
J
H
E
P
1
0
(
2
0
1
8
)
1
5
7

Published for SISSA by Springer

Received: August 16, 2018

Accepted: October 19, 2018

Published: October 25, 2018

On melonic supertensor models

Chi-Ming Chang, Sean Colin-Ellerin and Mukund Rangamani

Center for Quantum Mathematics and Physics (QMAP),

Department of Physics, University of California, Davis, CA 95616 U.S.A.

E-mail: wychang@ucdavis.edu, scolinellerin@ucdavis.edu,

mukund@physics.ucdavis.edu

Abstract: We investigate a class of supersymmetric quantum mechanical theories (with

two supercharges) having tensor-valued degrees of freedom which are dominated by melon

diagrams in the large N limit. One motivation was to examine the interplay between

supersymmetry and melonic dominance and potential implications for building toy models

of holography. We find a definite tension between supersymmetry (with dynamical bosons)

and melonic dominance in this class of systems. More specifically, our theories attain a low

energy non-supersymmetric conformal fixed point. The origin of supersymmetry breaking

lies in the need to regularize bosonic and fermionic degrees of freedom independently.

We investigate various aspects of the low energy spectrum and also comment on related

examples with different numbers of supercharges. Along the way we also derive some

technical results for SL(2,R) wavefunctions for fermionic excitations.

Keywords: 1/N Expansion, AdS-CFT Correspondence, Field Theories in Lower Dimen-

sions

ArXiv ePrint: 1806.09903

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP10(2018)157

mailto:wychang@ucdavis.edu
mailto:scolinellerin@ucdavis.edu
mailto:mukund@physics.ucdavis.edu
https://arxiv.org/abs/1806.09903
https://doi.org/10.1007/JHEP10(2018)157


J
H
E
P
1
0
(
2
0
1
8
)
1
5
7

Contents

1 Introduction 2

2 Bosonic tensor model revisited 5

3 The N = 2 supersymmetric tensor model 9

3.1 The model 9

3.2 Hilbert space at finite N 10

4 Melonic dominance and low energy conformal symmetry 12

4.1 The conformal fixed point and IR symmetries 14

4.2 The RG flow and supersymmetry breaking 16

5 Four-point functions and operator spectrum 19

5.1 Resumming ladder supergraphs 19

5.2 Conformal eigenfunctions 21

5.3 Spectrum of operators 23

5.3.1 Charged bosons 26

5.3.2 Neutral bosons 26

5.3.3 Charged fermions 28

5.4 Four-point functions 30

6 Discussion 32

A Tensor models with various supercharges 35

B SL(2,R) invariant wavefunctions 36

B.1 Matching conditions 36

B.1.1 χ = 1 37

B.1.2 χ→ ±∞ 37

B.1.3 χ = 0 38

B.2 Solutions 39

B.2.1 Bosonic wavefunctions 39

B.2.2 Fermionic wavefunctions 43

C Useful integrals 48

– 1 –



J
H
E
P
1
0
(
2
0
1
8
)
1
5
7

1 Introduction

Despite the holographic AdS/CFT correspondence having been discovered more than two

decades ago, the raison d’être for planar field theories to have classical gravitational duals

has as yet proven elusive to formulate. While we have various necessary conditions such as

the existence of a sparse spectrum of light states in the planar limit the full set of sufficient

conditions are yet to be discovered. Part of the issue is that while planar field theories are

easy to attain by taking suitable ’t Hooft-like large N limits, canonical representatives are

either too simple (e.g., planar vector models) or too difficult to solve analytically (e.g., pla-

nar matrix models). The simplicity/complexity in the field theory analysis translates into

the dual picture a correspondence notion of complexity/simplicity, preserving the overall

intransigence of the system from revealing the rationale for the duality. One might hope

that identifying theories which lie in some intermediate domain between the aforemen-

tioned would potentially aid in our attempts to understand the origins of geometry from

field theory.

A promising arena for such explorations which has attracted lots of recent attention is

the family of largeN melonic models. Interest in these theories stems from the success of the

quantum mechanical model, the Sachdev-Ye-Kitaev (SYK) model, described by Kitaev [1]

building on an earlier construction of Sachdev and Ye [2]. The model consists of N fermions

with a random (disordered) multi-fermion interaction. The free fermion system in the UV

flows to an IR fixed point with emergent conformal symmetry in the strongly coupled

planar limit [1, 3]. While the conformal symmetry is, strictly speaking, broken away from

the IR limit, it turns out that the gapless modes capture some of the essential physics,

which furthermore, bears close resemblance to that of black holes in holographic systems.

The sub-sector of the theory (essentially a single mode, the Schwarzian field) controlling

the emergent conformal symmetry and its breaking is dual to a two dimensional dilaton

gravity theory, the Jackiw-Teitelboim (JT) theory [3, 4]. A key intriguing feature is that

the system saturates the chaos bound [5], which indicates that it is maximally scrambling

just as black holes in situations with dynamical gravity. All told, the relative simplicity

coupled with intricate dynamical behaviour with features that resemble more conventional

gauge/gravity duals, makes the model a compelling study. For a selection of literature,

see [2, 6, 7] for early works on disordered systems which led up the SYK model, [8–13] for

generalizations to models with global (flavor) symmetries, and [14–20] for supersymmetric

generalizations. The spectrum and higher point-couplings are analyzed in [21–23]. The

bulk duals of these are further explored in [4, 24–31] and a detailed discussion of the

Schwarzian theory and near AdS2 dynamics can be found in [32–34].

It is interesting to examine if the SYK model is unique in its ability to capture fea-

tures of holographic dualities. One reason for seeking generalizations is to ascertain if we

can find a genuine quantum system sans disorder.1 Consequently, other models have been

constructed with similar physics in the large N limit without any disorder. These construc-

tions take inspiration from models examined in the context of triangulations of manifolds

1Disordered systems are classical superpositions of different realizations of a quantum system and there-

fore preclude a well-defined Hilbert space in the theory (after disorder averaging).
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in higher dimensions [35, 36], and broadly fall into one of two classes: the class of colored

tensor models exemplified by the Gurau-Witten (GW) model [35, 37], and the class of un-

colored models exemplified by the Carrozza-Tanasa-Klebanov-Tarnopolsky model [36, 38].

hese models are further explored in [39–57]; a recent review of the subject is [58]. We will

collectively refer to these as melonic tensor models.

In their simplest incarnations, these models comprise of O(N) tensor-valued fermionic

fields with a particular class of multi-fermion vertices that ensure melonic dominance in

the large N limit. This ensures that the leading behaviour of the theory shares features

such as the emergent near-conformal symmetry at low energies, and the saturation of the

chaos bound. However, thanks to the large symmetry group2 the low energy theory also

comprises of other light degrees of freedom and peculiar thermodynamics [49, 50].

From a holographic perspective though a curious feature is that these quantum me-

chanical systems are devoid of supersymmetry. Let us first note that it is a debatable

proposition as to whether supersymmetry is necessary for field theory to have classical

gravity holographic duals. While non-supersymmetric AdS vacua with low curvature on

the string or Planck scale, `AdS � `s, `P , suffer from pathologies prompting conjectures

that they are perhaps forbidden [59], there is no a-priori argument precluding theories with

classical higher spin or stringy duals.3 Indeed, the SYK model beyond the Schwarzian

mode dynamics would be expected to be dual to a stringy bulk theory. However, the sim-

plest quantum mechanical system that one hopes would capture gravitational dynamics of

string/M-theory is the D0-brane quantum mechanics with sixteen supercharges [62]. It is

therefore intriguing to ask if inclusion of supersymmetry reveals some further simplifica-

tion to the analysis of melonic quantum mechanical models. Various groups have addressed

aspects of this question earlier: for instance a supersymmetric version of SYK model was

analyzed first in [14, 15] (with four, one and two supercharges). This was extended to two

dimensions in search of melonic 2d CFTs in [16]. Analysis of correlation functions in the

model with two supercharges was carried out in [18, 20]. Supersymmetric tensor models

were proposed in [41] — these involve some additional augmentation involving ‘mesonic’

operators in the theory. In the SYK case the essential features are preserved with the

inclusion of supersymmetry (though there is signal of supersymmetry breaking in the one

supercharge theory [15]).

We undertake an analysis of supersymmetric tensor models with the aim of ascertaining

whether any simplification may be attained. Philosophically our models are different from

the aforementioned (see below) and involve a simple generalization involving tensor-valued

superfields with suitable superpotential couplings. We find several peculiarities with the

main result being that supersymmetry does not appear to aid in the very least! While we

2The symmetry group is roughly O(N)M for some M depending on the specifics of the model (one may

consider gauging it or part thereof).
3Several examples of non-supersymmetric large N field theories with classical master fields involving

some form of gravitational interactions exist: eg., the classical higher spin theories dual to vector mod-

els, or stringy duals of the symmetric orbifold CFT in two dimensions. We should also note that a

non-supersymmetric theory could potentially capture some features of the supersymmetric model, say

the high temperature thermodynamics, as exemplified by the ungauged D0-brane quantum mechanics

theory, cf., [60, 61].
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will explicitly analyze the theory with two supercharges N = 2 we do find that increasing

the amount of supersymmetry does not materially affect the story (if anything it makes

it worse). The issue will turn out to be the dynamical bosonic fields that are present in

the multiplets, which induce an effective UV divergence in the theory (despite it being

quantum mechanics). The essential feature may already be seen in a simple bosonic tensor

model which we revisit to provide some intuition [16, 38, 47, 63].4

Let us summarize some of the salient features of our analysis: we start with a quan-

tum mechanical theory with tensor-valued N = 2 real superfields Ψa1 ··· aq−1 transforming

in the fundamental representation of O(N)q−1 (with q ≥ 4). Apart from a canonical kinetic

term we will include a single q-body superpotential term given by the melonic contraction,

uplifting the fermion model of [38] (who already mention our model as a potential gener-

alization). While the fermionic theory has a q-fermion vertex, our model has a melonic

Yukawa term with fermions appearing at most bilinearly (and coupled thence to q − 2

bosons). Despite this change, we find that the system admits a (suitably regulated) RG

flow that ends up at a non-trivial IR fixed point with emergent conformal invariance. The

IR fixed point that we find however breaks supersymmetry — the spectrum of singlet exci-

tations does not fit into a supermultiplet. This is in contrast to the finite N theory where

we have unbroken supersymmetry (the theory has a non-trivial Witten index).

Supersymmetry breaking at large N is of course possible as first illustrated in [64].

One potential rationale has to be the emergence of a continuum in the spectrum owing

to N → ∞. A plausible mechanism may be attributed to the presence of O(N2) light

excitations in the theory arising from the global O(N)q−1 rotations of the tensor indices.5

This feature was illustrated explicitly for the fermionic uncolored tensor model in [50]

with the light-modes being described by a non-linear sigma model with target space being

the group manifold for O(N)q−1. It seems natural to conjecture that the supersymmetric

theory will lead to a similar situation.

In our discussion however, it appears that there is an inherent tension between melonic

dominance and supersymmetry. We will see that the origins of supersymmetry breaking lie

in having to explicitly regularize bosonic and fermionic degrees of freedom independently,

lending credence to the idea that supersymmetry is broken explicitly along the RG flow

rather than dynamically in the IR. This appears to be consistent with our analysis of the

low energy spectrum which does not reveal the presence of a goldstino as would be the case

with spontaneous breaking [65].

We undertake a careful analysis of the model arguing for a particular regularization

scheme that attains the IR fixed point identified from a naive solution of the truncated

Schwinger-Dyson equations. Having established the existence of a non-supersymmetric

fixed point, we turn to the spectrum of composite operators in the theory focusing on the

singlet sector. In contrast to earlier studies of related systems we have both bosonic and

fermionic composite operators. We work out the spectrum of excitations for both kinds of

4A theory of bosonic tensors with melonic vertices has a Hamiltonian that is unbounded from below. This

feature while problematic will not affect the analysis we will undertake. Of course, this issue is mitigated

in the supersymmetric context since the Hamiltonian being built from the supercharges will be bounded.
5We thank Steve Shenker for this suggestion.
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operators; doing so requires some new technical machinery to analyze fermionic excitations.

Representing the four-point function in the bose-fermi OPE channel involves a new set of

conformal eigenfunctions. They can be viewed as SL(2,R) wavefunctions with twisted

boundary conditions or equivalently wavefunctions that are Hermitian with respect to a

modified norm (we are not aware of this having been discussed in the literature before).

Outline of the paper: the paper is organized as follows. We begin in section 2 by

reconsidering the bosonic tensor model. While this is not a viable quantum system as

the potential has negative directions of N > 2 (footnote 4), it serves to illustrate the

issues with the RG flow. We use it to argue for our regularization scheme of the UV

divergences (present all along the flow) that are present for melonic tensor models with

dynamical bosons. We regulate the UV divergences by fine-tuning a bare mass in the UV

theory. This also serves to address issues discussed in [16, 47, 63] and noted in [38] for such

theories.

In section 3, we turn to our primary exhibit: the N = 2 supersymmetric tensor model.

We demonstrate that supersymmetry is unbroken for finite N and then turn to the RG

flow. We compute in section 4 the renormalized self-energy of the theory at large N using

the regularization scheme from section 2 and exhibit a strong coupling IR fixed point

where supersymmetry is broken. We also compute a set of 4-point functions for theory

in section 5, taking the opportunity to generalize some results relating to generic external

states. In particular, as we have both fermionic and bosonic fields, we will need SL(2,R)

wavefunctions with twisted boundary conditions; we derive these explicitly in the course

of our analysis.

The appendices contain some additional observations about supersymmetric SYK and

tensor models. In appendix A we explore tensor models with different supersymmetries

and in each case we find some tension with melonic dominance. Appendices B and C

collect technical details relevant for the 4-point function computations. The former details

the SL(2,R) wavefunctions that we require for our analysis, while the latter summarizes a

useful basis of integrals that enter into our computations.

2 Bosonic tensor model revisited

Let us consider bosonic tensors φa1a2...aq−1 with distinguishable indices ai = 1, · · · , N and

the (Euclidean) action6

S =

∫
dτ

(
1

2
∂τφ

a1...aq−1∂τφ
a1...aq−1 +

1

q
g [φq]

)
, (2.1)

where [φq] denotes the special type of index contraction, where each pair of fields has exactly

one index contracted between them.7 For q = 4 we have the tetrahedral index contraction:

[φ4] = φa1a2a3φa1b2c3φd1a2c3φd1b2a3 . (2.2)

6We will denote Euclidean time by τ and refer to real-time by t.
7For q > 6, this choice of index contraction structure is not unique (see [57] for a detailed analysis).

However, every interaction of this type has the same large N limit so we choose one such interaction for

our model. We thank Grigory Tarnopolsky for discussions on this point.
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G = +

G

...

G

G

Figure 1. The leading order large N contribution to the boson propagator which leads to the

Schwinger-Dyson equation (2.6).

As noted earlier the vertex [φq] results in a Hamiltonian that is not bounded from below.

We will proceed for now ignoring this issue. It will be helpful to often simplify notation

and suppress the tensor indices except when we need to illustrate particular contractions.

To this end, let us collectively denote the tenor indices by an index Aq and write φAq for

our basic field.8

φAq ≡ φa1...aq−1 (2.3)

In the large N limit, the theory is dominated by melon diagrams (see figure 1) with

the dimension one effective coupling

J ≡ g
2
q+2 N

(q−1)(q−2)
2(q+2) . (2.4)

Consider the two-point function〈
T
(
φAq(τ1)φBq(τ2)

)〉
= G(τ1 − τ2) δAq Bq

≡ G(τ1 − τ2) δa1b1 · · · δaq−1bq−1 .
(2.5)

The Green’s function G(τ) can be solved by aid of the Schwinger-Dyson equation

G̃(ω) =
1

ω2 − Σ̃(ω)
, Σ(τ) = Jq+2G(τ)q−1, (2.6)

where G̃(ω) =
∫
dτ eiωτG(τ) is the Fourier transform of G(τ) and similarly for Σ̃(ω).

In the strong coupling limit or equivalently the low energy limit, the Schwinger-Dyson

equation reduces to

G̃c(ω)Σ̃c(ω) = −1, Σc(τ) = Jq+2Gc(τ)q−1, (2.7)

which exhibits the reparametrization symmetry

Gc(τ1 − τ2)→
[
f ′(τ1)f ′(τ2)

] 1
q Gc(f(τ1)− f(τ2)),

Σc(τ1 − τ2)→
[
f ′(τ1)f ′(τ2)

] q−1
q Σc(f(τ1)− f(τ2)).

