphere centered at the origin [60]. The definition of the charge (A.4) gives

Q =

∫
S4

xλ

|x|JλdS =
i

32π2

∫
S4

xλ

|x| ε
λµνρσF aµνF

a
ρσdS = in, (E.5)

which agrees with (A.7).
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where ωtot =
∑N

i=1 ωi. For the purpose of this paper, there is a more convenient (equivalent)

way of writing the triple sine function. One can prove that the above definition is equivalent

to [160–162]

SN (w | ~ω) = exp

[
(−1)N

πi

N !
BN,N (z | ~ω) + (−1)N IN (z | ~ω)

]
, (F.5)

where we have introduced the integral

IN (z | ~ω) =

∫
R+i0+

dx

x

ezx∏N
k=1 (eωkx − 1)

. (F.6)

The integral is over the real axis with the exclusion of the (essential) singularity at x =

0 by a small half-circle reaching into the positive half-plane. Furthermore, we denote

by BN,N (z | ~ω) the generalized/multiple Bernoulli polynomials, which can be explicitly

computed by expanding and solving

tNezt∏N
j=1 (eωjt − 1)

=
∞∑
n=0

tn

n!
BN,n (z | ~ω) (F.7)

order-by-order. In our case of interest, N = 3, we have

B3,3 (z | ~ω) =
z3

ω1ω2ω3
− 3ωtot

2ω1ω2ω3
z2 +

ω2
tot + (ω1ω2 + ω1ω3 + ω2ω3)

2ω1ω2ω3
z

−ωtot (ω1ω2 + ω1ω3 + ω2ω3)

4ω1ω2ω3
. (F.8)

There is yet another definition of the triple sine function in terms of the generalized

q-Pochhammer symbols, which are defined as51

(p; q1, q2) =



∞∏
j,k=0

(1− pqj1qk2 ) for |q1|, |q2| < 1,

∞∏
j,k=0

(1− pq−j−1
1 qk2 )−1 for |q2| < 1 < |q1|,

∞∏
j,k=0

(1− pqj1q
−k−1
2 )−1 for |q1| < 1 < |q2|,

∞∏
j,k=0

(1− pq−j−1
1 q−k−1

2 ) for 1 < |q1|, |q2|,

(F.9)

which is a meromorphic function of z (p = e2πiz) [161]. The triple sine function can be

written as [161]

S3(z | ~ω) = e−
πi
6
B3,3(z|~ω)

[
(e

2πi z
ω1 ; e

2πi
ω2
ω1 , e

2πi
ω3
ω1 )× (2 cyclic perms on ωi)

]
(F.10)

= e
πi
6
B3,3(z|~ω)

[
(e
−2πi z

ω1 ; e
−2πi

ω2
ω1 , e

−2πi
ω3
ω1 )× (2 cyclic perms on ωi)

]
. (F.11)

51Notice as compared with [161], we write (p; q1, q2) ≡ (p; q1, q2)
(3)
∞ .
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Similarly, we can rewrite it as

S3(z | ~ω) = (e
2πi z

ω1 ; e
2πi

ω2
ω1 , e

2πi
ω3
ω1 )

1
2 (e
−2πi z

ω1 ; e
−2πi

ω2
ω1 , e

−2πi
ω3
ω1 )

1
2

× (2 cyclic perms on ωi).
(F.12)

Without loss of generality, let us assume Im(ω1
ω2

), Im(ω2
ω3

), Im(ω1
ω3

) > 0. Then we have the

following formula for the derivative S′3 (0 | ~ω),

S′3(0 | ~ω) =
2π
√
ω1ω3

[
(1; e

2πi
ω1
ω2 , e

2πi
ω3
ω2 )

1
2 (1; e

−2πi
ω1
ω2 , e

−2πi
ω3
ω2 )

1
2

× (2 cyclic perms on ωi)
]
.

(F.13)

G Sphere partition function for five-dimensional gauge theories

G.1 Perturbative partition function

The perturbative part of the Nekrasov partition function on S1×R4 was computed in [33]

using the Atiyah-Singer equivariant index theorem. It can be expressed in terms of the

plethystic exponential

Zpert
S1×R4(ε1, ε2, α,mf ) = Zvec(ε1, ε2, α)Zhyper(ε1, ε2, α,mf ),

Zvec(ε1, ε2, α) = exp
[ ∞∑
n=1

1

n
fvec(nε1, nε2, nα)

]
,

Zhyper(ε1, ε2, α,mf ) = exp
[ ∞∑
n=1

1

n
fhyper(nε1, nε2, nα, nmf )

]
,

(G.1)

where fvec and fhyper are the “single particle” indices,

fvec(ε1, ε2, α) = −1

2

(e−ε1 + e−ε2)(1 + 2e−2α)

(1− e−ε1)(1− e−ε2)
− e−2α,

fhyper(ε1, ε2, α,mf ) =
2e−

1
2

(ε1+ε2)e−α

(1− e−ε1)(1− e−ε2)

Nf∑
f=1

cosh(mf ).

