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1. Introduction

Given a holomorphic cusp form f(τ) =
∑

n>0 af (n)qn of weight k on SL2(Z), where 
q = e2πiτ , the Dirichlet L-function associated to f is the series

L(f, s) =
∑
n≥1

af (n)
ns

= (2π)s

Γ(s)

∞∫
0

f(it)ts−1dt.
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It is well-known that L(f, s) satisfies a functional equation under s �→ k−s and admits a 
meromorphic continuation to the complex plane. We can naturally extend the definition 
of L-function to holomorphic quasi-modular forms with their Fourier expansions. Due to 
the work of Kaneko and Zagier [13], a holomorphic quasi-modular form is always a linear 
combination of iterated derivatives of modular forms and E2. So their L-functions come 
from shifts of the L-functions of modular forms and the L-function of E2. One can also 
find more details of holomorphic quasi-modular forms and their L-functions in [1,5,26].

However, everything goes differently if we consider meromorphic quasi-modular forms. 
If f is a weakly holomorphic modular form, then it has exponential growth at infinity. 
So in this case, the Dirichlet L-functions L(f, s) associated to the Fourier coefficients 
of f never converges. To overcome this problem, we need to introduce the regularized 
integrals. The regularized integrals and L-functions of weakly holomorphic modular forms 
have been studied in [3]. Löbrich and Schwagenscheidt studied the L-values of certain 
meromorphic modular forms as Cauchy principal valued integrals in [18]. McGady defined 
and investigated the L-functions for meromorphic modular forms which are holomorphic 
at infinity in [19].

In this paper, we will study the structure of meromorphic quasi-modular forms and 
their L-functions. Unlike the classical case, the depth of meromorphic quasi-modular 
forms could be larger than k/2, so a meromorphic quasi-modular form may not become 
a linear combination of iterated derivatives of meromorphic modular forms.

Our first result is the following theorem. To state our result, let D := 1
2πi

d
dτ , let 

Mk and QMk be the space of meromorphic modular forms and quasi-modular forms of 
weight k respectively.

Theorem 1.1. We have the following decomposition of C-vector space of quasi-modular 
forms (the ∗ indicates either meromorphic or weakly holomorphic)

QM∗
k =

( k
2−1⊕
l=0

DlM∗
k−2l

)⊕( k
2−1⊕
l=0

DlQM∗, k−2l−1
k−2l

)⊕( ∞⊕
l=k

DlM∗
k−2l

)
.

We next generalize the Rankin–Cohen bracket to meromorphic modular forms. Cohen 
[4] proved that the Rankin–Cohen bracket of two holomorphic modular forms is again a 
modular form. By introducing the Cohen–Kuznetsov series associated to a meromorphic 
modular form in negative weight, we prove the following theorem.

Theorem 1.2. Let f, g be two meromorphic modular forms of weight k, l respectively. Then 
their n-th Rankin–Cohen bracket

[f, g]n :=
n∑

j=0
(−1)j

(
n + k − 1

j

)(
n + l − 1
n− j

)
Dn−jfDjg

is a meromorphic modular form of weight k + l + 2n.
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To state our main result, we need to generalize the regularized integral to meromor-
phic quasi-modular forms. For a meromorphic quasi-modular form f , we consider its 
regularized integral

Λ(f, s) =
∞,∗∫
0

f(it)ts−1dt.

Precise formula for Λ(f, s) is given in Theorem 8.5. The L-function Λ(f, s) admits some 
classical properties as usual. More exactly, we have

Theorem 1.3. Let f ∈ QMmero, p
k be a meromorphic quasi-modular form of weight k and 

depth p. Let f0, · · · , fp be the component functions corresponding to f . Then we have

(i) The complete L-function Λ(f, s) extends to a meromorphic function for all s ∈ C

with the functional equation

Λ(f, s) =
p∑

r=0
ik−rΛ(fr, k − r − s).

(ii) The complete L-function Λ(f, s) has only possibly simple poles either at s = 0 or 
at all integers within k− p ≤ s ≤ k. Moreover, the residue of Λ(f, s) at an integer 
n is

Res
s=n

Λ(f, s) =
{
−af (0) + afk(0) if n = 0
in afk−n

(0) if n �= 0 and k − p ≤ n ≤ k
.

(iii) In general, the L-functions of component functions Λ(fm, s) satisfy the functional 
equations

Λ(fm, s) =
p−m∑
r=0

ik−2m−r

(
m + r

r

)
Λ(fm+r, k − 2m− r − s).

The paper is organized as follows. In Section 2, we introduce the notations and basic 
properties of meromorphic quasi-modular forms. In Section 3, we recall the Maass–
Shimura derivative and Serre derivative. In Section 4 and Section 5, we prove the 
structure theorem of meromorphic quasi-modular forms and discuss the Rankin–Cohen 
brackets of meromorphic modular forms. In Section 6 and Section 7, we introduce the 
regularized integrals for meromorphic functions. In Section 8, we define the L-function 
of a meromorphic quasi-modular form through regularized integral and give the explicit 
formula for the L-function.
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2. Meromorphic quasi-modular forms

Let H = {τ ∈ C | Im(τ) > 0} be the Poincaré upper half-plane. A meromorphic 
modular form of weight k ∈ Z is a meromorphic function on H which satisfies

f |kγ(τ) := (cτ + d)−kf

(
aτ + b

cτ + d

)
= f(τ), where γ =

(
a b

c d

)
∈ SL2(Z),

and which is also meromorphic at infinity, that is, having a Laurent (Fourier) expansion

f(τ) =
∑

n�−∞
af (n)qn, where q = e2πiτ .

If f is holomorphic on H but meromorphic at infinity, we say that f is a weakly holomor-
phic modular form. If f is further holomorphic at infinity, i.e. af (n) = 0 for all n < 0, 
we say that f is a holomorphic modular form. Note that a meromorphic modular form 
usually has poles on H and has exponential growth at infinity.

We denote by Mmero
k (resp. M!

k, Mk) the C-vector space of meromorphic (resp. 
weakly holomorphic, holomorphic) modular forms of weight k, we denote also by

M∗ =
⊕
k∈2Z

M∗
k, ∗ ∈ {mero, !,−}

the graded C-algebra of meromorphic (resp. weakly holomorphic, holomorphic) modular 
forms.

As usual, we define for integer k ≥ 2 the Eisenstein series

Ek(τ) = 1 − 2k
Bk

∞∑
n=1

σk−1(n)qn,

where Bk is the k-th Bernoulli number and

σk−1(n) =
∑
d|n

dk−1.

The Eisenstein series Ek are holomorphic modular forms of weight k for k ≥ 4. In 
particular, the Eisenstein series E4 and E6 are algebraically independent and generate 
the whole graded ring of meromorphic modular forms. To be specific, as graded C-
algebras, one has

M = C[E4, E6] =
⊕
k∈N

⊕
(a,b)∈N2

CEa
4E

b
6,
4a+6b=k
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M! = C[Δ−1, E4, E6] =
⊕
k∈Z

⊕
(a,b,n)∈N3

4a+6b−12n=k

C
Ea

4E
b
6

Δn
,

and

Mmero = C[E4, E6]((0)),

where Δ = 1
1728 (E3

4 − E2
6) is the unique normalized cusp form of weight 12 and ((0))

denotes the homogeneous localization at the prime ideal (0).
However in the case k = 2, the Eisenstein series E2 is no longer modular. In fact, it 

verifies the following transformation rule

E2|2γ(τ) = E2(τ) + 6
πi

(
c

cτ + d

)
, (1)

for any γ =
(
a b

c d

)
∈ SL2(Z). In general, we define

Definition 2.1. A meromorphic quasi-modular form of weight k ∈ Z is a meromorphic 
function f on H with a collection of component functions f0, f1, · · · , fp over H, such that

(i) each fi is meromorphic on H and is also meromorphic at infinity,
(ii) the function f verifies the transformation rule

(f |kγ)(τ) =
p∑

r=0
fr(τ)

(
c

cτ + d

)r

, for any γ ∈ SL2(Z). (2)

If fp �= 0, the number p is called the depth of f . We write also fr = Qr(f) for the r-th 
component of a meromorphic quasi-modular form f .

Remark. It can be seen that the Eisenstein series E2 is of weight 2 and depth 1. A 
meromorphic quasi-modular form of depth 0 is nothing but a meromorphic modular 
form.

We will denote by QMmero, p
k (resp. QM!, p

k , QMp
k) for the set of meromorphic (resp. 

weakly holomorphic, holomorphic) quasi-modular forms of weight k and depth p and 
QMmero,≤p

k (resp. QM!,≤p
k , QM≤p

k ) the C-vector space of meromorphic (resp. weakly 
holomorphic, holomorphic) quasi-modular forms of weight k and at most depth p. Anal-
ogously, write

QM∗ =
⋃

QM∗, p
k , ∗ ∈ {mero, ! ,−},
p∈N,k∈Z
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for the C-algebra of meromorphic (resp. weakly holomorphic, holomorphic) quasi-
modular forms.

Similar to holomorphic quasi-modular forms, each component function fj of a mero-
morphic quasi-modular form f is again a meromorphic quasi-modular form.