(2.8)

Consider the conformal ansatz

Gc(τ) =
b

|τ |2∆
. (2.9)

8We hope it is not overly confusing to keep track of the fact that φAq only has (q − 1) tensor indices.
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The equations (2.7) are solved by (we used (C.1))

∆ =
1

q
, bqJq+2π =

(
1

2
− 1

q

)
cot

(
π

q

)
. (2.10)

There is an apparent contradiction of this simple solution [63]. The conformal

ansatz (2.9) is manifestly positive everywhere, so the Fourier transforms G̃c(ω) and Σ̃c(ω)

should both be positive functions. However, this contradicts the first equation in (2.7).

The contradiction is due to the divergences in the Fourier integral of the conformal

Green’s function Gc(τ) and self-energy Σc(τ). The Fourier transform of Gc(τ) suffers from a

long distance divergence, while the Fourier transform of Σc(τ) suffers from a short distance

divergence. The long distance divergence can be easily regularized with an IR cut-off, e.g.,

by turning on a non-zero temperature.

The conformal ansatz has a thermal regulator given by a reparametrization (2.8) which

compactifies the real Euclidean time line to a circle. Using f(τ) = tan πτ
β ,

Gc(τ) = b

∣∣∣∣∣ π

β sin πτ
β

∣∣∣∣∣
2∆

. (2.11)

The Fourier integral of G̃c(ω) is over a finite range τ ∈ [−β
2 ,

β
2 ] and therefore converges

now. However, the Fourier transform of Σc(τ) at finite temperature

Σ̃c(ωn) = Jq+2bq−1

∫ β
2

−β
2

dτ cos(ωnτ)

∣∣∣∣∣ π

β sin πτ
β

∣∣∣∣∣
2(q−1)∆

, ωn =
2πn

β
, (2.12)

still suffers the short distance divergence at τ = 0. One can regularize the integral by

first performing the integral for 2(q − 1)∆ < 1, and then analytic continuing the result to

∆ = 1
q . In this regularization scheme, the function Σ̃c(ωn) is everywhere negative, and the

Schwinger-Dyson equations in the conformal limit (2.7) are satisfied.

The solution we find at strong coupling has the following salient features. First, the

self-energy at zero frequency gives an IR effective mass; using (C.2),

m2
eff = −Σ̃c(0) = Jq+2bq−1π

2∆(q−1)− 1
2 Γ
(
(1− q)∆ + 1

2

)
β2∆(q−1)−1Γ((1− q)∆ + 1)

=
(βJ)

1+ 2
q

β2

[
2q tan π

q

π(q − 2)

] 1
q π

1
2 Γ
(
q−1
q

)
Γ
(

1
2 −

1
q

) . (2.13)

This self-energy correction vanishes in the zero temperature limit β → ∞. Second, since

the classical potential in the action (2.1) is not bounded from below the classical vacuum

φAq = 0 is an unstable critical point of the classical potential. The induced IR effective

mass converts the point at φAq = 0 to a metastable vacuum of the theory.

As pointed out by other authors [47, 63], the Schwinger-Dyson equation (2.6) is still

problematic away from the strong coupling limit. By unitarity, G̃(ω) should be real and

strictly positive. By the second equation in (2.6), Σ̃(0) should also be positive. However,

– 7 –
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the first equation in (2.6) at ω = 0 requires G̃(0)Σ̃(0) = −1. Relatedly, earlier attempts to

solve the Schwinger-Dyson equation (2.6) by numerical iteration also consequently fail [16].

One can take inspiration from the strong coupling IR limit and enquire if one can con-

tinue to attribute this tension to a divergent self-energy Σ(τ) even away from the conformal

limit. We however need a different regularization scheme, for the analytic continuation of

the conformal dimension ∆ is only defined in the conformal limit.

To resolve the contradiction, we need to fine tune the UV action (2.1). Since the bosonic

tensor field φAq has mass dimension−1
2 , the action (2.1) admits a relevant mass deformation

Smass =

∫
dτ

1

2
m2

bare φ
Aq φBq δAqBq . (2.14)

Under the renormalization group flow, the bare mass mbare would be renormalized. For

the RG flow to end on a conformal fixed point, we would like to fine tune the bare mass

such that in the low energy (strong coupling) limit the renormalized mass approaches the

IR effective mass meff ,

lim
βJ→∞

(βJ)
−1− 2

q

[
m2

bare − Σ̃(0)
]

=
m2

eff

(βJ)
1+ 2

q

=
1

β2

[
2q tan π

q

π(q − 2)

] 1
q π

1
2 Γ
(
q−1
q

)
Γ
(

1
2 −

1
q

) . (2.15)

There are many choices of the bare mass mbare as a function of the dimensionless coupling

βJ such that the renormalization condition (2.15) is satisfied. Different choices correspond

to different UV theories which all flow to the same IR fixed point with the conformal

two-point function (2.11).

We pick the simplest possibility for the bare mass

m2
bare = Σ̃(0) +m2

eff , (2.16)

which gives the renormalized Schwinger-Dyson equation

G̃(ω) =
1

ω2 +m2
eff −

[
Σ̃(ω)− Σ̃(0)

] , Σ(τ) = Jq+2G(τ)q−1. (2.17)

Since only the difference of the self-energy Σ̃(ω) − Σ̃(0) appears in the equation,

the Schwinger-Dyson equation is free from the short distance divergences in the

Fourier integral.

To validate our renormalization condition (2.15) (or equivalently (2.16)), we numeri-

cally solve the renormalized Schwinger-Dyson equation (2.17), and compare the numerical

solution of large βJ with the analytic solution in the conformal limit (2.11). The result

is shown in figure 2.9 As is clear from the plot the regulated Schwinger-Dyson equation

converges clearly onto the anticipated IR fixed point, lending support for our procedure.

9We have checked that increased resolution by working with say O(104) grid points as opposed to 200

grid points in figure 2 does not show any discernible qualitative difference. We thank Douglas Stanford for

raising this issue.
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βJ = 50

βJ = 200

0.5 1.0 1.5 2.0 2.5 3.0

2 π τ

β

0.002

0.004

0.006

0.008

0.010

β-1G(τ)

Figure 2. Comparison of numerical (red) and analytic (blue) solutions of the regularized bosonic

Schwinger-Dyson equations (2.17) for two different values of βJ as indicated. The numerical sim-

ulation is carried out with the imaginary time circle discretized by a lattice with 200 points (see

footnote 9).

Note that the problem is unique to bosonic degrees of freedom. Fermionic tensor models

are much better behaved; indeed, the self-energy integral suffers from no UV divergence

issues either in the conformal limit or along the flow. The reason can be traced to the Fermi

statistics which in the IR limit give rise to a conformal propagator Gc(τ) = b
|τ |2∆ sgn(τ) at

zero temperature. The sign function ends up ensuring the self-energy is free of divergences.

We will take inspiration from this analysis for the case of the supersymmetric tensor model

we introduce shortly.

3 The N = 2 supersymmetric tensor model

We now turn to the main model we wish to analyze, a quantum mechanical supertensor

model with N = 2 supersymmetry. This amount of supersymmetry turns out to provide

an interesting interaction term. Similar attempts to construct a theory with one super-

charge lead to an interaction involving an odd number of fermions, while higher number of

supercharges lead to derivative couplings between the component fields (see appendix A).

We will start by introducing the model. It will be convenient to start out in superspace

R1|2 with coordinates t, θ, θ̄ (t is the real time coordinate). The basic superfield ΦAq

will be tensor-valued as in the bosonic model, so much of the structure is actually quite

straightforward to intuit if we stick to superspace.

3.1 The model

We consider an N = 2 supersymmetric model in (0 + 1)-dimensions with superfields ΦAq

transforming in the (q − 1)-fundamental representation of O(N)q−1 for q ≥ 4 even. These

superfields can be written in terms of component fields on superspace as

ΦAq(t, θ, θ̄) = φAq(t) + i θ ψ̄Aq(t) + i θ̄ ψAq(t) + θθ̄ FAq(t), (3.1)

where φAq , FAq are bosonic and ψAq , ψ̄Aq are fermionic.

The action will be given as a superspace integral with canonical kinetic terms along

with a superpotential W (ΦAq). Taking inspiration from the non-supersymmetric tensor

– 9 –
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models, the superpotential will be taken to be the q-point interaction [Φq], the index

contraction for the tensors being identical to the case of the bosonic model discussed in

section 2. Such a model was first proposed in [38]. The action then is given by

S =

∫
dt dθ̄ dθ

(
1

2
DθΦ

Aq Dθ̄Φ
Aq +

1

q
g [Φq]

)
, (3.2)

where Dθ = ∂θ− i θ̄ ∂t and Dθ̄ = ∂θ̄− i θ ∂t are the superderivations. In terms of component

fields, the action can be evaluated to be

S =

∫
dt

1

2

(
i ψ̄Aq ∂tψ

Aq − i ∂tψ̄Aq ψAq + (∂tφ
Aq)2 + (FAq)2

)
+

1

q
g

( ∑
perms.

[φq−2ψ̄ψ] +
∑

perms.

[φq−1F ]

)
,

(3.3)

where the sums run over all possible rearrangements of the ψ̄, ψ fields and the F field,

respectively, within the special contraction structure indicated by the square brackets. At

this point, we could integrate out the auxiliary field. This will however induce scalar

interaction terms with tensor contraction structure differing from the chosen one to ensure

melonic dominance. While the end result will be equivalent, we prefer to leave the auxiliary

field in place to make the melonic dominance manifest in the analysis to follow.

The supersymmetry generators are

Q = ∂θ + i θ̄ ∂t Q̄ = ∂θ̄ + i θ ∂t (3.4)

with corresponding supersymmetry transformations

δφAq = i (ε̄ ψ̄Aq + ε ψAq) , δFAq = ε̄ ∂tψ̄
Aq − ε ∂tψAq ,

δψAq = ε̄ (i FAq − ∂tφAq) , δψ̄Aq = ε (−i FAq − ∂tφAq) .
(3.5)

Using the Noether procedure, we obtain the corresponding conserved supercharges,

Q = ∂tφ
Aq ψ̄Aq +

ig

q

∑
perms.

[ψ̄φq−1]

Q̄ = ∂tφ
AqψAq − ig

q

∑
perms.

[ψφq−1].

(3.6)

The Hamiltonian is, of course, H = 1
2{Q, Q̄} and it now has a bounded spectrum (unlike

the bosonic tensor model considered in section 2).

The theory has a U(1) R-symmetry under which ψAq has charge +1 and ψ̄Aq has

charge −1, while φAq and FAq are uncharged. The supercharges are normalized such that

Q and Q̄ have R-charge −1 and +1, respectively.

3.2 Hilbert space at finite N

We first turn to an examination of the theory at finite N where we expect usual behaviour

as a supersymmetric quantum mechanical theory. First, let us examine the Witten index
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to determine whether or not supersymmetry is broken and get a sense for the BPS sector

of the theory. Since the Witten index is invariant under deformations of the theory, we can

compute it in the free theory where g = 0 [66]. This is easy to do for we can evaluate the

free partition function on a Euclidean circle with periodic fermions, which ensures that we

are evaluating Tr
(
(−1)F e−βH

)
, with the Boltzmann factor providing a suitable regulator.

Integrating out the auxiliary field, we obtain (suppressing tensor indices for convenience)

Tr (−1)F =

∫
DφDψDψ̄|P e−SE [φ,ψ,ψ̄]

=

[ ∫
Dφ e−

1
2

∫ β
0 dt φ(−∂2

t )φ

∫
DψDψ̄|P e−

∫ β
0 dt ψ̄(∂tψ)

]Nq−1

= (−1)N 6= 0 .

(3.7)

In the final expression we have used the fact that the parity of N q−1 equals the parity of N

for any even q. From the non-vanishing Witten index, we can conclude that supersymmetry

is not broken in the theory at finite N .

One can check this computation by explicitly constructing the BPS sector. From the

canonical quantization of the fermions ψAq , ψ̄Aq , we have the Hilbert space for a given ψAq

(i.e., with fixed tensor components):

HAq = L2(R,C) |0〉Aq ⊕ L
2(R,C) ψ̄Aq |0〉Aq , ψAq |0〉Aq = 0. (3.8)

Thus, the full Hilbert space of the theory is obtained by summing over all possible tensors

H =

N⊗
a1,...,aq−1=1

(
L2(R,C) |0〉Aq ⊕ L

2(R,C) ψ̄Aq |0〉Aq

)
. (3.9)

To determine the Q-cohomology, we seek states |χ〉 such that Q|χ〉 = Q̄|χ〉 = 0. One

can show that there exists only one such state

|χ〉 = exp

(
−
q−1∑
i=1

N∑
ai=1

g

q

∫
dφAq

d

dFAq
[F φq−1]

)
N⊗
ai=1

ψ̄Aq |0〉Aq , (3.10)

The statistics of the state is determined by the parity of N q−1 as can be see from the

fermion creation operator count. This agrees with the Witten index computation and we

conclude that, at finite N , there exists one supersymmetric ground state whose parity

depends on the parity of N .

However, the arguments used above in the computation of the Witten index and Q-

cohomology can potentially break down as N → ∞. Usually this is associated with the

appearance of a new continuum in the spectrum or the vacuum running away to infinity, as

is well documented in large N quantum mechanical models [64]. To understand potential

issues arising in the large N limit, it will suffice to examine the spectrum of the theory as

carried out in [49, 50, 56]. These authors find that the theory admits O(N2) light modes

in the spectrum generically. One way to intuit their presence is to realize that the theory

in the absence of the kinetic term actually admits a large global symmetry group O(N)q−1.
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Away from the IR limit, the irrelevant kinetic term breaks this explicitly and leaves behind

a set of Goldstone fields which may be associated with time-dependent O(N)q−1 rotations.

The presence of these modes has the potential to open up a continuum in the large N limit,

spoiling our analysis of the Witten index (by invalidating the localization argument used

to set g = 0 in the Witten index computation [66]). We also see another sign of trouble in

the norm of the supersymmetric ground state (3.10) vanishing in the large N limit. In fact,

soon we will find that the low energy fixed point obtained by assuming melonic dominance

prefers to be non-supersymmetric.

4 Melonic dominance and low energy conformal symmetry

We now have all the ingredients at hand to analyze the dynamical behaviour of the

model (3.2) as a function of the coupling g. To this end we will first compute the two-point

functions for the fundamental fields φ, ψ and F for general q. Since it will be helpful to

work in superspace directly, let us denote by X the supercoordinate X ≡ (τ, θ, θ̄).

Consider then the two-point function of the superfield ΦAq(X) ≡ Φa1...aq−1(X)

G(X1, X2) =
1

N q−1

N∑
ai=1

〈T (ΦAq(X1)ΦAq(X2))〉, (4.1)

which can be expanded in terms of two-point functions of the component fields as

G(X1, X2) = Gφφ(τ12) + θ̄1θ2G
ψψ̄(τ12) + θ1θ̄2G

ψ̄ψ(τ12) + θ1θ̄1θ2θ̄2G
FF (τ12), (4.2)

where Gφφ(τ12), Gψψ̄(τ12), and GFF (τ12) are

Gφφ(τ12) =
1

N q−1

N∑
ai=1

〈T (φAq(τ1)φAq(τ2))〉,

Gψψ̄(τ12) =
1

N q−1

N∑
ai=1

〈T (ψAq(τ1)ψ̄Aq(τ2))〉,

Gψ̄ψ(τ12) =
1

N q−1

N∑
ai=1

〈T (ψ̄Aq(τ1)ψAq(τ2))〉,

GFF (τ12) =
1

N q−1

N∑
ai=1

〈T (FAq(τ1)FAq(τ2))〉.

(4.3)

An advantage of working directly with the superfields is that it is obvious that the

large N counting works in a manner similar to the bosonic model discussed in section 2.

We can immediately write down the super-Schwinger-Dyson equations satisfied by the

super-propagator:

1

2
[Dθ1 , Dθ̄1

]G(X1, X3)−
∫
dX2 Σ(X1, X2)G(X2, X3) = δ(τ13)δ2(θ1 − θ3) , (4.4)
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G = +

G

...

G

G

Figure 3. Supergraph representation of the super-Schwinger-Dyson equation.

which is given in the large N limit by an iterated sum over melon diagrams figure 3, viz.,

G(X1, X2) = G0(X1, X2) +

∫
dX3 dX4 G0(X1, X3) Σ(X3, X4)G(X4, X2) ,

Σ(X1, X2) = Jq G(X1, X2)q−1 , J ≡ g
2
qN

(q−1)(q−2)
2q .