(G.2)

Here, Zvec and Zhyper are the one-loop determinants of the vector and hypermultiplets

on the zero-instanton background. Similarly, they can also be expressed in terms of the

q-shifted factorials as

Zvec(ε1, ε2, α) = (e−2α; e−ε1 , e−ε2)(e−2α; eε1 , eε2)ZCartan(ε1, ε2),

Zhyper(ε1, ε2, α,mf ) = (e−α±mf+ 1
2

(ε1+ε2); eε1 , eε2),
(G.3)

where ZCartan is the contribution from the Cartan gluons of the USp(2) gauge group,

explicitly

ZCartan(ε1, ε2) = (1; e−ε1 , eε2)−
1
2 (1; eε1 , e−ε2)−

1
2 . (G.4)

Following [163, 164], we show that the full partition function (4.16) in the weak coupling

mI → ∞ limit agrees with the perturbative partition function (4.21) expressed in terms
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of triple sine functions. We first notice that when Im(ω1
ω2

), Im(ω2
ω3

), Im(ω1
ω3

) > 0, the Cartan

partition function ZCartan(2πiω1
ω2

, 2πiω3
ω2

) diverges.52 Formally, it can be written as

ZCartan

(
2πiω1

ω2
,
2πiω3

ω2

)
= exp

1

2

∞∑
n=1

1

n

 e
2πi

ω1
ω2 + e

−2πi
ω3
ω2(

1− e2πi
ω1
ω2

)(
1− e−2πi

ω3
ω2

) + 1

 . (G.5)

We then define the regularized partition function of the Cartan gluons as

Z ′Cartan

(
2πiω1

ω2
,
2πiω3

ω2

)
=

2π
√
ω1ω3

exp

[
1

2

∞∑
n=1

1

n

e
2πi

ω1
ω2 + e

−2πi
ω3
ω2(

1− e2πi
ω1
ω2

)(
1− e−2πi

ω3
ω2

)
]

=
2π
√
ω1ω3

(1; e
2πi

ω1
ω2 , e

2πi
ω3
ω2 )

1
2 (1; e

−2πi
ω1
ω2 , e

−2πi
ω3
ω2 )

1
2 .

(G.6)

Using the formulae (F.10), (F.11) and (F.13), we can write the second line of (4.21) as53

S3(±2iλ | ~ω)∏
f S3(±iλ+ imf + ω1+ω2+ω3

2 | ~ω)

= exp

{
− πi

6

[
B3,3(2iλ | ~ω)−B3,3(−2iλ | ~ω)

−
Nf∑
f=1

B3,3(iλ+ imf + ω1+ω2+ω3
2 | ~ω) +

Nf∑
f=1

B3,3(−iλ+ imf + ω1+ω2+ω3
2 | ~ω)

]}

×
[
(e
−4π λ

ω1 ; e
2πi

ω2
ω1 , e

2πi
ω3
ω1 )(e

−4π λ
ω1 ; e

−2πi
ω2
ω1 , e

−2πi
ω3
ω1 )

×
Nf∏
f=1

(−e2π
−λ±mf
ω1

+πi
ω2+ω3
ω1 ; e

2πi
ω2
ω1 , e

2πi
ω3
ω1 )× (2 cyclic perms on ωi)

]

= exp

{
− (8−Nf )πλ

3

3ω1ω2ω3
+

[
12m2Nf + (Nf + 4)

∑3
i=1 ω

2
i + 12

∑
i<j ωiωj

]
πλ

12ω1ω2ω3

}

× 1

S′3(0 | ~ω)
×Zpert

S1×R4

(
2πiω2

ω1
,

2πiω3

ω1
,

2πλ

ω1
,

2πmf

ω1
− πi

)
×Z ′pert

S1×R4

(
2πiω1

ω2
,

2πiω3

ω2
,

2πλ

ω2
,

2πmf

ω2
− πi

)
×Zpert

S1×R4

(
2πiω1

ω3
,

2πiω2

ω3
,

2πλ

ω3
,

2πmf

ω3
− πi

)
,

(G.7)

where Z ′pert
S1×R4 is the perturbative partition function with ZCartan replaced by Z ′Cartan. The