Lemma 2.2. Let f ∈ QMmero, p
k be a meromorphic quasi-modular form of weight k and 

depth p with component functions f0, · · · , fp. Then for any 0 ≤ j ≤ p, the function fj
is a meromorphic quasi-modular form of weight k − 2j and depth p − j. More precisely, 
for any γ ∈ SL2(Z),

(fj |k−2jγ)(τ) =
p−j∑
r=0

(
j + r

r

)
fj+r(τ)

(
c

cτ + d

)r

.

In particular, we have that f0 = f and fp is indeed a meromorphic modular form of 
weight k − 2p.

Proof. The details of the proof are omitted since it is completely identical with the proof 
for the holomorphic case given by [26] (see also [5, Thm 5.1.22]). �
Remark. Since there are no holomorphic quasi-modular forms of negative weights, we 
know a holomorphic quasi-modular form always has weight k ≥ 0 and depth p ≤ k/2. 
However, a meromorphic quasi-modular form can have arbitrary weight k and depth p. 
This may be the first glimpse of how a meromorphic quasi-modular form differs from a 
holomorphic quasi-modular form.

Meromorphic quasi-modular forms, especially those with nonpositive weights, enjoy 
certain same properties like Lemma 2.2 compared with holomorphic modular quasi-
forms. For the reader’s convenience, we will sketch the proofs and reassure the reader 
that some arguments of holomorphic quasi-modular forms still work here.

3. Differential operators

This section gives an introduction to the differential operators we will be using.
Let k and p ≥ 0 be integers. Let f be a meromorphic function on the upper-half plane. 

For later use, we recall that the Maass–Shimura derivative of f is

δkf = Df − k Yf

where Y = − 1
4πy . We recall also the Serre derivative of f

ϑk,pf = Df − k − p
E2f.
12
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We will occasionally abbreviate by δ and ϑ in an abuse of notations. We will often 
use the following identities found by Ramanujan.

DE2 = 1
12(E2

2 − E4), DE4 = 1
3(E2E4 −E6), DE6 = 1

2(E2E6 −E2
4).

Lemma 3.1. Let k be an integer and f be a meromorphic function on the upper-half plane. 
For any γ ∈ SL2(R), we have

(Df)|k+2γ = D(f |kγ) + k

2πi
c

cτ + d
f |kγ,

(δkf)|k+2γ = δk(f |kγ).

Moreover, we have the following explicit formula for n times Maass–Shimura derivative.

δnk f =
n∑

j=0

(
n

j

)
(k + j)n−jY

n−jDjf, (3)

where (a)n = a(a +1) · · · (a +n −1) and for n > 0, we set δnk = δk+2n−2◦δk+2n−4◦· · ·◦δk
and δ0

k to be the identity operator.

Proof. The first and second identities are immediate calculations, so we just check the 
last one. We prove it by induction on n. When n = 1, the identity (3) is just the definition. 
Applying Maass–Shimura derivatives on (3), we find that δn+1f equals

D(δnf) + (k + 2n− 2)Y δnf

=
n+1∑
j=0

((
n

j − 1

)
(k + j − 1)n−j+1Y

n+1−jDjf

+
(
n

j

)
(k + j)n−j(n + k + j)Y n+1−jDjf

)

=
n+1∑
j=0

(
n + 1
j

)
(k + j)n+1−jY

n+1−jDjf. �

In particular, when k ≤ 0 and n = 1 − k the coefficients in (3) vanish for j �= 0, in 
that case we obtain the Bol’s identity (cf. [17])

δ1−k
k f = D1−kf for any f ∈ Mmero

k . (4)

This indicates that D1−k is in fact an SL2(Z)-invariant differential operator on Mmero
k . 

These features, as we will see later, will significantly change the behaviours of meromor-
phic quasi-modular forms.
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Lemma 3.2. Given a meromorphic quasi-modular form f ∈ QMmero, p
k with the compo-

nent functions f0, f1, · · · , fp, we have

(Df)|kγ(τ) =
p+1∑
r=0

(
D(fr) + k − r + 1

2πi fr−1

)(
c

cτ + d

)r

,

where by convention f−1 = fp+1 = 0.

Proof. Since D( c
cτ+d ) = − 1

2πi (
c

cτ+d )2, by applying the differential operator D to both 
sides of (2), we get

D(f |kγ) =
p∑

r=0
D(fr)

(
c

cτ + d

)r

− r

2πifr(τ)
(

c

cτ + d

)r+1

.

We complete the proof by applying Lemma 3.1. �
The following lemma implies that the differential operator D usually increases the 

depth of a meromorphic quasi-modular form by 1 (note that in holomorphic case it 
always does).

Proposition 3.3. The space of meromorphic quasi-modular forms QMmero is stable under 
the derivation D. It acts on QMmero by increasing the weight by 2 and increasing the 
depth by at most 1

D : QMmero,≤p
k → QMmero,≤p+1

k+2 .

More precisely, for a meromorphic modular form f ∈ QMmero, p
k , we have Df ∈

QMmero, p+1
k+2 if k �= p and Df ∈ QMmero,≤p

k+2 if k = p.

Proof. This follows immediately from Lemma 3.2. Note that one has

Qp+1(Df) = k − p

2πi Qp(f).

So Df will have exactly depth p + 1 unless k = p. �
The Serre derivative, however, usually preserves the depth of a quasi-modular form. 

We now state an analogous result.

Proposition 3.4. The space of meromorphic quasi-modular forms QMmero is stable under 
the Serre derivative ϑ. It acts on QMmero by increasing the weight by 2,

ϑk,p : QMmero,≤p
k → QMmero,≤p

k+2 .
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In particular, if f is a meromorphic modular form of weight k, then ϑk,pf is a mero-
morphic modular form of weight k + 2.

Proof. Using the modular transformation of E2 in equation (1) and modular transfor-
mation of Df in Lemma 3.2, we get

Qp+1(Df) = k − p

2πi Qp(f), Qp+1(E2f) = 6
πi

Qp(f).

Hence we always have Qp+1(ϑk,pf) = 0. Thus ϑk,pf has at most depth p. �
Lemma 3.5. Let f ∈ Mmero

k be a meromorphic modular form of weight k. Then

(i) If k > 0, we have Dpf ∈ QMmero, p
k+2p ,

(ii) If k ≤ 0 and p ≤ −k, then we have Dpf ∈ QMmero, p
k+2p ,

(iii) If k ≤ 0 and p ≥ 1 − k, then we have Dpf ∈ QMmero, p+k−1
k+2p .

Proof. Applying iteratively Lemma 3.2, we obtain

Qp(Dpf) = p!
(2πi)p

(
k + p− 1

p

)
f, (5)

which is always nonvanishing when k > 0 or p + k ≤ 0. This proves the assertions (i)
and (ii).

For the third one, keep in mind that D1−kf is a meromorphic modular form of weight 
2 − k by Bol’s identity. Therefore by the assertion (i), we have

Dpf = Dp+k−1(D1−kf) ∈ QMmero, p+k−1
k+2p . �

Lemma 3.6. Let p be a nonnegative integer. Then the sequence

0 −→ δp=0 C[Δ±] −→ QMmero,≤p ϑ−→ QMmero,≤p

of graded C-vector space is left exact where δp=0 = 1 when p = 0 and equals 0 when 
p �= 0.

Proof. Let f ∈ QMmero, p
k be a meromorphic quasi-modular form in the kernel of the 

Serre derivative ϑ. As E2 = DΔ/Δ, we have the identity of logarithmic derivative 
12Df/f = (k − p)DΔ/Δ. Therefore f is a power of Δ with k ∈ 12Z and p = 0. �
4. Structure of meromorphic quasi-modular forms

In this section, we study the structure of the graded ring of meromorphic quasi-
modular forms.
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Throughout this section, we set ∗ ∈ {mero, !}. The C-algebra of meromorphic quasi-
modular forms is graded by the weight k and filtered by the depth p

QM∗ =
⊕
k∈Z

⋃
p∈N

QM∗,≤p
k .

Lemma 4.1. Let k and p be integers with p ≥ 0. Then we have the following split exact 
sequence

0 −→ QM∗,≤p−1
k −→ QM∗,≤p

k

Qp−→ M∗
k−2p −→ 0.

Proof. Let f ∈ QM∗,≤p
k be a meromorphic quasi-modular form. We recall that by 

Lemma 2.2, the last component Qp(f) ∈ M∗
k−2p is in fact a meromorphic modular form of 

weight k−2p. Thus the above sequence is exact. From the modular transformation (1) of 
E2, we know that Qp(gEp

2 ) = (6/πi)p g for any g ∈ M∗
k−2p. Thus the map g �→ (2πi

12 )pgEp
2

is a section of the map Qp, so the above exact sequence is also split. �
Theorem 4.2. The graded C-algebra of meromorphic quasi-modular forms is generated 
by meromorphic modular forms and E2

QM∗ = M∗[E2] =
⊕
p≥0

M∗Ep
2 , ∗ ∈ {mero, !},

where the depth of a meromorphic quasi-modular forms is exactly the degree of E2 within 
it.