(4.5)

In the above the free super-propagator G0(X1, X2) is given by

G0(X1, X2) = −1

2
|τ12 − θ̄1θ2 − θ1θ̄2| (4.6)

and can be obtained from solving the free equation of motion 1
2 [Dθ1 , Dθ̄1

]G0(X1, X2) =

δ2(θ12)δ(τ12).

Expanding out the super-Schwinger-Dyson equations gives three coupled Schwinger-

Dyson equations for the component fields:

−∂2
τ1G

φφ(τ12) = δ(τ12) +

∫
dτ3 Σφφ(τ13)Gφφ(τ32),

∂τ1G
ψψ̄(τ12) = δ(τ12) +

∫
dτ3 Σψψ̄(τ13)Gψψ̄(τ32),

−GFF (τ12) = δ(τ12) +

∫
dτ3 ΣFF (τ13)GFF (τ32),

(4.7)

or equivalently,

Gφφ(τ1, τ2) = Gφφ0 (τ1, τ2) +

∫
dτ3 dτ4G

φφ
0 (τ1, τ3)Σφφ(τ3, τ4)Gφφ(τ4, τ2)

Gψψ̄(τ1, τ2) = Gψψ̄0 (τ1, τ2) +

∫
dτ3 dτ4G

ψψ̄
0 (τ1, τ3)Σψψ̄(τ3, τ4)Gψψ̄(τ4, τ2)

GFF (τ1, τ2) = GFF0 (τ1, τ2) +

∫
dτ3 dτ4G

FF
0 (τ1, τ3)ΣFF (τ3, τ4)GFF (τ4, τ2) .

(4.8)

The explicit form for the self-energy functions is given by:

Σφφ(τ) = Jq
(

(q − 1)(q − 2)Gφφ(τ)q−3Gψψ̄(τ)Gψ̄ψ(τ) + (q − 1)Gφφ(τ)q−2GFF (τ)
)
,

Σψψ̄(τ) = Jq(q − 1)Gψψ̄(τ)Gφφ(τ)q−2,

ΣFF (τ) = JqGφφ(τ)q−1.

(4.9)
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q ∆φ ∆ψ ∆F

4 1
6

1
3

1
2

6 0.109 0.282 0.456

8 0.081 0.258 0.436

100 0.006 0.196 0.386

∞ 0 0.191 0.382

Table 1. Conformal dimensions of fields for various values of q.

4.1 The conformal fixed point and IR symmetries

These equations can be solved by standard techniques. For start, we transform to frequency

space and pass to the IR limit, or equivalently the strong coupling limit, to obtain the

simplified Schwinger-Dyson equations

G̃φφc (ω)Σ̃φφ
c (ω) = G̃ψψ̄c (ω)Σ̃ψψ̄

c (ω) = G̃FFc (ω)Σ̃FF
c (ω) = −1, (4.10)

where the overhead ∼ denotes the Fourier transform and the subscript c denotes the con-

formal limit.

The fixed point solution: we can now attempt to solve the truncated equations as-

suming a flow to a conformal fixed point by picking an ansätze10

Gφφc (τ) =
bφ

|τ |2∆φ
, Gψψ̄c (τ) =

bψ sgn(τ)

|τ |2∆ψ
, GFFc (τ) =

bF
|τ |2∆F

. (4.11)

This implies that Gψψ̄c (τ) = Gψ̄ψc (τ). Plugging (4.11) into (4.10) gives the constraints on

the conformal dimensions

(q − 2)∆φ + 2∆ψ = 1 and (q − 1)∆φ + ∆F = 1, (4.12)

along with an additional constraint

1−(q − 1)
sin2(π∆φ)Γ(1− 2∆φ)Γ(2∆φ − 1)

sin2(π(q − 1)∆φ)Γ(2(q − 1)∆φ − 1)Γ(1− 2(q − 1)∆φ)

= (q − 2)
Γ(1− 2∆φ)Γ(2∆φ − 1) sin2(π∆φ)

Γ((q − 2)∆φ)Γ((2− q)∆φ) sin2(π2 (q − 2)∆φ)
.

(4.13)

The solutions of (4.13) for various values of q are given in table 1. It is clear from the relation

between conformal dimensions (4.12), even without inspecting the explicit solutions, that

the low energy fixed point breaks supersymmetry.

10Note that the coefficients bφ, bψ and bF are dimensionful, and the dimensionless combinations are

bφJ
2∆φ+1, bψJ

2∆ψ and bFJ
2∆F−1.
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The low energy equations (4.10) are invariant under a scaling symmetry:

Gφφ(τ1, τ2)→ λ4Gφφ(τ1, τ2), GFF (τ1, τ2)→ λ4(1−q)GFF (τ1, τ2),

Gψψ̄(τ1, τ2)→ λ2(2−q)Gψψ̄(τ1, τ2), Gψ̄ψ(τ1, τ2)→ λ2(2−q)Gψ̄ψ(τ1, τ2).
(4.14)

Hence, the coefficients bφ, bψ, bF are not determined completely. Only the products bq−2
φ b2ψ

and bq−1
φ bF are fixed

bq−2
φ b2ψJ

q =
(q − 2) (∆F − 1) cot

(
π(q−2)(∆F−1)

2(q−1)

)
2π(q − 1)2

,

bq−1
φ bFJ

q =
1

2π
(1− 2∆F ) cot (π∆F ) .

(4.15)

Note that a similar statement holds for the supersymmetric SYK model discussed in [15],

though there one can further use supersymmetry to fix this additional parameter. We do

not have this additional freedom.

Local symmetries in the IR: in the low energy limit, the truncated Schwinger-Dyson

equations have a large set of local symmetries. These are typically broken by the kinetic

term which we ignore in the deep infrared. Let us record the symmetries that are visible

in the truncated theory for future reference:

• The time reparametrization symmetry discussed in the bosonic model, (2.8) contin-

ues to apply in the supersymmetric Schwinger-Dyson equations. The breaking of

this symmetry by the UV dynamics leads to the Schwarzian action [3] for the lone

reparametrization mode.

• In the deep infrared we have an U(1) affine algebra arising as a low-energy version of

the U(1)R symmetry. This acts on the bilinear-propagator fields as

Gψψ̄(τ1, τ2)→ eia(τ1)−ia(τ2)Gψψ̄(τ1, τ2), Gψ̄ψ(τ1, τ2)→ e−ia(τ1)+ia(τ2)Gψ̄ψ(τ1, τ2).

(4.16)

The reality condition Gψ̄ψ(τ1, τ2) = Gψψ̄(τ1, τ2)∗ implies that a(τ) is a real function.

The effective action for a(τ) can be inferred from standard analysis and is similar to

the discussions of the charged SYK model [10].

• The theory has in addition a scaling symmetry identified in (4.14) which entails that

we only have enough information to fix two of the three parameters in the Green’s

function. cf., (4.15). This symmetry acts locally in the IR as:

Gφφ(τ1, τ2)→ [λ(τ1)λ(τ2)]2Gφφ(τ1, τ2),

GFF (τ1, τ2)→ [λ(τ1)λ(τ2)]2−2q GFF (τ1, τ2),

Gψψ̄(τ1, τ2)→ [λ(τ1)λ(τ2)]2−q Gψψ̄(τ1, τ2),

Gψ̄ψ(τ1, τ2)→ [λ(τ1)λ(τ2)]2−q Gψ̄ψ(τ1, τ2).

(4.17)
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Unlike the reparametrization symmetry and U(1) affine symmetry, the global part of

the local scaling symmetry does not leave the low energy solution (4.11) invariant.

Following [15] we expect an effective action of the form J
∫

(λ(τ) − 1)2dτ , which

suppresses the deviation from the value of λ determined by the UV.

4.2 The RG flow and supersymmetry breaking

As with the bosonic model discussed in section 2 the attainment of the conformal fixed

point is predicated upon suitable fine-tuning in the system. The issue again is to due to

divergences arising in the bosonic sector which remain despite the presence of supersym-

metry. This is another sign that the melonic structure in this class of supertensor theories

does not gel with the supersymmetry. Inspired by our bosonic model discussion we will now

present the mass counter-terms we include to ensure that the flow starting from the free UV

theory lands on the fixed point we picked out from the truncation of the Schwinger-Dyson

equations.

At finite temperature, the boson φ and auxiliary field F acquire IR effective masses

given by the self-energies at zero frequency11

(mφ
eff)2 = −Σ̃φφ

c (0) =
1

G̃φφc (0)
=

(βJ)2∆φ+1Γ(1−∆φ)

β2(bφJ
2∆φ+1)π2∆φ− 1

2 Γ
(

1
2 −∆φ

) ,
(mF

eff)2 = −β−2Σ̃FF
c (0) =

1

β2G̃FFc (0)
=

(βJ)2∆F−1Γ(1−∆F )

β2(bFJ2∆F−1)π2∆F− 1
2 Γ
(

1
2 −∆F

) , (4.19)

which go to zero in the zero temperature limit β → ∞ while fixing the dimensionless

combinations βJ , bφJ
2∆φ+1, and bFJ

2∆F−1.

Similar to the bosonic tensor model, for the theory to flow to the conformal fixed

points, we need to add bare mass terms to the UV action (3.2), and fine tune the masses

such that the following renormalization conditions are satisfied,

lim
βJ→∞

(βJ)−2∆φ−1
[
(mφ

bare)
2 − Σ̃φφ(0)

]
=

(mφ
eff)2

(βJ)2∆φ+1

=
Γ(1−∆φ)

β2(bφJ
2∆φ+1)π2∆φ− 1

2 Γ
(

1
2 −∆φ

) ,
lim

βJ→∞
(βJ)−2∆F+1

[
(mF

bare)
2 − β−2Σ̃FF (0)

]
=

(mF
eff)2

(βJ)2∆F−1

=
Γ(1−∆F )

β2(bFJ2∆F−1)π2∆F− 1
2 Γ
(

1
2 −∆F

) .
(4.20)

The bare mass terms explicitly break supersymmetry. We cannot find a supersymmetry-

preserving regulator that flows to the conformal fixed point, which is consistent with the

11The self-energy of fermion ψ has no zero frequency limit because the frequency is half-integer quantized.

The effective mass of the auxiliary field F is defined such that the renormalized action contains the mass term∫ β

0

dτ
1

2
β2 (mF

eff)2 (FAq )2, (4.18)

where the explicit β is included to preserve the classical dimension of F .
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_
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Figure 4. Comparison of numerical (red) and analytic (blue) solutions of the supersymmetric

Schwinger-Dyson equations for q = 6 and bφ J
2∆φ+1 = 1 (for different choices of the dimensionless

coupling βJ as indicated). The numerical calculation is still with a discretized temporal grid with

200 points (see footnote 9 for comments on increasing the resolution). For GFF we have specifically

chosen a larger value of βJ to separate out the curves for ease of visualization.

analytic result that supersymmetry is broken for the conformal solution. With this regular-

ization scheme we can numerically solve the full Schwinger-Dyson equations (4.4) (with the

bare mass term included) all along the flow. The results are plotted in figure 4 and we see

reasonable convergence in the strong coupling limit to the fixed point solution determined

earlier. The coefficients bφ and bF explicitly appear in our renormalization conditions.

Hence, the bare masses break the scaling symmetry (4.14) and determine the values of the

coefficients bφ, bψ, and bF .

There are a couple of fringe situations that deserve some additional commentary:

• For q = 4 the conformal dimension of the auxiliary field F a1a2a3 is equal to its classical

scaling dimension ∆F = 1
2 from table 1.12 By (4.15) and (4.19), we find that the

effective mass mF
eff diverges with the dimensionless coefficient bφJ

2∆φ+1 keeping fixed.

Hence, the auxiliary field decouples due to the infinitely large mass.

12For ∆F = 1
2
, one may consider a different ansatz

GFFc (τ) = b′F δ(τ). (4.21)

However, by the limit representation δ(τ) = lim
ε→0

1

2
ε

∣∣∣∣∣ π

β sin πτ
β

∣∣∣∣∣
1−ε

, this is equivalent to the original

ansatz (4.11) with bF = 1
2
ε b′F and ∆F = 1

2
(1− ε).
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• There is potentially a different supersymmetric solution to (4.13) given by ∆φ = 0,

∆ψ = 1/2, and ∆F = 1. If this solution is indeed supersymmetric, the coefficients bφ,

bψ and bF must be related by bF = (2∆φ+ 1)bψ = 2∆φ(2∆φ+ 1)bφ. Equations (4.15)

then implies that

bqφJ
q =

1

4π2(q − 1)∆2
φ

+O(∆−1
φ ), (4.22)

which diverges at ∆φ = 0. We can expand the boson propagator as

Gφφc (τ) =
bφ

|τ |2∆φ
= bφ − b̃φ log |τ |+ · · · , (4.23)

where b̃φ = 2bφ∆φ. The coefficient of the logarithmic term goes to zero as well as the

coefficients bψ and bF , i.e. b̃φ ∼ bψ ∼ bF ∼ ∆
1− 2

q

φ .

Comments on supersymmetry breaking: as noted earlier, the origins of supersym-

metry breaking in our model have to do with the need to regularize the boson self-energy

piece. While it may be intuitively hard to grasp why a quantum mechanical system has

UV divergences, the origins of the same, of course lie in the fact that the critical dynamics

drives the boson dimension too low. One can check that as long as ∆boson >
1
2 there is

no divergence in the boson self-energy. However, from table 1 we see that this does not

pertain in our conformal limit for any choice of q.

One way to think about the supersymmetry breaking is to first ask what are the

solutions to the truncated IR Schwinger-Dyson equations. We have a-priori seen that

solutions cannot be found respecting the constraints arising from supersymmetry, which

would demand ∆ψ = ∆φ+ 1
2 and ∆F = ∆φ+1 in section 4.1. This observation then prompts

us to explore regularization schemes that will attain the fixed point solution, without

preserving supersymmetry along the RG flow. Put different, our choice of supersymmetry

breaking regularization is predicated upon the attainment of non-trivial fixed point in the

IR. Had we refrained from doing so the flow would have drifted away and we guess that

the result would be similar to the observations made in the context of bosonic models

in [16, 47, 63]. A consequence of this explicit breaking is that we do not expect a goldstino

in the low energy spectrum; the analysis of operator spectrum in section 5 will confirm this

intuition.

One might wonder whether the supersymmetry breaking phenomenon is peculiar to

the melonic dominance. In the context of quiver quantum mechanical theories, the authors

of [14] noticed a similar feature.13 These models are qualitatively similar to the SYK family

of theories (with q = 2, i.e., random Gaussian couplings for fermions) as already noted in

their discussion. The low energy Schwinger-Dyson equations in that case admit solutions

which preserve supersymmetry as well as those that break it. Arguments were given in

favour of the former circumstance being relevant in that context. At a cursory level this is

similar to our discussion where a-prioiri there does exist a solution with ∆φ = 0. As argued

above we believe this solution is unphysical since the physical Green’s function diverges.

13We thank Juan Maldacena for recalling this reference to our attention.
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Figure 5. The leading 1/N correction to the four-point function of superfield ΦAq .

Our numerical explorations also support the absence of a supersymmetric low energy fixed

point; the Schwinger-Dyson equations do not converge and at best could be suggesting the

existence of a trivial gapped phase.

5 Four-point functions and operator spectrum

We have seen that the strong coupling limit (β J � 1) has emergent conformal invariance

with non-trivial anomalous dimensions for the fields as given in table 1. We now turn

to analyzing a part of the low-energy spectrum of the theory, organizing it in terms of

conformal dimensions in the IR effective field theory. Our analysis will be based on looking

at four-point functions of the elementary fields in the model, following similar analyses

in the SYK model literature [3]. For the fermionic channels, we will derive some new

results on fermionic SL(2,R) wavefunctions that we will need for the corresponding four-

point functions.

5.1 Resumming ladder supergraphs

Let us consider the four-point function of superfields ΦAq ≡ Φa1...aq−1 ,

1

N q−1

N∑
ai,bi=1

〈
T
(
ΦAq(X1) ΦAq(X2) ΦBq(X3) ΦBq(X4)

) 〉
= N q−1G(X1, X2)G(X3, X4) + F(X1, X2, X3, X4) +O(N−1).

(5.1)

The leading term is a product of free super-propagators and is given by a disconnected

diagram. The sub-leading correction term F can be computed by summing over ladder

diagrams

F(X1, X2, X3, X4) =

∞∑
n=0

Fn(X1, X2, X3, X4), (5.2)

where Fn is the contribution from the ladder diagram with n rungs.

