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Abstract

We propose a renormalization group flow with emergent supersymmetry in two
dimensions from a non-Lagrangian theory. The ultraviolet theory does not have su-
persymmetry while the infrared theory does. The flow is constrained analytically by
topological defect lines including a new spin constraint, and further supported by nu-
merics from the truncated conformal space approach.

1 Introduction

While unobserved, supersymmetry (SUSY) has played important roles not just in phe-
nomenology, but also in mathematics and theoretical physics. Starting from a supersym-
metric theory in the ultraviolet (UV), renormalization group (RG) flows triggered by generic
relevant deformations break all the SUSY leading to a non-supersymmetric theory in the
infrared (IR). However, interestingly with some degrees of fine-tuning, SUSY could be en-
hanced along the RG flow, ending up with an IR theory that has more SUSY than the UV
theory. Examples of this phenomenon include the SUSY enhancement from N = (0, 4) to
N = (4, 4) in two dimensions [1], from N = 1 to N = 2 [2, 3] and N = 2 to N = 4 [4] in
three dimensions, and from N = 1 to N = 2 [5] and to N = 3 [6] in four dimensions. Note
that all these UV theories have SUSY. The observation raises a natural question: Is there an
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example of emergent SUSY? — an RG flow from a non-supersymmetric theory in the UV to
a supersymmetric theory in the IR.

If we view the SUSY enhancement as a result of fine tuning, we can understand why it
is difficult to find an example of emergent SUSY in higher dimensions; ordinary symmetries
are not strong enough to control quantum corrections. However, in two dimensions, we have
a plethora of non-invertible symmetries, and one expects them to control the corrections.
Indeed, we propose an RG flow with emergent SUSY protected by non-invertible symmetries,
where the UV theory is a non-supersymmetric fermionic conformal field theory (CFT). More
precisely, we start from the m = 5 fermionic minimal model [7, 8], which was rediscovered
recently [9,10] through fermionization [11,12]. The theory does not have SUSY, while an RG
flow triggered by a specific relevant operator preserving certain non-invertible symmetry will
land at the m = 4 fermionic minimal model with N = (1, 1) SUSY [13].1 In order to solve
the RG flow, we employ not only analytic constraints from topological defect lines (TDLs)
but also a numerical method, the truncated conformal space approach (TCSA). TCSA tells
us the ground state degeneracies and the IR central charge that strongly support our flow.

2 Constraining RG flows

In a modern language [16], symmetries are characterized by topological defects, whose prop-
erties are constrained by various consistency conditions. For instance, in two dimensions, the
action of a (zero-form) symmetry on local operators is implemented by circling and shrinking
a topological defect line (TDL), and is constrained by the Cardy condition [17, 18].2 The
fusions of the TDLs, corresponding to the composition of the symmetry actions, together
with the direct sum form the fusion ring, whose abelianization constrains the quantum di-
mensions (loop expectation value) of the TDLs. In addition, the piece-wise fusions (or more
generally the F -moves) of the TDLs are constrained by the pentagon identities [20–27]. In
rational conformal field theories (RCFT), TDLs usually admit braiding structures, which are
constrained by the Hexagon identities [20–25]. These constraints are usually strong enough
that the data of the TDLs — the quantum dimension, fusion ring, F -moves, and braidings
— can only take a discrete set of values.3

Consider an RG flow triggered by a relevant operator. It was realized that if a TDL
commutes with the relevant operator, the TDL survives all along the RG flow. The discrete
data associated to such TDLs cannot be deformed continuously under the flow [27]. A simple
consequence following from the invariance of the quantum dimension is that if a TDL with
a non-integer quantum dimension is preserved under the RG flow, then the vacuum cannot
be a non-degenerate gapped state. The invariance of the braiding also succeeded to explain

1Previous proposals of emergent SUSY include the flow from the lattice model of interacting Majorana
fermions [14], and the flow from the 2d QCD to the N = (2, 2) Kazama-Suzuki models [15].