Proof. Induction on the depth of f ∈ QM∗. The statement is straightforward when the 
depth is 0. As explained in Lemma 4.1, we see that the form f − (2πi

12 )pQp(f)Ep
2 has 

depth ≤ p − 1. Therefore by induction, for any f ∈ QM∗, p
k there exist meromorphic 

modular forms gi of weight k − 2i such that f =
∑p

i=0 giE
i
2. �

Let grp QM∗ be the associated graded C-algebra with respect to the depth p. Then 
grp QM∗ is a bigraded ring

grp QM∗ 

⊕
k∈Z

⊕
p∈N

M∗
k−2pE

p
2 .

Then the induced derivative grp D on grp QM∗ is homogeneous, increasing the weight 
by 2 and depth by 1.

Proposition 4.3. We have the following left exact sequence of bigraded C-vector spaces

0 −→
⊕

M∗
−p E

p
2 −→ grp QM∗ grp D

−−−→ grp QM∗.

p∈N
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In fact, the induced derivative grp D

grp D : QM∗,≤p
k /QM∗,≤p−1

k → QM∗,≤p+1
k+2 /QM∗,≤p

k+2 ,

is a bijection when p �= k and is a zero map if p = k.

Proof. It follows from Lemma 3.5 that the map grp D is injective when p �= k and is 
a zero map when p = k. We next show the surjectivity of grp D for p �= k. Using the 
fundamental identity DE2 = 1

12 (E2
2 − E4), we observe that for a meromorphic modular 

form g of weight k − 2p,

D(gEp
2 ) = DgEp

2 + p

12g(E
p+1
2 − Ep−1

2 E4)

=ϑg Ep
2 + k − p

12 gEp+1
2 − p

12gE4E
p−1
2 .

(6)

Here we recall that ϑg = Dg− k−2p
12 E2g is the Serre derivative of g, which is modular of 

weight k − 2p + 2. Hence,

D(gEp
2 ) ∈ k − p

12 gEp+1
2 + QMmero,≤p

k+2 .

Since k �= p, the map grp D is surjective. �
Likewise, we have an induced homogeneous Serre derivative grp ϑ on grp QM∗, which 

increases the weight by 2 and preserves the depth.

Proposition 4.4. We have the following left exact sequence of bigraded C-vector spaces

0 −→ C[Δ±, E2] −→ grp QM∗ grp ϑ
−−−→ grp QM∗.

Proof. A direct computation

ϑ(gEp
2 ) = pϑ(E2)Ep−1

2 g + ϑ(g)Ep
2

= − p

12gE4E
p−1
2 + ϑg Ep

2

yields that ϑ(gEp
2 ) ∈ ϑg Ep

2 +QMmero,≤p−1
k+2 . Therefore, the kernel of grp ϑ is the graded 

subalgebra generated by powers of Δ and E2. �
It is well-known that a holomorphic quasi-modular form is always a linear combination 

of iterated derivatives of holomorphic modular forms and E2. The theorem below shows 
this fails for meromorphic quasi-modular forms. This is one of the major differences 
between the holomorphic case and meromorphic case.
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Theorem 4.5. Let f ∈ QMmero, p
k be a meromorphic quasi-modular form with depth k/2 ≤

p < k. Then f is never a linear combination of iterated derivatives of meromorphic 
modular forms.

Proof. Suppose that f admits a decomposition f =
∑l0

l=0 D
lFk−2l, where Fk−2l is a 

meromorphic modular form of weight k − 2l. Lemma 3.5 shows that when l0 < k/2 or 
l0 ≥ k, the depth of f is exactly l0. So we are left to consider only k/2 ≤ l0 < k. If 
k/2 ≤ l ≤ l0, the depth of DlFk−2l is k − l − 1, which is strictly smaller than k/2, and 
if l < k/2 the depth of DlFk−2l is l, also strictly smaller than k/2. This implies that the 
depth of f is always < k/2, which leads to a contradiction. �

Finally, we give the proof of the decomposition of the space of meromorphic quasi-
modular forms.

Proof of Theorem 1.1. Lemma 3.5 indicates that each component in the first and last 
parts should have different depth l ≤ k/2 − 1 and l ≥ k respectively. In the middle part, 
applying repeatedly Proposition 3.3 we find that each component has depth k− l− 1 for 
0 ≤ l ≤ k/2 − 1. So the above sum runs through all depths and must be a direct sum of 
C-vector spaces. It remains to show every meromorphic quasi-modular form f ∈ QM∗, p

k

has such decomposition. We divided the proof into three parts.

Part 1. p ≤ k/2 − 1
When p = 0, the result is direct. For 0 < p ≤ k/2 − 1, on account of the computation 

in (5) (or using Proposition 4.3), the p-th component function of

f − (2πi)p

p!
(
k−p−1

p

)DpQp(f)

is zero, so we complete the proof by induction on p.

Part 2. p ≥ k

In this case, since 
(
k−p−1

p

)
�= 0, the induction argument still works unless the depth 

goes to less than k. This implies that we can find Fk−2l ∈ M∗
k−2l where l = k, . . . , p and 

F ∈ QM∗,≤k−1
k such that

f = DpFk−2p + · · · + DkF−k + F.

So we reduce the case p ≥ k to the case p < k.

Part 3. k/2 ≤ p < k

We claim that for any such f there exists a meromorphic quasi-modular form h ∈⊕ k
2−1
l=0 DlQM∗, k−2l−1

k−2l so that f − h ∈ QM∗,≤k/2−1
k . Then the proof will be converted 

to the first part. We will prove the claim by induction on k + p.
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Starting from k+p = 3, the only possible case is k = 2, p = 1. In this case f ∈ QM∗, 1
2 , 

the result is direct since it corresponds to l = 0. We assume that k + p > 3. If p = k− 1, 
then the result is also direct since f ∈ QM∗, k−1

k .
Then we can assume that p < k − 1. By Theorem 4.2, there exists a meromorphic 

modular form Fk−2p of weight k−2p such that f = g+Fk−2p E
p
2 for some g ∈ QM∗,≤p−1

k . 
The same calculation as in equation (6) yields that Fk−2p E

p
2 can be represented as the 

linear combination

k − p− 1
12 Fk−2p E

p
2 = D(Fk−2p E

p−1
2 ) − ϑ(Fk−2p)Ep−1

2 + p− 1
12 Fk−2p E4E

p−2
2 .

On the right-hand side, the first term comes from the derivative of Fk−2pE
p−1
2 , which 

has exactly weight k − 2 and depth p − 1. So by induction assumption, we can find a 
weight k − 2 meromorphic quasi-modular form Gk−2 such that

Fk−2p E
p−1
2 −Gk−2 ∈ QM∗,≤ k−2

2 −1
k−2 with Gk−2 ∈

k−2
2 −1⊕
l=0

DlQM∗, k−2l−3
k−2l−2 .

Then by applying the operator D, we get

D(Fk−2p E
p−1
2 ) −D(Gk−2) ∈ QM∗,≤ k

2−1
k ,

where

D(Gk−2) ∈
k
2−1⊕
l=1

DlQM∗, k−2l−1
k−2l .

Besides, the second term ϑ(Fk−2p) Ep−1
2 and the last term Fk−2p E4E

p−2
2 on the right-

hand side and the function g all have weight k and depth ≤ p − 1. So we find 
that

f − 12
k − p− 1D(Gk−2) ∈ QM∗,≤p−1

k .

By induction assumption, we know there exists H ∈
⊕ k

2−1
l=0 DlQM∗, k−2l−1

k−2l so that

f − 12
k − p− 1D(Gk−2) −H ∈ QM∗,≤ k

2−1
k ,

which proves the previous claim. �
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Remarks.

(i) Theorem 1.1 shows that every meromorphic quasi-modular form can be written 
uniquely (up to Bol’s identity) as a linear combination of iterated derivatives of 
meromorphic modular forms and iterated derivatives of quasi-modular forms of 
weight l and depth l − 1.

(ii) When k ≤ 0, we get only the first part, thus every meromorphic quasi-modular 
form of nonpositive weight is just a linear combination of iterated derivatives of 
meromorphic modular forms of nonpositive weights.

(iii) For holomorphic quasi-modular form this reduces to the well-known (see Zagier [26, 
Prop. 20])

QMk =
( k

2−2⊕
l=0

DlMk−2l

)⊕
D

k
2−1QM1

2,

where the depth p = k/2 comes from the iterated derivatives of the Eisenstein 
series E2 which generates QM1

2.
(iv) According to the work of Paşol–Zudilin [21], it is reasonable to conjecture that all 

magnetic meromorphic quasi-modular forms come from iterated derivatives with 
l > 0 of (quasi-)modular forms with Fourier expansion in Q ⊗Z Z[[q]].

5. Rankin–Cohen brackets of meromorphic modular forms

In this section, we introduce the Rankin–Cohen brackets of meromorphic modular 
forms. The Rankin–Cohen brackets of holomorphic modular forms have been studied in 
a good deal of literature. The reader can find details in [5].

We first introduce the Cohen–Kuznetsov series associated with a meromorphic mod-
ular form. For holomorphic modular forms, these series were originally introduced by 
Cohen [4] and Kuznetsov [15]. When k is a positive integer, our series is the same as 
Cohen and Kuznetsov. When k is a negative integer, we will define a minus series and a 
plus series.