The ladder diagrams with n rungs are related to the ladder diagrams with n− 1 rungs

by a recurrence relation

Fn(X1, X2, X3, X4) =

∫
dXdX ′ K(X1, X2;X,X ′)Fn−1(X,X ′, X3, X4), (5.3)

where the kernel K(X1, X2;X3, X4) is

K(X1, X2;X3, X4) = (q − 1) Jq G(X1, X3)G(X2, X4)G(X3, X4)q−2. (5.4)
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Φ Φ

Fn =

GΦ
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G· · ·G Fn−1

Φ

Φ

Figure 6. The recurrence relation of the ladder diagram Fn.

Since supersymmetry is broken in the IR, it is more convenient to work with component

fields, and expand the four-point function and the kernel as

F(X1, X2, X3, X4) = Fφφφφ(τ1, τ2, τ3, τ4) + θ1θ̄2F ψ̄ψφφ(τ1, τ2, τ3, τ4) + · · · ,

K(X1, X2, X3, X4) = Kφφ,φφ(τ1, τ2, τ3, τ4) + θ1θ̄2K
ψ̄ψ,φφ(τ1, τ2, τ3, τ4) + · · · .

(5.5)

The recurrence relation (5.3) can be written for the components in a compact notation

using a variable σ to designate the fields, i.e., σ ∈ {φ = φ̄, ψ, ψ̄, F = F̄}. We have:

Fσ1σ2σ3σ4
n (τ1, τ2, τ3, τ4) =

∑
σ,σ′

∫
dτdτ ′Kσ1σ2,σ̄σ̄′(τ1, τ2; τ, τ ′) Fσσ

′σ3σ4
n−1 (τ, τ ′, τ3, τ4) . (5.6)

Let us denote (Fσ3σ4)σ1σ2 = Fσ1σ2σ3σ4 as a vector and (K)σ1σ2,σ3σ4 = Kσ1σ2,σ3σ4 as a

matrix. The recurrence relation (5.6) can be written in matrix notation as

Fσ3σ4
n (τ1, τ2, τ3, τ4) =

∫
dτdτ ′ K(τ1, τ2; τ, τ ′) Fσ3σ4

n−1 (τ, τ ′, τ3, τ4). (5.7)

The sum of all ladder diagrams is a geometric series, which can be resummed and

formally written as

Fσ3σ4 =

∞∑
n=0

KnFσ3σ4
0 = (1−K)−1Fσ3σ4

0 . (5.8)

Let us consider the conformal limit, and add a subscript c to the four-point functions and

kernels. Denote the eigenvectors of the kernel Kc by Ψi
h, where the dimension h is related

to the eigenvalue of the Casimir operator that will be discussed later, and i denotes other

quantum numbers. The eigenequation is∫
dτdτ ′Kc(τ1, τ2; τ, τ ′) Ψi

h(τ, τ ′, τ3, τ4) = ki(h)Ψi
h(τ1, τ2, τ3, τ4), (5.9)

where ki(h) are the eigenvalues. The equation (5.8) can be rewritten in the basis of the

eigenvectors Ψi
h as

Fσ3σ4
c =

∑
i,h

Ψi
h

1

1− ki(h)

〈Ψi
h,F

σ3σ4
c,0 〉

〈Ψi
h,Ψ

i
h〉

. (5.10)

In the following subsections, we discuss various ingredients that appear in the above

formula, and make this formal expression explicit. In section 5.2, we discuss the eigenvectors

of the kernel Kc, which are organized by the conformal eigenfunctions of the IR conformal
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algebra. In section 5.3, we compute the eigenvalues ki(h) of the kernel Kc, and extract

the spectrum of operators that appear in the σ1 × σ2 OPE. In section 5.4, we compute

the inner products between the tree-level four-point functions Fσ1σ2σ3σ4
c,0 and the conformal

eigenfunctions, and give explicit expressions for the four-point functions.

5.2 Conformal eigenfunctions

As in the case of the SYK model studied in [1, 3, 21], the kernel Kc(τ1, τ2; τ3, τ4) commutes

with an IR SL(2,R) algebra, whose generators D̂, P̂ and K̂ are

D̂ = −τ∂τ −∆, P̂ = ∂τ , K̂ = τ2∂τ + 2τ∆. (5.11)

This implies that the kernel also commutes with the Casimir operator built from the sum

of the SL(2,R) generators acting on τ1 and τ2

C1+2 = (D̂1 + D̂2)2 − 1

2
{K̂1 + K̂2, P̂1 + P̂2}. (5.12)

The SL(2,R) invariance of the kernel implies that the four-point function only de-

pends on the conformal invariant cross-ratio χ = τ12τ34
τ13τ24

and the ordering of the points

(τ1, τ2, τ3, τ4). In particular, after partially fixing to the ordering τ1 < τ3 < τ4 and τ2 < τ4,

the four-point function takes the form as a function of χ times a suitable conformal fac-

tor.14 We will make a convenient (but somewhat non-traditional) choice for the prefactor

and define:

Fσ1σ2σ3σ4
c (τ1, τ2, τ3, τ4) =

√
bσ1bσ2bσ3bσ4sgn(τ12)|σ1||σ2|sgn(τ34)|σ3||σ4|

× Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Fσ1σ2σ3σ4
c (χ) ,

Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) ≡ 1

|τ12|∆1+∆2 |τ34|∆3+∆4

∣∣∣∣τ23

τ14

∣∣∣∣ 1
2

(∆12−∆34) ∣∣∣∣τ24

τ13

∣∣∣∣ 1
2

(∆12+∆34)

.

(5.13)

where ∆ij = ∆i − ∆j and |σ| is an even (odd) integer if σ is a boson (fermion). The

Casimir operator acting on this parametrization of the four-point function reduces to a

simple second order differential operator in terms of the cross-ratio:

C1+2Fσ1σ2σ3σ4
c (τ1, τ2, τ3, τ4) =

√
bσ1bσ2bσ3bσ4sgn(τ12)|σ1||σ2|sgn(τ34)|σ3||σ4|

× Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) CFσ1σ2σ3σ4
c (χ),

C ≡ χ2(1− χ)∂2
χ − χ2∂χ +

4∆12∆34χ− (∆12 + ∆34)2χ2

4(1− χ)
.

(5.14)

We will continue to refer the differential operator C as the Casimir operator.

It is convenient to expand the four-point function in the basis of the eigenfunctions of

the Casimir operator C. The eigenfunctions of the Casimir operator are solutions to the

hypergeometric equation

CΨh(χ) = h(h− 1)Ψh(χ). (5.15)

14For the other orderings, the four-point function takes the same form as (5.13) but the function

Fσ1σ2σ3σ4c (χ) may be different.
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To pick out the wavefunctions of interest we need to ensure that the operator C is

Hermitian. This however depends on the choice of norm imposed on the wavefunctions. We

will discuss Hermiticity with respect to four different norms, indexed by a pair m,n = 0, 1.

The norms are chosen to be:

〈f, g〉m,n =
1

2

∫ ∞
−∞

dχ

χ2
sgn(χm(χ− 1)n) f∗(χ)g(χ) . (5.16)

Most of the discussion in the literature concerns itself with the 〈·, ·〉0,0 norm, which is the

natural inner product we can impose on bosonic wavefunctions. Two of the other norms

〈·, ·〉1,1 and 〈·, ·〉1,0 become relevant when we have fermionic intermediate states in the 4-

point function. For each of the norms (5.16) and for a fixed eigenvalue of the Casimir

operator, there are two linearly independent solutions to the Casimir equation (5.15).

They are summarized in appendix B. The dimension h can be continuous h ∈ 1
2 + iR+, or

discrete h ∈ Z+ and h ∈ Z+ + 1
2 . For continuum states, the eigenfunctions have integral

representations (B.24), (B.33), (B.42), and (B.51).

Let us introduce the conformal three-point functions:

〈σ1(τ1)σ2(τ2)Oh(τ0)〉m,n,p =
sgn(τ10)m sgn(τ20)n sgn(τ12)p

|τ10|∆1+h−∆2 |τ20|∆2+h−∆1 |τ12|∆1+∆2−h , (5.17)

in terms of which the integrals (B.24), (B.33), (B.42), and (B.51) can be rewritten in the

shadow representation (after reinstating the conformal factors), using

Ψs
h(τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψs

h(χ)

=

∫
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉0,0,0 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉0,0,0 ,

Ψa
h(τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψa

h(χ)

=

∫
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉1,1,1 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉1,1,1 ,

Ψ12
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ12

h (χ)

=

∫
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉1,1,0 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉0,0,0 ,

Ψ34
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ34

h (χ)

=

∫
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉0,0,1 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉1,1,1 ,

Ψ14
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ14

h (χ)

=

∫
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉1,0,1 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉0,1,1 ,

Ψ23
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ23

h (χ)

=

∫
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉0,1,0 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉1,0,0 ,

Ψ13
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ13

h (χ)

=

∫
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉1,0,0 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉1,0,0 ,
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q charged bosons neutral bosons

4 hCB = 1, 3.46, 5.53, 7.56, · · ·
htNB = 1, 2, 2.21, 3.82, 4.30, 5.78, 6.32, 7.75, · · ·
hsNB = 1, 2.84, 4.79, 6.76, · · ·

6 hCB = 1, 3.42, 5.48, 7.50, · · ·
htNB = 0.832, 1, 1.84, 2, 2.91, 3.68, 4.18, 4.91, 5.64, 6.20, 6.91, 7.63, · · ·
hsNB = 1, 2.73, 4.66, 6.63, · · ·

100 hCB = 1, 3.33, 5.36, 7.37, · · ·
htNB = 1, 1.34, 2, 2.78, , 3.44, 4.01, 4.77, 5.42, 6.01, 6.77, 7.41, · · ·
hsNB = 1, 2.50, 4.44, 6.42, · · ·

q charged fermions

4
h1

F = 7
6

h2
F = 7

6

6
h1

F = 1.17, 1.76, 1.83, 2.26, 2.44, 3.74, 3.75, 4.36, · · ·
h2

F = 0.63, 0.83, 1.48, 2.75, 2.76, 3.33, 3.42, 4.74 · · ·

100
h1

F = 0.57, 1.19, 1.60, 1.77, 1.81, 2.30, 3.58, 3.58, · · ·
h2

F = 0.82, 1.42, 2.59, 3.11, 3.26, 4.58, 4.58, 5.17, · · ·

Table 2. Spectrum of first few low dimension operators for q = 4, 6 and 100 (rounded off to two

decimals). We have only retained solutions that lie in the range h > 1
2 . As we discuss in the main

text there are no complex solutions for the bosonic states, but the h2
F branch of fermions has a pair

of complex roots (for q > 4) which however do not lie on the principal continuous line h = 1
2 + i s.

Ψ24
h (τ1, τ2, τ3, τ4) = Pσ1σ2σ3σ4(τ1, τ2, τ3, τ4) Ψ24

h (χ)

=

∫
dτ0 〈σ1(τ1)σ2(τ2)Oh(τ0)〉0,1,1 〈σ3(τ3)σ4(τ4)O1−h(τ0)〉0,1,1 . (5.18)

The eigenvectors of the kernel Kc(τ1, τ2; τ, τ ′) are vectors, whose components are the

conformal eigenfunctions Ψs
h(τ, τ ′, τ3, τ4), Ψa

h(τ, τ ′, τ3, τ4), · · · . We would like to compute

the action of the kernel Kc on the conformal eigenfunctions. For the continuum states, it

suffices to consider the kernel acting on the integrand of the conformal three-point functions

that appear in the shadow representation (5.18). The eigenvalues of the discrete states can

be obtained by analytic continuing the eigenvalues of the continuum states.

5.3 Spectrum of operators

As discussed in [1, 3, 21], the solutions to the equation ki(h) = 1 correspond to the spectrum

of operators that appear in the σ1 × σ2 OPE. Depending on the statistics and the U(1)R
charges of the component fields σ1 and σ2, the operators that appear in the OPE can

be charged bosons, neutral bosons, or charged fermions. In table 2, we summarize the

spectrum of the first few low dimension operators for q = 4, 6, and 100.

Let us make a few observations about the spectrum:15

• Among the neutral bosons in the spectrum, we universally find an operator with

h = 2, corresponding to the emergent conformal (time-reparametrization) symmetry

as in (2.8) in the IR. Away from the strict IR limit where the kinetic term is relevant,

15We are grateful to Igor Klebanov for raising important questions regarding the spectrum, especially the

stability of the conformal limit and the decoupling of certain modes (with h = 1) from the spectrum.
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as in the SYK model, it will acquire Schwarzian dynamics. In the dual theory this is

the part captured by the JT theory in the emergent near- AdS2 region.

• The are additionally two operators with h = 1 in the neutral boson channel. One of

these corresponds to the conserved R-current which operates as a local phase rotation

in the IR, cf., (4.16). This symmetry appears in the presence of additional charges

as noted in earlier discussions [9, 10, 15]. The second h = 1 operator corresponds

to the local scaling symmetry (4.17) which is additionally present in our model. We

comment on these modes below.

• A slightly more peculiar operator is the h = 1 charged boson mode which arises in

the ψ × ψ OPE. A similar operator was found in [49]; its existence appears to be

accidental and we do not anticipate it being part of a new IR symmetry and will

argue below that it decouples from the spectrum.

• We also expect the theory to have O(N2) light-modes corresponding to the time-

dependent O(N)q−1 rotations ΦAq →
∑

Bq
[M(t)]

Aq
Bq

ΦBq ; however, these are not sin-

glets so we do not expect to see them in the OPE for the channels that we consider.

Let us discuss the h = 1 modes in the theory, which we have three of, with two being

neutral and one carrying a U(1)R charge. To understand their role one can work out the

OPE coefficient for this mode along the lines of [3].

• For the charged boson sector we find that the OPE coefficient is proportional to

cot(π2h). As this vanishes for h = 1, we infer that the mode in question decouples

from the spectrum — similar observations were made in [9].

• One of the h = 1 neutral bosons behaves similarly. Naively one would like therefore

to argue that it too decouples from the spectrum. However, in this case as alluded to

above we have a local scaling symmetry (4.17) which was related to the fact that we

had a one-parameter family of conformal solutions, cf., (4.15). We believe that while

this mode decouples in the strict IR it returns to the spectrum once we step back and

include the kinetic term. This would be consistent with the interpretation offered

in [15] for the scaling symmetry to correspond to a redefinition of the supersymmetry

generators along with an effective action of the form J
∫

(λ(τ)− 1)2dτ .

• The third neutral h = 1 mode corresponds to the local phase rotations (4.16). This

symmetry is local only in the strict IR limit for the truncated low-energy Schwinger-

Dyson equations (2.7). Away from the conformal limit, it gets broken (as for the h = 2

reparametrization mode) to a global transformation, leaving behind the correspond-

ing pseudo-Nambu-Goldstone modes in the spectrum. The affine U(1) R-symmetry

is broken down to a global phase rotation with soft dynamics.

Before moving on to the details on obtaining the spectrum, let us also remark here that

we have checked that there are no bosonic composite operators with complex dimensions

on a wide domain of the complex h plane. In particular, the presence of such modes
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along the principal continuous series line of SL(2,R), viz., h = 1
2 + is would correspond

to states that violate the unitarity bound in the IR (or equivalently the Breitenlohner-

Freedman bound [67] in the AdS2 geometry), and affects the stability of the fixed point.

Such complex modes were seen in earlier analysis of bosonic tensor models [48] in various

dimensions as well as in the bosonic SYK model in d = 2 [16]. It is reassuring to note that

the model is indeed free of such pathologies.

Furthermore, the bosonic states can be matched directly with composite operators:

• Composite charged bosons are identified with primary operators of the form ∂mψ∂nψ

withm+n > 0 odd. The spectrum of states roughly has dimensions 2k+1+2 ∆ψ+ε(q)

with k > 0 where ε(q)→ 0 as q →∞.

• Composite neutral bosons in the singlet channel are primaries of the form ∂mψ̄∂nψ

with m + n > 0 even (as the singlet channel is symmetric under τ1 ↔ τ2). Their

dimensions are 2k + 2 ∆ψ + ε(q) with k > 0 and ε(q)→ 0 as q →∞.

• Composite neutral bosons in the triplet channels come in three sets: (a) ∂mψ̄∂nψ, (b)

∂mφ∂nφ, and (c) ∂mF∂nF . For the first case, the derivatives are antisymmetrically

distributed between the two fermions, while in the latter two cases we symmetrize

the derivatives. The conformal dimensions approach 2k + 1 + 2∆ψ, 2k + 2 ∆φ and

2k + 2 ∆F , respectively, with k > 0, in the large q limit. For q = 4 the last set

involving the auxiliary field is not present due to F decoupling.