2We focus on zero-form (possibly non-invertible) symmetry (also called category symmetry) in this paper.
3This is known as the Ocneanu rigidity in category theory [19].
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symmetry enhancements in RCFTs [28].
A TDL can end on defect operators, which live in the defect Hilbert space given by

quantization on the cylinder with twisted (by TDL) periodic boundary condition. The defect
Hilbert space, denoted by HL for the TDL L, is a representation of the holomorphic and
anti-holomorphic Virasoro algebra, though the states (corresponding to the defect operators)
generally have non-integer spins. The fractional part of the spin content of HL satisfies the
spin selection rules derived by the modular transformation and the F -moves [27]. We propose
a new constraint on the spin contents. For a Lorentz invariant RG flow (triggered by a scalar

relevant operator and preserving the Virasoro generator L0−L̃0), the spin of a defect operator
should be invariant. Taking into account the possible decoupling of heavy operators, the spin
contents of HIR

L associated to a surviving line L in the IR must be a subset of those of HUV
L

in the UV, i.e.
{spin content of HUV

L } ⊃ {spin content of HIR
L }. (2.1)

We employ this constraint below to exclude some putative IR theories.

3 Application: an RG flow with emergent SUSY

As an application of the constraints on RG flows, we consider a particular RG flow from the
fermionic m = 5 minimal model. The flow is interesting because one IR phase is expected to
be the fermionic m = 4 minimal model, which is an N = (1, 1) SCFT [13].

3.1 Analytic constraints

Now, let us pick the fermionic m = 5 minimal model as the UV theory. The theory in the
antiperiodic (Neveu-Schwarz) sector has ten primary operators

1 , εε̄ , ε′ε̄′ , ε′′ε̄′′ , ε′′′ε̄′′′ , ε′′′′ε̄′′′′ , σσ̄′′ , σ′′σ̄ , σ′σ̄′′′ , σ′′′σ̄′ , (3.1)

with conformal weights (h, h̄) = (0, 0), ( 1
15
, 1

15
), (2

5
, 2

5
), (2

3
, 2

3
), (7

5
, 7

5
), (3, 3), ( 1

40
, 21

40
), (21

40
, 1

40
),

(1
8
, 13

8
), (13

8
, 1

8
), respectively. The relevant scalar primaries are εε̄, ε′ε̄′ and ε′′ε̄′′, that could be

our candidates for triggering the RG flow.
By solving the Cardy condition, we find ten TDLs in the fermionic m = 5 minimal model

(see supplemental material A). The fusion ring is generated by four TDLs N , M , (−1)F , W
with the relations

N2 = I +M , M2 = I +M + (−1)F ,
(
(−1)F

)2
= I , (−1)FM = M ,

NM = N + (−1)FN , W 2 = I +W .
(3.2)

Their actions on the primary operators are given in Table 1.
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1 εε̄ ε′ε̄′ ε′′ε̄′′ ε′′′ε̄′′′ ε′′′′ε̄′′′′ σσ̄′′ σ′′σ̄ σ′σ̄′′′ σ′′′σ̄′

N̂
√

3 0 −
√

3 0
√

3 −
√

3 −1 1 1 −1

M̂ 2 −1 2 −1 2 2 0 0 0 0

(̂−1)F 1 1 1 1 1 1 −1 −1 −1 −1

Ŵ ζ −ζ−1 −ζ−1 ζ −ζ−1 ζ −ζ−1 −ζ−1 ζ ζ

Table 1: The action of the primitive TDLs in the fermionic m = 5 minimal model on the primary

operators, where ζ := 1+
√

5
2 is the golden ration. The TDL (−1)F acts as the fermion

parity, i.e. +1 on the bosonic operators and −1 on the fermionic operators.

We will focus on the RG flow triggered by the operator ε′′ε̄′′ and study the constraints
coming from the surviving TDLs {I, (−1)F , W, (−1)FW}.4 The other relevant operators
εε̄ and ε′ε̄′ cannot be generated along the RG flow because they are prohibited by the non-
invertible symmetry W .

First, by the constraint of the quantum dimension discussed in the previous section, the
IR theory cannot be trivially gapped, since the line W has non-integer quantum dimension
ζ /∈ N. The possible IR phases are either a CFT or a topological quantum field theory
(TQFT) with degenerated vacua.5 Furthermore, since the possible eigenvalues of W are

ζ = 1±
√

5
2

, the ground state degeneracy (GSD) of the TQFT should be even [27]. Hence, the
possible IR phases can be summarized as follows depending on the GSD:

IR theory =

{
CFT (GSD = 1),

TQFT (GSD ∈ 2N).
(3.3)

In order to find the GSD, we employ a numerical method, the truncated conformal space
approach (TCSA) [29], in the next subsection. We will see GSD = 1 for one sign of the
relevant coupling, and GSD = 2 for the opposite sign.