Definition 5.1. Let f be a meromorphic modular form of weight k ∈ Z. We define its 
Cohen–Kuznetsov series by

CK−
D(f ; τ, T ) =

−k∑
n=0

(−1)n+k (−k − n)!
n! Dnf Tn,

CK+
D(f ; τ, T ) =

∑
n≥1−k

Dnf

n!(n + k − 1)!T
n.
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Similarly, we can define CK±
δ (f ; τ, T ) by replacing D by δ. When k > 0, by convention, 

CK− = 0, and CK+ starts from the term n = 0. Moreover, we define the slash operator 
on CK± by

(CK±|kγ)(f ; τ, T ) = (cτ + d)−kCK±
(
f ; aτ + b

cτ + d
,

T

(cτ + d)2

)
,

where γ ∈ SL2(R).

We first give some basic properties of Cohen–Kuznetsov series. When f has positive 
weight, similar results can also be found in [5].

Proposition 5.2. Let f be a meromorphic function of weight k. Suppose k is a nonpositive 
integer. Then

(i) We have

CK+
∗ (f ; τ, T ) = T 1−kCK+

∗ (D1−kf ; τ, T ),

where ∗ denotes the operator D or δ.
(ii) The functions CK+

δ and CK+
D are linked by

CK+
δ (f ; τ, T ) = eTY CK+

D(f ; τ, T ).

(iii) The series CK+
δ and CK+

D commutes with the slash operator up to a factor. 
Namely, for any γ ∈ SL2(R), we have

(CK+
δ )|kγ(f ; τ, T ) = CK+

δ (f |kγ; τ, T ),

(CK+
D)|kγ(f ; τ, T ) = e

T
2πi

c
cτ+dCK+

D(f |kγ; τ, T ).

Proof. (i). Since D1−kf is a modular form of weight 2 − k > 0, one has

T 1−kCK+
D(D1−kf ; τ, T ) =

∑
n≥0

Dn(D1−kf)
n!(n + 1 − k)!T

n+1−k = CK+
D(f ; τ, T ).

The proof for CK+
δ is similar.

(ii). We note that if f is a meromorphic modular form of positive weight k, then by 
Lemma 3.1, we have

CK+
δ (f ; τ, T ) =

∑
n≥0

n∑
j=0

(
n
j

)
(k + j)n−jY

n−jDjf

n!(n + k − 1)! Tn

=
∑ Y lDjf

(k + j − 1)!l!j!T
l+j
j, l≥0
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=eY TCK+
D(f ; τ, T ).

So when the weight of f is nonpositive, we can apply the result above to D1−kf and get

CK+
δ (f ; τ, T ) = T 1−kCK+

δ (D1−kf ; τ, T )

= T 1−keTY CK+
δ (D1−kf ; τ, T ) = eTY CK+

D(f ; τ, T ).

(iii). Similar to the proof above, we start from the positive weight case. By Lemma 3.1, 
we have

(cτ + d)−2n(δnf)
(
aτ + b

cτ + d

)
= δn(f |kγ).

Then

(CK+
δ )|kγ(f ; τ, T ) =

∑
n≥0

(δnf)(aτ+b
cτ+d )

n!(n + k − 1)!
Tn

(cτ + d)2n+k

=
∑
n≥0

δnf(τ)
n!(n + k − 1)!

Tn

(cτ + d)k = CK+
δ (f |kγ; τ, T ).

Finally, we can complete the proof by applying (i)

(CK+
δ )|kγ(f ; τ, T ) = (cτ + d)−kCK+

δ

(
f ; aτ + b

cτ + d
,

T

(cτ + d)2

)

=(cτ + d)k−2CK+
δ

(
D1−kf ; aτ + b

cτ + d
,

T

(cτ + d)2

)
T 1−k

=T 1−kCK+
δ ((D1−kf)|2−kγ; τ, T ) = CK+

δ (f |kγ; τ, T ).

As for the series CK+
D, we just need to apply (ii). �

Then we focus on the minus Cohen–Kuznetsov series.

Proposition 5.3. Let f be a meromorphic modular form of weight k. Suppose k is a 
nonpositive integer. Then for the minus part of Cohen–Kuznetsov series, we have the 
following relations

(i) The functions CK−
δ and CK−

D are linked by

CK−
δ (f ; τ, T ) = eTY CK−

D(f ; τ, T ) + O(T 1−k).

(ii) The function CK−
δ also commutes with the slash operator, i.e. for any γ ∈ SL2(R), 

we have

(CK−
δ )|kγ(f ; τ, T ) = CK−

δ (f |kγ; τ, T ).
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(iii) The function CK−
D has the transformation

(CK−
D)|kγ(f ; τ, T ) = e

T
2πi

c
cτ+dCK−

D(f |kγ; τ, T ) + O(T 1−k).

Proof. (i). The proof is similar to CK+
δ . By definition, we have

CK−
δ (f ; τ, T ) =

−k∑
n=0

n∑
j=0

(
n

j

)
(k + j)n−j

(−1)n+k(−n− k)!
n! Y n−jDjf Tn.

By changing n = j + l, we get

−k∑
j=0

(−1)k−j(−k − j)!
j! Djf T j

−k−j∑
l=0

Y l

l! T
l

=
−k∑
j=0

(−1)k−j(−k − j)!
j! Djf T j

∞∑
l=0

Y l

l! T
l + O(T 1−k)

=eTY CK−
D(f ; τ, T ) + O(T 1−k).

The proof of (ii) and (iii) are similar to (iii) in Proposition 5.2, we omit the details 
here. �

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. The case of k, l > 0 is a result of Cohen [5]. So we assume that 
at least one of k, l is nonpositive. By symmetry [f, g]n = (−1)n[g, f ]n, we may assume 
that k ≥ l. There are exactly two possibilities, either one of k and l is positive or none of 
k and l is positive. For these two parts, we further separate them into the several cases 
depending on n.

Part 1. k > 0, l ≤ 0
Case 1. 0 ≤ n ≤ −l. We consider the product CK+

D(f ; τ, T )CK−
D(g; τ, −T ), it is equal 

to

CK+
D(f ; τ, T )CK−

D(g; τ,−T ) =
−l∑
n=0

n∑
j=0

(−1)jAk,l,n
j Dn−jfDjg + O(T 1−l),

where

Ak,l,n
j = (−1)l+j (−l − j)!

j!(n− j)!(n + k − j − 1)!

= (−1)n+l (−l − n)!
(k + n− 1)!

(
k + n− 1

j

)(
n + l − 1
n− j

)
.
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Here we use the identity 
(−n

j

)
= (−1)j

(
n+j−1

j

)
for n ≥ 0. Thus, we have

CK+
D(f ; τ, T )CK−

D(g; τ,−T ) =
−l∑
n=0

(−1)n+l(−l − n)!
(k + n− 1)! [f, g]nTn + O(T 1−l).

On the other hand, by Proposition 5.2 and 5.3, for any γ ∈ SL2(Z), we have

CK+
D(f ; τ, T )CK−

D(g; τ,−T )|k+lγ = CK+
D(f ; τ, T )CK−

D(g; τ,−T ) + O(T 1−l).

This implies that [f, g]n is a meromorphic modular form of weight k + l + 2n.
Case 2. n ≥ 1 − l. Then the terms where j < 1 − l in the Rankin–Cohen bracket 

vanish since the binomial coefficients become zero. Put n′ = n + l−1, the Rankin–Cohen 
bracket of f and g turns out to be

[f, g]n =
n∑

j=1−l

(−1)j
(
n + k − 1
n− j

)(
n + l − 1

j

)
Dn−jfDjg

=
(2n+k+l−2

n

)
(2n+k+l−2

n′

) n′∑
j=0

(−1)l+1+j

(
n′ + k − 1
n′ − j

)(
n′ + 1 − l

j

)
Dn′−jfDj(D1−lg).

(7)

Therefore,

[f, g]n = (−1)l−1
(2n+k+l−2

n

)
(2n+k+l−2

n′

) [f,D1−lg]n′ .

Notice that D1−lg is a meromorphic modular form of positive weight 2 − l, so [f, g]n
is a multiple of [f, D1−lg]n′ , thus also a meromorphic modular form of weight k + l +
2n.

Part 2. k, l ≤ 0
Case 1. 0 ≤ n ≤ −k. We consider the product CK−

D(f ; τ, T )CK−
D(g; τ, −T ). With the 

same calculation as in Part 1, the product is

CK−
D(f ;τ, T )CK−

D(g; τ,−T )

=
−k∑
m=0

(−1)k+l(−k −m)!(−l −m)![f, g]nTm + O(T 1−k).

So the Rankin–Cohen bracket [f, g]n is again a meromorphic modular form of weight 
k + l + 2n.

Case 2. 1 − k ≤ n ≤ −l. Put n′ = n + k − 1, the same calculation as in (7) shows 
that
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[f, g]n =
n+k−1∑
j=0

(−1)j
(
n + k − 1

j

)(
n + l − 1
n− j

)
Dn−jfDjg

=
(−l
n

)
(−l
n′

) n′∑
j=0

(−1)j
(
n′ + 1 − k

j

)(
n′ + l − 1
n′ − j

)
Dn′−j(D1−kf)Djg.

Thus

[f, g]n =
(−l
n

)
(−l
n′

) [D1−kf, g]n′

is a multiple of [D1−kf, g]n′ , which reduces to Case 1 in Part 1, since D1−kf is a mero-
morphic modular form of positive weight 2 − k.