52We have (1; q1, q2) = 0 for |q1|, |q2| < 0.
53Note that we used (F.10) for S3(2iλ | ~ω) and S3(iλ+ imf + ω1+ω2+ω3

2
| ~ω), and (F.11) for S3(−2iλ | ~ω)

and S3(−iλ+ imf + ω1+ω2+ω3
2

| ~ω).
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perturbative five-sphere partition function is now written as

Zpert
S5 =

∫
C

dλ

4π
e−F

∨
effZpert

S1×R4

(
2πiω2

ω1
,

2πiω3

ω1
,

2πλ

ω1
,

2πmf

ω1
− πi

)
×Z ′pert

S1×R4

(
2πiω1

ω2
,
2πiω3

ω2
,

2πλ

ω2
,

2πmf

ω2
− πi

)
×Zpert

S1×R4

(
2πiω1

ω3
,
2πiω2

ω3
,

2πλ

ω3
,

2πmf

ω3
− πi

)
,

(G.8)

where

F∨eff =
(8−Nf )πλ

3

3ω1ω2ω3
+

2πmIλ
2

ω1ω2ω3

−

[
12
∑Nf

f=1m
2
f + (Nf + 4)

∑3
i=1 ω

2
i + 12

∑
i<j ωiωj

]
πλ

12ω1ω2ω3
.

(G.9)

Following [32, 38, 40], we conjecture that the full five-sphere partition function ZS5 has a

similar triply-factorized form as does the perturbative five-sphere partition function. For

ease of notation, we keep the prime on one of the ZS1×R4-factors implicit in (4.16).

G.2 ADHM quantum mechanics

In the string theory realization of five-dimensional Seiberg exceptional theories, the instan-

tons are described by D0-branes moving in a D4-D8/O8 background [48]. The directions

of the various branes are summarized in table 1. The low energy theory on k D0-branes

is an N = 4 O(k) gauged quantum mechanics with SU(2)R
+ × SU(2)R

− R-symmetry and

SU(2)+× SU(2)− flavor symmetry corresponding to the rotations on the four-planes R1234

and R5678, respectively. The field content of the supersymmetric quantum mechanics is

summarized in table 11. The vector and Fermi multiplets, which arise from the D0-D0

strings are in the adjoint representation of the gauge group O(k), and the hyper- and

twisted hypermultiplets are in the symmetric representation. The D0-D4 and D0-D8 strings

are in the bi-fundamental representation of the gauge group O(k) and their flavor groups,

USp(2N) and SO(2Nf ), respectively.

Consider an N = 2 subalgebra inside the N = 4 supersymmetry algebra. The Witten

index is defined as

ZkD0-D4-D8/O8(ε1, ε2, ε
R
−, αi,mf )

= TrHQM

[
(−1)F e−β{Q

†,Q}−2ε+(J++JR
+)−2ε−J−−2εR−J

R
−−

∑
f Ffmf−

∑
i αiHi

]
,

(G.10)

where ε± = ε1±ε2
2 , Q and Q† are the supercharges in the N = 2 subalgebra, JR

+ , JR
− are the

Cartan generators of the SU(2)R
+ and SU(2)R

− R-symmetry groups, and J±, Ff and Hi of

the SU(2)±, SO(2Nf ), and USp(2N) flavor groups respectively. The eigenstates with the

same nonzero eigenvalues of the Hamiltonian H = {Q†, Q} are paired up and exchanged by

the action of the supercharges Q and Q†. Their contributions to the trace (G.10) cancel,

and hence the Witten index is independent of the inverse temperature β.