It is easy to check the presence of states corresponding to every one of these primaries in

the spectrum (we only list the leading few in table 2).

The story for fermionic excitations in contrast is a bit more confusing. We have also

able to identify many of the fermionic excitations with primaries of the form ∂mφ∂nψ and

∂mF ∂nψ, respectively. For instance the solution with h = 0.57 is a ψF composite, while

the solution with h = 1.19 well approximates ψ∂φ (it is the one state that converges really

well at large q).

There are however other solutions which seem to fall outside this set. For instance,

we find some states with complex dimensions but these are off the 1
2 + is line. The precise

locations for different choices of q do not seem to have any particular significance (for

instance the lowest such solutions are at h = 1.37 ± 0.37i for q = 6 and h = 1.31 ± 0.55 i

for q = 100 (there is no complex solution for q = 4). We believe these to be benign and

not part of the spectrum. While we have not carefully analyzed the decomposition of the

4-point function in the shadow representation to see if these states would contribute, we

believe that the contour deformation arguments used for example in [3] can be used to

show that such modes do not correspond to physical states of the low energy theory. Let

us also note that the decoupling of the auxiliary field leaves a strong impact on the fermion

spectrum — for q = 4 we have only two degenerate operators with real dimension. Overall

the fermion spectrum deserves to be understood better.
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5.3.1 Charged bosons

We first consider the four-point function Fψψψ̄ψ̄c (τ1, τ2, τ3, τ4). The ψ × ψ OPE contains

bosonic operators of U(1)R charge 2 and decouples from other sectors. The recurrence

relation (5.6) specialized to this case is

Fψψψ̄ψ̄c,n (τ1, τ2, τ3, τ4) =

∫
dτdτ ′Kψψ,ψ̄ψ̄

c (τ1, τ2; τ, τ ′) Fψψψ̄ψ̄c,n−1 (τ, τ ′, τ3, τ4), (5.19)

where the kernel Kψψ,ψ̄ψ̄
c is

Kψψ,ψ̄ψ̄
c (τ1, τ2; τ3, τ4) = (q − 1) Jq Gψψ̄c (τ13)Gψψ̄c (τ24)Gφφc (τ34)q−2. (5.20)

Due to the fermion statistics, the four-point function Fψψψ̄ψ̄c is odd under exchanging

τ1 and τ2. We consider the eigenfunction of the kernel (5.20),

sgn(τ12)

|τ10|h|τ20|h|τ12|2∆ψ−h
. (5.21)

The eigenvalue is computed by∫
dτ3dτ4K

ψψ,ψ̄ψ̄
c (τ1, τ2; τ3, τ4)

sgn(τ34)

|τ30|h|τ40|h|τ34|2∆ψ−h

= kCB(h)
sgn(τ12)

|τ10|h|τ20|h|τ12|2∆ψ−h
,

kCB(h) = (q − 1) b2ψb
q−2
φ Jq k2(2∆ψ, 2− h− 2∆ψ) k1(2∆ψ, 1− h),

(5.22)

where the functions k1(A,B, τ) and k2(A,B, τ) are given in (C.3).

The spectrum of the charged bosons, that appears in the ψ×ψ OPE, is then given by

the solutions h = hCB to the equation

kCB(h) = 1. (5.23)

The first few solutions to this equation are summarized in table 2. As noted earlier, there

is a peculiar marginal mode in this sector whose origin is mysterious.

5.3.2 Neutral bosons

We next turn to the four-point functions Fσ1σ2σ3σ4
c with (σ1, σ2) ∈

{(φ, φ), (F, F ), (ψ, ψ̄), (ψ̄, ψ)}. The (σ3, σ4) should also belong to the set

{(φ, φ), (F, F ), (ψ, ψ̄), (ψ̄, ψ)}, but the precise nature of the (σ3, σ4) operators will

not materially affect the discussion below. The σ1 × σ2 OPE now contains bosonic

operators of zero U(1)R charge. The recurrence relation (5.6) specialized to this case gives

Fφφσ3σ4
c,n (τ1, τ2, τ3, τ4) =

∫
dτdτ ′

[
Kφφ,φφ
c (τ1, τ2; τ, τ ′)Fφφσ3σ4

c,n−1 (τ, τ ′, τ3, τ4)

+Kφφ,FF
c (τ1, τ2; τ, τ ′)FFFσ3σ4

c,n−1 (τ, τ ′, τ3, τ4)

+Kφφ,ψ̄ψ
c (τ1, τ2; τ, τ ′)

(
Fψψ̄σ3σ4
c,n−1 (τ, τ ′, τ3, τ4) + F ψ̄ψσ3σ4

c,n−1 (τ, τ ′, τ3, τ4)
)]
,
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Fψψ̄σ3σ4
c,n (τ1, τ2, τ3, τ4) =

∫
dτdτ ′

[
Kψψ̄,φφ
c (τ1, τ2; τ, τ ′)Fφφσ3σ4

n−1 (τ, τ ′, τ3, τ4)

+Kψψ̄,ψ̄ψ
c (τ1, τ2; τ, τ ′)Fψψ̄σ3σ4

c,n−1 (τ, τ ′, τ3, τ4)

]
,

F ψ̄ψσ3σ4
c,n (τ1, τ2, τ3, τ4) =

∫
dτdτ ′

[
Kψψ̄,φφ
c (τ1, τ2; τ, τ ′)Fφφσ3σ4

c,n−1 (τ, τ ′, τ3, τ4)

+Kψ̄ψ,ψψ̄
c (τ1, τ2; τ, τ ′)F ψ̄ψσ3σ4

c,n−1 (τ, τ ′, τ3, τ4)

]
,

FFFσ3σ4
n (τ1, τ2, τ3, τ4) =

∫
dτdτ ′KFF,φφ

c (τ1, τ2; τ, τ ′)Fφφσ3σ4
c,n−1 (τ, τ ′, τ3, τ4) . (5.24)

The primary kernels relevant to our computation and appearing in the above are

Kψψ̄,ψ̄ψ
c = −(q − 1)Jq Gψψ̄c (τ13)Gψψ̄c (τ24)Gφφ̄c (τ34)q−2,

Kφφ,ψ̄ψ
c = (q − 1)(q − 2)Jq Gφφc (τ13)Gφφc (τ24)Gψψ̄c (τ34)Gφφc (τ34)q−3,

Kψψ̄,φφ
c = −(q − 1)(q − 2)Jq Gψψ̄c (τ13)Gψψ̄c (τ24)Gψψ̄c (τ34)Gφφc (τ34)q−3,

Kφφ,FF
c = (q − 1)Jq Gφφc (τ13)Gφφc (τ24)Gφφc (τ34)q−2,

KFF,φφ
c = (q − 1)Jq GFFc (τ13)GFFc (τ24)Gφφc (τ34)q−2,

Kφφ,φφ
c = (q − 1)(q − 2)(q − 3)Jq Gφφc (τ13)Gφφc (τ24)Gψψ̄c (τ34)2Gφφc (τ34)q−4

+ (q − 1)(q − 2)Jq Gφφc (τ13)Gφφc (τ24)GFFc (τ34)Gφφc (τ34)q−3 .

(5.25)

The remaining kernels are determined by the relations

Kφφ,ψψ̄
c = Kφφ,ψ̄ψ

c , Kψ̄ψ,φφ
c = Kψψ̄,φφ

c , Kψ̄ψ,ψψ̄
c = Kψψ̄,ψ̄ψ

c . (5.26)

Using the relations (5.26), it is convenient to organize the four-point functions as a

triplet and a singlet  Fφφσ3σ4
c

Fψψ̄σ3σ4
c + F ψ̄ψσ3σ4

c

FFFσ3σ4
c

 , Fψψ̄σ3σ4
c −F ψ̄ψσ3σ4

c . (5.27)

The kernels are organized as a 3×3 matrix Kφφ,φφ
c Kφφ,ψ̄ψ

c Kφφ,FF
c

2Kψψ̄,φφ
c Kψψ̄,ψ̄ψ

c 0

KFF,φφ
c 0 0

 , (5.28)

which acts on the triplet, and the kernel Kψψ̄,ψ̄ψ
c acts on the singlet.

Triplet four-point function Let us first focus on the 3 × 3 matrix (5.28). The first

and third components of the triplet are even under the exchange τ1 ↔ τ2, while the second

component is odd under this exchange. Hence, we consider the vector
bφ

|τ10|h|τ20|h|τ12|2∆φ−h

bψsgn(τ12)

|τ10|h|τ20|h|τ12|2∆ψ−h

bF
|τ10|h|τ20|h|τ12|2∆F−h

 . (5.29)
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The 3× 3 kernel matrix (5.28) acts on the vector (5.29) as the matrix

ktNB(h) ≡

 kφφ,φφt (h) kφφ,ψ̄ψt (h) kφφ,FFt (h)

2kψψ̄,φφt (h) kψψ̄,ψ̄ψt (h) 0

kFF,φφt (h) 0 0

 , (5.30)

in which

kψψ̄,ψ̄ψt (h) = −(q − 1)b2ψb
q−2
φ Jq k2(2∆ψ, 2− h− 2∆ψ) k1(2∆ψ, 1− h),

kφφ,ψ̄ψt (h) = (q − 1)(q − 2)b2ψb
q−2
φ Jqk0(2∆φ, 2− h− 2∆φ) k0(2∆φ, 1− h),

kψψ̄,φφt (h) = −(q − 1)(q − 2)b2ψb
q−2
φ Jq k2(2∆ψ, 2− h− 2∆ψ) k1(2∆ψ, 1− h),

kφφ,FFt (h) = (q − 1)bF b
q−1
φ Jq k0(2∆φ, 2− h− 2∆φ) k0(2∆φ, 1− h),

kFF,φφt (h) = (q − 1)bF b
q−1
φ Jq k0(2∆F , 2− h− 2∆F ) k0(2∆F , 1− h),

kφφ,φφt (h) = (q − 1)(q − 2)
[
(q − 3)b2ψb

q−2
φ + bF b

q−1
φ

]
× Jq k0(2∆φ, 2− h− 2∆φ) k0(2∆φ, 1− h).

(5.31)

We would like to solve for the dimensions h = htNB such that any of the eigenvalues

of ktNB(h) equals to unity. This is equivalent to the equation det(ktNB(h) − 1) = 0. The

first few solutions are listed in table 2. Amongst them we note the presence of two light

degrees of freedom corresponding to the local U(1) symmetry and the emergent conformal

symmetry with h = 1 and h = 2, respectively.

Singlet four-point function. Next, we consider the kernel Kψψ̄,ψ̄ψ
c that acts on the

singlet in (5.27). The singlet is symmetric under the exchange τ1 ↔ τ2. Hence, we consider

the symmetric eigenfunction

bψ

|τ10|h|τ20|h|τ12|2∆ψ−h
. (5.32)

The eigenvalue is

ksNB(h) = −(q − 1)b2ψb
q−2
φ k1(2∆ψ, 2− h− 2∆ψ) k2(2∆ψ, 1− h). (5.33)

The first few solutions h = hsNB to the equation ksNB(h) = 1 are listed in table 2. As

noted earlier we have a single light mode with h = 1 in this sector corresponding to a local

scaling symmetry.

5.3.3 Charged fermions

Finally, we consider the four-point functions Fσ1σ2σ3σ4
c with (σ1, σ2) =

{(ψ, φ), (φ, ψ), (ψ,F ), (F,ψ)}. The (σ3, σ4) should belong to the set

{(ψ̄, φ), (φ, ψ̄), (ψ̄, F ), (F, ψ̄)}, but the precise operators will be immaterial for what

follows. The σ1 × σ2 OPE contains fermionic operators of U(1)R charge 1. The recurrence
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relation (5.6) now gives

Fψφσ3σ4
c,n (τ1, τ2, τ3, τ4) =

∫
dτdτ ′

[
Kψφ,φψ̄(τ1, τ2; τ, τ ′)Fφψσ3σ4

c,n−1 (τ ′, τ, τ3, τ4)

+Kψφ,ψ̄F (τ1, τ2; τ, τ ′)FψFσ3σ4
c,n−1 (τ, τ ′, τ3, τ4)

]
,

Fφψσ3σ4
n (τ1, τ2, τ3, τ4) =

∫
dτdτ ′

[
Kφψ,ψ̄φ(τ1, τ2; τ, τ ′)Fψφσ3σ4

n−1 (τ, τ ′, τ3, τ4)

+Kφψ,F ψ̄(τ1, τ2; τ, τ ′)FFψσ3σ4
n−1 (τ, τ ′, τ3, τ4)

]
,

FψFσ3σ4
c,n (τ1, τ2, τ3, τ4) =

∫
dτdτ ′KψF,ψ̄φ(τ1, τ2; τ, τ ′)Fψφσ3σ4

c,n−1 (τ, τ ′, τ3, τ4),

FFψσ3σ4
n (τ1, τ2, τ3, τ4) =

∫
dτdτ ′KFψ,φψ̄(τ1, τ2; τ, τ ′)Fφψσ3σ4

n−1 (τ, τ ′, τ3, τ4),

(5.34)

where the kernels are given explicitly as

Kψφ,φψ̄
c (τ1, τ2; τ3, τ4) = (q − 1)(q − 2)Jq Gψψ̄c (τ13)Gφφc (τ24)Gψψ̄c (τ34)Gφφc (τ34)q−3,

Kφψ,ψ̄φ
c (τ1, τ2; τ3, τ4) = −(q − 1)(q − 2)Jq Gφφc (τ13)Gψψ̄c (τ24)Gψψ̄c (τ34)Gφφc (τ34)q−3,

Kψφ,ψ̄F
c (τ1, τ2; τ3, τ4) = (q − 1)Jq Gψψ̄c (τ13)Gφφc (τ24)Gφφc (τ34)q−2,

KψF,ψ̄φ
c (τ1, τ2; τ3, τ4) = (q − 1)Jq Gψψ̄c (τ13)GFFc (τ24)Gφφc (τ34)q−2.

Kφψ,F ψ̄
c (τ1, τ2; τ3, τ4) = (q − 1)Jq Gφφc (τ13)Gψψ̄c (τ24)Gφφc (τ34)q−2,

KFψ,φψ̄
c (τ1, τ2; τ3, τ4) = (q − 1)Jq GFFc (τ13)Gψψ̄c (τ24)Gφφc (τ34)q−2.

(5.35)

The kernels form a 4× 4 matrix


0 Kψφ,φψ̄ Kψφ,ψ̄F 0

Kφψ,ψ̄φ 0 0 Kφψ,F ψ̄

KψF,ψ̄φ 0 0 0

0 KFψ,φψ̄ 0 0

 . (5.36)

We consider the vectors



√
bψbφsgn(τ10)

|τ10|∆ψ+h−∆φ |τ20|∆φ+h−∆ψ |τ12|∆φ+∆ψ−h√
bψbφsgn(τ20)

|τ10|∆φ+h−∆ψ |τ20|∆ψ+h−∆φ |τ12|∆φ+∆ψ−h√
bψbF sgn(τ20)sgn(τ12)

|τ10|∆ψ+h−∆F |τ20|∆F+h−∆ψ |τ12|∆ψ+∆F−h√
bψbF sgn(τ10)sgn(τ12)

|τ10|∆F+h−∆ψ |τ20|∆ψ+h−∆F |τ12|∆ψ+∆F−h


,



√
bψbφsgn(τ20)sgn(τ12)

|τ10|∆ψ+h−∆φ |τ20|∆φ+h−∆ψ |τ12|∆φ+∆ψ−h√
bψbφsgn(τ10)sgn(τ12)

|τ10|∆φ+h−∆ψ |τ20|∆ψ+h−∆φ |τ12|∆φ+∆ψ−h√
bψbF sgn(τ10)

|τ10|∆ψ+h−∆F |τ20|∆F+h−∆ψ |τ12|∆ψ+∆F−h√
bψbF sgn(τ20)

|τ10|∆F+h−∆ψ |τ20|∆ψ+h−∆F |τ12|∆ψ+∆F−h


.