Case 3. 1 − l ≤ n ≤ 1 − k − l. We note that 
(
n+k−1

j

)
is non-vanishing if and only 

if j ≤ n + k − 1 and 
(
n+l−1
n−j

)
is non-vanishing if and only if 1 − l ≤ j. So when n ≤

1 −k−l, at least one of these two binomials vanishes, this implies that the Rankin–Cohen 
bracket

[f, g]n =
n∑

j=0
(−1)j

(
n + k − 1

j

)(
n + l − 1
n− j

)
Dn−jfDjg ≡ 0

is always vanishing in this case.
Case 4. n ≥ 2 − k − l. Similar to equation (7), letting n′′ = n + k + l − 2 we find 

that

[f, g]n =
n+k−1∑
j=1−l

(−1)j
(
n + k − 1

j

)(
n + l − 1
n− j

)
Dn−jfDjg

=
n′′∑
j=0

(−1)j+l−1
(
n′′ + 1 − k

j

)(
n′′ + 1 − l

n′′ − j

)
Dn′′−j(D1−kf)Dj(D1−lg).

Thus

[f, g]n = (−1)l−1[D1−kf,D1−lg]n′′

is still a meromorphic modular form of weight k + l + 2n. �
The following theorem by Lanphier [16] and El Gradechi [7], originally stated for 

positive weights modular forms, can be also extended to negative weights modular 
forms.

Theorem 5.4. Let f, g be two meromorphic modular forms of weight k, l respectively. Let 
n be a positive integer. Suppose that k + l ≥ 2 or k + l + 2n ≤ 0. Then we have
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Dn−i[f, g]i =
n∑

j=0
ck,l,ni,j (Dn−jf)(Djg), (8)

and

(Dn−if)(Dig) =
n∑

j=0
bk,l,ni,j Dn−j [f, g]j , (9)

where

ck,l,ni,j =
i∑

r=0
(−1)r

(
n− i

n− j − r

)(
k + i− 1
i− r

)(
l + i− 1

r

)
,

and

bk,l,ni,j =
(
n
j

)∑j
r=0(−1)r

(
j
r

)(
k+n−i−1
n−i−r

)(
l+i−1
r+i−j

)
(
n
i

)(
k+l+n+j−1

n−j

)(
k+l+2j−2

j

) .

Proof. Proposition 4.6 in [7] shows that for positive weights k, l the constants bk,l,ni,j and 

ck,l,ni,j are mutually inverse

n∑
r=0

bk,l,ni,r ck,l,nr,j = δi,j =
n∑

r=0
ck,l,ni,r bk,l,nr,j . (10)

We note that for fixed i, j and n, the coefficients ck,l,ni,j and bk,l,ni,j are actually poly-
nomials in k, l. Since (10) holds for all positive integers k, l, it still holds for all integers 
k, l. As long as the denominator of bk,l,ni,r is non-zero, the identities (8) and (9) remain 
valid. �

Define now the following two C-subalgebras of QM∗ with ∗ ∈ {mero, !}

QM∗
+ =

(⊕
k>0

k
2−1⊕
p=0

QM∗, p
k

)⊕
C, QM∗

− =
⊕
k≤0

⊕
p≥0

QM∗, p
k .

Then the space QM∗
+ is generated by positive weight derivatives of positive weight 

meromorphic modular forms and the space QM∗
− is generated by nonpositive weight 

derivatives of nonpositive weight meromorphic quasi-modular forms. It can be deduced 
from Laphier–El Gradechi formula (9) that any product on each space can be rewritten 
as a linear combination of iterated derivatives of Rankin–Cohen brackets. In particular, 
we get
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Theorem 5.5. Let f , g be two meromorphic quasi-modular forms in the space QM∗
+ or 

QM∗
− of weight k, l and depth s, t respectively. Then

fg ∈ M∗
k+l

⊕( s+t⊕
i=0

Ds+t−iS∗
k+l−2s−2t+2i

)
,

where S∗ is the subalgebra of M∗ consisting of meromorphic cusp forms, i.e. those with 
zero constant terms in their Fourier expansions.

Proof. The result follows immediately from Laphier–El Gradechi formula (9). The con-
dition k + l ≥ 2 or k + l + 2n ≤ 0 is automatically satisfied in QM∗

+ and QM∗
−

respectively. �
Remark. In fact, the Rankin–Cohen brackets can be extended to meromorphic quasi-
modular forms using D and ϑ as in [6]. Let f ∈ QM∗,≤s

k and g ∈ QM∗,≤t
l be two 

meromorphic quasi-modular forms. Their (Serre–)Rankin–Cohen brackets can be defined 
as

[f, g]n =
n∑

j=0
(−1)j

(
n + k + s− 1

j

)(
n + l + t− 1

n− j

)
Dn−jfDjg,

Se [f, g]n =
n∑

j=0
(−1)j

(
n + k − 1

j

)(
n + l − 1
n− j

)
ϑn−jfϑjg,

where [f, g]n and Se [f, g]n are meromorphic quasi-modular forms in QM∗,≤s+t
k+l+2n.

6. Fourier coefficients of meromorphic quasi-modular forms

Let us denote by

F = {τ ∈ H ∪ {∞} | − 1/2 ≤ Re(τ) < 1/2}

the standard fundamental domain of the translation τ �→ τ + 1 in H∪ {∞}. We set also 
the trimmed fundamental domain for t0 > 0 by

Ft0 = {τ ∈ F | Im τ ≥ t0}.

Let f be a meromorphic function on F . For any pole α of f with order ordf (α), let

PP∞(f)(τ) =
∑
n<0

af (n)qn (11)

be the principle part of the Fourier expansion of f at α = ∞ and
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PPα(f)(τ) =
ordf (α)∑
m=1

cf,α(m) 1
(τ − α)m (12)

be the principle part of the Laurent expansion of f at τ = α. We put also

P∞(f) =
∑
n<0

af (n)qn,

and

Pα(f) =
ordf (α)∑
m=1

(−2πi)m

(m− 1)! cf,α(m) Li1−m(e(τ − α)),

where e(τ) = e2πiτ . Let m ∈ N be a positive integer, then the Laurent series of 
Li1−m(e(z)) at z = 0 is given by (see [8][Eq. 1.11(8))])

Li1−m(e(z)) = (m− 1)!
(−2πiz)m +

∞∑
k=0

ζ(1 −m− k)
k! (2πiz)k. (13)

This shows that Pα(f) has the same principle part at τ = α as f does.
We have the following estimation on Fourier coefficients of meromorphic quasi-

modular form

Proposition 6.1. Let f =
∑

n�−∞ af (n)qn be a meromorphic quasi-modular form of 
weight k with poles and principal parts as described above. Then we have

af (n) =
∑

α∈Ft0 ,
1≤m≤ordf (α)

(−2πi)m

(m− 1)! cf,α(m)nm−1e−2πinα + O(e2πnt0).

Proof. Let α1, . . . , αl be all the poles of f in Ft0 . Removing all the principal parts with 
all these kinds of Pα(f), we have finally a holomorphic function in Ft0

f̃(τ) = f(τ) − Pα1(f) − · · · − Pαl
(f).

So f̃ is bounded in Ft0 , say by C. Note the function f̃(τ) is holomorphic within the 
closure of the domain Ft0 . Then using Cauchy integral formula at infinity, the n-th 
coefficient of f̃(τ) is bounded by

∣∣∣∣∣∣
it0+1∫
it0

f̃(τ)e−2πinτdτ

∣∣∣∣∣∣ ≤ e2πint0

1∫
0

∣∣f̃(t + it0)
∣∣ dt ≤ Ce2πnt0 . (14)

On the other hand, the n-th coefficient of the polylogarithm function Pα(f) is
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ordf (α)∑
m=1

(−2πi)m

(m− 1)! cf,α(m)nm−1e−2πinα.

Combining with the estimation (14), we get the desired result. �
The Fourier expansions of weakly holomorphic quasi-modular forms have much less 

growth than those of meromorphic quasi-modular forms. One has

Proposition 6.2. Let f =
∑

n≥−n0
af (n)qn ∈ QM!, p

k be a weakly holomorphic quasi-
modular form with n0 > 0. Then for any ε > 0, we have

af (n) � e(4π+ε)√n0n.

Proof. When F is a weakly holomorphic modular form, then we have the following 
estimation [22] on the Fourier coefficients of F

aF (n) � e(4π+ε)√n0n. (15)

Theorem 4.2 shows that every weakly holomorphic quasi-modular form is of the form

f = F0 + F1E2 + · · · + FpE
p
2 .

Note that the order of Fi at infinity is at most n0 for any i = 0, 1, · · · , p. Combining the 
estimation (15), we get

af (n) � e(4π+ε)√n0n,

since σ(n) � n1+ε for any ε > 0. �
Remark. In fact, we can get a more accurate estimation by using the Circle Method to 
weakly holomorphic quasi-modular forms

af (n) � n
2k−3

4 e4π√n0n.