Let us first consider the CFT phase. From the c-theorem, there are only four candidates:
bosonic or fermionic minimal models with m = 4, 3. They have central charges c = 7

10
and

c = 1
2
, respectively. Note that the m = 3 minimal models do not have a TDL with quantum

dimension ζ, so the IR theory cannot be the bosonic or fermionic m = 3 minimal model.
Therefore, we are left with fermionic or bosonic m = 4 minimal models.

Let us assume that the IR CFT is the bosonic m = 4 minimal model. Since the fusion
rules of the surviving TDLs are preserved along the RG flow, the fermion parity (−1)F should
flow to a TDL that generates a Z2 symmetry. One may naively match it with the Z2 line in
the bosonic m = 4 minimal model. However, this possibility can be ruled out by our new

4For the other two RG flows, see supplemental material B.
5Logically speaking, we cannot rule out a tensor product of a TQFT and a CFT where all the surviving

TDLs flow to those in the TQFT factor, and the TDLs in the CFT factor are all emergent. However, this
scenario requires many emergent lines without any reason (so far); thus, is unnatural [28].
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spin constraint (2.1). The defect Hilbert space of the fermion parity line (−1)F has the spin
content

s ∈ {0,±1,±3} , (3.4)

while the defect Hilbert space of the Z2 line in the bosonic m = 4 minimal model has the
spin content

s ∈ {0,±1

2
,±3

2
} , (3.5)

which is not the subset of the former (3.4). The remaining possibility is that (−1)F flows
to a TDL that acts trivially on all the local operators in the bosonic m = 4 minimal model.
In this scenario, the Z2 symmetry in the bosonic m = 4 minimal model must emerge, which
we found unnatural [28]. In the next section, we will provide numerical evidences for the
existence of IR fermionic states, which would rule out the flow to IR bosonic phases.

Finally, let us examine the only CFT scenario, the fermionic m = 4 minimal model. By
solving the (modified) Cardy condition, we find eight TDLs in the fermionic m = 4 minimal
model (see supplemental material A). The fusion ring is generated by the TDLs (−1)F , R,
W with the relations (

(−1)F
)2

= I , R2 = I , W 2 = I +W . (3.6)

By matching the UV and the IR fusion rules, we must have

WUV = WIR . (3.7)

Next, let us match the UV TDL (−1)F . There are three nontrivial Z2 lines in IR: (−1)F ,
R, (−1)FR. Can we figure out to which TDL (−1)F flows? Yes, we can.The defect Hilbert
space H(−1)F of the UV (−1)F contains only scalar primaries, while those of the IR TDLs
have the spin contents s ∈ {0} for (−1)F , s ∈ {− 1

16
, 7

16
} for R and s ∈ { 1

16
, − 7

16
} for (−1)FR.

Our spin constraint (2.1) implies that the UV (−1)F can only flow to the IR (−1)F .6 This
completes the matching of surviving TDLs because the fourth line should be the fusion of
(−1)F and W .

In short, surviving lines are identified as

UV : I (−1)F W (−1)FW
↓ ↓ ↓ ↓

IR : I (−1)F W (−1)FW
. (3.8)

Note that the IR theory is an RCFT described by a modular tensor category (MTC). However,
the surviving lines do not form an MTC, but only a braided fusion category (BFC) because

6The flows from the UV (−1)F to the IR R or (−1)FR are also ruled out by matching the F -moves.
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the (−1)F line is transparent.7 Hence, extra TDLs should emerge in the IR [28, 31]. In
particular, the emergent TDLs R and (−1)FR generate the Z2 × Z2 R-symmetry of the
emergent N = (1, 1) SUSY. An important fact to notice is that the TDLs R and (−1)FR
are q-type [32–34], which satisfy the modified Cardy condition discussed in supplemental
material A.