The Witten index was computed using supersymmetric localization in [48, 165]. The

result can be expressed as a multi-dimensional contour integral over a variable φ valued in
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strings N = 4 multiplets fields SU(2)−×SU(2)+×SU(2)R
−×SU(2)R

+

D0-D0 strings

vector

gauge field (1,1,1,1)

scalar (1,1,1,1)

fermions (1,2,1,2)

Fermi fermions (2,1,2,1)

twisted hyper
scalars (1,1,2,2)

fermions (1,2,2,1)

hyper
scalars (2,2,1,1)

fermions (2,1,1,2)

D0-D4 strings
hyper

scalars (1,2,1,1)

fermions (1,1,1,2)

Fermi fermions (1,1,2,1)

D0-D8 strings Fermi fermions (1,1,1,1)

Table 11. The field content of the D0-D4-D8/O8 quantum mechanics.

the maximal torus of the complexified gauge group. The real part of φ is the scalar zero

mode inside the vector multiplet, and the imaginary part is the holonomy of the gauge

field along the time circle. The integrand is then given by the one-loop determinants of

the field content listed in table 11. It was shown in [48, 165, 166] that the precise contour

prescription is given by the Jeffrey-Kirwan residue. The Witten indices for the quantum

mechanics of different k can be combined into a generating function

ZD0-D4-D8/O8(ε1, ε2, ε
R
−, αi,mf ,mI) = 1 +

∞∑
k=1

e−kmIZkD0-D4-D8/O8(ε1, ε2, ε
R
−, αi,mf ), (G.11)

where we introduced the chemical potential mI for the U(1)I instanton symmetry. In the

following, we shall restrict to rank-one.

The instantons in the five-dimensional gauge theory have the interpretation as D0-

branes bound with D4-branes. However, the Witten index receives contributions from

both the bound and unbound D0-branes. The instanton part of the Nekrasov partition

function is a ratio of two generating functions of Witten indices [48],

Z inst
S1×R4(ε1, ε2, α,mf ,mI) =

ZD0-D4-D8/O8(ε1, ε2, ε
R
−, α,mf ,mI)

ZD0-D8/O8(ε1, ε2, εR−,mf ,mI)
, (G.12)

which effectively removes the contribution of the unbound D0-branes. The denominator

ZD0-D8/O8 is the generating function of the Witten indices of the system without D4-branes.

Explicitly it is given by the α→∞ limit, i.e.,

ZD0-D8/O8(ε1, ε2, ε
R
−,mf ,mI) = lim

α→∞
ZD0-D4-D8/O8(ε1, ε2, ε

R
−, α,mf ,mI). (G.13)

Notice that Zinst is independent of the chemical εR− associated with the Cartan of SU(2)R
−,

which is expected because SU(2)R
− is not part of the flavor symmetry of the rank-one En
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theories. The instanton partition function can be re-expanded as

Z inst
S1×R4(ε1, ε2, α,mf ,mI) = 1 +

∞∑
k=1

e−kmIZ inst,k
S1×R4(ε1, ε2, α,mf ). (G.14)

We reproduce the resulting single-instanton (k = 1) partition function

Z inst,1
S1×R4(ε1, ε2,α,mf ) =− 1

16sinh2 (ε1+ε2)
4 sinh ε1

2 sinh ε2
2

×

[(
cosh2 α

2

cosh (2α+ε1+ε2)
4 cosh (2α−ε1−ε2)

4

−1

)
Nf∏
f=1

cosh
mf

2

+

(
sinh2 α

2

sinh (2α+ε1+ε2)
4 sinh (2α−ε1−ε2)

4

−1

)
Nf∏
f=1

sinh
mf

2

]
.

(G.15)

H Weyl group action on the mass parameters

In this appendix, we specify our choice of basis for the root systems of ENf+1. For Nf =

1, . . . , 7, the simple roots are given by the rows in the following matrices,

(
2 0

−1
2 −

√
7

2

)
,

 1 −1 0

−1
2 −

1
2

√
6

2

1 1 0

 ,


1 −1 0 0

0 1 −1 0

−1
2 −

1
2 −

1
2 −

√
5

2

0 1 1 0

 ,


1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

−1
2 −

1
2 −

1
2 −

1
2 1

0 0 1 1 0

 ,



1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0

0 0 0 1 −1 0

−1
2 −

1
2 −

1
2 −

1
2 −

1
2 −

√
3

2

0 0 0 1 1 0


,



1 −1 0 0 0 0 0

0 1 −1 0 0 0 0

0 0 1 −1 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 1 −1 0

−1
2 −

1
2 −

1
2 −

1
2 −

1
2 −

1
2

√
2

2

0 0 0 0 1 1 0


,



1 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 1 −1 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 1 −1 0

−1
2 −

1
2 −

1
2 −

1
2 −

1
2 −

1
2 −

1
2 −

1
2

0 0 0 0 0 1 1 0


.

(H.1)

The simple roots span the root lattice Λ
eNf+1

root , whose dual is the weight lattice Λ
eNf+1

weight =

(Λ
eNf+1

root )∗.
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