(5.37)
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The kernel matrix (5.36) acts on the vector as the matrices

k1
F(h) ≡


0 kψφ,φψ̄1 (h) kψφ,ψ̄F1 (h) 0

kφψ,ψ̄φ1 (h) 0 0 kφψ,F ψ̄1 (h)

kψF,ψ̄φ1 (h) 0 0 0

0 kFψ,φψ̄1 (h) 0 0

 ,

k2
F(h) ≡


0 kψφ,φψ̄2 (h) kψφ,ψ̄F2 (h) 0

kφψ,ψ̄φ2 (h) 0 0 kφψ,F ψ̄2 (h)

kψF,ψ̄φ2 (h) 0 0 0

0 kFψ,φψ̄2 (h) 0 0

 ,

(5.38)

where the components are

kψφ,φψ̄1 (h) = −(q−1)(q−2)b2ψb
q−2
φ Jq k2(2∆ψ, 2−h−∆φ−∆ψ) k0(2∆φ, 1−h−∆φ+∆ψ),

kφψ,ψ̄φ1 (h) = −(q−1)(q−2)b2ψb
q−2
φ Jq k1(2−h−∆φ−∆ψ, 2∆φ) k2(2∆ψ, 1−h+∆φ−∆ψ),

kψφ,ψ̄F1 (h) = −(q−1)
√
b2ψbF b

2q−3
φ Jq k2(2∆ψ, 2−h−∆φ−∆ψ) k0(2∆φ, 1−h−∆φ+∆ψ),

kψF,ψ̄φ1 (h) = (q−1)
√
b2ψbF b

2q−3
φ Jq k1(2∆ψ, 2−h−∆F−∆ψ) k1(1−h+∆φ−∆ψ, 2∆F ),

kφψ,F ψ̄1 (h) = (q−1)
√
b2ψbF b

2q−3
φ Jq k1(2−h−∆φ−∆ψ, 2∆φ) k2(2∆ψ, 1−h+∆φ−∆ψ),

kFψ,φψ̄1 (h) = −(q−1)
√
b2ψbF b

2q−3
φ Jq k0(2−h−∆F−∆ψ, 2∆F ) k1(2∆ψ, 1−h−∆φ+∆ψ),

kψφ,φψ̄2 (h) = (q−1)(q−2)b2ψb
q−2
φ Jq k1(2∆ψ, 2−h−∆φ−∆ψ) k1(1−h−∆φ+∆ψ, 2∆φ),

kφψ,ψ̄φ2 (h) = (q−1)(q−2)b2ψb
q−2
φ Jq k0(2−h−∆φ−∆ψ, 2∆φ) k1(2∆ψ, 1−h+∆φ−∆ψ),

kψφ,ψ̄F2 (h) = (q−1)
√
b2ψbF b

2q−3
φ Jq k1(2∆ψ, 2−h−∆φ−∆ψ) k1(1−h−∆φ+∆ψ, 2∆φ),

kψF,ψ̄φ2 (h) = −(q−1)
√
b2ψbF b

2q−3
φ Jq k2(2∆ψ, 2−h−∆F−∆ψ) k0(2∆F , 1−h+∆φ−∆ψ),

kφψ,F ψ̄2 (h) = −(q−1)
√
b2ψbF b

2q−3
φ Jq k0(2−h−∆φ−∆ψ, 2∆φ) k1(2∆ψ, 1−h+∆φ−∆ψ),

kFψ,φψ̄2 (h) = (q−1)
√
b2ψbF b

2q−3
φ Jq k1(2−h−∆F−∆ψ, 2∆F ) k2(2∆ψ, 1−h−∆φ+∆ψ),

(5.39)

We denote the solutions to the equation det(k1
F(h) − 1) = 0 and det(k2

F(h) − 1) = 0 by

h = h1
F and h = h2

F, respectively. The first few solutions are listed in table 2.

5.4 Four-point functions

In this section, we collect all the ingredients and write down explicit formulae of the four-

point functions. First, the nontrivial tree-level four-point functions are

Fφφφφc,0 (χ) = |χ|2∆φ +

∣∣∣∣ χ

χ− 1

∣∣∣∣2∆φ

, FFFFFc,0 (χ) = |χ|2∆F +

∣∣∣∣ χ

χ− 1

∣∣∣∣2∆F

,

Fψψ̄ψψ̄c,0 (χ) = −sgn

(
χ

χ− 1

) ∣∣∣∣ χ

χ− 1

∣∣∣∣2∆ψ

, F ψ̄ψψψ̄c,0 (χ) = −sgn(χ)|χ|2∆ψ ,
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Fψψψ̄ψ̄c,0 (χ)= −sgn(χ)|χ|2∆ψ − sgn

(
χ

χ− 1

) ∣∣∣∣ χ

χ− 1

∣∣∣∣2∆ψ

, (5.40)

Fφψφψ̄c,0 (χ) = −|χ|∆φ+∆ψ , Fψφφψ̄c,0 (χ) = −
∣∣∣∣ χ

χ− 1

∣∣∣∣∆φ+∆ψ

,

FψFψ̄Fc,0 (χ) = −|χ|∆F+∆ψ , FFψψ̄Fc,0 (χ) = −sgn(1− χ)

∣∣∣∣ χ

χ− 1

∣∣∣∣∆F+∆ψ

.

The inner products of them and the conformal eigenfunctions are

〈Ψs
h,F

ψψψ̄ψ̄
c,0 〉0,0 = −1

2
k2(2∆ψ, 2− h− 2∆ψ)k1(2∆ψ, 1− h),

〈Ψs
h,F

φφφφ
c,0 〉0,0 =

1

2
k0(2∆φ, 2− h− 2∆φ)k0(2∆φ, 1− h),

〈Ψs
h,FFFFFc,0 〉0,0 = 〈Ψs

h,F
φφφφ
c,0 〉0,0

∣∣
∆φ→∆F

,

〈Ψs
h,F

ψψ̄ψψ̄
c,0 + F ψ̄ψψψ̄c,0 〉0,0 = 〈Ψs

h,F
ψψψ̄ψ̄
c,0 〉0,0,

〈Ψa
h,F

ψψ̄ψψ̄
c,0 −F ψ̄ψψψ̄c,0 〉0,0 =

1

2
k1(2∆ψ, 2− h− 2∆ψ)k2(2∆ψ, 1− h),

〈Ψ23
h ,F

φψφψ̄
c,0 〉1,0 = −1

2
k1(2− h−∆φ −∆ψ, 2∆φ) k2(2∆ψ, 1− h+ ∆φ −∆ψ),

〈Ψ13
h ,F

ψφφψ̄
c,0 〉1,1 = 〈Ψ23

h ,F
φψφψ̄
c,0 〉1,0,

〈Ψ23
h ,F

ψFψ̄F
0 〉1,0 = −1

2
k1(2− h−∆ψ −∆F , 2∆ψ)k2(2∆F , 1− h+ ∆ψ −∆F ),

〈Ψ13
h ,F

Fψψ̄F
0 〉1,1 =

1

2
k2(2− h−∆F −∆ψ, 2∆F )k0(1−∆F −∆ψ + h, 2∆ψ).

(5.41)

Let us define the linear functionals

Is : f 7→
∫ ∞

0
ds

4h− 2

π tanπh
f(h)

∣∣∣
h= 1

2
+is

+
∑
h∈2Z+

4h− 2

π2
f(h),

Ia : f 7→
∫ ∞

0
ds

4h− 2

π tanπh
f(h)

∣∣∣
h= 1

2
+is

+
∑

h∈2Z+−1

4h− 2

π2
f(h),

IF : f 7→
∫ ∞
−∞

ds
2− 4h

π cotπh
f(h)

∣∣∣
h= 1

2
+is

+
∑

h∈Z++ 1
2

4h− 2

π2
f(h).

(5.42)

The four-point functions are written explicitly as

Fψψψ̄ψ̄c (χ) = Is
〈Ψs,Fψψψ̄ψ̄c,0 〉0,0

1− kCB
Ψs(χ), Fφφσ3σ4

c (χ)

Fψψ̄σ3σ4
c (χ) + F ψ̄ψσ3σ4

c (χ)

FFFσ3σ4
c (χ)

 = Is
[
1− ktNB

]−1

 〈Ψs,Fφφσ3σ4
c,0 〉0,0Ψs(χ)

〈Ψs,Fψψ̄σ3σ4
c,0 + F ψ̄ψσ3σ4

c,0 〉0,0Ψs(χ)

〈Ψs,FFFσ3σ4
c,0 〉0,0Ψs(χ)

 ,

Fψψ̄ψψ̄c (χ)−F ψ̄ψψψ̄c (χ) = Ia
〈Ψa,Fψψ̄ψψ̄c,0 −F ψ̄ψψψ̄c,0 〉0,0

1− ksNB

Ψa(χ),
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Fψφφψ̄c (χ)

Fφψφψ̄c (χ)

FψFφψ̄c (χ)

FFψφψ̄c (χ)

 = IF

[
1− k1

F

]−1


〈Ψ13,Fψφφψ̄c 〉1,1Ψ13(χ)

〈Ψ23,Fφψφψ̄c 〉1,0Ψ23(χ)

0

0

 ,


Fψφψ̄Fc (χ)

Fφψψ̄Fc (χ)

FψFψ̄Fc (χ)

FFψψ̄Fc (χ)

 = IF

[
1− k2

F

]−1


0

0

〈Ψ13,FFψψ̄Fc 〉1,1Ψ13(χ)

〈Ψ23,FψFψ̄Fc 〉1,0Ψ23(χ)

 , (5.43)

where the matrices ktNB(h), k1
F(h), k2

F(h) and the functions kCB(h), ksNB(h) are given

explicitly in the previous subsection.

On the second and third equations of (5.43), the h = 2 and h = 1 terms in the sum

over discrete states diverge, because det(ktNB(2)−1) = 0 and ksNB(1) = 1. They correspond

to the soft modes associated to the emergent time-reparametrization symmetry and the

local U(1) R-symmetry. The proper treatment of the contribution from the soft modes to

the four-point functions requires moving slightly away from the conformal limit [3, 11].

6 Discussion

The primary thrust of our analysis was to examine the interplay between melonic dom-

inance in a class of supersymmetric quantum mechanical models with dynamical bosons

and supersymmetry. Somewhat curiously we find that these theories do not exhibit any

particular simplification with the inclusion of supersymmetry and in fact non-trivial low

energy vacua are non-supersymmetric. One might somewhat facilely characterize the sit-

uation as melonic supertensors not wanting to be supermelonic. Modulo this peculiarity,

we find that they behave for all intents and purposes like the melonic tensor models ana-

lyzed in the literature. More specifically, there is a non-trivial conformal fixed point with

a spectrum of singlet operators that can be computed. The low energy dynamics has an

emergent time-reparametrization symmetry and an affine U(1) R-symmetry, in addition

to a peculiar local scaling symmetry. The latter symmetry has also been noticed in other

supersymmetric constructions [15].

The origins of supersymmetry breaking in our system are in the regularization scheme

we employ to attain the low energy conformal fixed point. In this sense the IR theory

has explicitly broken supersymmetry and therefore no associate goldstino modes in the

spectrum. Supersymmetry restoration occurs only in the deep UV where the kinetic term

dominates over the interaction term. We did note that there exists a formal solution to the

Schwinger-Dyson equations with spectrum appearing to preserve supersymmetry. Upon

closer examination we find that the Green’s function actually diverges in this limit, lead-

ing us to discard this solution. The situation we encounter here is analogous to earlier

observations made in quiver quantum mechanical models [14] as noted at the end of sec-

tion 4, where also one finds supersymmetric and non-supersymmetric low-energy vacua. In

that context, however, the authors argue the supersymmetry preserving vacuum to be the

appropriate one, in contrast to our discussion, where this seems to be untenable.
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Along with establishing the existence of a non-supersymmetric fixed point, we have

also computed the spectrum of composite operators in the theory in the singlet sector. The

spectrum is free of any pathologies (all bosonic composite operators have real conformal

dimension) and shows the low energy fixed point to be stable. We do find some curious

features involving fermion composite operators — there are some solutions to the eigen-

value equation with complex dimensions, but these we believe are not part of the spectrum

as they do not propagate in the intermediate channels. In the process of computing the

spectrum, we have also derived explicitly the expressions for the four-point functions of

the fundamental tensor fields of our model. This information suffices for instance to read

off the chaos correlator as in [3] and note that the leading contribution comes from the

reparametrization mode as expected. This observation further lends support to the argu-

ment of [50] who noted that the out-of-time-order four-point function that captures the

growth of chaos in the system continues to be exponential and saturates the chaos bound,

despite the presence of O(N2) light non-singlet states.

One can also engineer disordered SYK models where we encounter similar behaviour.

For instance, we can take a N = 2 N -component real vector superfield Φi and construct a

SYK action with random couplings, viz.,

S =

∫
dτdθdθ̄

(
1

2
DθΦ

iDθ̄Φ
i + ji1...iqΦ

i1 · · ·Φiq

)
, (6.1)

where q must be an even integer for the action to be bosonic. The couplings ji1...iq are

independent Gaussian random variables with mean zero and variance 〈j2
i1...iq
〉 = 1

qJ
qN1−q.

By a similar argument as in [37, 38], one can show that the leading large N limit of this

theory is dominated by the same set of melon diagrams as in the N = 2 tensor model

introduced in section 3. This suffices to infer the existence of a supersymmetry breaking

vacuum.

One can also attempt to relate the construction of the N = 2 SYK model studied

in [15] to our analysis. Consider a Fermi superfield Υ and its complex conjugate Υ which

satisfy the conditions

Dθ̄Υ = 0 , DθΥ = 0 . (6.2)

The Fermi superfield Υ can be expanded in terms of component fields as

Υ = ψ + θF + θθ̄∂τψ, (6.3)

where ψ is a complex fermion and F is a bosonic auxiliary field. We could take a model of

N Fermi superfields Υi having an action

S =

∫
dτdθ̄Υ

i
DθΥ

i + i
q−1

2

∫
dτ

[∫
dθ ji1...iqΥ

i1 · · ·Υiq +

∫
dθ̄ j∗i1...iqΥ

i1 · · ·Υiq
]
. (6.4)

The couplings ji1...iq are independent complex Gaussian random variables with mean zero

and variance 〈ji1...iqj∗i1...iq〉 = 1
qJN

1−q. In this situation q must be an odd integer for

the action to be bosonic, and it is therefore unclear how to promote this to a melonic

tensor model.
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We have primarily analyzed models with two supercharges, so one might wonder if

the situation can be improved, vis-a-vis supersymmetry preservation, by working with a

different number of supercharges. While our analysis has not been exhaustive, we find that

extended supersymmetry fails to help (a preliminary analysis is reported in appendix A).

The trouble here is that a superfield interaction term which one naively one expects to

be melonic, results in derivative couplings. In addition we do not anticipate the bosonic

sector of the theory to behave any better than in the N = 2 case. More importantly,

all extended multiplets will generically contain dynamical bosons which, as we have seen,

is problematic. This suggests a general lesson that melonic dominance is intrinsically at

tension with supersymmetry. One might wonder if this is further suggestive of such theories

not naturally being embeddable into string theory.

Another natural question is whether the melonic tensors can be used to construct novel

fixed points in higher dimensions.16 Analysis of bosonic models in [48] reveals some intricate

interplay, and potentially suggests the existence of a fixed point in the neighbourhood of

d = 3 dimensions at large N . Analysis of the q = 4, N = 2 model uplifted to d = 3

similarly reveals a weakly coupled large N fixed point in the ε-expansion. In attempting

to gauge the large global symmetry of these tensor models, one might wonder if in d = 3, a

suitable Chern-Simons tensor model would lead to a new class of conformal field theories.

It is easy to see that the Chern-Simons couplings will lead to interactions that are non-

melonic (for instance, the so-called pillow vertices arise after integrating out the gauge field

or auxiliary fields). Taming these appears to drive one towards the weak-coupling limit of

the Chern-Simons gauging, suggesting the absence of a non-trivial fixed point. We hope

to report further on these constructions in the near future.

Finally, let us note an interesting corollary of our analysis which could potentially

have bearing in more familiar contexts of the AdS/CFT correspondence.17 The fact that

we have a theory with two supercharges with a supersymmetry broken vacuum could have

implications for counting black hole entropy for 1
16 BPS black holes in AdS5 × S5. The

current status quo for these black holes is that they are supersymmetric solutions of Type

IIB supergravity with O(N2) entropy. But field theory analysis reveals both the index [68]

and explicit enumeration of states (preserving 2 supercharges) at small N [69] to have

far fewer states falling short of the black hole entropy. The analogy to draw here would

be the potential for supersymmetry breaking effects due in the 1/N expansion (either

perturbatively beyond leading order or non-perturbatively) could make the supergravity

solutions fail to be supersymmetric in the full quantum theory. Whether this is really the

case, remains to be explored, but the class of models discussed here and in [14] leave open

this intriguing possibility.
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A Tensor models with various supercharges

We undertake a quick examination of tensor models with different amounts of supersymme-

try to demonstrate that the model considered in the main text was the ideal starting point.