3.2 Numerical study

In the truncated conformal space approach (TCSA), one puts a CFT on a cylinder with
circumference R. The theory is quantized on a circle with a Hamiltonian given by that of
the UV CFT. One then deforms the Hamiltonian by adding terms given by integrating the
relevant primary operators. The full Hamiltonian after the deformation is8

Hfull = HUV CFT −
∑
i

λi

∫
S1
φi. (3.10)

The spectrum of the deformed theory is obtained by diagonalizing the full Hamiltonian.
Originally, this task is intractable due to the infinitely many states. Yurov and Zamolodchikov
[29] suggested to truncate the conformal Hilbert space at some level. The truncation makes
the dimension finite, and one can compute the spectrum. This is the reason for the name.

This problem can be solved on a computer. As far as we know, there are three open
codes [35–37] running on Mathematica, C++, and Matlab, respectively. Our code is based
on STRIP [35]. We modify the code in two points: make it work also for nondiagonal theories,
and made two improvements. The two improvements are 1) the subtraction of divergences as
the cutoff in the TCSA is sent to infinity, and 2) the renormalization of coupling constant(s).
For details of the improvements we use, see [38,39].

The code needs two inputs: the basis of Verma modules and the operator product ex-
pansion (OPE) coefficients. The former is chiral in nature, and is the same as in the bosonic
theories. The latter can be computed from F -symbols as in [40]. We focus on the deformation
by ε′′ε̄′′ with the coupling constant λ1,3. The TCSA results, R vs. energy E(R), are given in
Figure 1.

7The braiding matrix is given by [30]

λ =


1 1 1 1
1 1 1 1
1 1 − 1

ζ2 − 1
ζ2

1 1 − 1
ζ2 − 1

ζ2

 (3.9)

in the basis {I, (−1)F ,W, (−1)FW}.
8We fix the sign of couplings in the Lagrangian formalism.
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1 2 3
R

10

30

50

E(R)

(a) λ1,3 = +0.1

5 10 15
R

-5

5

15

E(R)

(b) λ1,3 = −0.1

1 2
R

-3

-1

1

E(R)

(c) Computation of IR central charge

1 2 3 4 5
R

40

80

E(R)

(d) Spectrum in the spin 3/2 sector

Figure 1: TCSA results: The spectrums in the spin-zero sector for positive (a) and negative (b)
relevant coupling λ1,3. (c) fits the ground state energy with ansatz 1/R+R: the actual
spectrum (dotted blue) and the fitting (solid orange). A fitting region is chosen to get
the best fit. (d) shows the spectrum in the spin 3/2 sector for λ1,3 = +0.1.

For λ1,3 > 0, we see the two lowest spectra are separating to each other as we increase
R, signaling an unique ground state. This strongly suggests the IR theory is conformal. As
we argued in the previous section, the only candidate CFT is the fermionic m = 4 minimal
model. In fact, we can fit the ground state energy (IR central charge) following [38]. The
fitting result is given in figure 1c. The central charge from the fitting is

cnumerical
IR = 0.717383, (3.11)

which is close to that of the fermionic m = 4 minimal model c = 7
10

. The numerical result
strongly supports our RG flow with emergent SUSY. We further apply the TCSA to the
fermionic states.9 In particular, the spin 3/2 states have spectrum 1d. By fitting curves, we

9The TCSA for the fermionic (half-integer spin) sector can be viewed as the TCSA for the defect Hilbert
space of the Z2 line in the bosonic m = 5 minimal model. We thank Shu-Heng Shao and Yifan Wang for a
discussion on this point.
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find scaling dimensions

∆ = 1.55239, 1.88536, 2.57076, 3.55231, 4.75231, 4.75231, (3.12)

which can respectively be identified with the operators ε′′, L−1ε
′ε̄, L−2εε̄

′, L−2L̄−1ε
′ε̄, L−3ε̄

′′,
L−3L̄−1εε̄

′ in the fermionic m = 4 minimal model. The existence of half-integer spin states
rules out the possibility of the IR theory being the bosonic m = 4 minimal model.

Let us also look at the other sign of the coupling, λ1,3 < 0. In this case, one can see a
beautiful doubly-degenerated ground states, consistent with the surviving W, (−1)FW lines.10

Our TCSA result suggests that λ1,3 < 0 triggers an RG flow to the IR TQFT with GSD = 2.

4 Discussion

We show that the fermionic m = 5 minimal model deformed by the least relevant operator
ε′′ε̄′′ with a positive coupling constant flows to the fermionic m = 4 minimal model. The
IR emergent SUSY N = (1, 1) has Z2 × Z2 R-symmetry generated by the emergent q-type
simple TDLs R and (−1)FR. Such a flow with emergent SUSY may open a door to discover
SUSY experimentally.