7. Regularized integrals of meromorphic functions

At the start of this section, we recall the L-functions of modular forms. For a cusp 
form f of weight k on H, the completed L-function of f is just the Mellin transform 
of f

Λ(f, s) =
∞∫
f(it)ts−1dt.
0
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This completed L-function is connected with the Dirichlet series of f in the following 
way

Λ(f, s) = Γ(s)
(2π)s

∞∑
n=1

af (n)
ns

.

However in general, a meromorphic quasi-modular form may have exponential growth 
at cusps and polynomial growth at poles. To overcome this, we now construct the regu-
larized integrals of meromorphic functions. This regularization procedure can be divided 
into two parts, the regularization at infinity (and hence at 0) and the regularization at 
positive real numbers.

Following [2], under the assumption that f has at most linear exponential growth at 
infinity, we give the definition of regularized integral of f .

Definition 7.1. Let f(t) be an analytic function with at most linear exponential growth 
for large t ∈ R>0. If the integral

∞∫
t0

e−wtf(t)dt

has a continuation to w = 0, then the regularized integral of f is defined to be

∞,∗∫
t0

f(t)dt :=

⎡
⎣ ∞∫

t0

e−wtf(t)dt

⎤
⎦
w=0

.

We use the notation ∗ to indicate a regularized integral.

Similarly, if f(1/t) has at most linear exponential growth at the cusp 0, then we can 
define the regularized integral of f at 0 using the reflection t �→ 1/t. This is to say,

t0,∗∫
0

f(t)dt :=
∞,∗∫
t−1
0

1
t2
f

(
1
t

)
dt.

For integrals of meromorphic functions near real positive poles, we will use Hadamard 
regularization. The idea of regularizing a divergent integral can be traced back to Cauchy. 
Precise definition of such regularized integrals was firstly introduced by Hadamard [11]
in his study of Cauchy problem for differential equations of hyperbolic type. The in-
terpretation of Hadamard regularization using meromorphic continuation was due to 
Riesz [23,24]. Various theories and generalization of Hadamard regularization can be 
found in the later literature. Gelfand–Shilov [10] formalized Hadamard regularization in 
the framework of generalized functions. Afterwards, the concept of generalized functions 
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was extended to hyperfunctions by Sato [25]. Due to space constraints, we will neglect 
the technical and theoretical details in this paper. The reader can find more precise 
presentations in the previous mentioned articles and the books [12,14].

We can use meromorphic continuation to give the following definition.

Definition 7.2. Let f(t) be a meromorphic function in a neighbourhood of [a, b] with only 
one real positive pole a < c < b, then the regularized integral of f from a to b is defined 
as

b,∗∫
a

f(t)dt :=

⎡
⎣ b∫

a

|t− c|sf(t)dt

⎤
⎦
s=0

,

where the suffix indicates the constant term in the Laurent expansion of s at 0.

As already mentioned, there are different approaches of Hadamard regularization. The 
following proposition explains why they are actually equivalent.

Proposition 7.3. Let f(t) be a meromorphic function in a neighbourhood of [a, b] with 
only one real positive pole a < c < b of order n. Let F (t) = f(t)(t − c)n. Then the 
following different approaches of regularization coincides

(i) The meromorphic continuation of the integral by Riesz

⎡
⎣ b∫

a

|t− c|sf(t)dt

⎤
⎦
s=0

.

(ii) The integral of f(t) in the sense of Sato’s hyperfunction. Equivalently, the Cauchy 
principal valued integral by

1
2

( ∫
C+

+
∫
C−

)
f(t)dt,

where C+ (resp. C−) is a path from a to b above (resp. below) the real axis.
(iii) The Hadamard finite part integral of f(t)

FP
ε=0

( c−ε∫
a

+
b∫

c+ε

)
f(t)dt,

where FP stands for the constant term in the Laurent expansion with respect to ε.
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(iv) The following integral in the sense of pairing the Schwartz distribution FP (x −c)−n

with F (t)

(
FP 1

(x− c)n , F (t)
)

:=
n−1∑
i=0

(n− i− 1)!
n!

(
F (i)(a)

(a− c)n−i
− F (i)(b)

(b− c)n−i

)

+ 1
n! PV

b∫
a

F (n)(t)
t− c

dt,

where PV stands for the Cauchy principal value of the integral.
(v) The following Cauchy principle value given by Sokhotski–Plemelj formula, i.e.

1
2
∑
±

(
lim

u→c±i0

b∫
a

F (t)
(t− u)n dt

)
,

where u tends to c on both sides of real axis.

Proof. (i) ⇔ (ii) ⇔ (iii). If f(t) is holomorphic then the implication is immediate. So 
it suffices to check the function f(t) = (t − c)−n. We may set the paths C± to be the 
paths agreed with the real axis but modified with small upper (resp. lower) semicircles 
S±
ε at c of radius ε.

C+

C− c

For Re(s) � 0, the meromorphic continuation gives us

c+ε∫
c−ε

|t− c|sf(t)dt = (−1)n
c∫

c−ε

(c− t)s−ndt +
c+ε∫
c

(t− c)s−ndt

= (1 + (−1)n) εs+1−n

s + 1 − n
.

Hence, the constant term in the Laurent expansion at s = 0 is
⎡
⎣ c+ε∫

c−ε

|t− c|sf(t)dt

⎤
⎦
s=0

=
{

2 ε1−n/(1 − n) n even
0 n odd

. (16)

Meanwhile, the integrations along the two small semicircles S±
ε give
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1
2

⎛
⎜⎝ ∫

S+
ε

+
∫
S−
ε

⎞
⎟⎠ 1

(t− c)n dt = i

2

⎛
⎝ 0∫

π

ε1−n dθ

ei(n−1)θ +
0∫

−π

ε1−n dθ

ei(n−1)θ

⎞
⎠ .

An elementary calculation shows that this integral coincides with (16). This implies that 
the meromorphic continuation yields the same result as hyperfunction.

Observe that the above integrals have always finite part 0 with respect to ε. It follows 
that the Hadamard finite part integral has the same value as the integral of hyperfunc-
tion. These prove that (i), (ii) and (iii) are equal.

(iii) ⇔ (iv). Integrating by parts, for any testing function φ we get

b∫
a

φ(t)
(t− c)n dt =

n−1∑
i=0

(n− i− 1)!
n!

(
φ(i)(a)

(a− c)n−i
− φ(i)(b)

(b− c)n−i

)

+
n−1∑
i=0

φ(i)(c)
i!

1 − (−1)n−i

(n− i)εn−i
+ 1

n!

( c−ε∫
a

+
b∫

c+ε

)
φ(n)(t)
t− c

dt.

The last term is a convergent integral with Cauchy principal value as ε → 0. Therefore,

(
FP 1

(x− c)n , φ(t)
)

=
n−1∑
i=0

(n− i− 1)!
n!

(
φ(i)(a)

(a− c)n−i
− φ(i)(b)

(b− c)n−i

)

+ 1
n! lim

ε→0

( c−ε∫
a

+
b∫

c+ε

)
φ(n)(t)
t− c

dt

is the finite part with respect to ε. This shows (iii) ⇔ (iv).
(iv) ⇔ (v). This part follows closely with Fox [9] and Gelfand–Shilov [10]. Again using 

integration by parts, for any u not in [a, b], one has

b∫
a

F (t)
(t− u)n dt =

n−1∑
i=0

(n− i− 1)!
n!

(
F (i)(a)

(a− u)n−i
− F (i)(b)

(b− u)n−i

)

+ 1
n!

b∫
a

F (n)(t)
t− u

dt.

Let u → c ± i0 from both sides of real axis, by the Sokhotski–Plemelj formula of Cauchy 
principal valued integral we obtain (iv) ⇔ (v). �

In general, let f(t) be a function which has a finite number of positive real poles and 
has at most linear exponential growth at 0 and infinity. Consider finitely many open 
intervals
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(a1, a2), (a2, a3) . . . , (an−1, an).

Suppose that all poles are contained in these intervals and each interval contains exactly 
one isolated pole. On every interval, we use the previous approaches from Proposition 7.3
to get a regularized integral. Moreover, on the intervals

(0, a1), (an,∞),

we assign to them the regularized integrals from Definition 7.1. At last, we sum up them 
all. This gives the regularized integral of f on (0, ∞), written again as

∞,∗∫
0

f(t)dt.

It is clear that the above definition is independent of the choice of intervals.

8. L-function of meromorphic quasi-modular forms

We first define the L-function of a meromorphic quasi-modular form through the 
regularized integral defined in Section 7.

Definition 8.1. Let f be a meromorphic quasi-modular form. Then we define its complete 
L-function by

Λ(f, s) =
∞,∗∫
0

f(it)ts−1dt.

The Dirichlet L-function associated to f is defined as

L(f, s) = (2π)s

Γ(s) Λ(f, s).

In the following, we will give an explicit formula for Λ(f, s) for any meromorphic quasi-
modular form f . We first consider the regularized integral of a meromorphic function f
at infinity.