In particular, we will show that with N = 1 supersymmetry we do not get a reasonably

quantum theory with melonic couplings. Likewise increasing the supersymmetry to N = 4

fails to help for we end up with non-linear interactions that prevent the solvability of the

large N theory.

First, consider an N = 1 supersymmetric model with fermionic superfield (along the

lines of [15])

ΨAq(t, θ) = ψAq(t) + θ bAq(t) , (A.1)

that transforms in the (q − 1)-fundamental representation of O(N)q−1 with q ≥ 4 even.

As we want melonic dominance we should ensure that the index contraction follows the

all-body coupling described in the text. It is easy to see that the only way to do this is to

have a superpotential term W (ΨAq) = [Ψq]. Integrating this over superspace will give us

the desired action, which including the kinetic term takes the form:

S =

∫
dt dθ

(
− 1

2
ΨAqDΨAq + g

1

q
[Ψq]

)
=

∫
dt

(
i

2
ψAq∂tψ

Aq − 1

2
bAqbAq + g

1

q

∑
perms. σ

sgn(σ) [bψq−1]

) (A.2)

where D = ∂θ + iθ∂t is the superderivative and the sum runs over all permutations σ ∈ Sq
of b. However, since q is even, this gives a potential with an odd number of fermions, which

does not lead to a sensible theory.

Alternatively, we can consider higher supersymmetry, for instance, N = 4 supersym-

metry. Focusing for simplicity on q = 4 we have the bosonic superfield

Φabc = φabc + θα ψ̄abcα − θ̄α
(
ψabc

)α
+ θαθ̄β (Babc)βα

+
i

4
(θθ)θ̄α∂t

(
ψ̄abc

)α − i

4
(θ̄θ̄)θα∂tψ

abc
α +

1

16
(θθ)(θ̄θ̄)∂2

t φ
abc,

(A.3)

where φabc is a bosonic field, (Babc)βα = (σi)
β
αBabc

i are three auxiliary bosonic

fields, and (ψabc)α, (ψ̄abc)α are four fermionic fields. Naively, this model seems

very interesting since the expansion of the superfield with tetrahedral contractions,

Φa1b1c1Φa1b2c2Φa2b1c2Φa2b2c1 in terms of component fields includes interactions of the form
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ψa1b1c1ψ̄a1b2c2ψa2b1c2ψ̄a2b2c1 , which is analogous to the original interaction of the fermionic

tensor model [38]. However, interactions of the form: φa1b1c1φa1b2c2φa2b1c2∂2
t φ

a2b2c1 and

(ψa1b1c1)α(∂tψ̄
a1b2c2
α )φa2b1c2φa2b2c1 , which are present lead to pathologies.

Attempts to write down models using non-linear σ-model intuition (cf., [70]) fails owing

to having to engineer melonic index contraction of the tensors. As such it is not clear how to

proceed to write down models with higher amounts of supersymmetry that lead to solvable

Schwinger-Dyson equations. Based on these arguments it should be transparent that this

problem is only exacerbated for higher supersymmetry.

B SL(2,R) invariant wavefunctions

The solutions to the Casimir equation (5.15) take the general form

Ψh(χ) = (1− χ)
1
2

(∆12−∆34)
[
A(h)χh 2F1(h+ ∆12, h−∆34; 2h;χ)

+B(h)χ1−h
2F1(1− h+ ∆12 , 1− h−∆34; 2− 2h;χ)

]
,

(B.1)

where A(h) and B(h) are integration constants. Demanding that the Casimir operator C
has real eigenvalues, the dimension h can take the value in h ∈ R or h ∈ 1

2 + iR. Due to the

obvious symmetry h → 1 − h of the Casimir equation (5.15), we can restrict the possible

values of dimension h to be h ≥ 1
2 or h ∈ 1

2 + iR+.

The eigenfunction Ψh(χ) is not analytic at χ = 0, 1 and ∞, which correspond to the

points τ2 = τ1, τ3 and τ4, respectively.18 Consider the three regions χ < 0, 0 < χ < 1, and

1 < χ. The constants A(h) and B(h) in different regions are in general different. A set of

matching conditions, that relates the A(h) and B(h) in different regions, can be derived

from the Casimir equation at χ = 0, 1,∞ and the hermiticity condition of the Casimir

operator.19 On functions f(χ) and g(χ), the hermiticity condition reads

0 = 〈Cf, g〉m,n − 〈f, Cg〉m,n =
1

2

∫ ∞
−∞

dχ sgn(χm(1− χ)n) ∂χ [(1− χ)(f∗∂χg − g∂χf∗)] ,

(B.2)

where the integrand is a total derivative. The integral has “boundaries” at χ = 0±, 1±,±∞.

We need to ensure that the boundary terms all cancel. We will first analyze the three

different limits and then assemble the eigenfunctions used in the main text. For technical

reasons, we will assume |∆12|, |∆34| < 1
2 . We leave the analysis for general ∆12,∆34 to

future work.

B.1 Matching conditions

We examine the Casimir equation in the neighborhood of the boundaries of the three

domains discussed above. As with any Schrödinger equation we will see that the matching

conditions will relate the expansion coefficients across domains, and potentially could give

a quantization condition for the eigenvalue h.

18Recall that we chose a time ordering τ1 < τ3 < τ4 and τ2 < τ4 which has three possible coincidence

limits as listed.
19We thank Douglas Stanford for a useful discussion on the matching conditions.
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B.1.1 χ = 1

In the limit χ→ 1, the Casimir equation (5.15) reduces to

∂χ
[
(1− χ)∂χΨh(χ)

]
− δ2

4(1− χ)
Ψh(χ) = 0, (B.3)

where δ = ∆12 −∆34. The field redefinition,

Ψh(χ) = |1− χ|−
1
2
|δ|φh(χ) , (B.4)

results in φh(χ) satisfying the following equation near χ = 0:

∂χ
[
(1− χ)∂χφh(χ) + |δ|φh(χ)

]
= 0. (B.5)

The solutions are simply:

δ 6= 0 : φh(χ) =

a1−(h)(1− χ)|δ| + b1−(h) for χ→ 1−,

a1+(h)(χ− 1)|δ| + b1+(h) for χ→ 1+.

δ = 0 : φh(χ) =

a1−(h) + b1−(h) log(1− χ) for χ→ 1−,

a1+(h) + b1+(h) log(χ− 1) for χ→ 1+.

(B.6)

To obtain the matching between the coefficients a1± and b1± we can first integrate the

Casimir equation (B.5) from χ = 1− ε to χ = 1 + ε for ε > 0. In the limit ε→ 0, we find

b(h) ≡ b1−(h) = b1+(h). (B.7)

The hermiticity condition (B.2) for f = Ψh and g = Ψ̃
h̃

implies

(1− χ)(Ψ∗h∂χΨ̃
h̃
− Ψ̃

h̃
∂χΨ∗h)

∣∣∣
χ→1+

= ±(1− χ)(Ψ∗h∂χΨ̃
h̃
− Ψ̃

h̃
∂χΨ∗h)

∣∣∣
χ→1−

, (B.8)

which further constrains

a1−(h) = ±a1+(h) + cb(h), (B.9)

where c is a real number, the + sign is for the norms 〈·, ·〉0,0 and 〈·, ·〉1,0, and the − sign

is for the norms 〈·, ·〉0,1 and 〈·, ·〉1,1 defined in (5.16). The zero-rung four-point function

Fσ1σ2σ3σ4
0 has no discontinuity at τ2 = τ3, so we would use the conformal eigenfunctions

with c = 0. We will refer to the matching condition with the + sign as the “standard

matching condition”, and with the − sign as the “twisted matching condition”.

B.1.2 χ→ ±∞

The analysis in the limit χ → ±∞ is parallel to the above. First, note that the Casimir

equation reduces to

χ2∂2
χΨh(χ) + χ∂χΨh(χ)− δ̃2

4
Ψh(χ) = 0, (B.10)
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where δ̃ = ∆12 + ∆34. The redefinition

Ψh(χ) = |χ|1+
|δ̃|
2 ϕh(χ) , (B.11)

results in a simple equation for the function φh(χ) as χ→ ±∞, viz.,

∂χ

[
χ2∂χϕh(χ) + (1 + |δ̃|)χϕh(χ)

]
= 0. (B.12)

The solutions to (B.12) are easily determined to be

δ̃ 6= 0 : ϕh(χ) =

A+∞(h)χ−1−|δ̃| + B+∞(h)χ−1 for χ→ +∞,

A−∞(h)χ−1−|δ̃| + B−∞(h)χ−1 for χ→ −∞,

δ̃ = 0 : ϕh(χ) =

A+∞(h)χ−1 + B+∞(h)χ−1 log(χ) for χ→ +∞,

A−∞(h)χ−1 + B−∞(h)χ−1 log(−χ) for χ→ −∞.

(B.13)

We integrate the Casimir equation (B.12) along the region χ ∈ (−∞,−Λ] ∪ [Λ,+∞)

for Λ > 0. In the limit Λ→ +∞, we obtain the condition

B(h) ≡ B−∞(h) = B+∞(h). (B.14)

The hermiticity condition (B.2) implies

χ(Ψ∗h∂χΨh′ −Ψh′∂χΨ∗h)
∣∣∣
χ→+∞

= ±χ(Ψ∗h∂χΨh′ −Ψh′∂χΨ∗h)
∣∣∣
χ→−∞

, (B.15)

which further constrains

A−∞(h) = ±A+∞(h) + cB(h), (B.16)

where c is a real number, the + sign is for the norms 〈·, ·〉0,0 and 〈·, ·〉1,1, and the − sign

is for the norms 〈·, ·〉0,1 and 〈·, ·〉1,0 defined in (5.16). The zero-rung four-point function

Fσ1σ2σ3σ4
0 has no discontinuity at τ2 = τ4, so we would use the conformal eigenfunctions

with c = 0. We will refer to the matching condition with the + sign as the “standard

matching condition”, and with the − sign as the “twisted matching condition”.

B.1.3 χ = 0

The Casimir equation at χ = 0 does not give any useful condition. In the χ→ 0 limit, the

solution to the Casimir equation takes the form as

Ψh(χ) =

A0+(h)χh +B0+(h)χ1−h for χ→ 0+,

A0−(h)(−χ)h +B0−(h)(−χ)1−h for χ→ 0−.
(B.17)

The hermiticity condition (B.2) implies

(Ψ∗h∂χΨh′ −Ψh′∂χΨ∗h)
∣∣∣
χ→0+

= ±(Ψ∗h∂χΨh′ −Ψh′∂χΨ∗h)
∣∣∣
χ→0−

. (B.18)

Plugging (B.17) into the above equation gives

B0+(h) = 0 = B0−(h) when h >
1

2
, (B.19)

which will end up picking out h ∈ Z+ or h ∈ Z+ + 1
2 . The condition (B.18) does not give

any constraints when h ∈ 1
2 + iR+.
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B.2 Solutions

In this subsection, we use the matching conditions discussed in the previous subsection

to determine the bases of conformal eigenfunctions with respect to the four different

norms (5.16).

B.2.1 Bosonic wavefunctions

〈·, ·〉0,0 norm: let us start with the region 0 < χ < 1. General solutions to the Casimir

equation can be written as linear combinations of the following two conformal eigenfunc-

tions as in (B.1). To wit,

Ψs
h(χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + cosπ∆34 secπh)

× χh2F1(h+ ∆12, h−∆34; 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1− cosπ∆12 secπh)

× χ1−h
2F1(1− h+ ∆12, 1− h−∆34; 2− 2h;χ)

]
,

Ψa
h(χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(−1 + cosπ∆34 secπh)

× χh2F1(h+ ∆12, h−∆34; 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1− cosπ∆12 secπh)

× χ1−h
2F1(1− h+ ∆12, 1− h−∆34; 2− 2h;χ)

]
.

(B.20)

Applying the standard matching condition at χ = 1, we obtain the conformal eigenfunctions

Ψs
h and Ψa

h in the region χ > 1,

Ψs
h(χ) = − π(χ− 1)

1
2

(∆12−∆34)χh csc
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h−∆12)

)
csc
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

2Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h csc
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h+ ∆34)

)
sec
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

2Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) ,

Ψa
h(χ) =

π(χ− 1)
1
2

(∆12−∆34)χh csc
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h−∆12)

)
sec
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

2Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

− π(χ− 1)
1
2

(∆34−∆12)χ1−h csc
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h+ ∆34)

)
csc
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

2Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) .

(B.21)
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Applying the standard matching condition at χ → ±∞, we obtain the conformal eigen-

functions Ψs
h and Ψa

h in the region χ < 0,

Ψs
h(χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + cosπ∆34 secπh)

× (−χ)h2F1(h+ ∆12, h−∆34; 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1− cosπ∆12 secπh)

× (−χ)1−h
2F1(1− h+ ∆12, 1− h−∆34; 2− 2h;χ)

]
,

Ψa
h(χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− cosπ∆34 secπh)

× (−χ)h2F1(h+ ∆12, h−∆34; 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1 + cosπ∆12 secπh)

× (−χ)1−h
2F1(1− h+ ∆12, 1− h−∆34; 2− 2h;χ)

]
.

(B.22)

The conformal eigenfunctions Ψs
h and Ψa

h satisfy the equations

Ψs
1−h(χ) =

(cosπ∆12 + cosπh)Γ(h−∆12)Γ(h+ ∆12)

(cosπ∆34 + cosπh)Γ(h−∆34)Γ(h+ ∆34)
Ψs
h(χ),

Ψa
1−h(χ) =

(cosπ∆12 − cosπh)Γ(h−∆12)Γ(h+ ∆12)

(cosπ∆34 − cosπh)Γ(h−∆34)Γ(h+ ∆34)
Ψa
h(χ).

(B.23)

Hence, we can restrict the possible values of dimension h to be h ≥ 1
2 or h ∈ 1

2 + iR+.

When h > 1
2 , the matching condition at χ = 0 constrains the dimension to be h ∈ Z+. We

will refer to the conformal eigenfunctions with dimension h ∈ Z+ as discrete states, and

the conformal eigenfunctions with dimension h ∈ 1
2 + iR+ as continuum states.

For the continuum states, the conformal eigenfunctions Ψs
h and Ψa

h have integral rep-

resentations as

Ψs
h(χ) =

1

2

∫ ∞
−∞

dy
|χ|h

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
,

Ψa
h(χ) = −1

2

∫ ∞
−∞

dy
|χ|hsgn(y)sgn(χ− y)sgn(1− y)sgn(χ)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
.

(B.24)

The inner products of the continuum states are

〈Ψs
h,Ψ

s
h′〉0,0 = Ns(h)× 2πi δ(h− h′),

〈Ψa
h,Ψ

a
h′〉0,0 = Na(h)× 2πi δ(h− h′),

〈Ψs
h,Ψ

a
h′〉0,0 = 0,

(B.25)
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where the functions Ns(h) and Na(h) are

Ns(h) =
tanπh

2(2h− 1)π
(cosπ∆12 − cosπh)(cosπ∆34 + cosπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34),

Na(h) =
tanπh

2(2h− 1)π
(cosπ∆12 + cosπh)(cosπ∆34 − cosπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34).

(B.26)

For the discrete states, the conformal eigenfunctions Ψs
h and Ψa

h are proportional to

each other

tan

(
π∆34

2

)
Ψs
h(χ) = − tan

(
π∆12

2

)
Ψa
h(χ) for h ∈ 2Z+,

tan

(
π∆12

2

)
Ψs
h(χ) = − tan

(
π∆34

2

)
Ψa
h(χ) for h ∈ 2Z+ − 1.

(B.27)

When ∆12 = 0 and ∆34 6= 0, Ψa
h is non-normalizable when h ∈ 2Z+, and Ψs

h is non-

normalizable when h ∈ 2Z+ − 1. When ∆12 6= 0 and ∆34 = 0, Ψa
h is zero when h ∈ 2Z+,

and Ψs
h is zero when h ∈ 2Z+ − 1. The inner products of the discrete states are given by

〈Ψs
h,Ψ

s
h′〉0,0 =

dNs(h)

dh
δh,h′ . (B.28)

〈·, ·〉0,1 norm: let us start with the region 0 < χ < 1. General solutions to the Casimir

equation can be written as linear combinations of the following two conformal eigenfunc-

tions as in (B.1). To wit,

Ψ12
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + cosπ∆34 secπh)

× χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1− cosπ∆12 secπh)

× χ1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
,

Ψ34
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(−1 + cosπ∆34 secπh)

× χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1− cosπ∆12 secπh)

× χ1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
.