This example also hints a more general relation between q-type TDLs and fermionic chiral
algebras. For the fermionic mimimal models, by solving the (modified) Cardy condition, we
find that those with q-type TDLs are the m = 3, 4 and the exceptional m = 11, 12 [10].
All of them have fermionic chiral algebras, and the q-type TDLs act non-trivially on the
generators. We propose that this relation holds more generally in fermionic rational (or
even irrational) CFTs. Further examples supporting this claim are the fermionization of the
Z4n+2 parafermion CFTs, which have q-type TDLs forming the TY4n+2/ψ2n+1 super fusion
categories [33] and fermionic chiral algebras involving spin 2n+1

2
currents.11 These phenomena

can be also lifted to three dimensions in the context of (fermionic) anyon condensation, and
the corresponding enhanced chiral algebras are realized in terms of the two-dimensional edge
modes [42–44]. If this expectation is true, then a necessary condition for emergent SUSY in
an IR fermionic CFT is an emergence of q-type TDLs.

The main tools we employ to solve the RG flow are constraints imposed by the TDLs, as
well as a numerical method, TCSA. We showed their power by applying these to RG flows
from non-Lagrangian theories. They can also be applied to study the RG flows from the
fermionic m = 5 minimal model induced by the relevant operators ε′ε̄′ and εε̄ (supplemental
material B), and the RG flow from the ferminonic m = 4 model induced by the operator
ε′ε̄′ (supplemental material C). We believe the TDLs’ analysis to constrain RG flows can be
applied to general fermionic minimal models as well as other 2d fermionic CFTs.

10One may wonder whether the third lowest spectrum is a ground state or not. However, GSD = 3 conflicts
with the even-degeneracy imposed by the analytic constraints.

11The n = 1 case was studied in [41].

8



Acknowledgement

It is a pleasure to thank Ling-Yan Hung, Shu-Heng Shao, Qing-Rui Wang for discussions.
We thank Shu-Heng Shao and Yifan Wang for comments on a preliminary draft. The work
of J.C. is supported by the National Thousand-Young-Talents Program of China. F. Xu
is partly supported by the Research Fund for International Young Scientists, NSFC grant
No. 11950410500. CC is partly supported by National Key R&D Program of China (NO.
2020YFA0713000).

A TDLs in fermionic m = 3, 4, 5 minimal models

In this supplemental material, we explain how to find TDLs in fermionic CFTs via a (modi-
fied) Cardy condition [17,18].

The procedure works as follows. One first postulates the actions of a TDL L on all the
primary operators, and computes the twisted partition function

ZL(τ, τ̄) = tr
(
L̂qL0− c

24 q̄L̃0− c
24

)
. (A.1)

Next, we take the modular S-transformation of the twisted partition function ZL(− 1
τ
,− 1

τ̄
).

If the postulated TDL L is legitimate, then ZL(− 1
τ
,− 1

τ̄
) can be interpreted as a partition

function of the defect Hilbert space HL, and should admit a q and q̄-expansion with natural
number coefficients. Let us demonstrate this condition in RCFTs, where the number of
primary operators is finite. Their characters χi combine to give the full partition function
Z =

∑
i,j Nijχiχ̄j. The coefficients Nij’s should be natural numbers for the Hilbert space to

have a physical interpretation. We place a theory on a torus. Suppose we insert a putative
TDL L along a time slice, and get the twisted partition function ZL =

∑
i,j (ML)ij χiχ̄j.

The mass matrix (ML)ij encodes the information how L acts on primaries. In order to find
actions of TDLs (or equivalently consistent mass matrix ML), we perform the modular S-
transformation. Then, the line is now inserted along the time direction. In other words,
a time slice gives a defect Hilbert space HL. We can still expand the trace over the space
in terms of characters; ZL =

∑
i,j(SMLS

†)ijχiχ̄j. However, for the Hilbert space to have a
physical interpretation, the coefficients should be natural numbers;

(SMLS
†)ij

!
∈ N. (A.2)

In fermionic CFTs, there are two types of simple TDLs: m-type and q-type [32,34,45].12

In the language of super fusion category, the m and q-type simple TDLs are defined by the
dimensions of the endomorphism spaces:

End(Lm-type) = C , End(Lq-type) = C1|1 . (A.3)

12The latter were also called “Majorana object” in [46–48].
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The m-type TDLs satisfy the ordinary Cardy condition (A.2). For the q-type TDLs, (A.3)
implies that the defect Hilbert space HLq-type is doubly degenerate, and also indicates an extra
one-dimensional Majorana fermion living on the worldline of the q-type simple TDL, whose
contribution in a torus partition function can be factored out by sending L̂q-type →

√
2L̂q-type.