Lemma 8.2. Let f be a meromorphic function in a neighbourhood of the half-strip 
Ft0 with only pole at infinity. Suppose its Fourier expansion at infinity is given as 
f(τ) =

∑
n≥−n0

af (n)qn. Then the regularized integral of f(it)ts−1 exists and defines 
a meromorphic function in s. More precisely, we have

∞,∗∫
f(it)ts−1dt = −af (0)ts0

s
+

∑
n �=0

af (n)Γ(s, 2πnt0)
(2πn)s .
t0
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Proof. To avoid problems on negative real axis, following [2], we take only one branch 
of the incomplete gamma function with the branch cut to be the ray {reiθ | r ∈ R>0}, 
where θ ∈ (π, 32π) is a fixed angle. It is easy to see that when Re(w) > 2πn0, the 
integral

∞∫
t0

∑
n �=0

af (n)e−(w+2πn)tts−1dt

is absolutely convergent for any s ∈ C.
Since f is holomorphic in a neighbourhood of the half-strip Ft0 , its Fourier coeffi-

cients satisfy af (n) = O(e2πnt0). This ensures that the value of the above integral is the 
absolutely convergent sum

∑
n �=0

af (n)Γ(s, (2πn + w)t0)
(2πn + w)s =

∑
n>0

+
∑
n<0

,

in view of Γ(s, 2πnt0) ∼ (2πnt0)s−1e−2πnt0 (see [20, Section 8.11 (i)]). We can see that 
the partial sum 

∑
n>0 defines a holomorphic function of (w, s) with Re(w) > −2π and 

s ∈ C. The sum 
∑

n<0 is a finite sum, it can be continued to a holomorphic function of 
(ω, s) in the open domain

C \
n0⋃

m=1
{m + reiθ | r ∈ R≥0} ×C.

Hence both parts can be extended to a holomorphic function of s in a neighbourhood of 
w = 0.

We only need to deal with the term n = 0. When w = 0 and Re(s) < 0, the inte-
gral has well-defined value −ts0/s (cf. [2, Remark after Prop. 3.3]). This extends to a 
meromorphic function to the whole complex plane in s.

At last, we remark that the above evaluation is independent of the choice of 
θ. �

To give the precise formula of a regularized integral at positive reals, we will follow the 
method from McGady [19], whose idea is to remove all the poles with polylogarithm func-
tions. The succeeding calculation deals with the regularized integrals of polylogarithm 
functions first.

Let m ≥ 0 be an integer. For s, α ∈ C with −1/2 ≤ Re(α) < 1/2, we define the 
regularized integral

Jm(s, α) =
∞,∗∫

Li−m(e(it− α))ts dt
t
.

0
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Lemma 8.3. Let Re(s) > 0 and m be a positive integer. If Im(α) < 0, then we have

Jm(s, α) = Γ(s)
(2π)s Lis−m(e−2πiα).

If Im(α) > 0, we have

Jm(s, α) = eiπ(s−m)

(2π)m
Γ(s)

Γ(s−m)ζ(1 − s + m, �Reα� + 1 − α)

− Γ(s)eiπ(s−m)

(2π)s Lis−m(e2πiα) + δReα=0
Γ(s)

Γ(s−m)
is(−α)s−m−1

2(2πi)m .

(17)

Proof. Suppose that α is given with Im(α) < 0, then |e(it − α)| < 1, so we have the 
convergent integral

Jm(s, α) =
∞∫
0

∞∑
n=1

e−2πn(y+iα)

n−m
ts
dt

t

= Γ(s)
(2π)s

∞∑
n=1

e−2πinα

ns−m
= Γ(s)

(2π)s Lis−m(e−2πiα).

(18)

Note both sides extend to a holomorphic function of α except only when α on the 
imaginary axis. Thus it holds for all Re(α) �= 0.

When Im(α) > 0, if α not on the imaginary axis, the formula (17) just follows from 
rewriting (18) with the following reflection formula of polylogarithm [8][Eq. 1.11(16)]

Lis(z) + eiπs Lis(1/z) = (2πi)s

Γ(s) ζ

(
1 − s,

1
2 + ln(−z)

2πi

)
. (19)

The difficulty arises as α = ai is on the imaginary axis where a ∈ R>0, where we 
encounter a Hadamard regularized integral. In this case we may rewrite the integral as

Jm(s, α) =
∞,∗∫
0

Li−m(e(τ − α))
(τ
i

)s dτ

τ
.

We recall that when m is a positive integer, the polylogarithm Li−m(z) is a rational 
function. So the integrand is in fact a rational function of e2πiα. By the Sokhotski–
Plemelj formula (v) in Proposition 7.3, the value of Jm(s, α) on imaginary axis should 
be the mean value of limits as Re(α) tends to 0 on left side and right side of the imaginary 
axis. Moreover, when z ∈ [1, ∞), by the reflection formula (19) again, we get

lim
+

Lis(ze2πiε) − Lis(ze−2πiε) = 2πi (ln z)s−1. (20)

ε→0 Γ(s)
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Combining (18) and (20), we obtain in this way

Jm(s, α) = 1
2

Γ(s)
(2π)s lim

ε→0+

(
Lis−m(e−2πi(α+ε)) + Lis−m(e−2πi(α−ε))

)

= 1
2

Γ(s)
(2π)s

(
2 Lis−m(e2πa) + 2πi

Γ(s−m) (2πa)s−m−1
)
.

Using the reflection formula again, we get

Jm(s, α) = −eiπ(s−m)Γ(s)
(2π)s Lis−m(e−2πa) + is

(2πi)m
Γ(s)

Γ(s−m)ζ(1 − s + m, 1 − ia)

+ is

2(2πi)m
Γ(s)

Γ(s−m) (−ia)s−m−1. �
Along the way, we will encounter the following integral. Let m ≥ 0 be an integer, 

t0 > 0 be a real number and s, α ∈ C, we define

Gm(s, α, t0) =
∞,∗∫
t0

Li−m(e(it− α))ts dt
t
.

Lemma 8.4. Let m ≥ 0 be an integer and t0 be a positive real number. Then the function 
Gm(s, α, t0) extends to an entire function for all s ∈ C and

Gm(s, α, t0) = G1,m(s, α, t0) + G2,m(s, α, t0).

When Im(α) < t0, we have

G1,m(s, α, t0) = 1
(2π)m

∞∑
n=0

e−2πinαΓ(s, 2πnt0)
(2πn)s−m

and G2,m(s, α, t0) = 0.

When Im(α) > t0, we have

G1,m(s, α, t0) = −e−iπ(s−m)

(2π)m

(
δm=0

ts0
s

+
∞∑

n=1

e2πinαΓ(s,−2πnt0)
(2πn)s−m

)
,

and

G2,m(s, α, t0) = is

(2πi)m
Γ(s)

Γ(s−m)ζ(1 − s + m, �Reα� + 1 − α)

+ (−1)m−1

s

2πi Lis−m(e2πiα) + δReα=0
is

m

Γ(s) (−α)s−m−1.
(2π) Γ(1 − s) 2(2πi) Γ(s−m)
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Proof. When Imα < t0, we can integrate term-wisely. It is immediate that for any 
s ∈ C

Gm(s, α, t0) =
∞∑

n=1

∞∫
t0

e−2πn(t+iα)

n−m
ts
dt

t
= 1

(2π)m
∞∑

n=1

e−2πinαΓ(s, 2πnt0)
(2πn)s−m

.

Here the absolute convergence is guaranteed by Γ(s, 2πnt0) ∼ (2πnt0)s−1e−2πnt0 .
When Im(α) > t0, we may assume that Re(s) > 0 first. The integral is defined 

by Hadamard regularization and can not be computed directly. We first evaluate the 
following convergent integral

t0∫
0

Li−m(e(it− α))ts dt
t
.

When m > 0, by the reflection formula (19), this integral is equal to

(−1)m−1
t0∫

0

Li−m(e(α− it))ts dt
t
.

Hence we have

t0∫
0

Li−m(e(τ − α))ts dt
t

=(−1)m−1
∞∑

n=1

t0∫
0

tse2πn(t+iα)

n−m

dt

t

= − e−iπ(s−m) 1
(2π)m

∞∑
n=1

e2πinαγ(s,−2πnt0)
(2πn)s−m

(21)

where each term has exponential decay since γ(s, −2πnt0) ∼ (−2πnt0)s−1e2πnt0 as n
grows to infinity. When m = 0, we have Li0(x) = x/(1 − x), so Li0(x) = − Li0(1/x) − 1. 
In this case, the formula becomes

t0∫
Li0(e(τ − α))ts dt

t
= −e−iπs

(
ts0
s

+
∞∑

n=1

e−2πnaγ(s,−2πnt0)
(2πn)s

)

0
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To finish the proof, by combining with Lemma 8.3, we have to show that

e−iπ(s−m)
∑
n≥1

e2πinαγ(s,−2πnt0)
ns−m

− Γ(s)eiπ(s−m) Lis−m(e2πiα)

=(−1)m−12πi
Γ(1 − s) Lis−m(e2πiα) − e−iπ(s−m)

∑
n≥1

e2πinαΓ(s,−2πnt0)
ns−m

.

(22)

From Lis−m(e2πiα) =
∑

n≥1 n
m−se2πinα, we know the identity (22) is equivalent 

to

e−iπ(s−m)Γ(s) − eiπ(s−m)Γ(s) = (−1)m−12πi
Γ(1 − s) .

But this is exactly the Euler’s reflection formula.
For general s ∈ C, we consider analytic continuation on both sides and thus obtain 

the same formula. Indeed, the function G2,m(s, α, t0) is meromorphic only when m = 0. 
It has a unique single pole at s = 0 with residue

Res
s=0

ζ(1 − s, �Reα� + 1 − α) = −1.