(B.29)
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Applying the twisted matching condition at χ = 1, we obtain the conformal eigenfunctions

Ψ12
h and Ψ34

h in the region χ > 1,20

Ψ12
h (χ) = − π(χ− 1)

1
2

(∆12−∆34)χh sec
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h−∆12)

)
csc
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h sec
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h+ ∆34)

)
csc
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) ,

Ψ34
h (χ) = − π(χ− 1)

1
2

(∆12−∆34)χh sec
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h−∆12)

)
sec
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h sec
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h+ ∆34)

)
sec
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) ,

(B.30)

Applying the twisted matching condition at χ→ ±∞, we obtain the conformal eigenfunc-

tions Ψ12
h and Ψ34

h in the region χ < 0,21

Ψ12
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + cosπ∆34 secπh)

× (−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1− cosπ∆12 secπh)

× (−χ)1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
,

Ψ34
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− cosπ∆34 secπh)

× (−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1 + cosπ∆12 secπh)

× (−χ)1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
,

(B.31)

The conformal eigenfunctions Ψ12
h and Ψ34

h satisfy the equations

Ψ12
1−h(χ) =

(cosπ∆12 − cosπh)Γ(h−∆12)Γ(h+ ∆12)

(cosπ∆34 + cosπh)Γ(h−∆34)Γ(h+ ∆34)
Ψ12
h (χ),

Ψ34
1−h(χ) =

(cosπ∆12 + cosπh)Γ(h−∆12)Γ(h+ ∆12)

(cosπ∆34 − cosπh)Γ(h−∆34)Γ(h+ ∆34)
Ψ34
h (χ).

(B.32)

Hence, we can restrict the possible values of dimension h to be h ≥ 1
2 or h ∈ 1

2 + iR+.

When h > 1
2 , the matching condition at χ = 0 constrains the dimension to be h ∈ Z+. We

20Without loss of generality, we have assumed ∆34 ≤ ∆12.
21Without loss of generality, we have assumed ∆12 ≤ −∆34.
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will refer to the conformal eigenfunctions with dimension h ∈ Z+ as discrete states, and

the conformal eigenfunctions with dimension h ∈ 1
2 + iR+ as continuum states.

For the continuum states, the conformal eigenfunctions Ψ12
h and Ψ34

h have integral

representations as

Φ12
h (χ) = −1

2

∫ ∞
−∞

dy
|χ|hsgn(y)sgn(χ− y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
,

Φ34
h (χ) =

1

2

∫ ∞
−∞

dy
|χ|hsgn(χ)sgn(1− y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
.

(B.33)

The inner products of the continuum states are

〈Ψ12
h ,Ψ

12
h′ 〉0,1 = N12(h)× 2πi δ(h− h′),

〈Ψ34
h ,Ψ

34
h′ 〉0,1 = N34(h)× 2πi δ(h− h′),

〈Ψ12
h ,Ψ

34
h′ 〉0,1 = 0,

(B.34)

where the functions Ns(h) and Na(h) are

N12(h) =− tanπh

2(2h− 1)π
(cosπ∆12 + cosπh)(cosπ∆34 + cosπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34),

N34(h) =− tanπh

2(2h− 1)π
(cosπ∆12 − cosπh)(cosπ∆34 − cosπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34).

(B.35)

For the discrete states, the conformal eigenfunctions Ψ12
h and Ψ34

h are proportional to each

other

Ψ12
h (χ) = cot

(
π∆12

2

)
cot

(
π∆34

2

)
Ψ34
h (χ) for h ∈ 2Z+,

Ψ12
h (χ) = tan

(
π∆12

2

)
tan

(
π∆34

2

)
Ψ34
h (χ) for h ∈ 2Z+ − 1.

(B.36)

Their inner products are given by

〈Ψ12
h ,Ψ

12
h′ 〉0,1 =

dN12(h)

dh
δh,h′ . (B.37)

B.2.2 Fermionic wavefunctions

〈·, ·〉1,0 norm: let us start with the region 0 < χ < 1. General solutions to the Casimir

equation can be written as linear combinations of the following two conformal eigenfunc-
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tions as in (B.1). To wit,

Ψ14
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(−1− sinπ∆34 cscπh)

× χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1 + sinπ∆12 cscπh)

× χ1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
,

Ψ23
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− sinπ∆34 cscπh)

× χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1 + sinπ∆12 cscπh)

× χ1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
,

(B.38)

Applying the standard matching condition at χ = 1, we obtain the conformal eigenfunctions

Ψ14
h and Ψ23

h in the region χ > 1,

Ψ14
h (χ) =

π(χ− 1)
1
2

(∆12−∆34)χh csc
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h−∆12)

)
csc
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

− π(χ− 1)
1
2

(∆34−∆12)χ1−h csc
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h+ ∆34)

)
csc
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) ,

Ψ23
h (χ) = − π(χ− 1)

1
2

(∆12−∆34)χh csc
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h−∆12)

)
sec
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h csc
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h+ ∆34)

)
sec
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) .

(B.39)

Applying the twisted matching condition at χ→ ±∞, we obtain the conformal eigenfunc-

tions Ψ14
h and Ψ23

h in the region χ < 0,22

Ψ14
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + sinπ∆34 cscπh)

× (−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1 + sinπ∆12 cscπh)

× (−χ)1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
,

22Without loss of generality, we have assumed ∆12 ≤ −∆34.
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Ψ23
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− sinπ∆34 cscπh)

× (−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1− sinπ∆12 cscπh)

× (−χ)1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
.

(B.40)

The conformal eigenfunctions Ψ14
h and Ψ23

h are related by the equation

Ψ14
1−h(χ) = −(sinπ∆34 + sinπh)Γ(1− h−∆34)Γ(1− h+ ∆34)

(sinπ∆12 + sinπh)Γ(1− h−∆12)Γ(1− h+ ∆12)
Ψ23
h (χ). (B.41)

Hence, we only need to consider the conformal eigenfunction Ψ23
h with the range of dimen-

sion h ∈ R or h ∈ 1
2 + iR. When h ∈ R, the matching condition at χ = 0 constrains the

dimension to be h ∈ Z + 1
2 . We will refer to the conformal eigenfunctions with dimension

h ∈ Z + 1
2 as discrete states, and the conformal eigenfunctions with dimension h ∈ 1

2 + iR
as continuum states.

For the continuum states, the conformal eigenfunctions Ψ14
h and Ψ23

h have integral

representations as

Ψ14
h (χ) = − 1

2

∫ ∞
−∞

dy
|χ|hsgn(χ)sgn(y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
,

Ψ23
h (χ) =

1

2

∫ ∞
−∞

dy
|χ|hsgn(χ− y)sgn(1− y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
.

(B.42)

The inner product of the continuum states is

〈Ψ23
h ,Ψ

23
h′ 〉0,1 = N23(h)× 2πi δ(h− h′), (B.43)

where the function N23(h) is

N23(h) =
cotπh

2(2h− 1)π
(sinπ∆12 + sinπh)(sinπ∆34 − sinπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34).

(B.44)

For discrete states, the conformal eigenfunction Ψ23
h satisfies

Ψ23
h (χ) =

Γ(1− h+ ∆12)Γ(h+ ∆34)

Γ(h+ ∆12)Γ(1− h+ ∆34)
Ψ23

1−h(χ). (B.45)

Hence, we can further restrict the range of the dimension as h ∈ Z++ 1
2 . The inner products

of the discrete states are

〈Ψ23
h ,Ψ

23
h′ 〉0,1 =

dN23(h)

dh
δh,h′ . (B.46)

– 45 –



J
H
E
P
1
0
(
2
0
1
8
)
1
5
7

〈·, ·〉1,1 norm: let us start with the region 0 < χ < 1. General solutions to the Casimir

equation can be written as linear combinations of the following two conformal eigenfunc-

tions as in (B.1). To wit,

Ψ13
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− sinπ∆34 cscπh)

× χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(−1 + sinπ∆12 cscπh)

× χ1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
,

Ψ24
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(−1− sinπ∆34 cscπh)

× χh2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1 + sinπ∆12 cscπh)

× χ1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
.

(B.47)

Applying the twisted matching condition at χ = 1, we obtain the conformal eigenfunctions

Ψ13
h and Ψ24

h in the region χ > 1,23

Ψ13
h (χ) =

π(χ− 1)
1
2

(∆12−∆34)χh sec
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h−∆12)

)
sec
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h sec
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h+ ∆34)

)
csc
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) ,

Ψ24
h (χ) =

π(χ− 1)
1
2

(∆12−∆34)χh sec
(
π
2 (∆12 −∆34)

)
cos
(
π
2 (h−∆12)

)
csc
(
π
2 (h−∆34)

)
Γ (1− h+ ∆12)

Γ (1 + ∆12 −∆34) Γ (1− h+ ∆34)

× 2F1 (h+ ∆12, h−∆34; 1 + ∆12 −∆34; 1− χ)

+
π(χ− 1)

1
2

(∆34−∆12)χ1−h sec
(
π
2 (∆12 −∆34)

)
sin
(
π
2 (h+ ∆34)

)
sec
(
π
2 (h+ ∆12)

)
Γ (h+ ∆34)

Γ (1−∆12 + ∆34) Γ (h+ ∆12)

× 2F1 (1− h−∆12, 1− h+ ∆34; 1−∆12 + ∆34; 1− χ) .

(B.48)

Applying the standard matching condition at χ → ±∞, we obtain the conformal eigen-

functions Ψ13
h and Ψ24

h in the region χ < 0,

Ψ13
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1− sinπ∆34 cscπh)

× (−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

23Without loss of generality, we have assumed ∆34 ≤ ∆12.
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+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1− sinπ∆12 cscπh)

× (−χ)1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
,

Ψ24
h (χ) =

1

2
(1− χ)

1
2

(∆12−∆34)

[
Γ(h−∆34)Γ(h+ ∆34)

Γ(2h)
(1 + sinπ∆34 cscπh)

× (−χ)h2F1(h+ ∆12, h−∆34, 2h;χ)

+
Γ(1− h−∆12)Γ(1− h+ ∆12)

Γ(2− 2h)
(1 + sinπ∆12 cscπh)

× (−χ)1−h
2F1(1− h+ ∆12, 1− h−∆34, 2− 2h;χ)

]
.

(B.49)

The conformal eigenfunctions Ψ13
h and Ψ24

h are related by the equation

Ψ24
1−h(χ) = −(sinπ∆12 + sinπh)Γ(h−∆12)Γ(h+ ∆12)

(sinπ∆34 − sinπh)Γ(h−∆34)Γ(h+ ∆34)
Ψ13
h (χ). (B.50)

Hence, we only need to consider the conformal eigenfunction Ψ13
h with the range of dimen-

sion h ∈ R or h ∈ 1
2 + iR. When h ∈ R, the matching condition at χ = 0 constrains the

dimension to be h ∈ Z + 1
2 . We will refer to the conformal eigenfunctions with dimension

h ∈ Z + 1
2 as discrete states, and the conformal eigenfunctions with dimension h ∈ 1

2 + iR
as continuum states.

For the continuum states, the conformal eigenfunctions Ψ13
h and Ψ24

h have integral

representations as

Ψ13
h (χ) = −1

2

∫ ∞
−∞

dy
|χ|hsgn(y)sgn(1− y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
,

Ψ24
h (χ) =

1

2

∫ ∞
−∞

dy
|χ|hsgn(χ)sgn(χ− y)

|y|∆12+h|χ− y|h−∆12 |1− y|∆34+(1−h) |1− χ|
1
2

(∆12−∆34)
.

(B.51)

The inner product of the continuum states is

〈Ψ13
h ,Ψ

13
h′ 〉1,1 = N13(h)× 2πi δ(h− h′), (B.52)

where the function N13(h) is

N13(h) =− cotπh

2(2h− 1)π
(sinπ∆12 − sinπh)(sinπ∆34 − sinπh)

× Γ(1− h+ ∆12)Γ(1− h−∆12)Γ(h+ ∆34)Γ(h−∆34).

(B.53)

For discrete states, the conformal eigenfunction Ψ13
h satisfies

Ψ13
h (χ) =

Γ(1− h+ ∆12)Γ(h+ ∆34)

Γ(h+ ∆12)Γ(1− h+ ∆34)
Ψ13

1−h(χ). (B.54)

Hence, we can further restrict the range of the dimension as h ∈ Z++ 1
2 . The inner products

of the discrete states are

〈Ψ13
h ,Ψ

13
h′ 〉1,1 =

dN13(h)

dh
δh,h′ . (B.55)

– 47 –



J
H
E
P
1
0
(
2
0
1
8
)
1
5
7

C Useful integrals

In this appendix, we list some useful integrals.

• First consider some basic Fourier transforms that enter into the zero-temperature

computations: ∫ ∞
−∞

dτ eiωτ
1

|τ |2∆
= 2 sin(π∆)Γ(1− 2∆)|ω|2∆−1. (C.1)

which converges for ∆ ∈ (0, 1
2).

• We also need the integral for the zero-frequency mode at finite temperature

∫ β
2

−β
2

∣∣∣∣∣ π

β sin πτ
β

∣∣∣∣∣
2∆

dτ =
π2∆− 1

2β1−2∆Γ
(

1
2 −∆

)
Γ(1−∆)

. (C.2)

which converges in the domain ∆ < 1
2 .

• Let us also define a class of integrals that enter into our computation for the four-point

function: ∫ ∞
−∞

dτ ′
1

|τ ′|A|τ ′ − τ |B
=
k0(A,B)

|τ |A+B−1
,∫ ∞

−∞
dτ ′

sign(τ ′)

|τ ′|A|τ ′ − τ |B
=
k1(A,B)sgn(τ)

|τ |A+B−1
,∫ ∞

−∞
dτ ′

sign(τ ′)sign(τ ′ − τ)

|τ ′|A|τ ′ − τ |B
=
k2(A,B)

|τ |A+B−1
,∫ ∞

−∞
dτ0

1

|τ10|A|τ20|B|τ30|2−A−B
=

k0(A,B)

|τ12|A+B−1|τ13|1−B|τ23|1−A
,∫ ∞

−∞
dτ0

sgn(τ10)sgn(τ20)

|τ10|A|τ20|B|τ30|2−A−B
=

k2(A,B)sgn(τ13)sgn(τ23)

|τ12|A+B−1|τ13|1−B|τ23|1−A
,

(C.3)

where the functions k0(A,B), k1(A,B), k2(A,B) are explicitly given by

k0(A,B) =
1

π
Γ(1−A)Γ(1−B)Γ(A+B − 1) [sin(πA) + sin(πB)− sin(π(A+B))] ,

k1(A,B) =
1

π
Γ(1−A)Γ(1−B)Γ(A+B − 1) [sin(πA)− sin(πB)− sin(π(A+B))] ,

k2(A,B) =
1

π
Γ(1−A)Γ(1−B)Γ(A+B − 1) [sin(πA) + sin(πB) + sin(π(A+B))] .

(C.4)

They satisfy the relations

k0(A,B) = k0(A, 2−A−B) = k0(B, 2−A−B),

k2(A,B) = k1(A, 2−A−B) = k1(B, 2−A−B).
(C.5)
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• Other useful integrals are∫
dτdτ ′

sgn(τ1 − τ)sgn(τ2 − τ ′)sgn(τ − τ ′)
|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C

=
sgn(τ12)

|τ12|A+B+C−2
k2(A,C)k1(B,A+ C − 1),∫

dτdτ ′
1

|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C

=
1

|τ12|A+B+C−2
k0(A,C)k0(B,A+ C − 1),∫

dτdτ ′
sgn(τ1 − τ)sgn(τ − τ ′)

|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C

= − 1

|τ12|A+B+C−2
k2(A,C)k0(B,A+ C − 1),∫

dτdτ ′
sgn(τ1 − τ)

|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C

= − 1

|τ12|A+B+C−2
k1(A,C)k1(A+ C − 1, B),∫

dτdτ ′
sgn(τ1 − τ)sgn(τ2 − τ ′)
|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C

=
1

|τ12|A+B+C−2
k1(A,C)k2(B,A+ C − 1),∫

dτdτ ′
sgn(τ − τ ′)

|τ1 − τ |A|τ2 − τ ′|B|τ − τ ′|C

=
sgn(τ12)

|τ12|A+B+C−2
k1(C,A)k1(A+ C − 1, B).

(C.6)
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