Combining these two effects, we arrive the modified Cardy condition

(SMLS
†)ij

!
∈
√

2N. (A.4)

For more details about TDLs in fermionic CFTs, see [34]. Equipped with the method, we
find TDLs in fermionic minimal models with m = 3, 4, 5 cases.

A.1 m = 3

The m = 3 minimal model has four primary operators

1 , ψ , ψ̄ , ψψ̄ . (A.5)

There are three characters with the holomorphic conformal weights h = 0, 1
2

and 1
16

. Let us
denote the action of a TDL L on the primary operators by a mass matrix ML:

ML =

a b 0
c d 0
0 0 0

 . (A.6)

where the rows and columns are ordered as h = (0, 1
2
, 1

16
). Only four components are non-zero

because we only have four primaries (A.5) in the fermionic m = 3 minimal model. Since there
are four variables, a, b, c, d, there are at most four TDLs. Conjugating the mass matrix with
the modular S-matrix, we obtain

SMLS
† =

A A B
A A B
C C D

 ,

where

A :=
a+ b+ c+ d

4
, B :=

a− b+ c− d
2
√

2
, C :=

a+ b− c− d
2
√

2
, D :=

a− b− c+ d

2
.

Let us first look for invertible lines. (In this case, one can set a = 1.) We first try to find
m-type lines by imposing the ordinary Cardy condition (A.2):

A,B,C,D ∈ N.

10



Adding or subtracting B and C, one obtains

a− d√
2
∈ N,

−b+ c√
2
∈ N.

Obviously, the identity line a = b = c = d = 1 satisfies the condition, which gives one (trivial)
TDL. A nontrivial line is given by

a = 1 = d, b = −1 = c.

This is nothing but the fermion parity (−1)F .
Next, let us search for q-type lines. In this case, we impose the modified Cardy condition

(A.4). Adding or subtracting B and C, we obtain

a− d√
2
∈
√

2N,
−b+ c√

2
∈
√

2N.

These conditions give two choices:

a = 1 = b, c = −1 = d,

or
a = 1 = c, b = −1 = d.

The former is nothing but (−1)FR and the latter is (−1)FL . In total, we obtained four lines,
and we can stop. The nontrivial lines have actions

1 ψ ψ̄ ψψ̄

(̂−1)F 1 −1 −1 1
̂(−1)FL 1 −1 1 −1
̂(−1)FR 1 1 −1 −1

.

One can also read off spin contents associated to each defect Hilbert space HL from the
conjugated mass matrix SMLS

†:

H(−1)F : s ∈ {0},

H(−1)FL : s ∈ { 1

16
,− 7

16
},

H(−1)FR : s ∈ {− 1

16
,

7

16
}.
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A.2 m = 4

The procedure can be repeated for m = 4. Since the computations go through exactly the
same (although it is a bit tedious), we only present the results. The theory has eight TDLs
in total. The primitive lines (generators of the fusion ring) have actions

1 εε̄ ε′ε̄′ ε′′ε̄′′ ε′′ ε̄′′ εε̄′ ε′ε̄

(̂−1)F 1 1 1 1 −1 −1 −1 −1

Ŵ ζ −ζ−1 −ζ−1 ζ ζ ζ −ζ−1 −ζ−1

R̂ 1 −1 1 −1 −1 1 −1 1

.

The spin contents associated to each defect Hilbert space are given by

H(−1)F : s ∈ {0},

HW : s ∈ {0,±2

5
,± 1

10
},

HR : s ∈ {− 1

16
,

7

16
}.

A.3 m = 5

Finally, we repeat the same computation for the m = 5 case. By solving the ordinary Cardy
condition, we find 10 TDLs in total. The action of the primitive lines are listed in Table 1.
The spin contents associated to each defect Hilbert space are given by

H(−1)F : s ∈ {0},

HW : s ∈ {0,±1

2
,±2

5
,± 1

10
},

HN : s ∈ {±1

8
,±3

8
,± 1

24
,±11

24
},

HM : s ∈ {0,±1

2
,±1

3
}.