However, this pole cancels with the term δm=0 t
s
0/s in G1,m(s, α, t0), giving us an entire 

function Gm(s, α, t0). �
Now we are able to give the explicit formula for the L-function. Choose any real 

positive number t0. Suppose f has poles α1, · · · , αl in Ft0 − {∞}. Put

f̃(τ) = f(τ) − Pα1(f) − · · · − Pαl
(f).

We define also

I(f, s, t0) :=
l∑

j=1

ordf αj∑
m=1

(−2πi)m

(m− 1)! cf,αj
(m)Gm−1(s, αj , t0).

Theorem 8.5. Let t0 be any real positive number. Let f ∈ QMmero, p
k be a meromorphic 

quasi-modular form with prescribed poles and principal parts as above. Let f1, · · · , fp
be the component functions of f . Suppose that f̃(τ) =

∑
n�−∞ ãf (n)qn, then we 

have

Λ(f, s) = − ãf (0)
(
ts0
s

+ ikts−k
0

k − s

)
+

∑
ãf (n)

(
Γ(s, 2πnt0)

(2πn)s + ikΓ(k − s, 2πn/t0)
(2πn)k−s

)

n �=0
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+ I(f, s, t0) + ikI(f, k − s, t−1
0 ) +

p∑
r=1

(
− ik−rãfr(0)tk−r−s

0
k − r − s

+
∑
n �=0

ik−rãfr(n)Γ(k − r − s, 2πn
t0

)
(2πn)k−r−s

+ ik−rI(fr, k − r − s, t−1
0 )

⎞
⎠ .

Proof. We divide Λ(f, s) into two parts:

Λ(f, s) =
t0,∗∫
0

f(it)ts−1dt +
∞,∗∫
t0

f(it)ts−1dt.

We first deal with the second part.

∞,∗∫
t0

f(it)ts−1dt =
∞,∗∫
t0

f̃(it)ts−1dt +
l∑

j=1

∞,∗∫
t0

Pαj
(f)(it)ts−1dt.

Since f̃ is holomorphic, by Lemma 8.2, we get

∞,∗∫
t0

f̃(it)ts−1dt = − ãf (0)ts0
s

+
∑
n �=0

ãf (n)Γ(s, 2πnt0)
(2πn)s .

The integral of Pαj
(f) is shown in Lemma 8.4 which gives

∞,∗∫
t0

Pαj
(f)(it)ts−1dt =

ordf αj∑
m=1

(−2πi)m

(m− 1)! cf,αj
(m)Gm−1(s, αj , t0).

For the first part, by changing the variable t → 1/t, we get

t0,∗∫
0

f(it)ts−1dt =
∞,∗∫
t−1
0

f(i/t)t−s−1dt.

Since f is a meromorphic quasi-modular form, we have the transformation

f(i/t) =
p∑

r=0
fr(it)(it)k−r, (23)

by applying equation (2) with the inversion γ = ( 0 −1 ). Consequently, we have
1 0
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t0,∗∫
0

f(it)ts−1dt =
p∑

r=0
ik−r

∞,∗∫
t−1
0

fr(it)tk−r−s−1dt

=
p∑

r=0

⎛
⎝− ik−rãfr(0)tk−r−s

0
k − r − s

+
∑
n �=0

ik−rãfr(n)Γ(k − r − s, 2πn
t0

)
(2πn)k−r−s

+ ik−rI(fr, k − r − s, t−1
0 )

)
.

Finally, we complete the proof by noting that f0 = f . �
We are now ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3. The meromorphic continuation and residues follow directly from 
Theorem 8.5, since I(fr, s, t0) is entire in s. So we only need to prove the functional 
equations.

Lemma 2.2 shows that fm is also a meromorphic quasi-modular form of weight k−2m
and depth p −m with components fm, 

(
m+1

1
)
fm+1, · · · , 

(
p

p−m

)
fp. It is therefore enough 

for us to show the functional equation of f in (i). The completed L-function of f is

Λ(f, s) =
∞,∗∫
t0

f(it)ts−1dt +
∞,∗∫
t−1
0

f(i/t)t−s−1dt

=
∞,∗∫
t0

f(it)ts−1dt +
∞,∗∫
t−1
0

p∑
r=0

ik−rfr(it)tk−r−s−1dt.

(24)

Here we use the transformation formula (23) again.
On the other hand, under the transformation t �→ 1/t the first integral becomes

∞,∗∫
t0

p∑
r=0

ik−rfr(i/t)tr+s−k−1dt =
t−1
0 ,∗∫
0

p∑
r=0

ik−rfr(it)tk−r−s−1dt. (25)

Combining the equation (24), we get

Λ(f, s) =

⎛
⎜⎝

t−1
0 ,∗∫
0

+
∞,∗∫
t−1
0

⎞
⎟⎠ p∑

r=0
ik−rfr(it)tk−r−s−1dt

=
p∑

r=0
ik−rΛ(fr, k − r − s).
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This proves the functional equation of f . �
Proposition 8.6. Let f ∈ QMmero, p

k be a meromorphic quasi-modular form. Then its 
Dirichlet L-function L(f, s) is a meromorphic function for all s ∈ C. It has only possible 
simple poles at positive integers within k − p ≤ s ≤ k.

Proof. We note that Γ(s) has a simple pole at nonpositive integers, so this proposition 
follows directly from Theorem 1.3. �

The operator D acts on the Fourier expansion of holomorphic quasi-modular form f
by

D = q
d

dq
:
∑
n≥0

af (n)qn �→
∑
n≥0

naf (n)qn.

This implies that the Dirichlet L-series of Df is exactly the shift of the original Dirichlet 
L-series of f . Actually, for meromorphic quasi-modular form, we can obtain the same 
result.

Theorem 8.7. Let f be a meromorphic quasi-modular form. Then we have

Λ(Dlf, s) = (s− l)l
(2π)l Λ(f, s− l),

and

L(Dlf, s) = L(f, s− l).

Proof. The above identities are nothing but integration by parts. Evidently, it is enough 
for us to prove the case l = 1. With integration by parts we have

∞∫
t0

(Df)(it)e−wtts−1dt

= − 1
2πf(it)e−wtts−1∣∣∞

t0
− 1

2πi

∞∫
t0

iwe−wtf(it)ts−1 + s− 1
i

e−wtf(it)ts−2dt.

When w large enough, the first term equals 1
2πf(it0)ts−1

0 e−wt0 . Clearly, it has a holomor-
phic continuation to the whole plane in w and its value at w = 0 is just 1

2πf(it0)ts−1
0 . 

For the integral, by Lemma 8.2, it has a holomorphic continuation to a neighbourhood 
of w = 0. So we get
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∞,∗∫
t0

(Df)(it)ts−1dt = 1
2πf(it0)ts−1

0 + s− 1
2π

∞,∗∫
t0

f(it)ts−2dt.

Another way to see this is using the precise formula in Lemma 8.2 and the recurrence 
relation Γ(s +1, z) = s Γ(s, z) +zs e−z. We can deal with regularized integrals at positive 
real poles and 0 in the same way with integration by parts. At last we get

∞,∗∫
0

(Df)(it)ts−1dt = s− 1
2π

∞,∗∫
0

f(it)ts−2dt.

This gives the identity for Λ(f, s). The identity for L(f, s) then follows directly after 
Γ(z + 1) = zΓ(z). �

If f is a meromorphic modular form, the formula of its L-function is much simpler.

Corollary 8.8. Let f ∈ Mmero
k be a meromorphic modular form of weight k. Then the 

L-function of f is

Λ(f, s) = − ãf (0)
(
ts0
s

+ ikts−k
0

k − s

)
+ I(f, s, t0) + ikI(f, k − s, t−1

0 )

+
∑
n �=0

ãf (n)
(

Γ(s, 2πnt0)
(2πn)s + ikΓ(k − s, 2πn/t0)

(2πn)k−s

)
.

Moreover, it satisfies the following functional equation

Λ(f, s) = ikΛ(f, k − s).

Remark. In particular, when f ∈ S!
k is a weakly holomorphic cusp form, we obtain

Λ(f, s) =
∑
n �=0

af (n)
(

Γ(s, 2πnt0)
(2πn)s + ikΓ(k − s, 2πn/t0)

(2πn)k−s

)
.

This computation coincides with Theorem 2.2 in [3].

Finally, because of the gamma factor, we have some vanishing results of certain special 
L-values of meromorphic quasi-modular forms.

Corollary 8.9. Let f ∈ QMmero, p
k be a meromorphic quasi-modular form of weight k. 

Then

(i) If k ≤ 0, then the Dirichlet L-function L(f, s) is always entire in s. Moreover, if 
s is an integer with s < k − p or k < s < 0, we have
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L(f, s) = 0.

Further, if s is a positive integer with 2 ≤ s ≤ |k|, we have

L(D1−kf, s) = 0.

(ii) If k ≥ 2, when s is a negative integer with s < k − p, then

L(f, s) = 0.

Remark. This corollary shows that some periods of the meromorphic quasi-modular form 
D1−kf vanish. When f is a weakly holomorphic modular form, this recovers Theorem 
2.5 in [3].
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