B The other two RG flows

For completeness, in this supplemental material, we consider the other two RG flows triggered
by the relevant operators φ21,21 = ε′ε̄′ and φ33,33 = εε̄.

We start with the RG flow triggered by ε′ε̄′, which commutes with the primitive lines
{I, (−1)F ,M}. One finds no lower CFT can satisfy the constraints — the matching of
the quantum dimensions, fusion ring (3.2), F -moves, and braidings — of the three TDLs.
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Hence, the IR theory cannot be a CFT, and is necessarily gapped. It can be trivial because
all quantum dimensions are natural numbers. To fix the ground state degeneracy (GSD), we
employ the TCSA. The numerical results are given in Figure 2, which suggest

IR theory =

{
TQFT with GSD = 2 (λ2,1 > 0),

TQFT with GSD = 1 (λ2,1 < 0).
(B.1)

5 10 15
R

-5

5

15

E(R)

(a) λ2,1 = +0.1

5 10 15
R

-5

5

15

E(R)

(b) λ2,1 = −0.1

Figure 2: TCSA results: The spectrum in the spin-zero sector for the positive (a) and negative
(b) relevant coupling λ2,1.

Next, let us study the RG flows preserving only the TDLs {I, (−1)F}, which can in
general be triggered by any linear combination λ3,3εε̄+λ2,1ε

′ε̄′+λ1,3ε
′′ε̄′′. Since the number of

surviving TDLs are small, the analytic constraints we can draw is weak. In fact, we cannot
rule out any scenario, and the IR theory can be gapped (possibly degenerate), or a CFT.
For the CFT scenario, from the c-theorem, the bosonic and fermionic minimal models with
m = 3, 4 are allowed. However, the spin constraint (2.1) rules out bosonic options just as
the flow discussed in the main text. Hence, the possible IR CFTs are the fermionic minimal
models with m = 3, 4. In these scenarios, the (−1)F line flows to the (−1)F lines in the
IR. In general, we expect that the CFTs or the TQFTs with degenerate vacua only show up
when we fine tune the coupling constants λ3,3, λ2,1, λ1,3; otherwise, the IR phase is trivially
gapped.

For concreteness, let us consider the case λ2,1 = 0 = λ1,3. The results are given in Figure
3, which suggest GSD = 1 for both signs of the relevant coupling λ3,3. The behavior is closer
to gapped phases than to conformal phases. In order to check the phase, we also fit the
ground state energy. However, we found the numerical results are not close to neither 7

10
nor

1
2
. Therefore, we believe that the IR theories are trivially gapped.
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Figure 3: TCSA results: The spectrum in the spin-zero sector for the positive (a) and negative
(b) relevant coupling λ3,3.

C RG flow from fermionic m = 4 to m = 3

In this supplemental material, we consider the RG flow from the fermionic m = 4 minimal
model to the fermionicm = 3 minimal model. We argue that such an RG flow can be triggered
by the relevant operator φ13,13 = ε′ε̄′, which commutes with four TDLs {I, (−1)F , R, (−1)FR}.
All the lines have integer quantum dimensions, but the lines R and (−1)FR have non-trivial
F -moves. Hence, the trivial phase is ruled out. The IR theory can thus be a TQFT with
GSD > 1, or a CFT. Let us consider the CFT scenario first. The c-theorem tells us that
the only candidates are bosonic or fermionic m = 3 minimal models. However, the former
is ruled out because it does not have three (nontrivial) invertible TDLs.13 Therefore, the
only candidate is the fermionic m = 3 minimal model. Next, let us also look at the TQFT
scenario. In this case, the surviving lines are not strong enough to constrain GSD. Hence,
we resort to the TCSA. The results given in Figure 4 suggest

IR theory =

{
fermionic m = 3 minimal model (λ1,3 > 0),

TQFT with GSD = 2 (λ1,3 < 0).
(C.1)

13The spin constraint (2.1) also kills the possibility.
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Figure 4: TCSA results: The spectrum in the spin-zero sector for the positive (a) and negative
(b) relevant coupling λ1,3 in the deformed fermionic m = 4 minimal model.
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